binutils-gdb/gdb/c-exp.y
John Gilmore b90c4f33cd * c-exp.y (yyerror): Pass error message if given.
* configure.in:  Add rs6000 host and target.
* inflow.c (new_tty):  O_NOCTTY kludge for RS/6000.
* symfile.h (entry_point):  Add.
1991-10-27 22:27:15 +00:00

1557 lines
38 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* YACC parser for C expressions, for GDB.
Copyright (C) 1986, 1989, 1990, 1991 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Parse a C expression from text in a string,
and return the result as a struct expression pointer.
That structure contains arithmetic operations in reverse polish,
with constants represented by operations that are followed by special data.
See expression.h for the details of the format.
What is important here is that it can be built up sequentially
during the process of parsing; the lower levels of the tree always
come first in the result. */
%{
#include <stdio.h>
#include <string.h>
#include "defs.h"
#include "param.h"
#include "symtab.h"
#include "frame.h"
#include "expression.h"
#include "parser-defs.h"
#include "value.h"
#include "language.h"
/* These MUST be included in any grammar file!!!!
Please choose unique names! */
#define yyparse c_parse
#define yylex c_lex
#define yyerror c_error
#define yylval c_lval
#define yychar c_char
#define yydebug c_debug
#define yypact c_pact
#define yyr1 c_r1
#define yyr2 c_r2
#define yydef c_def
#define yychk c_chk
#define yypgo c_pgo
#define yyact c_act
#define yyexca c_exca
#define yyerrflag c_errflag
#define yynerrs c_nerrs
#define yyps c_ps
#define yypv c_pv
#define yys c_s
#define yystate c_state
#define yytmp c_tmp
#define yyv c_v
#define yyval c_val
#define yylloc c_lloc
/* Forward decls */
void yyerror ();
static int parse_number ();
int yyparse ();
/* #define YYDEBUG 1 */
%}
/* Although the yacc "value" of an expression is not used,
since the result is stored in the structure being created,
other node types do have values. */
%union
{
LONGEST lval;
unsigned LONGEST ulval;
double dval;
struct symbol *sym;
struct type *tval;
struct stoken sval;
struct ttype tsym;
struct symtoken ssym;
int voidval;
struct block *bval;
enum exp_opcode opcode;
struct internalvar *ivar;
struct type **tvec;
int *ivec;
}
%type <voidval> exp exp1 type_exp start variable
%type <tval> type typebase
%type <tvec> nonempty_typelist
/* %type <bval> block */
/* Fancy type parsing. */
%type <voidval> func_mod direct_abs_decl abs_decl
%type <tval> ptype
%type <lval> array_mod
%token <lval> INT CHAR
%token <ulval> UINT
%token <dval> FLOAT
/* Both NAME and TYPENAME tokens represent symbols in the input,
and both convey their data as strings.
But a TYPENAME is a string that happens to be defined as a typedef
or builtin type name (such as int or char)
and a NAME is any other symbol.
Contexts where this distinction is not important can use the
nonterminal "name", which matches either NAME or TYPENAME. */
%token <sval> STRING
%token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
%token <tsym> TYPENAME
%type <sval> name
%type <ssym> name_not_typename
%type <tsym> typename
/* A NAME_OR_INT is a symbol which is not known in the symbol table,
but which would parse as a valid number in the current input radix.
E.g. "c" when input_radix==16. Depending on the parse, it will be
turned into a name or into a number. NAME_OR_UINT ditto. */
%token <ssym> NAME_OR_INT NAME_OR_UINT
%token STRUCT UNION ENUM SIZEOF UNSIGNED COLONCOLON
%token ERROR
/* Special type cases, put in to allow the parser to distinguish different
legal basetypes. */
%token SIGNED LONG SHORT INT_KEYWORD
%token <lval> LAST REGNAME
%token <ivar> VARIABLE
%token <opcode> ASSIGN_MODIFY
/* C++ */
%token THIS
%left ','
%left ABOVE_COMMA
%right '=' ASSIGN_MODIFY
%right '?'
