binutils-gdb/gdb/stubs/ia64vms-stub.c

2603 lines
65 KiB
C

/* GDB stub for Itanium OpenVMS
Copyright (C) 2012-2015 Free Software Foundation, Inc.
Contributed by Tristan Gingold, AdaCore.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* On VMS, the debugger (in our case the stub) is loaded in the process and
executed (via SYS$IMGSTA) before the main entry point of the executable.
In UNIX parlance, this is like using LD_PRELOAD and debug via installing
SIGTRAP, SIGSEGV... handlers.
This is currently a partial implementation. In particular, modifying
registers is currently not implemented, as well as inferior procedure
calls.
This is written in very low-level C, in order not to use the C runtime,
because it may have weird consequences on the program being debugged.
*/
#if __INITIAL_POINTER_SIZE != 64
#error "Must be compiled with 64 bit pointers"
#endif
#define __NEW_STARLET 1
#include <descrip.h>
#include <iledef.h>
#include <efndef.h>
#include <in.h>
#include <inet.h>
#include <iodef.h>
#include <ssdef.h>
#include <starlet.h>
#include <stsdef.h>
#include <tcpip$inetdef.h>
#include <lib$routines.h>
#include <ots$routines.h>
#include <str$routines.h>
#include <libdef.h>
#include <clidef.h>
#include <iosbdef.h>
#include <dvidef.h>
#include <lnmdef.h>
#include <builtins.h>
#include <prtdef.h>
#include <psldef.h>
#include <ssdef.h>
#include <chfdef.h>
#include <lib_c/imcbdef.h>
#include <lib_c/ldrimgdef.h>
#include <lib_c/intstkdef.h>
#include <lib_c/psrdef.h>
#include <lib_c/ifddef.h>
#include <lib_c/eihddef.h>
#include <stdarg.h>
#include <pthread_debug.h>
#define VMS_PAGE_SIZE 0x2000
#define VMS_PAGE_MASK (VMS_PAGE_SIZE - 1)
/* Declared in lib$ots. */
extern void ots$fill (void *addr, size_t len, unsigned char b);
extern void ots$move (void *dst, size_t len, const void *src);
extern int ots$strcmp_eql (const void *str1, size_t str1len,
const void *str2, size_t str2len);
/* Stub port number. */
static unsigned int serv_port = 1234;
/* DBGEXT structure. Not declared in any header. */
struct dbgext_control_block
{
unsigned short dbgext$w_function_code;
#define DBGEXT$K_NEXT_TASK 3
#define DBGEXT$K_STOP_ALL_OTHER_TASKS 31
#define DBGEXT$K_GET_REGS 33
unsigned short dbgext$w_facility_id;
#define CMA$_FACILITY 64
unsigned int dbgext$l_status;
unsigned int dbgext$l_flags;
unsigned int dbgext$l_print_routine;
unsigned int dbgext$l_evnt_code;
unsigned int dbgext$l_evnt_name;
unsigned int dbgext$l_evnt_entry;
unsigned int dbgext$l_task_value;
unsigned int dbgext$l_task_number;
unsigned int dbgext$l_ada_flags;
unsigned int dbgext$l_stop_value;
#define dbgext$l_priority dbgext$l_stop_value;
#define dbgext$l_symb_addr dbgext$l_stop_value;
#define dbgext$l_time_slice dbgext$l_stop_value;
unsigned int dbgext$l_active_registers;
};
#pragma pointer_size save
#pragma pointer_size 32
/* Pthread handler. */
static int (*dbgext_func) (struct dbgext_control_block *blk);
#pragma pointer_size restore
/* Set to 1 if thread-aware. */
static int has_threads;
/* Current thread. */
static pthread_t selected_thread;
static pthreadDebugId_t selected_id;
/* Internal debugging flags. */
struct debug_flag
{
/* Name of the flag (as a string descriptor). */
const struct dsc$descriptor_s name;
/* Value. */
int val;
};
/* Macro to define a debugging flag. */
#define DEBUG_FLAG_ENTRY(str) \
{ { sizeof (str) - 1, DSC$K_DTYPE_T, DSC$K_CLASS_S, str }, 0}
static struct debug_flag debug_flags[] =
{
/* Disp packets exchanged with gdb. */
DEBUG_FLAG_ENTRY("packets"),
#define trace_pkt (debug_flags[0].val)
/* Display entry point informations. */
DEBUG_FLAG_ENTRY("entry"),
#define trace_entry (debug_flags[1].val)
/* Be verbose about exceptions. */
DEBUG_FLAG_ENTRY("excp"),
#define trace_excp (debug_flags[2].val)
/* Be verbose about unwinding. */
DEBUG_FLAG_ENTRY("unwind"),
#define trace_unwind (debug_flags[3].val)
/* Display image at startup. */
DEBUG_FLAG_ENTRY("images"),
#define trace_images (debug_flags[4].val)
/* Display pthread_debug info. */
DEBUG_FLAG_ENTRY("pthreaddbg")
#define trace_pthreaddbg (debug_flags[5].val)
};
#define NBR_DEBUG_FLAGS (sizeof (debug_flags) / sizeof (debug_flags[0]))
/* Connect inet device I/O channel. */
static unsigned short conn_channel;
/* Widely used hex digit to ascii. */
static const char hex[] = "0123456789abcdef";
/* Socket characteristics. Apparently, there are no declaration for it in
standard headers. */
struct sockchar
{
unsigned short prot;
unsigned char type;
unsigned char af;
};
/* Chain of images loaded. */
extern IMCB* ctl$gl_imglstptr;
/* IA64 integer register representation. */
union ia64_ireg
{
unsigned __int64 v;
unsigned char b[8];
};
/* IA64 register numbers, as defined by ia64-tdep.h. */
#define IA64_GR0_REGNUM 0
#define IA64_GR32_REGNUM (IA64_GR0_REGNUM + 32)
/* Floating point registers; 128 82-bit wide registers. */
#define IA64_FR0_REGNUM 128
/* Predicate registers; There are 64 of these one bit registers. It'd
be more convenient (implementation-wise) to use a single 64 bit
word with all of these register in them. Note that there's also a
IA64_PR_REGNUM below which contains all the bits and is used for
communicating the actual values to the target. */
#define IA64_PR0_REGNUM 256
/* Branch registers: 8 64-bit registers for holding branch targets. */
#define IA64_BR0_REGNUM 320
/* Virtual frame pointer; this matches IA64_FRAME_POINTER_REGNUM in
gcc/config/ia64/ia64.h. */
#define IA64_VFP_REGNUM 328
/* Virtual return address pointer; this matches
IA64_RETURN_ADDRESS_POINTER_REGNUM in gcc/config/ia64/ia64.h. */
#define IA64_VRAP_REGNUM 329
/* Predicate registers: There are 64 of these 1-bit registers. We
define a single register which is used to communicate these values
to/from the target. We will somehow contrive to make it appear
that IA64_PR0_REGNUM thru IA64_PR63_REGNUM hold the actual values. */
#define IA64_PR_REGNUM 330
/* Instruction pointer: 64 bits wide. */
#define IA64_IP_REGNUM 331
/* Process Status Register. */
#define IA64_PSR_REGNUM 332
/* Current Frame Marker (raw form may be the cr.ifs). */
#define IA64_CFM_REGNUM 333
/* Application registers; 128 64-bit wide registers possible, but some
of them are reserved. */
#define IA64_AR0_REGNUM 334
#define IA64_KR0_REGNUM (IA64_AR0_REGNUM + 0)
#define IA64_KR7_REGNUM (IA64_KR0_REGNUM + 7)
#define IA64_RSC_REGNUM (IA64_AR0_REGNUM + 16)
#define IA64_BSP_REGNUM (IA64_AR0_REGNUM + 17)
#define IA64_BSPSTORE_REGNUM (IA64_AR0_REGNUM + 18)
#define IA64_RNAT_REGNUM (IA64_AR0_REGNUM + 19)
#define IA64_FCR_REGNUM (IA64_AR0_REGNUM + 21)
#define IA64_EFLAG_REGNUM (IA64_AR0_REGNUM + 24)
#define IA64_CSD_REGNUM (IA64_AR0_REGNUM + 25)
#define IA64_SSD_REGNUM (IA64_AR0_REGNUM + 26)
#define IA64_CFLG_REGNUM (IA64_AR0_REGNUM + 27)
#define IA64_FSR_REGNUM (IA64_AR0_REGNUM + 28)
#define IA64_FIR_REGNUM (IA64_AR0_REGNUM + 29)
#define IA64_FDR_REGNUM (IA64_AR0_REGNUM + 30)
#define IA64_CCV_REGNUM (IA64_AR0_REGNUM + 32)
#define IA64_UNAT_REGNUM (IA64_AR0_REGNUM + 36)
#define IA64_FPSR_REGNUM (IA64_AR0_REGNUM + 40)
#define IA64_ITC_REGNUM (IA64_AR0_REGNUM + 44)
#define IA64_PFS_REGNUM (IA64_AR0_REGNUM + 64)
#define IA64_LC_REGNUM (IA64_AR0_REGNUM + 65)
#define IA64_EC_REGNUM (IA64_AR0_REGNUM + 66)
/* NAT (Not A Thing) Bits for the general registers; there are 128 of
these. */
#define IA64_NAT0_REGNUM 462
/* Process registers when a condition is caught. */
struct ia64_all_regs
{
union ia64_ireg gr[32];
union ia64_ireg br[8];
union ia64_ireg ip;
union ia64_ireg psr;
union ia64_ireg bsp;
union ia64_ireg cfm;
union ia64_ireg pfs;
union ia64_ireg pr;
};
static struct ia64_all_regs excp_regs;
static struct ia64_all_regs sel_regs;
static pthread_t sel_regs_pthread;
/* IO channel for the terminal. */
static unsigned short term_chan;
/* Output buffer and length. */
static char term_buf[128];
static int term_buf_len;
/* Buffer for communication with gdb. */
static unsigned char gdb_buf[sizeof (struct ia64_all_regs) * 2 + 64];
static unsigned int gdb_blen;
/* Previous primary handler. */
static void *prevhnd;
/* Entry point address and bundle. */
static unsigned __int64 entry_pc;
static unsigned char entry_saved[16];
/* Write on the terminal. */
static void
term_raw_write (const char *str, unsigned int len)
{
unsigned short status;
struct _iosb iosb;
status = sys$qiow (EFN$C_ENF, /* Event flag. */
term_chan, /* I/O channel. */
IO$_WRITEVBLK, /* I/O function code. */
&iosb, /* I/O status block. */
0, /* Ast service routine. */
0, /* Ast parameter. */
(char *)str, /* P1 - buffer address. */
len, /* P2 - buffer length. */
0, 0, 0, 0);
if (status & STS$M_SUCCESS)
status = iosb.iosb$w_status;
if (!(status & STS$M_SUCCESS))
LIB$SIGNAL (status);
}
/* Flush ther term buffer. */
static void
term_flush (void)
{
if (term_buf_len != 0)
{
term_raw_write (term_buf, term_buf_len);
term_buf_len = 0;
}
}
/* Write a single character, without translation. */
static void
term_raw_putchar (char c)
{
if (term_buf_len == sizeof (term_buf))
term_flush ();
term_buf[term_buf_len++] = c;
}
/* Write character C. Translate '\n' to '\n\r'. */
static void
term_putc (char c)
{
if (c < 32)
switch (c)
{
case '\r':
case '\n':
break;
default:
c = '.';
break;
}
term_raw_putchar (c);
if (c == '\n')
{
term_raw_putchar ('\r');
term_flush ();
}
}
/* Write a C string. */
static void
term_puts (const char *str)
{
while (*str)
term_putc (*str++);
}
/* Write LEN bytes from STR. */
static void
term_write (const char *str, unsigned int len)
{
for (; len > 0; len--)
term_putc (*str++);
}
/* Write using FAO formatting. */
static void
term_fao (const char *str, unsigned int str_len, ...)
