526e70c05f
* block.h (BLOCK_SHOULD_SORT): Delete. * symtab.c (lookup_block_symbol): Don't worry about sorted linear blocks. * ada-lang.c (ada_add_block_symbols): Ditto. * symfile.c (sort_block_syms): Delete. (sort_symtab_syms): Ditto. * symfile.h: Delete sort_symtabs_syms and sort_block_syms declarations. * coffread.c (coff_symfile_read): Don't call sort_symtab_syms. * dbxread.c (dbx_psymtab_to_symtab_1): Ditto. * dwarf2read.c (psymtab_to_symtab_1): Ditto. * dwarfread.c (psymtab_to_symtab_1): Ditto. * hpread.c (hpread_psymtab_to_symtab_1): Ditto. * mdebugread.c (psymtab_to_symtab_1): Ditto. * xcoffread.c (xcoff_psymtab_to_symtab_1): Ditto.
8255 lines
228 KiB
C
8255 lines
228 KiB
C
/* Ada language support routines for GDB, the GNU debugger. Copyright
|
||
1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include <stdio.h>
|
||
#include "gdb_string.h"
|
||
#include <ctype.h>
|
||
#include <stdarg.h>
|
||
#include "demangle.h"
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "gdbcmd.h"
|
||
#include "expression.h"
|
||
#include "parser-defs.h"
|
||
#include "language.h"
|
||
#include "c-lang.h"
|
||
#include "inferior.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "breakpoint.h"
|
||
#include "gdbcore.h"
|
||
#include "ada-lang.h"
|
||
#include "ui-out.h"
|
||
#include "block.h"
|
||
#include "infcall.h"
|
||
|
||
struct cleanup *unresolved_names;
|
||
|
||
void extract_string (CORE_ADDR addr, char *buf);
|
||
|
||
static struct type *ada_create_fundamental_type (struct objfile *, int);
|
||
|
||
static void modify_general_field (char *, LONGEST, int, int);
|
||
|
||
static struct type *desc_base_type (struct type *);
|
||
|
||
static struct type *desc_bounds_type (struct type *);
|
||
|
||
static struct value *desc_bounds (struct value *);
|
||
|
||
static int fat_pntr_bounds_bitpos (struct type *);
|
||
|
||
static int fat_pntr_bounds_bitsize (struct type *);
|
||
|
||
static struct type *desc_data_type (struct type *);
|
||
|
||
static struct value *desc_data (struct value *);
|
||
|
||
static int fat_pntr_data_bitpos (struct type *);
|
||
|
||
static int fat_pntr_data_bitsize (struct type *);
|
||
|
||
static struct value *desc_one_bound (struct value *, int, int);
|
||
|
||
static int desc_bound_bitpos (struct type *, int, int);
|
||
|
||
static int desc_bound_bitsize (struct type *, int, int);
|
||
|
||
static struct type *desc_index_type (struct type *, int);
|
||
|
||
static int desc_arity (struct type *);
|
||
|
||
static int ada_type_match (struct type *, struct type *, int);
|
||
|
||
static int ada_args_match (struct symbol *, struct value **, int);
|
||
|
||
static struct value *place_on_stack (struct value *, CORE_ADDR *);
|
||
|
||
static struct value *convert_actual (struct value *, struct type *,
|
||
CORE_ADDR *);
|
||
|
||
static struct value *make_array_descriptor (struct type *, struct value *,
|
||
CORE_ADDR *);
|
||
|
||
static void ada_add_block_symbols (struct block *, const char *,
|
||
domain_enum, struct objfile *, int);
|
||
|
||
static void fill_in_ada_prototype (struct symbol *);
|
||
|
||
static int is_nonfunction (struct symbol **, int);
|
||
|
||
static void add_defn_to_vec (struct symbol *, struct block *);
|
||
|
||
static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
|
||
*, const char *, int,
|
||
domain_enum, int);
|
||
|
||
static struct symtab *symtab_for_sym (struct symbol *);
|
||
|
||
static struct value *ada_resolve_subexp (struct expression **, int *, int,
|
||
struct type *);
|
||
|
||
static void replace_operator_with_call (struct expression **, int, int, int,
|
||
struct symbol *, struct block *);
|
||
|
||
static int possible_user_operator_p (enum exp_opcode, struct value **);
|
||
|
||
static const char *ada_op_name (enum exp_opcode);
|
||
|
||
static int numeric_type_p (struct type *);
|
||
|
||
static int integer_type_p (struct type *);
|
||
|
||
static int scalar_type_p (struct type *);
|
||
|
||
static int discrete_type_p (struct type *);
|
||
|
||
static char *extended_canonical_line_spec (struct symtab_and_line,
|
||
const char *);
|
||
|
||
static struct value *evaluate_subexp (struct type *, struct expression *,
|
||
int *, enum noside);
|
||
|
||
static struct value *evaluate_subexp_type (struct expression *, int *);
|
||
|
||
static struct type *ada_create_fundamental_type (struct objfile *, int);
|
||
|
||
static int is_dynamic_field (struct type *, int);
|
||
|
||
static struct type *to_fixed_variant_branch_type (struct type *, char *,
|
||
CORE_ADDR, struct value *);
|
||
|
||
static struct type *to_fixed_range_type (char *, struct value *,
|
||
struct objfile *);
|
||
|
||
static struct type *to_static_fixed_type (struct type *);
|
||
|
||
static struct value *unwrap_value (struct value *);
|
||
|
||
static struct type *packed_array_type (struct type *, long *);
|
||
|
||
static struct type *decode_packed_array_type (struct type *);
|
||
|
||
static struct value *decode_packed_array (struct value *);
|
||
|
||
static struct value *value_subscript_packed (struct value *, int,
|
||
struct value **);
|
||
|
||
static struct value *coerce_unspec_val_to_type (struct value *, long,
|
||
struct type *);
|
||
|
||
static struct value *get_var_value (char *, char *);
|
||
|
||
static int lesseq_defined_than (struct symbol *, struct symbol *);
|
||
|
||
static int equiv_types (struct type *, struct type *);
|
||
|
||
static int is_name_suffix (const char *);
|
||
|
||
static int wild_match (const char *, int, const char *);
|
||
|
||
static struct symtabs_and_lines find_sal_from_funcs_and_line (const char *,
|
||
int,
|
||
struct symbol
|
||
**, int);
|
||
|
||
static int find_line_in_linetable (struct linetable *, int, struct symbol **,
|
||
int, int *);
|
||
|
||
static int find_next_line_in_linetable (struct linetable *, int, int, int);
|
||
|
||
static struct symtabs_and_lines all_sals_for_line (const char *, int,
|
||
char ***);
|
||
|
||
static void read_all_symtabs (const char *);
|
||
|
||
static int is_plausible_func_for_line (struct symbol *, int);
|
||
|
||
static struct value *ada_coerce_ref (struct value *);
|
||
|
||
static struct value *value_pos_atr (struct value *);
|
||
|
||
static struct value *value_val_atr (struct type *, struct value *);
|
||
|
||
static struct symbol *standard_lookup (const char *, domain_enum);
|
||
|
||
extern void markTimeStart (int index);
|
||
extern void markTimeStop (int index);
|
||
|
||
|
||
|
||
/* Maximum-sized dynamic type. */
|
||
static unsigned int varsize_limit;
|
||
|
||
static const char *ada_completer_word_break_characters =
|
||
" \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
|
||
|
||
/* The name of the symbol to use to get the name of the main subprogram */
|
||
#define ADA_MAIN_PROGRAM_SYMBOL_NAME "__gnat_ada_main_program_name"
|
||
|
||
/* Utilities */
|
||
|
||
/* extract_string
|
||
*
|
||
* read the string located at ADDR from the inferior and store the
|
||
* result into BUF
|
||
*/
|
||
void
|
||
extract_string (CORE_ADDR addr, char *buf)
|
||
{
|
||
int char_index = 0;
|
||
|
||
/* Loop, reading one byte at a time, until we reach the '\000'
|
||
end-of-string marker */
|
||
do
|
||
{
|
||
target_read_memory (addr + char_index * sizeof (char),
|
||
buf + char_index * sizeof (char), sizeof (char));
|
||
char_index++;
|
||
}
|
||
while (buf[char_index - 1] != '\000');
|
||
}
|
||
|
||
/* Assuming *OLD_VECT points to an array of *SIZE objects of size
|
||
ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
|
||
updating *OLD_VECT and *SIZE as necessary. */
|
||
|
||
void
|
||
grow_vect (void **old_vect, size_t * size, size_t min_size, int element_size)
|
||
{
|
||
if (*size < min_size)
|
||
{
|
||
*size *= 2;
|
||
if (*size < min_size)
|
||
*size = min_size;
|
||
*old_vect = xrealloc (*old_vect, *size * element_size);
|
||
}
|
||
}
|
||
|
||
/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
|
||
suffix of FIELD_NAME beginning "___" */
|
||
|
||
static int
|
||
field_name_match (const char *field_name, const char *target)
|
||
{
|
||
int len = strlen (target);
|
||
return
|
||
STREQN (field_name, target, len)
|
||
&& (field_name[len] == '\0'
|
||
|| (STREQN (field_name + len, "___", 3)
|
||
&& !STREQ (field_name + strlen (field_name) - 6, "___XVN")));
|
||
}
|
||
|
||
|
||
/* The length of the prefix of NAME prior to any "___" suffix. */
|
||
|
||
int
|
||
ada_name_prefix_len (const char *name)
|
||
{
|
||
if (name == NULL)
|
||
return 0;
|
||
else
|
||
{
|
||
const char *p = strstr (name, "___");
|
||
if (p == NULL)
|
||
return strlen (name);
|
||
else
|
||
return p - name;
|
||
}
|
||
}
|
||
|
||
/* SUFFIX is a suffix of STR. False if STR is null. */
|
||
static int
|
||
is_suffix (const char *str, const char *suffix)
|
||
{
|
||
int len1, len2;
|
||
if (str == NULL)
|
||
return 0;
|
||
len1 = strlen (str);
|
||
len2 = strlen (suffix);
|
||
return (len1 >= len2 && STREQ (str + len1 - len2, suffix));
|
||
}
|
||
|
||
/* Create a value of type TYPE whose contents come from VALADDR, if it
|
||
* is non-null, and whose memory address (in the inferior) is
|
||
* ADDRESS. */
|
||
struct value *
|
||
value_from_contents_and_address (struct type *type, char *valaddr,
|
||
CORE_ADDR address)
|
||
{
|
||
struct value *v = allocate_value (type);
|
||
if (valaddr == NULL)
|
||
VALUE_LAZY (v) = 1;
|
||
else
|
||
memcpy (VALUE_CONTENTS_RAW (v), valaddr, TYPE_LENGTH (type));
|
||
VALUE_ADDRESS (v) = address;
|
||
if (address != 0)
|
||
VALUE_LVAL (v) = lval_memory;
|
||
return v;
|
||
}
|
||
|
||
/* The contents of value VAL, beginning at offset OFFSET, treated as a
|
||
value of type TYPE. The result is an lval in memory if VAL is. */
|
||
|
||
static struct value *
|
||
coerce_unspec_val_to_type (struct value *val, long offset, struct type *type)
|
||
{
|
||
CHECK_TYPEDEF (type);
|
||
if (VALUE_LVAL (val) == lval_memory)
|
||
return value_at_lazy (type,
|
||
VALUE_ADDRESS (val) + VALUE_OFFSET (val) + offset,
|
||
NULL);
|
||
else
|
||
{
|
||
struct value *result = allocate_value (type);
|
||
VALUE_LVAL (result) = not_lval;
|
||
if (VALUE_ADDRESS (val) == 0)
|
||
memcpy (VALUE_CONTENTS_RAW (result), VALUE_CONTENTS (val) + offset,
|
||
TYPE_LENGTH (type) > TYPE_LENGTH (VALUE_TYPE (val))
|
||
? TYPE_LENGTH (VALUE_TYPE (val)) : TYPE_LENGTH (type));
|
||
else
|
||
{
|
||
VALUE_ADDRESS (result) =
|
||
VALUE_ADDRESS (val) + VALUE_OFFSET (val) + offset;
|
||
VALUE_LAZY (result) = 1;
|
||
}
|
||
return result;
|
||
}
|
||
}
|
||
|
||
static char *
|
||
cond_offset_host (char *valaddr, long offset)
|
||
{
|
||
if (valaddr == NULL)
|
||
return NULL;
|
||
else
|
||
return valaddr + offset;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
cond_offset_target (CORE_ADDR address, long offset)
|
||
{
|
||
if (address == 0)
|
||
return 0;
|
||
else
|
||
return address + offset;
|
||
}
|
||
|
||
/* Perform execute_command on the result of concatenating all
|
||
arguments up to NULL. */
|
||
static void
|
||
do_command (const char *arg, ...)
|
||
{
|
||
int len;
|
||
char *cmd;
|
||
const char *s;
|
||
va_list ap;
|
||
|
||
va_start (ap, arg);
|
||
len = 0;
|
||
s = arg;
|
||
cmd = "";
|
||
for (; s != NULL; s = va_arg (ap, const char *))
|
||
{
|
||
char *cmd1;
|
||
len += strlen (s);
|
||
cmd1 = alloca (len + 1);
|
||
strcpy (cmd1, cmd);
|
||
strcat (cmd1, s);
|
||
cmd = cmd1;
|
||
}
|
||
va_end (ap);
|
||
execute_command (cmd, 0);
|
||
}
|
||
|
||
|
||
/* Language Selection */
|
||
|
||
/* If the main program is in Ada, return language_ada, otherwise return LANG
|
||
(the main program is in Ada iif the adainit symbol is found).
|
||
|
||
MAIN_PST is not used. */
|
||
|
||
enum language
|
||
ada_update_initial_language (enum language lang,
|
||
struct partial_symtab *main_pst)
|
||
{
|
||
if (lookup_minimal_symbol ("adainit", (const char *) NULL,
|
||
(struct objfile *) NULL) != NULL)
|
||
/* return language_ada; */
|
||
/* FIXME: language_ada should be defined in defs.h */
|
||
return language_unknown;
|
||
|
||
return lang;
|
||
}
|
||
|
||
|
||
/* Symbols */
|
||
|
||
/* Table of Ada operators and their GNAT-mangled names. Last entry is pair
|
||
of NULLs. */
|
||
|
||
const struct ada_opname_map ada_opname_table[] = {
|
||
{"Oadd", "\"+\"", BINOP_ADD},
|
||
{"Osubtract", "\"-\"", BINOP_SUB},
|
||
{"Omultiply", "\"*\"", BINOP_MUL},
|
||
{"Odivide", "\"/\"", BINOP_DIV},
|
||
{"Omod", "\"mod\"", BINOP_MOD},
|
||
{"Orem", "\"rem\"", BINOP_REM},
|
||
{"Oexpon", "\"**\"", BINOP_EXP},
|
||
{"Olt", "\"<\"", BINOP_LESS},
|
||
{"Ole", "\"<=\"", BINOP_LEQ},
|
||
{"Ogt", "\">\"", BINOP_GTR},
|
||
{"Oge", "\">=\"", BINOP_GEQ},
|
||
{"Oeq", "\"=\"", BINOP_EQUAL},
|
||
{"One", "\"/=\"", BINOP_NOTEQUAL},
|
||
{"Oand", "\"and\"", BINOP_BITWISE_AND},
|
||
{"Oor", "\"or\"", BINOP_BITWISE_IOR},
|
||
{"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
|
||
{"Oconcat", "\"&\"", BINOP_CONCAT},
|
||
{"Oabs", "\"abs\"", UNOP_ABS},
|
||
{"Onot", "\"not\"", UNOP_LOGICAL_NOT},
|
||
{"Oadd", "\"+\"", UNOP_PLUS},
|
||
{"Osubtract", "\"-\"", UNOP_NEG},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
/* True if STR should be suppressed in info listings. */
|
||
static int
|
||
is_suppressed_name (const char *str)
|
||
{
|
||
if (STREQN (str, "_ada_", 5))
|
||
str += 5;
|
||
if (str[0] == '_' || str[0] == '\000')
|
||
return 1;
|
||
else
|
||
{
|
||
const char *p;
|
||
const char *suffix = strstr (str, "___");
|
||
if (suffix != NULL && suffix[3] != 'X')
|
||
return 1;
|
||
if (suffix == NULL)
|
||
suffix = str + strlen (str);
|
||
for (p = suffix - 1; p != str; p -= 1)
|
||
if (isupper (*p))
|
||
{
|
||
int i;
|
||
if (p[0] == 'X' && p[-1] != '_')
|
||
goto OK;
|
||
if (*p != 'O')
|
||
return 1;
|
||
for (i = 0; ada_opname_table[i].mangled != NULL; i += 1)
|
||
if (STREQN (ada_opname_table[i].mangled, p,
|
||
strlen (ada_opname_table[i].mangled)))
|
||
goto OK;
|
||
return 1;
|
||
OK:;
|
||
}
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* The "mangled" form of DEMANGLED, according to GNAT conventions.
|
||
* The result is valid until the next call to ada_mangle. */
|
||
char *
|
||
ada_mangle (const char *demangled)
|
||
{
|
||
static char *mangling_buffer = NULL;
|
||
static size_t mangling_buffer_size = 0;
|
||
const char *p;
|
||
int k;
|
||
|
||
if (demangled == NULL)
|
||
return NULL;
|
||
|
||
GROW_VECT (mangling_buffer, mangling_buffer_size,
|
||
2 * strlen (demangled) + 10);
|
||
|
||
k = 0;
|
||
for (p = demangled; *p != '\0'; p += 1)
|
||
{
|
||
if (*p == '.')
|
||
{
|
||
mangling_buffer[k] = mangling_buffer[k + 1] = '_';
|
||
k += 2;
|
||
}
|
||
else if (*p == '"')
|
||
{
|
||
const struct ada_opname_map *mapping;
|
||
|
||
for (mapping = ada_opname_table;
|
||
mapping->mangled != NULL &&
|
||
!STREQN (mapping->demangled, p, strlen (mapping->demangled));
|
||
p += 1)
|
||
;
|
||
if (mapping->mangled == NULL)
|
||
error ("invalid Ada operator name: %s", p);
|
||
strcpy (mangling_buffer + k, mapping->mangled);
|
||
k += strlen (mapping->mangled);
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
mangling_buffer[k] = *p;
|
||
k += 1;
|
||
}
|
||
}
|
||
|
||
mangling_buffer[k] = '\0';
|
||
return mangling_buffer;
|
||
}
|
||
|
||
/* Return NAME folded to lower case, or, if surrounded by single
|
||
* quotes, unfolded, but with the quotes stripped away. Result good
|
||
* to next call. */
|
||
char *
|
||
ada_fold_name (const char *name)
|
||
{
|
||
static char *fold_buffer = NULL;
|
||
static size_t fold_buffer_size = 0;
|
||
|
||
int len = strlen (name);
|
||
GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
|
||
|
||
if (name[0] == '\'')
|
||
{
|
||
strncpy (fold_buffer, name + 1, len - 2);
|
||
fold_buffer[len - 2] = '\000';
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
for (i = 0; i <= len; i += 1)
|
||
fold_buffer[i] = tolower (name[i]);
|
||
}
|
||
|
||
return fold_buffer;
|
||
}
|
||
|
||
/* Demangle:
|
||
1. Discard final __{DIGIT}+ or ${DIGIT}+
|
||
2. Convert other instances of embedded "__" to `.'.
|
||
3. Discard leading _ada_.
|
||
4. Convert operator names to the appropriate quoted symbols.
|
||
5. Remove everything after first ___ if it is followed by
|
||
'X'.
|
||
6. Replace TK__ with __, and a trailing B or TKB with nothing.
|
||
7. Put symbols that should be suppressed in <...> brackets.
|
||
8. Remove trailing X[bn]* suffix (indicating names in package bodies).
|
||
The resulting string is valid until the next call of ada_demangle.
|
||
*/
|
||
|
||
char *
|
||
ada_demangle (const char *mangled)
|
||
{
|
||
int i, j;
|
||
int len0;
|
||
const char *p;
|
||
char *demangled;
|
||
int at_start_name;
|
||
static char *demangling_buffer = NULL;
|
||
static size_t demangling_buffer_size = 0;
|
||
|
||
if (STREQN (mangled, "_ada_", 5))
|
||
mangled += 5;
|
||
|
||
if (mangled[0] == '_' || mangled[0] == '<')
|
||
goto Suppress;
|
||
|
||
p = strstr (mangled, "___");
|
||
if (p == NULL)
|
||
len0 = strlen (mangled);
|
||
else
|
||
{
|
||
if (p[3] == 'X')
|
||
len0 = p - mangled;
|
||
else
|
||
goto Suppress;
|
||
}
|
||
if (len0 > 3 && STREQ (mangled + len0 - 3, "TKB"))
|
||
len0 -= 3;
|
||
if (len0 > 1 && STREQ (mangled + len0 - 1, "B"))
|
||
len0 -= 1;
|
||
|
||
/* Make demangled big enough for possible expansion by operator name. */
|
||
GROW_VECT (demangling_buffer, demangling_buffer_size, 2 * len0 + 1);
|
||
demangled = demangling_buffer;
|
||
|
||
if (isdigit (mangled[len0 - 1]))
|
||
{
|
||
for (i = len0 - 2; i >= 0 && isdigit (mangled[i]); i -= 1)
|
||
;
|
||
if (i > 1 && mangled[i] == '_' && mangled[i - 1] == '_')
|
||
len0 = i - 1;
|
||
else if (mangled[i] == '$')
|
||
len0 = i;
|
||
}
|
||
|
||
for (i = 0, j = 0; i < len0 && !isalpha (mangled[i]); i += 1, j += 1)
|
||
demangled[j] = mangled[i];
|
||
|
||
at_start_name = 1;
|
||
while (i < len0)
|
||
{
|
||
if (at_start_name && mangled[i] == 'O')
|
||
{
|
||
int k;
|
||
for (k = 0; ada_opname_table[k].mangled != NULL; k += 1)
|
||
{
|
||
int op_len = strlen (ada_opname_table[k].mangled);
|
||
if (STREQN
|
||
(ada_opname_table[k].mangled + 1, mangled + i + 1,
|
||
op_len - 1) && !isalnum (mangled[i + op_len]))
|
||
{
|
||
strcpy (demangled + j, ada_opname_table[k].demangled);
|
||
at_start_name = 0;
|
||
i += op_len;
|
||
j += strlen (ada_opname_table[k].demangled);
|
||
break;
|
||
}
|
||
}
|
||
if (ada_opname_table[k].mangled != NULL)
|
||
continue;
|
||
}
|
||
at_start_name = 0;
|
||
|
||
if (i < len0 - 4 && STREQN (mangled + i, "TK__", 4))
|
||
i += 2;
|
||
if (mangled[i] == 'X' && i != 0 && isalnum (mangled[i - 1]))
|
||
{
|
||
do
|
||
i += 1;
|
||
while (i < len0 && (mangled[i] == 'b' || mangled[i] == 'n'));
|
||
if (i < len0)
|
||
goto Suppress;
|
||
}
|
||
else if (i < len0 - 2 && mangled[i] == '_' && mangled[i + 1] == '_')
|
||
{
|
||
demangled[j] = '.';
|
||
at_start_name = 1;
|
||
i += 2;
|
||
j += 1;
|
||
}
|
||
else
|
||
{
|
||
demangled[j] = mangled[i];
|
||
i += 1;
|
||
j += 1;
|
||
}
|
||
}
|
||
demangled[j] = '\000';
|
||
|
||
for (i = 0; demangled[i] != '\0'; i += 1)
|
||
if (isupper (demangled[i]) || demangled[i] == ' ')
|
||
goto Suppress;
|
||
|
||
return demangled;
|
||
|
||
Suppress:
|
||
GROW_VECT (demangling_buffer, demangling_buffer_size, strlen (mangled) + 3);
|
||
demangled = demangling_buffer;
|
||
if (mangled[0] == '<')
|
||
strcpy (demangled, mangled);
|
||
else
|
||
sprintf (demangled, "<%s>", mangled);
|
||
return demangled;
|
||
|
||
}
|
||
|
||
/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
|
||
* suffixes that encode debugging information or leading _ada_ on
|
||
* SYM_NAME (see is_name_suffix commentary for the debugging
|
||
* information that is ignored). If WILD, then NAME need only match a
|
||
* suffix of SYM_NAME minus the same suffixes. Also returns 0 if
|
||
* either argument is NULL. */
|
||
|
||
int
|
||
ada_match_name (const char *sym_name, const char *name, int wild)
|
||
{
|
||
if (sym_name == NULL || name == NULL)
|
||
return 0;
|
||
else if (wild)
|
||
return wild_match (name, strlen (name), sym_name);
|
||
else
|
||
{
|
||
int len_name = strlen (name);
|
||
return (STREQN (sym_name, name, len_name)
|
||
&& is_name_suffix (sym_name + len_name))
|
||
|| (STREQN (sym_name, "_ada_", 5)
|
||
&& STREQN (sym_name + 5, name, len_name)
|
||
&& is_name_suffix (sym_name + len_name + 5));
|
||
}
|
||
}
|
||
|
||
/* True (non-zero) iff in Ada mode, the symbol SYM should be
|
||
suppressed in info listings. */
|
||
|
||
int
|
||
ada_suppress_symbol_printing (struct symbol *sym)
|
||
{
|
||
if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
|
||
return 1;
|
||
else
|
||
return is_suppressed_name (DEPRECATED_SYMBOL_NAME (sym));
|
||
}
|
||
|
||
|
||
/* Arrays */
|
||
|
||
/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of
|
||
array descriptors. */
|
||
|
||
static char *bound_name[] = {
|
||
"LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
|
||
"LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
|
||
};
|
||
|
||
/* Maximum number of array dimensions we are prepared to handle. */
|
||
|
||
#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char*)))
|
||
|
||
/* Like modify_field, but allows bitpos > wordlength. */
|
||
|
||
static void
|
||
modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
|
||
{
|
||
modify_field (addr + sizeof (LONGEST) * bitpos / (8 * sizeof (LONGEST)),
|
||
fieldval, bitpos % (8 * sizeof (LONGEST)), bitsize);
|
||
}
|
||
|
||
|
||
/* The desc_* routines return primitive portions of array descriptors
|
||
(fat pointers). */
|
||
|
||
/* The descriptor or array type, if any, indicated by TYPE; removes
|
||
level of indirection, if needed. */
|
||
static struct type *
|
||
desc_base_type (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return NULL;
|
||
CHECK_TYPEDEF (type);
|
||
if (type != NULL && TYPE_CODE (type) == TYPE_CODE_PTR)
|
||
return check_typedef (TYPE_TARGET_TYPE (type));
|
||
else
|
||
return type;
|
||
}
|
||
|
||
/* True iff TYPE indicates a "thin" array pointer type. */
|
||
static int
|
||
is_thin_pntr (struct type *type)
|
||
{
|
||
return
|
||
is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
|
||
|| is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
|
||
}
|
||
|
||
/* The descriptor type for thin pointer type TYPE. */
|
||
static struct type *
|
||
thin_descriptor_type (struct type *type)
|
||
{
|
||
struct type *base_type = desc_base_type (type);
|
||
if (base_type == NULL)
|
||
return NULL;
|
||
if (is_suffix (ada_type_name (base_type), "___XVE"))
|
||
return base_type;
|
||
else
|
||
{
|
||
struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
|
||
if (alt_type == NULL)
|
||
return base_type;
|
||
else
|
||
return alt_type;
|
||
}
|
||
}
|
||
|
||
/* A pointer to the array data for thin-pointer value VAL. */
|
||
static struct value *
|
||
thin_data_pntr (struct value *val)
|
||
{
|
||
struct type *type = VALUE_TYPE (val);
|
||
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
||
return value_cast (desc_data_type (thin_descriptor_type (type)),
|
||
value_copy (val));
|
||
else
|
||
return value_from_longest (desc_data_type (thin_descriptor_type (type)),
|
||
VALUE_ADDRESS (val) + VALUE_OFFSET (val));
|
||
}
|
||
|
||
/* True iff TYPE indicates a "thick" array pointer type. */
|
||
static int
|
||
is_thick_pntr (struct type *type)
|
||
{
|
||
type = desc_base_type (type);
|
||
return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
|
||
&& lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
|
||
}
|
||
|
||
/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
|
||
pointer to one, the type of its bounds data; otherwise, NULL. */
|
||
static struct type *
|
||
desc_bounds_type (struct type *type)
|
||
{
|
||
struct type *r;
|
||
|
||
type = desc_base_type (type);
|
||
|
||
if (type == NULL)
|
||
return NULL;
|
||
else if (is_thin_pntr (type))
|
||
{
|
||
type = thin_descriptor_type (type);
|
||
if (type == NULL)
|
||
return NULL;
|
||
r = lookup_struct_elt_type (type, "BOUNDS", 1);
|
||
if (r != NULL)
|
||
return check_typedef (r);
|
||
}
|
||
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
||
{
|
||
r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
|
||
if (r != NULL)
|
||
return check_typedef (TYPE_TARGET_TYPE (check_typedef (r)));
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* If ARR is an array descriptor (fat or thin pointer), or pointer to
|
||
one, a pointer to its bounds data. Otherwise NULL. */
|
||
static struct value *
|
||
desc_bounds (struct value *arr)
|
||
{
|
||
struct type *type = check_typedef (VALUE_TYPE (arr));
|
||
if (is_thin_pntr (type))
|
||
{
|
||
struct type *bounds_type =
|
||
desc_bounds_type (thin_descriptor_type (type));
|
||
LONGEST addr;
|
||
|
||
if (desc_bounds_type == NULL)
|
||
error ("Bad GNAT array descriptor");
|
||
|
||
/* NOTE: The following calculation is not really kosher, but
|
||
since desc_type is an XVE-encoded type (and shouldn't be),
|
||
the correct calculation is a real pain. FIXME (and fix GCC). */
|
||
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
||
addr = value_as_long (arr);
|
||
else
|
||
addr = VALUE_ADDRESS (arr) + VALUE_OFFSET (arr);
|
||
|
||
return
|
||
value_from_longest (lookup_pointer_type (bounds_type),
|
||
addr - TYPE_LENGTH (bounds_type));
|
||
}
|
||
|
||
else if (is_thick_pntr (type))
|
||
return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
|
||
"Bad GNAT array descriptor");
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* If TYPE is the type of an array-descriptor (fat pointer), the bit
|
||
position of the field containing the address of the bounds data. */
|
||
static int
|
||
fat_pntr_bounds_bitpos (struct type *type)
|
||
{
|
||
return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
|
||
}
|
||
|
||
/* If TYPE is the type of an array-descriptor (fat pointer), the bit
|
||
size of the field containing the address of the bounds data. */
|
||
static int
|
||
fat_pntr_bounds_bitsize (struct type *type)
|
||
{
|
||
type = desc_base_type (type);
|
||
|
||
if (TYPE_FIELD_BITSIZE (type, 1) > 0)
|
||
return TYPE_FIELD_BITSIZE (type, 1);
|
||
else
|
||
return 8 * TYPE_LENGTH (check_typedef (TYPE_FIELD_TYPE (type, 1)));
|
||
}
|
||
|
||
/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
|
||
pointer to one, the type of its array data (a
|
||
pointer-to-array-with-no-bounds type); otherwise, NULL. Use
|
||
ada_type_of_array to get an array type with bounds data. */
|
||
static struct type *
|
||
desc_data_type (struct type *type)
|
||
{
|
||
type = desc_base_type (type);
|
||
|
||
/* NOTE: The following is bogus; see comment in desc_bounds. */
|
||
if (is_thin_pntr (type))
|
||
return lookup_pointer_type
|
||
(desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
|
||
else if (is_thick_pntr (type))
|
||
return lookup_struct_elt_type (type, "P_ARRAY", 1);
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* If ARR is an array descriptor (fat or thin pointer), a pointer to
|
||
its array data. */
|
||
static struct value *
|
||
desc_data (struct value *arr)
|
||
{
|
||
struct type *type = VALUE_TYPE (arr);
|
||
if (is_thin_pntr (type))
|
||
return thin_data_pntr (arr);
|
||
else if (is_thick_pntr (type))
|
||
return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
|
||
"Bad GNAT array descriptor");
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* If TYPE is the type of an array-descriptor (fat pointer), the bit
|
||
position of the field containing the address of the data. */
|
||
static int
|
||
fat_pntr_data_bitpos (struct type *type)
|
||
{
|
||
return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
|
||
}
|
||
|
||
/* If TYPE is the type of an array-descriptor (fat pointer), the bit
|
||
size of the field containing the address of the data. */
|
||
static int
|
||
fat_pntr_data_bitsize (struct type *type)
|
||
{
|
||
type = desc_base_type (type);
|
||
|
||
if (TYPE_FIELD_BITSIZE (type, 0) > 0)
|
||
return TYPE_FIELD_BITSIZE (type, 0);
|
||
else
|
||
return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
|
||
}
|
||
|
||
/* If BOUNDS is an array-bounds structure (or pointer to one), return
|
||
the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
|
||
bound, if WHICH is 1. The first bound is I=1. */
|
||
static struct value *
|
||
desc_one_bound (struct value *bounds, int i, int which)
|
||
{
|
||
return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
|
||
"Bad GNAT array descriptor bounds");
|
||
}
|
||
|
||
/* If BOUNDS is an array-bounds structure type, return the bit position
|
||
of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
|
||
bound, if WHICH is 1. The first bound is I=1. */
|
||
static int
|
||
desc_bound_bitpos (struct type *type, int i, int which)
|
||
{
|
||
return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
|
||
}
|
||
|
||
/* If BOUNDS is an array-bounds structure type, return the bit field size
|
||
of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
|
||
bound, if WHICH is 1. The first bound is I=1. */
|
||
static int
|
||
desc_bound_bitsize (struct type *type, int i, int which)
|
||
{
|
||
type = desc_base_type (type);
|
||
|
||
if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
|
||
return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
|
||
else
|
||
return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
|
||
}
|
||
|
||
/* If TYPE is the type of an array-bounds structure, the type of its
|
||
Ith bound (numbering from 1). Otherwise, NULL. */
|
||
static struct type *
|
||
desc_index_type (struct type *type, int i)
|
||
{
|
||
type = desc_base_type (type);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
||
return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* The number of index positions in the array-bounds type TYPE. 0
|
||
if TYPE is NULL. */
|
||
static int
|
||
desc_arity (struct type *type)
|
||
{
|
||
type = desc_base_type (type);
|
||
|
||
if (type != NULL)
|
||
return TYPE_NFIELDS (type) / 2;
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Non-zero iff type is a simple array type (or pointer to one). */
|
||
int
|
||
ada_is_simple_array (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return 0;
|
||
CHECK_TYPEDEF (type);
|
||
return (TYPE_CODE (type) == TYPE_CODE_ARRAY
|
||
|| (TYPE_CODE (type) == TYPE_CODE_PTR
|
||
&& TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
|
||
}
|
||
|
||
/* Non-zero iff type belongs to a GNAT array descriptor. */
|
||
int
|
||
ada_is_array_descriptor (struct type *type)
|
||
{
|
||
struct type *data_type = desc_data_type (type);
|
||
|
||
if (type == NULL)
|
||
return 0;
|
||
CHECK_TYPEDEF (type);
|
||
return
|
||
data_type != NULL
|
||
&& ((TYPE_CODE (data_type) == TYPE_CODE_PTR
|
||
&& TYPE_TARGET_TYPE (data_type) != NULL
|
||
&& TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
|
||
||
|
||
TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
|
||
&& desc_arity (desc_bounds_type (type)) > 0;
|
||
}
|
||
|
||
/* Non-zero iff type is a partially mal-formed GNAT array
|
||
descriptor. (FIXME: This is to compensate for some problems with
|
||
debugging output from GNAT. Re-examine periodically to see if it
|
||
is still needed. */
|
||
int
|
||
ada_is_bogus_array_descriptor (struct type *type)
|
||
{
|
||
return
|
||
type != NULL
|
||
&& TYPE_CODE (type) == TYPE_CODE_STRUCT
|
||
&& (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
|
||
|| lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
|
||
&& !ada_is_array_descriptor (type);
|
||
}
|
||
|
||
|
||
/* If ARR has a record type in the form of a standard GNAT array descriptor,
|
||
(fat pointer) returns the type of the array data described---specifically,
|
||
a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
|
||
in from the descriptor; otherwise, they are left unspecified. If
|
||
the ARR denotes a null array descriptor and BOUNDS is non-zero,
|
||
returns NULL. The result is simply the type of ARR if ARR is not
|
||
a descriptor. */
|
||
struct type *
|
||
ada_type_of_array (struct value *arr, int bounds)
|
||
{
|
||
if (ada_is_packed_array_type (VALUE_TYPE (arr)))
|
||
return decode_packed_array_type (VALUE_TYPE (arr));
|
||
|
||
if (!ada_is_array_descriptor (VALUE_TYPE (arr)))
|
||
return VALUE_TYPE (arr);
|
||
|
||
if (!bounds)
|
||
return
|
||
check_typedef (TYPE_TARGET_TYPE (desc_data_type (VALUE_TYPE (arr))));
|
||
else
|
||
{
|
||
struct type *elt_type;
|
||
int arity;
|
||
struct value *descriptor;
|
||
struct objfile *objf = TYPE_OBJFILE (VALUE_TYPE (arr));
|
||
|
||
elt_type = ada_array_element_type (VALUE_TYPE (arr), -1);
|
||
arity = ada_array_arity (VALUE_TYPE (arr));
|
||
|
||
if (elt_type == NULL || arity == 0)
|
||
return check_typedef (VALUE_TYPE (arr));
|
||
|
||
descriptor = desc_bounds (arr);
|
||
if (value_as_long (descriptor) == 0)
|
||
return NULL;
|
||
while (arity > 0)
|
||
{
|
||
struct type *range_type = alloc_type (objf);
|
||
struct type *array_type = alloc_type (objf);
|
||
struct value *low = desc_one_bound (descriptor, arity, 0);
|
||
struct value *high = desc_one_bound (descriptor, arity, 1);
|
||
arity -= 1;
|
||
|
||
create_range_type (range_type, VALUE_TYPE (low),
|
||
(int) value_as_long (low),
|
||
(int) value_as_long (high));
|
||
elt_type = create_array_type (array_type, elt_type, range_type);
|
||
}
|
||
|
||
return lookup_pointer_type (elt_type);
|
||
}
|
||
}
|
||
|
||
/* If ARR does not represent an array, returns ARR unchanged.