%left OR
%left AND
%left '|'
%left '^'
%left '&'
%left EQUAL NOTEQUAL
%left '<' '>' LEQ GEQ
%left LSH RSH
%left '@'
%left '+' '-'
%left '*' '/' '%'
%right UNARY INCREMENT DECREMENT
%right ARROW '.' '[' '('
%token <ssym> BLOCKNAME
%type <bval> block
%left COLONCOLON
%%
start : exp1
| type_exp
;
type_exp: type
{ write_exp_elt_opcode(OP_TYPE);
write_exp_elt_type($1);
write_exp_elt_opcode(OP_TYPE);}
;
/* Expressions, including the comma operator. */
exp1 : exp
| exp1 ',' exp
{ write_exp_elt_opcode (BINOP_COMMA); }
;
/* Expressions, not including the comma operator. */
exp : '*' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_IND); }
exp : '&' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_ADDR); }
exp : '-' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_NEG); }
;
exp : '!' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_ZEROP); }
;
exp : '~' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_LOGNOT); }
;
exp : INCREMENT exp %prec UNARY
{ write_exp_elt_opcode (UNOP_PREINCREMENT); }
;
exp : DECREMENT exp %prec UNARY
{ write_exp_elt_opcode (UNOP_PREDECREMENT); }
;
exp : exp INCREMENT %prec UNARY
{ write_exp_elt_opcode (UNOP_POSTINCREMENT); }
;
exp : exp DECREMENT %prec UNARY
{ write_exp_elt_opcode (UNOP_POSTDECREMENT); }
;
exp : SIZEOF exp %prec UNARY
{ write_exp_elt_opcode (UNOP_SIZEOF); }
;
exp : exp ARROW name
{ write_exp_elt_opcode (STRUCTOP_PTR);
write_exp_string ($3);
write_exp_elt_opcode (STRUCTOP_PTR); }
;
exp : exp ARROW '*' exp
{ write_exp_elt_opcode (STRUCTOP_MPTR); }
;
exp : exp '.' name
{ write_exp_elt_opcode (STRUCTOP_STRUCT);
write_exp_string ($3);
write_exp_elt_opcode (STRUCTOP_STRUCT); }
;
exp : exp '.' '*' exp
{ write_exp_elt_opcode (STRUCTOP_MEMBER); }
;
exp : exp '[' exp1 ']'
{ write_exp_elt_opcode (BINOP_SUBSCRIPT); }
;
exp : exp '('
/* This is to save the value of arglist_len
being accumulated by an outer function call. */
{ start_arglist (); }
arglist ')' %prec ARROW
{ write_exp_elt_opcode (OP_FUNCALL);
write_exp_elt_longcst ((LONGEST) end_arglist ());
write_exp_elt_opcode (OP_FUNCALL); }
;
arglist :
;
arglist : exp
{ arglist_len = 1; }
;
arglist : arglist ',' exp %prec ABOVE_COMMA
{ arglist_len++; }
;
exp : '{' type '}' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_MEMVAL);
write_exp_elt_type ($2);
write_exp_elt_opcode (UNOP_MEMVAL); }
;
exp : '(' type ')' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_CAST);
write_exp_elt_type ($2);
write_exp_elt_opcode (UNOP_CAST); }
;
exp : '(' exp1 ')'
{ }
;
/* Binary operators in order of decreasing precedence. */
exp : exp '@' exp
{ write_exp_elt_opcode (BINOP_REPEAT); }
;
exp : exp '*' exp
{ write_exp_elt_opcode (BINOP_MUL); }
;
exp : exp '/' exp
{ write_exp_elt_opcode (BINOP_DIV); }
;
exp : exp '%' exp
{ write_exp_elt_opcode (BINOP_REM); }
;
exp : exp '+' exp
{ write_exp_elt_opcode (BINOP_ADD); }
;
exp : exp '-' exp
{ write_exp_elt_opcode (BINOP_SUB); }
;
exp : exp LSH exp
{ write_exp_elt_opcode (BINOP_LSH); }
;
exp : exp RSH exp
{ write_exp_elt_opcode (BINOP_RSH); }
;
exp : exp EQUAL exp
{ write_exp_elt_opcode (BINOP_EQUAL); }
;
exp : exp NOTEQUAL exp
{ write_exp_elt_opcode (BINOP_NOTEQUAL); }
;
exp : exp LEQ exp
{ write_exp_elt_opcode (BINOP_LEQ); }
;
exp : exp GEQ exp
{ write_exp_elt_opcode (BINOP_GEQ); }
;
exp : exp '<' exp
{ write_exp_elt_opcode (BINOP_LESS); }
;
exp : exp '>' exp
{ write_exp_elt_opcode (BINOP_GTR); }
;
exp : exp '&' exp
{ write_exp_elt_opcode (BINOP_LOGAND); }
;
exp : exp '^' exp
{ write_exp_elt_opcode (BINOP_LOGXOR); }
;
exp : exp '|' exp
{ write_exp_elt_opcode (BINOP_LOGIOR); }
;
exp : exp AND exp
{ write_exp_elt_opcode (BINOP_AND); }
;
exp : exp OR exp
{ write_exp_elt_opcode (BINOP_OR); }
;
exp : exp '?' exp ':' exp %prec '?'
