2113 lines
66 KiB
C
2113 lines
66 KiB
C
/* Target-dependent code for PowerPC systems using the SVR4 ABI
|
|
for GDB, the GNU debugger.
|
|
|
|
Copyright (C) 2000-2015 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "gdbcore.h"
|
|
#include "inferior.h"
|
|
#include "regcache.h"
|
|
#include "value.h"
|
|
#include "ppc-tdep.h"
|
|
#include "target.h"
|
|
#include "objfiles.h"
|
|
#include "infcall.h"
|
|
#include "dwarf2.h"
|
|
|
|
|
|
/* Check whether FTPYE is a (pointer to) function type that should use
|
|
the OpenCL vector ABI. */
|
|
|
|
static int
|
|
ppc_sysv_use_opencl_abi (struct type *ftype)
|
|
{
|
|
ftype = check_typedef (ftype);
|
|
|
|
if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
|
|
ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
|
|
|
|
return (TYPE_CODE (ftype) == TYPE_CODE_FUNC
|
|
&& TYPE_CALLING_CONVENTION (ftype) == DW_CC_GDB_IBM_OpenCL);
|
|
}
|
|
|
|
/* Pass the arguments in either registers, or in the stack. Using the
|
|
ppc sysv ABI, the first eight words of the argument list (that might
|
|
be less than eight parameters if some parameters occupy more than one
|
|
word) are passed in r3..r10 registers. float and double parameters are
|
|
passed in fpr's, in addition to that. Rest of the parameters if any
|
|
are passed in user stack.
|
|
|
|
If the function is returning a structure, then the return address is passed
|
|
in r3, then the first 7 words of the parametes can be passed in registers,
|
|
starting from r4. */
|
|
|
|
CORE_ADDR
|
|
ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int opencl_abi = ppc_sysv_use_opencl_abi (value_type (function));
|
|
ULONGEST saved_sp;
|
|
int argspace = 0; /* 0 is an initial wrong guess. */
|
|
int write_pass;
|
|
|
|
gdb_assert (tdep->wordsize == 4);
|
|
|
|
regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
|
|
&saved_sp);
|
|
|
|
/* Go through the argument list twice.
|
|
|
|
Pass 1: Figure out how much new stack space is required for
|
|
arguments and pushed values. Unlike the PowerOpen ABI, the SysV
|
|
ABI doesn't reserve any extra space for parameters which are put
|
|
in registers, but does always push structures and then pass their
|
|
address.
|
|
|
|
Pass 2: Replay the same computation but this time also write the
|
|
values out to the target. */
|
|
|
|
for (write_pass = 0; write_pass < 2; write_pass++)
|
|
{
|
|
int argno;
|
|
/* Next available floating point register for float and double
|
|
arguments. */
|
|
int freg = 1;
|
|
/* Next available general register for non-float, non-vector
|
|
arguments. */
|
|
int greg = 3;
|
|
/* Next available vector register for vector arguments. */
|
|
int vreg = 2;
|
|
/* Arguments start above the "LR save word" and "Back chain". */
|
|
int argoffset = 2 * tdep->wordsize;
|
|
/* Structures start after the arguments. */
|
|
int structoffset = argoffset + argspace;
|
|
|
|
/* If the function is returning a `struct', then the first word
|
|
(which will be passed in r3) is used for struct return
|
|
address. In that case we should advance one word and start
|
|
from r4 register to copy parameters. */
|
|
if (struct_return)
|
|
{
|
|
if (write_pass)
|
|
regcache_cooked_write_signed (regcache,
|
|
tdep->ppc_gp0_regnum + greg,
|
|
struct_addr);
|
|
greg++;
|
|
}
|
|
|
|
for (argno = 0; argno < nargs; argno++)
|
|
{
|
|
struct value *arg = args[argno];
|
|
struct type *type = check_typedef (value_type (arg));
|
|
int len = TYPE_LENGTH (type);
|
|
const bfd_byte *val = value_contents (arg);
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT && len <= 8
|
|
&& !tdep->soft_float)
|
|
{
|
|
/* Floating point value converted to "double" then
|
|
passed in an FP register, when the registers run out,
|
|
8 byte aligned stack is used. */
|
|
if (freg <= 8)
|
|
{
|
|
if (write_pass)
|
|
{
|
|
/* Always store the floating point value using
|
|
the register's floating-point format. */
|
|
gdb_byte regval[MAX_REGISTER_SIZE];
|
|
struct type *regtype
|
|
= register_type (gdbarch, tdep->ppc_fp0_regnum + freg);
|
|
convert_typed_floating (val, type, regval, regtype);
|
|
regcache_cooked_write (regcache,
|
|
tdep->ppc_fp0_regnum + freg,
|
|
regval);
|
|
}
|
|
freg++;
|
|
}
|
|
else
|
|
{
|
|
/* The SysV ABI tells us to convert floats to
|
|
doubles before writing them to an 8 byte aligned
|
|
stack location. Unfortunately GCC does not do
|
|
that, and stores floats into 4 byte aligned
|
|
locations without converting them to doubles.
|
|
Since there is no know compiler that actually
|
|
follows the ABI here, we implement the GCC
|
|
convention. */
|
|
|
|
/* Align to 4 bytes or 8 bytes depending on the type of
|
|
the argument (float or double). */
|
|
argoffset = align_up (argoffset, len);
|
|
if (write_pass)
|
|
write_memory (sp + argoffset, val, len);
|
|
argoffset += len;
|
|
}
|
|
}
|
|
else if (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
&& len == 16
|
|
&& !tdep->soft_float
|
|
&& (gdbarch_long_double_format (gdbarch)
|
|
== floatformats_ibm_long_double))
|
|
{
|
|
/* IBM long double passed in two FP registers if
|
|
available, otherwise 8-byte aligned stack. */
|
|
if (freg <= 7)
|
|
{
|
|
if (write_pass)
|
|
{
|
|
regcache_cooked_write (regcache,
|
|
tdep->ppc_fp0_regnum + freg,
|
|
val);
|
|
regcache_cooked_write (regcache,
|
|
tdep->ppc_fp0_regnum + freg + 1,
|
|
val + 8);
|
|
}
|
|
freg += 2;
|
|
}
|
|
else
|
|
{
|
|
argoffset = align_up (argoffset, 8);
|
|
if (write_pass)
|
|
write_memory (sp + argoffset, val, len);
|
|
argoffset += 16;
|
|
}
|
|
}
|
|
else if (len == 8
|
|
&& (TYPE_CODE (type) == TYPE_CODE_INT /* long long */
|
|
|| TYPE_CODE (type) == TYPE_CODE_FLT /* double */
|
|
|| (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
|
|
&& tdep->soft_float)))
|
|
{
|
|
/* "long long" or soft-float "double" or "_Decimal64"
|
|
passed in an odd/even register pair with the low
|
|
addressed word in the odd register and the high
|
|
addressed word in the even register, or when the
|
|
registers run out an 8 byte aligned stack
|
|
location. */
|
|
if (greg > 9)
|
|
{
|
|
/* Just in case GREG was 10. */
|
|
greg = 11;
|
|
argoffset = align_up (argoffset, 8);
|
|
if (write_pass)
|
|
write_memory (sp + argoffset, val, len);
|
|
argoffset += 8;
|
|
}
|
|
else
|
|
{
|
|
/* Must start on an odd register - r3/r4 etc. */
|
|
if ((greg & 1) == 0)
|
|
greg++;
|
|
if (write_pass)
|
|
{
|
|
regcache_cooked_write (regcache,
|
|
tdep->ppc_gp0_regnum + greg + 0,
|
|
val + 0);
|
|
regcache_cooked_write (regcache,
|
|
tdep->ppc_gp0_regnum + greg + 1,
|
|
val + 4);
|
|
}
|
|
greg += 2;
|
|
}
|
|
}
|
|
else if (len == 16
|
|
&& ((TYPE_CODE (type) == TYPE_CODE_FLT
|
|
&& (gdbarch_long_double_format (gdbarch)
|
|
== floatformats_ibm_long_double))
|
|
|| (TYPE_CODE (type) == TYPE_CODE_DECFLOAT
|
|
&& tdep->soft_float)))
|
|
{
|
|
/* Soft-float IBM long double or _Decimal128 passed in
|
|
four consecutive registers, or on the stack. The
|
|
registers are not necessarily odd/even pairs. */
|
|
if (greg > 7)
|
|
{
|
|
greg = 11;
|
|
argoffset = align_up (argoffset, 8);
|
|
if (write_pass)
|
|
write_memory (sp + argoffset, val, len);
|
|
argoffset += 16;
|
|
}
|
|
else
|
|
{
|
|
if (write_pass)
|
|
{
|
|
regcache_cooked_write (regcache,
|
|
tdep->ppc_gp0_regnum + greg + 0,
|
|
val + 0);
|
|
regcache_cooked_write (regcache,
|
|
tdep->ppc_gp0_regnum + greg + 1,
|
|
val + 4);
|
|
regcache_cooked_write (regcache,
|
|
tdep->ppc_gp0_regnum + greg + 2,
|
|
val + 8);
|
|
regcache_cooked_write (regcache,
|
|
tdep->ppc_gp0_regnum + greg + 3,
|
|
val + 12);
|
|
}
|
|
greg += 4;
|
|
}
|
|
}
|
|
else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len <= 8
|
|
&& !tdep->soft_float)
|
|
{
|
|
/* 32-bit and 64-bit decimal floats go in f1 .. f8. They can
|
|
end up in memory. */
|
|
|
|
if (freg <= 8)
|
|
{
|
|
if (write_pass)
|
|
{
|
|
gdb_byte regval[MAX_REGISTER_SIZE];
|
|
const gdb_byte *p;
|
|
|
|
/* 32-bit decimal floats are right aligned in the
|
|
doubleword. */
|
|
if (TYPE_LENGTH (type) == 4)
|
|
{
|
|
memcpy (regval + 4, val, 4);
|
|
p = regval;
|
|
}
|
|
else
|
|
p = val;
|
|
|
|
regcache_cooked_write (regcache,
|
|
tdep->ppc_fp0_regnum + freg, p);
|
|
}
|
|
|
|
freg++;
|
|
}
|
|
else
|
|
{
|
|
argoffset = align_up (argoffset, len);
|
|
|
|
if (write_pass)
|
|
/* Write value in the stack's parameter save area. */
|
|
write_memory (sp + argoffset, val, len);
|
|
|
|
argoffset += len;
|
|
}
|
|
}
|
|
else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && len == 16
|
|
&& !tdep->soft_float)
|
|
{
|
|
/* 128-bit decimal floats go in f2 .. f7, always in even/odd
|
|
pairs. They can end up in memory, using two doublewords. */
|
|
|
|
if (freg <= 6)
|
|
{
|
|
/* Make sure freg is even. */
|
|
freg += freg & 1;
|
|
|
|
if (write_pass)
|
|
{
|
|
regcache_cooked_write (regcache,
|
|
tdep->ppc_fp0_regnum + freg, val);
|
|
regcache_cooked_write (regcache,
|
|
tdep->ppc_fp0_regnum + freg + 1, val + 8);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
argoffset = align_up (argoffset, 8);
|
|
|
|
if (write_pass)
|
|
write_memory (sp + argoffset, val, 16);
|
|
|
|
argoffset += 16;
|
|
}
|
|
|
|
/* If a 128-bit decimal float goes to the stack because only f7
|
|
and f8 are free (thus there's no even/odd register pair
|
|
available), these registers should be marked as occupied.