|
||
Otherwise, returns either a standard GDB array with bounds set
|
||
appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
|
||
GDB array. Returns NULL if ARR is a null fat pointer. */
|
||
struct value *
|
||
ada_coerce_to_simple_array_ptr (struct value *arr)
|
||
{
|
||
if (ada_is_array_descriptor (VALUE_TYPE (arr)))
|
||
{
|
||
struct type *arrType = ada_type_of_array (arr, 1);
|
||
if (arrType == NULL)
|
||
return NULL;
|
||
return value_cast (arrType, value_copy (desc_data (arr)));
|
||
}
|
||
else if (ada_is_packed_array_type (VALUE_TYPE (arr)))
|
||
return decode_packed_array (arr);
|
||
else
|
||
return arr;
|
||
}
|
||
|
||
/* If ARR does not represent an array, returns ARR unchanged.
|
||
Otherwise, returns a standard GDB array describing ARR (which may
|
||
be ARR itself if it already is in the proper form). */
|
||
struct value *
|
||
ada_coerce_to_simple_array (struct value *arr)
|
||
{
|
||
if (ada_is_array_descriptor (VALUE_TYPE (arr)))
|
||
{
|
||
struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
|
||
if (arrVal == NULL)
|
||
error ("Bounds unavailable for null array pointer.");
|
||
return value_ind (arrVal);
|
||
}
|
||
else if (ada_is_packed_array_type (VALUE_TYPE (arr)))
|
||
return decode_packed_array (arr);
|
||
else
|
||
return arr;
|
||
}
|
||
|
||
/* If TYPE represents a GNAT array type, return it translated to an
|
||
ordinary GDB array type (possibly with BITSIZE fields indicating
|
||
packing). For other types, is the identity. */
|
||
struct type *
|
||
ada_coerce_to_simple_array_type (struct type *type)
|
||
{
|
||
struct value *mark = value_mark ();
|
||
struct value *dummy = value_from_longest (builtin_type_long, 0);
|
||
struct type *result;
|
||
VALUE_TYPE (dummy) = type;
|
||
result = ada_type_of_array (dummy, 0);
|
||
value_free_to_mark (dummy);
|
||
return result;
|
||
}
|
||
|
||
/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
|
||
int
|
||
ada_is_packed_array_type (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return 0;
|
||
CHECK_TYPEDEF (type);
|
||
return
|
||
ada_type_name (type) != NULL
|
||
&& strstr (ada_type_name (type), "___XP") != NULL;
|
||
}
|
||
|
||
/* Given that TYPE is a standard GDB array type with all bounds filled
|
||
in, and that the element size of its ultimate scalar constituents
|
||
(that is, either its elements, or, if it is an array of arrays, its
|
||
elements' elements, etc.) is *ELT_BITS, return an identical type,
|
||
but with the bit sizes of its elements (and those of any
|
||
constituent arrays) recorded in the BITSIZE components of its
|
||
TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
|
||
in bits. */
|
||
static struct type *
|
||
packed_array_type (struct type *type, long *elt_bits)
|
||
{
|
||
struct type *new_elt_type;
|
||
struct type *new_type;
|
||
LONGEST low_bound, high_bound;
|
||
|
||
CHECK_TYPEDEF (type);
|
||
if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
|
||
return type;
|
||
|
||
new_type = alloc_type (TYPE_OBJFILE (type));
|
||
new_elt_type = packed_array_type (check_typedef (TYPE_TARGET_TYPE (type)),
|
||
elt_bits);
|
||
create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
|
||
TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
|
||
TYPE_NAME (new_type) = ada_type_name (type);
|
||
|
||
if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
|
||
&low_bound, &high_bound) < 0)
|
||
low_bound = high_bound = 0;
|
||
if (high_bound < low_bound)
|
||
*elt_bits = TYPE_LENGTH (new_type) = 0;
|
||
else
|
||
{
|
||
*elt_bits *= (high_bound - low_bound + 1);
|
||
TYPE_LENGTH (new_type) =
|
||
(*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
|
||
}
|
||
|
||
/* TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE; */
|
||
/* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
|
||
return new_type;
|
||
}
|
||
|
||
/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE).
|
||
*/
|
||
static struct type *
|
||
decode_packed_array_type (struct type *type)
|
||
{
|
||
struct symbol **syms;
|
||
struct block **blocks;
|
||
const char *raw_name = ada_type_name (check_typedef (type));
|
||
char *name = (char *) alloca (strlen (raw_name) + 1);
|
||
char *tail = strstr (raw_name, "___XP");
|
||
struct type *shadow_type;
|
||
long bits;
|
||
int i, n;
|
||
|
||
memcpy (name, raw_name, tail - raw_name);
|
||
name[tail - raw_name] = '\000';
|
||
|
||
/* NOTE: Use ada_lookup_symbol_list because of bug in some versions
|
||
* of gcc (Solaris, e.g.). FIXME when compiler is fixed. */
|
||
n = ada_lookup_symbol_list (name, get_selected_block (NULL),
|
||
VAR_DOMAIN, &syms, &blocks);
|
||
for (i = 0; i < n; i += 1)
|
||
if (syms[i] != NULL && SYMBOL_CLASS (syms[i]) == LOC_TYPEDEF
|
||
&& STREQ (name, ada_type_name (SYMBOL_TYPE (syms[i]))))
|
||
break;
|
||
if (i >= n)
|
||
{
|
||
warning ("could not find bounds information on packed array");
|
||
return NULL;
|
||
}
|
||
shadow_type = SYMBOL_TYPE (syms[i]);
|
||
|
||
if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
|
||
{
|
||
warning ("could not understand bounds information on packed array");
|
||
return NULL;
|
||
}
|
||
|
||
if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
|
||
{
|
||
warning ("could not understand bit size information on packed array");
|
||
return NULL;
|
||
}
|
||
|
||
return packed_array_type (shadow_type, &bits);
|
||
}
|
||
|
||
/* Given that ARR is a struct value* indicating a GNAT packed array,
|
||
returns a simple array that denotes that array. Its type is a
|
||
standard GDB array type except that the BITSIZEs of the array
|
||
target types are set to the number of bits in each element, and the
|
||
type length is set appropriately. */
|
||
|
||
static struct value *
|
||
decode_packed_array (struct value *arr)
|
||
{
|
||
struct type *type = decode_packed_array_type (VALUE_TYPE (arr));
|
||
|
||
if (type == NULL)
|
||
{
|
||
error ("can't unpack array");
|
||
return NULL;
|
||
}
|
||
else
|
||
return coerce_unspec_val_to_type (arr, 0, type);
|
||
}
|
||
|
||
|
||
/* The value of the element of packed array ARR at the ARITY indices
|
||
given in IND. ARR must be a simple array. */
|
||
|
||
static struct value *
|
||
value_subscript_packed (struct value *arr, int arity, struct value **ind)
|
||
{
|
||
int i;
|
||
int bits, elt_off, bit_off;
|
||
long elt_total_bit_offset;
|
||
struct type *elt_type;
|
||
struct value *v;
|
||
|
||
bits = 0;
|
||
elt_total_bit_offset = 0;
|
||
elt_type = check_typedef (VALUE_TYPE (arr));
|
||
for (i = 0; i < arity; i += 1)
|
||
{
|
||
if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
|
||
|| TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
|
||
error
|
||
("attempt to do packed indexing of something other than a packed array");
|
||
else
|
||
{
|
||
struct type *range_type = TYPE_INDEX_TYPE (elt_type);
|
||
LONGEST lowerbound, upperbound;
|
||
LONGEST idx;
|
||
|
||
if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
|
||
{
|
||
warning ("don't know bounds of array");
|
||
lowerbound = upperbound = 0;
|
||
}
|
||
|
||
idx = value_as_long (value_pos_atr (ind[i]));
|
||
if (idx < lowerbound || idx > upperbound)
|
||
warning ("packed array index %ld out of bounds", (long) idx);
|
||
bits = TYPE_FIELD_BITSIZE (elt_type, 0);
|
||
elt_total_bit_offset += (idx - lowerbound) * bits;
|
||
elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
|
||
}
|
||
}
|
||
elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
|
||
bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
|
||
|
||
v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
|
||
bits, elt_type);
|
||
if (VALUE_LVAL (arr) == lval_internalvar)
|
||
VALUE_LVAL (v) = lval_internalvar_component;
|
||
else
|
||
VALUE_LVAL (v) = VALUE_LVAL (arr);
|
||
return v;
|
||
}
|
||
|
||
/* Non-zero iff TYPE includes negative integer values. */
|
||
|
||
static int
|
||
has_negatives (struct type *type)
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
default:
|
||
return 0;
|
||
case TYPE_CODE_INT:
|
||
return !TYPE_UNSIGNED (type);
|
||
case TYPE_CODE_RANGE:
|
||
return TYPE_LOW_BOUND (type) < 0;
|
||
}
|
||
}
|
||
|
||
|
||
/* Create a new value of type TYPE from the contents of OBJ starting
|
||
at byte OFFSET, and bit offset BIT_OFFSET within that byte,
|
||
proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
|
||
assigning through the result will set the field fetched from. OBJ
|
||
may also be NULL, in which case, VALADDR+OFFSET must address the
|
||
start of storage containing the packed value. The value returned
|
||
in this case is never an lval.
|
||
Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
|
||
|
||
struct value *
|
||
ada_value_primitive_packed_val (struct value *obj, char *valaddr, long offset,
|
||
int bit_offset, int bit_size,
|
||
struct type *type)
|
||
{
|
||
struct value *v;
|
||
int src, /* Index into the source area. */
|
||
targ, /* Index into the target area. */
|
||
i, srcBitsLeft, /* Number of source bits left to move. */
|
||
nsrc, ntarg, /* Number of source and target bytes. */
|
||
unusedLS, /* Number of bits in next significant
|
||
* byte of source that are unused. */
|
||
accumSize; /* Number of meaningful bits in accum */
|
||
unsigned char *bytes; /* First byte containing data to unpack. */
|
||
unsigned char *unpacked;
|
||
unsigned long accum; /* Staging area for bits being transferred */
|
||
unsigned char sign;
|
||
int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
|
||
/* Transmit bytes from least to most significant; delta is the
|
||
* direction the indices move. */
|
||
int delta = BITS_BIG_ENDIAN ? -1 : 1;
|
||
|
||
CHECK_TYPEDEF (type);
|
||
|
||
if (obj == NULL)
|
||
{
|
||
v = allocate_value (type);
|
||
bytes = (unsigned char *) (valaddr + offset);
|
||
}
|
||
else if (VALUE_LAZY (obj))
|
||
{
|
||
v = value_at (type,
|
||
VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset, NULL);
|
||
bytes = (unsigned char *) alloca (len);
|
||
read_memory (VALUE_ADDRESS (v), bytes, len);
|
||
}
|
||
else
|
||
{
|
||
v = allocate_value (type);
|
||
bytes = (unsigned char *) VALUE_CONTENTS (obj) + offset;
|
||
}
|
||
|
||
if (obj != NULL)
|
||
{
|
||
VALUE_LVAL (v) = VALUE_LVAL (obj);
|
||
if (VALUE_LVAL (obj) == lval_internalvar)
|
||
VALUE_LVAL (v) = lval_internalvar_component;
|
||
VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset;
|
||
VALUE_BITPOS (v) = bit_offset + VALUE_BITPOS (obj);
|
||
VALUE_BITSIZE (v) = bit_size;
|
||
if (VALUE_BITPOS (v) >= HOST_CHAR_BIT)
|
||
{
|
||
VALUE_ADDRESS (v) += 1;
|
||
VALUE_BITPOS (v) -= HOST_CHAR_BIT;
|
||
}
|
||
}
|
||
else
|
||
VALUE_BITSIZE (v) = bit_size;
|
||
unpacked = (unsigned char *) VALUE_CONTENTS (v);
|
||
|
||
srcBitsLeft = bit_size;
|
||
nsrc = len;
|
||
ntarg = TYPE_LENGTH (type);
|
||
sign = 0;
|
||
if (bit_size == 0)
|
||
{
|
||
memset (unpacked, 0, TYPE_LENGTH (type));
|
||
return v;
|
||
}
|
||
else if (BITS_BIG_ENDIAN)
|
||
{
|
||
src = len - 1;
|
||
if (has_negatives (type) &&
|
||
((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
|
||
sign = ~0;
|
||
|
||
unusedLS =
|
||
(HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
|
||
% HOST_CHAR_BIT;
|
||
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_ARRAY:
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_STRUCT:
|
||
/* Non-scalar values must be aligned at a byte boundary. */
|
||
accumSize =
|
||
(HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
|
||
/* And are placed at the beginning (most-significant) bytes
|
||
* of the target. */
|
||
targ = src;
|
||
break;
|
||
default:
|
||
accumSize = 0;
|
||
targ = TYPE_LENGTH (type) - 1;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
|
||
|
||
src = targ = 0;
|
||
unusedLS = bit_offset;
|
||
accumSize = 0;
|
||
|
||
if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
|
||
sign = ~0;
|
||
}
|
||
|
||
accum = 0;
|
||
while (nsrc > 0)
|
||
{
|
||
/* Mask for removing bits of the next source byte that are not
|
||
* part of the value. */
|
||
unsigned int unusedMSMask =
|
||
(1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
|
||
1;
|
||
/* Sign-extend bits for this byte. */
|
||
unsigned int signMask = sign & ~unusedMSMask;
|
||
accum |=
|
||
(((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
|
||
accumSize += HOST_CHAR_BIT - unusedLS;
|
||
if (accumSize >= HOST_CHAR_BIT)
|
||
{
|
||
unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
|
||
accumSize -= HOST_CHAR_BIT;
|
||
accum >>= HOST_CHAR_BIT;
|
||
ntarg -= 1;
|
||
targ += delta;
|
||
}
|
||
srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
|
||
unusedLS = 0;
|
||
nsrc -= 1;
|
||
src += delta;
|
||
}
|
||
while (ntarg > 0)
|
||
{
|
||
accum |= sign << accumSize;
|
||
unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
|
||
accumSize -= HOST_CHAR_BIT;
|
||
accum >>= HOST_CHAR_BIT;
|
||
ntarg -= 1;
|
||
targ += delta;
|
||
}
|
||
|
||
return v;
|
||
}
|
||
|
||
/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
|
||
TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
|
||
not overlap. */
|
||
static void
|
||
move_bits (char *target, int targ_offset, char *source, int src_offset, int n)
|
||
{
|
||
unsigned int accum, mask;
|
||
int accum_bits, chunk_size;
|
||
|
||
target += targ_offset / HOST_CHAR_BIT;
|
||
targ_offset %= HOST_CHAR_BIT;
|
||
source += src_offset / HOST_CHAR_BIT;
|
||
src_offset %= HOST_CHAR_BIT;
|
||
if (BITS_BIG_ENDIAN)
|
||
{
|
||
accum = (unsigned char) *source;
|
||
source += 1;
|
||
accum_bits = HOST_CHAR_BIT - src_offset;
|
||
|
||
while (n > 0)
|
||
{
|
||
int unused_right;
|
||
accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
|
||
accum_bits += HOST_CHAR_BIT;
|
||
source += 1;
|
||
chunk_size = HOST_CHAR_BIT - targ_offset;
|
||
if (chunk_size > n)
|
||
chunk_size = n;
|
||
unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
|
||
mask = ((1 << chunk_size) - 1) << unused_right;
|
||
*target =
|
||
(*target & ~mask)
|
||
| ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
|
||
n -= chunk_size;
|
||
accum_bits -= chunk_size;
|
||
target += 1;
|
||
targ_offset = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
accum = (unsigned char) *source >> src_offset;
|
||
source += 1;
|
||
accum_bits = HOST_CHAR_BIT - src_offset;
|
||
|
||
while (n > 0)
|
||
{
|
||
accum = accum + ((unsigned char) *source << accum_bits);
|
||
accum_bits += HOST_CHAR_BIT;
|
||
source += 1;
|
||
chunk_size = HOST_CHAR_BIT - targ_offset;
|
||
if (chunk_size > n)
|
||
chunk_size = n;
|
||
mask = ((1 << chunk_size) - 1) << targ_offset;
|
||
*target = (*target & ~mask) | ((accum << targ_offset) & mask);
|
||
n -= chunk_size;
|
||
accum_bits -= chunk_size;
|
||
accum >>= chunk_size;
|
||
target += 1;
|
||
targ_offset = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Store the contents of FROMVAL into the location of TOVAL.
|
||
Return a new value with the location of TOVAL and contents of
|
||
FROMVAL. Handles assignment into packed fields that have
|
||
floating-point or non-scalar types. */
|
||
|
||
static struct value *
|
||
ada_value_assign (struct value *toval, struct value *fromval)
|
||
{
|
||
struct type *type = VALUE_TYPE (toval);
|
||
int bits = VALUE_BITSIZE (toval);
|
||
|
||
if (!toval->modifiable)
|
||
error ("Left operand of assignment is not a modifiable lvalue.");
|
||
|
||
COERCE_REF (toval);
|
||
|
||
if (VALUE_LVAL (toval) == lval_memory
|
||
&& bits > 0
|
||
&& (TYPE_CODE (type) == TYPE_CODE_FLT
|
||
|| TYPE_CODE (type) == TYPE_CODE_STRUCT))
|
||
{
|
||
int len =
|
||
(VALUE_BITPOS (toval) + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
|
||
char *buffer = (char *) alloca (len);
|
||
struct value *val;
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
fromval = value_cast (type, fromval);
|
||
|
||
read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer, len);
|
||
if (BITS_BIG_ENDIAN)
|
||
move_bits (buffer, VALUE_BITPOS (toval),
|
||
VALUE_CONTENTS (fromval),
|
||
TYPE_LENGTH (VALUE_TYPE (fromval)) * TARGET_CHAR_BIT -
|
||
bits, bits);
|
||
else
|
||
move_bits (buffer, VALUE_BITPOS (toval), VALUE_CONTENTS (fromval),
|
||
0, bits);
|
||
write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer,
|
||
len);
|
||
|
||
val = value_copy (toval);
|
||
memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
|
||
TYPE_LENGTH (type));
|
||
VALUE_TYPE (val) = type;
|
||
|
||
return val;
|
||
}
|
||
|
||
return value_assign (toval, fromval);
|
||
}
|
||
|
||
|
||
/* The value of the element of array ARR at the ARITY indices given in IND.
|
||
ARR may be either a simple array, GNAT array descriptor, or pointer
|
||
thereto. */
|
||
|
||
struct value *
|
||
ada_value_subscript (struct value *arr, int arity, struct value **ind)
|
||
{
|
||
int k;
|
||
struct value *elt;
|
||
struct type *elt_type;
|
||
|
||
elt = ada_coerce_to_simple_array (arr);
|
||
|
||
elt_type = check_typedef (VALUE_TYPE (elt));
|
||
if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
|
||
&& TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
|
||
return value_subscript_packed (elt, arity, ind);
|
||
|
||
for (k = 0; k < arity; k += 1)
|
||
{
|
||
if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
|
||
error ("too many subscripts (%d expected)", k);
|
||
elt = value_subscript (elt, value_pos_atr (ind[k]));
|
||
}
|
||
return elt;
|
||
}
|
||
|
||
/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
|
||
value of the element of *ARR at the ARITY indices given in
|
||
IND. Does not read the entire array into memory. */
|
||
|
||
struct value *
|
||
ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
|
||
struct value **ind)
|
||
{
|
||
int k;
|
||
|
||
for (k = 0; k < arity; k += 1)
|
||
{
|
||
LONGEST lwb, upb;
|
||
struct value *idx;
|
||
|
||
if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
|
||
error ("too many subscripts (%d expected)", k);
|
||
arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
|
||
value_copy (arr));
|
||
get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
|
||
if (lwb == 0)
|
||
idx = ind[k];
|
||
else
|
||
idx = value_sub (ind[k], value_from_longest (builtin_type_int, lwb));
|
||
arr = value_add (arr, idx);
|
||
type = TYPE_TARGET_TYPE (type);
|
||
}
|
||
|
||
return value_ind (arr);
|
||
}
|
||
|
||
/* If type is a record type in the form of a standard GNAT array
|
||
descriptor, returns the number of dimensions for type. If arr is a
|
||
simple array, returns the number of "array of"s that prefix its
|
||
type designation. Otherwise, returns 0. */
|
||
|
||
int
|
||
ada_array_arity (struct type *type)
|
||
{
|
||
int arity;
|
||
|
||
if (type == NULL)
|
||
return 0;
|
||
|
||
type = desc_base_type (type);
|
||
|
||
arity = 0;
|
||
if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
||
return desc_arity (desc_bounds_type (type));
|
||
else
|
||
while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
arity += 1;
|
||
type = check_typedef (TYPE_TARGET_TYPE (type));
|
||
}
|
||
|
||
return arity;
|
||
}
|
||
|
||
/* If TYPE is a record type in the form of a standard GNAT array
|
||
descriptor or a simple array type, returns the element type for
|
||
TYPE after indexing by NINDICES indices, or by all indices if
|
||
NINDICES is -1. Otherwise, returns NULL. */
|
||
|
||
struct type *
|
||
ada_array_element_type (struct type *type, int nindices)
|
||
{
|
||
type = desc_base_type (type);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
||
{
|
||
int k;
|
||
struct type *p_array_type;
|
||
|
||
p_array_type = desc_data_type (type);
|
||
|
||
k = ada_array_arity (type);
|
||
if (k == 0)
|
||
return NULL;
|
||
|
||
/* Initially p_array_type = elt_type(*)[]...(k times)...[] */
|
||
if (nindices >= 0 && k > nindices)
|
||
k = nindices;
|
||
p_array_type = TYPE_TARGET_TYPE (p_array_type);
|
||
while (k > 0 && p_array_type != NULL)
|
||
{
|
||
p_array_type = check_typedef (TYPE_TARGET_TYPE (p_array_type));
|
||
k -= 1;
|
||
}
|
||
return p_array_type;
|
||
}
|
||
else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
type = TYPE_TARGET_TYPE (type);
|
||
nindices -= 1;
|
||
}
|
||
return type;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* The type of nth index in arrays of given type (n numbering from 1). Does
|
||
not examine memory. */
|
||
|
||
struct type *
|
||
ada_index_type (struct type *type, int n)
|
||
{
|
||
type = desc_base_type (type);
|
||
|
||
if (n > ada_array_arity (type))
|
||
return NULL;
|
||
|
||
if (ada_is_simple_array (type))
|
||
{
|
||
int i;
|
||
|
||
for (i = 1; i < n; i += 1)
|
||
type = TYPE_TARGET_TYPE (type);
|
||
|
||
return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
|
||
}
|
||
else
|
||
return desc_index_type (desc_bounds_type (type), n);
|
||
}
|
||
|
||
/* Given that arr is an array type, returns the lower bound of the
|
||
Nth index (numbering from 1) if WHICH is 0, and the upper bound if
|
||
WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
|
||
array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
|
||
bounds type. It works for other arrays with bounds supplied by
|
||
run-time quantities other than discriminants. */
|
||
|
||
LONGEST
|
||
ada_array_bound_from_type (struct type * arr_type, int n, int which,
|
||
struct type ** typep)
|
||
{
|
||
struct type *type;
|
||
struct type *index_type_desc;
|
||
|
||
if (ada_is_packed_array_type (arr_type))
|
||
arr_type = decode_packed_array_type (arr_type);
|
||
|
||
if (arr_type == NULL || !ada_is_simple_array (arr_type))
|
||
{
|
||
if (typep != NULL)
|
||
*typep = builtin_type_int;
|
||
return (LONGEST) - which;
|
||
}
|
||
|
||
if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
|
||
type = TYPE_TARGET_TYPE (arr_type);
|
||
else
|
||
type = arr_type;
|
||
|
||
index_type_desc = ada_find_parallel_type (type, "___XA");
|
||
if (index_type_desc == NULL)
|
||
{
|
||
struct type *range_type;
|
||
struct type *index_type;
|
||
|
||
while (n > 1)
|
||
{
|
||
type = TYPE_TARGET_TYPE (type);
|
||
n -= 1;
|
||
}
|
||
|
||
range_type = TYPE_INDEX_TYPE (type);
|
||
index_type = TYPE_TARGET_TYPE (range_type);
|
||
if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
|
||
index_type = builtin_type_long;
|
||
if (typep != NULL)
|
||
*typep = index_type;
|
||
return
|
||
(LONGEST) (which == 0
|
||
? TYPE_LOW_BOUND (range_type)
|
||
: TYPE_HIGH_BOUND (range_type));
|
||
}
|
||
else
|
||
{
|
||
struct type *index_type =
|
||
to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
|
||
NULL, TYPE_OBJFILE (arr_type));
|
||
if (typep != NULL)
|
||
*typep = TYPE_TARGET_TYPE (index_type);
|
||
return
|
||
(LONGEST) (which == 0
|
||
? TYPE_LOW_BOUND (index_type)
|
||
: TYPE_HIGH_BOUND (index_type));
|
||
}
|
||
}
|
||
|
||
/* Given that arr is an array value, returns the lower bound of the
|
||
nth index (numbering from 1) if which is 0, and the upper bound if
|
||
which is 1. This routine will also work for arrays with bounds
|
||
supplied by run-time quantities other than discriminants. */
|
||
|
||
struct value *
|
||
ada_array_bound (struct value *arr, int n, int which)
|
||
{
|
||
struct type *arr_type = VALUE_TYPE (arr);
|
||
|
||
if (ada_is_packed_array_type (arr_type))
|
||
return ada_array_bound (decode_packed_array (arr), n, which);
|
||
else if (ada_is_simple_array (arr_type))
|
||
{
|
||
struct type *type;
|
||
LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
|
||
return value_from_longest (type, v);
|
||
}
|
||
else
|
||
return desc_one_bound (desc_bounds (arr), n, which);
|
||
}
|
||
|
||
/* Given that arr is an array value, returns the length of the
|
||
nth index. This routine will also work for arrays with bounds
|
||
supplied by run-time quantities other than discriminants. Does not
|
||
work for arrays indexed by enumeration types with representation
|
||
clauses at the moment. */
|
||
|
||
struct value *
|
||
ada_array_length (struct value *arr, int n)
|
||
{
|
||
struct type *arr_type = check_typedef (VALUE_TYPE (arr));
|
||
struct type *index_type_desc;
|
||
|
||
if (ada_is_packed_array_type (arr_type))
|
||
return ada_array_length (decode_packed_array (arr), n);
|
||
|
||
if (ada_is_simple_array (arr_type))
|
||
{
|
||
struct type *type;
|
||
LONGEST v =
|
||
ada_array_bound_from_type (arr_type, n, 1, &type) -
|
||
ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
|
||
return value_from_longest (type, v);
|
||
}
|
||
else
|
||
return
|
||
value_from_longest (builtin_type_ada_int,
|
||
value_as_long (desc_one_bound (desc_bounds (arr),
|
||
n, 1))
|
||
- value_as_long (desc_one_bound (desc_bounds (arr),
|
||
n, 0)) + 1);
|
||
}
|
||
|
||
|
||
/* Name resolution */
|
||
|
||
/* The "demangled" name for the user-definable Ada operator corresponding
|
||
to op. */
|
||
|
||
static const char *
|
||
ada_op_name (enum exp_opcode op)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; ada_opname_table[i].mangled != NULL; i += 1)
|
||
{
|
||
if (ada_opname_table[i].op == op)
|
||
return ada_opname_table[i].demangled;
|
||
}
|
||
error ("Could not find operator name for opcode");
|
||
}
|
||
|
||
|
||
/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
|
||
references (OP_UNRESOLVED_VALUES) and converts operators that are
|
||
user-defined into appropriate function calls. If CONTEXT_TYPE is
|
||
non-null, it provides a preferred result type [at the moment, only
|
||
type void has any effect---causing procedures to be preferred over
|
||
functions in calls]. A null CONTEXT_TYPE indicates that a non-void
|
||
return type is preferred. The variable unresolved_names contains a list
|
||
of character strings referenced by expout that should be freed.