{
int cnt;
va_list vargs;
int i;
__int64 *args;
int status;
struct dsc$descriptor_s dstr =
{ str_len, DSC$K_DTYPE_T, DSC$K_CLASS_S, (__char_ptr32)str };
char buf[128];
$DESCRIPTOR (buf_desc, buf);
va_start (vargs, str_len);
va_count (cnt);
args = (__int64 *) __ALLOCA (cnt * sizeof (__int64));
cnt -= 2;
for (i = 0; i < cnt; i++)
args[i] = va_arg (vargs, __int64);
status = sys$faol_64 (&dstr, &buf_desc.dsc$w_length, &buf_desc, args);
if (status & 1)
{
/* FAO !/ already insert a line feed. */
for (i = 0; i < buf_desc.dsc$w_length; i++)
{
term_raw_putchar (buf[i]);
if (buf[i] == '\n')
term_flush ();
}
}
va_end (vargs);
}
#define TERM_FAO(STR, ...) term_fao (STR, sizeof (STR) - 1, __VA_ARGS__)
/* New line. */
static void
term_putnl (void)
{
term_putc ('\n');
}
/* Initialize terminal. */
static void
term_init (void)
{
unsigned int status,i;
unsigned short len;
char resstring[LNM$C_NAMLENGTH];
static const $DESCRIPTOR (tabdesc, "LNM$FILE_DEV");
static const $DESCRIPTOR (logdesc, "SYS$OUTPUT");
$DESCRIPTOR (term_desc, resstring);
ILE3 item_lst[2];
item_lst[0].ile3$w_length = LNM$C_NAMLENGTH;
item_lst[0].ile3$w_code = LNM$_STRING;
item_lst[0].ile3$ps_bufaddr = resstring;
item_lst[0].ile3$ps_retlen_addr = &len;
item_lst[1].ile3$w_length = 0;
item_lst[1].ile3$w_code = 0;
/* Translate the logical name. */
status = SYS$TRNLNM (0, /* Attr of the logical name. */
(void *) &tabdesc, /* Logical name table. */
(void *) &logdesc, /* Logical name. */
0, /* Access mode. */
item_lst); /* Item list. */
if (!(status & STS$M_SUCCESS))
LIB$SIGNAL (status);
term_desc.dsc$w_length = len;
/* Examine 4-byte header. Skip escape sequence. */
if (resstring[0] == 0x1B)
{
term_desc.dsc$w_length -= 4;
term_desc.dsc$a_pointer += 4;
}
/* Assign a channel. */
status = sys$assign (&term_desc, /* Device name. */
&term_chan, /* I/O channel. */
0, /* Access mode. */
0);
if (!(status & STS$M_SUCCESS))
LIB$SIGNAL (status);
}
/* Convert from native endianness to network endianness (and vice-versa). */
static unsigned int
wordswap (unsigned int v)
{
return ((v & 0xff) << 8) | ((v >> 8) & 0xff);
}
/* Initialize the socket connection, and wait for a client. */
static void
sock_init (void)
{
struct _iosb iosb;
unsigned int status;
/* Listen channel and characteristics. */
unsigned short listen_channel;
struct sockchar listen_sockchar;
/* Client address. */
unsigned short cli_addrlen;
struct sockaddr_in cli_addr;
ILE3 cli_itemlst;
/* Our address. */
struct sockaddr_in serv_addr;
ILE2 serv_itemlst;
/* Reuseaddr option value (on). */
int optval = 1;
ILE2 sockopt_itemlst;
ILE2 reuseaddr_itemlst;
/* TCP/IP network pseudodevice. */
static const $DESCRIPTOR (inet_device, "TCPIP$DEVICE:");
/* Initialize socket characteristics. */
listen_sockchar.prot = TCPIP$C_TCP;
listen_sockchar.type = TCPIP$C_STREAM;
listen_sockchar.af = TCPIP$C_AF_INET;
/* Assign I/O channels to network device. */
status = sys$assign ((void *) &inet_device, &listen_channel, 0, 0);
if (status & STS$M_SUCCESS)
status = sys$assign ((void *) &inet_device, &conn_channel, 0, 0);
if (!(status & STS$M_SUCCESS))
{
term_puts ("Failed to assign I/O channel(s)\n");
LIB$SIGNAL (status);
}
/* Create a listen socket. */
status = sys$qiow (EFN$C_ENF, /* Event flag. */
listen_channel, /* I/O channel. */
IO$_SETMODE, /* I/O function code. */
&iosb, /* I/O status block. */
0, /* Ast service routine. */
0, /* Ast parameter. */
&listen_sockchar, /* P1 - socket characteristics. */
0, 0, 0, 0, 0);
if (status & STS$M_SUCCESS)
status = iosb.iosb$w_status;
if (!(status & STS$M_SUCCESS))
{
term_puts ("Failed to create socket\n");
LIB$SIGNAL (status);
}
/* Set reuse address option. */
/* Initialize reuseaddr's item-list element. */
reuseaddr_itemlst.ile2$w_length = sizeof (optval);
reuseaddr_itemlst.ile2$w_code = TCPIP$C_REUSEADDR;
reuseaddr_itemlst.ile2$ps_bufaddr = &optval;
/* Initialize setsockopt's item-list descriptor. */
sockopt_itemlst.ile2$w_length = sizeof (reuseaddr_itemlst);
sockopt_itemlst.ile2$w_code = TCPIP$C_SOCKOPT;
sockopt_itemlst.ile2$ps_bufaddr = &reuseaddr_itemlst;
status = sys$qiow (EFN$C_ENF, /* Event flag. */
listen_channel, /* I/O channel. */
IO$_SETMODE, /* I/O function code. */
&iosb, /* I/O status block. */
0, /* Ast service routine. */
0, /* Ast parameter. */
0, /* P1. */
0, /* P2. */
0, /* P3. */
0, /* P4. */
(__int64) &sockopt_itemlst, /* P5 - socket options. */
0);
if (status & STS$M_SUCCESS)
status = iosb.iosb$w_status;
if (!(status & STS$M_SUCCESS))
{
term_puts ("Failed to set socket option\n");
LIB$SIGNAL (status);
}
/* Bind server's ip address and port number to listen socket. */
/* Initialize server's socket address structure. */
ots$fill (&serv_addr, sizeof (serv_addr), 0);
serv_addr.sin_family = TCPIP$C_AF_INET;
serv_addr.sin_port = wordswap (serv_port);
serv_addr.sin_addr.s_addr = TCPIP$C_INADDR_ANY;
/* Initialize server's item-list descriptor. */
serv_itemlst.ile2$w_length = sizeof (serv_addr);
serv_itemlst.ile2$w_code = TCPIP$C_SOCK_NAME;
serv_itemlst.ile2$ps_bufaddr = &serv_addr;
status = sys$qiow (EFN$C_ENF, /* Event flag. */
listen_channel, /* I/O channel. */
IO$_SETMODE, /* I/O function code. */
&iosb, /* I/O status block. */
0, /* Ast service routine. */
0, /* Ast parameter. */
0, /* P1. */
0, /* P2. */
(__int64) &serv_itemlst, /* P3 - local socket name. */
0, 0, 0);
if (status & STS$M_SUCCESS)
status = iosb.iosb$w_status;
if (!(status & STS$M_SUCCESS))
{
term_puts ("Failed to bind socket\n");
LIB$SIGNAL (status);
}
/* Set socket as a listen socket. */
status = sys$qiow (EFN$C_ENF, /* Event flag. */
listen_channel, /* I/O channel. */
IO$_SETMODE, /* I/O function code. */
&iosb, /* I/O status block. */
0, /* Ast service routine. */
0, /* Ast parameter. */
0, /* P1. */
0, /* P2. */
0, /* P3. */
1, /* P4 - connection backlog. */
0, 0);
if (status & STS$M_SUCCESS)
status = iosb.iosb$w_status;
if (!(status & STS$M_SUCCESS))
{
term_puts ("Failed to set socket passive\n");
LIB$SIGNAL (status);
}
/* Accept connection from a client. */
TERM_FAO ("Waiting for a client connection on port: !ZW!/",
wordswap (serv_addr.sin_port));
status = sys$qiow (EFN$C_ENF, /* Event flag. */
listen_channel, /* I/O channel. */
IO$_ACCESS|IO$M_ACCEPT, /* I/O function code. */
&iosb, /* I/O status block. */
0, /* Ast service routine. */
0, /* Ast parameter. */
0, /* P1. */
0, /* P2. */
0, /* P3. */
(__int64) &conn_channel, /* P4 - I/O channel for conn. */
0, 0);
if (status & STS$M_SUCCESS)
status = iosb.iosb$w_status;
if (!(status & STS$M_SUCCESS))
{