|
|
Hence we increase freg even when writing to memory. */
|
|
freg += 2;
|
|
}
|
|
else if (len < 16
|
|
&& TYPE_CODE (type) == TYPE_CODE_ARRAY
|
|
&& TYPE_VECTOR (type)
|
|
&& opencl_abi)
|
|
{
|
|
/* OpenCL vectors shorter than 16 bytes are passed as if
|
|
a series of independent scalars. */
|
|
struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
|
|
int i, nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);
|
|
|
|
for (i = 0; i < nelt; i++)
|
|
{
|
|
const gdb_byte *elval = val + i * TYPE_LENGTH (eltype);
|
|
|
|
if (TYPE_CODE (eltype) == TYPE_CODE_FLT && !tdep->soft_float)
|
|
{
|
|
if (freg <= 8)
|
|
{
|
|
if (write_pass)
|
|
{
|
|
int regnum = tdep->ppc_fp0_regnum + freg;
|
|
gdb_byte regval[MAX_REGISTER_SIZE];
|
|
struct type *regtype
|
|
= register_type (gdbarch, regnum);
|
|
convert_typed_floating (elval, eltype,
|
|
regval, regtype);
|
|
regcache_cooked_write (regcache, regnum, regval);
|
|
}
|
|
freg++;
|
|
}
|
|
else
|
|
{
|
|
argoffset = align_up (argoffset, len);
|
|
if (write_pass)
|
|
write_memory (sp + argoffset, val, len);
|
|
argoffset += len;
|
|
}
|
|
}
|
|
else if (TYPE_LENGTH (eltype) == 8)
|
|
{
|
|
if (greg > 9)
|
|
{
|
|
/* Just in case GREG was 10. */
|
|
greg = 11;
|
|
argoffset = align_up (argoffset, 8);
|
|
if (write_pass)
|
|
write_memory (sp + argoffset, elval,
|
|
TYPE_LENGTH (eltype));
|
|
argoffset += 8;
|
|
}
|
|
else
|
|
{
|
|
/* Must start on an odd register - r3/r4 etc. */
|
|
if ((greg & 1) == 0)
|
|
greg++;
|
|
if (write_pass)
|
|
{
|
|
int regnum = tdep->ppc_gp0_regnum + greg;
|
|
regcache_cooked_write (regcache,
|
|
regnum + 0, elval + 0);
|
|
regcache_cooked_write (regcache,
|
|
regnum + 1, elval + 4);
|
|
}
|
|
greg += 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
gdb_byte word[MAX_REGISTER_SIZE];
|
|
store_unsigned_integer (word, tdep->wordsize, byte_order,
|
|
unpack_long (eltype, elval));
|
|
|
|
if (greg <= 10)
|
|
{
|
|
if (write_pass)
|
|
regcache_cooked_write (regcache,
|
|
tdep->ppc_gp0_regnum + greg,
|
|
word);
|
|
greg++;
|
|
}
|
|
else
|
|
{
|
|
argoffset = align_up (argoffset, tdep->wordsize);
|
|
if (write_pass)
|
|
write_memory (sp + argoffset, word, tdep->wordsize);
|
|
argoffset += tdep->wordsize;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (len >= 16
|
|
&& TYPE_CODE (type) == TYPE_CODE_ARRAY
|
|
&& TYPE_VECTOR (type)
|
|
&& opencl_abi)
|
|
{
|
|
/* OpenCL vectors 16 bytes or longer are passed as if
|
|
a series of AltiVec vectors. */
|
|
int i;
|
|
|
|
for (i = 0; i < len / 16; i++)
|
|
{
|
|
const gdb_byte *elval = val + i * 16;
|
|
|
|
if (vreg <= 13)
|
|
{
|
|
if (write_pass)
|
|
regcache_cooked_write (regcache,
|
|
tdep->ppc_vr0_regnum + vreg,
|
|
elval);
|
|
vreg++;
|
|
}
|
|
else
|
|
{
|
|
argoffset = align_up (argoffset, 16);
|
|
if (write_pass)
|
|
write_memory (sp + argoffset, elval, 16);
|
|
argoffset += 16;
|
|
}
|
|
}
|
|
}
|
|
else if (len == 16
|
|
&& TYPE_CODE (type) == TYPE_CODE_ARRAY
|
|
&& TYPE_VECTOR (type)
|
|
&& tdep->vector_abi == POWERPC_VEC_ALTIVEC)
|
|
{
|
|
/* Vector parameter passed in an Altivec register, or
|
|
when that runs out, 16 byte aligned stack location. */
|
|
if (vreg <= 13)
|
|
{
|
|
if (write_pass)
|
|
regcache_cooked_write (regcache,
|
|
tdep->ppc_vr0_regnum + vreg, val);
|
|
vreg++;
|
|
}
|
|
else
|
|
{
|
|
argoffset = align_up (argoffset, 16);
|
|
if (write_pass)
|
|
write_memory (sp + argoffset, val, 16);
|
|
argoffset += 16;
|
|
}
|
|
}
|
|
else if (len == 8
|
|
&& TYPE_CODE (type) == TYPE_CODE_ARRAY
|
|
&& TYPE_VECTOR (type)
|
|
&& tdep->vector_abi == POWERPC_VEC_SPE)
|
|
{
|
|
/* Vector parameter passed in an e500 register, or when
|
|
that runs out, 8 byte aligned stack location. Note
|
|
that since e500 vector and general purpose registers
|
|
both map onto the same underlying register set, a
|
|
"greg" and not a "vreg" is consumed here. A cooked
|
|
write stores the value in the correct locations
|
|
within the raw register cache. */
|
|
if (greg <= 10)
|
|
{
|
|
if (write_pass)
|
|
regcache_cooked_write (regcache,
|
|
tdep->ppc_ev0_regnum + greg, val);
|
|
greg++;
|
|
}
|
|
else
|
|
{
|
|
argoffset = align_up (argoffset, 8);
|
|
if (write_pass)
|
|
write_memory (sp + argoffset, val, 8);
|
|
argoffset += 8;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Reduce the parameter down to something that fits in a
|
|
"word". */
|
|
gdb_byte word[MAX_REGISTER_SIZE];
|
|
memset (word, 0, MAX_REGISTER_SIZE);
|
|
if (len > tdep->wordsize
|
|
|| TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
|
{
|
|
/* Structs and large values are put in an
|
|
aligned stack slot ... */
|
|
if (TYPE_CODE (type) == TYPE_CODE_ARRAY
|
|
&& TYPE_VECTOR (type)
|
|
&& len >= 16)
|
|
structoffset = align_up (structoffset, 16);
|
|
else
|
|
structoffset = align_up (structoffset, 8);
|
|
|
|
if (write_pass)
|
|
write_memory (sp + structoffset, val, len);
|
|
/* ... and then a "word" pointing to that address is
|
|
passed as the parameter. */
|
|
store_unsigned_integer (word, tdep->wordsize, byte_order,
|
|
sp + structoffset);
|
|
structoffset += len;
|
|
}
|
|
else if (TYPE_CODE (type) == TYPE_CODE_INT)
|
|
/* Sign or zero extend the "int" into a "word". */
|
|
store_unsigned_integer (word, tdep->wordsize, byte_order,
|
|
unpack_long (type, val));
|
|
else
|
|
/* Always goes in the low address. */
|
|
memcpy (word, val, len);
|
|
/* Store that "word" in a register, or on the stack.