|
||
May change (expand) *EXP. */
|
||
|
||
void
|
||
ada_resolve (struct expression **expp, struct type *context_type)
|
||
{
|
||
int pc;
|
||
pc = 0;
|
||
ada_resolve_subexp (expp, &pc, 1, context_type);
|
||
}
|
||
|
||
/* Resolve the operator of the subexpression beginning at
|
||
position *POS of *EXPP. "Resolving" consists of replacing
|
||
OP_UNRESOLVED_VALUE with an appropriate OP_VAR_VALUE, replacing
|
||
built-in operators with function calls to user-defined operators,
|
||
where appropriate, and (when DEPROCEDURE_P is non-zero), converting
|
||
function-valued variables into parameterless calls. May expand
|
||
EXP. The CONTEXT_TYPE functions as in ada_resolve, above. */
|
||
|
||
static struct value *
|
||
ada_resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
|
||
struct type *context_type)
|
||
{
|
||
int pc = *pos;
|
||
int i;
|
||
struct expression *exp; /* Convenience: == *expp */
|
||
enum exp_opcode op = (*expp)->elts[pc].opcode;
|
||
struct value **argvec; /* Vector of operand types (alloca'ed). */
|
||
int nargs; /* Number of operands */
|
||
|
||
argvec = NULL;
|
||
nargs = 0;
|
||
exp = *expp;
|
||
|
||
/* Pass one: resolve operands, saving their types and updating *pos. */
|
||
switch (op)
|
||
{
|
||
case OP_VAR_VALUE:
|
||
/* case OP_UNRESOLVED_VALUE: */
|
||
/* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
|
||
*pos += 4;
|
||
break;
|
||
|
||
case OP_FUNCALL:
|
||
nargs = longest_to_int (exp->elts[pc + 1].longconst) + 1;
|
||
/* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
|
||
/* if (exp->elts[pc+3].opcode == OP_UNRESOLVED_VALUE)
|
||
{
|
||
*pos += 7;
|
||
|
||
argvec = (struct value* *) alloca (sizeof (struct value*) * (nargs + 1));
|
||
for (i = 0; i < nargs-1; i += 1)
|
||
argvec[i] = ada_resolve_subexp (expp, pos, 1, NULL);
|
||
argvec[i] = NULL;
|
||
}
|
||
else
|
||
{
|
||
*pos += 3;
|
||
ada_resolve_subexp (expp, pos, 0, NULL);
|
||
for (i = 1; i < nargs; i += 1)
|
||
ada_resolve_subexp (expp, pos, 1, NULL);
|
||
}
|
||
*/
|
||
exp = *expp;
|
||
break;
|
||
|
||
/* FIXME: UNOP_QUAL should be defined in expression.h */
|
||
/* case UNOP_QUAL:
|
||
nargs = 1;
|
||
*pos += 3;
|
||
ada_resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
|
||
exp = *expp;
|
||
break;
|
||
*/
|
||
/* FIXME: OP_ATTRIBUTE should be defined in expression.h */
|
||
/* case OP_ATTRIBUTE:
|
||
nargs = longest_to_int (exp->elts[pc + 1].longconst) + 1;
|
||
*pos += 4;
|
||
for (i = 0; i < nargs; i += 1)
|
||
ada_resolve_subexp (expp, pos, 1, NULL);
|
||
exp = *expp;
|
||
break;
|
||
*/
|
||
case UNOP_ADDR:
|
||
nargs = 1;
|
||
*pos += 1;
|
||
ada_resolve_subexp (expp, pos, 0, NULL);
|
||
exp = *expp;
|
||
break;
|
||
|
||
case BINOP_ASSIGN:
|
||
{
|
||
struct value *arg1;
|
||
nargs = 2;
|
||
*pos += 1;
|
||
arg1 = ada_resolve_subexp (expp, pos, 0, NULL);
|
||
if (arg1 == NULL)
|
||
ada_resolve_subexp (expp, pos, 1, NULL);
|
||
else
|
||
ada_resolve_subexp (expp, pos, 1, VALUE_TYPE (arg1));
|
||
break;
|
||
}
|
||
|
||
default:
|
||
switch (op)
|
||
{
|
||
default:
|
||
error ("Unexpected operator during name resolution");
|
||
case UNOP_CAST:
|
||
/* case UNOP_MBR:
|
||
nargs = 1;
|
||
*pos += 3;
|
||
break;
|
||
*/
|
||
case BINOP_ADD:
|
||
case BINOP_SUB:
|
||
case BINOP_MUL:
|
||
case BINOP_DIV:
|
||
case BINOP_REM:
|
||
case BINOP_MOD:
|
||
case BINOP_EXP:
|
||
case BINOP_CONCAT:
|
||
case BINOP_LOGICAL_AND:
|
||
case BINOP_LOGICAL_OR:
|
||
case BINOP_BITWISE_AND:
|
||
case BINOP_BITWISE_IOR:
|
||
case BINOP_BITWISE_XOR:
|
||
|
||
case BINOP_EQUAL:
|
||
case BINOP_NOTEQUAL:
|
||
case BINOP_LESS:
|
||
case BINOP_GTR:
|
||
case BINOP_LEQ:
|
||
case BINOP_GEQ:
|
||
|
||
case BINOP_REPEAT:
|
||
case BINOP_SUBSCRIPT:
|
||
case BINOP_COMMA:
|
||
nargs = 2;
|
||
*pos += 1;
|
||
break;
|
||
|
||
case UNOP_NEG:
|
||
case UNOP_PLUS:
|
||
case UNOP_LOGICAL_NOT:
|
||
case UNOP_ABS:
|
||
case UNOP_IND:
|
||
nargs = 1;
|
||
*pos += 1;
|
||
break;
|
||
|
||
case OP_LONG:
|
||
case OP_DOUBLE:
|
||
case OP_VAR_VALUE:
|
||
*pos += 4;
|
||
break;
|
||
|
||
case OP_TYPE:
|
||
case OP_BOOL:
|
||
case OP_LAST:
|
||
case OP_REGISTER:
|
||
case OP_INTERNALVAR:
|
||
*pos += 3;
|
||
break;
|
||
|
||
case UNOP_MEMVAL:
|
||
*pos += 3;
|
||
nargs = 1;
|
||
break;
|
||
|
||
case STRUCTOP_STRUCT:
|
||
case STRUCTOP_PTR:
|
||
nargs = 1;
|
||
*pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
|
||
break;
|
||
|
||
case OP_ARRAY:
|
||
*pos += 4;
|
||
nargs = longest_to_int (exp->elts[pc + 2].longconst) + 1;
|
||
nargs -= longest_to_int (exp->elts[pc + 1].longconst);
|
||
/* A null array contains one dummy element to give the type. */
|
||
/* if (nargs == 0)
|
||
nargs = 1;
|
||
break; */
|
||
|
||
case TERNOP_SLICE:
|
||
/* FIXME: TERNOP_MBR should be defined in expression.h */
|
||
/* case TERNOP_MBR:
|
||
*pos += 1;
|
||
nargs = 3;
|
||
break;
|
||
*/
|
||
/* FIXME: BINOP_MBR should be defined in expression.h */
|
||
/* case BINOP_MBR:
|
||
*pos += 3;
|
||
nargs = 2;
|
||
break; */
|
||
}
|
||
|
||
argvec =
|
||
(struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
|
||
for (i = 0; i < nargs; i += 1)
|
||
argvec[i] = ada_resolve_subexp (expp, pos, 1, NULL);
|
||
argvec[i] = NULL;
|
||
exp = *expp;
|
||
break;
|
||
}
|
||
|
||
/* Pass two: perform any resolution on principal operator. */
|
||
switch (op)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
/* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
|
||
/* case OP_UNRESOLVED_VALUE:
|
||
{
|
||
struct symbol** candidate_syms;
|
||
struct block** candidate_blocks;
|
||
int n_candidates;
|
||
|
||
n_candidates = ada_lookup_symbol_list (exp->elts[pc + 2].name,
|
||
exp->elts[pc + 1].block,
|
||
VAR_DOMAIN,
|
||
&candidate_syms,
|
||
&candidate_blocks);
|
||
|
||
if (n_candidates > 1)
|
||
{ */
|
||
/* Types tend to get re-introduced locally, so if there
|
||
are any local symbols that are not types, first filter
|
||
out all types. *//*
|
||
int j;
|
||
for (j = 0; j < n_candidates; j += 1)
|
||
switch (SYMBOL_CLASS (candidate_syms[j]))
|
||
{
|
||
case LOC_REGISTER:
|
||
case LOC_ARG:
|
||
case LOC_REF_ARG:
|
||
case LOC_REGPARM:
|
||
case LOC_REGPARM_ADDR:
|
||
case LOC_LOCAL:
|
||
case LOC_LOCAL_ARG:
|
||
case LOC_BASEREG:
|
||
case LOC_BASEREG_ARG:
|
||
case LOC_COMPUTED:
|
||
case LOC_COMPUTED_ARG:
|
||
goto FoundNonType;
|
||
default:
|
||
break;
|
||
}
|
||
FoundNonType:
|
||
if (j < n_candidates)
|
||
{
|
||
j = 0;
|
||
while (j < n_candidates)
|
||
{
|
||
if (SYMBOL_CLASS (candidate_syms[j]) == LOC_TYPEDEF)
|
||
{
|
||
candidate_syms[j] = candidate_syms[n_candidates-1];
|
||
candidate_blocks[j] = candidate_blocks[n_candidates-1];
|
||
n_candidates -= 1;
|
||
}
|
||
else
|
||
j += 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (n_candidates == 0)
|
||
error ("No definition found for %s",
|
||
ada_demangle (exp->elts[pc + 2].name));
|
||
else if (n_candidates == 1)
|
||
i = 0;
|
||
else if (deprocedure_p
|
||
&& ! is_nonfunction (candidate_syms, n_candidates))
|
||
{
|
||
i = ada_resolve_function (candidate_syms, candidate_blocks,
|
||
n_candidates, NULL, 0,
|
||
exp->elts[pc + 2].name, context_type);
|
||
if (i < 0)
|
||
error ("Could not find a match for %s",
|
||
ada_demangle (exp->elts[pc + 2].name));
|
||
}
|
||
else
|
||
{
|
||
printf_filtered ("Multiple matches for %s\n",
|
||
ada_demangle (exp->elts[pc+2].name));
|
||
user_select_syms (candidate_syms, candidate_blocks,
|
||
n_candidates, 1);
|
||
i = 0;
|
||
}
|
||
|
||
exp->elts[pc].opcode = exp->elts[pc + 3].opcode = OP_VAR_VALUE;
|
||
exp->elts[pc + 1].block = candidate_blocks[i];
|
||
exp->elts[pc + 2].symbol = candidate_syms[i];
|
||
if (innermost_block == NULL ||
|
||
contained_in (candidate_blocks[i], innermost_block))
|
||
innermost_block = candidate_blocks[i];
|
||
} */
|
||
/* FALL THROUGH */
|
||
|
||
case OP_VAR_VALUE:
|
||
if (deprocedure_p &&
|
||
TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) ==
|
||
TYPE_CODE_FUNC)
|
||
{
|
||
replace_operator_with_call (expp, pc, 0, 0,
|
||
exp->elts[pc + 2].symbol,
|
||
exp->elts[pc + 1].block);
|
||
exp = *expp;
|
||
}
|
||
break;
|
||
|
||
case OP_FUNCALL:
|
||
{
|
||
/* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
|
||
/* if (exp->elts[pc+3].opcode == OP_UNRESOLVED_VALUE)
|
||
{
|
||
struct symbol** candidate_syms;
|
||
struct block** candidate_blocks;
|
||
int n_candidates;
|
||
|
||
n_candidates = ada_lookup_symbol_list (exp->elts[pc + 5].name,
|
||
exp->elts[pc + 4].block,
|
||
VAR_DOMAIN,
|
||
&candidate_syms,
|
||
&candidate_blocks);
|
||
if (n_candidates == 1)
|
||
i = 0;
|
||
else
|
||
{
|
||
i = ada_resolve_function (candidate_syms, candidate_blocks,
|
||
n_candidates, argvec, nargs-1,
|
||
exp->elts[pc + 5].name, context_type);
|
||
if (i < 0)
|
||
error ("Could not find a match for %s",
|
||
ada_demangle (exp->elts[pc + 5].name));
|
||
}
|
||
|
||
exp->elts[pc + 3].opcode = exp->elts[pc + 6].opcode = OP_VAR_VALUE;
|
||
exp->elts[pc + 4].block = candidate_blocks[i];
|
||
exp->elts[pc + 5].symbol = candidate_syms[i];
|
||
if (innermost_block == NULL ||
|
||
contained_in (candidate_blocks[i], innermost_block))
|
||
innermost_block = candidate_blocks[i];
|
||
} */
|
||
|
||
}
|
||
break;
|
||
case BINOP_ADD:
|
||
case BINOP_SUB:
|
||
case BINOP_MUL:
|
||
case BINOP_DIV:
|
||
case BINOP_REM:
|
||
case BINOP_MOD:
|
||
case BINOP_CONCAT:
|
||
case BINOP_BITWISE_AND:
|
||
case BINOP_BITWISE_IOR:
|
||
case BINOP_BITWISE_XOR:
|
||
case BINOP_EQUAL:
|
||
case BINOP_NOTEQUAL:
|
||
case BINOP_LESS:
|
||
case BINOP_GTR:
|
||
case BINOP_LEQ:
|
||
case BINOP_GEQ:
|
||
case BINOP_EXP:
|
||
case UNOP_NEG:
|
||
case UNOP_PLUS:
|
||
case UNOP_LOGICAL_NOT:
|
||
case UNOP_ABS:
|
||
if (possible_user_operator_p (op, argvec))
|
||
{
|
||
struct symbol **candidate_syms;
|
||
struct block **candidate_blocks;
|
||
int n_candidates;
|
||
|
||
n_candidates =
|
||
ada_lookup_symbol_list (ada_mangle (ada_op_name (op)),
|
||
(struct block *) NULL, VAR_DOMAIN,
|
||
&candidate_syms, &candidate_blocks);
|
||
i =
|
||
ada_resolve_function (candidate_syms, candidate_blocks,
|
||
n_candidates, argvec, nargs,
|
||
ada_op_name (op), NULL);
|
||
if (i < 0)
|
||
break;
|
||
|
||
replace_operator_with_call (expp, pc, nargs, 1,
|
||
candidate_syms[i], candidate_blocks[i]);
|
||
exp = *expp;
|
||
}
|
||
break;
|
||
}
|
||
|
||
*pos = pc;
|
||
return evaluate_subexp_type (exp, pos);
|
||
}
|
||
|
||
/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
|
||
MAY_DEREF is non-zero, the formal may be a pointer and the actual
|
||
a non-pointer. */
|
||
/* The term "match" here is rather loose. The match is heuristic and
|
||
liberal. FIXME: TOO liberal, in fact. */
|
||
|
||
static int
|
||
ada_type_match (struct type *ftype, struct type *atype, int may_deref)
|
||
{
|
||
CHECK_TYPEDEF (ftype);
|
||
CHECK_TYPEDEF (atype);
|
||
|
||
if (TYPE_CODE (ftype) == TYPE_CODE_REF)
|
||
ftype = TYPE_TARGET_TYPE (ftype);
|
||
if (TYPE_CODE (atype) == TYPE_CODE_REF)
|
||
atype = TYPE_TARGET_TYPE (atype);
|
||
|
||
if (TYPE_CODE (ftype) == TYPE_CODE_VOID
|
||
|| TYPE_CODE (atype) == TYPE_CODE_VOID)
|
||
return 1;
|
||
|
||
switch (TYPE_CODE (ftype))
|
||
{
|
||
default:
|
||
return 1;
|
||
case TYPE_CODE_PTR:
|
||
if (TYPE_CODE (atype) == TYPE_CODE_PTR)
|
||
return ada_type_match (TYPE_TARGET_TYPE (ftype),
|
||
TYPE_TARGET_TYPE (atype), 0);
|
||
else
|
||
return (may_deref &&
|
||
ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_RANGE:
|
||
switch (TYPE_CODE (atype))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_RANGE:
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
case TYPE_CODE_ARRAY:
|
||
return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
|
||
|| ada_is_array_descriptor (atype));
|
||
|
||
case TYPE_CODE_STRUCT:
|
||
if (ada_is_array_descriptor (ftype))
|
||
return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
|
||
|| ada_is_array_descriptor (atype));
|
||
else
|
||
return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
|
||
&& !ada_is_array_descriptor (atype));
|
||
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_FLT:
|
||
return (TYPE_CODE (atype) == TYPE_CODE (ftype));
|
||
}
|
||
}
|
||
|
||
/* Return non-zero if the formals of FUNC "sufficiently match" the
|
||
vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
|
||
may also be an enumeral, in which case it is treated as a 0-
|
||
argument function. */
|
||
|
||
static int
|
||
ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
|
||
{
|
||
int i;
|
||
struct type *func_type = SYMBOL_TYPE (func);
|
||
|
||
if (SYMBOL_CLASS (func) == LOC_CONST &&
|
||
TYPE_CODE (func_type) == TYPE_CODE_ENUM)
|
||
return (n_actuals == 0);
|
||
else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
|
||
return 0;
|
||
|
||
if (TYPE_NFIELDS (func_type) != n_actuals)
|
||
return 0;
|
||
|
||
for (i = 0; i < n_actuals; i += 1)
|
||
{
|
||
struct type *ftype = check_typedef (TYPE_FIELD_TYPE (func_type, i));
|
||
struct type *atype = check_typedef (VALUE_TYPE (actuals[i]));
|
||
|
||
if (!ada_type_match (TYPE_FIELD_TYPE (func_type, i),
|
||
VALUE_TYPE (actuals[i]), 1))
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* False iff function type FUNC_TYPE definitely does not produce a value
|
||
compatible with type CONTEXT_TYPE. Conservatively returns 1 if
|
||
FUNC_TYPE is not a valid function type with a non-null return type
|
||
or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
|
||
|
||
static int
|
||
return_match (struct type *func_type, struct type *context_type)
|
||
{
|
||
struct type *return_type;
|
||
|
||
if (func_type == NULL)
|
||
return 1;
|
||
|
||
/* FIXME: base_type should be declared in gdbtypes.h, implemented in valarith.c */
|
||
/* if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
|
||
return_type = base_type (TYPE_TARGET_TYPE (func_type));
|
||
else
|
||
return_type = base_type (func_type); */
|
||
if (return_type == NULL)
|
||
return 1;
|
||
|
||
/* FIXME: base_type should be declared in gdbtypes.h, implemented in valarith.c */
|
||
/* context_type = base_type (context_type); */
|
||
|
||
if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
|
||
return context_type == NULL || return_type == context_type;
|
||
else if (context_type == NULL)
|
||
return TYPE_CODE (return_type) != TYPE_CODE_VOID;
|
||
else
|
||
return TYPE_CODE (return_type) == TYPE_CODE (context_type);
|
||
}
|
||
|
||
|
||
/* Return the index in SYMS[0..NSYMS-1] of symbol for the
|
||
function (if any) that matches the types of the NARGS arguments in
|
||
ARGS. If CONTEXT_TYPE is non-null, and there is at least one match
|
||
that returns type CONTEXT_TYPE, then eliminate other matches. If
|
||
CONTEXT_TYPE is null, prefer a non-void-returning function.
|
||
Asks the user if there is more than one match remaining. Returns -1
|
||
if there is no such symbol or none is selected. NAME is used
|
||
solely for messages. May re-arrange and modify SYMS in
|
||
the process; the index returned is for the modified vector. BLOCKS
|
||
is modified in parallel to SYMS. */
|
||
|
||
int
|
||
ada_resolve_function (struct symbol *syms[], struct block *blocks[],
|
||
int nsyms, struct value **args, int nargs,
|
||
const char *name, struct type *context_type)
|
||
{
|
||
int k;
|
||
int m; /* Number of hits */
|
||
struct type *fallback;
|
||
struct type *return_type;
|
||
|
||
return_type = context_type;
|
||
if (context_type == NULL)
|
||
fallback = builtin_type_void;
|
||
else
|
||
fallback = NULL;
|
||
|
||
m = 0;
|
||
while (1)
|
||
{
|
||
for (k = 0; k < nsyms; k += 1)
|
||
{
|
||
struct type *type = check_typedef (SYMBOL_TYPE (syms[k]));
|
||
|
||
if (ada_args_match (syms[k], args, nargs)
|
||
&& return_match (SYMBOL_TYPE (syms[k]), return_type))
|
||
{
|
||
syms[m] = syms[k];
|
||
if (blocks != NULL)
|
||
blocks[m] = blocks[k];
|
||
m += 1;
|
||
}
|
||
}
|
||
if (m > 0 || return_type == fallback)
|
||
break;
|
||
else
|
||
return_type = fallback;
|
||
}
|
||
|
||
if (m == 0)
|
||
return -1;
|
||
else if (m > 1)
|
||
{
|
||
printf_filtered ("Multiple matches for %s\n", name);
|
||
user_select_syms (syms, blocks, m, 1);
|
||
return 0;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Returns true (non-zero) iff demangled name N0 should appear before N1 */
|
||
/* in a listing of choices during disambiguation (see sort_choices, below). */
|
||
/* The idea is that overloadings of a subprogram name from the */
|
||
/* same package should sort in their source order. We settle for ordering */
|
||
/* such symbols by their trailing number (__N or $N). */
|
||
static int
|
||
mangled_ordered_before (char *N0, char *N1)
|
||
{
|
||
if (N1 == NULL)
|
||
return 0;
|
||
else if (N0 == NULL)
|
||
return 1;
|
||
else
|
||
{
|
||
int k0, k1;
|
||
for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
|
||
;
|
||
for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
|
||
;
|
||
if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
|
||
&& (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
|
||
{
|
||
int n0, n1;
|
||
n0 = k0;
|
||
while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
|
||
n0 -= 1;
|
||
n1 = k1;
|
||
while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
|
||
n1 -= 1;
|
||
if (n0 == n1 && STREQN (N0, N1, n0))
|
||
return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
|
||
}
|
||
return (strcmp (N0, N1) < 0);
|
||
}
|
||
}
|
||
|
||
/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by their */
|
||
/* mangled names, rearranging BLOCKS[0..NSYMS-1] according to the same */
|
||
/* permutation. */
|
||
static void
|
||
sort_choices (struct symbol *syms[], struct block *blocks[], int nsyms)
|
||
{
|
||
int i, j;
|
||
for (i = 1; i < nsyms; i += 1)
|
||
{
|
||
struct symbol *sym = syms[i];
|
||
struct block *block = blocks[i];
|
||
int j;
|
||
|
||
for (j = i - 1; j >= 0; j -= 1)
|
||
{
|
||
if (mangled_ordered_before (DEPRECATED_SYMBOL_NAME (syms[j]),
|
||
DEPRECATED_SYMBOL_NAME (sym)))
|
||
break;
|
||
syms[j + 1] = syms[j];
|
||
blocks[j + 1] = blocks[j];
|
||
}
|
||
syms[j + 1] = sym;
|
||
blocks[j + 1] = block;
|
||
}
|
||
}
|
||
|
||
/* Given a list of NSYMS symbols in SYMS and corresponding blocks in */
|
||
/* BLOCKS, select up to MAX_RESULTS>0 by asking the user (if */
|
||
/* necessary), returning the number selected, and setting the first */
|
||
/* elements of SYMS and BLOCKS to the selected symbols and */
|
||
/* corresponding blocks. Error if no symbols selected. BLOCKS may */
|
||
/* be NULL, in which case it is ignored. */
|
||
|
||
/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
|
||
to be re-integrated one of these days. */
|
||
|
||
int
|
||
user_select_syms (struct symbol *syms[], struct block *blocks[], int nsyms,
|
||
int max_results)
|
||
{
|
||
int i;
|
||
int *chosen = (int *) alloca (sizeof (int) * nsyms);
|
||
int n_chosen;
|
||
int first_choice = (max_results == 1) ? 1 : 2;
|
||
|
||
if (max_results < 1)
|
||
error ("Request to select 0 symbols!");
|
||
if (nsyms <= 1)
|
||
return nsyms;
|
||
|
||
printf_unfiltered ("[0] cancel\n");
|
||
if (max_results > 1)
|
||
printf_unfiltered ("[1] all\n");
|
||
|
||
sort_choices (syms, blocks, nsyms);
|
||
|
||
for (i = 0; i < nsyms; i += 1)
|
||
{
|
||
if (syms[i] == NULL)
|
||
continue;
|
||
|
||
if (SYMBOL_CLASS (syms[i]) == LOC_BLOCK)
|
||
{
|
||
struct symtab_and_line sal = find_function_start_sal (syms[i], 1);
|
||
printf_unfiltered ("[%d] %s at %s:%d\n",
|
||
i + first_choice,
|
||
SYMBOL_PRINT_NAME (syms[i]),
|
||
sal.symtab == NULL
|
||
? "<no source file available>"
|
||
: sal.symtab->filename, sal.line);
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
int is_enumeral =
|
||
(SYMBOL_CLASS (syms[i]) == LOC_CONST
|
||
&& SYMBOL_TYPE (syms[i]) != NULL
|
||
&& TYPE_CODE (SYMBOL_TYPE (syms[i])) == TYPE_CODE_ENUM);
|
||
struct symtab *symtab = symtab_for_sym (syms[i]);
|
||
|
||
if (SYMBOL_LINE (syms[i]) != 0 && symtab != NULL)
|
||
printf_unfiltered ("[%d] %s at %s:%d\n",
|
||
i + first_choice,
|
||
SYMBOL_PRINT_NAME (syms[i]),
|
||
symtab->filename, SYMBOL_LINE (syms[i]));
|
||
else if (is_enumeral && TYPE_NAME (SYMBOL_TYPE (syms[i])) != NULL)
|
||
{
|
||
printf_unfiltered ("[%d] ", i + first_choice);
|
||
ada_print_type (SYMBOL_TYPE (syms[i]), NULL, gdb_stdout, -1, 0);
|
||
printf_unfiltered ("'(%s) (enumeral)\n",
|
||
SYMBOL_PRINT_NAME (syms[i]));
|
||
}
|
||
else if (symtab != NULL)
|
||
printf_unfiltered (is_enumeral
|
||
? "[%d] %s in %s (enumeral)\n"
|
||
: "[%d] %s at %s:?\n",
|
||
i + first_choice,
|
||
SYMBOL_PRINT_NAME (syms[i]),
|
||
symtab->filename);
|
||
else
|
||
printf_unfiltered (is_enumeral
|
||
? "[%d] %s (enumeral)\n"
|
||
: "[%d] %s at ?\n",
|
||
i + first_choice,
|
||
SYMBOL_PRINT_NAME (syms[i]));
|
||
}
|
||
}
|
||
|
||
n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
|
||
"overload-choice");
|
||
|
||
for (i = 0; i < n_chosen; i += 1)
|
||
{
|
||
syms[i] = syms[chosen[i]];
|
||
if (blocks != NULL)
|
||
blocks[i] = blocks[chosen[i]];
|
||
}
|
||
|
||
return n_chosen;
|
||
}
|
||
|
||
/* Read and validate a set of numeric choices from the user in the
|
||
range 0 .. N_CHOICES-1. Place the results in increasing
|
||
order in CHOICES[0 .. N-1], and return N.
|
||
|
||
The user types choices as a sequence of numbers on one line
|
||
separated by blanks, encoding them as follows:
|
||
|
||
+ A choice of 0 means to cancel the selection, throwing an error.
|
||
+ If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
|
||
+ The user chooses k by typing k+IS_ALL_CHOICE+1.
|
||
|
||
The user is not allowed to choose more than MAX_RESULTS values.
|
||
|
||
ANNOTATION_SUFFIX, if present, is used to annotate the input
|
||
prompts (for use with the -f switch). */
|
||
|
||
int
|
||
get_selections (int *choices, int n_choices, int max_results,
|
||
int is_all_choice, char *annotation_suffix)
|
||
{
|
||
int i;
|
||
char *args;
|
||
const char *prompt;
|
||
int n_chosen;
|
||
int first_choice = is_all_choice ? 2 : 1;
|
||
|
||
prompt = getenv ("PS2");
|
||
if (prompt == NULL)
|
||
prompt = ">";
|
||
|
||
printf_unfiltered ("%s ", prompt);
|
||
gdb_flush (gdb_stdout);
|
||
|
||
args = command_line_input ((char *) NULL, 0, annotation_suffix);
|
||
|
||
if (args == NULL)
|
||
error_no_arg ("one or more choice numbers");
|
||
|
||
n_chosen = 0;
|
||
|
||
/* Set choices[0 .. n_chosen-1] to the users' choices in ascending
|
||
order, as given in args. Choices are validated. */
|
||
while (1)
|
||
{
|
||
char *args2;
|
||
int choice, j;
|
||
|
||
while (isspace (*args))
|
||
args += 1;
|
||
if (*args == '\0' && n_chosen == 0)
|
||
error_no_arg ("one or more choice numbers");
|
||
else if (*args == '\0')
|
||
break;
|
||
|
||
choice = strtol (args, &args2, 10);
|
||
if (args == args2 || choice < 0
|
||
|| choice > n_choices + first_choice - 1)
|
||
error ("Argument must be choice number");
|
||
args = args2;
|
||
|
||
if (choice == 0)
|
||
error ("cancelled");
|
||
|
||
if (choice < first_choice)
|
||
{
|
||
n_chosen = n_choices;
|
||
for (j = 0; j < n_choices; j += 1)
|
||
choices[j] = j;
|
||
break;
|
||
}
|
||
choice -= first_choice;
|
||
|
||
for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
|
||
{
|
||
}
|
||
|
||
if (j < 0 || choice != choices[j])
|
||
{
|
||
int k;
|
||
for (k = n_chosen - 1; k > j; k -= 1)
|
||
choices[k + 1] = choices[k];
|
||
choices[j + 1] = choice;
|
||
n_chosen += 1;
|
||
}
|
||
}
|
||
|
||
if (n_chosen > max_results)
|
||
error ("Select no more than %d of the above", max_results);
|
||
|
||
return n_chosen;
|
||
}
|
||
|
||
/* Replace the operator of length OPLEN at position PC in *EXPP with a call */
|
||
/* on the function identified by SYM and BLOCK, and taking NARGS */
|
||
/* arguments. Update *EXPP as needed to hold more space. */
|
||
|
||
static void
|
||
replace_operator_with_call (struct expression **expp, int pc, int nargs,
|
||
int oplen, struct symbol *sym,
|
||
struct block *block)
|
||
{
|
||
/* A new expression, with 6 more elements (3 for funcall, 4 for function
|
||
symbol, -oplen for operator being replaced). */
|
||
struct expression *newexp = (struct expression *)
|
||
xmalloc (sizeof (struct expression)
|
||
+ EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
|
||
struct expression *exp = *expp;
|
||
|
||
newexp->nelts = exp->nelts + 7 - oplen;
|
||
newexp->language_defn = exp->language_defn;
|
||
memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
|
||
memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
|
||
EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
|
||
|
||
newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
|
||
newexp->elts[pc + 1].longconst = (LONGEST) nargs;
|
||
|
||
newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
|
||
newexp->elts[pc + 4].block = block;
|
||
newexp->elts[pc + 5].symbol = sym;
|
||
|
||
*expp = newexp;
|
||
xfree (exp);
|
||
}
|
||
|
||
/* Type-class predicates */
|
||
|
||
/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), or */
|
||
/* FLOAT.) */
|
||
|
||
static int
|
||
numeric_type_p (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return 0;
|
||
else
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_FLT:
|
||
return 1;
|
||
case TYPE_CODE_RANGE:
|
||
return (type == TYPE_TARGET_TYPE (type)
|
||
|| numeric_type_p (TYPE_TARGET_TYPE (type)));
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* True iff TYPE is integral (an INT or RANGE of INTs). */
|
||
|
||
static int
|
||
integer_type_p (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return 0;
|
||
else
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
return 1;
|
||
case TYPE_CODE_RANGE:
|
||
return (type == TYPE_TARGET_TYPE (type)
|
||
|| integer_type_p (TYPE_TARGET_TYPE (type)));
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
|
||
|
||
static int
|
||
scalar_type_p (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return 0;
|
||
else
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_FLT:
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* True iff TYPE is discrete (INT, RANGE, ENUM). */
|
||
|
||
static int
|
||
discrete_type_p (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return 0;
|
||
else
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_ENUM:
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Returns non-zero if OP with operatands in the vector ARGS could be
|
||
a user-defined function. Errs on the side of pre-defined operators
|
||
(i.e., result 0). */
|
||
|
||
static int
|
||
possible_user_operator_p (enum exp_opcode op, struct value *args[])
|
||
{
|
||
struct type *type0 = check_typedef (VALUE_TYPE (args[0]));
|
||
struct type *type1 =
|
||
(args[1] == NULL) ? NULL : check_typedef (VALUE_TYPE (args[1]));
|
||
|
||
switch (op)
|
||
{
|
||
default:
|
||
return 0;
|
||
|
||
case BINOP_ADD:
|
||
case BINOP_SUB:
|
||
case BINOP_MUL:
|
||
case BINOP_DIV:
|
||
return (!(numeric_type_p (type0) && numeric_type_p (type1)));
|
||
|
||
case BINOP_REM:
|
||
case BINOP_MOD:
|
||
case BINOP_BITWISE_AND:
|
||
case BINOP_BITWISE_IOR:
|
||
case BINOP_BITWISE_XOR:
|
||
return (!(integer_type_p (type0) && integer_type_p (type1)));
|
||
|
||
case BINOP_EQUAL:
|
||
case BINOP_NOTEQUAL:
|
||
case BINOP_LESS:
|
||
case BINOP_GTR:
|
||
case BINOP_LEQ:
|
||
case BINOP_GEQ:
|
||
return (!(scalar_type_p (type0) && scalar_type_p (type1)));
|
||
|
||
case BINOP_CONCAT:
|
||
return ((TYPE_CODE (type0) != TYPE_CODE_ARRAY &&
|
||
(TYPE_CODE (type0) != TYPE_CODE_PTR ||
|
||
TYPE_CODE (TYPE_TARGET_TYPE (type0))
|
||
!= TYPE_CODE_ARRAY))
|
||
|| (TYPE_CODE (type1) != TYPE_CODE_ARRAY &&
|
||
(TYPE_CODE (type1) != TYPE_CODE_PTR ||
|
||
TYPE_CODE (TYPE_TARGET_TYPE (type1)) != TYPE_CODE_ARRAY)));
|
||
|
||
case BINOP_EXP:
|
||
return (!(numeric_type_p (type0) && integer_type_p (type1)));
|
||
|
||
case UNOP_NEG:
|
||
case UNOP_PLUS:
|
||
case UNOP_LOGICAL_NOT:
|
||
case UNOP_ABS:
|
||
return (!numeric_type_p (type0));
|
||
|
||
}
|
||
}
|
||
|
||
/* Renaming */
|
||
|
||
/** NOTE: In the following, we assume that a renaming type's name may
|
||
* have an ___XD suffix. It would be nice if this went away at some
|
||
* point. */
|
||
|
||
/* If TYPE encodes a renaming, returns the renaming suffix, which
|
||
* is XR for an object renaming, XRP for a procedure renaming, XRE for
|
||
* an exception renaming, and XRS for a subprogram renaming. Returns
|
||
* NULL if NAME encodes none of these. */
|
||
const char *
|
||
ada_renaming_type (struct type *type)
|
||
{
|
||
if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
|
||
{
|
||
const char *name = type_name_no_tag (type);
|
||
const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
|
||
if (suffix == NULL
|
||
|| (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
|
||
return NULL;
|
||
else
|
||
return suffix + 3;
|
||
}
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* Return non-zero iff SYM encodes an object renaming. */
|
||
int
|
||
ada_is_object_renaming (struct symbol *sym)
|
||
{
|
||
const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
|
||
return renaming_type != NULL
|
||
&& (renaming_type[2] == '\0' || renaming_type[2] == '_');
|
||
}
|
||
|
||
/* Assuming that SYM encodes a non-object renaming, returns the original
|
||
* name of the renamed entity. The name is good until the end of
|
||
* parsing. */
|
||
const char *
|
||
ada_simple_renamed_entity (struct symbol *sym)
|
||
{
|
||
struct type *type;
|
||
const char *raw_name;
|
||
int len;
|
||
char *result;
|
||
|
||
type = SYMBOL_TYPE (sym);
|
||
if (type == NULL || TYPE_NFIELDS (type) < 1)
|
||
error ("Improperly encoded renaming.");
|
||
|
||
raw_name = TYPE_FIELD_NAME (type, 0);
|
||
len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
|
||
if (len <= 0)
|
||
error ("Improperly encoded renaming.");
|
||
|
||
result = xmalloc (len + 1);
|
||
/* FIXME: add_name_string_cleanup should be defined in parse.c */
|
||
/* add_name_string_cleanup (result); */
|
||
strncpy (result, raw_name, len);
|
||
result[len] = '\000';
|
||
return result;
|
||
}
|
||
|
||
|
||
/* Evaluation: Function Calls */
|
||
|
||
/* Copy VAL onto the stack, using and updating *SP as the stack
|
||
pointer. Return VAL as an lvalue. */
|
||
|
||
static struct value *
|
||
place_on_stack (struct value *val, CORE_ADDR *sp)
|
||
{
|
||
CORE_ADDR old_sp = *sp;
|
||
|
||
#ifdef STACK_ALIGN
|
||
*sp = push_bytes (*sp, VALUE_CONTENTS_RAW (val),
|
||
STACK_ALIGN (TYPE_LENGTH
|
||
(check_typedef (VALUE_TYPE (val)))));
|
||
#else
|
||
*sp = push_bytes (*sp, VALUE_CONTENTS_RAW (val),
|
||
TYPE_LENGTH (check_typedef (VALUE_TYPE (val))));
|
||
#endif
|
||
|
||
VALUE_LVAL (val) = lval_memory;
|
||
if (INNER_THAN (1, 2))
|
||
VALUE_ADDRESS (val) = *sp;
|
||
else
|
||
VALUE_ADDRESS (val) = old_sp;
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Return the value ACTUAL, converted to be an appropriate value for a
|
||
formal of type FORMAL_TYPE. Use *SP as a stack pointer for
|
||
allocating any necessary descriptors (fat pointers), or copies of
|
||
values not residing in memory, updating it as needed. */
|
||
|
||
static struct value *
|
||
convert_actual (struct value *actual, struct type *formal_type0,
|
||
CORE_ADDR *sp)
|
||
{
|
||
struct type *actual_type = check_typedef (VALUE_TYPE (actual));
|
||
struct type *formal_type = check_typedef (formal_type0);
|
||
struct type *formal_target =
|
||
TYPE_CODE (formal_type) == TYPE_CODE_PTR
|
||
? check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
|
||
struct type *actual_target =
|
||
TYPE_CODE (actual_type) == TYPE_CODE_PTR
|
||
? check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
|
||
|
||
if (ada_is_array_descriptor (formal_target)
|
||
&& TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
|
||
return make_array_descriptor (formal_type, actual, sp);
|
||
else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
|
||
{
|
||
if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
|
||
&& ada_is_array_descriptor (actual_target))
|
||
return desc_data (actual);
|
||
else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
|
||
{
|
||
if (VALUE_LVAL (actual) != lval_memory)
|
||
{
|
||
struct value *val;
|
||
actual_type = check_typedef (VALUE_TYPE (actual));
|
||
val = allocate_value (actual_type);
|
||
memcpy ((char *) VALUE_CONTENTS_RAW (val),
|
||
(char *) VALUE_CONTENTS (actual),
|
||
TYPE_LENGTH (actual_type));
|
||
actual = place_on_stack (val, sp);
|
||
}
|
||
return value_addr (actual);
|
||
}
|
||
}
|
||
else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
|
||
return ada_value_ind (actual);
|
||
|
||
return actual;
|
||
}
|
||
|
||
|
||
/* Push a descriptor of type TYPE for array value ARR on the stack at
|
||
*SP, updating *SP to reflect the new descriptor. Return either
|
||
an lvalue representing the new descriptor, or (if TYPE is a pointer-
|
||
to-descriptor type rather than a descriptor type), a struct value*
|
||
representing a pointer to this descriptor. */
|
||
|
||
static struct value *
|
||
make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
|
||
{
|
||
struct type *bounds_type = desc_bounds_type (type);
|
||
struct type *desc_type = desc_base_type (type);
|
||
struct value *descriptor = allocate_value (desc_type);
|
||
struct value *bounds = allocate_value (bounds_type);
|
||
CORE_ADDR bounds_addr;
|
||
int i;
|
||
|
||
for (i = ada_array_arity (check_typedef (VALUE_TYPE (arr))); i > 0; i -= 1)
|
||
{
|
||
modify_general_field (VALUE_CONTENTS (bounds),
|
||
value_as_long (ada_array_bound (arr, i, 0)),
|
||
desc_bound_bitpos (bounds_type, i, 0),
|
||
desc_bound_bitsize (bounds_type, i, 0));
|
||
modify_general_field (VALUE_CONTENTS (bounds),
|
||
value_as_long (ada_array_bound (arr, i, 1)),
|
||
desc_bound_bitpos (bounds_type, i, 1),
|
||
desc_bound_bitsize (bounds_type, i, 1));
|
||
}
|
||
|
||
bounds = place_on_stack (bounds, sp);
|
||
|
||
modify_general_field (VALUE_CONTENTS (descriptor),
|
||
arr,
|
||
fat_pntr_data_bitpos (desc_type),
|
||
fat_pntr_data_bitsize (desc_type));
|
||
modify_general_field (VALUE_CONTENTS (descriptor),
|
||
VALUE_ADDRESS (bounds),
|
||
fat_pntr_bounds_bitpos (desc_type),
|
||
fat_pntr_bounds_bitsize (desc_type));
|
||
|
||
descriptor = place_on_stack (descriptor, sp);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
||
return value_addr (descriptor);
|
||
else
|
||
return descriptor;
|
||
}
|
||
|
||
|
||
/* Assuming a dummy frame has been established on the target, perform any
|
||
conversions needed for calling function FUNC on the NARGS actual
|
||
parameters in ARGS, other than standard C conversions. Does
|
||
nothing if FUNC does not have Ada-style prototype data, or if NARGS
|
||
does not match the number of arguments expected. Use *SP as a
|
||
stack pointer for additional data that must be pushed, updating its
|
||
value as needed. */
|
||
|
||
void
|
||
ada_convert_actuals (struct value *func, int nargs, struct value *args[],
|
||
CORE_ADDR *sp)
|
||
{
|
||
int i;
|
||
|
||
if (TYPE_NFIELDS (VALUE_TYPE (func)) == 0
|
||
|| nargs != TYPE_NFIELDS (VALUE_TYPE (func)))
|
||
return;
|
||
|
||
for (i = 0; i < nargs; i += 1)
|
||
args[i] =
|
||
convert_actual (args[i], TYPE_FIELD_TYPE (VALUE_TYPE (func), i), sp);
|
||
}
|
||
|
||
|
||
/* Symbol Lookup */
|
||
|
||
|
||
/* The vectors of symbols and blocks ultimately returned from */
|
||
/* ada_lookup_symbol_list. */
|
||
|
||
/* Current size of defn_symbols and defn_blocks */
|
||
static size_t defn_vector_size = 0;
|
||
|
||
/* Current number of symbols found. */
|
||
static int ndefns = 0;
|
||
|
||
static struct symbol **defn_symbols = NULL;
|
||
static struct block **defn_blocks = NULL;
|
||
|
||
/* Return the result of a standard (literal, C-like) lookup of NAME in
|
||
* given DOMAIN. */
|
||
|
||
static struct symbol *
|
||
standard_lookup (const char *name, domain_enum domain)
|
||
{
|
||
struct symbol *sym;
|
||
sym = lookup_symbol (name, (struct block *) NULL, domain, 0, NULL);
|
||
return sym;
|
||
}
|
||
|
||
|
||
/* Non-zero iff there is at least one non-function/non-enumeral symbol */
|
||
/* in SYMS[0..N-1]. We treat enumerals as functions, since they */
|
||
/* contend in overloading in the same way. */
|
||
static int
|
||
is_nonfunction (struct symbol *syms[], int n)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < n; i += 1)
|
||
if (TYPE_CODE (SYMBOL_TYPE (syms[i])) != TYPE_CODE_FUNC
|
||
&& TYPE_CODE (SYMBOL_TYPE (syms[i])) != TYPE_CODE_ENUM)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
|
||
struct types. Otherwise, they may not. */
|
||
|
||
static int
|
||
equiv_types (struct type *type0, struct type *type1)
|
||
{
|
||
if (type0 == type1)
|
||
return 1;
|
||
if (type0 == NULL || type1 == NULL
|
||
|| TYPE_CODE (type0) != TYPE_CODE (type1))
|
||
return 0;
|
||
if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (type0) == TYPE_CODE_ENUM)
|
||
&& ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
|
||
&& STREQ (ada_type_name (type0), ada_type_name (type1)))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* True iff SYM0 represents the same entity as SYM1, or one that is
|
||
no more defined than that of SYM1. */
|
||
|
||
static int
|
||
lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
|
||
{
|
||
if (sym0 == sym1)
|
||
return 1;
|
||
if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
|
||
|| SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
|
||
return 0;
|
||
|
||
switch (SYMBOL_CLASS (sym0))
|
||
{
|
||
case LOC_UNDEF:
|
||
return 1;
|
||
case LOC_TYPEDEF:
|
||
{
|
||
struct type *type0 = SYMBOL_TYPE (sym0);
|
||
struct type *type1 = SYMBOL_TYPE (sym1);
|
||
char *name0 = DEPRECATED_SYMBOL_NAME (sym0);
|
||
char *name1 = DEPRECATED_SYMBOL_NAME (sym1);
|
||
int len0 = strlen (name0);
|
||
return
|
||
TYPE_CODE (type0) == TYPE_CODE (type1)
|
||
&& (equiv_types (type0, type1)
|
||
|| (len0 < strlen (name1) && STREQN (name0, name1, len0)
|
||
&& STREQN (name1 + len0, "___XV", 5)));
|
||
}
|
||
case LOC_CONST:
|
||
return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
|
||
&& equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Append SYM to the end of defn_symbols, and BLOCK to the end of
|
||
defn_blocks, updating ndefns, and expanding defn_symbols and
|
||
defn_blocks as needed. Do not include SYM if it is a duplicate. */
|
||
|
||
static void
|
||
add_defn_to_vec (struct symbol *sym, struct block *block)
|
||
{
|
||
int i;
|
||
size_t tmp;
|
||
|
||
if (SYMBOL_TYPE (sym) != NULL)
|
||
CHECK_TYPEDEF (SYMBOL_TYPE (sym));
|
||
for (i = 0; i < ndefns; i += 1)
|
||
{
|
||
if (lesseq_defined_than (sym, defn_symbols[i]))
|
||
return;
|
||
else if (lesseq_defined_than (defn_symbols[i], sym))
|
||
{
|
||
defn_symbols[i] = sym;
|
||
defn_blocks[i] = block;
|
||
return;
|
||
}
|
||
}
|
||
|
||
tmp = defn_vector_size;
|
||
GROW_VECT (defn_symbols, tmp, ndefns + 2);
|
||
GROW_VECT (defn_blocks, defn_vector_size, ndefns + 2);
|
||
|
||
defn_symbols[ndefns] = sym;
|
||
defn_blocks[ndefns] = block;
|
||
ndefns += 1;
|
||
}
|
||
|
||
/* Look, in partial_symtab PST, for symbol NAME in given domain.