term_puts ("Failed to accept client connection\n");
LIB$SIGNAL (status);
}
/* Log client connection request. */
cli_itemlst.ile3$w_length = sizeof (cli_addr);
cli_itemlst.ile3$w_code = TCPIP$C_SOCK_NAME;
cli_itemlst.ile3$ps_bufaddr = &cli_addr;
cli_itemlst.ile3$ps_retlen_addr = &cli_addrlen;
ots$fill (&cli_addr, sizeof(cli_addr), 0);
status = sys$qiow (EFN$C_ENF, /* Event flag. */
conn_channel, /* I/O channel. */
IO$_SENSEMODE, /* I/O function code. */
&iosb, /* I/O status block. */
0, /* Ast service routine. */
0, /* Ast parameter. */
0, /* P1. */
0, /* P2. */
0, /* P3. */
(__int64) &cli_itemlst, /* P4 - peer socket name. */
0, 0);
if (status & STS$M_SUCCESS)
status = iosb.iosb$w_status;
if (!(status & STS$M_SUCCESS))
{
term_puts ("Failed to get client name\n");
LIB$SIGNAL (status);
}
TERM_FAO ("Accepted connection from host: !UB.!UB,!UB.!UB, port: !UW!/",
(cli_addr.sin_addr.s_addr >> 0) & 0xff,
(cli_addr.sin_addr.s_addr >> 8) & 0xff,
(cli_addr.sin_addr.s_addr >> 16) & 0xff,
(cli_addr.sin_addr.s_addr >> 24) & 0xff,
wordswap (cli_addr.sin_port));
}
/* Close the socket. */
static void
sock_close (void)
{
struct _iosb iosb;
unsigned int status;
/* Close socket. */
status = sys$qiow (EFN$C_ENF, /* Event flag. */
conn_channel, /* I/O channel. */
IO$_DEACCESS, /* I/O function code. */
&iosb, /* I/O status block. */
0, /* Ast service routine. */
0, /* Ast parameter. */
0, 0, 0, 0, 0, 0);
if (status & STS$M_SUCCESS)
status = iosb.iosb$w_status;
if (!(status & STS$M_SUCCESS))
{
term_puts ("Failed to close socket\n");
LIB$SIGNAL (status);
}
/* Deassign I/O channel to network device. */
status = sys$dassgn (conn_channel);
if (!(status & STS$M_SUCCESS))
{
term_puts ("Failed to deassign I/O channel\n");
LIB$SIGNAL (status);
}
}
/* Mark a page as R/W. Return old rights. */
static unsigned int
page_set_rw (unsigned __int64 startva, unsigned __int64 len,
unsigned int *oldprot)
{
unsigned int status;
unsigned __int64 retva;
unsigned __int64 retlen;
status = SYS$SETPRT_64 ((void *)startva, len, PSL$C_USER, PRT$C_UW,
(void *)&retva, &retlen, oldprot);
return status;
}
/* Restore page rights. */
static void
page_restore_rw (unsigned __int64 startva, unsigned __int64 len,
unsigned int prot)
{
unsigned int status;
unsigned __int64 retva;
unsigned __int64 retlen;
unsigned int oldprot;
status = SYS$SETPRT_64 ((void *)startva, len, PSL$C_USER, prot,
(void *)&retva, &retlen, &oldprot);
if (!(status & STS$M_SUCCESS))
LIB$SIGNAL (status);
}
/* Get the TEB (thread environment block). */
static pthread_t
get_teb (void)
{
return (pthread_t)__getReg (_IA64_REG_TP);
}
/* Enable thread scheduling if VAL is true. */
static unsigned int
set_thread_scheduling (int val)
{
struct dbgext_control_block blk;
unsigned int status;
if (!dbgext_func)
return 0;
blk.dbgext$w_function_code = DBGEXT$K_STOP_ALL_OTHER_TASKS;
blk.dbgext$w_facility_id = CMA$_FACILITY;
blk.dbgext$l_stop_value = val;
status = dbgext_func (&blk);
if (!(status & STS$M_SUCCESS))
{
TERM_FAO ("set_thread_scheduling error, val=!SL, status=!XL!/",
val, blk.dbgext$l_status);
lib$signal (status);
}
return blk.dbgext$l_stop_value;
}
/* Get next thead (after THR). Start with 0. */
static unsigned int
thread_next (unsigned int thr)
{
struct dbgext_control_block blk;
unsigned int status;
if (!dbgext_func)
return 0;
blk.dbgext$w_function_code = DBGEXT$K_NEXT_TASK;
blk.dbgext$w_facility_id = CMA$_FACILITY;
blk.dbgext$l_ada_flags = 0;
blk.dbgext$l_task_value = thr;
status = dbgext_func (&blk);
if (!(status & STS$M_SUCCESS))
lib$signal (status);
return blk.dbgext$l_task_value;
}
/* Pthread Debug callbacks. */
static int
read_callback (pthreadDebugClient_t context,
pthreadDebugTargetAddr_t addr,
pthreadDebugAddr_t buf,
size_t size)
{
if (trace_pthreaddbg)
TERM_FAO ("read_callback (!XH, !XH, !SL)!/", addr, buf, size);
ots$move (buf, size, addr);
return 0;
}
static int
write_callback (pthreadDebugClient_t context,
pthreadDebugTargetAddr_t addr,
pthreadDebugLongConstAddr_t buf,
size_t size)
{
if (trace_pthreaddbg)
TERM_FAO ("write_callback (!XH, !XH, !SL)!/", addr, buf, size);
ots$move (addr, size, buf);
return 0;
}
static int
suspend_callback (pthreadDebugClient_t context)
{
/* Always suspended. */
return 0;
}
static int
resume_callback (pthreadDebugClient_t context)
{
/* So no need to resume. */
return 0;
}
static int
kthdinfo_callback (pthreadDebugClient_t context,
pthreadDebugKId_t kid,
pthreadDebugKThreadInfo_p thread_info)
{
if (trace_pthreaddbg)
term_puts ("kthinfo_callback");
return ENOSYS;
}
static int
hold_callback (pthreadDebugClient_t context,
pthreadDebugKId_t kid)
{
if (trace_pthreaddbg)
term_puts ("hold_callback");
return ENOSYS;
}
static int
unhold_callback (pthreadDebugClient_t context,
pthreadDebugKId_t kid)
{
if (trace_pthreaddbg)
term_puts ("unhold_callback");
return ENOSYS;
}
static int
getfreg_callback (pthreadDebugClient_t context,
pthreadDebugFregs_t *reg,
pthreadDebugKId_t kid)
{
if (trace_pthreaddbg)
term_puts ("getfreg_callback");
return ENOSYS;
}
static int
setfreg_callback (pthreadDebugClient_t context,
const pthreadDebugFregs_t *reg,
pthreadDebugKId_t kid)
{
if (trace_pthreaddbg)
term_puts ("setfreg_callback");
return ENOSYS;
}
static int
getreg_callback (pthreadDebugClient_t context,
pthreadDebugRegs_t *reg,
pthreadDebugKId_t kid)
{
if (trace_pthreaddbg)
term_puts ("getreg_callback");
return ENOSYS;
}
static int
setreg_callback (pthreadDebugClient_t context,
const pthreadDebugRegs_t *reg,
pthreadDebugKId_t kid)
{
if (trace_pthreaddbg)
term_puts ("setreg_callback");
return ENOSYS;
}
static int
output_callback (pthreadDebugClient_t context,
pthreadDebugConstString_t line)
{
term_puts (line);
term_putnl ();
return 0;
}
static int
error_callback (pthreadDebugClient_t context,
pthreadDebugConstString_t line)
{
term_puts (line);
term_putnl ();
return 0;
}
static pthreadDebugAddr_t
malloc_callback (pthreadDebugClient_t caller_context, size_t size)
{
unsigned int status;
unsigned int res;
int len;
len = size + 16;
status = lib$get_vm (&len, &res, 0);
if (!(status & STS$M_SUCCESS))
LIB$SIGNAL (status);
if (trace_pthreaddbg)
TERM_FAO ("malloc_callback (!UL) -> !XA!/", size, res);
*(unsigned int *)res = len;
return (char *)res + 16;
}
static void
free_callback (pthreadDebugClient_t caller_context, pthreadDebugAddr_t address)
{
unsigned int status;
unsigned int res;
int len;
res = (unsigned int)address - 16;
len = *(unsigned int *)res;
if (trace_pthreaddbg)
TERM_FAO ("free_callback (!XA)!/", address);
status = lib$free_vm (&len, &res, 0);