|
|
The words have "4" byte alignment. */
|
|
if (greg <= 10)
|
|
{
|
|
if (write_pass)
|
|
regcache_cooked_write (regcache,
|
|
tdep->ppc_gp0_regnum + greg, word);
|
|
greg++;
|
|
}
|
|
else
|
|
{
|
|
argoffset = align_up (argoffset, tdep->wordsize);
|
|
if (write_pass)
|
|
write_memory (sp + argoffset, word, tdep->wordsize);
|
|
argoffset += tdep->wordsize;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compute the actual stack space requirements. */
|
|
if (!write_pass)
|
|
{
|
|
/* Remember the amount of space needed by the arguments. */
|
|
argspace = argoffset;
|
|
/* Allocate space for both the arguments and the structures. */
|
|
sp -= (argoffset + structoffset);
|
|
/* Ensure that the stack is still 16 byte aligned. */
|
|
sp = align_down (sp, 16);
|
|
}
|
|
|
|
/* The psABI says that "A caller of a function that takes a
|
|
variable argument list shall set condition register bit 6 to
|
|
1 if it passes one or more arguments in the floating-point
|
|
registers. It is strongly recommended that the caller set the
|
|
bit to 0 otherwise..." Doing this for normal functions too
|
|
shouldn't hurt. */
|
|
if (write_pass)
|
|
{
|
|
ULONGEST cr;
|
|
|
|
regcache_cooked_read_unsigned (regcache, tdep->ppc_cr_regnum, &cr);
|
|
if (freg > 1)
|
|
cr |= 0x02000000;
|
|
else
|
|
cr &= ~0x02000000;
|
|
regcache_cooked_write_unsigned (regcache, tdep->ppc_cr_regnum, cr);
|
|
}
|
|
}
|
|
|
|
/* Update %sp. */
|
|
regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
|
|
|
|
/* Write the backchain (it occupies WORDSIZED bytes). */
|
|
write_memory_signed_integer (sp, tdep->wordsize, byte_order, saved_sp);
|
|
|
|
/* Point the inferior function call's return address at the dummy's
|
|
breakpoint. */
|
|
regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
|
|
|
|
return sp;
|
|
}
|
|
|
|
/* Handle the return-value conventions for Decimal Floating Point values. */
|
|
static int
|
|
get_decimal_float_return_value (struct gdbarch *gdbarch, struct type *valtype,
|
|
struct regcache *regcache, gdb_byte *readbuf,
|
|
const gdb_byte *writebuf)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
gdb_assert (TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT);
|
|
|
|
/* 32-bit and 64-bit decimal floats in f1. */
|
|
if (TYPE_LENGTH (valtype) <= 8)
|
|
{
|
|
if (writebuf != NULL)
|
|
{
|
|
gdb_byte regval[MAX_REGISTER_SIZE];
|
|
const gdb_byte *p;
|
|
|
|
/* 32-bit decimal float is right aligned in the doubleword. */
|
|
if (TYPE_LENGTH (valtype) == 4)
|
|
{
|
|
memcpy (regval + 4, writebuf, 4);
|
|
p = regval;
|
|
}
|
|
else
|
|
p = writebuf;
|
|
|
|
regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, p);
|
|
}
|
|
if (readbuf != NULL)
|
|
{
|
|
regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
|
|
|
|
/* Left align 32-bit decimal float. */
|
|
if (TYPE_LENGTH (valtype) == 4)
|
|
memcpy (readbuf, readbuf + 4, 4);
|
|
}
|
|
}
|
|
/* 128-bit decimal floats in f2,f3. */
|
|
else if (TYPE_LENGTH (valtype) == 16)
|
|
{
|
|
if (writebuf != NULL || readbuf != NULL)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++)
|
|
{
|
|
if (writebuf != NULL)
|
|
regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2 + i,
|
|
writebuf + i * 8);
|
|
if (readbuf != NULL)
|
|
regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2 + i,
|
|
readbuf + i * 8);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
/* Can't happen. */
|
|
internal_error (__FILE__, __LINE__, _("Unknown decimal float size."));
|
|
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
/* Handle the return-value conventions specified by the SysV 32-bit
|
|
PowerPC ABI (including all the supplements):
|
|
|
|
no floating-point: floating-point values returned using 32-bit
|
|
general-purpose registers.
|
|
|
|
Altivec: 128-bit vectors returned using vector registers.
|
|
|
|
e500: 64-bit vectors returned using the full full 64 bit EV
|
|
register, floating-point values returned using 32-bit
|
|
general-purpose registers.
|
|
|
|
GCC (broken): Small struct values right (instead of left) aligned
|
|
when returned in general-purpose registers. */
|
|
|
|
static enum return_value_convention
|
|
do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
|
struct type *type, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf,
|
|
int broken_gcc)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int opencl_abi = func_type? ppc_sysv_use_opencl_abi (func_type) : 0;
|
|
|
|
gdb_assert (tdep->wordsize == 4);
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
&& TYPE_LENGTH (type) <= 8
|
|
&& !tdep->soft_float)
|
|
{
|
|
if (readbuf)
|
|
{
|
|
/* Floats and doubles stored in "f1". Convert the value to
|
|
the required type. */
|
|
gdb_byte regval[MAX_REGISTER_SIZE];
|
|
struct type *regtype = register_type (gdbarch,
|
|
tdep->ppc_fp0_regnum + 1);
|
|
regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
|
|
convert_typed_floating (regval, regtype, readbuf, type);
|
|
}
|
|
if (writebuf)
|
|
{
|
|
/* Floats and doubles stored in "f1". Convert the value to
|
|
the register's "double" type. */
|
|
gdb_byte regval[MAX_REGISTER_SIZE];
|
|
struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
|
|
convert_typed_floating (writebuf, type, regval, regtype);
|
|
regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
&& TYPE_LENGTH (type) == 16
|
|
&& !tdep->soft_float
|
|
&& (gdbarch_long_double_format (gdbarch)
|
|
== floatformats_ibm_long_double))
|
|
{
|
|
/* IBM long double stored in f1 and f2. */
|
|
if (readbuf)
|
|
{
|
|
regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, readbuf);
|
|
regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 2,
|
|
readbuf + 8);
|
|
}
|
|
if (writebuf)
|
|
{
|
|
regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, writebuf);
|
|
regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 2,
|
|
writebuf + 8);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
if (TYPE_LENGTH (type) == 16
|
|
&& ((TYPE_CODE (type) == TYPE_CODE_FLT
|
|
&& (gdbarch_long_double_format (gdbarch)
|
|
== floatformats_ibm_long_double))
|
|
|| (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && tdep->soft_float)))
|
|
{
|
|
/* Soft-float IBM long double or _Decimal128 stored in r3, r4,
|
|
r5, r6. */
|
|
if (readbuf)
|
|
{
|
|
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
|
|
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
|
|
readbuf + 4);
|
|
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
|
|
readbuf + 8);
|
|
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
|
|
readbuf + 12);
|
|
}
|
|
if (writebuf)
|
|
{
|
|
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
|
|
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
|
|
writebuf + 4);
|
|
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
|
|
writebuf + 8);
|
|
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
|
|
writebuf + 12);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
|
|
|| (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
|
|
|| (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 8
|
|
&& tdep->soft_float))
|
|
{
|
|
if (readbuf)
|
|
{
|
|
/* A long long, double or _Decimal64 stored in the 32 bit
|
|
r3/r4. */
|
|
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
|
|
readbuf + 0);
|
|
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
|
|
readbuf + 4);
|
|
}
|
|
if (writebuf)
|
|
{
|
|
/* A long long, double or _Decimal64 stored in the 32 bit
|
|
r3/r4. */
|
|
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
|
|
writebuf + 0);
|
|
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
|
|
writebuf + 4);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT && !tdep->soft_float)
|
|
return get_decimal_float_return_value (gdbarch, type, regcache, readbuf,
|
|
writebuf);
|
|
else if ((TYPE_CODE (type) == TYPE_CODE_INT
|
|
|| TYPE_CODE (type) == TYPE_CODE_CHAR
|
|
|| TYPE_CODE (type) == TYPE_CODE_BOOL
|
|
|| TYPE_CODE (type) == TYPE_CODE_PTR
|
|
|| TYPE_CODE (type) == TYPE_CODE_REF
|
|
|| TYPE_CODE (type) == TYPE_CODE_ENUM)
|
|
&& TYPE_LENGTH (type) <= tdep->wordsize)
|
|
{
|
|
if (readbuf)
|
|
{
|
|
/* Some sort of integer stored in r3. Since TYPE isn't
|
|
bigger than the register, sign extension isn't a problem
|
|
- just do everything unsigned. */
|
|
ULONGEST regval;
|
|
regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
|
|
®val);
|
|
store_unsigned_integer (readbuf, TYPE_LENGTH (type), byte_order,
|
|
regval);
|
|
}
|
|
if (writebuf)
|
|
{
|
|
/* Some sort of integer stored in r3. Use unpack_long since
|
|
that should handle any required sign extension. */
|
|
regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
|
|
unpack_long (type, writebuf));
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
/* OpenCL vectors < 16 bytes are returned as distinct
|
|
scalars in f1..f2 or r3..r10. */
|
|
if (TYPE_CODE (type) == TYPE_CODE_ARRAY
|
|
&& TYPE_VECTOR (type)
|
|
&& TYPE_LENGTH (type) < 16
|
|
&& opencl_abi)
|
|
{
|
|
struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
|
|
int i, nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);
|
|
|
|
for (i = 0; i < nelt; i++)
|
|
{
|
|
int offset = i * TYPE_LENGTH (eltype);
|
|
|
|
if (TYPE_CODE (eltype) == TYPE_CODE_FLT)
|
|
{
|
|
int regnum = tdep->ppc_fp0_regnum + 1 + i;
|
|
gdb_byte regval[MAX_REGISTER_SIZE];
|
|
struct type *regtype = register_type (gdbarch, regnum);
|
|
|
|
if (writebuf != NULL)
|
|
{
|
|
convert_typed_floating (writebuf + offset, eltype,
|
|
regval, regtype);
|
|
regcache_cooked_write (regcache, regnum, regval);
|
|
}
|
|
if (readbuf != NULL)
|
|
{
|
|
regcache_cooked_read (regcache, regnum, regval);
|
|
convert_typed_floating (regval, regtype,
|
|
readbuf + offset, eltype);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int regnum = tdep->ppc_gp0_regnum + 3 + i;
|
|
ULONGEST regval;
|
|
|
|
if (writebuf != NULL)
|
|
{
|
|
regval = unpack_long (eltype, writebuf + offset);
|
|
regcache_cooked_write_unsigned (regcache, regnum, regval);
|
|
}
|
|
if (readbuf != NULL)
|
|
{
|
|
regcache_cooked_read_unsigned (regcache, regnum, ®val);
|
|
store_unsigned_integer (readbuf + offset,
|
|
TYPE_LENGTH (eltype), byte_order,
|
|
regval);
|
|
}
|
|
}
|
|
}
|
|
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
/* OpenCL vectors >= 16 bytes are returned in v2..v9. */
|
|
if (TYPE_CODE (type) == TYPE_CODE_ARRAY
|
|
&& TYPE_VECTOR (type)
|
|
&& TYPE_LENGTH (type) >= 16
|
|
&& opencl_abi)
|
|
{
|
|
int n_regs = TYPE_LENGTH (type) / 16;
|
|
int i;
|
|
|
|
for (i = 0; i < n_regs; i++)
|
|
{
|
|
int offset = i * 16;
|
|
int regnum = tdep->ppc_vr0_regnum + 2 + i;
|
|
|
|
if (writebuf != NULL)
|
|
regcache_cooked_write (regcache, regnum, writebuf + offset);
|
|
if (readbuf != NULL)
|
|
regcache_cooked_read (regcache, regnum, readbuf + offset);
|
|
}
|
|
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
if (TYPE_LENGTH (type) == 16
|
|
&& TYPE_CODE (type) == TYPE_CODE_ARRAY
|
|
&& TYPE_VECTOR (type)
|
|
&& tdep->vector_abi == POWERPC_VEC_ALTIVEC)
|
|
{
|
|
if (readbuf)
|
|
{
|
|
/* Altivec places the return value in "v2". */
|
|
regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
|
|
}
|
|
if (writebuf)
|
|
{
|
|
/* Altivec places the return value in "v2". */
|
|
regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
if (TYPE_LENGTH (type) == 16
|
|
&& TYPE_CODE (type) == TYPE_CODE_ARRAY
|
|
&& TYPE_VECTOR (type)
|
|
&& tdep->vector_abi == POWERPC_VEC_GENERIC)
|
|
{
|
|
/* GCC -maltivec -mabi=no-altivec returns vectors in r3/r4/r5/r6.