|
||
Check the global symbols if GLOBAL, the static symbols if not. Do
|
||
wild-card match if WILD. */
|
||
|
||
static struct partial_symbol *
|
||
ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
|
||
int global, domain_enum domain, int wild)
|
||
{
|
||
struct partial_symbol **start;
|
||
int name_len = strlen (name);
|
||
int length = (global ? pst->n_global_syms : pst->n_static_syms);
|
||
int i;
|
||
|
||
if (length == 0)
|
||
{
|
||
return (NULL);
|
||
}
|
||
|
||
start = (global ?
|
||
pst->objfile->global_psymbols.list + pst->globals_offset :
|
||
pst->objfile->static_psymbols.list + pst->statics_offset);
|
||
|
||
if (wild)
|
||
{
|
||
for (i = 0; i < length; i += 1)
|
||
{
|
||
struct partial_symbol *psym = start[i];
|
||
|
||
if (SYMBOL_DOMAIN (psym) == domain &&
|
||
wild_match (name, name_len, DEPRECATED_SYMBOL_NAME (psym)))
|
||
return psym;
|
||
}
|
||
return NULL;
|
||
}
|
||
else
|
||
{
|
||
if (global)
|
||
{
|
||
int U;
|
||
i = 0;
|
||
U = length - 1;
|
||
while (U - i > 4)
|
||
{
|
||
int M = (U + i) >> 1;
|
||
struct partial_symbol *psym = start[M];
|
||
if (DEPRECATED_SYMBOL_NAME (psym)[0] < name[0])
|
||
i = M + 1;
|
||
else if (DEPRECATED_SYMBOL_NAME (psym)[0] > name[0])
|
||
U = M - 1;
|
||
else if (strcmp (DEPRECATED_SYMBOL_NAME (psym), name) < 0)
|
||
i = M + 1;
|
||
else
|
||
U = M;
|
||
}
|
||
}
|
||
else
|
||
i = 0;
|
||
|
||
while (i < length)
|
||
{
|
||
struct partial_symbol *psym = start[i];
|
||
|
||
if (SYMBOL_DOMAIN (psym) == domain)
|
||
{
|
||
int cmp = strncmp (name, DEPRECATED_SYMBOL_NAME (psym), name_len);
|
||
|
||
if (cmp < 0)
|
||
{
|
||
if (global)
|
||
break;
|
||
}
|
||
else if (cmp == 0
|
||
&& is_name_suffix (DEPRECATED_SYMBOL_NAME (psym) + name_len))
|
||
return psym;
|
||
}
|
||
i += 1;
|
||
}
|
||
|
||
if (global)
|
||
{
|
||
int U;
|
||
i = 0;
|
||
U = length - 1;
|
||
while (U - i > 4)
|
||
{
|
||
int M = (U + i) >> 1;
|
||
struct partial_symbol *psym = start[M];
|
||
if (DEPRECATED_SYMBOL_NAME (psym)[0] < '_')
|
||
i = M + 1;
|
||
else if (DEPRECATED_SYMBOL_NAME (psym)[0] > '_')
|
||
U = M - 1;
|
||
else if (strcmp (DEPRECATED_SYMBOL_NAME (psym), "_ada_") < 0)
|
||
i = M + 1;
|
||
else
|
||
U = M;
|
||
}
|
||
}
|
||
else
|
||
i = 0;
|
||
|
||
while (i < length)
|
||
{
|
||
struct partial_symbol *psym = start[i];
|
||
|
||
if (SYMBOL_DOMAIN (psym) == domain)
|
||
{
|
||
int cmp;
|
||
|
||
cmp = (int) '_' - (int) DEPRECATED_SYMBOL_NAME (psym)[0];
|
||
if (cmp == 0)
|
||
{
|
||
cmp = strncmp ("_ada_", DEPRECATED_SYMBOL_NAME (psym), 5);
|
||
if (cmp == 0)
|
||
cmp = strncmp (name, DEPRECATED_SYMBOL_NAME (psym) + 5, name_len);
|
||
}
|
||
|
||
if (cmp < 0)
|
||
{
|
||
if (global)
|
||
break;
|
||
}
|
||
else if (cmp == 0
|
||
&& is_name_suffix (DEPRECATED_SYMBOL_NAME (psym) + name_len + 5))
|
||
return psym;
|
||
}
|
||
i += 1;
|
||
}
|
||
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Find a symbol table containing symbol SYM or NULL if none. */
|
||
static struct symtab *
|
||
symtab_for_sym (struct symbol *sym)
|
||
{
|
||
struct symtab *s;
|
||
struct objfile *objfile;
|
||
struct block *b;
|
||
struct symbol *tmp_sym;
|
||
int i, j;
|
||
|
||
ALL_SYMTABS (objfile, s)
|
||
{
|
||
switch (SYMBOL_CLASS (sym))
|
||
{
|
||
case LOC_CONST:
|
||
case LOC_STATIC:
|
||
case LOC_TYPEDEF:
|
||
case LOC_REGISTER:
|
||
case LOC_LABEL:
|
||
case LOC_BLOCK:
|
||
case LOC_CONST_BYTES:
|
||
b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
|
||
ALL_BLOCK_SYMBOLS (b, i, tmp_sym) if (sym == tmp_sym)
|
||
return s;
|
||
b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
|
||
ALL_BLOCK_SYMBOLS (b, i, tmp_sym) if (sym == tmp_sym)
|
||
return s;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
switch (SYMBOL_CLASS (sym))
|
||
{
|
||
case LOC_REGISTER:
|
||
case LOC_ARG:
|
||
case LOC_REF_ARG:
|
||
case LOC_REGPARM:
|
||
case LOC_REGPARM_ADDR:
|
||
case LOC_LOCAL:
|
||
case LOC_TYPEDEF:
|
||
case LOC_LOCAL_ARG:
|
||
case LOC_BASEREG:
|
||
case LOC_BASEREG_ARG:
|
||
case LOC_COMPUTED:
|
||
case LOC_COMPUTED_ARG:
|
||
for (j = FIRST_LOCAL_BLOCK;
|
||
j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
|
||
{
|
||
b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
|
||
ALL_BLOCK_SYMBOLS (b, i, tmp_sym) if (sym == tmp_sym)
|
||
return s;
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Return a minimal symbol matching NAME according to Ada demangling
|
||
rules. Returns NULL if there is no such minimal symbol. */
|
||
|
||
struct minimal_symbol *
|
||
ada_lookup_minimal_symbol (const char *name)
|
||
{
|
||
struct objfile *objfile;
|
||
struct minimal_symbol *msymbol;
|
||
int wild_match = (strstr (name, "__") == NULL);
|
||
|
||
ALL_MSYMBOLS (objfile, msymbol)
|
||
{
|
||
if (ada_match_name (DEPRECATED_SYMBOL_NAME (msymbol), name, wild_match)
|
||
&& MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
|
||
return msymbol;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* For all subprograms that statically enclose the subprogram of the
|
||
* selected frame, add symbols matching identifier NAME in DOMAIN
|
||
* and their blocks to vectors *defn_symbols and *defn_blocks, as for
|
||
* ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
|
||
* wildcard prefix. At the moment, this function uses a heuristic to
|
||
* find the frames of enclosing subprograms: it treats the
|
||
* pointer-sized value at location 0 from the local-variable base of a
|
||
* frame as a static link, and then searches up the call stack for a
|
||
* frame with that same local-variable base. */
|
||
static void
|
||
add_symbols_from_enclosing_procs (const char *name, domain_enum domain,
|
||
int wild_match)
|
||
{
|
||
#ifdef i386
|
||
static struct symbol static_link_sym;
|
||
static struct symbol *static_link;
|
||
|
||
struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
|
||
struct frame_info *frame;
|
||
struct frame_info *target_frame;
|
||
|
||
if (static_link == NULL)
|
||
{
|
||
/* Initialize the local variable symbol that stands for the
|
||
* static link (when it exists). */
|
||
static_link = &static_link_sym;
|
||
DEPRECATED_SYMBOL_NAME (static_link) = "";
|
||
SYMBOL_LANGUAGE (static_link) = language_unknown;
|
||
SYMBOL_CLASS (static_link) = LOC_LOCAL;
|
||
SYMBOL_DOMAIN (static_link) = VAR_DOMAIN;
|
||
SYMBOL_TYPE (static_link) = lookup_pointer_type (builtin_type_void);
|
||
SYMBOL_VALUE (static_link) =
|
||
-(long) TYPE_LENGTH (SYMBOL_TYPE (static_link));
|
||
}
|
||
|
||
frame = deprecated_selected_frame;
|
||
while (frame != NULL && ndefns == 0)
|
||
{
|
||
struct block *block;
|
||
struct value *target_link_val = read_var_value (static_link, frame);
|
||
CORE_ADDR target_link;
|
||
|
||
if (target_link_val == NULL)
|
||
break;
|
||
QUIT;
|
||
|
||
target_link = target_link_val;
|
||
do
|
||
{
|
||
QUIT;
|
||
frame = get_prev_frame (frame);
|
||
}
|
||
while (frame != NULL && FRAME_LOCALS_ADDRESS (frame) != target_link);
|
||
|
||
if (frame == NULL)
|
||
break;
|
||
|
||
block = get_frame_block (frame, 0);
|
||
while (block != NULL && block_function (block) != NULL && ndefns == 0)
|
||
{
|
||
ada_add_block_symbols (block, name, domain, NULL, wild_match);
|
||
|
||
block = BLOCK_SUPERBLOCK (block);
|
||
}
|
||
}
|
||
|
||
do_cleanups (old_chain);
|
||
#endif
|
||
}
|
||
|
||
/* True if TYPE is definitely an artificial type supplied to a symbol
|
||
* for which no debugging information was given in the symbol file. */
|
||
static int
|
||
is_nondebugging_type (struct type *type)
|
||
{
|
||
char *name = ada_type_name (type);
|
||
return (name != NULL && STREQ (name, "<variable, no debug info>"));
|
||
}
|
||
|
||
/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
|
||
* duplicate other symbols in the list. (The only case I know of where
|
||
* this happens is when object files containing stabs-in-ecoff are
|
||
* linked with files containing ordinary ecoff debugging symbols (or no
|
||
* debugging symbols)). Modifies SYMS to squeeze out deleted symbols,
|
||
* and applies the same modification to BLOCKS to maintain the
|
||
* correspondence between SYMS[i] and BLOCKS[i]. Returns the number
|
||
* of symbols in the modified list. */
|
||
static int
|
||
remove_extra_symbols (struct symbol **syms, struct block **blocks, int nsyms)
|
||
{
|
||
int i, j;
|
||
|
||
i = 0;
|
||
while (i < nsyms)
|
||
{
|
||
if (DEPRECATED_SYMBOL_NAME (syms[i]) != NULL
|
||
&& SYMBOL_CLASS (syms[i]) == LOC_STATIC
|
||
&& is_nondebugging_type (SYMBOL_TYPE (syms[i])))
|
||
{
|
||
for (j = 0; j < nsyms; j += 1)
|
||
{
|
||
if (i != j
|
||
&& DEPRECATED_SYMBOL_NAME (syms[j]) != NULL
|
||
&& STREQ (DEPRECATED_SYMBOL_NAME (syms[i]), DEPRECATED_SYMBOL_NAME (syms[j]))
|
||
&& SYMBOL_CLASS (syms[i]) == SYMBOL_CLASS (syms[j])
|
||
&& SYMBOL_VALUE_ADDRESS (syms[i])
|
||
== SYMBOL_VALUE_ADDRESS (syms[j]))
|
||
{
|
||
int k;
|
||
for (k = i + 1; k < nsyms; k += 1)
|
||
{
|
||
syms[k - 1] = syms[k];
|
||
blocks[k - 1] = blocks[k];
|
||
}
|
||
nsyms -= 1;
|
||
goto NextSymbol;
|
||
}
|
||
}
|
||
}
|
||
i += 1;
|
||
NextSymbol:
|
||
;
|
||
}
|
||
return nsyms;
|
||
}
|
||
|
||
/* Find symbols in DOMAIN matching NAME, in BLOCK0 and enclosing
|
||
scope and in global scopes, returning the number of matches. Sets
|
||
*SYMS to point to a vector of matching symbols, with *BLOCKS
|
||
pointing to the vector of corresponding blocks in which those
|
||
symbols reside. These two vectors are transient---good only to the
|
||
next call of ada_lookup_symbol_list. Any non-function/non-enumeral symbol
|
||
match within the nest of blocks whose innermost member is BLOCK0,
|
||
is the outermost match returned (no other matches in that or
|
||
enclosing blocks is returned). If there are any matches in or
|
||
surrounding BLOCK0, then these alone are returned. */
|
||
|
||
int
|
||
ada_lookup_symbol_list (const char *name, struct block *block0,
|
||
domain_enum domain, struct symbol ***syms,
|
||
struct block ***blocks)
|
||
{
|
||
struct symbol *sym;
|
||
struct symtab *s;
|
||
struct partial_symtab *ps;
|
||
struct blockvector *bv;
|
||
struct objfile *objfile;
|
||
struct block *b;
|
||
struct block *block;
|
||
struct minimal_symbol *msymbol;
|
||
int wild_match = (strstr (name, "__") == NULL);
|
||
int cacheIfUnique;
|
||
|
||
#ifdef TIMING
|
||
markTimeStart (0);
|
||
#endif
|
||
|
||
ndefns = 0;
|
||
cacheIfUnique = 0;
|
||
|
||
/* Search specified block and its superiors. */
|
||
|
||
block = block0;
|
||
while (block != NULL)
|
||
{
|
||
ada_add_block_symbols (block, name, domain, NULL, wild_match);
|
||
|
||
/* If we found a non-function match, assume that's the one. */
|
||
if (is_nonfunction (defn_symbols, ndefns))
|
||
goto done;
|
||
|
||
block = BLOCK_SUPERBLOCK (block);
|
||
}
|
||
|
||
/* If we found ANY matches in the specified BLOCK, we're done. */
|
||
|
||
if (ndefns > 0)
|
||
goto done;
|
||
|
||
cacheIfUnique = 1;
|
||
|
||
/* Now add symbols from all global blocks: symbol tables, minimal symbol
|
||
tables, and psymtab's */
|
||
|
||
ALL_SYMTABS (objfile, s)
|
||
{
|
||
QUIT;
|
||
if (!s->primary)
|
||
continue;
|
||
bv = BLOCKVECTOR (s);
|
||
block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
|
||
ada_add_block_symbols (block, name, domain, objfile, wild_match);
|
||
}
|
||
|
||
if (domain == VAR_DOMAIN)
|
||
{
|
||
ALL_MSYMBOLS (objfile, msymbol)
|
||
{
|
||
if (ada_match_name (DEPRECATED_SYMBOL_NAME (msymbol), name, wild_match))
|
||
{
|
||
switch (MSYMBOL_TYPE (msymbol))
|
||
{
|
||
case mst_solib_trampoline:
|
||
break;
|
||
default:
|
||
s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
|
||
if (s != NULL)
|
||
{
|
||
int old_ndefns = ndefns;
|
||
QUIT;
|
||
bv = BLOCKVECTOR (s);
|
||
block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
|
||
ada_add_block_symbols (block,
|
||
DEPRECATED_SYMBOL_NAME (msymbol),
|
||
domain, objfile, wild_match);
|
||
if (ndefns == old_ndefns)
|
||
{
|
||
block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
|
||
ada_add_block_symbols (block,
|
||
DEPRECATED_SYMBOL_NAME (msymbol),
|
||
domain, objfile,
|
||
wild_match);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
ALL_PSYMTABS (objfile, ps)
|
||
{
|
||
QUIT;
|
||
if (!ps->readin
|
||
&& ada_lookup_partial_symbol (ps, name, 1, domain, wild_match))
|
||
{
|
||
s = PSYMTAB_TO_SYMTAB (ps);
|
||
if (!s->primary)
|
||
continue;
|
||
bv = BLOCKVECTOR (s);
|
||
block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
|
||
ada_add_block_symbols (block, name, domain, objfile, wild_match);
|
||
}
|
||
}
|
||
|
||
/* Now add symbols from all per-file blocks if we've gotten no hits.
|
||
(Not strictly correct, but perhaps better than an error).
|
||
Do the symtabs first, then check the psymtabs */
|
||
|
||
if (ndefns == 0)
|
||
{
|
||
|
||
ALL_SYMTABS (objfile, s)
|
||
{
|
||
QUIT;
|
||
if (!s->primary)
|
||
continue;
|
||
bv = BLOCKVECTOR (s);
|
||
block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
|
||
ada_add_block_symbols (block, name, domain, objfile, wild_match);
|
||
}
|
||
|
||
ALL_PSYMTABS (objfile, ps)
|
||
{
|
||
QUIT;
|
||
if (!ps->readin
|
||
&& ada_lookup_partial_symbol (ps, name, 0, domain, wild_match))
|
||
{
|
||
s = PSYMTAB_TO_SYMTAB (ps);
|
||
bv = BLOCKVECTOR (s);
|
||
if (!s->primary)
|
||
continue;
|
||
block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
|
||
ada_add_block_symbols (block, name, domain,
|
||
objfile, wild_match);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Finally, we try to find NAME as a local symbol in some lexically
|
||
enclosing block. We do this last, expecting this case to be
|
||
rare. */
|
||
if (ndefns == 0)
|
||
{
|
||
add_symbols_from_enclosing_procs (name, domain, wild_match);
|
||
if (ndefns > 0)
|
||
goto done;
|
||
}
|
||
|
||
done:
|
||
ndefns = remove_extra_symbols (defn_symbols, defn_blocks, ndefns);
|
||
|
||
|
||
*syms = defn_symbols;
|
||
*blocks = defn_blocks;
|
||
#ifdef TIMING
|
||
markTimeStop (0);
|
||
#endif
|
||
return ndefns;
|
||
}
|
||
|
||
/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
|
||
* scope and in global scopes, or NULL if none. NAME is folded to
|
||
* lower case first, unless it is surrounded in single quotes.
|
||
* Otherwise, the result is as for ada_lookup_symbol_list, but is
|
||
* disambiguated by user query if needed. */
|
||
|
||
struct symbol *
|
||
ada_lookup_symbol (const char *name, struct block *block0,
|
||
domain_enum domain)
|
||
{
|
||
struct symbol **candidate_syms;
|
||
struct block **candidate_blocks;
|
||
int n_candidates;
|
||
|
||
n_candidates = ada_lookup_symbol_list (name,
|
||
block0, domain,
|
||
&candidate_syms, &candidate_blocks);
|
||
|
||
if (n_candidates == 0)
|
||
return NULL;
|
||
else if (n_candidates != 1)
|
||
user_select_syms (candidate_syms, candidate_blocks, n_candidates, 1);
|
||
|
||
return candidate_syms[0];
|
||
}
|
||
|
||
|
||
/* True iff STR is a possible encoded suffix of a normal Ada name
|
||
* that is to be ignored for matching purposes. Suffixes of parallel
|
||
* names (e.g., XVE) are not included here. Currently, the possible suffixes
|
||
* are given by the regular expression:
|
||
* (X[nb]*)?(__[0-9]+|\$[0-9]+|___(LJM|X([FDBUP].*|R[^T]?)))?$
|
||
*
|
||
*/
|
||
static int
|
||
is_name_suffix (const char *str)
|
||
{
|
||
int k;
|
||
if (str[0] == 'X')
|
||
{
|
||
str += 1;
|
||
while (str[0] != '_' && str[0] != '\0')
|
||
{
|
||
if (str[0] != 'n' && str[0] != 'b')
|
||
return 0;
|
||
str += 1;
|
||
}
|
||
}
|
||
if (str[0] == '\000')
|
||
return 1;
|
||
if (str[0] == '_')
|
||
{
|
||
if (str[1] != '_' || str[2] == '\000')
|
||
return 0;
|
||
if (str[2] == '_')
|
||
{
|
||
if (STREQ (str + 3, "LJM"))
|
||
return 1;
|
||
if (str[3] != 'X')
|
||
return 0;
|
||
if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' ||
|
||
str[4] == 'U' || str[4] == 'P')
|
||
return 1;
|
||
if (str[4] == 'R' && str[5] != 'T')
|
||
return 1;
|
||
return 0;
|
||
}
|
||
for (k = 2; str[k] != '\0'; k += 1)
|
||
if (!isdigit (str[k]))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
if (str[0] == '$' && str[1] != '\000')
|
||
{
|
||
for (k = 1; str[k] != '\0'; k += 1)
|
||
if (!isdigit (str[k]))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* True if NAME represents a name of the form A1.A2....An, n>=1 and
|
||
* PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
|
||
* informational suffixes of NAME (i.e., for which is_name_suffix is
|
||
* true). */
|
||
static int
|
||
wild_match (const char *patn, int patn_len, const char *name)
|
||
{
|
||
int name_len;
|
||
int s, e;
|
||
|
||
name_len = strlen (name);
|
||
if (name_len >= patn_len + 5 && STREQN (name, "_ada_", 5)
|
||
&& STREQN (patn, name + 5, patn_len)
|
||
&& is_name_suffix (name + patn_len + 5))
|
||
return 1;
|
||
|
||
while (name_len >= patn_len)
|
||
{
|
||
if (STREQN (patn, name, patn_len) && is_name_suffix (name + patn_len))
|
||
return 1;
|
||
do
|
||
{
|
||
name += 1;
|
||
name_len -= 1;
|
||
}
|
||
while (name_len > 0
|
||
&& name[0] != '.' && (name[0] != '_' || name[1] != '_'));
|
||
if (name_len <= 0)
|
||
return 0;
|
||
if (name[0] == '_')
|
||
{
|
||
if (!islower (name[2]))
|
||
return 0;
|
||
name += 2;
|
||
name_len -= 2;
|
||
}
|
||
else
|
||
{
|
||
if (!islower (name[1]))
|
||
return 0;
|
||
name += 1;
|
||
name_len -= 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
|
||
vector *defn_symbols, updating *defn_symbols (if necessary), *SZ (the size of
|
||
the vector *defn_symbols), and *ndefns (the number of symbols
|
||
currently stored in *defn_symbols). If WILD, treat as NAME with a
|
||
wildcard prefix. OBJFILE is the section containing BLOCK. */
|
||
|
||
static void
|
||
ada_add_block_symbols (struct block *block, const char *name,
|
||
domain_enum domain, struct objfile *objfile,
|
||
int wild)
|
||
{
|
||
int i;
|
||
int name_len = strlen (name);
|
||
/* A matching argument symbol, if any. */
|
||
struct symbol *arg_sym;
|
||
/* Set true when we find a matching non-argument symbol */
|
||
int found_sym;
|
||
struct symbol *sym;
|
||
|
||
arg_sym = NULL;
|
||
found_sym = 0;
|
||
if (wild)
|
||
{
|
||
struct symbol *sym;
|
||
ALL_BLOCK_SYMBOLS (block, i, sym)
|
||
{
|
||
if (SYMBOL_DOMAIN (sym) == domain &&
|
||
wild_match (name, name_len, DEPRECATED_SYMBOL_NAME (sym)))
|
||
{
|
||
switch (SYMBOL_CLASS (sym))
|
||
{
|
||
case LOC_ARG:
|
||
case LOC_LOCAL_ARG:
|
||
case LOC_REF_ARG:
|
||
case LOC_REGPARM:
|
||
case LOC_REGPARM_ADDR:
|
||
case LOC_BASEREG_ARG:
|
||
case LOC_COMPUTED_ARG:
|
||
arg_sym = sym;
|
||
break;
|
||
case LOC_UNRESOLVED:
|
||
continue;
|
||
default:
|
||
found_sym = 1;
|
||
fill_in_ada_prototype (sym);
|
||
add_defn_to_vec (fixup_symbol_section (sym, objfile), block);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
ALL_BLOCK_SYMBOLS (block, i, sym)
|
||
{
|
||
if (SYMBOL_DOMAIN (sym) == domain)
|
||
{
|
||
int cmp = strncmp (name, DEPRECATED_SYMBOL_NAME (sym), name_len);
|
||
|
||
if (cmp == 0
|
||
&& is_name_suffix (DEPRECATED_SYMBOL_NAME (sym) + name_len))
|
||
{
|
||
switch (SYMBOL_CLASS (sym))
|
||
{
|
||
case LOC_ARG:
|
||
case LOC_LOCAL_ARG:
|
||
case LOC_REF_ARG:
|
||
case LOC_REGPARM:
|
||
case LOC_REGPARM_ADDR:
|
||
case LOC_BASEREG_ARG:
|
||
case LOC_COMPUTED_ARG:
|
||
arg_sym = sym;
|
||
break;
|
||
case LOC_UNRESOLVED:
|
||
break;
|
||
default:
|
||
found_sym = 1;
|
||
fill_in_ada_prototype (sym);
|
||
add_defn_to_vec (fixup_symbol_section (sym, objfile),
|
||
block);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!found_sym && arg_sym != NULL)
|
||
{
|
||
fill_in_ada_prototype (arg_sym);
|
||
add_defn_to_vec (fixup_symbol_section (arg_sym, objfile), block);
|
||
}
|
||
|
||
if (!wild)
|
||
{
|
||
arg_sym = NULL;
|
||
found_sym = 0;
|
||
|
||
ALL_BLOCK_SYMBOLS (block, i, sym)
|
||
{
|
||
struct symbol *sym = BLOCK_SYM (block, i);
|
||
|
||
if (SYMBOL_DOMAIN (sym) == domain)
|
||
{
|
||
int cmp;
|
||
|
||
cmp = (int) '_' - (int) DEPRECATED_SYMBOL_NAME (sym)[0];
|
||
if (cmp == 0)
|
||
{
|
||
cmp = strncmp ("_ada_", DEPRECATED_SYMBOL_NAME (sym), 5);
|
||
if (cmp == 0)
|
||
cmp = strncmp (name, DEPRECATED_SYMBOL_NAME (sym) + 5, name_len);
|
||
}
|
||
|
||
if (cmp == 0
|
||
&& is_name_suffix (DEPRECATED_SYMBOL_NAME (sym) + name_len + 5))
|
||
{
|
||
switch (SYMBOL_CLASS (sym))
|
||
{
|
||
case LOC_ARG:
|
||
case LOC_LOCAL_ARG:
|
||
case LOC_REF_ARG:
|
||
case LOC_REGPARM:
|
||
case LOC_REGPARM_ADDR:
|
||
case LOC_BASEREG_ARG:
|
||
case LOC_COMPUTED_ARG:
|
||
arg_sym = sym;
|
||
break;
|
||
case LOC_UNRESOLVED:
|
||
break;
|
||
default:
|
||
found_sym = 1;
|
||
fill_in_ada_prototype (sym);
|
||
add_defn_to_vec (fixup_symbol_section (sym, objfile),
|
||
block);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* NOTE: This really shouldn't be needed for _ada_ symbols.
|
||
They aren't parameters, right? */
|
||
if (!found_sym && arg_sym != NULL)
|
||
{
|
||
fill_in_ada_prototype (arg_sym);
|
||
add_defn_to_vec (fixup_symbol_section (arg_sym, objfile), block);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Function Types */
|
||
|
||
/* Assuming that SYM is the symbol for a function, fill in its type
|
||
with prototype information, if it is not already there. */
|
||
|
||
static void
|
||
fill_in_ada_prototype (struct symbol *func)
|
||
{
|
||
struct block *b;
|
||
int nargs, nsyms;
|
||
int i;
|
||
struct type *ftype;
|
||
struct type *rtype;
|
||
size_t max_fields;
|
||
struct symbol *sym;
|
||
|
||
if (func == NULL
|
||
|| TYPE_CODE (SYMBOL_TYPE (func)) != TYPE_CODE_FUNC
|
||
|| TYPE_FIELDS (SYMBOL_TYPE (func)) != NULL)
|
||
return;
|
||
|
||
/* We make each function type unique, so that each may have its own */
|
||
/* parameter types. This particular way of doing so wastes space: */
|
||
/* it would be nicer to build the argument types while the original */
|
||
/* function type is being built (FIXME). */
|
||
rtype = check_typedef (TYPE_TARGET_TYPE (SYMBOL_TYPE (func)));
|
||
ftype = alloc_type (TYPE_OBJFILE (SYMBOL_TYPE (func)));
|
||
make_function_type (rtype, &ftype);
|
||
SYMBOL_TYPE (func) = ftype;
|
||
|
||
b = SYMBOL_BLOCK_VALUE (func);
|
||
|
||
nargs = 0;
|
||
max_fields = 8;
|
||
TYPE_FIELDS (ftype) =
|
||
(struct field *) xmalloc (sizeof (struct field) * max_fields);
|
||
ALL_BLOCK_SYMBOLS (b, i, sym)
|
||
{
|
||
GROW_VECT (TYPE_FIELDS (ftype), max_fields, nargs + 1);
|
||
|
||
switch (SYMBOL_CLASS (sym))
|
||
{
|
||
case LOC_REF_ARG:
|
||
case LOC_REGPARM_ADDR:
|
||
TYPE_FIELD_BITPOS (ftype, nargs) = nargs;
|
||
TYPE_FIELD_BITSIZE (ftype, nargs) = 0;
|
||
TYPE_FIELD_STATIC_KIND (ftype, nargs) = 0;
|
||
TYPE_FIELD_TYPE (ftype, nargs) =
|
||
lookup_pointer_type (check_typedef (SYMBOL_TYPE (sym)));
|
||
TYPE_FIELD_NAME (ftype, nargs) = DEPRECATED_SYMBOL_NAME (sym);
|
||
nargs += 1;
|
||
|
||
break;
|
||
|
||
case LOC_ARG:
|
||
case LOC_REGPARM:
|
||
case LOC_LOCAL_ARG:
|
||
case LOC_BASEREG_ARG:
|
||
case LOC_COMPUTED_ARG:
|
||
TYPE_FIELD_BITPOS (ftype, nargs) = nargs;
|
||
TYPE_FIELD_BITSIZE (ftype, nargs) = 0;
|
||
TYPE_FIELD_STATIC_KIND (ftype, nargs) = 0;
|
||
TYPE_FIELD_TYPE (ftype, nargs) = check_typedef (SYMBOL_TYPE (sym));
|
||
TYPE_FIELD_NAME (ftype, nargs) = DEPRECATED_SYMBOL_NAME (sym);
|
||
nargs += 1;
|
||
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Re-allocate fields vector; if there are no fields, make the */
|
||
/* fields pointer non-null anyway, to mark that this function type */
|
||
/* has been filled in. */
|
||
|
||
TYPE_NFIELDS (ftype) = nargs;
|
||
if (nargs == 0)
|
||
{
|
||
static struct field dummy_field = { 0, 0, 0, 0 };
|
||
xfree (TYPE_FIELDS (ftype));
|
||
TYPE_FIELDS (ftype) = &dummy_field;
|
||
}
|
||
else
|
||
{
|
||
struct field *fields =
|
||
(struct field *) TYPE_ALLOC (ftype, nargs * sizeof (struct field));
|
||
memcpy ((char *) fields,
|
||
(char *) TYPE_FIELDS (ftype), nargs * sizeof (struct field));
|
||
xfree (TYPE_FIELDS (ftype));
|
||
TYPE_FIELDS (ftype) = fields;
|
||
}
|
||
}
|
||
|
||
|
||
/* Breakpoint-related */
|
||
|
||
char no_symtab_msg[] =
|
||
"No symbol table is loaded. Use the \"file\" command.";
|
||
|
||
/* Assuming that LINE is pointing at the beginning of an argument to
|
||
'break', return a pointer to the delimiter for the initial segment
|
||
of that name. This is the first ':', ' ', or end of LINE.