if (!(status & STS$M_SUCCESS))
LIB$SIGNAL (status);
}
static int
speckthd_callback (pthreadDebugClient_t caller_context,
pthreadDebugSpecialType_t type,
pthreadDebugKId_t *kernel_tid)
{
return ENOTSUP;
}
static pthreadDebugCallbacks_t pthread_debug_callbacks = {
PTHREAD_DEBUG_VERSION,
read_callback,
write_callback,
suspend_callback,
resume_callback,
kthdinfo_callback,
hold_callback,
unhold_callback,
getfreg_callback,
setfreg_callback,
getreg_callback,
setreg_callback,
output_callback,
error_callback,
malloc_callback,
free_callback,
speckthd_callback
};
/* Name of the pthread shared library. */
static const $DESCRIPTOR (pthread_rtl_desc, "PTHREAD$RTL");
/* List of symbols to extract from pthread debug library. */
struct pthread_debug_entry
{
const unsigned int namelen;
const __char_ptr32 name;
__void_ptr32 func;
};
#define DEBUG_ENTRY(str) { sizeof(str) - 1, str, 0 }
static struct pthread_debug_entry pthread_debug_entries[] = {
DEBUG_ENTRY("pthreadDebugContextInit"),
DEBUG_ENTRY("pthreadDebugThdSeqInit"),
DEBUG_ENTRY("pthreadDebugThdSeqNext"),
DEBUG_ENTRY("pthreadDebugThdSeqDestroy"),
DEBUG_ENTRY("pthreadDebugThdGetInfo"),
DEBUG_ENTRY("pthreadDebugThdGetInfoAddr"),
DEBUG_ENTRY("pthreadDebugThdGetReg"),
DEBUG_ENTRY("pthreadDebugCmd")
};
/* Pthread debug context. */
static pthreadDebugContext_t debug_context;
/* Wrapper around pthread debug entry points. */
static int
pthread_debug_thd_seq_init (pthreadDebugId_t *id)
{
return ((int (*)())pthread_debug_entries[1].func)
(debug_context, id);
}
static int
pthread_debug_thd_seq_next (pthreadDebugId_t *id)
{
return ((int (*)())pthread_debug_entries[2].func)
(debug_context, id);
}
static int
pthread_debug_thd_seq_destroy (void)
{
return ((int (*)())pthread_debug_entries[3].func)
(debug_context);
}
static int
pthread_debug_thd_get_info (pthreadDebugId_t id,
pthreadDebugThreadInfo_t *info)
{
return ((int (*)())pthread_debug_entries[4].func)
(debug_context, id, info);
}
static int
pthread_debug_thd_get_info_addr (pthread_t thr,
pthreadDebugThreadInfo_t *info)
{
return ((int (*)())pthread_debug_entries[5].func)
(debug_context, thr, info);
}
static int
pthread_debug_thd_get_reg (pthreadDebugId_t thr,
pthreadDebugRegs_t *regs)
{
return ((int (*)())pthread_debug_entries[6].func)
(debug_context, thr, regs);
}
static int
stub_pthread_debug_cmd (const char *cmd)
{
return ((int (*)())pthread_debug_entries[7].func)
(debug_context, cmd);
}
/* Show all the threads. */
static void
threads_show (void)
{
pthreadDebugId_t id;
pthreadDebugThreadInfo_t info;
int res;
res = pthread_debug_thd_seq_init (&id);
if (res != 0)
{
TERM_FAO ("seq init failed, res=!SL!/", res);
return;
}
while (1)
{
if (pthread_debug_thd_get_info (id, &info) != 0)
{
TERM_FAO ("thd_get_info !SL failed!/", id);
break;
}
if (pthread_debug_thd_seq_next (&id) != 0)
break;
}
pthread_debug_thd_seq_destroy ();
}
/* Initialize pthread support. */
static void
threads_init (void)
{
static const $DESCRIPTOR (dbgext_desc, "PTHREAD$DBGEXT");
static const $DESCRIPTOR (pthread_debug_desc, "PTHREAD$DBGSHR");
static const $DESCRIPTOR (dbgsymtable_desc, "PTHREAD_DBG_SYMTABLE");
int pthread_dbgext;
int status;
void *dbg_symtable;
int i;
void *caller_context = 0;
status = lib$find_image_symbol
((void *) &pthread_rtl_desc, (void *) &dbgext_desc,
(int *) &dbgext_func);
if (!(status & STS$M_SUCCESS))
LIB$SIGNAL (status);
status = lib$find_image_symbol
((void *) &pthread_rtl_desc, (void *) &dbgsymtable_desc,
(int *) &dbg_symtable);
if (!(status & STS$M_SUCCESS))
LIB$SIGNAL (status);
/* Find entry points in pthread_debug. */
for (i = 0;
i < sizeof (pthread_debug_entries) / sizeof (pthread_debug_entries[0]);
i++)
{
struct dsc$descriptor_s sym =
{ pthread_debug_entries[i].namelen,
DSC$K_DTYPE_T, DSC$K_CLASS_S,
pthread_debug_entries[i].name };
status = lib$find_image_symbol
((void *) &pthread_debug_desc, (void *) &sym,
(int *) &pthread_debug_entries[i].func);
if (!(status & STS$M_SUCCESS))
lib$signal (status);
}
if (trace_pthreaddbg)
TERM_FAO ("debug symtable: !XH!/", dbg_symtable);
status = ((int (*)()) pthread_debug_entries[0].func)
(&caller_context, &pthread_debug_callbacks, dbg_symtable, &debug_context);
if (status != 0)
TERM_FAO ("cannot initialize pthread_debug: !UL!/", status);
TERM_FAO ("pthread debug done!/", 0);
}
/* Convert an hexadecimal character to a nibble. Return -1 in case of
error. */
static int
hex2nibble (unsigned char h)
{
if (h >= '0' && h <= '9')
return h - '0';
if (h >= 'A' && h <= 'F')
return h - 'A' + 10;
if (h >= 'a' && h <= 'f')
return h - 'a' + 10;
return -1;
}
/* Convert an hexadecimal 2 character string to a byte. Return -1 in case
of error. */
static int
hex2byte (const unsigned char *p)
{
int h, l;
h = hex2nibble (p[0]);
l = hex2nibble (p[1]);
if (h == -1 || l == -1)
return -1;
return (h << 4) | l;
}
/* Convert a byte V to a 2 character strings P. */
static void
byte2hex (unsigned char *p, unsigned char v)
{
p[0] = hex[v >> 4];
p[1] = hex[v & 0xf];
}
/* Convert a quadword V to a 16 character strings P. */
static void
quad2hex (unsigned char *p, unsigned __int64 v)
{
int i;
for (i = 0; i < 16; i++)
{
p[i] = hex[v >> 60];
v <<= 4;
}
}
static void
long2pkt (unsigned int v)
{
int i;
for (i = 0; i < 8; i++)
{
gdb_buf[gdb_blen + i] = hex[(v >> 28) & 0x0f];
v <<= 4;
}
gdb_blen += 8;
}
/* Generate an error packet. */
static void
packet_error (unsigned int err)
{
gdb_buf[1] = 'E';
byte2hex (gdb_buf + 2, err);
gdb_blen = 4;
}
/* Generate an OK packet. */
static void
packet_ok (void)
{
gdb_buf[1] = 'O';
gdb_buf[2] = 'K';
gdb_blen = 3;
}
/* Append a register to the packet. */
static void
ireg2pkt (const unsigned char *p)
{
int i;
for (i = 0; i < 8; i++)
{
byte2hex (gdb_buf + gdb_blen, p[i]);
gdb_blen += 2;
}
}
/* Append a C string (ASCIZ) to the packet. */
static void
str2pkt (const char *str)
{
while (*str)
gdb_buf[gdb_blen++] = *str++;
}
/* Extract a number fro the packet. */
static unsigned __int64
pkt2val (const unsigned char *pkt, unsigned int *pos)
{
unsigned __int64 res = 0;
unsigned int i;
while (1)
{
int r = hex2nibble (pkt[*pos]);
if (r < 0)
return res;
res = (res << 4) | r;
(*pos)++;
}
}
/* Append LEN bytes from B to the current gdb packet (encode in binary). */
static void
mem2bin (const unsigned char *b, unsigned int len)
{
unsigned int i;
for (i = 0; i < len; i++)
switch (b[i])
{
case '#':
case '$':
case '}':
case '*':
case 0:
gdb_buf[gdb_blen++] = '}';
gdb_buf[gdb_blen++] = b[i] ^ 0x20;
break;
default:
gdb_buf[gdb_blen++] = b[i];
break;
}
}