|
|
GCC without AltiVec returns them in memory, but it warns about
|
|
ABI risks in that case; we don't try to support it. */
|
|
if (readbuf)
|
|
{
|
|
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
|
|
readbuf + 0);
|
|
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
|
|
readbuf + 4);
|
|
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 5,
|
|
readbuf + 8);
|
|
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 6,
|
|
readbuf + 12);
|
|
}
|
|
if (writebuf)
|
|
{
|
|
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
|
|
writebuf + 0);
|
|
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
|
|
writebuf + 4);
|
|
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 5,
|
|
writebuf + 8);
|
|
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 6,
|
|
writebuf + 12);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
if (TYPE_LENGTH (type) == 8
|
|
&& TYPE_CODE (type) == TYPE_CODE_ARRAY
|
|
&& TYPE_VECTOR (type)
|
|
&& tdep->vector_abi == POWERPC_VEC_SPE)
|
|
{
|
|
/* The e500 ABI places return values for the 64-bit DSP types
|
|
(__ev64_opaque__) in r3. However, in GDB-speak, ev3
|
|
corresponds to the entire r3 value for e500, whereas GDB's r3
|
|
only corresponds to the least significant 32-bits. So place
|
|
the 64-bit DSP type's value in ev3. */
|
|
if (readbuf)
|
|
regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, readbuf);
|
|
if (writebuf)
|
|
regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, writebuf);
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
if (broken_gcc && TYPE_LENGTH (type) <= 8)
|
|
{
|
|
/* GCC screwed up for structures or unions whose size is less
|
|
than or equal to 8 bytes.. Instead of left-aligning, it
|
|
right-aligns the data into the buffer formed by r3, r4. */
|
|
gdb_byte regvals[MAX_REGISTER_SIZE * 2];
|
|
int len = TYPE_LENGTH (type);
|
|
int offset = (2 * tdep->wordsize - len) % tdep->wordsize;
|
|
|
|
if (readbuf)
|
|
{
|
|
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
|
|
regvals + 0 * tdep->wordsize);
|
|
if (len > tdep->wordsize)
|
|
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
|
|
regvals + 1 * tdep->wordsize);
|
|
memcpy (readbuf, regvals + offset, len);
|
|
}
|
|
if (writebuf)
|
|
{
|
|
memset (regvals, 0, sizeof regvals);
|
|
memcpy (regvals + offset, writebuf, len);
|
|
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
|
|
regvals + 0 * tdep->wordsize);
|
|
if (len > tdep->wordsize)
|
|
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
|
|
regvals + 1 * tdep->wordsize);
|
|
}
|
|
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
if (TYPE_LENGTH (type) <= 8)
|
|
{
|
|
if (readbuf)
|
|
{
|
|
/* This matches SVr4 PPC, it does not match GCC. */
|
|
/* The value is right-padded to 8 bytes and then loaded, as
|
|
two "words", into r3/r4. */
|
|
gdb_byte regvals[MAX_REGISTER_SIZE * 2];
|
|
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
|
|
regvals + 0 * tdep->wordsize);
|
|
if (TYPE_LENGTH (type) > tdep->wordsize)
|
|
regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
|
|
regvals + 1 * tdep->wordsize);
|
|
memcpy (readbuf, regvals, TYPE_LENGTH (type));
|
|
}
|
|
if (writebuf)
|
|
{
|
|
/* This matches SVr4 PPC, it does not match GCC. */
|
|
/* The value is padded out to 8 bytes and then loaded, as
|
|
two "words" into r3/r4. */
|
|
gdb_byte regvals[MAX_REGISTER_SIZE * 2];
|
|
memset (regvals, 0, sizeof regvals);
|
|
memcpy (regvals, writebuf, TYPE_LENGTH (type));
|
|
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
|
|
regvals + 0 * tdep->wordsize);
|
|
if (TYPE_LENGTH (type) > tdep->wordsize)
|
|
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
|
|
regvals + 1 * tdep->wordsize);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
}
|
|
|
|
enum return_value_convention
|
|
ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct value *function,
|
|
struct type *valtype, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
return do_ppc_sysv_return_value (gdbarch,
|
|
function ? value_type (function) : NULL,
|
|
valtype, regcache, readbuf, writebuf, 0);
|
|
}
|
|
|
|
enum return_value_convention
|
|
ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch,
|
|
struct value *function,
|
|
struct type *valtype,
|
|
struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
return do_ppc_sysv_return_value (gdbarch,
|
|
function ? value_type (function) : NULL,
|
|
valtype, regcache, readbuf, writebuf, 1);
|
|
}
|
|
|
|
/* The helper function for 64-bit SYSV push_dummy_call. Converts the
|
|
function's code address back into the function's descriptor
|
|
address.
|
|
|
|
Find a value for the TOC register. Every symbol should have both
|
|
".FN" and "FN" in the minimal symbol table. "FN" points at the
|
|
FN's descriptor, while ".FN" points at the entry point (which
|
|
matches FUNC_ADDR). Need to reverse from FUNC_ADDR back to the
|
|
FN's descriptor address (while at the same time being careful to
|
|
find "FN" in the same object file as ".FN"). */
|
|
|
|
static int
|
|
convert_code_addr_to_desc_addr (CORE_ADDR code_addr, CORE_ADDR *desc_addr)
|
|
{
|
|
struct obj_section *dot_fn_section;
|
|
struct bound_minimal_symbol dot_fn;
|
|
struct bound_minimal_symbol fn;
|
|
|
|
/* Find the minimal symbol that corresponds to CODE_ADDR (should
|
|
have a name of the form ".FN"). */
|
|
dot_fn = lookup_minimal_symbol_by_pc (code_addr);
|
|
if (dot_fn.minsym == NULL || MSYMBOL_LINKAGE_NAME (dot_fn.minsym)[0] != '.')
|
|
return 0;
|
|
/* Get the section that contains CODE_ADDR. Need this for the
|
|
"objfile" that it contains. */
|
|
dot_fn_section = find_pc_section (code_addr);
|
|
if (dot_fn_section == NULL || dot_fn_section->objfile == NULL)
|
|
return 0;
|
|
/* Now find the corresponding "FN" (dropping ".") minimal symbol's
|
|
address. Only look for the minimal symbol in ".FN"'s object file
|
|
- avoids problems when two object files (i.e., shared libraries)
|
|
contain a minimal symbol with the same name. */
|
|
fn = lookup_minimal_symbol (MSYMBOL_LINKAGE_NAME (dot_fn.minsym) + 1, NULL,
|
|
dot_fn_section->objfile);
|
|
if (fn.minsym == NULL)
|
|
return 0;
|
|
/* Found a descriptor. */
|
|
(*desc_addr) = BMSYMBOL_VALUE_ADDRESS (fn);
|
|
return 1;
|
|
}
|
|
|
|
/* Walk down the type tree of TYPE counting consecutive base elements.