|
||
*/
|
||
char *
|
||
ada_start_decode_line_1 (char *line)
|
||
{
|
||
/* [NOTE: strpbrk would be more elegant, but I am reluctant to be
|
||
the first to use such a library function in GDB code.] */
|
||
char *p;
|
||
for (p = line; *p != '\000' && *p != ' ' && *p != ':'; p += 1)
|
||
;
|
||
return p;
|
||
}
|
||
|
||
/* *SPEC points to a function and line number spec (as in a break
|
||
command), following any initial file name specification.
|
||
|
||
Return all symbol table/line specfications (sals) consistent with the
|
||
information in *SPEC and FILE_TABLE in the
|
||
following sense:
|
||
+ FILE_TABLE is null, or the sal refers to a line in the file
|
||
named by FILE_TABLE.
|
||
+ If *SPEC points to an argument with a trailing ':LINENUM',
|
||
then the sal refers to that line (or one following it as closely as
|
||
possible).
|
||
+ If *SPEC does not start with '*', the sal is in a function with
|
||
that name.
|
||
|
||
Returns with 0 elements if no matching non-minimal symbols found.
|
||
|
||
If *SPEC begins with a function name of the form <NAME>, then NAME
|
||
is taken as a literal name; otherwise the function name is subject
|
||
to the usual mangling.
|
||
|
||
*SPEC is updated to point after the function/line number specification.
|
||
|
||
FUNFIRSTLINE is non-zero if we desire the first line of real code
|
||
in each function (this is ignored in the presence of a LINENUM spec.).
|
||
|
||
If CANONICAL is non-NULL, and if any of the sals require a
|
||
'canonical line spec', then *CANONICAL is set to point to an array
|
||
of strings, corresponding to and equal in length to the returned
|
||
list of sals, such that (*CANONICAL)[i] is non-null and contains a
|
||
canonical line spec for the ith returned sal, if needed. If no
|
||
canonical line specs are required and CANONICAL is non-null,
|
||
*CANONICAL is set to NULL.
|
||
|
||
A 'canonical line spec' is simply a name (in the format of the
|
||
breakpoint command) that uniquely identifies a breakpoint position,
|
||
with no further contextual information or user selection. It is
|
||
needed whenever the file name, function name, and line number
|
||
information supplied is insufficient for this unique
|
||
identification. Currently overloaded functions, the name '*',
|
||
or static functions without a filename yield a canonical line spec.
|
||
The array and the line spec strings are allocated on the heap; it
|
||
is the caller's responsibility to free them. */
|
||
|
||
struct symtabs_and_lines
|
||
ada_finish_decode_line_1 (char **spec, struct symtab *file_table,
|
||
int funfirstline, char ***canonical)
|
||
{
|
||
struct symbol **symbols;
|
||
struct block **blocks;
|
||
struct block *block;
|
||
int n_matches, i, line_num;
|
||
struct symtabs_and_lines selected;
|
||
struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
|
||
char *name;
|
||
|
||
int len;
|
||
char *lower_name;
|
||
char *unquoted_name;
|
||
|
||
if (file_table == NULL)
|
||
block = get_selected_block (NULL);
|
||
else
|
||
block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (file_table), STATIC_BLOCK);
|
||
|
||
if (canonical != NULL)
|
||
*canonical = (char **) NULL;
|
||
|
||
name = *spec;
|
||
if (**spec == '*')
|
||
*spec += 1;
|
||
else
|
||
{
|
||
while (**spec != '\000' &&
|
||
!strchr (ada_completer_word_break_characters, **spec))
|
||
*spec += 1;
|
||
}
|
||
len = *spec - name;
|
||
|
||
line_num = -1;
|
||
if (file_table != NULL && (*spec)[0] == ':' && isdigit ((*spec)[1]))
|
||
{
|
||
line_num = strtol (*spec + 1, spec, 10);
|
||
while (**spec == ' ' || **spec == '\t')
|
||
*spec += 1;
|
||
}
|
||
|
||
if (name[0] == '*')
|
||
{
|
||
if (line_num == -1)
|
||
error ("Wild-card function with no line number or file name.");
|
||
|
||
return all_sals_for_line (file_table->filename, line_num, canonical);
|
||
}
|
||
|
||
if (name[0] == '\'')
|
||
{
|
||
name += 1;
|
||
len -= 2;
|
||
}
|
||
|
||
if (name[0] == '<')
|
||
{
|
||
unquoted_name = (char *) alloca (len - 1);
|
||
memcpy (unquoted_name, name + 1, len - 2);
|
||
unquoted_name[len - 2] = '\000';
|
||
lower_name = NULL;
|
||
}
|
||
else
|
||
{
|
||
unquoted_name = (char *) alloca (len + 1);
|
||
memcpy (unquoted_name, name, len);
|
||
unquoted_name[len] = '\000';
|
||
lower_name = (char *) alloca (len + 1);
|
||
for (i = 0; i < len; i += 1)
|
||
lower_name[i] = tolower (name[i]);
|
||
lower_name[len] = '\000';
|
||
}
|
||
|
||
n_matches = 0;
|
||
if (lower_name != NULL)
|
||
n_matches = ada_lookup_symbol_list (ada_mangle (lower_name), block,
|
||
VAR_DOMAIN, &symbols, &blocks);
|
||
if (n_matches == 0)
|
||
n_matches = ada_lookup_symbol_list (unquoted_name, block,
|
||
VAR_DOMAIN, &symbols, &blocks);
|
||
if (n_matches == 0 && line_num >= 0)
|
||
error ("No line number information found for %s.", unquoted_name);
|
||
else if (n_matches == 0)
|
||
{
|
||
#ifdef HPPA_COMPILER_BUG
|
||
/* FIXME: See comment in symtab.c::decode_line_1 */
|
||
#undef volatile
|
||
volatile struct symtab_and_line val;
|
||
#define volatile /*nothing */
|
||
#else
|
||
struct symtab_and_line val;
|
||
#endif
|
||
struct minimal_symbol *msymbol;
|
||
|
||
init_sal (&val);
|
||
|
||
msymbol = NULL;
|
||
if (lower_name != NULL)
|
||
msymbol = ada_lookup_minimal_symbol (ada_mangle (lower_name));
|
||
if (msymbol == NULL)
|
||
msymbol = ada_lookup_minimal_symbol (unquoted_name);
|
||
if (msymbol != NULL)
|
||
{
|
||
val.pc = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
val.section = SYMBOL_BFD_SECTION (msymbol);
|
||
if (funfirstline)
|
||
{
|
||
val.pc += FUNCTION_START_OFFSET;
|
||
SKIP_PROLOGUE (val.pc);
|
||
}
|
||
selected.sals = (struct symtab_and_line *)
|
||
xmalloc (sizeof (struct symtab_and_line));
|
||
selected.sals[0] = val;
|
||
selected.nelts = 1;
|
||
return selected;
|
||
}
|
||
|
||
if (!have_full_symbols () &&
|
||
!have_partial_symbols () && !have_minimal_symbols ())
|
||
error (no_symtab_msg);
|
||
|
||
error ("Function \"%s\" not defined.", unquoted_name);
|
||
return selected; /* for lint */
|
||
}
|
||
|
||
if (line_num >= 0)
|
||
{
|
||
return
|
||
find_sal_from_funcs_and_line (file_table->filename, line_num,
|
||
symbols, n_matches);
|
||
}
|
||
else
|
||
{
|
||
selected.nelts =
|
||
user_select_syms (symbols, blocks, n_matches, n_matches);
|
||
}
|
||
|
||
selected.sals = (struct symtab_and_line *)
|
||
xmalloc (sizeof (struct symtab_and_line) * selected.nelts);
|
||
memset (selected.sals, 0, selected.nelts * sizeof (selected.sals[i]));
|
||
make_cleanup (xfree, selected.sals);
|
||
|
||
i = 0;
|
||
while (i < selected.nelts)
|
||
{
|
||
if (SYMBOL_CLASS (symbols[i]) == LOC_BLOCK)
|
||
selected.sals[i] = find_function_start_sal (symbols[i], funfirstline);
|
||
else if (SYMBOL_LINE (symbols[i]) != 0)
|
||
{
|
||
selected.sals[i].symtab = symtab_for_sym (symbols[i]);
|
||
selected.sals[i].line = SYMBOL_LINE (symbols[i]);
|
||
}
|
||
else if (line_num >= 0)
|
||
{
|
||
/* Ignore this choice */
|
||
symbols[i] = symbols[selected.nelts - 1];
|
||
blocks[i] = blocks[selected.nelts - 1];
|
||
selected.nelts -= 1;
|
||
continue;
|
||
}
|
||
else
|
||
error ("Line number not known for symbol \"%s\"", unquoted_name);
|
||
i += 1;
|
||
}
|
||
|
||
if (canonical != NULL && (line_num >= 0 || n_matches > 1))
|
||
{
|
||
*canonical = (char **) xmalloc (sizeof (char *) * selected.nelts);
|
||
for (i = 0; i < selected.nelts; i += 1)
|
||
(*canonical)[i] =
|
||
extended_canonical_line_spec (selected.sals[i],
|
||
SYMBOL_PRINT_NAME (symbols[i]));
|
||
}
|
||
|
||
discard_cleanups (old_chain);
|
||
return selected;
|
||
}
|
||
|
||
/* The (single) sal corresponding to line LINE_NUM in a symbol table
|
||
with file name FILENAME that occurs in one of the functions listed
|
||
in SYMBOLS[0 .. NSYMS-1]. */
|
||
static struct symtabs_and_lines
|
||
find_sal_from_funcs_and_line (const char *filename, int line_num,
|
||
struct symbol **symbols, int nsyms)
|
||
{
|
||
struct symtabs_and_lines sals;
|
||
int best_index, best;
|
||
struct linetable *best_linetable;
|
||
struct objfile *objfile;
|
||
struct symtab *s;
|
||
struct symtab *best_symtab;
|
||
|
||
read_all_symtabs (filename);
|
||
|
||
best_index = 0;
|
||
best_linetable = NULL;
|
||
best_symtab = NULL;
|
||
best = 0;
|
||
ALL_SYMTABS (objfile, s)
|
||
{
|
||
struct linetable *l;
|
||
int ind, exact;
|
||
|
||
QUIT;
|
||
|
||
if (!STREQ (filename, s->filename))
|
||
continue;
|
||
l = LINETABLE (s);
|
||
ind = find_line_in_linetable (l, line_num, symbols, nsyms, &exact);
|
||
if (ind >= 0)
|
||
{
|
||
if (exact)
|
||
{
|
||
best_index = ind;
|
||
best_linetable = l;
|
||
best_symtab = s;
|
||
goto done;
|
||
}
|
||
if (best == 0 || l->item[ind].line < best)
|
||
{
|
||
best = l->item[ind].line;
|
||
best_index = ind;
|
||
best_linetable = l;
|
||
best_symtab = s;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (best == 0)
|
||
error ("Line number not found in designated function.");
|
||
|
||
done:
|
||
|
||
sals.nelts = 1;
|
||
sals.sals = (struct symtab_and_line *) xmalloc (sizeof (sals.sals[0]));
|
||
|
||
init_sal (&sals.sals[0]);
|
||
|
||
sals.sals[0].line = best_linetable->item[best_index].line;
|
||
sals.sals[0].pc = best_linetable->item[best_index].pc;
|
||
sals.sals[0].symtab = best_symtab;
|
||
|
||
return sals;
|
||
}
|
||
|
||
/* Return the index in LINETABLE of the best match for LINE_NUM whose
|
||
pc falls within one of the functions denoted by SYMBOLS[0..NSYMS-1].
|
||
Set *EXACTP to the 1 if the match is exact, and 0 otherwise. */
|
||
static int
|
||
find_line_in_linetable (struct linetable *linetable, int line_num,
|
||
struct symbol **symbols, int nsyms, int *exactp)
|
||
{
|
||
int i, len, best_index, best;
|
||
|
||
if (line_num <= 0 || linetable == NULL)
|
||
return -1;
|
||
|
||
len = linetable->nitems;
|
||
for (i = 0, best_index = -1, best = 0; i < len; i += 1)
|
||
{
|
||
int k;
|
||
struct linetable_entry *item = &(linetable->item[i]);
|
||
|
||
for (k = 0; k < nsyms; k += 1)
|
||
{
|
||
if (symbols[k] != NULL && SYMBOL_CLASS (symbols[k]) == LOC_BLOCK
|
||
&& item->pc >= BLOCK_START (SYMBOL_BLOCK_VALUE (symbols[k]))
|
||
&& item->pc < BLOCK_END (SYMBOL_BLOCK_VALUE (symbols[k])))
|
||
goto candidate;
|
||
}
|
||
continue;
|
||
|
||
candidate:
|
||
|
||
if (item->line == line_num)
|
||
{
|
||
*exactp = 1;
|
||
return i;
|
||
}
|
||
|
||
if (item->line > line_num && (best == 0 || item->line < best))
|
||
{
|
||
best = item->line;
|
||
best_index = i;
|
||
}
|
||
}
|
||
|
||
*exactp = 0;
|
||
return best_index;
|
||
}
|
||
|
||
/* Find the smallest k >= LINE_NUM such that k is a line number in
|
||
LINETABLE, and k falls strictly within a named function that begins at
|
||
or before LINE_NUM. Return -1 if there is no such k. */
|
||
static int
|
||
nearest_line_number_in_linetable (struct linetable *linetable, int line_num)
|
||
{
|
||
int i, len, best;
|
||
|
||
if (line_num <= 0 || linetable == NULL || linetable->nitems == 0)
|
||
return -1;
|
||
len = linetable->nitems;
|
||
|
||
i = 0;
|
||
best = INT_MAX;
|
||
while (i < len)
|
||
{
|
||
int k;
|
||
struct linetable_entry *item = &(linetable->item[i]);
|
||
|
||
if (item->line >= line_num && item->line < best)
|
||
{
|
||
char *func_name;
|
||
CORE_ADDR start, end;
|
||
|
||
func_name = NULL;
|
||
find_pc_partial_function (item->pc, &func_name, &start, &end);
|
||
|
||
if (func_name != NULL && item->pc < end)
|
||
{
|
||
if (item->line == line_num)
|
||
return line_num;
|
||
else
|
||
{
|
||
struct symbol *sym =
|
||
standard_lookup (func_name, VAR_DOMAIN);
|
||
if (is_plausible_func_for_line (sym, line_num))
|
||
best = item->line;
|
||
else
|
||
{
|
||
do
|
||
i += 1;
|
||
while (i < len && linetable->item[i].pc < end);
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
i += 1;
|
||
}
|
||
|
||
return (best == INT_MAX) ? -1 : best;
|
||
}
|
||
|
||
|
||
/* Return the next higher index, k, into LINETABLE such that k > IND,
|
||
entry k in LINETABLE has a line number equal to LINE_NUM, k
|
||
corresponds to a PC that is in a function different from that
|
||
corresponding to IND, and falls strictly within a named function
|
||
that begins at a line at or preceding STARTING_LINE.
|
||
Return -1 if there is no such k.
|
||
IND == -1 corresponds to no function. */
|
||
|
||
static int
|
||
find_next_line_in_linetable (struct linetable *linetable, int line_num,
|
||
int starting_line, int ind)
|
||
{
|
||
int i, len;
|
||
|
||
if (line_num <= 0 || linetable == NULL || ind >= linetable->nitems)
|
||
return -1;
|
||
len = linetable->nitems;
|
||
|
||
if (ind >= 0)
|
||
{
|
||
CORE_ADDR start, end;
|
||
|
||
if (find_pc_partial_function (linetable->item[ind].pc,
|
||
(char **) NULL, &start, &end))
|
||
{
|
||
while (ind < len && linetable->item[ind].pc < end)
|
||
ind += 1;
|
||
}
|
||
else
|
||
ind += 1;
|
||
}
|
||
else
|
||
ind = 0;
|
||
|
||
i = ind;
|
||
while (i < len)
|
||
{
|
||
int k;
|
||
struct linetable_entry *item = &(linetable->item[i]);
|
||
|
||
if (item->line >= line_num)
|
||
{
|
||
char *func_name;
|
||
CORE_ADDR start, end;
|
||
|
||
func_name = NULL;
|
||
find_pc_partial_function (item->pc, &func_name, &start, &end);
|
||
|
||
if (func_name != NULL && item->pc < end)
|
||
{
|
||
if (item->line == line_num)
|
||
{
|
||
struct symbol *sym =
|
||
standard_lookup (func_name, VAR_DOMAIN);
|
||
if (is_plausible_func_for_line (sym, starting_line))
|
||
return i;
|
||
else
|
||
{
|
||
while ((i + 1) < len && linetable->item[i + 1].pc < end)
|
||
i += 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
i += 1;
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* True iff function symbol SYM starts somewhere at or before line #
|
||
LINE_NUM. */
|
||
static int
|
||
is_plausible_func_for_line (struct symbol *sym, int line_num)
|
||
{
|
||
struct symtab_and_line start_sal;
|
||
|
||
if (sym == NULL)
|
||
return 0;
|
||
|
||
start_sal = find_function_start_sal (sym, 0);
|
||
|
||
return (start_sal.line != 0 && line_num >= start_sal.line);
|
||
}
|
||
|
||
static void
|
||
debug_print_lines (struct linetable *lt)
|
||
{
|
||
int i;
|
||
|
||
if (lt == NULL)
|
||
return;
|
||
|
||
fprintf (stderr, "\t");
|
||
for (i = 0; i < lt->nitems; i += 1)
|
||
fprintf (stderr, "(%d->%p) ", lt->item[i].line, (void *) lt->item[i].pc);
|
||
fprintf (stderr, "\n");
|
||
}
|
||
|
||
static void
|
||
debug_print_block (struct block *b)
|
||
{
|
||
int i;
|
||
struct symbol *i;
|
||
|
||
fprintf (stderr, "Block: %p; [0x%lx, 0x%lx]",
|
||
b, BLOCK_START (b), BLOCK_END (b));
|
||
if (BLOCK_FUNCTION (b) != NULL)
|
||
fprintf (stderr, " Function: %s", DEPRECATED_SYMBOL_NAME (BLOCK_FUNCTION (b)));
|
||
fprintf (stderr, "\n");
|
||
fprintf (stderr, "\t Superblock: %p\n", BLOCK_SUPERBLOCK (b));
|
||
fprintf (stderr, "\t Symbols:");
|
||
ALL_BLOCK_SYMBOLS (b, i, sym)
|
||
{
|
||
if (i > 0 && i % 4 == 0)
|
||
fprintf (stderr, "\n\t\t ");
|
||
fprintf (stderr, " %s", DEPRECATED_SYMBOL_NAME (sym));
|
||
}
|
||
fprintf (stderr, "\n");
|
||
}
|
||
|
||
static void
|
||
debug_print_blocks (struct blockvector *bv)
|
||
{
|
||
int i;
|
||
|
||
if (bv == NULL)
|
||
return;
|
||
for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); i += 1)
|
||
{
|
||
fprintf (stderr, "%6d. ", i);
|
||
debug_print_block (BLOCKVECTOR_BLOCK (bv, i));
|
||
}
|
||
}
|
||
|
||
static void
|
||
debug_print_symtab (struct symtab *s)
|
||
{
|
||
fprintf (stderr, "Symtab %p\n File: %s; Dir: %s\n", s,
|
||
s->filename, s->dirname);
|
||
fprintf (stderr, " Blockvector: %p, Primary: %d\n",
|
||
BLOCKVECTOR (s), s->primary);
|
||
debug_print_blocks (BLOCKVECTOR (s));
|
||
fprintf (stderr, " Line table: %p\n", LINETABLE (s));
|
||
debug_print_lines (LINETABLE (s));
|
||
}
|
||
|
||
/* Read in all symbol tables corresponding to partial symbol tables
|
||
with file name FILENAME. */
|
||
static void
|
||
read_all_symtabs (const char *filename)
|
||
{
|
||
struct partial_symtab *ps;
|
||
struct objfile *objfile;
|
||
|
||
ALL_PSYMTABS (objfile, ps)
|
||
{
|
||
QUIT;
|
||
|
||
if (STREQ (filename, ps->filename))
|
||
PSYMTAB_TO_SYMTAB (ps);
|
||
}
|
||
}
|
||
|
||
/* All sals corresponding to line LINE_NUM in a symbol table from file
|
||
FILENAME, as filtered by the user. If CANONICAL is not null, set
|
||
it to a corresponding array of canonical line specs. */
|
||
static struct symtabs_and_lines
|
||
all_sals_for_line (const char *filename, int line_num, char ***canonical)
|
||
{
|
||
struct symtabs_and_lines result;
|
||
struct objfile *objfile;
|
||
struct symtab *s;
|
||
struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
|
||
size_t len;
|
||
|
||
read_all_symtabs (filename);
|
||
|
||
result.sals =
|
||
(struct symtab_and_line *) xmalloc (4 * sizeof (result.sals[0]));
|
||
result.nelts = 0;
|
||
len = 4;
|
||
make_cleanup (free_current_contents, &result.sals);
|
||
|
||
ALL_SYMTABS (objfile, s)
|
||
{
|
||
int ind, target_line_num;
|
||
|
||
QUIT;
|
||
|
||
if (!STREQ (s->filename, filename))
|
||
continue;
|
||
|
||
target_line_num =
|
||
nearest_line_number_in_linetable (LINETABLE (s), line_num);
|
||
if (target_line_num == -1)
|
||
continue;
|
||
|
||
ind = -1;
|
||
while (1)
|
||
{
|
||
ind =
|
||
find_next_line_in_linetable (LINETABLE (s),
|
||
target_line_num, line_num, ind);
|
||
|
||
if (ind < 0)
|
||
break;
|
||
|
||
GROW_VECT (result.sals, len, result.nelts + 1);
|
||
init_sal (&result.sals[result.nelts]);
|
||
result.sals[result.nelts].line = LINETABLE (s)->item[ind].line;
|
||
result.sals[result.nelts].pc = LINETABLE (s)->item[ind].pc;
|
||
result.sals[result.nelts].symtab = s;
|
||
result.nelts += 1;
|
||
}
|
||
}
|
||
|
||
if (canonical != NULL || result.nelts > 1)
|
||
{
|
||
int k;
|
||
char **func_names = (char **) alloca (result.nelts * sizeof (char *));
|
||
int first_choice = (result.nelts > 1) ? 2 : 1;
|
||
int n;
|
||
int *choices = (int *) alloca (result.nelts * sizeof (int));
|
||
|
||
for (k = 0; k < result.nelts; k += 1)
|
||
{
|
||
find_pc_partial_function (result.sals[k].pc, &func_names[k],
|
||
(CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
|
||
if (func_names[k] == NULL)
|
||
error ("Could not find function for one or more breakpoints.");
|
||
}
|
||
|
||
if (result.nelts > 1)
|
||
{
|
||
printf_unfiltered ("[0] cancel\n");
|
||
if (result.nelts > 1)
|
||
printf_unfiltered ("[1] all\n");
|
||
for (k = 0; k < result.nelts; k += 1)
|
||
printf_unfiltered ("[%d] %s\n", k + first_choice,
|
||
ada_demangle (func_names[k]));
|
||
|
||
n = get_selections (choices, result.nelts, result.nelts,
|
||
result.nelts > 1, "instance-choice");
|
||
|
||
for (k = 0; k < n; k += 1)
|
||
{
|
||
result.sals[k] = result.sals[choices[k]];
|
||
func_names[k] = func_names[choices[k]];
|
||
}
|
||
result.nelts = n;
|
||
}
|
||
|
||
if (canonical != NULL)
|
||
{
|
||
*canonical = (char **) xmalloc (result.nelts * sizeof (char **));
|
||
make_cleanup (xfree, *canonical);
|
||
for (k = 0; k < result.nelts; k += 1)
|
||
{
|
||
(*canonical)[k] =
|
||
extended_canonical_line_spec (result.sals[k], func_names[k]);
|
||
if ((*canonical)[k] == NULL)
|
||
error ("Could not locate one or more breakpoints.");
|
||
make_cleanup (xfree, (*canonical)[k]);
|
||
}
|
||
}
|
||
}
|
||
|
||
discard_cleanups (old_chain);
|
||
return result;
|
||
}
|
||
|
||
|
||
/* A canonical line specification of the form FILE:NAME:LINENUM for
|
||
symbol table and line data SAL. NULL if insufficient
|
||
information. The caller is responsible for releasing any space
|
||
allocated. */
|
||
|
||
static char *
|
||
extended_canonical_line_spec (struct symtab_and_line sal, const char *name)
|
||
{
|
||
char *r;
|
||
|
||
if (sal.symtab == NULL || sal.symtab->filename == NULL || sal.line <= 0)
|
||
return NULL;
|
||
|
||
r = (char *) xmalloc (strlen (name) + strlen (sal.symtab->filename)
|
||
+ sizeof (sal.line) * 3 + 3);
|
||
sprintf (r, "%s:'%s':%d", sal.symtab->filename, name, sal.line);
|
||
return r;
|
||
}
|
||
|
||
#if 0
|
||
int begin_bnum = -1;
|
||
#endif
|
||
int begin_annotate_level = 0;
|
||
|
||
static void
|
||
begin_cleanup (void *dummy)
|
||
{
|
||
begin_annotate_level = 0;
|
||
}
|
||
|
||
static void
|
||
begin_command (char *args, int from_tty)
|
||
{
|
||
struct minimal_symbol *msym;
|
||
CORE_ADDR main_program_name_addr;
|
||
char main_program_name[1024];
|
||
struct cleanup *old_chain = make_cleanup (begin_cleanup, NULL);
|
||
begin_annotate_level = 2;
|
||
|
||
/* Check that there is a program to debug */
|
||
if (!have_full_symbols () && !have_partial_symbols ())
|
||
error ("No symbol table is loaded. Use the \"file\" command.");
|
||
|
||
/* Check that we are debugging an Ada program */
|
||
/* if (ada_update_initial_language (language_unknown, NULL) != language_ada)
|
||
error ("Cannot find the Ada initialization procedure. Is this an Ada main program?");
|
||
*/
|
||
/* FIXME: language_ada should be defined in defs.h */
|
||
|
||
/* Get the address of the name of the main procedure */
|
||
msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
|
||
|
||
if (msym != NULL)
|
||
{
|
||
main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
|
||
if (main_program_name_addr == 0)
|
||
error ("Invalid address for Ada main program name.");
|
||
|
||
/* Read the name of the main procedure */
|
||
extract_string (main_program_name_addr, main_program_name);
|
||
|
||
/* Put a temporary breakpoint in the Ada main program and run */
|
||
do_command ("tbreak ", main_program_name, 0);
|
||
do_command ("run ", args, 0);
|
||
}
|
||
else
|
||
{
|
||
/* If we could not find the symbol containing the name of the
|
||
main program, that means that the compiler that was used to build
|
||
was not recent enough. In that case, we fallback to the previous
|
||
mechanism, which is a little bit less reliable, but has proved to work
|
||
in most cases. The only cases where it will fail is when the user
|
||
has set some breakpoints which will be hit before the end of the
|
||
begin command processing (eg in the initialization code).
|
||
|
||
The begining of the main Ada subprogram is located by breaking
|
||
on the adainit procedure. Since we know that the binder generates
|
||
the call to this procedure exactly 2 calls before the call to the
|
||
Ada main subprogram, it is then easy to put a breakpoint on this
|
||
Ada main subprogram once we hit adainit.