/* Append LEN bytes from B to the current gdb packet (encode in hex). */
static void
mem2hex (const unsigned char *b, unsigned int len)
{
unsigned int i;
for (i = 0; i < len; i++)
{
byte2hex (gdb_buf + gdb_blen, b[i]);
gdb_blen += 2;
}
}
/* Handle the 'q' packet. */
static void
handle_q_packet (const unsigned char *pkt, unsigned int pktlen)
{
/* For qfThreadInfo and qsThreadInfo. */
static unsigned int first_thread;
static unsigned int last_thread;
static const char xfer_uib[] = "qXfer:uib:read:";
#define XFER_UIB_LEN (sizeof (xfer_uib) - 1)
static const char qfthreadinfo[] = "qfThreadInfo";
#define QFTHREADINFO_LEN (sizeof (qfthreadinfo) - 1)
static const char qsthreadinfo[] = "qsThreadInfo";
#define QSTHREADINFO_LEN (sizeof (qsthreadinfo) - 1)
static const char qthreadextrainfo[] = "qThreadExtraInfo,";
#define QTHREADEXTRAINFO_LEN (sizeof (qthreadextrainfo) - 1)
static const char qsupported[] = "qSupported:";
#define QSUPPORTED_LEN (sizeof (qsupported) - 1)
if (pktlen == 2 && pkt[1] == 'C')
{
/* Current thread. */
gdb_buf[0] = '$';
gdb_buf[1] = 'Q';
gdb_buf[2] = 'C';
gdb_blen = 3;
if (has_threads)
long2pkt ((unsigned long) get_teb ());
return;
}
else if (pktlen > XFER_UIB_LEN
&& ots$strcmp_eql (pkt, XFER_UIB_LEN, xfer_uib, XFER_UIB_LEN))
{
/* Get unwind information block. */
unsigned __int64 pc;
unsigned int pos = XFER_UIB_LEN;
unsigned int off;
unsigned int len;
union
{
unsigned char bytes[32];
struct
{
unsigned __int64 code_start_va;
unsigned __int64 code_end_va;
unsigned __int64 uib_start_va;
unsigned __int64 gp_value;
} data;
} uei;
int res;
int i;
packet_error (0);
pc = pkt2val (pkt, &pos);
if (pkt[pos] != ':')
return;
pos++;
off = pkt2val (pkt, &pos);
if (pkt[pos] != ',' || off != 0)
return;
pos++;
len = pkt2val (pkt, &pos);
if (pkt[pos] != '#' || len != 0x20)
return;
res = SYS$GET_UNWIND_ENTRY_INFO (pc, &uei.data, 0);
if (res == SS$_NODATA || res != SS$_NORMAL)
ots$fill (uei.bytes, sizeof (uei.bytes), 0);
if (trace_unwind)
{
TERM_FAO ("Unwind request for !XH, status=!XL, uib=!XQ, GP=!XQ!/",
pc, res, uei.data.uib_start_va, uei.data.gp_value);
}
gdb_buf[0] = '$';
gdb_buf[1] = 'l';
gdb_blen = 2;
mem2bin (uei.bytes, sizeof (uei.bytes));
}
else if (pktlen == QFTHREADINFO_LEN
&& ots$strcmp_eql (pkt, QFTHREADINFO_LEN,
qfthreadinfo, QFTHREADINFO_LEN))
{
/* Get first thread(s). */
gdb_buf[0] = '$';
gdb_buf[1] = 'm';
gdb_blen = 2;
if (!has_threads)
{
gdb_buf[1] = 'l';
return;
}
first_thread = thread_next (0);
last_thread = first_thread;
long2pkt (first_thread);
}
else if (pktlen == QSTHREADINFO_LEN
&& ots$strcmp_eql (pkt, QSTHREADINFO_LEN,
qsthreadinfo, QSTHREADINFO_LEN))
{
/* Get subsequent threads. */
gdb_buf[0] = '$';
gdb_buf[1] = 'm';
gdb_blen = 2;
while (dbgext_func)
{
unsigned int res;
res = thread_next (last_thread);
if (res == first_thread)
break;
if (gdb_blen > 2)
gdb_buf[gdb_blen++] = ',';
long2pkt (res);
last_thread = res;
if (gdb_blen > sizeof (gdb_buf) - 16)
break;
}
if (gdb_blen == 2)
gdb_buf[1] = 'l';
}
else if (pktlen > QTHREADEXTRAINFO_LEN
&& ots$strcmp_eql (pkt, QTHREADEXTRAINFO_LEN,
qthreadextrainfo, QTHREADEXTRAINFO_LEN))
{
/* Get extra info about a thread. */
pthread_t thr;
unsigned int pos = QTHREADEXTRAINFO_LEN;
pthreadDebugThreadInfo_t info;
int res;
packet_error (0);
if (!has_threads)
return;
thr = (pthread_t) pkt2val (pkt, &pos);
if (pkt[pos] != '#')
return;
res = pthread_debug_thd_get_info_addr (thr, &info);
if (res != 0)
{
TERM_FAO ("qThreadExtraInfo (!XH) failed: !SL!/", thr, res);
return;
}
gdb_buf[0] = '$';
gdb_blen = 1;
mem2hex ((const unsigned char *)"VMS-thread", 11);
}
else if (pktlen > QSUPPORTED_LEN
&& ots$strcmp_eql (pkt, QSUPPORTED_LEN,
qsupported, QSUPPORTED_LEN))
{
/* Get supported features. */
pthread_t thr;
unsigned int pos = QSUPPORTED_LEN;
pthreadDebugThreadInfo_t info;
int res;
/* Ignore gdb features. */
gdb_buf[0] = '$';
gdb_blen = 1;
str2pkt ("qXfer:uib:read+");
return;
}
else
{
if (trace_pkt)
{
term_puts ("unknown <: ");
term_write ((char *)pkt, pktlen);
term_putnl ();
}
return;
}
}
/* Handle the 'v' packet. */
static int
handle_v_packet (const unsigned char *pkt, unsigned int pktlen)
{
static const char vcontq[] = "vCont?";
#define VCONTQ_LEN (sizeof (vcontq) - 1)
if (pktlen == VCONTQ_LEN
&& ots$strcmp_eql (pkt, VCONTQ_LEN, vcontq, VCONTQ_LEN))
{
gdb_buf[0] = '$';
gdb_blen = 1;
str2pkt ("vCont;c;s");
return 0;
}
else
{
if (trace_pkt)
{
term_puts ("unknown <: ");
term_write ((char *)pkt, pktlen);
term_putnl ();
}
return 0;
}
}
/* Get regs for the selected thread. */
static struct ia64_all_regs *
get_selected_regs (void)
{
pthreadDebugRegs_t regs;
int res;
if (selected_thread == 0 || selected_thread == get_teb ())
return &excp_regs;
if (selected_thread == sel_regs_pthread)
return &sel_regs;
/* Read registers. */
res = pthread_debug_thd_get_reg (selected_id, &regs);
if (res != 0)
{
/* FIXME: return NULL ? */
return &excp_regs;
}
sel_regs_pthread = selected_thread;
sel_regs.gr[1].v = regs.gp;
sel_regs.gr[4].v = regs.r4;
sel_regs.gr[5].v = regs.r5;
sel_regs.gr[6].v = regs.r6;
sel_regs.gr[7].v = regs.r7;
sel_regs.gr[12].v = regs.sp;
sel_regs.br[0].v = regs.rp;
sel_regs.br[1].v = regs.b1;
sel_regs.br[2].v = regs.b2;
sel_regs.br[3].v = regs.b3;
sel_regs.br[4].v = regs.b4;
sel_regs.br[5].v = regs.b5;
sel_regs.ip.v = regs.ip;
sel_regs.bsp.v = regs.bspstore; /* FIXME: it is correct ? */
sel_regs.pfs.v = regs.pfs;
sel_regs.pr.v = regs.pr;
return &sel_regs;
}
/* Create a status packet. */
static void
packet_status (void)
{
gdb_blen = 0;
if (has_threads)
{
str2pkt ("$T05thread:");
long2pkt ((unsigned long) get_teb ());
gdb_buf[gdb_blen++] = ';';
}
else
str2pkt ("$S05");
}
/* Return 1 to continue. */
static int
handle_packet (unsigned char *pkt, unsigned int len)
{
unsigned int pos;
/* By default, reply unsupported. */
gdb_buf[0] = '$';
gdb_blen = 1;
pos = 1;
switch (pkt[0])
{
case '?':
if (len == 1)
{
packet_status ();
return 0;
}
break;
case 'c':
if (len == 1)
{
/* Clear psr.ss. */
excp_regs.psr.v &= ~(unsigned __int64)PSR$M_SS;
return 1;
}
else
packet_error (0);
break;
case 'g':
if (len == 1)
{
unsigned int i;
struct ia64_all_regs *regs = get_selected_regs ();
unsigned char *p = regs->gr[0].b;
for (i = 0; i < 8 * 32; i++)
byte2hex (gdb_buf + 1 + 2 * i, p[i]);
gdb_blen += 2 * 8 * 32;
return 0;
}
break;
case 'H':
if (pkt[1] == 'g')
{
int res;
unsigned __int64 val;
pthreadDebugThreadInfo_t info;
pos++;
val = pkt2val (pkt, &pos);
if (pos != len)
{
packet_error (0);
return 0;
}
if (val == 0)
{
/* Default one. */
selected_thread = get_teb ();
selected_id = 0;
}