{ write_exp_elt_opcode (TERNOP_COND); }
;
exp : exp '=' exp
{ write_exp_elt_opcode (BINOP_ASSIGN); }
;
exp : exp ASSIGN_MODIFY exp
{ write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
write_exp_elt_opcode ($2);
write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
;
exp : INT
{ write_exp_elt_opcode (OP_LONG);
if ($1 == (int) $1 || $1 == (unsigned int) $1)
write_exp_elt_type (builtin_type_int);
else
write_exp_elt_type (BUILTIN_TYPE_LONGEST);
write_exp_elt_longcst ((LONGEST) $1);
write_exp_elt_opcode (OP_LONG); }
;
exp : NAME_OR_INT
{ YYSTYPE val;
parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
write_exp_elt_opcode (OP_LONG);
if (val.lval == (int) val.lval ||
val.lval == (unsigned int) val.lval)
write_exp_elt_type (builtin_type_int);
else
write_exp_elt_type (BUILTIN_TYPE_LONGEST);
write_exp_elt_longcst (val.lval);
write_exp_elt_opcode (OP_LONG); }
;
exp : UINT
{
write_exp_elt_opcode (OP_LONG);
if ($1 == (unsigned int) $1)
write_exp_elt_type (builtin_type_unsigned_int);
else
write_exp_elt_type (BUILTIN_TYPE_UNSIGNED_LONGEST);
write_exp_elt_longcst ((LONGEST) $1);
write_exp_elt_opcode (OP_LONG);
}
;
exp : NAME_OR_UINT
{ YYSTYPE val;
parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
write_exp_elt_opcode (OP_LONG);
if (val.ulval == (unsigned int) val.ulval)
write_exp_elt_type (builtin_type_unsigned_int);
else
write_exp_elt_type (BUILTIN_TYPE_UNSIGNED_LONGEST);
write_exp_elt_longcst ((LONGEST)val.ulval);
write_exp_elt_opcode (OP_LONG);
}
;
exp : CHAR
{ write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (builtin_type_char);
write_exp_elt_longcst ((LONGEST) $1);
write_exp_elt_opcode (OP_LONG); }
;
exp : FLOAT
{ write_exp_elt_opcode (OP_DOUBLE);
write_exp_elt_type (builtin_type_double);
write_exp_elt_dblcst ($1);
write_exp_elt_opcode (OP_DOUBLE); }
;
exp : variable
;
exp : LAST
{ write_exp_elt_opcode (OP_LAST);
write_exp_elt_longcst ((LONGEST) $1);
write_exp_elt_opcode (OP_LAST); }
;
exp : REGNAME
{ write_exp_elt_opcode (OP_REGISTER);
write_exp_elt_longcst ((LONGEST) $1);
write_exp_elt_opcode (OP_REGISTER); }
;
exp : VARIABLE
{ write_exp_elt_opcode (OP_INTERNALVAR);
write_exp_elt_intern ($1);
write_exp_elt_opcode (OP_INTERNALVAR); }
;
exp : SIZEOF '(' type ')' %prec UNARY
{ write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (builtin_type_int);
write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
write_exp_elt_opcode (OP_LONG); }
;
exp : STRING
{ write_exp_elt_opcode (OP_STRING);
write_exp_string ($1);
write_exp_elt_opcode (OP_STRING); }
;
/* C++. */
exp : THIS
{ write_exp_elt_opcode (OP_THIS);
write_exp_elt_opcode (OP_THIS); }
;
/* end of C++. */
block : BLOCKNAME
{
if ($1.sym != 0)
$$ = SYMBOL_BLOCK_VALUE ($1.sym);
else
{
struct symtab *tem =
lookup_symtab (copy_name ($1.stoken));
if (tem)
$$ = BLOCKVECTOR_BLOCK
(BLOCKVECTOR (tem), STATIC_BLOCK);
else
error ("No file or function \"%s\".",
copy_name ($1.stoken));
}
}
;
block : block COLONCOLON name
{ struct symbol *tem
= lookup_symbol (copy_name ($3), $1,
VAR_NAMESPACE, 0, NULL);
if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
error ("No function \"%s\" in specified context.",
copy_name ($3));
$$ = SYMBOL_BLOCK_VALUE (tem); }
;
variable: block COLONCOLON name
{ struct symbol *sym;
sym = lookup_symbol (copy_name ($3), $1,
VAR_NAMESPACE, 0, NULL);
if (sym == 0)
error ("No symbol \"%s\" in specified context.",
copy_name ($3));
write_exp_elt_opcode (OP_VAR_VALUE);
write_exp_elt_sym (sym);
write_exp_elt_opcode (OP_VAR_VALUE); }
;
variable: typebase COLONCOLON name
{
struct type *type = $1;
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
&& TYPE_CODE (type) != TYPE_CODE_UNION)
error ("`%s' is not defined as an aggregate type.",
TYPE_NAME (type));
write_exp_elt_opcode (OP_SCOPE);
write_exp_elt_type (type);
write_exp_string ($3);
write_exp_elt_opcode (OP_SCOPE);
}
| typebase COLONCOLON '~' name
{
struct type *type = $1;
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
&& TYPE_CODE (type) != TYPE_CODE_UNION)
error ("`%s' is not defined as an aggregate type.",
TYPE_NAME (type));
if (strcmp (type_name_no_tag (type), $4.ptr))
error ("invalid destructor `%s::~%s'",
type_name_no_tag (type), $4.ptr);
write_exp_elt_opcode (OP_SCOPE);
write_exp_elt_type (type);
write_exp_string ($4);
write_exp_elt_opcode (OP_SCOPE);
write_exp_elt_opcode (UNOP_LOGNOT);
}
| COLONCOLON name
{
char *name = copy_name ($2);
struct symbol *sym;
int i;
sym =
lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
if (sym)
{
write_exp_elt_opcode (OP_VAR_VALUE);
write_exp_elt_sym (sym);
write_exp_elt_opcode (OP_VAR_VALUE);
break;
}
for (i = 0; i < misc_function_count; i++)
if (!strcmp (misc_function_vector[i].name, name))
break;
if (i < misc_function_count)
{
enum misc_function_type mft =
misc_function_vector[i].type;
write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (builtin_type_int);
write_exp_elt_longcst ((LONGEST) misc_function_vector[i].address);
write_exp_elt_opcode (OP_LONG);
write_exp_elt_opcode (UNOP_MEMVAL);
if (mft == mf_data || mft == mf_bss)
write_exp_elt_type (builtin_type_int);
else if (mft == mf_text)
write_exp_elt_type (lookup_function_type (builtin_type_int));
else
write_exp_elt_type (builtin_type_char);
write_exp_elt_opcode (UNOP_MEMVAL);
}
else
if (symtab_list == 0
&& partial_symtab_list == 0)
error ("No symbol table is loaded. Use the \"file\" command.");
else
error ("No symbol \"%s\" in current context.", name);
}
;
variable: name_not_typename
{ struct symbol *sym = $1.sym;
if (sym)
{
switch (SYMBOL_CLASS (sym))
{
case LOC_REGISTER:
case LOC_ARG:
case LOC_REF_ARG:
case LOC_REGPARM:
case LOC_LOCAL:
case LOC_LOCAL_ARG:
if (innermost_block == 0 ||
contained_in (block_found,
innermost_block))
innermost_block = block_found;
case LOC_UNDEF:
case LOC_CONST:
case LOC_STATIC:
case LOC_TYPEDEF:
case LOC_LABEL:
case LOC_BLOCK:
case LOC_CONST_BYTES:
/* In this case the expression can
be evaluated regardless of what
frame we are in, so there is no
need to check for the
innermost_block. These cases are
listed so that gcc -Wall will
report types that may not have
been considered. */
break;
}
write_exp_elt_opcode (OP_VAR_VALUE);
write_exp_elt_sym (sym);
write_exp_elt_opcode (OP_VAR_VALUE);
}
else if ($1.is_a_field_of_this)
{
/* C++: it hangs off of `this'. Must
not inadvertently convert from a method call
to data ref. */
if (innermost_block == 0 ||
contained_in (block_found, innermost_block))
innermost_block = block_found;
write_exp_elt_opcode (OP_THIS);
write_exp_elt_opcode (OP_THIS);
write_exp_elt_opcode (STRUCTOP_PTR);
write_exp_string ($1.stoken);
write_exp_elt_opcode (STRUCTOP_PTR);
}
else
{
register int i;
register char *arg = copy_name ($1.stoken);
/* FIXME, this search is linear! At least
optimize the strcmp with a 1-char cmp... */
for (i = 0; i < misc_function_count; i++)
if (!strcmp (misc_function_vector[i].name, arg))
break;
if (i < misc_function_count)
{
enum misc_function_type mft =
misc_function_vector[i].type;
write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (builtin_type_int);
write_exp_elt_longcst ((LONGEST) misc_function_vector[i].address);
write_exp_elt_opcode (OP_LONG);
write_exp_elt_opcode (UNOP_MEMVAL);
if (mft == mf_data || mft == mf_bss)
write_exp_elt_type (builtin_type_int);
else if (mft == mf_text)
write_exp_elt_type (lookup_function_type (builtin_type_int));
else
write_exp_elt_type (builtin_type_char);
write_exp_elt_opcode (UNOP_MEMVAL);
}
else if (symtab_list == 0
&& partial_symtab_list == 0)
error ("No symbol table is loaded. Use the \"file\" command.");
else
error ("No symbol \"%s\" in current context.",
copy_name ($1.stoken));
}
}
;
ptype : typebase
| typebase abs_decl
{
/* This is where the interesting stuff happens. */
int done = 0;
int array_size;
struct type *follow_type = $1;
while (!done)
switch (pop_type ())
{
case tp_end:
done = 1;
break;
case tp_pointer:
follow_type = lookup_pointer_type (follow_type);
break;
case tp_reference:
follow_type = lookup_reference_type (follow_type);
break;
case tp_array:
array_size = pop_type_int ();
if (array_size != -1)
follow_type = create_array_type (follow_type,
array_size);
else
follow_type = lookup_pointer_type (follow_type);
break;
case tp_function:
follow_type = lookup_function_type (follow_type);
break;
}
$$ = follow_type;
}
;
abs_decl: '*'
{ push_type (tp_pointer); $$ = 0; }
| '*' abs_decl
{ push_type (tp_pointer); $$ = $2; }
| '&'
{ push_type (tp_reference); $$ = 0; }
| '&' abs_decl
{ push_type (tp_reference); $$ = $2; }
| direct_abs_decl
;
direct_abs_decl: '(' abs_decl ')'
{ $$ = $2; }
| direct_abs_decl array_mod
{
push_type_int ($2);
push_type (tp_array);
}
| array_mod
{
push_type_int ($1);
push_type (tp_array);
$$ = 0;
}
| direct_abs_decl func_mod
{ push_type (tp_function); }
| func_mod
{ push_type (tp_function); }
;
array_mod: '[' ']'
{ $$ = -1; }
| '[' INT ']'
{ $$ = $2; }
;
func_mod: '(' ')'
{ $$ = 0; }