|
||
*/
|
||
do_command ("tbreak adainit", 0);
|
||
do_command ("run ", args, 0);
|
||
do_command ("up", 0);
|
||
do_command ("tbreak +2", 0);
|
||
do_command ("continue", 0);
|
||
do_command ("step", 0);
|
||
}
|
||
|
||
do_cleanups (old_chain);
|
||
}
|
||
|
||
int
|
||
is_ada_runtime_file (char *filename)
|
||
{
|
||
return (STREQN (filename, "s-", 2) ||
|
||
STREQN (filename, "a-", 2) ||
|
||
STREQN (filename, "g-", 2) || STREQN (filename, "i-", 2));
|
||
}
|
||
|
||
/* find the first frame that contains debugging information and that is not
|
||
part of the Ada run-time, starting from fi and moving upward. */
|
||
|
||
int
|
||
find_printable_frame (struct frame_info *fi, int level)
|
||
{
|
||
struct symtab_and_line sal;
|
||
|
||
for (; fi != NULL; level += 1, fi = get_prev_frame (fi))
|
||
{
|
||
find_frame_sal (fi, &sal);
|
||
if (sal.symtab && !is_ada_runtime_file (sal.symtab->filename))
|
||
{
|
||
#if defined(__alpha__) && defined(__osf__) && !defined(VXWORKS_TARGET)
|
||
/* libpthread.so contains some debugging information that prevents us
|
||
from finding the right frame */
|
||
|
||
if (sal.symtab->objfile &&
|
||
STREQ (sal.symtab->objfile->name, "/usr/shlib/libpthread.so"))
|
||
continue;
|
||
#endif
|
||
deprecated_selected_frame = fi;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return level;
|
||
}
|
||
|
||
void
|
||
ada_report_exception_break (struct breakpoint *b)
|
||
{
|
||
/* FIXME: break_on_exception should be defined in breakpoint.h */
|
||
/* if (b->break_on_exception == 1)
|
||
{
|
||
/* Assume that cond has 16 elements, the 15th
|
||
being the exception *//*
|
||
if (b->cond && b->cond->nelts == 16)
|
||
{
|
||
ui_out_text (uiout, "on ");
|
||
ui_out_field_string (uiout, "exception",
|
||
SYMBOL_NAME (b->cond->elts[14].symbol));
|
||
}
|
||
else
|
||
ui_out_text (uiout, "on all exceptions");
|
||
}
|
||
else if (b->break_on_exception == 2)
|
||
ui_out_text (uiout, "on unhandled exception");
|
||
else if (b->break_on_exception == 3)
|
||
ui_out_text (uiout, "on assert failure");
|
||
#else
|
||
if (b->break_on_exception == 1)
|
||
{ */
|
||
/* Assume that cond has 16 elements, the 15th
|
||
being the exception *//*
|
||
if (b->cond && b->cond->nelts == 16)
|
||
{
|
||
fputs_filtered ("on ", gdb_stdout);
|
||
fputs_filtered (SYMBOL_NAME
|
||
(b->cond->elts[14].symbol), gdb_stdout);
|
||
}
|
||
else
|
||
fputs_filtered ("on all exceptions", gdb_stdout);
|
||
}
|
||
else if (b->break_on_exception == 2)
|
||
fputs_filtered ("on unhandled exception", gdb_stdout);
|
||
else if (b->break_on_exception == 3)
|
||
fputs_filtered ("on assert failure", gdb_stdout);
|
||
*/
|
||
}
|
||
|
||
int
|
||
ada_is_exception_sym (struct symbol *sym)
|
||
{
|
||
char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
|
||
|
||
return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
|
||
&& SYMBOL_CLASS (sym) != LOC_BLOCK
|
||
&& SYMBOL_CLASS (sym) != LOC_CONST
|
||
&& type_name != NULL && STREQ (type_name, "exception"));
|
||
}
|
||
|
||
int
|
||
ada_maybe_exception_partial_symbol (struct partial_symbol *sym)
|
||
{
|
||
return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
|
||
&& SYMBOL_CLASS (sym) != LOC_BLOCK
|
||
&& SYMBOL_CLASS (sym) != LOC_CONST);
|
||
}
|
||
|
||
/* If ARG points to an Ada exception or assert breakpoint, rewrite
|
||
into equivalent form. Return resulting argument string. Set
|
||
*BREAK_ON_EXCEPTIONP to 1 for ordinary break on exception, 2 for
|
||
break on unhandled, 3 for assert, 0 otherwise. */
|
||
char *
|
||
ada_breakpoint_rewrite (char *arg, int *break_on_exceptionp)
|
||
{
|
||
if (arg == NULL)
|
||
return arg;
|
||
*break_on_exceptionp = 0;
|
||
/* FIXME: language_ada should be defined in defs.h */
|
||
/* if (current_language->la_language == language_ada
|
||
&& STREQN (arg, "exception", 9) &&
|
||
(arg[9] == ' ' || arg[9] == '\t' || arg[9] == '\0'))
|
||
{
|
||
char *tok, *end_tok;
|
||
int toklen;
|
||
|
||
*break_on_exceptionp = 1;
|
||
|
||
tok = arg+9;
|
||
while (*tok == ' ' || *tok == '\t')
|
||
tok += 1;
|
||
|
||
end_tok = tok;
|
||
|
||
while (*end_tok != ' ' && *end_tok != '\t' && *end_tok != '\000')
|
||
end_tok += 1;
|
||
|
||
toklen = end_tok - tok;
|
||
|
||
arg = (char*) xmalloc (sizeof ("__gnat_raise_nodefer_with_msg if "
|
||
"long_integer(e) = long_integer(&)")
|
||
+ toklen + 1);
|
||
make_cleanup (xfree, arg);
|
||
if (toklen == 0)
|
||
strcpy (arg, "__gnat_raise_nodefer_with_msg");
|
||
else if (STREQN (tok, "unhandled", toklen))
|
||
{
|
||
*break_on_exceptionp = 2;
|
||
strcpy (arg, "__gnat_unhandled_exception");
|
||
}
|
||
else
|
||
{
|
||
sprintf (arg, "__gnat_raise_nodefer_with_msg if "
|
||
"long_integer(e) = long_integer(&%.*s)",
|
||
toklen, tok);
|
||
}
|
||
}
|
||
else if (current_language->la_language == language_ada
|
||
&& STREQN (arg, "assert", 6) &&
|
||
(arg[6] == ' ' || arg[6] == '\t' || arg[6] == '\0'))
|
||
{
|
||
char *tok = arg + 6;
|
||
|
||
*break_on_exceptionp = 3;
|
||
|
||
arg = (char*)
|
||
xmalloc (sizeof ("system__assertions__raise_assert_failure")
|
||
+ strlen (tok) + 1);
|
||
make_cleanup (xfree, arg);
|
||
sprintf (arg, "system__assertions__raise_assert_failure%s", tok);
|
||
}
|
||
*/
|
||
return arg;
|
||
}
|
||
|
||
|
||
/* Field Access */
|
||
|
||
/* True if field number FIELD_NUM in struct or union type TYPE is supposed
|
||
to be invisible to users. */
|
||
|
||
int
|
||
ada_is_ignored_field (struct type *type, int field_num)
|
||
{
|
||
if (field_num < 0 || field_num > TYPE_NFIELDS (type))
|
||
return 1;
|
||
else
|
||
{
|
||
const char *name = TYPE_FIELD_NAME (type, field_num);
|
||
return (name == NULL
|
||
|| (name[0] == '_' && !STREQN (name, "_parent", 7)));
|
||
}
|
||
}
|
||
|
||
/* True iff structure type TYPE has a tag field. */
|
||
|
||
int
|
||
ada_is_tagged_type (struct type *type)
|
||
{
|
||
if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
|
||
return 0;
|
||
|
||
return (ada_lookup_struct_elt_type (type, "_tag", 1, NULL) != NULL);
|
||
}
|
||
|
||
/* The type of the tag on VAL. */
|
||
|
||
struct type *
|
||
ada_tag_type (struct value *val)
|
||
{
|
||
return ada_lookup_struct_elt_type (VALUE_TYPE (val), "_tag", 0, NULL);
|
||
}
|
||
|
||
/* The value of the tag on VAL. */
|
||
|
||
struct value *
|
||
ada_value_tag (struct value *val)
|
||
{
|
||
return ada_value_struct_elt (val, "_tag", "record");
|
||
}
|
||
|
||
/* The parent type of TYPE, or NULL if none. */
|
||
|
||
struct type *
|
||
ada_parent_type (struct type *type)
|
||
{
|
||
int i;
|
||
|
||
CHECK_TYPEDEF (type);
|
||
|
||
if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
|
||
return NULL;
|
||
|
||
for (i = 0; i < TYPE_NFIELDS (type); i += 1)
|
||
if (ada_is_parent_field (type, i))
|
||
return check_typedef (TYPE_FIELD_TYPE (type, i));
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* True iff field number FIELD_NUM of structure type TYPE contains the
|
||
parent-type (inherited) fields of a derived type. Assumes TYPE is
|
||
a structure type with at least FIELD_NUM+1 fields. */
|
||
|
||
int
|
||
ada_is_parent_field (struct type *type, int field_num)
|
||
{
|
||
const char *name = TYPE_FIELD_NAME (check_typedef (type), field_num);
|
||
return (name != NULL &&
|
||
(STREQN (name, "PARENT", 6) || STREQN (name, "_parent", 7)));
|
||
}
|
||
|
||
/* True iff field number FIELD_NUM of structure type TYPE is a
|
||
transparent wrapper field (which should be silently traversed when doing
|
||
field selection and flattened when printing). Assumes TYPE is a
|
||
structure type with at least FIELD_NUM+1 fields. Such fields are always
|
||
structures. */
|
||
|
||
int
|
||
ada_is_wrapper_field (struct type *type, int field_num)
|
||
{
|
||
const char *name = TYPE_FIELD_NAME (type, field_num);
|
||
return (name != NULL
|
||
&& (STREQN (name, "PARENT", 6) || STREQ (name, "REP")
|
||
|| STREQN (name, "_parent", 7)
|
||
|| name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
|
||
}
|
||
|
||
/* True iff field number FIELD_NUM of structure or union type TYPE
|
||
is a variant wrapper. Assumes TYPE is a structure type with at least
|
||
FIELD_NUM+1 fields. */
|
||
|
||
int
|
||
ada_is_variant_part (struct type *type, int field_num)
|
||
{
|
||
struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
|
||
return (TYPE_CODE (field_type) == TYPE_CODE_UNION
|
||
|| (is_dynamic_field (type, field_num)
|
||
&& TYPE_CODE (TYPE_TARGET_TYPE (field_type)) ==
|
||
TYPE_CODE_UNION));
|
||
}
|
||
|
||
/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
|
||
whose discriminants are contained in the record type OUTER_TYPE,
|
||
returns the type of the controlling discriminant for the variant. */
|
||
|
||
struct type *
|
||
ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
|
||
{
|
||
char *name = ada_variant_discrim_name (var_type);
|
||
struct type *type = ada_lookup_struct_elt_type (outer_type, name, 1, NULL);
|
||
if (type == NULL)
|
||
return builtin_type_int;
|
||
else
|
||
return type;
|
||
}
|
||
|
||
/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
|
||
valid field number within it, returns 1 iff field FIELD_NUM of TYPE
|
||
represents a 'when others' clause; otherwise 0. */
|
||
|
||
int
|
||
ada_is_others_clause (struct type *type, int field_num)
|
||
{
|
||
const char *name = TYPE_FIELD_NAME (type, field_num);
|
||
return (name != NULL && name[0] == 'O');
|
||
}
|
||
|
||
/* Assuming that TYPE0 is the type of the variant part of a record,
|
||
returns the name of the discriminant controlling the variant. The
|
||
value is valid until the next call to ada_variant_discrim_name. */
|
||
|
||
char *
|
||
ada_variant_discrim_name (struct type *type0)
|
||
{
|
||
static char *result = NULL;
|
||
static size_t result_len = 0;
|
||
struct type *type;
|
||
const char *name;
|
||
const char *discrim_end;
|
||
const char *discrim_start;
|
||
|
||
if (TYPE_CODE (type0) == TYPE_CODE_PTR)
|
||
type = TYPE_TARGET_TYPE (type0);
|
||
else
|
||
type = type0;
|
||
|
||
name = ada_type_name (type);
|
||
|
||
if (name == NULL || name[0] == '\000')
|
||
return "";
|
||
|
||
for (discrim_end = name + strlen (name) - 6; discrim_end != name;
|
||
discrim_end -= 1)
|
||
{
|
||
if (STREQN (discrim_end, "___XVN", 6))
|
||
break;
|
||
}
|
||
if (discrim_end == name)
|
||
return "";
|
||
|
||
for (discrim_start = discrim_end; discrim_start != name + 3;
|
||
discrim_start -= 1)
|
||
{
|
||
if (discrim_start == name + 1)
|
||
return "";
|
||
if ((discrim_start > name + 3 && STREQN (discrim_start - 3, "___", 3))
|
||
|| discrim_start[-1] == '.')
|
||
break;
|
||
}
|
||
|
||
GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
|
||
strncpy (result, discrim_start, discrim_end - discrim_start);
|
||
result[discrim_end - discrim_start] = '\0';
|
||
return result;
|
||
}
|
||
|
||
/* Scan STR for a subtype-encoded number, beginning at position K. Put the
|
||
position of the character just past the number scanned in *NEW_K,
|
||
if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. Return 1
|
||
if there was a valid number at the given position, and 0 otherwise. A
|
||
"subtype-encoded" number consists of the absolute value in decimal,
|
||
followed by the letter 'm' to indicate a negative number. Assumes 0m
|
||
does not occur. */
|
||
|
||
int
|
||
ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
|
||
{
|
||
ULONGEST RU;
|
||
|
||
if (!isdigit (str[k]))
|
||
return 0;
|
||
|
||
/* Do it the hard way so as not to make any assumption about
|
||
the relationship of unsigned long (%lu scan format code) and
|
||
LONGEST. */
|
||
RU = 0;
|
||
while (isdigit (str[k]))
|
||
{
|
||
RU = RU * 10 + (str[k] - '0');
|
||
k += 1;
|
||
}
|
||
|
||
if (str[k] == 'm')
|
||
{
|
||
if (R != NULL)
|
||
*R = (-(LONGEST) (RU - 1)) - 1;
|
||
k += 1;
|
||
}
|
||
else if (R != NULL)
|
||
*R = (LONGEST) RU;
|
||
|
||
/* NOTE on the above: Technically, C does not say what the results of
|
||
- (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
|
||
number representable as a LONGEST (although either would probably work
|
||
in most implementations). When RU>0, the locution in the then branch
|
||
above is always equivalent to the negative of RU. */
|
||
|
||
if (new_k != NULL)
|
||
*new_k = k;
|
||
return 1;
|
||
}
|
||
|
||
/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
|
||
and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
|
||
in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
|
||
|
||
int
|
||
ada_in_variant (LONGEST val, struct type *type, int field_num)
|
||
{
|
||
const char *name = TYPE_FIELD_NAME (type, field_num);
|
||
int p;
|
||
|
||
p = 0;
|
||
while (1)
|
||
{
|
||
switch (name[p])
|
||
{
|
||
case '\0':
|
||
return 0;
|
||
case 'S':
|
||
{
|
||
LONGEST W;
|
||
if (!ada_scan_number (name, p + 1, &W, &p))
|
||
return 0;
|
||
if (val == W)
|
||
return 1;
|
||
break;
|
||
}
|
||
case 'R':
|
||
{
|
||
LONGEST L, U;
|
||
if (!ada_scan_number (name, p + 1, &L, &p)
|
||
|| name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
|
||
return 0;
|
||
if (val >= L && val <= U)
|
||
return 1;
|
||
break;
|
||
}
|
||
case 'O':
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Given a value ARG1 (offset by OFFSET bytes)
|
||
of a struct or union type ARG_TYPE,
|
||
extract and return the value of one of its (non-static) fields.
|
||
FIELDNO says which field. Differs from value_primitive_field only
|
||
in that it can handle packed values of arbitrary type. */
|
||
|
||
struct value *
|
||
ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
|
||
struct type *arg_type)
|
||
{
|
||
struct value *v;
|
||
struct type *type;
|
||
|
||
CHECK_TYPEDEF (arg_type);
|
||
type = TYPE_FIELD_TYPE (arg_type, fieldno);
|
||
|
||
/* Handle packed fields */
|
||
|
||
if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
|
||
{
|
||
int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
|
||
int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
|
||
|
||
return ada_value_primitive_packed_val (arg1, VALUE_CONTENTS (arg1),
|
||
offset + bit_pos / 8,
|
||
bit_pos % 8, bit_size, type);
|
||
}
|
||
else
|
||
return value_primitive_field (arg1, offset, fieldno, arg_type);
|
||
}
|
||
|
||
|
||
/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
|
||
and search in it assuming it has (class) type TYPE.
|
||
If found, return value, else return NULL.
|
||
|
||
Searches recursively through wrapper fields (e.g., '_parent'). */
|
||
|
||
struct value *
|
||
ada_search_struct_field (char *name, struct value *arg, int offset,
|
||
struct type *type)
|
||
{
|
||
int i;
|
||
CHECK_TYPEDEF (type);
|
||
|
||
for (i = TYPE_NFIELDS (type) - 1; i >= 0; i -= 1)
|
||
{
|
||
char *t_field_name = TYPE_FIELD_NAME (type, i);
|
||
|
||
if (t_field_name == NULL)
|
||
continue;
|
||
|
||
else if (field_name_match (t_field_name, name))
|
||
return ada_value_primitive_field (arg, offset, i, type);
|
||
|
||
else if (ada_is_wrapper_field (type, i))
|
||
{
|
||
struct value *v = ada_search_struct_field (name, arg,
|
||
offset +
|
||
TYPE_FIELD_BITPOS (type,
|
||
i) /
|
||
8,
|
||
TYPE_FIELD_TYPE (type,
|
||
i));
|
||
if (v != NULL)
|
||
return v;
|
||
}
|
||
|
||
else if (ada_is_variant_part (type, i))
|
||
{
|
||
int j;
|
||
struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i));
|
||
int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
|
||
|
||
for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
|
||
{
|
||
struct value *v = ada_search_struct_field (name, arg,
|
||
var_offset
|
||
+
|
||
TYPE_FIELD_BITPOS
|
||
(field_type, j) / 8,
|
||
TYPE_FIELD_TYPE
|
||
(field_type, j));
|
||
if (v != NULL)
|
||
return v;
|
||
}
|
||
}
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Given ARG, a value of type (pointer to a)* structure/union,
|
||
extract the component named NAME from the ultimate target structure/union
|
||
and return it as a value with its appropriate type.
|
||
|
||
The routine searches for NAME among all members of the structure itself
|
||
and (recursively) among all members of any wrapper members
|
||
(e.g., '_parent').
|
||
|
||
ERR is a name (for use in error messages) that identifies the class
|
||
of entity that ARG is supposed to be. */
|
||
|
||
struct value *
|
||
ada_value_struct_elt (struct value *arg, char *name, char *err)
|
||
{
|
||
struct type *t;
|
||
struct value *v;
|
||
|
||
arg = ada_coerce_ref (arg);
|
||
t = check_typedef (VALUE_TYPE (arg));
|
||
|
||
/* Follow pointers until we get to a non-pointer. */
|
||
|
||
while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
|
||
{
|
||
arg = ada_value_ind (arg);
|
||
t = check_typedef (VALUE_TYPE (arg));
|
||
}
|
||
|
||
if (TYPE_CODE (t) != TYPE_CODE_STRUCT && TYPE_CODE (t) != TYPE_CODE_UNION)
|
||
error ("Attempt to extract a component of a value that is not a %s.",
|
||
err);
|
||
|
||
v = ada_search_struct_field (name, arg, 0, t);
|
||
if (v == NULL)
|
||
error ("There is no member named %s.", name);
|
||
|
||
return v;
|
||
}
|
||
|
||
/* Given a type TYPE, look up the type of the component of type named NAME.
|
||
If DISPP is non-null, add its byte displacement from the beginning of a
|
||
structure (pointed to by a value) of type TYPE to *DISPP (does not
|
||
work for packed fields).
|
||
|
||
Matches any field whose name has NAME as a prefix, possibly
|
||
followed by "___".
|
||
|
||
TYPE can be either a struct or union, or a pointer or reference to
|
||
a struct or union. If it is a pointer or reference, its target
|
||
type is automatically used.
|
||
|
||
Looks recursively into variant clauses and parent types.
|
||
|
||
If NOERR is nonzero, return NULL if NAME is not suitably defined. */
|
||
|
||
struct type *
|
||
ada_lookup_struct_elt_type (struct type *type, char *name, int noerr,
|
||
int *dispp)
|
||
{
|
||
int i;
|
||
|
||
if (name == NULL)
|
||
goto BadName;
|
||
|
||
while (1)
|
||
{
|
||
CHECK_TYPEDEF (type);
|
||
if (TYPE_CODE (type) != TYPE_CODE_PTR
|
||
&& TYPE_CODE (type) != TYPE_CODE_REF)
|
||
break;
|
||
type = TYPE_TARGET_TYPE (type);
|
||
}
|
||
|
||
if (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
|
||
TYPE_CODE (type) != TYPE_CODE_UNION)
|
||
{
|
||
target_terminal_ours ();
|
||
gdb_flush (gdb_stdout);
|
||
fprintf_unfiltered (gdb_stderr, "Type ");
|
||
type_print (type, "", gdb_stderr, -1);
|
||
error (" is not a structure or union type");
|
||
}
|
||
|
||
type = to_static_fixed_type (type);
|
||
|
||
for (i = 0; i < TYPE_NFIELDS (type); i += 1)
|
||
{
|
||
char *t_field_name = TYPE_FIELD_NAME (type, i);
|
||
struct type *t;
|
||
int disp;
|
||
|
||
if (t_field_name == NULL)
|
||
continue;
|
||
|
||
else if (field_name_match (t_field_name, name))
|
||
{
|
||
if (dispp != NULL)
|
||
*dispp += TYPE_FIELD_BITPOS (type, i) / 8;
|
||
return check_typedef (TYPE_FIELD_TYPE (type, i));
|
||
}
|
||
|
||
else if (ada_is_wrapper_field (type, i))
|
||
{
|
||
disp = 0;
|
||
t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
|
||
1, &disp);
|
||
if (t != NULL)
|
||
{
|
||
if (dispp != NULL)
|
||
*dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
|
||
return t;
|
||
}
|
||
}
|
||
|
||
else if (ada_is_variant_part (type, i))
|
||
{
|
||
int j;
|
||
struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i));
|
||
|
||
for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
|
||
{
|
||
disp = 0;
|
||
t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
|
||
name, 1, &disp);
|
||
if (t != NULL)
|
||
{
|
||
if (dispp != NULL)
|
||
*dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
|
||
return t;
|
||
}
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
BadName:
|
||
if (!noerr)
|
||
{
|
||
target_terminal_ours ();
|
||
gdb_flush (gdb_stdout);
|
||
fprintf_unfiltered (gdb_stderr, "Type ");
|
||
type_print (type, "", gdb_stderr, -1);
|
||
fprintf_unfiltered (gdb_stderr, " has no component named ");
|
||
error ("%s", name == NULL ? "<null>" : name);
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
|
||
within a value of type OUTER_TYPE that is stored in GDB at
|
||
OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
|
||
numbering from 0) is applicable. Returns -1 if none are. */
|
||
|
||
int
|
||
ada_which_variant_applies (struct type *var_type, struct type *outer_type,
|
||
char *outer_valaddr)
|
||
{
|
||
int others_clause;
|
||
int i;
|
||
int disp;
|
||
struct type *discrim_type;
|
||
char *discrim_name = ada_variant_discrim_name (var_type);
|
||
LONGEST discrim_val;
|
||
|
||
disp = 0;
|
||
discrim_type =
|
||
ada_lookup_struct_elt_type (outer_type, discrim_name, 1, &disp);
|
||
if (discrim_type == NULL)
|
||
return -1;
|
||
discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
|
||
|
||
others_clause = -1;
|
||
for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
|
||
{
|
||
if (ada_is_others_clause (var_type, i))
|
||
others_clause = i;
|
||
else if (ada_in_variant (discrim_val, var_type, i))
|
||
return i;
|
||
}
|
||
|
||
return others_clause;
|
||
}
|
||
|
||
|
||
|
||
/* Dynamic-Sized Records */
|
||
|
||
/* Strategy: The type ostensibly attached to a value with dynamic size
|
||
(i.e., a size that is not statically recorded in the debugging
|
||
data) does not accurately reflect the size or layout of the value.
|
||
Our strategy is to convert these values to values with accurate,
|
||
conventional types that are constructed on the fly. */
|
||
|
||
/* There is a subtle and tricky problem here. In general, we cannot
|
||
determine the size of dynamic records without its data. However,
|
||
the 'struct value' data structure, which GDB uses to represent
|
||
quantities in the inferior process (the target), requires the size
|
||
of the type at the time of its allocation in order to reserve space
|
||
for GDB's internal copy of the data. That's why the
|
||
'to_fixed_xxx_type' routines take (target) addresses as parameters,
|
||
rather than struct value*s.
|
||
|
||
However, GDB's internal history variables ($1, $2, etc.) are
|
||
struct value*s containing internal copies of the data that are not, in
|
||
general, the same as the data at their corresponding addresses in
|
||
the target. Fortunately, the types we give to these values are all
|
||
conventional, fixed-size types (as per the strategy described
|
||
above), so that we don't usually have to perform the
|
||
'to_fixed_xxx_type' conversions to look at their values.
|
||
Unfortunately, there is one exception: if one of the internal
|
||
history variables is an array whose elements are unconstrained
|
||
records, then we will need to create distinct fixed types for each
|
||
element selected. */
|
||
|
||
/* The upshot of all of this is that many routines take a (type, host
|
||
address, target address) triple as arguments to represent a value.
|
||
The host address, if non-null, is supposed to contain an internal
|
||
copy of the relevant data; otherwise, the program is to consult the
|
||
target at the target address. */
|
||
|
||
/* Assuming that VAL0 represents a pointer value, the result of
|
||
dereferencing it. Differs from value_ind in its treatment of
|
||
dynamic-sized types. */
|
||
|
||
struct value *
|
||
ada_value_ind (struct value *val0)
|
||
{
|
||
struct value *val = unwrap_value (value_ind (val0));
|
||
return ada_to_fixed_value (VALUE_TYPE (val), 0,
|
||
VALUE_ADDRESS (val) + VALUE_OFFSET (val), val);
|
||
}
|
||
|
||
/* The value resulting from dereferencing any "reference to"
|
||
* qualifiers on VAL0. */
|
||
static struct value *
|
||
ada_coerce_ref (struct value *val0)
|
||
{
|
||
if (TYPE_CODE (VALUE_TYPE (val0)) == TYPE_CODE_REF)
|
||
{
|
||
struct value *val = val0;
|
||
COERCE_REF (val);
|
||
val = unwrap_value (val);
|
||
return ada_to_fixed_value (VALUE_TYPE (val), 0,
|
||
VALUE_ADDRESS (val) + VALUE_OFFSET (val),
|
||
val);
|
||
}
|
||
else
|
||
return val0;
|
||
}
|
||
|
||
/* Return OFF rounded upward if necessary to a multiple of
|
||
ALIGNMENT (a power of 2). */
|
||
|
||
static unsigned int
|
||
align_value (unsigned int off, unsigned int alignment)
|
||
{
|
||
return (off + alignment - 1) & ~(alignment - 1);
|
||
}
|
||
|
||
/* Return the additional bit offset required by field F of template
|
||
type TYPE. */
|
||
|
||
static unsigned int
|
||
field_offset (struct type *type, int f)
|
||
{
|
||
int n = TYPE_FIELD_BITPOS (type, f);
|
||
/* Kludge (temporary?) to fix problem with dwarf output. */
|
||
if (n < 0)
|
||
return (unsigned int) n & 0xffff;
|
||
else
|
||
return n;
|
||
}
|
||
|
||
|
||
/* Return the bit alignment required for field #F of template type TYPE. */
|
||
|
||
static unsigned int
|
||
field_alignment (struct type *type, int f)
|
||
{
|
||
const char *name = TYPE_FIELD_NAME (type, f);
|
||
int len = (name == NULL) ? 0 : strlen (name);
|
||
int align_offset;
|
||
|
||
if (len < 8 || !isdigit (name[len - 1]))
|
||
return TARGET_CHAR_BIT;
|
||
|
||
if (isdigit (name[len - 2]))
|
||
align_offset = len - 2;
|
||
else
|
||
align_offset = len - 1;
|
||
|
||
if (align_offset < 7 || !STREQN ("___XV", name + align_offset - 6, 5))
|
||
return TARGET_CHAR_BIT;
|
||
|
||
return atoi (name + align_offset) * TARGET_CHAR_BIT;
|
||
}
|
||
|
||
/* Find a type named NAME. Ignores ambiguity. */
|
||
struct type *
|
||
ada_find_any_type (const char *name)
|
||
{
|
||
struct symbol *sym;
|
||
|
||
sym = standard_lookup (name, VAR_DOMAIN);
|
||
if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
|
||
return SYMBOL_TYPE (sym);
|
||
|
||
sym = standard_lookup (name, STRUCT_DOMAIN);
|
||
if (sym != NULL)
|
||
return SYMBOL_TYPE (sym);
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Because of GNAT encoding conventions, several GDB symbols may match a
|
||
given type name. If the type denoted by TYPE0 is to be preferred to
|
||
that of TYPE1 for purposes of type printing, return non-zero;
|
||
otherwise return 0. */
|
||
int
|
||
ada_prefer_type (struct type *type0, struct type *type1)
|
||
{
|
||
if (type1 == NULL)
|
||
return 1;
|
||
else if (type0 == NULL)
|
||
return 0;
|
||
else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
|
||
return 1;
|
||
else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
|
||
return 0;
|
||
else if (ada_is_packed_array_type (type0))
|
||
return 1;
|
||
else if (ada_is_array_descriptor (type0)
|
||
&& !ada_is_array_descriptor (type1))
|
||
return 1;
|
||
else if (ada_renaming_type (type0) != NULL
|
||
&& ada_renaming_type (type1) == NULL)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* The name of TYPE, which is either its TYPE_NAME, or, if that is
|
||
null, its TYPE_TAG_NAME. Null if TYPE is null. */
|
||
char *
|
||
ada_type_name (struct type *type)
|
||
{
|
||
if (type == NULL)
|
||
return NULL;
|
||
else if (TYPE_NAME (type) != NULL)
|
||
return TYPE_NAME (type);
|
||
else
|
||
return TYPE_TAG_NAME (type);
|
||
}
|
||
|
||
/* Find a parallel type to TYPE whose name is formed by appending
|
||
SUFFIX to the name of TYPE. */
|
||
|
||
struct type *
|
||
ada_find_parallel_type (struct type *type, const char *suffix)
|
||
{
|
||
static char *name;
|
||
static size_t name_len = 0;
|
||
struct symbol **syms;
|
||
struct block **blocks;
|
||
int nsyms;
|
||
int len;
|
||
char *typename = ada_type_name (type);
|
||
|
||
if (typename == NULL)
|
||
return NULL;
|
||
|
||
len = strlen (typename);
|
||
|
||
GROW_VECT (name, name_len, len + strlen (suffix) + 1);
|
||
|
||
strcpy (name, typename);
|
||
strcpy (name + len, suffix);
|
||
|
||
return ada_find_any_type (name);
|
||
}
|
||
|
||
|
||
/* If TYPE is a variable-size record type, return the corresponding template
|
||
type describing its fields. Otherwise, return NULL. */
|
||
|
||
static struct type *
|
||
dynamic_template_type (struct type *type)
|
||
{
|
||
CHECK_TYPEDEF (type);
|
||
|
||
if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
|
||
|| ada_type_name (type) == NULL)
|
||
return NULL;
|
||
else
|
||
{
|
||
int len = strlen (ada_type_name (type));
|
||
if (len > 6 && STREQ (ada_type_name (type) + len - 6, "___XVE"))
|
||
return type;
|
||
else
|
||
return ada_find_parallel_type (type, "___XVE");
|
||
}
|
||
}
|
||
|
||
/* Assuming that TEMPL_TYPE is a union or struct type, returns
|
||
non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
|
||
|
||
static int
|
||
is_dynamic_field (struct type *templ_type, int field_num)
|
||
{
|
||
const char *name = TYPE_FIELD_NAME (templ_type, field_num);
|
||
return name != NULL
|
||
&& TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
|
||
&& strstr (name, "___XVL") != NULL;
|
||
}
|
||
|
||
/* Assuming that TYPE is a struct type, returns non-zero iff TYPE
|
||
contains a variant part. */
|
||
|
||
static int
|
||
contains_variant_part (struct type *type)
|
||
{
|
||
int f;
|
||
|
||
if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
|
||
|| TYPE_NFIELDS (type) <= 0)
|
||
return 0;
|
||
return ada_is_variant_part (type, TYPE_NFIELDS (type) - 1);
|
||
}
|
||
|
||
/* A record type with no fields, . */
|
||
static struct type *
|
||
empty_record (struct objfile *objfile)
|
||
{
|
||
struct type *type = alloc_type (objfile);
|
||
TYPE_CODE (type) = TYPE_CODE_STRUCT;
|
||
TYPE_NFIELDS (type) = 0;
|
||
TYPE_FIELDS (type) = NULL;
|
||
TYPE_NAME (type) = "<empty>";
|
||
TYPE_TAG_NAME (type) = NULL;
|
||
TYPE_FLAGS (type) = 0;
|
||
TYPE_LENGTH (type) = 0;
|
||
return type;
|
||
}
|
||
|
||
/* An ordinary record type (with fixed-length fields) that describes
|
||
the value of type TYPE at VALADDR or ADDRESS (see comments at
|
||
the beginning of this section) VAL according to GNAT conventions.
|
||
DVAL0 should describe the (portion of a) record that contains any
|
||
necessary discriminants. It should be NULL if VALUE_TYPE (VAL) is
|
||
an outer-level type (i.e., as opposed to a branch of a variant.) A
|
||
variant field (unless unchecked) is replaced by a particular branch
|
||
of the variant. */
|
||
/* NOTE: Limitations: For now, we assume that dynamic fields and
|
||
* variants occupy whole numbers of bytes. However, they need not be
|
||
* byte-aligned. */
|
||
|
||
static struct type *
|
||
template_to_fixed_record_type (struct type *type, char *valaddr,
|
||
CORE_ADDR address, struct value *dval0)
|
||
{
|
||
struct value *mark = value_mark ();
|
||
struct value *dval;
|
||
struct type *rtype;
|
||
int nfields, bit_len;
|
||
long off;
|
||
int f;
|
||
|
||
nfields = TYPE_NFIELDS (type);
|
||
rtype = alloc_type (TYPE_OBJFILE (type));
|
||
TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
|
||
INIT_CPLUS_SPECIFIC (rtype);
|
||
TYPE_NFIELDS (rtype) = nfields;
|
||
TYPE_FIELDS (rtype) = (struct field *)
|
||
TYPE_ALLOC (rtype, nfields * sizeof (struct field));
|
||
memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
|
||
TYPE_NAME (rtype) = ada_type_name (type);
|
||
TYPE_TAG_NAME (rtype) = NULL;
|
||
/* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in
|
||
gdbtypes.h */
|
||
/* TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE; */
|
||
|
||
off = 0;
|
||
bit_len = 0;
|
||
for (f = 0; f < nfields; f += 1)
|
||
{
|
||
int fld_bit_len, bit_incr;
|
||
off =
|
||
align_value (off,
|
||
field_alignment (type, f)) + TYPE_FIELD_BITPOS (type, f);
|
||
/* NOTE: used to use field_offset above, but that causes
|
||
* problems with really negative bit positions. So, let's
|
||
* rediscover why we needed field_offset and fix it properly. */
|
||
TYPE_FIELD_BITPOS (rtype, f) = off;
|
||
TYPE_FIELD_BITSIZE (rtype, f) = 0;
|
||
TYPE_FIELD_STATIC_KIND (rtype, f) = 0;
|
||
|
||
if (ada_is_variant_part (type, f))
|
||
{
|
||
struct type *branch_type;
|
||
|
||
if (dval0 == NULL)
|
||
dval = value_from_contents_and_address (rtype, valaddr, address);
|
||
else
|
||
dval = dval0;
|
||
|
||
branch_type =
|
||
to_fixed_variant_branch_type
|
||
(TYPE_FIELD_TYPE (type, f),
|
||
cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
|
||
cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
|
||
if (branch_type == NULL)
|
||
TYPE_NFIELDS (rtype) -= 1;
|
||
else
|
||
{
|
||
TYPE_FIELD_TYPE (rtype, f) = branch_type;
|
||
TYPE_FIELD_NAME (rtype, f) = "S";
|
||
}
|
||
bit_incr = 0;
|
||
fld_bit_len =
|
||
TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
|
||
}
|
||
else if (is_dynamic_field (type, f))
|
||
{
|
||
if (dval0 == NULL)
|
||
dval = value_from_contents_and_address (rtype, valaddr, address);
|
||
else
|
||
dval = dval0;
|
||
|
||
TYPE_FIELD_TYPE (rtype, f) =
|
||
ada_to_fixed_type
|
||
(ada_get_base_type
|
||
(TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
|
||
cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
|
||
cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
|
||
TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
|
||
bit_incr = fld_bit_len =
|
||
TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
|
||
}
|
||
else
|
||
{
|
||
TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
|
||
TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
|
||
if (TYPE_FIELD_BITSIZE (type, f) > 0)
|
||
bit_incr = fld_bit_len =
|
||
TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
|
||
else
|
||
bit_incr = fld_bit_len =
|
||
TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
|
||
}
|
||
if (off + fld_bit_len > bit_len)
|
||
bit_len = off + fld_bit_len;
|
||
off += bit_incr;
|
||
TYPE_LENGTH (rtype) = bit_len / TARGET_CHAR_BIT;
|
||
}
|
||
TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), TYPE_LENGTH (type));
|
||
|
||
value_free_to_mark (mark);
|
||
if (TYPE_LENGTH (rtype) > varsize_limit)
|
||
error ("record type with dynamic size is larger than varsize-limit");
|
||
return rtype;
|
||
}
|
||
|
||
/* As for template_to_fixed_record_type, but uses no run-time values.
|
||
As a result, this type can only be approximate, but that's OK,
|
||
since it is used only for type determinations. Works on both
|
||
structs and unions.