else if (!has_threads)
{
packet_error (0);
return 0;
}
else
{
res = pthread_debug_thd_get_info_addr ((pthread_t) val, &info);
if (res != 0)
{
TERM_FAO ("qThreadExtraInfo (!XH) failed: !SL!/", val, res);
packet_error (0);
return 0;
}
selected_thread = info.teb;
selected_id = info.sequence;
}
packet_ok ();
break;
}
else if (pkt[1] == 'c'
&& ((pkt[2] == '-' && pkt[3] == '1' && len == 4)
|| (pkt[2] == '0' && len == 3)))
{
/* Silently accept 'Hc0' and 'Hc-1'. */
packet_ok ();
break;
}
else
{
packet_error (0);
return 0;
}
case 'k':
SYS$EXIT (SS$_NORMAL);
break;
case 'm':
{
unsigned __int64 addr;
unsigned __int64 paddr;
unsigned int l;
unsigned int i;
addr = pkt2val (pkt, &pos);
if (pkt[pos] != ',')
{
packet_error (0);
return 0;
}
pos++;
l = pkt2val (pkt, &pos);
if (pkt[pos] != '#')
{
packet_error (0);
return 0;
}
/* Check access. */
i = l + (addr & VMS_PAGE_MASK);
paddr = addr & ~VMS_PAGE_MASK;
while (1)
{
if (__prober (paddr, 0) != 1)
{
packet_error (2);
return 0;
}
if (i < VMS_PAGE_SIZE)
break;
i -= VMS_PAGE_SIZE;
paddr += VMS_PAGE_SIZE;
}
/* Transfer. */
for (i = 0; i < l; i++)
byte2hex (gdb_buf + 1 + 2 * i, ((unsigned char *)addr)[i]);
gdb_blen += 2 * l;
}
break;
case 'M':
{
unsigned __int64 addr;
unsigned __int64 paddr;
unsigned int l;
unsigned int i;
unsigned int oldprot;
addr = pkt2val (pkt, &pos);
if (pkt[pos] != ',')
{
packet_error (0);
return 0;
}
pos++;
l = pkt2val (pkt, &pos);
if (pkt[pos] != ':')
{
packet_error (0);
return 0;
}
pos++;
page_set_rw (addr, l, &oldprot);
/* Check access. */
i = l + (addr & VMS_PAGE_MASK);
paddr = addr & ~VMS_PAGE_MASK;
while (1)
{
if (__probew (paddr, 0) != 1)
{
page_restore_rw (addr, l, oldprot);
return 0;
}
if (i < VMS_PAGE_SIZE)
break;
i -= VMS_PAGE_SIZE;
paddr += VMS_PAGE_SIZE;
}
/* Write. */
for (i = 0; i < l; i++)
{
int v = hex2byte (pkt + pos);
pos += 2;
((unsigned char *)addr)[i] = v;
}
/* Sync caches. */
for (i = 0; i < l; i += 15)
__fc (addr + i);
__fc (addr + l);
page_restore_rw (addr, l, oldprot);
packet_ok ();
}
break;
case 'p':
{
unsigned int num = 0;
unsigned int i;
struct ia64_all_regs *regs = get_selected_regs ();
num = pkt2val (pkt, &pos);
if (pos != len)
{
packet_error (0);
return 0;
}
switch (num)
{
case IA64_IP_REGNUM:
ireg2pkt (regs->ip.b);
break;
case IA64_BR0_REGNUM:
ireg2pkt (regs->br[0].b);
break;
case IA64_PSR_REGNUM:
ireg2pkt (regs->psr.b);
break;
case IA64_BSP_REGNUM:
ireg2pkt (regs->bsp.b);
break;
case IA64_CFM_REGNUM:
ireg2pkt (regs->cfm.b);
break;
case IA64_PFS_REGNUM:
ireg2pkt (regs->pfs.b);
break;
case IA64_PR_REGNUM:
ireg2pkt (regs->pr.b);
break;
default:
TERM_FAO ("gdbserv: unhandled reg !UW!/", num);
packet_error (0);
return 0;
}
}
break;
case 'q':
handle_q_packet (pkt, len);
break;
case 's':
if (len == 1)
{
/* Set psr.ss. */
excp_regs.psr.v |= (unsigned __int64)PSR$M_SS;
return 1;
}
else
packet_error (0);
break;
case 'T':
/* Thread status. */
if (!has_threads)
{
packet_ok ();
break;
}
else
{
int res;
unsigned __int64 val;
unsigned int fthr, thr;
val = pkt2val (pkt, &pos);
/* Default is error (but only after parsing is complete). */
packet_error (0);
if (pos != len)
break;
/* Follow the list. This makes a O(n2) algorithm, but we don't really
have the choice. Note that pthread_debug_thd_get_info_addr
doesn't look reliable. */
fthr = thread_next (0);
thr = fthr;
do
{
if (val == thr)
{
packet_ok ();
break;
}
thr = thread_next (thr);
}
while (thr != fthr);
}
break;
case 'v':
return handle_v_packet (pkt, len);
break;
case 'V':
if (len > 3 && pkt[1] == 'M' && pkt[2] == 'S' && pkt[3] == ' ')
{
/* Temporary extension. */
if (has_threads)
{
pkt[len] = 0;
stub_pthread_debug_cmd ((char *)pkt + 4);
packet_ok ();
}
else
packet_error (0);
}
break;
default:
if (trace_pkt)
{
term_puts ("unknown <: ");
term_write ((char *)pkt, len);
term_putnl ();
}
break;
}
return 0;
}
/* Raw write to gdb. */
static void
sock_write (const unsigned char *buf, int len)
{
struct _iosb iosb;
unsigned int status;
/* Write data to connection. */
status = sys$qiow (EFN$C_ENF, /* Event flag. */
conn_channel, /* I/O channel. */
IO$_WRITEVBLK, /* I/O function code. */
&iosb, /* I/O status block. */
0, /* Ast service routine. */
0, /* Ast parameter. */
(char *)buf, /* P1 - buffer address. */
len, /* P2 - buffer length. */
0, 0, 0, 0);
if (status & STS$M_SUCCESS)
status = iosb.iosb$w_status;
if (!(status & STS$M_SUCCESS))
{
term_puts ("Failed to write data to gdb\n");
LIB$SIGNAL (status);
}
}
/* Compute the cheksum and send the packet. */
static void
send_pkt (void)
{
unsigned char chksum = 0;
unsigned int i;
for (i = 1; i < gdb_blen; i++)
chksum += gdb_buf[i];
gdb_buf[gdb_blen] = '#';
byte2hex (gdb_buf + gdb_blen + 1, chksum);
sock_write (gdb_buf, gdb_blen + 3);
if (trace_pkt > 1)
{
term_puts (">: ");
term_write ((char *)gdb_buf, gdb_blen + 3);
term_putnl ();
}
}
/* Read and handle one command. Return 1 is execution must resume. */
static int
one_command (void)
{
struct _iosb iosb;
unsigned int status;
unsigned int off;
unsigned int dollar_off = 0;
unsigned int sharp_off = 0;
unsigned int cmd_off;
unsigned int cmd_len;
/* Wait for a packet. */
while (1)
{
off = 0;
while (1)
{
/* Read data from connection. */
status = sys$qiow (EFN$C_ENF, /* Event flag. */
conn_channel, /* I/O channel. */
IO$_READVBLK, /* I/O function code. */
&iosb, /* I/O status block. */
0, /* Ast service routine. */
0, /* Ast parameter. */
gdb_buf + off, /* P1 - buffer address. */
sizeof (gdb_buf) - off, /* P2 - buffer leng. */
0, 0, 0, 0);
if (status & STS$M_SUCCESS)
status = iosb.iosb$w_status;
if (!(status & STS$M_SUCCESS))
{
term_puts ("Failed to read data from connection\n" );
LIB$SIGNAL (status);
}
#ifdef RAW_DUMP
term_puts ("{: ");
term_write ((char *)gdb_buf + off, iosb.iosb$w_bcnt);
term_putnl ();
#endif
gdb_blen = off + iosb.iosb$w_bcnt;
if (off == 0)
{
/* Search for '$'. */
for (dollar_off = 0; dollar_off < gdb_blen; dollar_off++)
if (gdb_buf[dollar_off] == '$')
break;
if (dollar_off >= gdb_blen)
{
/* Not found, discard the data. */
off = 0;
continue;
}
/* Search for '#'. */
for (sharp_off = dollar_off + 1;
sharp_off < gdb_blen;
sharp_off++)
if (gdb_buf[sharp_off] == '#')
break;
}
else if (sharp_off >= off)
{
/* Search for '#'. */
for (; sharp_off < gdb_blen; sharp_off++)
if (gdb_buf[sharp_off] == '#')
break;
}
/* Got packet with checksum. */
if (sharp_off + 2 <= gdb_blen)
break;
off = gdb_blen;
if (gdb_blen == sizeof (gdb_buf))
{
/* Packet too large, discard. */
off = 0;
}
}
/* Validate and acknowledge a packet. */
{
unsigned char chksum = 0;
unsigned int i;