|
|
If *FIELD_TYPE is NULL, then set it to the first valid floating point
|
|
or vector type. If a non-floating point or vector type is found, or
|
|
if a floating point or vector type that doesn't match a non-NULL
|
|
*FIELD_TYPE is found, then return -1, otherwise return the count in the
|
|
sub-tree. */
|
|
|
|
static LONGEST
|
|
ppc64_aggregate_candidate (struct type *type,
|
|
struct type **field_type)
|
|
{
|
|
type = check_typedef (type);
|
|
|
|
switch (TYPE_CODE (type))
|
|
{
|
|
case TYPE_CODE_FLT:
|
|
case TYPE_CODE_DECFLOAT:
|
|
if (!*field_type)
|
|
*field_type = type;
|
|
if (TYPE_CODE (*field_type) == TYPE_CODE (type)
|
|
&& TYPE_LENGTH (*field_type) == TYPE_LENGTH (type))
|
|
return 1;
|
|
break;
|
|
|
|
case TYPE_CODE_COMPLEX:
|
|
type = TYPE_TARGET_TYPE (type);
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
|| TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
|
|
{
|
|
if (!*field_type)
|
|
*field_type = type;
|
|
if (TYPE_CODE (*field_type) == TYPE_CODE (type)
|
|
&& TYPE_LENGTH (*field_type) == TYPE_LENGTH (type))
|
|
return 2;
|
|
}
|
|
break;
|
|
|
|
case TYPE_CODE_ARRAY:
|
|
if (TYPE_VECTOR (type))
|
|
{
|
|
if (!*field_type)
|
|
*field_type = type;
|
|
if (TYPE_CODE (*field_type) == TYPE_CODE (type)
|
|
&& TYPE_LENGTH (*field_type) == TYPE_LENGTH (type))
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
LONGEST count, low_bound, high_bound;
|
|
|
|
count = ppc64_aggregate_candidate
|
|
(TYPE_TARGET_TYPE (type), field_type);
|
|
if (count == -1)
|
|
return -1;
|
|
|
|
if (!get_array_bounds (type, &low_bound, &high_bound))
|
|
return -1;
|
|
count *= high_bound - low_bound;
|
|
|
|
/* There must be no padding. */
|
|
if (count == 0)
|
|
return TYPE_LENGTH (type) == 0 ? 0 : -1;
|
|
else if (TYPE_LENGTH (type) != count * TYPE_LENGTH (*field_type))
|
|
return -1;
|
|
|
|
return count;
|
|
}
|
|
break;
|
|
|
|
case TYPE_CODE_STRUCT:
|
|
case TYPE_CODE_UNION:
|
|
{
|
|
LONGEST count = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
|
{
|
|
LONGEST sub_count;
|
|
|
|
if (field_is_static (&TYPE_FIELD (type, i)))
|
|
continue;
|
|
|
|
sub_count = ppc64_aggregate_candidate
|
|
(TYPE_FIELD_TYPE (type, i), field_type);
|
|
if (sub_count == -1)
|
|
return -1;
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
|
count += sub_count;
|
|
else
|
|
count = max (count, sub_count);
|
|
}
|
|
|
|
/* There must be no padding. */
|
|
if (count == 0)
|
|
return TYPE_LENGTH (type) == 0 ? 0 : -1;
|
|
else if (TYPE_LENGTH (type) != count * TYPE_LENGTH (*field_type))
|
|
return -1;
|
|
|
|
return count;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* If an argument of type TYPE is a homogeneous float or vector aggregate
|
|
that shall be passed in FP/vector registers according to the ELFv2 ABI,
|
|
return the homogeneous element type in *ELT_TYPE and the number of
|
|
elements in *N_ELTS, and return non-zero. Otherwise, return zero. */
|
|
|
|
static int
|
|
ppc64_elfv2_abi_homogeneous_aggregate (struct type *type,
|
|
struct type **elt_type, int *n_elts)
|
|
{
|
|
/* Complex types at the top level are treated separately. However,
|
|
complex types can be elements of homogeneous aggregates. */
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION
|
|
|| (TYPE_CODE (type) == TYPE_CODE_ARRAY && !TYPE_VECTOR (type)))
|
|
{
|
|
struct type *field_type = NULL;
|
|
LONGEST field_count = ppc64_aggregate_candidate (type, &field_type);
|
|
|
|
if (field_count > 0)
|
|
{
|
|
int n_regs = ((TYPE_CODE (field_type) == TYPE_CODE_FLT
|
|
|| TYPE_CODE (field_type) == TYPE_CODE_DECFLOAT)?
|
|
(TYPE_LENGTH (field_type) + 7) >> 3 : 1);
|
|
|
|
/* The ELFv2 ABI allows homogeneous aggregates to occupy
|
|
up to 8 registers. */
|
|
if (field_count * n_regs <= 8)
|
|
{
|
|
if (elt_type)
|
|
*elt_type = field_type;
|
|
if (n_elts)
|
|
*n_elts = (int) field_count;
|
|
/* Note that field_count is LONGEST since it may hold the size
|
|
of an array, while *n_elts is int since its value is bounded
|
|
by the number of registers used for argument passing. The
|
|
cast cannot overflow due to the bounds checking above. */
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Structure holding the next argument position. */
|
|
struct ppc64_sysv_argpos
|
|
{
|
|
/* Register cache holding argument registers. If this is NULL,
|
|
we only simulate argument processing without actually updating
|
|
any registers or memory. */
|
|
struct regcache *regcache;
|
|
/* Next available general-purpose argument register. */
|
|
int greg;
|
|
/* Next available floating-point argument register. */
|
|
int freg;
|
|
/* Next available vector argument register. */
|
|
int vreg;
|
|
/* The address, at which the next general purpose parameter
|
|
(integer, struct, float, vector, ...) should be saved. */
|
|
CORE_ADDR gparam;
|
|
/* The address, at which the next by-reference parameter
|
|
(non-Altivec vector, variably-sized type) should be saved. */
|
|
CORE_ADDR refparam;
|
|
};
|
|
|
|
/* VAL is a value of length LEN. Store it into the argument area on the
|
|
stack and load it into the corresponding general-purpose registers
|
|
required by the ABI, and update ARGPOS.
|
|
|
|
If ALIGN is nonzero, it specifies the minimum alignment required
|
|
for the on-stack copy of the argument. */
|
|
|
|
static void
|
|
ppc64_sysv_abi_push_val (struct gdbarch *gdbarch,
|
|
const bfd_byte *val, int len, int align,
|
|
struct ppc64_sysv_argpos *argpos)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
int offset = 0;
|
|
|
|
/* Enforce alignment of stack location, if requested. */
|
|
if (align > tdep->wordsize)
|
|
{
|
|
CORE_ADDR aligned_gparam = align_up (argpos->gparam, align);
|
|
|
|
argpos->greg += (aligned_gparam - argpos->gparam) / tdep->wordsize;
|
|
argpos->gparam = aligned_gparam;
|
|
}
|
|
|
|
/* The ABI (version 1.9) specifies that values smaller than one
|
|
doubleword are right-aligned and those larger are left-aligned.
|
|
GCC versions before 3.4 implemented this incorrectly; see
|
|
<http://gcc.gnu.org/gcc-3.4/powerpc-abi.html>. */
|
|
if (len < tdep->wordsize
|
|
&& gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
offset = tdep->wordsize - len;
|
|
|
|
if (argpos->regcache)
|
|
write_memory (argpos->gparam + offset, val, len);
|
|
argpos->gparam = align_up (argpos->gparam + len, tdep->wordsize);
|
|
|
|
while (len >= tdep->wordsize)
|
|
{
|
|
if (argpos->regcache && argpos->greg <= 10)
|
|
regcache_cooked_write (argpos->regcache,
|
|
tdep->ppc_gp0_regnum + argpos->greg, val);
|
|
argpos->greg++;
|
|
len -= tdep->wordsize;
|
|
val += tdep->wordsize;
|
|
}
|
|
|
|
if (len > 0)
|
|
{
|
|
if (argpos->regcache && argpos->greg <= 10)
|
|
regcache_cooked_write_part (argpos->regcache,
|
|
tdep->ppc_gp0_regnum + argpos->greg,
|
|
offset, len, val);
|
|
argpos->greg++;
|
|
}
|
|
}
|
|
|
|
/* The same as ppc64_sysv_abi_push_val, but using a single-word integer
|
|
value VAL as argument. */
|
|
|
|
static void
|
|
ppc64_sysv_abi_push_integer (struct gdbarch *gdbarch, ULONGEST val,
|
|
struct ppc64_sysv_argpos *argpos)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
gdb_byte buf[MAX_REGISTER_SIZE];
|
|
|
|
if (argpos->regcache)
|
|
store_unsigned_integer (buf, tdep->wordsize, byte_order, val);
|
|
ppc64_sysv_abi_push_val (gdbarch, buf, tdep->wordsize, 0, argpos);
|
|
}
|
|
|
|
/* VAL is a value of TYPE, a (binary or decimal) floating-point type.