|
||
Representation note: to save space, we memoize the result of this
|
||
function in the TYPE_TARGET_TYPE of the template type. */
|
||
|
||
static struct type *
|
||
template_to_static_fixed_type (struct type *templ_type)
|
||
{
|
||
struct type *type;
|
||
int nfields;
|
||
int f;
|
||
|
||
if (TYPE_TARGET_TYPE (templ_type) != NULL)
|
||
return TYPE_TARGET_TYPE (templ_type);
|
||
|
||
nfields = TYPE_NFIELDS (templ_type);
|
||
TYPE_TARGET_TYPE (templ_type) = type =
|
||
alloc_type (TYPE_OBJFILE (templ_type));
|
||
TYPE_CODE (type) = TYPE_CODE (templ_type);
|
||
INIT_CPLUS_SPECIFIC (type);
|
||
TYPE_NFIELDS (type) = nfields;
|
||
TYPE_FIELDS (type) = (struct field *)
|
||
TYPE_ALLOC (type, nfields * sizeof (struct field));
|
||
memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
|
||
TYPE_NAME (type) = ada_type_name (templ_type);
|
||
TYPE_TAG_NAME (type) = NULL;
|
||
/* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
|
||
/* TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE; */
|
||
TYPE_LENGTH (type) = 0;
|
||
|
||
for (f = 0; f < nfields; f += 1)
|
||
{
|
||
TYPE_FIELD_BITPOS (type, f) = 0;
|
||
TYPE_FIELD_BITSIZE (type, f) = 0;
|
||
TYPE_FIELD_STATIC_KIND (type, f) = 0;
|
||
|
||
if (is_dynamic_field (templ_type, f))
|
||
{
|
||
TYPE_FIELD_TYPE (type, f) =
|
||
to_static_fixed_type (TYPE_TARGET_TYPE
|
||
(TYPE_FIELD_TYPE (templ_type, f)));
|
||
TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (templ_type, f);
|
||
}
|
||
else
|
||
{
|
||
TYPE_FIELD_TYPE (type, f) =
|
||
check_typedef (TYPE_FIELD_TYPE (templ_type, f));
|
||
TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (templ_type, f);
|
||
}
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* A revision of TYPE0 -- a non-dynamic-sized record with a variant
|
||
part -- in which the variant part is replaced with the appropriate
|
||
branch. */
|
||
static struct type *
|
||
to_record_with_fixed_variant_part (struct type *type, char *valaddr,
|
||
CORE_ADDR address, struct value *dval)
|
||
{
|
||
struct value *mark = value_mark ();
|
||
struct type *rtype;
|
||
struct type *branch_type;
|
||
int nfields = TYPE_NFIELDS (type);
|
||
|
||
if (dval == NULL)
|
||
return type;
|
||
|
||
rtype = alloc_type (TYPE_OBJFILE (type));
|
||
TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
|
||
INIT_CPLUS_SPECIFIC (type);
|
||
TYPE_NFIELDS (rtype) = TYPE_NFIELDS (type);
|
||
TYPE_FIELDS (rtype) =
|
||
(struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
|
||
memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
|
||
sizeof (struct field) * nfields);
|
||
TYPE_NAME (rtype) = ada_type_name (type);
|
||
TYPE_TAG_NAME (rtype) = NULL;
|
||
/* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
|
||
/* TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE; */
|
||
TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
|
||
|
||
branch_type =
|
||
to_fixed_variant_branch_type
|
||
(TYPE_FIELD_TYPE (type, nfields - 1),
|
||
cond_offset_host (valaddr,
|
||
TYPE_FIELD_BITPOS (type,
|
||
nfields - 1) / TARGET_CHAR_BIT),
|
||
cond_offset_target (address,
|
||
TYPE_FIELD_BITPOS (type,
|
||
nfields - 1) / TARGET_CHAR_BIT),
|
||
dval);
|
||
if (branch_type == NULL)
|
||
{
|
||
TYPE_NFIELDS (rtype) -= 1;
|
||
TYPE_LENGTH (rtype) -=
|
||
TYPE_LENGTH (TYPE_FIELD_TYPE (type, nfields - 1));
|
||
}
|
||
else
|
||
{
|
||
TYPE_FIELD_TYPE (rtype, nfields - 1) = branch_type;
|
||
TYPE_FIELD_NAME (rtype, nfields - 1) = "S";
|
||
TYPE_FIELD_BITSIZE (rtype, nfields - 1) = 0;
|
||
TYPE_FIELD_STATIC_KIND (rtype, nfields - 1) = 0;
|
||
TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
|
||
-TYPE_LENGTH (TYPE_FIELD_TYPE (type, nfields - 1));
|
||
}
|
||
|
||
return rtype;
|
||
}
|
||
|
||
/* An ordinary record type (with fixed-length fields) that describes
|
||
the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
|
||
beginning of this section]. Any necessary discriminants' values
|
||
should be in DVAL, a record value; it should be NULL if the object
|
||
at ADDR itself contains any necessary discriminant values. A
|
||
variant field (unless unchecked) is replaced by a particular branch
|
||
of the variant. */
|
||
|
||
static struct type *
|
||
to_fixed_record_type (struct type *type0, char *valaddr, CORE_ADDR address,
|
||
struct value *dval)
|
||
{
|
||
struct type *templ_type;
|
||
|
||
/* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
|
||
/* if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
|
||
return type0;
|
||
*/
|
||
templ_type = dynamic_template_type (type0);
|
||
|
||
if (templ_type != NULL)
|
||
return template_to_fixed_record_type (templ_type, valaddr, address, dval);
|
||
else if (contains_variant_part (type0))
|
||
return to_record_with_fixed_variant_part (type0, valaddr, address, dval);
|
||
else
|
||
{
|
||
/* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
|
||
/* TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE; */
|
||
return type0;
|
||
}
|
||
|
||
}
|
||
|
||
/* An ordinary record type (with fixed-length fields) that describes
|
||
the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
|
||
union type. Any necessary discriminants' values should be in DVAL,
|
||
a record value. That is, this routine selects the appropriate
|
||
branch of the union at ADDR according to the discriminant value
|
||
indicated in the union's type name. */
|
||
|
||
static struct type *
|
||
to_fixed_variant_branch_type (struct type *var_type0, char *valaddr,
|
||
CORE_ADDR address, struct value *dval)
|
||
{
|
||
int which;
|
||
struct type *templ_type;
|
||
struct type *var_type;
|
||
|
||
if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
|
||
var_type = TYPE_TARGET_TYPE (var_type0);
|
||
else
|
||
var_type = var_type0;
|
||
|
||
templ_type = ada_find_parallel_type (var_type, "___XVU");
|
||
|
||
if (templ_type != NULL)
|
||
var_type = templ_type;
|
||
|
||
which =
|
||
ada_which_variant_applies (var_type,
|
||
VALUE_TYPE (dval), VALUE_CONTENTS (dval));
|
||
|
||
if (which < 0)
|
||
return empty_record (TYPE_OBJFILE (var_type));
|
||
else if (is_dynamic_field (var_type, which))
|
||
return
|
||
to_fixed_record_type
|
||
(TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
|
||
valaddr, address, dval);
|
||
else if (contains_variant_part (TYPE_FIELD_TYPE (var_type, which)))
|
||
return
|
||
to_fixed_record_type
|
||
(TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
|
||
else
|
||
return TYPE_FIELD_TYPE (var_type, which);
|
||
}
|
||
|
||
/* Assuming that TYPE0 is an array type describing the type of a value
|
||
at ADDR, and that DVAL describes a record containing any
|
||
discriminants used in TYPE0, returns a type for the value that
|
||
contains no dynamic components (that is, no components whose sizes
|
||
are determined by run-time quantities). Unless IGNORE_TOO_BIG is
|
||
true, gives an error message if the resulting type's size is over
|
||
varsize_limit.
|
||
*/
|
||
|
||
static struct type *
|
||
to_fixed_array_type (struct type *type0, struct value *dval,
|
||
int ignore_too_big)
|
||
{
|
||
struct type *index_type_desc;
|
||
struct type *result;
|
||
|
||
/* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
|
||
/* if (ada_is_packed_array_type (type0) /* revisit? *//*
|
||
|| (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
|
||
return type0; */
|
||
|
||
index_type_desc = ada_find_parallel_type (type0, "___XA");
|
||
if (index_type_desc == NULL)
|
||
{
|
||
struct type *elt_type0 = check_typedef (TYPE_TARGET_TYPE (type0));
|
||
/* NOTE: elt_type---the fixed version of elt_type0---should never
|
||
* depend on the contents of the array in properly constructed
|
||
* debugging data. */
|
||
struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
|
||
|
||
if (elt_type0 == elt_type)
|
||
result = type0;
|
||
else
|
||
result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
|
||
elt_type, TYPE_INDEX_TYPE (type0));
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
struct type *elt_type0;
|
||
|
||
elt_type0 = type0;
|
||
for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
|
||
elt_type0 = TYPE_TARGET_TYPE (elt_type0);
|
||
|
||
/* NOTE: result---the fixed version of elt_type0---should never
|
||
* depend on the contents of the array in properly constructed
|
||
* debugging data. */
|
||
result = ada_to_fixed_type (check_typedef (elt_type0), 0, 0, dval);
|
||
for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
|
||
{
|
||
struct type *range_type =
|
||
to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
|
||
dval, TYPE_OBJFILE (type0));
|
||
result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
|
||
result, range_type);
|
||
}
|
||
if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
|
||
error ("array type with dynamic size is larger than varsize-limit");
|
||
}
|
||
|
||
/* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
|
||
/* TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE; */
|
||
return result;
|
||
}
|
||
|
||
|
||
/* A standard type (containing no dynamically sized components)
|
||
corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
|
||
DVAL describes a record containing any discriminants used in TYPE0,
|
||
and may be NULL if there are none. */
|
||
|
||
struct type *
|
||
ada_to_fixed_type (struct type *type, char *valaddr, CORE_ADDR address,
|
||
struct value *dval)
|
||
{
|
||
CHECK_TYPEDEF (type);
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
default:
|
||
return type;
|
||
case TYPE_CODE_STRUCT:
|
||
return to_fixed_record_type (type, valaddr, address, NULL);
|
||
case TYPE_CODE_ARRAY:
|
||
return to_fixed_array_type (type, dval, 0);
|
||
case TYPE_CODE_UNION:
|
||
if (dval == NULL)
|
||
return type;
|
||
else
|
||
return to_fixed_variant_branch_type (type, valaddr, address, dval);
|
||
}
|
||
}
|
||
|
||
/* A standard (static-sized) type corresponding as well as possible to
|
||
TYPE0, but based on no runtime data. */
|
||
|
||
static struct type *
|
||
to_static_fixed_type (struct type *type0)
|
||
{
|
||
struct type *type;
|
||
|
||
if (type0 == NULL)
|
||
return NULL;
|
||
|
||
/* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
|
||
/* if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
|
||
return type0;
|
||
*/
|
||
CHECK_TYPEDEF (type0);
|
||
|
||
switch (TYPE_CODE (type0))
|
||
{
|
||
default:
|
||
return type0;
|
||
case TYPE_CODE_STRUCT:
|
||
type = dynamic_template_type (type0);
|
||
if (type != NULL)
|
||
return template_to_static_fixed_type (type);
|
||
return type0;
|
||
case TYPE_CODE_UNION:
|
||
type = ada_find_parallel_type (type0, "___XVU");
|
||
if (type != NULL)
|
||
return template_to_static_fixed_type (type);
|
||
return type0;
|
||
}
|
||
}
|
||
|
||
/* A static approximation of TYPE with all type wrappers removed. */
|
||
static struct type *
|
||
static_unwrap_type (struct type *type)
|
||
{
|
||
if (ada_is_aligner_type (type))
|
||
{
|
||
struct type *type1 = TYPE_FIELD_TYPE (check_typedef (type), 0);
|
||
if (ada_type_name (type1) == NULL)
|
||
TYPE_NAME (type1) = ada_type_name (type);
|
||
|
||
return static_unwrap_type (type1);
|
||
}
|
||
else
|
||
{
|
||
struct type *raw_real_type = ada_get_base_type (type);
|
||
if (raw_real_type == type)
|
||
return type;
|
||
else
|
||
return to_static_fixed_type (raw_real_type);
|
||
}
|
||
}
|
||
|
||
/* In some cases, incomplete and private types require
|
||
cross-references that are not resolved as records (for example,
|
||
type Foo;
|
||
type FooP is access Foo;
|
||
V: FooP;
|
||
type Foo is array ...;
|
||
). In these cases, since there is no mechanism for producing
|
||
cross-references to such types, we instead substitute for FooP a
|
||
stub enumeration type that is nowhere resolved, and whose tag is
|
||
the name of the actual type. Call these types "non-record stubs". */
|
||
|
||
/* A type equivalent to TYPE that is not a non-record stub, if one
|
||
exists, otherwise TYPE. */
|
||
struct type *
|
||
ada_completed_type (struct type *type)
|
||
{
|
||
CHECK_TYPEDEF (type);
|
||
if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
|
||
|| (TYPE_FLAGS (type) & TYPE_FLAG_STUB) == 0
|
||
|| TYPE_TAG_NAME (type) == NULL)
|
||
return type;
|
||
else
|
||
{
|
||
char *name = TYPE_TAG_NAME (type);
|
||
struct type *type1 = ada_find_any_type (name);
|
||
return (type1 == NULL) ? type : type1;
|
||
}
|
||
}
|
||
|
||
/* A value representing the data at VALADDR/ADDRESS as described by
|
||
type TYPE0, but with a standard (static-sized) type that correctly
|
||
describes it. If VAL0 is not NULL and TYPE0 already is a standard
|
||
type, then return VAL0 [this feature is simply to avoid redundant
|
||
creation of struct values]. */
|
||
|
||
struct value *
|
||
ada_to_fixed_value (struct type *type0, char *valaddr, CORE_ADDR address,
|
||
struct value *val0)
|
||
{
|
||
struct type *type = ada_to_fixed_type (type0, valaddr, address, NULL);
|
||
if (type == type0 && val0 != NULL)
|
||
return val0;
|
||
else
|
||
return value_from_contents_and_address (type, valaddr, address);
|
||
}
|
||
|
||
/* A value representing VAL, but with a standard (static-sized) type
|
||
chosen to approximate the real type of VAL as well as possible, but
|
||
without consulting any runtime values. For Ada dynamic-sized
|
||
types, therefore, the type of the result is likely to be inaccurate. */
|
||
|
||
struct value *
|
||
ada_to_static_fixed_value (struct value *val)
|
||
{
|
||
struct type *type =
|
||
to_static_fixed_type (static_unwrap_type (VALUE_TYPE (val)));
|
||
if (type == VALUE_TYPE (val))
|
||
return val;
|
||
else
|
||
return coerce_unspec_val_to_type (val, 0, type);
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
/* Attributes */
|
||
|
||
/* Table mapping attribute numbers to names */
|
||
/* NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h */
|
||
|
||
static const char *attribute_names[] = {
|
||
"<?>",
|
||
|
||
"first",
|
||
"last",
|
||
"length",
|
||
"image",
|
||
"img",
|
||
"max",
|
||
"min",
|
||
"pos" "tag",
|
||
"val",
|
||
|
||
0
|
||
};
|
||
|
||
const char *
|
||
ada_attribute_name (int n)
|
||
{
|
||
if (n > 0 && n < (int) ATR_END)
|
||
return attribute_names[n];
|
||
else
|
||
return attribute_names[0];
|
||
}
|
||
|
||
/* Evaluate the 'POS attribute applied to ARG. */
|
||
|
||
static struct value *
|
||
value_pos_atr (struct value *arg)
|
||
{
|
||
struct type *type = VALUE_TYPE (arg);
|
||
|
||
if (!discrete_type_p (type))
|
||
error ("'POS only defined on discrete types");
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_ENUM)
|
||
{
|
||
int i;
|
||
LONGEST v = value_as_long (arg);
|
||
|
||
for (i = 0; i < TYPE_NFIELDS (type); i += 1)
|
||
{
|
||
if (v == TYPE_FIELD_BITPOS (type, i))
|
||
return value_from_longest (builtin_type_ada_int, i);
|
||
}
|
||
error ("enumeration value is invalid: can't find 'POS");
|
||
}
|
||
else
|
||
return value_from_longest (builtin_type_ada_int, value_as_long (arg));
|
||
}
|
||
|
||
/* Evaluate the TYPE'VAL attribute applied to ARG. */
|
||
|
||
static struct value *
|
||
value_val_atr (struct type *type, struct value *arg)
|
||
{
|
||
if (!discrete_type_p (type))
|
||
error ("'VAL only defined on discrete types");
|
||
if (!integer_type_p (VALUE_TYPE (arg)))
|
||
error ("'VAL requires integral argument");
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_ENUM)
|
||
{
|
||
long pos = value_as_long (arg);
|
||
if (pos < 0 || pos >= TYPE_NFIELDS (type))
|
||
error ("argument to 'VAL out of range");
|
||
return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
|
||
}
|
||
else
|
||
return value_from_longest (type, value_as_long (arg));
|
||
}
|
||
|
||
|
||
/* Evaluation */
|
||
|
||
/* True if TYPE appears to be an Ada character type.
|
||
* [At the moment, this is true only for Character and Wide_Character;
|
||
* It is a heuristic test that could stand improvement]. */
|
||
|
||
int
|
||
ada_is_character_type (struct type *type)
|
||
{
|
||
const char *name = ada_type_name (type);
|
||
return
|
||
name != NULL
|
||
&& (TYPE_CODE (type) == TYPE_CODE_CHAR
|
||
|| TYPE_CODE (type) == TYPE_CODE_INT
|
||
|| TYPE_CODE (type) == TYPE_CODE_RANGE)
|
||
&& (STREQ (name, "character") || STREQ (name, "wide_character")
|
||
|| STREQ (name, "unsigned char"));
|
||
}
|
||
|
||
/* True if TYPE appears to be an Ada string type. */
|
||
|
||
int
|
||
ada_is_string_type (struct type *type)
|
||
{
|
||
CHECK_TYPEDEF (type);
|
||
if (type != NULL
|
||
&& TYPE_CODE (type) != TYPE_CODE_PTR
|
||
&& (ada_is_simple_array (type) || ada_is_array_descriptor (type))
|
||
&& ada_array_arity (type) == 1)
|
||
{
|
||
struct type *elttype = ada_array_element_type (type, 1);
|
||
|
||
return ada_is_character_type (elttype);
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* True if TYPE is a struct type introduced by the compiler to force the
|
||
alignment of a value. Such types have a single field with a
|
||
distinctive name. */
|
||
|
||
int
|
||
ada_is_aligner_type (struct type *type)
|
||
{
|
||
CHECK_TYPEDEF (type);
|
||
return (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
||
&& TYPE_NFIELDS (type) == 1
|
||
&& STREQ (TYPE_FIELD_NAME (type, 0), "F"));
|
||
}
|
||
|
||
/* If there is an ___XVS-convention type parallel to SUBTYPE, return
|
||
the parallel type. */
|
||
|
||
struct type *
|
||
ada_get_base_type (struct type *raw_type)
|
||
{
|
||
struct type *real_type_namer;
|
||
struct type *raw_real_type;
|
||
struct type *real_type;
|
||
|
||
if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
|
||
return raw_type;
|
||
|
||
real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
|
||
if (real_type_namer == NULL
|
||
|| TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
|
||
|| TYPE_NFIELDS (real_type_namer) != 1)
|
||
return raw_type;
|
||
|
||
raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
|
||
if (raw_real_type == NULL)
|
||
return raw_type;
|
||
else
|
||
return raw_real_type;
|
||
}
|
||
|
||
/* The type of value designated by TYPE, with all aligners removed. */
|
||
|
||
struct type *
|
||
ada_aligned_type (struct type *type)
|
||
{
|
||
if (ada_is_aligner_type (type))
|
||
return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
|
||
else
|
||
return ada_get_base_type (type);
|
||
}
|
||
|
||
|
||
/* The address of the aligned value in an object at address VALADDR
|
||
having type TYPE. Assumes ada_is_aligner_type (TYPE). */
|
||
|
||
char *
|
||
ada_aligned_value_addr (struct type *type, char *valaddr)
|
||
{
|
||
if (ada_is_aligner_type (type))
|
||
return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
|
||
valaddr +
|
||
TYPE_FIELD_BITPOS (type,
|
||
0) / TARGET_CHAR_BIT);
|
||
else
|
||
return valaddr;
|
||
}
|
||
|
||
/* The printed representation of an enumeration literal with encoded
|
||
name NAME. The value is good to the next call of ada_enum_name. */
|
||
const char *
|
||
ada_enum_name (const char *name)
|
||
{
|
||
char *tmp;
|
||
|
||
while (1)
|
||
{
|
||
if ((tmp = strstr (name, "__")) != NULL)
|
||
name = tmp + 2;
|
||
else if ((tmp = strchr (name, '.')) != NULL)
|
||
name = tmp + 1;
|
||
else
|
||
break;
|
||
}
|
||
|
||
if (name[0] == 'Q')
|
||
{
|
||
static char result[16];
|
||
int v;
|
||
if (name[1] == 'U' || name[1] == 'W')
|
||
{
|
||
if (sscanf (name + 2, "%x", &v) != 1)
|
||
return name;
|
||
}
|
||
else
|
||
return name;
|
||
|
||
if (isascii (v) && isprint (v))
|
||
sprintf (result, "'%c'", v);
|
||
else if (name[1] == 'U')
|
||
sprintf (result, "[\"%02x\"]", v);
|
||
else
|
||
sprintf (result, "[\"%04x\"]", v);
|
||
|
||
return result;
|
||
}
|
||
else
|
||
return name;
|
||
}
|
||
|
||
static struct value *
|
||
evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
|
||
enum noside noside)
|
||
{
|
||
return (*exp->language_defn->evaluate_exp) (expect_type, exp, pos, noside);
|
||
}
|
||
|
||
/* Evaluate the subexpression of EXP starting at *POS as for
|
||
evaluate_type, updating *POS to point just past the evaluated
|
||
expression. */
|
||
|
||
static struct value *
|
||
evaluate_subexp_type (struct expression *exp, int *pos)
|
||
{
|
||
return (*exp->language_defn->evaluate_exp)
|
||
(NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
}
|
||
|
||
/* If VAL is wrapped in an aligner or subtype wrapper, return the
|
||
value it wraps. */
|
||
|
||
static struct value *
|
||
unwrap_value (struct value *val)
|
||
{
|
||
struct type *type = check_typedef (VALUE_TYPE (val));
|
||
if (ada_is_aligner_type (type))
|
||
{
|
||
struct value *v = value_struct_elt (&val, NULL, "F",
|
||
NULL, "internal structure");
|
||
struct type *val_type = check_typedef (VALUE_TYPE (v));
|
||
if (ada_type_name (val_type) == NULL)
|
||
TYPE_NAME (val_type) = ada_type_name (type);
|
||
|
||
return unwrap_value (v);
|
||
}
|
||
else
|
||
{
|
||
struct type *raw_real_type =
|
||
ada_completed_type (ada_get_base_type (type));
|
||
|
||
if (type == raw_real_type)
|
||
return val;
|
||
|
||
return
|
||
coerce_unspec_val_to_type
|
||
(val, 0, ada_to_fixed_type (raw_real_type, 0,
|
||
VALUE_ADDRESS (val) + VALUE_OFFSET (val),
|
||
NULL));
|
||
}
|
||
}
|
||
|
||
static struct value *
|
||
cast_to_fixed (struct type *type, struct value *arg)
|
||
{
|
||
LONGEST val;
|
||
|
||
if (type == VALUE_TYPE (arg))
|
||
return arg;
|
||
else if (ada_is_fixed_point_type (VALUE_TYPE (arg)))
|
||
val = ada_float_to_fixed (type,
|
||
ada_fixed_to_float (VALUE_TYPE (arg),
|
||
value_as_long (arg)));
|
||
else
|
||
{
|
||
DOUBLEST argd =
|
||
value_as_double (value_cast (builtin_type_double, value_copy (arg)));
|
||
val = ada_float_to_fixed (type, argd);
|
||
}
|
||
|
||
return value_from_longest (type, val);
|
||
}
|
||
|
||
static struct value *
|
||
cast_from_fixed_to_double (struct value *arg)
|
||
{
|
||
DOUBLEST val = ada_fixed_to_float (VALUE_TYPE (arg),
|
||
value_as_long (arg));
|
||
return value_from_double (builtin_type_double, val);
|
||
}
|
||
|
||
/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
|
||
* return the converted value. */
|
||
static struct value *
|
||
coerce_for_assign (struct type *type, struct value *val)
|
||
{
|
||
struct type *type2 = VALUE_TYPE (val);
|
||
if (type == type2)
|
||
return val;
|
||
|
||
CHECK_TYPEDEF (type2);
|
||
CHECK_TYPEDEF (type);
|
||
|
||
if (TYPE_CODE (type2) == TYPE_CODE_PTR
|
||
&& TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
val = ada_value_ind (val);
|
||
type2 = VALUE_TYPE (val);
|
||
}
|
||
|
||
if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
|
||
&& TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
|
||
|| TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
|
||
!= TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
|
||
error ("Incompatible types in assignment");
|
||
VALUE_TYPE (val) = type;
|
||
}
|
||
return val;
|
||
}
|
||
|
||
struct value *
|
||
ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
|
||
int *pos, enum noside noside)
|
||
{
|
||
enum exp_opcode op;
|
||
enum ada_attribute atr;
|
||
int tem, tem2, tem3;
|
||
int pc;
|
||
struct value *arg1 = NULL, *arg2 = NULL, *arg3;
|
||
struct type *type;
|
||
int nargs;
|
||
struct value **argvec;
|
||
|
||
pc = *pos;
|
||
*pos += 1;
|
||
op = exp->elts[pc].opcode;
|
||
|
||
switch (op)
|
||
{
|
||
default:
|
||
*pos -= 1;
|
||
return
|
||
unwrap_value (evaluate_subexp_standard
|
||
(expect_type, exp, pos, noside));
|
||
|
||
case UNOP_CAST:
|
||
(*pos) += 2;
|
||
type = exp->elts[pc + 1].type;
|
||
arg1 = evaluate_subexp (type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (type != check_typedef (VALUE_TYPE (arg1)))
|
||
{
|
||
if (ada_is_fixed_point_type (type))
|
||
arg1 = cast_to_fixed (type, arg1);
|
||
else if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
|
||
arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
|
||
else if (VALUE_LVAL (arg1) == lval_memory)
|
||
{
|
||
/* This is in case of the really obscure (and undocumented,
|
||
but apparently expected) case of (Foo) Bar.all, where Bar
|
||
is an integer constant and Foo is a dynamic-sized type.
|
||
If we don't do this, ARG1 will simply be relabeled with
|
||
TYPE. */
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (to_static_fixed_type (type), not_lval);
|
||
arg1 =
|
||
ada_to_fixed_value
|
||
(type, 0, VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), 0);
|
||
}
|
||
else
|
||
arg1 = value_cast (type, arg1);
|
||
}
|
||
return arg1;
|
||
|
||
/* FIXME: UNOP_QUAL should be defined in expression.h */
|
||
/* case UNOP_QUAL:
|
||
(*pos) += 2;
|
||
type = exp->elts[pc + 1].type;
|
||
return ada_evaluate_subexp (type, exp, pos, noside);
|
||
*/
|
||
case BINOP_ASSIGN:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL);
|
||
else
|
||
{
|
||
if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
|
||
arg2 = cast_to_fixed (VALUE_TYPE (arg1), arg2);
|
||
else if (ada_is_fixed_point_type (VALUE_TYPE (arg2)))
|
||
error
|
||
("Fixed-point values must be assigned to fixed-point variables");
|
||
else
|
||
arg2 = coerce_for_assign (VALUE_TYPE (arg1), arg2);
|
||
return ada_value_assign (arg1, arg2);
|
||
}
|
||
|
||
case BINOP_ADD:
|
||
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL);
|
||
else
|
||
{
|
||
if ((ada_is_fixed_point_type (VALUE_TYPE (arg1))
|
||
|| ada_is_fixed_point_type (VALUE_TYPE (arg2)))
|
||
&& VALUE_TYPE (arg1) != VALUE_TYPE (arg2))
|
||
error
|
||
("Operands of fixed-point addition must have the same type");
|
||
return value_cast (VALUE_TYPE (arg1), value_add (arg1, arg2));
|
||
}
|
||
|
||
case BINOP_SUB:
|
||
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL);
|
||
else
|
||
{
|
||
if ((ada_is_fixed_point_type (VALUE_TYPE (arg1))
|
||
|| ada_is_fixed_point_type (VALUE_TYPE (arg2)))
|
||
&& VALUE_TYPE (arg1) != VALUE_TYPE (arg2))
|
||
error
|
||
("Operands of fixed-point subtraction must have the same type");
|
||
return value_cast (VALUE_TYPE (arg1), value_sub (arg1, arg2));
|
||
}
|
||
|
||
case BINOP_MUL:
|
||
case BINOP_DIV:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL);
|
||
else
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS
|
||
&& (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
|
||
return value_zero (VALUE_TYPE (arg1), not_lval);
|
||
else
|
||
{
|
||
if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
|
||
arg1 = cast_from_fixed_to_double (arg1);
|
||
if (ada_is_fixed_point_type (VALUE_TYPE (arg2)))
|
||
arg2 = cast_from_fixed_to_double (arg2);
|
||
return value_binop (arg1, arg2, op);
|
||
}
|
||
|
||
case UNOP_NEG:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (unop_user_defined_p (op, arg1))
|
||
return value_x_unop (arg1, op, EVAL_NORMAL);
|
||
else if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
|
||
return value_cast (VALUE_TYPE (arg1), value_neg (arg1));
|
||
else
|
||
return value_neg (arg1);
|
||
|
||
/* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
|
||
/* case OP_UNRESOLVED_VALUE:
|
||
/* Only encountered when an unresolved symbol occurs in a
|
||
context other than a function call, in which case, it is
|
||
illegal. *//*
|
||
(*pos) += 3;
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
else
|
||
error ("Unexpected unresolved symbol, %s, during evaluation",
|
||
ada_demangle (exp->elts[pc + 2].name));
|
||
*/
|
||
case OP_VAR_VALUE:
|
||
*pos -= 1;
|
||
if (noside == EVAL_SKIP)
|
||
{
|
||
*pos += 4;
|
||
goto nosideret;
|
||
}
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
*pos += 4;
|
||
return value_zero
|
||
(to_static_fixed_type
|
||
(static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
|
||
not_lval);
|
||
}
|
||
else
|
||
{
|
||
arg1 =
|
||
unwrap_value (evaluate_subexp_standard
|
||
(expect_type, exp, pos, noside));
|
||
return ada_to_fixed_value (VALUE_TYPE (arg1), 0,
|
||
VALUE_ADDRESS (arg1) +
|
||
VALUE_OFFSET (arg1), arg1);
|
||
}
|
||
|
||
case OP_ARRAY:
|
||
(*pos) += 3;
|
||
tem2 = longest_to_int (exp->elts[pc + 1].longconst);
|
||
tem3 = longest_to_int (exp->elts[pc + 2].longconst);
|
||
nargs = tem3 - tem2 + 1;
|
||
type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
|
||
|
||
argvec =
|
||
(struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
|
||
for (tem = 0; tem == 0 || tem < nargs; tem += 1)
|
||
/* At least one element gets inserted for the type */
|
||
{
|
||
/* Ensure that array expressions are coerced into pointer objects. */
|
||
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
}
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
return value_array (tem2, tem3, argvec);
|
||
|
||
case OP_FUNCALL:
|
||
(*pos) += 2;
|
||
|
||
/* Allocate arg vector, including space for the function to be
|
||
called in argvec[0] and a terminating NULL */
|
||
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
||
argvec =
|
||
(struct value * *) alloca (sizeof (struct value *) * (nargs + 2));
|
||
|
||
/* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
|
||
/* FIXME: name should be defined in expresion.h */
|
||
/* if (exp->elts[*pos].opcode == OP_UNRESOLVED_VALUE)
|
||
error ("Unexpected unresolved symbol, %s, during evaluation",
|
||
ada_demangle (exp->elts[pc + 5].name));
|
||
*/
|
||
if (0)
|
||
{
|
||
error ("unexpected code path, FIXME");
|
||
}
|
||
else
|
||
{
|
||
for (tem = 0; tem <= nargs; tem += 1)
|
||
argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
argvec[tem] = 0;
|
||
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
}
|
||
|
||
if (TYPE_CODE (VALUE_TYPE (argvec[0])) == TYPE_CODE_REF)
|
||
argvec[0] = value_addr (argvec[0]);
|
||
|
||
if (ada_is_packed_array_type (VALUE_TYPE (argvec[0])))
|
||
argvec[0] = ada_coerce_to_simple_array (argvec[0]);
|
||
|
||
type = check_typedef (VALUE_TYPE (argvec[0]));
|
||
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
||
{
|
||
switch (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (type))))
|
||
{
|
||
case TYPE_CODE_FUNC:
|
||
type = check_typedef (TYPE_TARGET_TYPE (type));
|
||
break;
|
||
case TYPE_CODE_ARRAY:
|
||
break;
|
||
case TYPE_CODE_STRUCT:
|
||
if (noside != EVAL_AVOID_SIDE_EFFECTS)
|
||
argvec[0] = ada_value_ind (argvec[0]);
|
||
type = check_typedef (TYPE_TARGET_TYPE (type));
|
||
break;
|
||
default:
|
||
error ("cannot subscript or call something of type `%s'",
|
||
ada_type_name (VALUE_TYPE (argvec[0])));
|
||
break;
|
||
}
|
||
}
|
||
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_FUNC:
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return allocate_value (TYPE_TARGET_TYPE (type));
|
||
return call_function_by_hand (argvec[0], nargs, argvec + 1);
|
||
case TYPE_CODE_STRUCT:
|
||
{
|
||
int arity = ada_array_arity (type);
|
||
type = ada_array_element_type (type, nargs);
|
||
if (type == NULL)
|
||
error ("cannot subscript or call a record");
|
||
if (arity != nargs)
|
||
error ("wrong number of subscripts; expecting %d", arity);
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return allocate_value (ada_aligned_type (type));
|
||
return
|
||
unwrap_value (ada_value_subscript
|
||
(argvec[0], nargs, argvec + 1));
|
||
}
|
||
case TYPE_CODE_ARRAY:
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
type = ada_array_element_type (type, nargs);
|
||
if (type == NULL)
|
||
error ("element type of array unknown");
|
||
else
|
||
return allocate_value (ada_aligned_type (type));
|
||
}
|
||
return
|
||
unwrap_value (ada_value_subscript
|
||
(ada_coerce_to_simple_array (argvec[0]),
|
||
nargs, argvec + 1));
|
||
case TYPE_CODE_PTR: /* Pointer to array */
|
||
type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
type = ada_array_element_type (type, nargs);
|
||
if (type == NULL)
|
||
error ("element type of array unknown");
|
||
else
|
||
return allocate_value (ada_aligned_type (type));
|
||
}
|
||
return
|
||
unwrap_value (ada_value_ptr_subscript (argvec[0], type,
|
||
nargs, argvec + 1));
|
||
|
||
default:
|
||
error ("Internal error in evaluate_subexp");
|
||
}
|
||
|
||
case TERNOP_SLICE:
|
||
{
|
||
struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
int lowbound
|
||
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
||
int upper
|
||
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
|
||
/* If this is a reference to an array, then dereference it */
|
||
if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_REF
|
||
&& TYPE_TARGET_TYPE (VALUE_TYPE (array)) != NULL
|
||
&& TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (array))) ==
|
||
TYPE_CODE_ARRAY
|
||
&& !ada_is_array_descriptor (check_typedef (VALUE_TYPE (array))))
|
||
{
|
||
array = ada_coerce_ref (array);
|
||
}
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS &&
|
||
ada_is_array_descriptor (check_typedef (VALUE_TYPE (array))))
|
||
{
|
||
/* Try to dereference the array, in case it is an access to array */
|
||
struct type *arrType = ada_type_of_array (array, 0);
|
||
if (arrType != NULL)
|
||
array = value_at_lazy (arrType, 0, NULL);
|
||
}
|
||
if (ada_is_array_descriptor (VALUE_TYPE (array)))
|
||
array = ada_coerce_to_simple_array (array);
|
||
|
||
/* If at this point we have a pointer to an array, it means that
|
||
it is a pointer to a simple (non-ada) array. We just then
|
||
dereference it */
|
||
if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_PTR
|
||
&& TYPE_TARGET_TYPE (VALUE_TYPE (array)) != NULL
|
||
&& TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (array))) ==
|
||
TYPE_CODE_ARRAY)
|
||
{
|
||
array = ada_value_ind (array);
|
||
}
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
/* The following will get the bounds wrong, but only in contexts
|
||
where the value is not being requested (FIXME?). */
|
||
return array;
|
||
else
|
||
return value_slice (array, lowbound, upper - lowbound + 1);
|
||
}
|
||
|
||
/* FIXME: UNOP_MBR should be defined in expression.h */
|
||
/* case UNOP_MBR:
|
||
(*pos) += 2;
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
type = exp->elts[pc + 1].type;
|
||
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
default:
|
||
warning ("Membership test incompletely implemented; always returns true");
|
||
return value_from_longest (builtin_type_int, (LONGEST) 1);
|
||
|
||
case TYPE_CODE_RANGE:
|
||
arg2 = value_from_longest (builtin_type_int,
|
||
(LONGEST) TYPE_LOW_BOUND (type));
|
||
arg3 = value_from_longest (builtin_type_int,
|
||
(LONGEST) TYPE_HIGH_BOUND (type));
|
||
return
|
||
value_from_longest (builtin_type_int,
|
||
(value_less (arg1,arg3)
|
||
|| value_equal (arg1,arg3))
|
||
&& (value_less (arg2,arg1)
|
||
|| value_equal (arg2,arg1)));
|
||
}
|
||
*/
|
||
/* FIXME: BINOP_MBR should be defined in expression.h */
|
||
/* case BINOP_MBR:
|
||
(*pos) += 2;
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (builtin_type_int, not_lval);
|
||
|
||
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
||
|
||
if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg2)))
|
||
error ("invalid dimension number to '%s", "range");
|
||
|
||
arg3 = ada_array_bound (arg2, tem, 1);
|
||
arg2 = ada_array_bound (arg2, tem, 0);
|
||
|
||
return
|
||
value_from_longest (builtin_type_int,
|
||
(value_less (arg1,arg3)
|
||
|| value_equal (arg1,arg3))
|
||
&& (value_less (arg2,arg1)
|
||
|| value_equal (arg2,arg1)));
|
||
*/
|
||
/* FIXME: TERNOP_MBR should be defined in expression.h */
|
||
/* case TERNOP_MBR:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
|
||
return
|
||
value_from_longest (builtin_type_int,
|
||
(value_less (arg1,arg3)
|
||
|| value_equal (arg1,arg3))
|
||
&& (value_less (arg2,arg1)
|
||
|| value_equal (arg2,arg1)));
|
||
*/
|
||
/* FIXME: OP_ATTRIBUTE should be defined in expression.h */
|
||
/* case OP_ATTRIBUTE:
|
||
*pos += 3;
|
||
atr = (enum ada_attribute) longest_to_int (exp->elts[pc + 2].longconst);
|
||
switch (atr)
|
||
{
|
||
default:
|
||
error ("unexpected attribute encountered");
|
||
|
||
case ATR_FIRST:
|
||
case ATR_LAST:
|
||
case ATR_LENGTH:
|
||
{
|
||
struct type* type_arg;
|
||
if (exp->elts[*pos].opcode == OP_TYPE)
|
||
{
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
arg1 = NULL;
|
||
type_arg = exp->elts[pc + 5].type;
|
||
}
|
||
else
|
||
{
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
type_arg = NULL;
|
||
}
|
||
|
||
if (exp->elts[*pos].opcode != OP_LONG)
|
||
error ("illegal operand to '%s", ada_attribute_name (atr));
|
||
tem = longest_to_int (exp->elts[*pos+2].longconst);
|
||
*pos += 4;
|
||
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
|
||
if (type_arg == NULL)
|
||
{
|
||
arg1 = ada_coerce_ref (arg1);
|
||
|
||
if (ada_is_packed_array_type (VALUE_TYPE (arg1)))
|
||
arg1 = ada_coerce_to_simple_array (arg1);
|
||
|
||
if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg1)))
|
||
error ("invalid dimension number to '%s",
|
||
ada_attribute_name (atr));
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
type = ada_index_type (VALUE_TYPE (arg1), tem);
|
||
if (type == NULL)
|
||
error ("attempt to take bound of something that is not an array");
|
||
return allocate_value (type);
|
||
}
|
||
|
||
switch (atr)
|
||
{
|
||
default:
|
||
error ("unexpected attribute encountered");
|
||
case ATR_FIRST:
|
||
return ada_array_bound (arg1, tem, 0);
|
||
case ATR_LAST:
|
||
return ada_array_bound (arg1, tem, 1);
|
||
case ATR_LENGTH:
|
||
return ada_array_length (arg1, tem);
|
||
}
|
||
}
|
||
else if (TYPE_CODE (type_arg) == TYPE_CODE_RANGE
|
||
|| TYPE_CODE (type_arg) == TYPE_CODE_INT)
|
||
{
|
||
struct type* range_type;
|
||
char* name = ada_type_name (type_arg);
|
||
if (name == NULL)
|
||
{
|
||
if (TYPE_CODE (type_arg) == TYPE_CODE_RANGE)
|
||
range_type = type_arg;
|
||
else
|
||
error ("unimplemented type attribute");
|
||
}
|
||
else
|
||
range_type =
|
||
to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
|
||
switch (atr)
|
||
{
|
||
default:
|
||
error ("unexpected attribute encountered");
|
||
case ATR_FIRST:
|
||
return value_from_longest (TYPE_TARGET_TYPE (range_type),
|
||
TYPE_LOW_BOUND (range_type));
|
||
case ATR_LAST:
|
||
return value_from_longest (TYPE_TARGET_TYPE (range_type),
|
||
TYPE_HIGH_BOUND (range_type));
|
||
}
|
||
}
|
||
else if (TYPE_CODE (type_arg) == TYPE_CODE_ENUM)
|
||
{
|
||
switch (atr)
|
||
{
|
||
default:
|
||
error ("unexpected attribute encountered");
|
||
case ATR_FIRST:
|
||
return value_from_longest
|
||
(type_arg, TYPE_FIELD_BITPOS (type_arg, 0));
|
||
case ATR_LAST:
|
||
return value_from_longest
|
||
(type_arg,
|
||
TYPE_FIELD_BITPOS (type_arg,
|
||
TYPE_NFIELDS (type_arg) - 1));
|
||
}
|
||
}
|
||
else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
|
||
error ("unimplemented type attribute");
|
||
else
|
||
{
|
||
LONGEST low, high;
|
||
|
||
if (ada_is_packed_array_type (type_arg))
|
||
type_arg = decode_packed_array_type (type_arg);
|
||
|
||
if (tem < 1 || tem > ada_array_arity (type_arg))
|
||
error ("invalid dimension number to '%s",
|
||
ada_attribute_name (atr));
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
type = ada_index_type (type_arg, tem);
|
||
if (type == NULL)
|
||
error ("attempt to take bound of something that is not an array");
|
||
return allocate_value (type);
|
||
}
|
||
|
||
switch (atr)
|
||
{
|
||
default:
|
||
error ("unexpected attribute encountered");
|
||
case ATR_FIRST:
|
||
low = ada_array_bound_from_type (type_arg, tem, 0, &type);
|
||
return value_from_longest (type, low);
|
||
case ATR_LAST:
|
||
high = ada_array_bound_from_type (type_arg, tem, 1, &type);
|
||
return value_from_longest (type, high);
|
||
case ATR_LENGTH:
|
||
low = ada_array_bound_from_type (type_arg, tem, 0, &type);
|
||
high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
|
||
return value_from_longest (type, high-low+1);
|
||
}
|
||
}
|
||
}
|
||
|
||
case ATR_TAG:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return
|
||
value_zero (ada_tag_type (arg1), not_lval);
|
||
|
||
return ada_value_tag (arg1);
|
||
|
||
case ATR_MIN:
|
||
case ATR_MAX:
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (VALUE_TYPE (arg1), not_lval);
|
||
else
|
||
return value_binop (arg1, arg2,
|
||
atr == ATR_MIN ? BINOP_MIN : BINOP_MAX);
|
||
|
||
case ATR_MODULUS:
|
||
{
|
||
struct type* type_arg = exp->elts[pc + 5].type;
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
*pos += 4;
|
||
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
|
||
if (! ada_is_modular_type (type_arg))
|
||
error ("'modulus must be applied to modular type");
|
||
|
||
return value_from_longest (TYPE_TARGET_TYPE (type_arg),
|
||
ada_modulus (type_arg));
|
||
}
|
||
|
||
|
||
case ATR_POS:
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (builtin_type_ada_int, not_lval);
|
||
else
|
||
return value_pos_atr (arg1);
|
||
|
||
case ATR_SIZE:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (builtin_type_ada_int, not_lval);
|
||
else
|
||
return value_from_longest (builtin_type_ada_int,
|
||
TARGET_CHAR_BIT
|
||
* TYPE_LENGTH (VALUE_TYPE (arg1)));
|
||
|
||
case ATR_VAL:
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
type = exp->elts[pc + 5].type;
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (type, not_lval);
|
||
else
|
||
return value_val_atr (type, arg1);
|
||
} */
|
||
case BINOP_EXP:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return unwrap_value (value_x_binop (arg1, arg2, op, OP_NULL,
|
||
EVAL_NORMAL));
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (VALUE_TYPE (arg1), not_lval);
|
||
else
|
||
return value_binop (arg1, arg2, op);
|
||
|
||
case UNOP_PLUS:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (unop_user_defined_p (op, arg1))
|
||
return unwrap_value (value_x_unop (arg1, op, EVAL_NORMAL));
|
||
else
|
||
return arg1;
|
||
|
||
case UNOP_ABS:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (value_less (arg1, value_zero (VALUE_TYPE (arg1), not_lval)))
|
||
return value_neg (arg1);
|
||
else
|
||
return arg1;
|
||
|
||
case UNOP_IND:
|
||
if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
|
||
expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
|
||
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
type = check_typedef (VALUE_TYPE (arg1));
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
if (ada_is_array_descriptor (type))
|
||
/* GDB allows dereferencing GNAT array descriptors. */
|
||
{
|
||
struct type *arrType = ada_type_of_array (arg1, 0);
|
||
if (arrType == NULL)
|
||
error ("Attempt to dereference null array pointer.");
|
||
return value_at_lazy (arrType, 0, NULL);
|
||
}
|
||
else if (TYPE_CODE (type) == TYPE_CODE_PTR
|
||
|| TYPE_CODE (type) == TYPE_CODE_REF
|
||
/* In C you can dereference an array to get the 1st elt. */
|
||
|| TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
return
|
||
value_zero
|
||
(to_static_fixed_type
|
||
(ada_aligned_type (check_typedef (TYPE_TARGET_TYPE (type)))),
|
||
lval_memory);
|
||
else if (TYPE_CODE (type) == TYPE_CODE_INT)
|
||
/* GDB allows dereferencing an int. */
|
||
return value_zero (builtin_type_int, lval_memory);
|
||
else
|
||
error ("Attempt to take contents of a non-pointer value.");
|
||
}
|
||
arg1 = ada_coerce_ref (arg1);
|
||
type = check_typedef (VALUE_TYPE (arg1));
|
||
|
||
if (ada_is_array_descriptor (type))
|
||
/* GDB allows dereferencing GNAT array descriptors. */
|
||
return ada_coerce_to_simple_array (arg1);
|
||
else
|
||
return ada_value_ind (arg1);
|
||
|
||
case STRUCTOP_STRUCT:
|
||
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
||
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (ada_aligned_type
|
||
(ada_lookup_struct_elt_type (VALUE_TYPE (arg1),
|
||
&exp->elts[pc +
|
||
2].string,
|
||
0, NULL)),
|
||
lval_memory);
|
||
else
|
||
return unwrap_value (ada_value_struct_elt (arg1,
|
||
&exp->elts[pc + 2].string,
|
||
"record"));
|
||
case OP_TYPE:
|
||
/* The value is not supposed to be used. This is here to make it
|
||
easier to accommodate expressions that contain types. */
|
||
(*pos) += 2;
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return allocate_value (builtin_type_void);
|
||
else
|
||
error ("Attempt to use a type name as an expression");
|
||
|
||
case STRUCTOP_PTR:
|
||
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
||
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
goto nosideret;
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (ada_aligned_type
|
||
(ada_lookup_struct_elt_type (VALUE_TYPE (arg1),
|
||
&exp->elts[pc +
|
||
2].string,
|
||
0, NULL)),
|
||
lval_memory);
|
||
else
|
||
return unwrap_value (ada_value_struct_elt (arg1,
|
||
&exp->elts[pc + 2].string,
|
||
"record access"));
|
||
}
|
||
|
||
nosideret:
|
||
return value_from_longest (builtin_type_long, (LONGEST) 1);
|
||
}
|
||
|
||
|
||
/* Fixed point */
|
||
|
||
/* If TYPE encodes an Ada fixed-point type, return the suffix of the
|
||
type name that encodes the 'small and 'delta information.