int v;
for (i = dollar_off + 1; i < sharp_off; i++)
chksum += gdb_buf[i];
v = hex2byte (gdb_buf + sharp_off + 1);
if (v != chksum)
{
term_puts ("Discard bad checksum packet\n");
continue;
}
else
{
sock_write ((const unsigned char *)"+", 1);
break;
}
}
}
if (trace_pkt > 1)
{
term_puts ("<: ");
term_write ((char *)gdb_buf + dollar_off, sharp_off - dollar_off + 1);
term_putnl ();
}
cmd_off = dollar_off + 1;
cmd_len = sharp_off - dollar_off - 1;
if (handle_packet (gdb_buf + dollar_off + 1, sharp_off - dollar_off - 1) == 1)
return 1;
send_pkt ();
return 0;
}
/* Display the condition given by SIG64. */
static void
display_excp (struct chf64$signal_array *sig64, struct chf$mech_array *mech)
{
unsigned int status;
char msg[160];
unsigned short msglen;
$DESCRIPTOR (msg_desc, msg);
unsigned char outadr[4];
status = SYS$GETMSG (sig64->chf64$q_sig_name, &msglen, &msg_desc, 0, outadr);
if (status & STS$M_SUCCESS)
{
char msg2[160];
unsigned short msg2len;
struct dsc$descriptor_s msg2_desc =
{ sizeof (msg2), DSC$K_DTYPE_T, DSC$K_CLASS_S, msg2};
msg_desc.dsc$w_length = msglen;
status = SYS$FAOL_64 (&msg_desc, &msg2len, &msg2_desc,
&sig64->chf64$q_sig_arg1);
if (status & STS$M_SUCCESS)
term_write (msg2, msg2len);
}
else
term_puts ("no message");
term_putnl ();
if (trace_excp > 1)
{
TERM_FAO (" Frame: !XH, Depth: !4SL, Esf: !XH!/",
mech->chf$q_mch_frame, mech->chf$q_mch_depth,
mech->chf$q_mch_esf_addr);
}
}
/* Get all registers from current thread. */
static void
read_all_registers (struct chf$mech_array *mech)
{
struct _intstk *intstk =
(struct _intstk *)mech->chf$q_mch_esf_addr;
struct chf64$signal_array *sig64 =
(struct chf64$signal_array *)mech->chf$ph_mch_sig64_addr;
unsigned int cnt = sig64->chf64$w_sig_arg_count;
unsigned __int64 pc = (&sig64->chf64$q_sig_name)[cnt - 2];
excp_regs.ip.v = pc;
excp_regs.psr.v = intstk->intstk$q_ipsr;
/* GDB and linux expects bsp to point after the current register frame.
Adjust. */
{
unsigned __int64 bsp = intstk->intstk$q_bsp;
unsigned int sof = intstk->intstk$q_ifs & 0x7f;
unsigned int delta = ((bsp >> 3) & 0x3f) + sof;
excp_regs.bsp.v = bsp + ((sof + delta / 0x3f) << 3);
}
excp_regs.cfm.v = intstk->intstk$q_ifs & 0x3fffffffff;
excp_regs.pfs.v = intstk->intstk$q_pfs;
excp_regs.pr.v = intstk->intstk$q_preds;
excp_regs.gr[0].v = 0;
excp_regs.gr[1].v = intstk->intstk$q_gp;
excp_regs.gr[2].v = intstk->intstk$q_r2;
excp_regs.gr[3].v = intstk->intstk$q_r3;
excp_regs.gr[4].v = intstk->intstk$q_r4;
excp_regs.gr[5].v = intstk->intstk$q_r5;
excp_regs.gr[6].v = intstk->intstk$q_r6;
excp_regs.gr[7].v = intstk->intstk$q_r7;
excp_regs.gr[8].v = intstk->intstk$q_r8;
excp_regs.gr[9].v = intstk->intstk$q_r9;
excp_regs.gr[10].v = intstk->intstk$q_r10;
excp_regs.gr[11].v = intstk->intstk$q_r11;
excp_regs.gr[12].v = (unsigned __int64)intstk + intstk->intstk$l_stkalign;
excp_regs.gr[13].v = intstk->intstk$q_r13;
excp_regs.gr[14].v = intstk->intstk$q_r14;
excp_regs.gr[15].v = intstk->intstk$q_r15;
excp_regs.gr[16].v = intstk->intstk$q_r16;
excp_regs.gr[17].v = intstk->intstk$q_r17;
excp_regs.gr[18].v = intstk->intstk$q_r18;
excp_regs.gr[19].v = intstk->intstk$q_r19;
excp_regs.gr[20].v = intstk->intstk$q_r20;
excp_regs.gr[21].v = intstk->intstk$q_r21;
excp_regs.gr[22].v = intstk->intstk$q_r22;
excp_regs.gr[23].v = intstk->intstk$q_r23;
excp_regs.gr[24].v = intstk->intstk$q_r24;
excp_regs.gr[25].v = intstk->intstk$q_r25;
excp_regs.gr[26].v = intstk->intstk$q_r26;
excp_regs.gr[27].v = intstk->intstk$q_r27;
excp_regs.gr[28].v = intstk->intstk$q_r28;
excp_regs.gr[29].v = intstk->intstk$q_r29;
excp_regs.gr[30].v = intstk->intstk$q_r30;
excp_regs.gr[31].v = intstk->intstk$q_r31;
excp_regs.br[0].v = intstk->intstk$q_b0;
excp_regs.br[1].v = intstk->intstk$q_b1;
excp_regs.br[2].v = intstk->intstk$q_b2;
excp_regs.br[3].v = intstk->intstk$q_b3;
excp_regs.br[4].v = intstk->intstk$q_b4;
excp_regs.br[5].v = intstk->intstk$q_b5;
excp_regs.br[6].v = intstk->intstk$q_b6;
excp_regs.br[7].v = intstk->intstk$q_b7;
}
/* Write all registers to current thread. FIXME: not yet complete. */
static void
write_all_registers (struct chf$mech_array *mech)
{
struct _intstk *intstk =
(struct _intstk *)mech->chf$q_mch_esf_addr;
intstk->intstk$q_ipsr = excp_regs.psr.v;
}
/* Do debugging. Report status to gdb and execute commands. */
static void
do_debug (struct chf$mech_array *mech)
{
struct _intstk *intstk =
(struct _intstk *)mech->chf$q_mch_esf_addr;
unsigned int old_ast;
unsigned int old_sch;
unsigned int status;
/* Disable ast. */
status = sys$setast (0);
switch (status)
{
case SS$_WASCLR:
old_ast = 0;
break;
case SS$_WASSET:
old_ast = 1;
break;
default:
/* Should never happen! */
lib$signal (status);
}
/* Disable thread scheduling. */
if (has_threads)
old_sch = set_thread_scheduling (0);
read_all_registers (mech);
/* Send stop reply packet. */
packet_status ();
send_pkt ();
while (one_command () == 0)
;
write_all_registers (mech);
/* Re-enable scheduling. */
if (has_threads)
set_thread_scheduling (old_sch);
/* Re-enable AST. */
status = sys$setast (old_ast);
if (!(status & STS$M_SUCCESS))
LIB$SIGNAL (status);
}
/* The condition handler. That's the core of the stub. */
static int
excp_handler (struct chf$signal_array *sig,
struct chf$mech_array *mech)
{
struct chf64$signal_array *sig64 =
(struct chf64$signal_array *)mech->chf$ph_mch_sig64_addr;
unsigned int code = sig->chf$l_sig_name & STS$M_COND_ID;
unsigned int cnt = sig64->chf64$w_sig_arg_count;
unsigned __int64 pc;
unsigned int ret;
/* Self protection. FIXME: Should be per thread ? */
static int in_handler = 0;
/* Completly ignore some conditions (signaled indirectly by this stub). */
switch (code)
{
case LIB$_KEYNOTFOU & STS$M_COND_ID:
return SS$_RESIGNAL_64;
default:
break;
}
/* Protect against recursion. */
in_handler++;
if (in_handler > 1)
{
if (in_handler == 2)
TERM_FAO ("gdbstub: exception in handler (pc=!XH)!!!/",
(&sig64->chf64$q_sig_name)[cnt - 2]);
sys$exit (sig->chf$l_sig_name);
}
pc = (&sig64->chf64$q_sig_name)[cnt - 2];
if (trace_excp)
TERM_FAO ("excp_handler: code: !XL, pc=!XH!/", code, pc);
/* If break on the entry point, restore the bundle. */
if (code == (SS$_BREAK & STS$M_COND_ID)
&& pc == entry_pc
&& entry_pc != 0)
{
static unsigned int entry_prot;
if (trace_entry)
term_puts ("initial entry breakpoint\n");
page_set_rw (entry_pc, 16, &entry_prot);
ots$move ((void *)entry_pc, 16, entry_saved);
__fc (entry_pc);
page_restore_rw (entry_pc, 16, entry_prot);
}
switch (code)
{
case SS$_ACCVIO & STS$M_COND_ID:
if (trace_excp <= 1)