;
type : ptype
| typebase COLONCOLON '*'
{ $$ = lookup_member_type (builtin_type_int, $1); }
| type '(' typebase COLONCOLON '*' ')'
{ $$ = lookup_member_type ($1, $3); }
| type '(' typebase COLONCOLON '*' ')' '(' ')'
{ $$ = lookup_member_type
(lookup_function_type ($1), $3); }
| type '(' typebase COLONCOLON '*' ')' '(' nonempty_typelist ')'
{ $$ = lookup_member_type
(lookup_function_type ($1), $3);
free ($8); }
;
typebase
: TYPENAME
{ $$ = $1.type; }
| INT_KEYWORD
{ $$ = builtin_type_int; }
| LONG
{ $$ = builtin_type_long; }
| SHORT
{ $$ = builtin_type_short; }
| LONG INT_KEYWORD
{ $$ = builtin_type_long; }
| UNSIGNED LONG INT_KEYWORD
{ $$ = builtin_type_unsigned_long; }
| LONG LONG
{ $$ = builtin_type_long_long; }
| LONG LONG INT_KEYWORD
{ $$ = builtin_type_long_long; }
| UNSIGNED LONG LONG
{ $$ = builtin_type_unsigned_long_long; }
| UNSIGNED LONG LONG INT_KEYWORD
{ $$ = builtin_type_unsigned_long_long; }
| SHORT INT_KEYWORD
{ $$ = builtin_type_short; }
| UNSIGNED SHORT INT_KEYWORD
{ $$ = builtin_type_unsigned_short; }
| STRUCT name
{ $$ = lookup_struct (copy_name ($2),
expression_context_block); }
| UNION name
{ $$ = lookup_union (copy_name ($2),
expression_context_block); }
| ENUM name
{ $$ = lookup_enum (copy_name ($2),
expression_context_block); }
| UNSIGNED typename
{ $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
| UNSIGNED
{ $$ = builtin_type_unsigned_int; }
| SIGNED typename
{ $$ = $2.type; }
| SIGNED
{ $$ = builtin_type_int; }
;
typename: TYPENAME
| INT_KEYWORD
{
$$.stoken.ptr = "int";
$$.stoken.length = 3;
$$.type = builtin_type_int;
}
| LONG
{
$$.stoken.ptr = "long";
$$.stoken.length = 4;
$$.type = builtin_type_long;
}
| SHORT
{
$$.stoken.ptr = "short";
$$.stoken.length = 5;
$$.type = builtin_type_short;
}
;
nonempty_typelist
: type
{ $$ = (struct type **)xmalloc (sizeof (struct type *) * 2);
$$[0] = (struct type *)0;
$$[1] = $1;
}
| nonempty_typelist ',' type
{ int len = sizeof (struct type *) * ++($<ivec>1[0]);
$$ = (struct type **)xrealloc ($1, len);
$$[$<ivec>$[0]] = $3;
}
;
name : NAME { $$ = $1.stoken; }
| BLOCKNAME { $$ = $1.stoken; }
| TYPENAME { $$ = $1.stoken; }
| NAME_OR_INT { $$ = $1.stoken; }
| NAME_OR_UINT { $$ = $1.stoken; }
;
name_not_typename : NAME
| BLOCKNAME
/* These would be useful if name_not_typename was useful, but it is just
a fake for "variable", so these cause reduce/reduce conflicts because
the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
=exp) or just an exp. If name_not_typename was ever used in an lvalue
context where only a name could occur, this might be useful.
| NAME_OR_INT
| NAME_OR_UINT
*/
;
%%
/* Take care of parsing a number (anything that starts with a digit).
Set yylval and return the token type; update lexptr.
LEN is the number of characters in it. */
/*** Needs some error checking for the float case ***/
static int
parse_number (p, len, parsed_float, putithere)
register char *p;
register int len;
int parsed_float;
YYSTYPE *putithere;
{
register LONGEST n = 0;
register LONGEST prevn = 0;
register int i;
register int c;
register int base = input_radix;
int unsigned_p = 0;
extern double atof ();
if (parsed_float)
{
/* It's a float since it contains a point or an exponent. */
putithere->dval = atof (p);
return FLOAT;
}
/* Handle base-switching prefixes 0x, 0t, 0d, 0 */
if (p[0] == '0')
switch (p[1])
{
case 'x':
case 'X':
if (len >= 3)
{
p += 2;
base = 16;
len -= 2;
}
break;
case 't':
case 'T':
case 'd':
case 'D':
if (len >= 3)
{
p += 2;
base = 10;
len -= 2;
}
break;
default:
base = 8;
break;
}
while (len-- > 0)
{
c = *p++;
if (c >= 'A' && c <= 'Z')
c += 'a' - 'A';
if (c != 'l' && c != 'u')
n *= base;
if (c >= '0' && c <= '9')
n += i = c - '0';
else
{
if (base > 10 && c >= 'a' && c <= 'f')
n += i = c - 'a' + 10;
else if (len == 0 && c == 'l')
;
else if (len == 0 && c == 'u')
unsigned_p = 1;
else
return ERROR; /* Char not a digit */
}
if (i >= base)
return ERROR; /* Invalid digit in this base */
if(!unsigned_p && (prevn >= n))
unsigned_p=1; /* Try something unsigned */
/* Don't do the range check if n==i and i==0, since that special
case will give an overflow error. */
if(RANGE_CHECK && n!=0)
{
if((unsigned_p && (unsigned)prevn >= (unsigned)n))
range_error("Overflow on numeric constant.");
}
prevn=n;
}
if (unsigned_p)
{
putithere->ulval = n;
return UINT;
}
else
{
putithere->lval = n;
return INT;
}
}
struct token
{
char *operator;
int token;
enum exp_opcode opcode;
};