|
|
Load it into a floating-point register if required by the ABI,
|
|
and update ARGPOS. */
|
|
|
|
static void
|
|
ppc64_sysv_abi_push_freg (struct gdbarch *gdbarch,
|
|
struct type *type, const bfd_byte *val,
|
|
struct ppc64_sysv_argpos *argpos)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
if (tdep->soft_float)
|
|
return;
|
|
|
|
if (TYPE_LENGTH (type) <= 8
|
|
&& TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
{
|
|
/* Floats and doubles go in f1 .. f13. 32-bit floats are converted
|
|
to double first. */
|
|
if (argpos->regcache && argpos->freg <= 13)
|
|
{
|
|
int regnum = tdep->ppc_fp0_regnum + argpos->freg;
|
|
struct type *regtype = register_type (gdbarch, regnum);
|
|
gdb_byte regval[MAX_REGISTER_SIZE];
|
|
|
|
convert_typed_floating (val, type, regval, regtype);
|
|
regcache_cooked_write (argpos->regcache, regnum, regval);
|
|
}
|
|
|
|
argpos->freg++;
|
|
}
|
|
else if (TYPE_LENGTH (type) <= 8
|
|
&& TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
|
|
{
|
|
/* Floats and doubles go in f1 .. f13. 32-bit decimal floats are
|
|
placed in the least significant word. */
|
|
if (argpos->regcache && argpos->freg <= 13)
|
|
{
|
|
int regnum = tdep->ppc_fp0_regnum + argpos->freg;
|
|
int offset = 0;
|
|
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
offset = 8 - TYPE_LENGTH (type);
|
|
|
|
regcache_cooked_write_part (argpos->regcache, regnum,
|
|
offset, TYPE_LENGTH (type), val);
|
|
}
|
|
|
|
argpos->freg++;
|
|
}
|
|
else if (TYPE_LENGTH (type) == 16
|
|
&& TYPE_CODE (type) == TYPE_CODE_FLT
|
|
&& (gdbarch_long_double_format (gdbarch)
|
|
== floatformats_ibm_long_double))
|
|
{
|
|
/* IBM long double stored in two consecutive FPRs. */
|
|
if (argpos->regcache && argpos->freg <= 13)
|
|
{
|
|
int regnum = tdep->ppc_fp0_regnum + argpos->freg;
|
|
|
|
regcache_cooked_write (argpos->regcache, regnum, val);
|
|
if (argpos->freg <= 12)
|
|
regcache_cooked_write (argpos->regcache, regnum + 1, val + 8);
|
|
}
|
|
|
|
argpos->freg += 2;
|
|
}
|
|
else if (TYPE_LENGTH (type) == 16
|
|
&& TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
|
|
{
|
|
/* 128-bit decimal floating-point values are stored in and even/odd
|
|
pair of FPRs, with the even FPR holding the most significant half. */
|
|
argpos->freg += argpos->freg & 1;
|
|
|
|
if (argpos->regcache && argpos->freg <= 12)
|
|
{
|
|
int regnum = tdep->ppc_fp0_regnum + argpos->freg;
|
|
int lopart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 : 0;
|
|
int hipart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
|
|
|
|
regcache_cooked_write (argpos->regcache, regnum, val + hipart);
|
|
regcache_cooked_write (argpos->regcache, regnum + 1, val + lopart);
|
|
}
|
|
|
|
argpos->freg += 2;
|
|
}
|
|
}
|
|
|
|
/* VAL is a value of AltiVec vector type. Load it into a vector register
|
|
if required by the ABI, and update ARGPOS. */
|
|
|
|
static void
|
|
ppc64_sysv_abi_push_vreg (struct gdbarch *gdbarch, const bfd_byte *val,
|
|
struct ppc64_sysv_argpos *argpos)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
if (argpos->regcache && argpos->vreg <= 13)
|
|
regcache_cooked_write (argpos->regcache,
|
|
tdep->ppc_vr0_regnum + argpos->vreg, val);
|
|
|
|
argpos->vreg++;
|
|
}
|
|
|
|
/* VAL is a value of TYPE. Load it into memory and/or registers
|
|
as required by the ABI, and update ARGPOS. */
|
|
|
|
static void
|
|
ppc64_sysv_abi_push_param (struct gdbarch *gdbarch,
|
|
struct type *type, const bfd_byte *val,
|
|
struct ppc64_sysv_argpos *argpos)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT
|
|
|| TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
|
|
{
|
|
/* Floating-point scalars are passed in floating-point registers. */
|
|
ppc64_sysv_abi_push_val (gdbarch, val, TYPE_LENGTH (type), 0, argpos);
|
|
ppc64_sysv_abi_push_freg (gdbarch, type, val, argpos);
|
|
}
|
|
else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
|
|
&& tdep->vector_abi == POWERPC_VEC_ALTIVEC
|
|
&& TYPE_LENGTH (type) == 16)
|
|
{
|
|
/* AltiVec vectors are passed aligned, and in vector registers. */
|
|
ppc64_sysv_abi_push_val (gdbarch, val, TYPE_LENGTH (type), 16, argpos);
|
|
ppc64_sysv_abi_push_vreg (gdbarch, val, argpos);
|
|
}
|
|
else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
|
|
&& TYPE_LENGTH (type) >= 16)
|
|
{
|
|
/* Non-Altivec vectors are passed by reference. */
|
|
|
|
/* Copy value onto the stack ... */
|
|
CORE_ADDR addr = align_up (argpos->refparam, 16);
|
|
if (argpos->regcache)
|
|
write_memory (addr, val, TYPE_LENGTH (type));
|
|
argpos->refparam = align_up (addr + TYPE_LENGTH (type), tdep->wordsize);
|
|
|
|
/* ... and pass a pointer to the copy as parameter. */
|
|
ppc64_sysv_abi_push_integer (gdbarch, addr, argpos);
|
|
}
|
|
else if ((TYPE_CODE (type) == TYPE_CODE_INT
|
|
|| TYPE_CODE (type) == TYPE_CODE_ENUM
|
|
|| TYPE_CODE (type) == TYPE_CODE_BOOL
|
|
|| TYPE_CODE (type) == TYPE_CODE_CHAR
|
|
|| TYPE_CODE (type) == TYPE_CODE_PTR
|
|
|| TYPE_CODE (type) == TYPE_CODE_REF)
|
|
&& TYPE_LENGTH (type) <= tdep->wordsize)
|
|
{
|
|
ULONGEST word = 0;
|
|
|
|
if (argpos->regcache)
|
|
{
|
|
/* Sign extend the value, then store it unsigned. */
|
|
word = unpack_long (type, val);
|
|
|
|
/* Convert any function code addresses into descriptors. */
|
|
if (tdep->elf_abi == POWERPC_ELF_V1
|
|
&& (TYPE_CODE (type) == TYPE_CODE_PTR
|
|
|| TYPE_CODE (type) == TYPE_CODE_REF))
|
|
{
|
|
struct type *target_type
|
|
= check_typedef (TYPE_TARGET_TYPE (type));
|
|
|
|
if (TYPE_CODE (target_type) == TYPE_CODE_FUNC
|
|
|| TYPE_CODE (target_type) == TYPE_CODE_METHOD)
|
|
{
|
|
CORE_ADDR desc = word;
|
|
|
|
convert_code_addr_to_desc_addr (word, &desc);
|
|
word = desc;
|
|
}
|
|
}
|
|
}
|
|
|
|
ppc64_sysv_abi_push_integer (gdbarch, word, argpos);
|
|
}
|
|
else
|
|
{
|
|
ppc64_sysv_abi_push_val (gdbarch, val, TYPE_LENGTH (type), 0, argpos);
|
|
|
|
/* The ABI (version 1.9) specifies that structs containing a
|
|
single floating-point value, at any level of nesting of
|
|
single-member structs, are passed in floating-point registers. */
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
&& TYPE_NFIELDS (type) == 1)
|
|
{
|
|
while (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
|
&& TYPE_NFIELDS (type) == 1)
|
|
type = check_typedef (TYPE_FIELD_TYPE (type, 0));
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
ppc64_sysv_abi_push_freg (gdbarch, type, val, argpos);
|
|
}
|
|
|
|
/* In the ELFv2 ABI, homogeneous floating-point or vector
|
|
aggregates are passed in a series of registers. */
|
|
if (tdep->elf_abi == POWERPC_ELF_V2)
|
|
{
|
|
struct type *eltype;
|
|
int i, nelt;
|
|
|
|
if (ppc64_elfv2_abi_homogeneous_aggregate (type, &eltype, &nelt))
|
|
for (i = 0; i < nelt; i++)
|
|
{
|
|
const gdb_byte *elval = val + i * TYPE_LENGTH (eltype);
|
|
|
|
if (TYPE_CODE (eltype) == TYPE_CODE_FLT
|
|
|| TYPE_CODE (eltype) == TYPE_CODE_DECFLOAT)
|
|
ppc64_sysv_abi_push_freg (gdbarch, eltype, elval, argpos);
|
|
else if (TYPE_CODE (eltype) == TYPE_CODE_ARRAY
|
|
&& TYPE_VECTOR (eltype)
|
|
&& tdep->vector_abi == POWERPC_VEC_ALTIVEC
|
|
&& TYPE_LENGTH (eltype) == 16)
|
|
ppc64_sysv_abi_push_vreg (gdbarch, elval, argpos);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Pass the arguments in either registers, or in the stack. Using the
|
|
ppc 64 bit SysV ABI.
|
|
|
|
This implements a dumbed down version of the ABI. It always writes
|
|
values to memory, GPR and FPR, even when not necessary. Doing this
|
|
greatly simplifies the logic. */
|
|
|
|
CORE_ADDR
|
|
ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch,
|
|
struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int opencl_abi = ppc_sysv_use_opencl_abi (value_type (function));
|
|
ULONGEST back_chain;
|
|
/* See for-loop comment below. */
|
|
int write_pass;
|
|
/* Size of the by-reference parameter copy region, the final value is
|
|
computed in the for-loop below. */
|
|
LONGEST refparam_size = 0;
|
|
/* Size of the general parameter region, the final value is computed
|
|
in the for-loop below. */
|
|
LONGEST gparam_size = 0;
|
|
/* Kevin writes ... I don't mind seeing tdep->wordsize used in the
|
|
calls to align_up(), align_down(), etc. because this makes it
|
|
easier to reuse this code (in a copy/paste sense) in the future,
|
|
but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
|
|
at some point makes it easier to verify that this function is
|
|
correct without having to do a non-local analysis to figure out
|
|
the possible values of tdep->wordsize. */
|
|
gdb_assert (tdep->wordsize == 8);
|
|
|
|
/* This function exists to support a calling convention that
|
|
requires floating-point registers. It shouldn't be used on
|
|
processors that lack them. */
|
|
gdb_assert (ppc_floating_point_unit_p (gdbarch));
|
|
|
|
/* By this stage in the proceedings, SP has been decremented by "red
|
|
zone size" + "struct return size". Fetch the stack-pointer from
|
|
before this and use that as the BACK_CHAIN. */
|
|
regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch),
|
|
&back_chain);
|
|
|
|
/* Go through the argument list twice.