display_excp (sig64, mech);
/* Fall through. */
case SS$_BREAK & STS$M_COND_ID:
case SS$_OPCDEC & STS$M_COND_ID:
case SS$_TBIT & STS$M_COND_ID:
case SS$_DEBUG & STS$M_COND_ID:
if (trace_excp > 1)
{
int i;
struct _intstk *intstk =
(struct _intstk *)mech->chf$q_mch_esf_addr;
display_excp (sig64, mech);
TERM_FAO (" intstk: !XH!/", intstk);
for (i = 0; i < cnt + 1; i++)
TERM_FAO (" !XH!/", ((unsigned __int64 *)sig64)[i]);
}
do_debug (mech);
ret = SS$_CONTINUE_64;
break;
default:
display_excp (sig64, mech);
ret = SS$_RESIGNAL_64;
break;
}
in_handler--;
/* Discard selected thread registers. */
sel_regs_pthread = 0;
return ret;
}
/* Setup internal trace flags according to GDBSTUB$TRACE logical. */
static void
trace_init (void)
{
unsigned int status, i, start;
unsigned short len;
char resstring[LNM$C_NAMLENGTH];
static const $DESCRIPTOR (tabdesc, "LNM$DCL_LOGICAL");
static const $DESCRIPTOR (logdesc, "GDBSTUB$TRACE");
$DESCRIPTOR (sub_desc, resstring);
ILE3 item_lst[2];
item_lst[0].ile3$w_length = LNM$C_NAMLENGTH;
item_lst[0].ile3$w_code = LNM$_STRING;
item_lst[0].ile3$ps_bufaddr = resstring;
item_lst[0].ile3$ps_retlen_addr = &len;
item_lst[1].ile3$w_length = 0;
item_lst[1].ile3$w_code = 0;
/* Translate the logical name. */
status = SYS$TRNLNM (0, /* Attributes of the logical name. */
(void *)&tabdesc, /* Logical name table. */
(void *)&logdesc, /* Logical name. */
0, /* Access mode. */
&item_lst); /* Item list. */
if (status == SS$_NOLOGNAM)
return;
if (!(status & STS$M_SUCCESS))
LIB$SIGNAL (status);
start = 0;
for (i = 0; i <= len; i++)
{
if ((i == len || resstring[i] == ',' || resstring[i] == ';')
&& i != start)
{
int j;
sub_desc.dsc$a_pointer = resstring + start;
sub_desc.dsc$w_length = i - start;
for (j = 0; j < NBR_DEBUG_FLAGS; j++)
if (str$case_blind_compare (&sub_desc,
(void *)&debug_flags[j].name) == 0)
{
debug_flags[j].val++;
break;
}
if (j == NBR_DEBUG_FLAGS)
TERM_FAO ("GDBSTUB$TRACE: unknown directive !AS!/", &sub_desc);
start = i + 1;
}
}
TERM_FAO ("GDBSTUB$TRACE=!AD ->", len, resstring);
for (i = 0; i < NBR_DEBUG_FLAGS; i++)
if (debug_flags[i].val > 0)
TERM_FAO (" !AS=!ZL", &debug_flags[i].name, debug_flags[i].val);
term_putnl ();
}
/* Entry point. */
static int
stub_start (unsigned __int64 *progxfer, void *cli_util,
EIHD *imghdr, IFD *imgfile,
unsigned int linkflag, unsigned int cliflag)
{
static int initialized;
int i;
int cnt;
int is_attached;
IMCB *imcb;
if (initialized)
term_puts ("gdbstub: re-entry\n");
else
initialized = 1;
/* When attached (through SS$_DEBUG condition), the number of arguments
is 4 and PROGXFER is the PC at interruption. */
va_count (cnt);
is_attached = cnt == 4;
term_init ();
/* Hello banner. */
term_puts ("Hello from gdb stub\n");
trace_init ();
if (trace_entry && !is_attached)
{
TERM_FAO ("xfer: !XH, imghdr: !XH, ifd: !XH!/",
progxfer, imghdr, imgfile);
for (i = -2; i < 8; i++)
TERM_FAO (" at !2SW: !XH!/", i, progxfer[i]);
}
/* Search for entry point. */
if (!is_attached)
{
entry_pc = 0;
for (i = 0; progxfer[i]; i++)
entry_pc = progxfer[i];
if (trace_entry)
{
if (entry_pc == 0)
{
term_puts ("No entry point\n");
return 0;
}
else
TERM_FAO ("Entry: !XH!/",entry_pc);
}
}
else
entry_pc = progxfer[0];
has_threads = 0;
for (imcb = ctl$gl_imglstptr->imcb$l_flink;
imcb != ctl$gl_imglstptr;
imcb = imcb->imcb$l_flink)
{
if (ots$strcmp_eql (pthread_rtl_desc.dsc$a_pointer,
pthread_rtl_desc.dsc$w_length,
imcb->imcb$t_log_image_name + 1,
imcb->imcb$t_log_image_name[0]))
has_threads = 1;
if (trace_images)
{
unsigned int j;
LDRIMG *ldrimg = imcb->imcb$l_ldrimg;
LDRISD *ldrisd;
TERM_FAO ("!XA-!XA ",
imcb->imcb$l_starting_address,
imcb->imcb$l_end_address);
switch (imcb->imcb$b_act_code)
{
case IMCB$K_MAIN_PROGRAM:
term_puts ("prog");
break;
case IMCB$K_MERGED_IMAGE:
term_puts ("mrge");
break;
case IMCB$K_GLOBAL_IMAGE_SECTION:
term_puts ("glob");
break;
default:
term_puts ("????");
}
TERM_FAO (" !AD !40AC!/",
1, "KESU" + (imcb->imcb$b_access_mode & 3),
imcb->imcb$t_log_image_name);
if ((long) ldrimg < 0 || trace_images < 2)
continue;
ldrisd = ldrimg->ldrimg$l_segments;
for (j = 0; j < ldrimg->ldrimg$l_segcount; j++)
{
unsigned int flags = ldrisd[j].ldrisd$i_flags;
term_puts (" ");
term_putc (flags & 0x04 ? 'R' : '-');
term_putc (flags & 0x02 ? 'W' : '-');
term_putc (flags & 0x01 ? 'X' : '-');
term_puts (flags & 0x01000000 ? " Prot" : " ");
term_puts (flags & 0x04000000 ? " Shrt" : " ");
term_puts (flags & 0x08000000 ? " Shrd" : " ");
TERM_FAO (" !XA-!XA!/",
ldrisd[j].ldrisd$p_base,
(unsigned __int64) ldrisd[j].ldrisd$p_base
+ ldrisd[j].ldrisd$i_len - 1);
}
ldrisd = ldrimg->ldrimg$l_dyn_seg;
if (ldrisd)
TERM_FAO (" dynamic !XA-!XA!/",
ldrisd->ldrisd$p_base,
(unsigned __int64) ldrisd->ldrisd$p_base
+ ldrisd->ldrisd$i_len - 1);
}
}
if (has_threads)
threads_init ();
/* Wait for connection. */
sock_init ();
/* Set primary exception vector. */
{
unsigned int status;
status = sys$setexv (0, excp_handler, PSL$C_USER, (__void_ptr32) &prevhnd);
if (!(status & STS$M_SUCCESS))
LIB$SIGNAL (status);
}
if (is_attached)
{
return excp_handler ((struct chf$signal_array *) progxfer[2],
(struct chf$mech_array *) progxfer[3]);
}
/* Change first instruction to set a breakpoint. */
{
/*
01 08 00 40 00 00 [MII] break.m 0x80001
00 00 00 02 00 00 nop.i 0x0
00 00 04 00 nop.i 0x0;;
*/
static const unsigned char initbp[16] =
{ 0x01, 0x08, 0x00, 0x40, 0x00, 0x00,
0x00, 0x00, 0x00, 0x02, 0x00, 0x00,
0x00, 0x00, 0x04, 0x00 };
unsigned int entry_prot;
unsigned int status;
status = page_set_rw (entry_pc, 16, &entry_prot);
if (!(status & STS$M_SUCCESS))
{
if ((status & STS$M_COND_ID) == (SS$_NOT_PROCESS_VA & STS$M_COND_ID))
{
/* Cannot write here. This can happen when pthreads are
used. */
entry_pc = 0;
term_puts ("gdbstub: cannot set breakpoint on entry\n");
}
else
LIB$SIGNAL (status);
}
if (entry_pc != 0)
{
ots$move (entry_saved, 16, (void *)entry_pc);
ots$move ((void *)entry_pc, 16, (void *)initbp);
__fc (entry_pc);
page_restore_rw (entry_pc, 16, entry_prot);
}
}
/* If it wasn't possible to set a breakpoint on the entry point,
accept gdb commands now. Note that registers are not updated. */
if (entry_pc == 0)
{
while (one_command () == 0)
;
}
/* We will see! */
return SS$_CONTINUE;
}
/* Declare the entry point of this relocatable module. */
struct xfer_vector
{
__int64 impure_start;
__int64 impure_end;
int (*entry) ();
};
#pragma __extern_model save
#pragma __extern_model strict_refdef "XFER_PSECT"
struct xfer_vector xfer_vector = {0, 0, stub_start};
#pragma __extern_model restore