const static struct token tokentab3[] =
{
{">>=", ASSIGN_MODIFY, BINOP_RSH},
{"<<=", ASSIGN_MODIFY, BINOP_LSH}
};
const static struct token tokentab2[] =
{
{"+=", ASSIGN_MODIFY, BINOP_ADD},
{"-=", ASSIGN_MODIFY, BINOP_SUB},
{"*=", ASSIGN_MODIFY, BINOP_MUL},
{"/=", ASSIGN_MODIFY, BINOP_DIV},
{"%=", ASSIGN_MODIFY, BINOP_REM},
{"|=", ASSIGN_MODIFY, BINOP_LOGIOR},
{"&=", ASSIGN_MODIFY, BINOP_LOGAND},
{"^=", ASSIGN_MODIFY, BINOP_LOGXOR},
{"++", INCREMENT, BINOP_END},
{"--", DECREMENT, BINOP_END},
{"->", ARROW, BINOP_END},
{"&&", AND, BINOP_END},
{"||", OR, BINOP_END},
{"::", COLONCOLON, BINOP_END},
{"<<", LSH, BINOP_END},
{">>", RSH, BINOP_END},
{"==", EQUAL, BINOP_END},
{"!=", NOTEQUAL, BINOP_END},
{"<=", LEQ, BINOP_END},
{">=", GEQ, BINOP_END}
};
/* Read one token, getting characters through lexptr. */
int
yylex ()
{
register int c;
register int namelen;
register unsigned i;
register char *tokstart;
retry:
tokstart = lexptr;
/* See if it is a special token of length 3. */
for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
if (!strncmp (tokstart, tokentab3[i].operator, 3))
{
lexptr += 3;
yylval.opcode = tokentab3[i].opcode;
return tokentab3[i].token;
}
/* See if it is a special token of length 2. */
for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
if (!strncmp (tokstart, tokentab2[i].operator, 2))
{
lexptr += 2;
yylval.opcode = tokentab2[i].opcode;
return tokentab2[i].token;
}
switch (c = *tokstart)
{
case 0:
return 0;
case ' ':
case '\t':
case '\n':
lexptr++;
goto retry;
case '\'':
lexptr++;
c = *lexptr++;
if (c == '\\')
c = parse_escape (&lexptr);
yylval.lval = c;
c = *lexptr++;
if (c != '\'')
error ("Invalid character constant.");
return CHAR;
case '(':
paren_depth++;
lexptr++;
return c;
case ')':
if (paren_depth == 0)
return 0;
paren_depth--;
lexptr++;
return c;
case ',':
if (comma_terminates && paren_depth == 0)
return 0;
lexptr++;
return c;
case '.':
/* Might be a floating point number. */
if (lexptr[1] < '0' || lexptr[1] > '9')
goto symbol; /* Nope, must be a symbol. */
/* FALL THRU into number case. */
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
/* It's a number. */
int got_dot = 0, got_e = 0, toktype;
register char *p = tokstart;
int hex = input_radix > 10;
if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
{
p += 2;
hex = 1;
}
else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
{
p += 2;
hex = 0;
}
for (;; ++p)
{
if (!hex && !got_e && (*p == 'e' || *p == 'E'))
got_dot = got_e = 1;
else if (!hex && !got_dot && *p == '.')
got_dot = 1;
else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
&& (*p == '-' || *p == '+'))
/* This is the sign of the exponent, not the end of the
number. */
continue;
/* We will take any letters or digits. parse_number will
complain if past the radix, or if L or U are not final. */
else if ((*p < '0' || *p > '9')
&& ((*p < 'a' || *p > 'z')
&& (*p < 'A' || *p > 'Z')))
break;
}
toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval);
if (toktype == ERROR)
{
char *err_copy = (char *) alloca (p - tokstart + 1);
bcopy (tokstart, err_copy, p - tokstart);
err_copy[p - tokstart] = 0;
error ("Invalid number \"%s\".", err_copy);
}
lexptr = p;
return toktype;
}
case '+':
case '-':
case '*':
case '/':
case '%':
case '|':
case '&':
case '^':
case '~':
case '!':
case '@':
case '<':
case '>':
case '[':
case ']':
case '?':
case ':':
case '=':
case '{':
case '}':
symbol:
lexptr++;
return c;
case '"':
for (namelen = 1; (c = tokstart[namelen]) != '"'; namelen++)
if (c == '\\')
{
c = tokstart[++namelen];
if (c >= '0' && c <= '9')
{
c = tokstart[++namelen];
if (c >= '0' && c <= '9')
c = tokstart[++namelen];
}
}
yylval.sval.ptr = tokstart + 1;
yylval.sval.length = namelen - 1;
lexptr += namelen + 1;
return STRING;
}
if (!(c == '_' || c == '$'
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
/* We must have come across a bad character (e.g. ';'). */
error ("Invalid character '%c' in expression.", c);
/* It's a name. See how long it is. */
namelen = 0;
for (c = tokstart[namelen];
(c == '_' || c == '$' || (c >= '0' && c <= '9')
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
c = tokstart[++namelen])
;
/* The token "if" terminates the expression and is NOT
removed from the input stream. */
if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
{
return 0;
}
lexptr += namelen;
/* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
and $$digits (equivalent to $<-digits> if you could type that).