|
||
Otherwise, return NULL. */
|
||
|
||
static const char *
|
||
fixed_type_info (struct type *type)
|
||
{
|
||
const char *name = ada_type_name (type);
|
||
enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
|
||
|
||
if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
|
||
{
|
||
const char *tail = strstr (name, "___XF_");
|
||
if (tail == NULL)
|
||
return NULL;
|
||
else
|
||
return tail + 5;
|
||
}
|
||
else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
|
||
return fixed_type_info (TYPE_TARGET_TYPE (type));
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
|
||
|
||
int
|
||
ada_is_fixed_point_type (struct type *type)
|
||
{
|
||
return fixed_type_info (type) != NULL;
|
||
}
|
||
|
||
/* Assuming that TYPE is the representation of an Ada fixed-point
|
||
type, return its delta, or -1 if the type is malformed and the
|
||
delta cannot be determined. */
|
||
|
||
DOUBLEST
|
||
ada_delta (struct type *type)
|
||
{
|
||
const char *encoding = fixed_type_info (type);
|
||
long num, den;
|
||
|
||
if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
|
||
return -1.0;
|
||
else
|
||
return (DOUBLEST) num / (DOUBLEST) den;
|
||
}
|
||
|
||
/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
|
||
factor ('SMALL value) associated with the type. */
|
||
|
||
static DOUBLEST
|
||
scaling_factor (struct type *type)
|
||
{
|
||
const char *encoding = fixed_type_info (type);
|
||
unsigned long num0, den0, num1, den1;
|
||
int n;
|
||
|
||
n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
|
||
|
||
if (n < 2)
|
||
return 1.0;
|
||
else if (n == 4)
|
||
return (DOUBLEST) num1 / (DOUBLEST) den1;
|
||
else
|
||
return (DOUBLEST) num0 / (DOUBLEST) den0;
|
||
}
|
||
|
||
|
||
/* Assuming that X is the representation of a value of fixed-point
|
||
type TYPE, return its floating-point equivalent. */
|
||
|
||
DOUBLEST
|
||
ada_fixed_to_float (struct type *type, LONGEST x)
|
||
{
|
||
return (DOUBLEST) x *scaling_factor (type);
|
||
}
|
||
|
||
/* The representation of a fixed-point value of type TYPE
|
||
corresponding to the value X. */
|
||
|
||
LONGEST
|
||
ada_float_to_fixed (struct type *type, DOUBLEST x)
|
||
{
|
||
return (LONGEST) (x / scaling_factor (type) + 0.5);
|
||
}
|
||
|
||
|
||
/* VAX floating formats */
|
||
|
||
/* Non-zero iff TYPE represents one of the special VAX floating-point
|
||
types. */
|
||
int
|
||
ada_is_vax_floating_type (struct type *type)
|
||
{
|
||
int name_len =
|
||
(ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
|
||
return
|
||
name_len > 6
|
||
&& (TYPE_CODE (type) == TYPE_CODE_INT
|
||
|| TYPE_CODE (type) == TYPE_CODE_RANGE)
|
||
&& STREQN (ada_type_name (type) + name_len - 6, "___XF", 5);
|
||
}
|
||
|
||
/* The type of special VAX floating-point type this is, assuming
|
||
ada_is_vax_floating_point */
|
||
int
|
||
ada_vax_float_type_suffix (struct type *type)
|
||
{
|
||
return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
|
||
}
|
||
|
||
/* A value representing the special debugging function that outputs
|
||
VAX floating-point values of the type represented by TYPE. Assumes
|
||
ada_is_vax_floating_type (TYPE). */
|
||
struct value *
|
||
ada_vax_float_print_function (struct type *type)
|
||
{
|
||
switch (ada_vax_float_type_suffix (type))
|
||
{
|
||
case 'F':
|
||
return get_var_value ("DEBUG_STRING_F", 0);
|
||
case 'D':
|
||
return get_var_value ("DEBUG_STRING_D", 0);
|
||
case 'G':
|
||
return get_var_value ("DEBUG_STRING_G", 0);
|
||
default:
|
||
error ("invalid VAX floating-point type");
|
||
}
|
||
}
|
||
|
||
|
||
/* Range types */
|
||
|
||
/* Scan STR beginning at position K for a discriminant name, and
|
||
return the value of that discriminant field of DVAL in *PX. If
|
||
PNEW_K is not null, put the position of the character beyond the
|
||
name scanned in *PNEW_K. Return 1 if successful; return 0 and do
|
||
not alter *PX and *PNEW_K if unsuccessful. */
|
||
|
||
static int
|
||
scan_discrim_bound (char *, int k, struct value *dval, LONGEST * px,
|
||
int *pnew_k)
|
||
{
|
||
static char *bound_buffer = NULL;
|
||
static size_t bound_buffer_len = 0;
|
||
char *bound;
|
||
char *pend;
|
||
struct value *bound_val;
|
||
|
||
if (dval == NULL || str == NULL || str[k] == '\0')
|
||
return 0;
|
||
|
||
pend = strstr (str + k, "__");
|
||
if (pend == NULL)
|
||
{
|
||
bound = str + k;
|
||
k += strlen (bound);
|
||
}
|
||
else
|
||
{
|
||
GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
|
||
bound = bound_buffer;
|
||
strncpy (bound_buffer, str + k, pend - (str + k));
|
||
bound[pend - (str + k)] = '\0';
|
||
k = pend - str;
|
||
}
|
||
|
||
bound_val = ada_search_struct_field (bound, dval, 0, VALUE_TYPE (dval));
|
||
if (bound_val == NULL)
|
||
return 0;
|
||
|
||
*px = value_as_long (bound_val);
|
||
if (pnew_k != NULL)
|
||
*pnew_k = k;
|
||
return 1;
|
||
}
|
||
|
||
/* Value of variable named NAME in the current environment. If
|
||
no such variable found, then if ERR_MSG is null, returns 0, and
|
||
otherwise causes an error with message ERR_MSG. */
|
||
static struct value *
|
||
get_var_value (char *name, char *err_msg)
|
||
{
|
||
struct symbol **syms;
|
||
struct block **blocks;
|
||
int nsyms;
|
||
|
||
nsyms =
|
||
ada_lookup_symbol_list (name, get_selected_block (NULL), VAR_DOMAIN,
|
||
&syms, &blocks);
|
||
|
||
if (nsyms != 1)
|
||
{
|
||
if (err_msg == NULL)
|
||
return 0;
|
||
else
|
||
error ("%s", err_msg);
|
||
}
|
||
|
||
return value_of_variable (syms[0], blocks[0]);
|
||
}
|
||
|
||
/* Value of integer variable named NAME in the current environment. If
|
||
no such variable found, then if ERR_MSG is null, returns 0, and sets
|
||
*FLAG to 0. If successful, sets *FLAG to 1. */
|
||
LONGEST
|
||
get_int_var_value (char *name, char *err_msg, int *flag)
|
||
{
|
||
struct value *var_val = get_var_value (name, err_msg);
|
||
|
||
if (var_val == 0)
|
||
{
|
||
if (flag != NULL)
|
||
*flag = 0;
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
if (flag != NULL)
|
||
*flag = 1;
|
||
return value_as_long (var_val);
|
||
}
|
||
}
|
||
|
||
|
||
/* Return a range type whose base type is that of the range type named
|
||
NAME in the current environment, and whose bounds are calculated
|
||
from NAME according to the GNAT range encoding conventions.
|
||
Extract discriminant values, if needed, from DVAL. If a new type
|
||
must be created, allocate in OBJFILE's space. The bounds
|
||
information, in general, is encoded in NAME, the base type given in
|
||
the named range type. */
|
||
|
||
static struct type *
|
||
to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
|
||
{
|
||
struct type *raw_type = ada_find_any_type (name);
|
||
struct type *base_type;
|
||
LONGEST low, high;
|
||
char *subtype_info;
|
||
|
||
if (raw_type == NULL)
|
||
base_type = builtin_type_int;
|
||
else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
|
||
base_type = TYPE_TARGET_TYPE (raw_type);
|
||
else
|
||
base_type = raw_type;
|
||
|
||
subtype_info = strstr (name, "___XD");
|
||
if (subtype_info == NULL)
|
||
return raw_type;
|
||
else
|
||
{
|
||
static char *name_buf = NULL;
|
||
static size_t name_len = 0;
|
||
int prefix_len = subtype_info - name;
|
||
LONGEST L, U;
|
||
struct type *type;
|
||
char *bounds_str;
|
||
int n;
|
||
|
||
GROW_VECT (name_buf, name_len, prefix_len + 5);
|
||
strncpy (name_buf, name, prefix_len);
|
||
name_buf[prefix_len] = '\0';
|
||
|
||
subtype_info += 5;
|
||
bounds_str = strchr (subtype_info, '_');
|
||
n = 1;
|
||
|
||
if (*subtype_info == 'L')
|
||
{
|
||
if (!ada_scan_number (bounds_str, n, &L, &n)
|
||
&& !scan_discrim_bound (bounds_str, n, dval, &L, &n))
|
||
return raw_type;
|
||
if (bounds_str[n] == '_')
|
||
n += 2;
|
||
else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
|
||
n += 1;
|
||
subtype_info += 1;
|
||
}
|
||
else
|
||
{
|
||
strcpy (name_buf + prefix_len, "___L");
|
||
L = get_int_var_value (name_buf, "Index bound unknown.", NULL);
|
||
}
|
||
|
||
if (*subtype_info == 'U')
|
||
{
|
||
if (!ada_scan_number (bounds_str, n, &U, &n)
|
||
&& !scan_discrim_bound (bounds_str, n, dval, &U, &n))
|
||
return raw_type;
|
||
}
|
||
else
|
||
{
|
||
strcpy (name_buf + prefix_len, "___U");
|
||
U = get_int_var_value (name_buf, "Index bound unknown.", NULL);
|
||
}
|
||
|
||
if (objfile == NULL)
|
||
objfile = TYPE_OBJFILE (base_type);
|
||
type = create_range_type (alloc_type (objfile), base_type, L, U);
|
||
TYPE_NAME (type) = name;
|
||
return type;
|
||
}
|
||
}
|
||
|
||
/* True iff NAME is the name of a range type. */
|
||
int
|
||
ada_is_range_type_name (const char *name)
|
||
{
|
||
return (name != NULL && strstr (name, "___XD"));
|
||
}
|
||
|
||
|
||
/* Modular types */
|
||
|
||
/* True iff TYPE is an Ada modular type. */
|
||
int
|
||
ada_is_modular_type (struct type *type)
|
||
{
|
||
/* FIXME: base_type should be declared in gdbtypes.h, implemented in
|
||
valarith.c */
|
||
struct type *subranged_type; /* = base_type (type); */
|
||
|
||
return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
|
||
&& TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
|
||
&& TYPE_UNSIGNED (subranged_type));
|
||
}
|
||
|
||
/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
|
||
LONGEST
|
||
ada_modulus (struct type * type)
|
||
{
|
||
return TYPE_HIGH_BOUND (type) + 1;
|
||
}
|
||
|
||
|
||
|
||
/* Operators */
|
||
|
||
/* Table mapping opcodes into strings for printing operators
|
||
and precedences of the operators. */
|
||
|
||
static const struct op_print ada_op_print_tab[] = {
|
||
{":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
|
||
{"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
|
||
{"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
|
||
{"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
|
||
{"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
|
||
{"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
|
||
{"=", BINOP_EQUAL, PREC_EQUAL, 0},
|
||
{"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
|
||
{"<=", BINOP_LEQ, PREC_ORDER, 0},
|
||
{">=", BINOP_GEQ, PREC_ORDER, 0},
|
||
{">", BINOP_GTR, PREC_ORDER, 0},
|
||
{"<", BINOP_LESS, PREC_ORDER, 0},
|
||
{">>", BINOP_RSH, PREC_SHIFT, 0},
|
||
{"<<", BINOP_LSH, PREC_SHIFT, 0},
|
||
{"+", BINOP_ADD, PREC_ADD, 0},
|
||
{"-", BINOP_SUB, PREC_ADD, 0},
|
||
{"&", BINOP_CONCAT, PREC_ADD, 0},
|
||
{"*", BINOP_MUL, PREC_MUL, 0},
|
||
{"/", BINOP_DIV, PREC_MUL, 0},
|
||
{"rem", BINOP_REM, PREC_MUL, 0},
|
||
{"mod", BINOP_MOD, PREC_MUL, 0},
|
||
{"**", BINOP_EXP, PREC_REPEAT, 0},
|
||
{"@", BINOP_REPEAT, PREC_REPEAT, 0},
|
||
{"-", UNOP_NEG, PREC_PREFIX, 0},
|
||
{"+", UNOP_PLUS, PREC_PREFIX, 0},
|
||
{"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
|
||
{"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
|
||
{"abs ", UNOP_ABS, PREC_PREFIX, 0},
|
||
{".all", UNOP_IND, PREC_SUFFIX, 1}, /* FIXME: postfix .ALL */
|
||
{"'access", UNOP_ADDR, PREC_SUFFIX, 1}, /* FIXME: postfix 'ACCESS */
|
||
{NULL, 0, 0, 0}
|
||
};
|
||
|
||
/* Assorted Types and Interfaces */
|
||
|
||
struct type *builtin_type_ada_int;
|
||
struct type *builtin_type_ada_short;
|
||
struct type *builtin_type_ada_long;
|
||
struct type *builtin_type_ada_long_long;
|
||
struct type *builtin_type_ada_char;
|
||
struct type *builtin_type_ada_float;
|
||
struct type *builtin_type_ada_double;
|
||
struct type *builtin_type_ada_long_double;
|
||
struct type *builtin_type_ada_natural;
|
||
struct type *builtin_type_ada_positive;
|
||
struct type *builtin_type_ada_system_address;
|
||
|
||
struct type **const (ada_builtin_types[]) =
|
||
{
|
||
|
||
&builtin_type_ada_int,
|
||
&builtin_type_ada_long,
|
||
&builtin_type_ada_short,
|
||
&builtin_type_ada_char,
|
||
&builtin_type_ada_float,
|
||
&builtin_type_ada_double,
|
||
&builtin_type_ada_long_long,
|
||
&builtin_type_ada_long_double,
|
||
&builtin_type_ada_natural, &builtin_type_ada_positive,
|
||
/* The following types are carried over from C for convenience. */
|
||
&builtin_type_int,
|
||
&builtin_type_long,
|
||
&builtin_type_short,
|
||
&builtin_type_char,
|
||
&builtin_type_float,
|
||
&builtin_type_double,
|
||
&builtin_type_long_long,
|
||
&builtin_type_void,
|
||
&builtin_type_signed_char,
|
||
&builtin_type_unsigned_char,
|
||
&builtin_type_unsigned_short,
|
||
&builtin_type_unsigned_int,
|
||
&builtin_type_unsigned_long,
|
||
&builtin_type_unsigned_long_long,
|
||
&builtin_type_long_double,
|
||
&builtin_type_complex, &builtin_type_double_complex, 0};
|
||
|
||
/* Not really used, but needed in the ada_language_defn. */
|
||
static void
|
||
emit_char (int c, struct ui_file *stream, int quoter)
|
||
{
|
||
ada_emit_char (c, stream, quoter, 1);
|
||
}
|
||
|
||
const struct language_defn ada_language_defn = {
|
||
"ada", /* Language name */
|
||
/* language_ada, */
|
||
language_unknown,
|
||
/* FIXME: language_ada should be defined in defs.h */
|
||
ada_builtin_types,
|
||
range_check_off,
|
||
type_check_off,
|
||
case_sensitive_on, /* Yes, Ada is case-insensitive, but
|
||
* that's not quite what this means. */
|
||
ada_parse,
|
||
ada_error,
|
||
ada_evaluate_subexp,
|
||
ada_printchar, /* Print a character constant */
|
||
ada_printstr, /* Function to print string constant */
|
||
emit_char, /* Function to print single char (not used) */
|
||
ada_create_fundamental_type, /* Create fundamental type in this language */
|
||
ada_print_type, /* Print a type using appropriate syntax */
|
||
ada_val_print, /* Print a value using appropriate syntax */
|
||
ada_value_print, /* Print a top-level value */
|
||
NULL, /* Language specific skip_trampoline */
|
||
value_of_this, /* value_of_this */
|
||
basic_lookup_symbol_nonlocal, /* lookup_symbol_nonlocal */
|
||
NULL, /* Language specific symbol demangler */
|
||
{"", "", "", ""}, /* Binary format info */
|
||
#if 0
|
||
{"8#%lo#", "8#", "o", "#"}, /* Octal format info */
|
||
{"%ld", "", "d", ""}, /* Decimal format info */
|
||
{"16#%lx#", "16#", "x", "#"}, /* Hex format info */
|
||
#else
|
||
/* Copied from c-lang.c. */
|
||
{"0%lo", "0", "o", ""}, /* Octal format info */
|
||
{"%ld", "", "d", ""}, /* Decimal format info */
|
||
{"0x%lx", "0x", "x", ""}, /* Hex format info */
|
||
#endif
|
||
ada_op_print_tab, /* expression operators for printing */
|
||
1, /* c-style arrays (FIXME?) */
|
||
0, /* String lower bound (FIXME?) */
|
||
&builtin_type_ada_char,
|
||
LANG_MAGIC
|
||
};
|
||
|
||
void
|
||
_initialize_ada_language (void)
|
||
{
|
||
builtin_type_ada_int =
|
||
init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
|
||
0, "integer", (struct objfile *) NULL);
|
||
builtin_type_ada_long =
|
||
init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
|
||
0, "long_integer", (struct objfile *) NULL);
|
||
builtin_type_ada_short =
|
||
init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
|
||
0, "short_integer", (struct objfile *) NULL);
|
||
builtin_type_ada_char =
|
||
init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
|
||
0, "character", (struct objfile *) NULL);
|
||
builtin_type_ada_float =
|
||
init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
|
||
0, "float", (struct objfile *) NULL);
|
||
builtin_type_ada_double =
|
||
init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
|
||
0, "long_float", (struct objfile *) NULL);
|
||
builtin_type_ada_long_long =
|
||
init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
|
||
0, "long_long_integer", (struct objfile *) NULL);
|
||
builtin_type_ada_long_double =
|
||
init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
|
||
0, "long_long_float", (struct objfile *) NULL);
|
||
builtin_type_ada_natural =
|
||
init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
|
||
0, "natural", (struct objfile *) NULL);
|
||
builtin_type_ada_positive =
|
||
init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
|
||
0, "positive", (struct objfile *) NULL);
|
||
|
||
|
||
builtin_type_ada_system_address =
|
||
lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
|
||
(struct objfile *) NULL));
|
||
TYPE_NAME (builtin_type_ada_system_address) = "system__address";
|
||
|
||
add_language (&ada_language_defn);
|
||
|
||
add_show_from_set
|
||
(add_set_cmd ("varsize-limit", class_support, var_uinteger,
|
||
(char *) &varsize_limit,
|
||
"Set maximum bytes in dynamic-sized object.",
|
||
&setlist), &showlist);
|
||
varsize_limit = 65536;
|
||
|
||
add_com ("begin", class_breakpoint, begin_command,
|
||
"Start the debugged program, stopping at the beginning of the\n\
|
||
main program. You may specify command-line arguments to give it, as for\n\
|
||
the \"run\" command (q.v.).");
|
||
}
|
||
|
||
|
||
/* Create a fundamental Ada type using default reasonable for the current
|
||
target machine.
|
||
|
||
Some object/debugging file formats (DWARF version 1, COFF, etc) do not
|
||
define fundamental types such as "int" or "double". Others (stabs or
|
||
DWARF version 2, etc) do define fundamental types. For the formats which
|
||
don't provide fundamental types, gdb can create such types using this
|
||
function.
|
||
|
||
FIXME: Some compilers distinguish explicitly signed integral types
|
||
(signed short, signed int, signed long) from "regular" integral types
|
||
(short, int, long) in the debugging information. There is some dis-
|
||
agreement as to how useful this feature is. In particular, gcc does
|
||
not support this. Also, only some debugging formats allow the
|
||
distinction to be passed on to a debugger. For now, we always just
|
||
use "short", "int", or "long" as the type name, for both the implicit
|
||
and explicitly signed types. This also makes life easier for the
|
||
gdb test suite since we don't have to account for the differences
|
||
in output depending upon what the compiler and debugging format
|
||
support. We will probably have to re-examine the issue when gdb
|
||
starts taking it's fundamental type information directly from the
|
||
debugging information supplied by the compiler. fnf@cygnus.com */
|
||
|
||
static struct type *
|
||
ada_create_fundamental_type (struct objfile *objfile, int typeid)
|
||
{
|
||
struct type *type = NULL;
|
||
|
||
switch (typeid)
|
||
{
|
||
default:
|
||
/* FIXME: For now, if we are asked to produce a type not in this
|
||
language, create the equivalent of a C integer type with the
|
||
name "<?type?>". When all the dust settles from the type
|
||
reconstruction work, this should probably become an error. */
|
||
type = init_type (TYPE_CODE_INT,
|
||
TARGET_INT_BIT / TARGET_CHAR_BIT,
|
||
0, "<?type?>", objfile);
|
||
warning ("internal error: no Ada fundamental type %d", typeid);
|
||
break;
|
||
case FT_VOID:
|
||
type = init_type (TYPE_CODE_VOID,
|
||
TARGET_CHAR_BIT / TARGET_CHAR_BIT,
|
||
0, "void", objfile);
|
||
break;
|
||
case FT_CHAR:
|
||
type = init_type (TYPE_CODE_INT,
|
||
TARGET_CHAR_BIT / TARGET_CHAR_BIT,
|
||
0, "character", objfile);
|
||
break;
|
||
case FT_SIGNED_CHAR:
|
||
type = init_type (TYPE_CODE_INT,
|
||
TARGET_CHAR_BIT / TARGET_CHAR_BIT,
|
||
0, "signed char", objfile);
|
||
break;
|
||
case FT_UNSIGNED_CHAR:
|
||
type = init_type (TYPE_CODE_INT,
|
||
TARGET_CHAR_BIT / TARGET_CHAR_BIT,
|
||
TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
|
||
break;
|
||
case FT_SHORT:
|
||
type = init_type (TYPE_CODE_INT,
|
||
TARGET_SHORT_BIT / TARGET_CHAR_BIT,
|
||
0, "short_integer", objfile);
|
||
break;
|
||
case FT_SIGNED_SHORT:
|
||
type = init_type (TYPE_CODE_INT,
|
||
TARGET_SHORT_BIT / TARGET_CHAR_BIT,
|
||
0, "short_integer", objfile);
|
||
break;
|
||
case FT_UNSIGNED_SHORT:
|
||
type = init_type (TYPE_CODE_INT,
|
||
TARGET_SHORT_BIT / TARGET_CHAR_BIT,
|
||
TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
|
||
break;
|
||
case FT_INTEGER:
|
||
type = init_type (TYPE_CODE_INT,
|
||
TARGET_INT_BIT / TARGET_CHAR_BIT,
|
||
0, "integer", objfile);
|
||
break;
|
||
case FT_SIGNED_INTEGER:
|
||
type = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, 0, "integer", objfile); /* FIXME -fnf */
|
||
break;
|
||
case FT_UNSIGNED_INTEGER:
|
||
type = init_type (TYPE_CODE_INT,
|
||
TARGET_INT_BIT / TARGET_CHAR_BIT,
|
||
TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
|
||
break;
|
||
case FT_LONG:
|
||
type = init_type (TYPE_CODE_INT,
|
||
TARGET_LONG_BIT / TARGET_CHAR_BIT,
|
||
0, "long_integer", objfile);
|
||
break;
|
||
case FT_SIGNED_LONG:
|
||
type = init_type (TYPE_CODE_INT,
|
||
TARGET_LONG_BIT / TARGET_CHAR_BIT,
|
||
0, "long_integer", objfile);
|
||
break;
|
||
case FT_UNSIGNED_LONG:
|
||
type = init_type (TYPE_CODE_INT,
|
||
TARGET_LONG_BIT / TARGET_CHAR_BIT,
|
||
TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
|
||
break;
|
||
case FT_LONG_LONG:
|
||
type = init_type (TYPE_CODE_INT,
|
||
TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
|
||
0, "long_long_integer", objfile);
|
||
break;
|
||
case FT_SIGNED_LONG_LONG:
|
||
type = init_type (TYPE_CODE_INT,
|
||
TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
|
||
0, "long_long_integer", objfile);
|
||
break;
|
||
case FT_UNSIGNED_LONG_LONG:
|
||
type = init_type (TYPE_CODE_INT,
|
||
TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
|
||
TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
|
||
break;
|
||
case FT_FLOAT:
|
||
type = init_type (TYPE_CODE_FLT,
|
||
TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
|
||
0, "float", objfile);
|
||
break;
|
||
case FT_DBL_PREC_FLOAT:
|
||
type = init_type (TYPE_CODE_FLT,
|
||
TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
|
||
0, "long_float", objfile);
|
||
break;
|
||
case FT_EXT_PREC_FLOAT:
|
||
type = init_type (TYPE_CODE_FLT,
|
||
TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
|
||
0, "long_long_float", objfile);
|
||
break;
|
||
}
|
||
return (type);
|
||
}
|
||
|
||
void
|
||
ada_dump_symtab (struct symtab *s)
|
||
{
|
||
int i;
|
||
fprintf (stderr, "New symtab: [\n");
|
||
fprintf (stderr, " Name: %s/%s;\n",
|
||
s->dirname ? s->dirname : "?", s->filename ? s->filename : "?");
|
||
fprintf (stderr, " Format: %s;\n", s->debugformat);
|
||
if (s->linetable != NULL)
|
||
{
|
||
fprintf (stderr, " Line table (section %d):\n", s->block_line_section);
|
||
for (i = 0; i < s->linetable->nitems; i += 1)
|
||
{
|
||
struct linetable_entry *e = s->linetable->item + i;
|
||
fprintf (stderr, " %4ld: %8lx\n", (long) e->line, (long) e->pc);
|
||
}
|
||
}
|
||
fprintf (stderr, "]\n");
|
||
}
|