|
|
|
|
Pass 1: Compute the function call's stack space and register
|
|
requirements.
|
|
|
|
Pass 2: Replay the same computation but this time also write the
|
|
values out to the target. */
|
|
|
|
for (write_pass = 0; write_pass < 2; write_pass++)
|
|
{
|
|
int argno;
|
|
|
|
struct ppc64_sysv_argpos argpos;
|
|
argpos.greg = 3;
|
|
argpos.freg = 1;
|
|
argpos.vreg = 2;
|
|
|
|
if (!write_pass)
|
|
{
|
|
/* During the first pass, GPARAM and REFPARAM are more like
|
|
offsets (start address zero) than addresses. That way
|
|
they accumulate the total stack space each region
|
|
requires. */
|
|
argpos.regcache = NULL;
|
|
argpos.gparam = 0;
|
|
argpos.refparam = 0;
|
|
}
|
|
else
|
|
{
|
|
/* Decrement the stack pointer making space for the Altivec
|
|
and general on-stack parameters. Set refparam and gparam
|
|
to their corresponding regions. */
|
|
argpos.regcache = regcache;
|
|
argpos.refparam = align_down (sp - refparam_size, 16);
|
|
argpos.gparam = align_down (argpos.refparam - gparam_size, 16);
|
|
/* Add in space for the TOC, link editor double word (v1 only),
|
|
compiler double word (v1 only), LR save area, CR save area,
|
|
and backchain. */
|
|
if (tdep->elf_abi == POWERPC_ELF_V1)
|
|
sp = align_down (argpos.gparam - 48, 16);
|
|
else
|
|
sp = align_down (argpos.gparam - 32, 16);
|
|
}
|
|
|
|
/* If the function is returning a `struct', then there is an
|
|
extra hidden parameter (which will be passed in r3)
|
|
containing the address of that struct.. In that case we
|
|
should advance one word and start from r4 register to copy
|
|
parameters. This also consumes one on-stack parameter slot. */
|
|
if (struct_return)
|
|
ppc64_sysv_abi_push_integer (gdbarch, struct_addr, &argpos);
|
|
|
|
for (argno = 0; argno < nargs; argno++)
|
|
{
|
|
struct value *arg = args[argno];
|
|
struct type *type = check_typedef (value_type (arg));
|
|
const bfd_byte *val = value_contents (arg);
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_COMPLEX)
|
|
{
|
|
/* Complex types are passed as if two independent scalars. */
|
|
struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
|
|
|
|
ppc64_sysv_abi_push_param (gdbarch, eltype, val, &argpos);
|
|
ppc64_sysv_abi_push_param (gdbarch, eltype,
|
|
val + TYPE_LENGTH (eltype), &argpos);
|
|
}
|
|
else if (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
|
|
&& opencl_abi)
|
|
{
|
|
/* OpenCL vectors shorter than 16 bytes are passed as if
|
|
a series of independent scalars; OpenCL vectors 16 bytes
|
|
or longer are passed as if a series of AltiVec vectors. */
|
|
struct type *eltype;
|
|
int i, nelt;
|
|
|
|
if (TYPE_LENGTH (type) < 16)
|
|
eltype = check_typedef (TYPE_TARGET_TYPE (type));
|
|
else
|
|
eltype = register_type (gdbarch, tdep->ppc_vr0_regnum);
|
|
|
|
nelt = TYPE_LENGTH (type) / TYPE_LENGTH (eltype);
|
|
for (i = 0; i < nelt; i++)
|
|
{
|
|
const gdb_byte *elval = val + i * TYPE_LENGTH (eltype);
|
|
|
|
ppc64_sysv_abi_push_param (gdbarch, eltype, elval, &argpos);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* All other types are passed as single arguments. */
|
|
ppc64_sysv_abi_push_param (gdbarch, type, val, &argpos);
|
|
}
|
|
}
|
|
|
|
if (!write_pass)
|
|
{
|
|
/* Save the true region sizes ready for the second pass. */
|
|
refparam_size = argpos.refparam;
|
|
/* Make certain that the general parameter save area is at
|
|
least the minimum 8 registers (or doublewords) in size. */
|
|
if (argpos.greg < 8)
|
|
gparam_size = 8 * tdep->wordsize;
|
|
else
|
|
gparam_size = argpos.gparam;
|
|
}
|
|
}
|
|
|
|
/* Update %sp. */
|
|
regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
|
|
|
|
/* Write the backchain (it occupies WORDSIZED bytes). */
|
|
write_memory_signed_integer (sp, tdep->wordsize, byte_order, back_chain);
|
|
|
|
/* Point the inferior function call's return address at the dummy's
|
|
breakpoint. */
|
|
regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
|
|
|
|
/* In the ELFv1 ABI, use the func_addr to find the descriptor, and use
|
|
that to find the TOC. If we're calling via a function pointer,
|
|
the pointer itself identifies the descriptor. */
|
|
if (tdep->elf_abi == POWERPC_ELF_V1)
|
|
{
|
|
struct type *ftype = check_typedef (value_type (function));
|
|
CORE_ADDR desc_addr = value_as_address (function);
|
|
|
|
if (TYPE_CODE (ftype) == TYPE_CODE_PTR
|
|
|| convert_code_addr_to_desc_addr (func_addr, &desc_addr))
|
|
{
|
|
/* The TOC is the second double word in the descriptor. */
|
|
CORE_ADDR toc =
|
|
read_memory_unsigned_integer (desc_addr + tdep->wordsize,
|
|
tdep->wordsize, byte_order);
|
|
|
|
regcache_cooked_write_unsigned (regcache,
|
|
tdep->ppc_gp0_regnum + 2, toc);
|
|
}
|
|
}
|
|
|
|
/* In the ELFv2 ABI, we need to pass the target address in r12 since
|
|
we may be calling a global entry point. */
|
|
if (tdep->elf_abi == POWERPC_ELF_V2)
|
|
regcache_cooked_write_unsigned (regcache,
|
|
tdep->ppc_gp0_regnum + 12, func_addr);
|
|
|
|
return sp;
|
|
}
|
|
|
|
/* Subroutine of ppc64_sysv_abi_return_value that handles "base" types:
|
|
integer, floating-point, and AltiVec vector types.
|
|
|
|
This routine also handles components of aggregate return types;
|
|
INDEX describes which part of the aggregate is to be handled.
|
|
|
|
Returns true if VALTYPE is some such base type that could be handled,
|
|
false otherwise. */
|
|
static int
|
|
ppc64_sysv_abi_return_value_base (struct gdbarch *gdbarch, struct type *valtype,
|
|
struct regcache *regcache, gdb_byte *readbuf,
|
|
const gdb_byte *writebuf, int index)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
|
|
/* Integers live in GPRs starting at r3. */
|
|
if ((TYPE_CODE (valtype) == TYPE_CODE_INT
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_ENUM
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_CHAR
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_BOOL)
|
|
&& TYPE_LENGTH (valtype) <= 8)
|
|
{
|
|
int regnum = tdep->ppc_gp0_regnum + 3 + index;
|
|
|
|
if (writebuf != NULL)
|
|
{
|
|
/* Be careful to sign extend the value. */
|
|
regcache_cooked_write_unsigned (regcache, regnum,
|
|
unpack_long (valtype, writebuf));
|
|
}
|
|
if (readbuf != NULL)
|
|
{
|
|
/* Extract the integer from GPR. Since this is truncating the
|
|
value, there isn't a sign extension problem. */
|
|
ULONGEST regval;
|
|
|
|
regcache_cooked_read_unsigned (regcache, regnum, ®val);
|
|
store_unsigned_integer (readbuf, TYPE_LENGTH (valtype),
|
|
gdbarch_byte_order (gdbarch), regval);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Floats and doubles go in f1 .. f13. 32-bit floats are converted
|
|
to double first. */
|
|
if (TYPE_LENGTH (valtype) <= 8
|
|
&& TYPE_CODE (valtype) == TYPE_CODE_FLT)
|
|
{
|
|
int regnum = tdep->ppc_fp0_regnum + 1 + index;
|
|
struct type *regtype = register_type (gdbarch, regnum);
|
|
gdb_byte regval[MAX_REGISTER_SIZE];
|
|
|
|
if (writebuf != NULL)
|
|
{
|
|
convert_typed_floating (writebuf, valtype, regval, regtype);
|
|
regcache_cooked_write (regcache, regnum, regval);
|
|
}
|
|
if (readbuf != NULL)
|
|
{
|
|
regcache_cooked_read (regcache, regnum, regval);
|
|
convert_typed_floating (regval, regtype, readbuf, valtype);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Floats and doubles go in f1 .. f13. 32-bit decimal floats are
|
|
placed in the least significant word. */
|
|
if (TYPE_LENGTH (valtype) <= 8
|
|
&& TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT)
|
|
{
|
|
int regnum = tdep->ppc_fp0_regnum + 1 + index;
|
|
int offset = 0;
|
|
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
offset = 8 - TYPE_LENGTH (valtype);
|
|
|
|
if (writebuf != NULL)
|
|
regcache_cooked_write_part (regcache, regnum,
|
|
offset, TYPE_LENGTH (valtype), writebuf);
|
|
if (readbuf != NULL)
|
|
regcache_cooked_read_part (regcache, regnum,
|
|
offset, TYPE_LENGTH (valtype), readbuf);
|
|
return 1;
|
|
}
|
|
|
|
/* IBM long double stored in two consecutive FPRs. */
|
|
if (TYPE_LENGTH (valtype) == 16
|
|
&& TYPE_CODE (valtype) == TYPE_CODE_FLT
|
|
&& (gdbarch_long_double_format (gdbarch)
|
|
== floatformats_ibm_long_double))
|
|
{
|
|
int regnum = tdep->ppc_fp0_regnum + 1 + 2 * index;
|