Make token type LAST, and put the number (the digits) in yylval. */
if (*tokstart == '$')
{
register int negate = 0;
c = 1;
/* Double dollar means negate the number and add -1 as well.
Thus $$ alone means -1. */
if (namelen >= 2 && tokstart[1] == '$')
{
negate = 1;
c = 2;
}
if (c == namelen)
{
/* Just dollars (one or two) */
yylval.lval = - negate;
return LAST;
}
/* Is the rest of the token digits? */
for (; c < namelen; c++)
if (!(tokstart[c] >= '0' && tokstart[c] <= '9'))
break;
if (c == namelen)
{
yylval.lval = atoi (tokstart + 1 + negate);
if (negate)
yylval.lval = - yylval.lval;
return LAST;
}
}
/* Handle tokens that refer to machine registers:
$ followed by a register name. */
if (*tokstart == '$') {
for (c = 0; c < NUM_REGS; c++)
if (namelen - 1 == strlen (reg_names[c])
&& !strncmp (tokstart + 1, reg_names[c], namelen - 1))
{
yylval.lval = c;
return REGNAME;
}
for (c = 0; c < num_std_regs; c++)
if (namelen - 1 == strlen (std_regs[c].name)
&& !strncmp (tokstart + 1, std_regs[c].name, namelen - 1))
{
yylval.lval = std_regs[c].regnum;
return REGNAME;
}
}
/* Catch specific keywords. Should be done with a data structure. */
switch (namelen)
{
case 8:
if (!strncmp (tokstart, "unsigned", 8))
return UNSIGNED;
break;
case 6:
if (!strncmp (tokstart, "struct", 6))
return STRUCT;
if (!strncmp (tokstart, "signed", 6))
return SIGNED;
if (!strncmp (tokstart, "sizeof", 6))
return SIZEOF;
break;
case 5:
if (!strncmp (tokstart, "union", 5))
return UNION;
if (!strncmp (tokstart, "short", 5))
return SHORT;
break;
case 4:
if (!strncmp (tokstart, "enum", 4))
return ENUM;
if (!strncmp (tokstart, "long", 4))
return LONG;
if (!strncmp (tokstart, "this", 4))
{
static const char this_name[] =
{ CPLUS_MARKER, 't', 'h', 'i', 's', '\0' };
if (lookup_symbol (this_name, expression_context_block,
VAR_NAMESPACE, 0, NULL))
return THIS;
}
break;
case 3:
if (!strncmp (tokstart, "int", 3))
return INT_KEYWORD;
break;
default:
break;
}
yylval.sval.ptr = tokstart;
yylval.sval.length = namelen;
/* Any other names starting in $ are debugger internal variables. */
if (*tokstart == '$')
{
yylval.ivar = lookup_internalvar (copy_name (yylval.sval) + 1);
return VARIABLE;
}
/* Use token-type BLOCKNAME for symbols that happen to be defined as
functions or symtabs. If this is not so, then ...
Use token-type TYPENAME for symbols that happen to be defined
currently as names of types; NAME for other symbols.
The caller is not constrained to care about the distinction. */
{
char *tmp = copy_name (yylval.sval);
struct symbol *sym;
int is_a_field_of_this = 0;
int hextype;
sym = lookup_symbol (tmp, expression_context_block,
VAR_NAMESPACE, &is_a_field_of_this, NULL);
if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
lookup_partial_symtab (tmp))
{
yylval.ssym.sym = sym;
yylval.ssym.is_a_field_of_this = is_a_field_of_this;
return BLOCKNAME;
}
if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
{
yylval.tsym.type = SYMBOL_TYPE (sym);
return TYPENAME;
}
if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
return TYPENAME;
/* Input names that aren't symbols but ARE valid hex numbers,
when the input radix permits them, can be names or numbers
depending on the parse. Note we support radixes > 16 here. */
if (!sym &&
((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
(tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
{
YYSTYPE newlval; /* Its value is ignored. */
hextype = parse_number (tokstart, namelen, 0, &newlval);
if (hextype == INT)
{
yylval.ssym.sym = sym;
yylval.ssym.is_a_field_of_this = is_a_field_of_this;
return NAME_OR_INT;
}
if (hextype == UINT)
{
yylval.ssym.sym = sym;
yylval.ssym.is_a_field_of_this = is_a_field_of_this;
return NAME_OR_UINT;
}
}
/* Any other kind of symbol */
yylval.ssym.sym = sym;
yylval.ssym.is_a_field_of_this = is_a_field_of_this;
return NAME;
}
}
void
yyerror (msg)
char *msg;
{
error (msg ? msg : "Invalid syntax in expression.");
}
/* Table mapping opcodes into strings for printing operators
and precedences of the operators. */
const static struct op_print c_op_print_tab[] =
{
{",", BINOP_COMMA, PREC_COMMA, 0},
{"=", BINOP_ASSIGN, PREC_ASSIGN, 1},
{"||", BINOP_OR, PREC_OR, 0},
{"&&", BINOP_AND, PREC_AND, 0},
{"|", BINOP_LOGIOR, PREC_LOGIOR, 0},
{"&", BINOP_LOGAND, PREC_LOGAND, 0},
{"^", BINOP_LOGXOR, PREC_LOGXOR, 0},