|
|
|
if (writebuf != NULL)
|
|
{
|
|
regcache_cooked_write (regcache, regnum, writebuf);
|
|
regcache_cooked_write (regcache, regnum + 1, writebuf + 8);
|
|
}
|
|
if (readbuf != NULL)
|
|
{
|
|
regcache_cooked_read (regcache, regnum, readbuf);
|
|
regcache_cooked_read (regcache, regnum + 1, readbuf + 8);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* 128-bit decimal floating-point values are stored in an even/odd
|
|
pair of FPRs, with the even FPR holding the most significant half. */
|
|
if (TYPE_LENGTH (valtype) == 16
|
|
&& TYPE_CODE (valtype) == TYPE_CODE_DECFLOAT)
|
|
{
|
|
int regnum = tdep->ppc_fp0_regnum + 2 + 2 * index;
|
|
int lopart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 : 0;
|
|
int hipart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
|
|
|
|
if (writebuf != NULL)
|
|
{
|
|
regcache_cooked_write (regcache, regnum, writebuf + hipart);
|
|
regcache_cooked_write (regcache, regnum + 1, writebuf + lopart);
|
|
}
|
|
if (readbuf != NULL)
|
|
{
|
|
regcache_cooked_read (regcache, regnum, readbuf + hipart);
|
|
regcache_cooked_read (regcache, regnum + 1, readbuf + lopart);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* AltiVec vectors are returned in VRs starting at v2. */
|
|
if (TYPE_LENGTH (valtype) == 16
|
|
&& TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
|
|
&& tdep->vector_abi == POWERPC_VEC_ALTIVEC)
|
|
{
|
|
int regnum = tdep->ppc_vr0_regnum + 2 + index;
|
|
|
|
if (writebuf != NULL)
|
|
regcache_cooked_write (regcache, regnum, writebuf);
|
|
if (readbuf != NULL)
|
|
regcache_cooked_read (regcache, regnum, readbuf);
|
|
return 1;
|
|
}
|
|
|
|
/* Short vectors are returned in GPRs starting at r3. */
|
|
if (TYPE_LENGTH (valtype) <= 8
|
|
&& TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype))
|
|
{
|
|
int regnum = tdep->ppc_gp0_regnum + 3 + index;
|
|
int offset = 0;
|
|
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
offset = 8 - TYPE_LENGTH (valtype);
|
|
|
|
if (writebuf != NULL)
|
|
regcache_cooked_write_part (regcache, regnum,
|
|
offset, TYPE_LENGTH (valtype), writebuf);
|
|
if (readbuf != NULL)
|
|
regcache_cooked_read_part (regcache, regnum,
|
|
offset, TYPE_LENGTH (valtype), readbuf);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The 64 bit ABI return value convention.
|
|
|
|
Return non-zero if the return-value is stored in a register, return
|
|
0 if the return-value is instead stored on the stack (a.k.a.,
|
|
struct return convention).
|
|
|
|
For a return-value stored in a register: when WRITEBUF is non-NULL,
|
|
copy the buffer to the corresponding register return-value location
|
|
location; when READBUF is non-NULL, fill the buffer from the
|
|
corresponding register return-value location. */
|
|
enum return_value_convention
|
|
ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct value *function,
|
|
struct type *valtype, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
struct type *func_type = function ? value_type (function) : NULL;
|
|
int opencl_abi = func_type? ppc_sysv_use_opencl_abi (func_type) : 0;
|
|
struct type *eltype;
|
|
int nelt, i, ok;
|
|
|
|
/* This function exists to support a calling convention that
|
|
requires floating-point registers. It shouldn't be used on
|
|
processors that lack them. */
|
|
gdb_assert (ppc_floating_point_unit_p (gdbarch));
|
|
|
|
/* Complex types are returned as if two independent scalars. */
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX)
|
|
{
|
|
eltype = check_typedef (TYPE_TARGET_TYPE (valtype));
|
|
|
|
for (i = 0; i < 2; i++)
|
|
{
|
|
ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
|
|
readbuf, writebuf, i);
|
|
gdb_assert (ok);
|
|
|
|
if (readbuf)
|
|
readbuf += TYPE_LENGTH (eltype);
|
|
if (writebuf)
|
|
writebuf += TYPE_LENGTH (eltype);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
/* OpenCL vectors shorter than 16 bytes are returned as if
|
|
a series of independent scalars; OpenCL vectors 16 bytes
|
|
or longer are returned as if a series of AltiVec vectors. */
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
|
|
&& opencl_abi)
|
|
{
|
|
if (TYPE_LENGTH (valtype) < 16)
|
|
eltype = check_typedef (TYPE_TARGET_TYPE (valtype));
|
|
else
|
|
eltype = register_type (gdbarch, tdep->ppc_vr0_regnum);
|
|
|
|
nelt = TYPE_LENGTH (valtype) / TYPE_LENGTH (eltype);
|
|
for (i = 0; i < nelt; i++)
|
|
{
|
|
ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
|
|
readbuf, writebuf, i);
|
|
gdb_assert (ok);
|
|
|
|
if (readbuf)
|
|
readbuf += TYPE_LENGTH (eltype);
|
|
if (writebuf)
|
|
writebuf += TYPE_LENGTH (eltype);
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
/* All pointers live in r3. */
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_PTR
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_REF)
|
|
{
|
|
int regnum = tdep->ppc_gp0_regnum + 3;
|
|
|
|
if (writebuf != NULL)
|
|
regcache_cooked_write (regcache, regnum, writebuf);
|
|
if (readbuf != NULL)
|
|
regcache_cooked_read (regcache, regnum, readbuf);
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
/* Small character arrays are returned, right justified, in r3. */
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
|
|
&& !TYPE_VECTOR (valtype)
|
|
&& TYPE_LENGTH (valtype) <= 8
|
|
&& TYPE_CODE (TYPE_TARGET_TYPE (valtype)) == TYPE_CODE_INT
|
|
&& TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
|
|
{
|
|
int regnum = tdep->ppc_gp0_regnum + 3;
|
|
int offset = (register_size (gdbarch, regnum) - TYPE_LENGTH (valtype));
|
|
|
|
if (writebuf != NULL)
|
|
regcache_cooked_write_part (regcache, regnum,
|
|
offset, TYPE_LENGTH (valtype), writebuf);
|
|
if (readbuf != NULL)
|
|
regcache_cooked_read_part (regcache, regnum,
|
|
offset, TYPE_LENGTH (valtype), readbuf);
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
/* In the ELFv2 ABI, homogeneous floating-point or vector
|
|
aggregates are returned in registers. */
|
|
if (tdep->elf_abi == POWERPC_ELF_V2
|
|
&& ppc64_elfv2_abi_homogeneous_aggregate (valtype, &eltype, &nelt)
|
|
&& (TYPE_CODE (eltype) == TYPE_CODE_FLT
|
|
|| TYPE_CODE (eltype) == TYPE_CODE_DECFLOAT
|
|
|| (TYPE_CODE (eltype) == TYPE_CODE_ARRAY
|
|
&& TYPE_VECTOR (eltype)
|
|
&& tdep->vector_abi == POWERPC_VEC_ALTIVEC
|
|
&& TYPE_LENGTH (eltype) == 16)))
|
|
{
|
|
for (i = 0; i < nelt; i++)
|
|
{
|
|
ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache,
|
|
readbuf, writebuf, i);
|
|
gdb_assert (ok);
|
|
|
|
if (readbuf)
|
|
readbuf += TYPE_LENGTH (eltype);
|
|
if (writebuf)
|
|
writebuf += TYPE_LENGTH (eltype);
|
|
}
|
|
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
/* In the ELFv2 ABI, aggregate types of up to 16 bytes are
|
|
returned in registers r3:r4. */
|
|
if (tdep->elf_abi == POWERPC_ELF_V2
|
|
&& TYPE_LENGTH (valtype) <= 16
|
|
&& (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_UNION
|
|
|| (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
|
|
&& !TYPE_VECTOR (valtype))))
|
|
{
|
|
int n_regs = ((TYPE_LENGTH (valtype) + tdep->wordsize - 1)
|
|
/ tdep->wordsize);
|
|
int i;
|
|
|
|
for (i = 0; i < n_regs; i++)
|
|
{
|
|
gdb_byte regval[MAX_REGISTER_SIZE];
|
|
int regnum = tdep->ppc_gp0_regnum + 3 + i;
|
|
int offset = i * tdep->wordsize;
|
|
int len = TYPE_LENGTH (valtype) - offset;
|
|
|
|
if (len > tdep->wordsize)
|
|
len = tdep->wordsize;
|
|
|
|
if (writebuf != NULL)
|
|
{
|
|
memset (regval, 0, sizeof regval);
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
|
|
&& offset == 0)
|
|
memcpy (regval + tdep->wordsize - len, writebuf, len);
|
|
else
|
|
memcpy (regval, writebuf + offset, len);
|
|
regcache_cooked_write (regcache, regnum, regval);
|
|
}
|
|
if (readbuf != NULL)
|
|
{
|
|
regcache_cooked_read (regcache, regnum, regval);
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
|
|
&& offset == 0)
|
|
memcpy (readbuf, regval + tdep->wordsize - len, len);
|
|
else
|
|
memcpy (readbuf + offset, regval, len);
|
|
}
|
|
}
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
/* Handle plain base types. */
|
|
if (ppc64_sysv_abi_return_value_base (gdbarch, valtype, regcache,
|
|
readbuf, writebuf, 0))
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
}
|
|
|