{"==", BINOP_EQUAL, PREC_EQUAL, 0},
{"!=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
{"<=", BINOP_LEQ, PREC_ORDER, 0},
{">=", BINOP_GEQ, PREC_ORDER, 0},
{">", BINOP_GTR, PREC_ORDER, 0},
{"<", BINOP_LESS, PREC_ORDER, 0},
{">>", BINOP_RSH, PREC_SHIFT, 0},
{"<<", BINOP_LSH, PREC_SHIFT, 0},
{"+", BINOP_ADD, PREC_ADD, 0},
{"-", BINOP_SUB, PREC_ADD, 0},
{"*", BINOP_MUL, PREC_MUL, 0},
{"/", BINOP_DIV, PREC_MUL, 0},
{"%", BINOP_REM, PREC_MUL, 0},
{"@", BINOP_REPEAT, PREC_REPEAT, 0},
{"-", UNOP_NEG, PREC_PREFIX, 0},
{"!", UNOP_ZEROP, PREC_PREFIX, 0},
{"~", UNOP_LOGNOT, PREC_PREFIX, 0},
{"*", UNOP_IND, PREC_PREFIX, 0},
{"&", UNOP_ADDR, PREC_PREFIX, 0},
{"sizeof ", UNOP_SIZEOF, PREC_PREFIX, 0},
{"++", UNOP_PREINCREMENT, PREC_PREFIX, 0},
{"--", UNOP_PREDECREMENT, PREC_PREFIX, 0},
/* C++ */
{"::", BINOP_SCOPE, PREC_PREFIX, 0},
};
/* These variables point to the objects
representing the predefined C data types. */
struct type *builtin_type_void;
struct type *builtin_type_char;
struct type *builtin_type_short;
struct type *builtin_type_int;
struct type *builtin_type_long;
struct type *builtin_type_long_long;
struct type *builtin_type_unsigned_char;
struct type *builtin_type_unsigned_short;
struct type *builtin_type_unsigned_int;
struct type *builtin_type_unsigned_long;
struct type *builtin_type_unsigned_long_long;
struct type *builtin_type_float;
struct type *builtin_type_double;
struct type *builtin_type_long_double;
struct type *builtin_type_complex;
struct type *builtin_type_double_complex;
struct type ** const (c_builtin_types[]) =
{
&builtin_type_int,
&builtin_type_long,
&builtin_type_short,
&builtin_type_char,
&builtin_type_float,
&builtin_type_double,
&builtin_type_void,
&builtin_type_long_long,
&builtin_type_unsigned_char,
&builtin_type_unsigned_short,
&builtin_type_unsigned_int,
&builtin_type_unsigned_long,
&builtin_type_unsigned_long_long,
&builtin_type_long_double,
&builtin_type_complex,
&builtin_type_double_complex,
0
};
/* FIXME: Eventually do a separate defintion for C++. */
const struct language_defn c_language_defn = {
"c", /* Language name */
language_c,
c_builtin_types,
range_check_off,
type_check_off,
c_parse,
c_error,
&BUILTIN_TYPE_LONGEST, /* longest signed integral type */
&BUILTIN_TYPE_UNSIGNED_LONGEST,/* longest unsigned integral type */
&builtin_type_double, /* longest floating point type */ /*FIXME*/
"0x%x", "0x%", "x", /* Hex format, prefix, suffix */
"0%o", "0%", "o", /* Octal format, prefix, suffix */
c_op_print_tab, /* expression operators for printing */
LANG_MAGIC
};
void
_initialize_c_exp ()
{
builtin_type_void =
init_type (TYPE_CODE_VOID, 1, 0,
"void");
builtin_type_char =
init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, 0,
"char");
builtin_type_unsigned_char =
init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, 1,
"unsigned char");
builtin_type_short =
init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT, 0,
"short");
builtin_type_unsigned_short =
init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT, 1,
"unsigned short");
builtin_type_int =
init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, 0,
"int");
builtin_type_unsigned_int =
init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, 1,
"unsigned int");
builtin_type_long =
init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT, 0,
"long");
builtin_type_unsigned_long =
init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT, 1,
"unsigned long");
builtin_type_long_long =
init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, 0,
"long long");
builtin_type_unsigned_long_long =
init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, 1,
"unsigned long long");
builtin_type_float =
init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT, 0,
"float");
builtin_type_double =
init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT, 0,
"double");
builtin_type_long_double =
init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT, 0,
"long double");
builtin_type_complex =
init_type (TYPE_CODE_FLT, TARGET_COMPLEX_BIT / TARGET_CHAR_BIT, 0,
"complex");
builtin_type_double_complex =
init_type (TYPE_CODE_FLT, TARGET_DOUBLE_COMPLEX_BIT / TARGET_CHAR_BIT, 0,
"double complex");
add_language (&c_language_defn);
set_language (language_c); /* Make C the default language */
}