ae6063d440
* symbols.h (S_FORCE_RELOC): Likewise. * config/obj-aout.h (S_FORCE_RELOC): Likewise. * config/obj-bout.h (S_FORCE_RELOC): Likewise. * config/obj-coff.h (S_FORCE_RELOC): Likewise. * config/obj-ieee.h (S_FORCE_RELOC): Likewise. * config/obj-vms.h (S_FORCE_RELOC): Likewise. * write.c (generic_force_reloc): New function. (TC_FORCE_RELOCATION): Use it here instead of S_FORCE_RELOC. (TC_FORCE_RELOCATION_SUB_SAME): Test TC_FORCE_RELOCATION too. (adjust_reloc_syms): Adjust S_FORCE_RELOC call. * as.h (generic_force_reloc): Declare. * doc/internals.texi (S_FORCE_RELOC): Update. (TC_FORCE_RELOCATION_SUB_SAME): Update. * config/tc-alpha.c (alpha_force_relocation): Adjust to use generic_force_reloc. (alpha_fix_adjustable): Likewise. * config/tc-arm.c (arm_force_relocation): Likewise. * config/tc-cris.c (md_cris_force_relocation): Likewise. * config/tc-frv.c (frv_force_relocation): Likewise. * config/tc-i386.c (md_apply_fix3): Likewise. * config/tc-ia64.c (ia64_force_relocation): Likewise. * config/tc-ip2k.c (ip2k_force_relocation): Likewise. * config/tc-m32r.c (m32r_force_relocation): Likewise. * config/tc-m68hc11.c (tc_m68hc11_force_relocation): Likewise. * config/tc-mcore.c (mcore_force_relocation): Likewise. * config/tc-mips.c (mips_force_relocation): Likewise. * config/tc-mmix.c (mmix_force_relocation): Likewise. * config/tc-ppc.c (ppc_force_relocation): Likewise. * config/tc-s390.c (tc_s390_force_relocation): Likewise. * config/tc-sh.c (sh_force_relocation): Likewise. (md_pcrel_from_section): Likewise. * config/tc-sparc.c (tc_gen_reloc): Likewise. * config/tc-v850.c (v850_force_relocation): Likewise. * config/tc-xstormy16.c (xstormy16_force_relocation): Likewise. * config/tc-i386.h (TC_FORCE_RELOCATION): Likewise. * config/tc-mcore.h (TC_FORCE_RELOCATION): Likewise. * config/tc-sparc.h (tc_fix_adjustable): Likewise. * config/tc-d10v.c (d10v_force_relocation): Delete. * config/tc-d10v.h (TC_FORCE_RELOCATION): Don't define. * config/tc-dlx.c (md_dlx_force_relocation): Delete. * config/tc-dlx.h (TC_FORCE_RELOCATION): Don't define. * config/tc-fr30.c (fr30_force_relocation): Delete. * config/tc-fr30.h (TC_FORCE_RELOCATION): Don't define. * config/tc-mn10300.c (mn10300_force_relocation): Delete. * config/tc-mn10300.h (TC_FORCE_RELOCATION): Don't define. (TC_FORCE_RELOCATION_SUB_SAME): Test TC_FORCE_RELOCATION too. * config/tc-i960.h (TC_FORCE_RELOCATION_SUB_SAME): Likewise. * config/tc-hppa.c (hppa_force_relocation): Adjust S_FORCE_RELOC call. * config/tc-mips.c (RELAX_BRANCH_TOOFAR): Warning fix. * config/tc-mips.h (TC_FORCE_RELOCATION_SUB_SAME): Don't define. * config/tc-openrisc.c (openrisc_force_relocation): Delete. * config/tc-openrisc.h (TC_FORCE_RELOCATION): Don't define. * config/tc-sparc.c (elf32_sparc_force_relocation): Delete. * config/tc-sparc.h (TC_FORCE_RELOCATION): Don't define for ELF. * config/tc-i386.c (i386_force_relocation): Delete. * config/tc-i386.h (TC_FORCE_RELOCATION): Don't define for BFD_ASSEMBLER. (EXTERN_FORCE_RELOC): Fix TE_PE and STRICT_PE_FORMAT nesting. * config/tc-m68k.h (TC_FORCE_RELOCATION): Don't define. * config/tc-pj.h (TC_FORCE_RELOCATION): Don't define. * config/tc-sh.h (TC_FORCE_RELOCATION_SUB_ABS): Don't call S_FORCE_RELOC. (TC_FORCE_RELOCATION_SUB_SAME): Test TC_FORCE_RELOCATION too. * config/tc-sh64.h (TC_FORCE_RELOCATION_SUB_SAME): Likewise.
3297 lines
91 KiB
C
3297 lines
91 KiB
C
/* tc-cris.c -- Assembler code for the CRIS CPU core.
|
|
Copyright 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
|
|
|
|
Contributed by Axis Communications AB, Lund, Sweden.
|
|
Originally written for GAS 1.38.1 by Mikael Asker.
|
|
Updates, BFDizing, GNUifying and ELF support by Hans-Peter Nilsson.
|
|
|
|
This file is part of GAS, the GNU Assembler.
|
|
|
|
GAS is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GAS is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GAS; see the file COPYING. If not, write to the
|
|
Free Software Foundation, 59 Temple Place - Suite 330, Boston,
|
|
MA 02111-1307, USA. */
|
|
|
|
#include <stdio.h>
|
|
#include "as.h"
|
|
#include "safe-ctype.h"
|
|
#include "subsegs.h"
|
|
#include "opcode/cris.h"
|
|
#include "dwarf2dbg.h"
|
|
|
|
/* Conventions used here:
|
|
Generally speaking, pointers to binutils types such as "fragS" and
|
|
"expressionS" get parameter and variable names ending in "P", such as
|
|
"fragP", to harmonize with the rest of the binutils code. Other
|
|
pointers get a "p" suffix, such as "bufp". Any function or type-name
|
|
that could clash with a current or future binutils or GAS function get
|
|
a "cris_" prefix. */
|
|
|
|
#define SYNTAX_RELAX_REG_PREFIX "no_register_prefix"
|
|
#define SYNTAX_ENFORCE_REG_PREFIX "register_prefix"
|
|
#define SYNTAX_USER_SYM_LEADING_UNDERSCORE "leading_underscore"
|
|
#define SYNTAX_USER_SYM_NO_LEADING_UNDERSCORE "no_leading_underscore"
|
|
#define REGISTER_PREFIX_CHAR '$'
|
|
|
|
/* True for expressions where getting X_add_symbol and X_add_number is
|
|
enough to get the "base" and "offset"; no need to make_expr_symbol.
|
|
It's not enough to check if X_op_symbol is NULL; that misses unary
|
|
operations like O_uminus. */
|
|
#define SIMPLE_EXPR(EXP) \
|
|
((EXP)->X_op == O_constant || (EXP)->X_op == O_symbol)
|
|
|
|
/* Like in ":GOT", ":GOTOFF" etc. Other ports use '@', but that's in
|
|
line_separator_chars for CRIS, so we avoid it. */
|
|
#define PIC_SUFFIX_CHAR ':'
|
|
|
|
/* This might be CRIS_INSN_NONE if we're assembling a prefix-insn only.
|
|
Note that some prefix-insns might be assembled as CRIS_INSN_NORMAL. */
|
|
enum cris_insn_kind
|
|
{
|
|
CRIS_INSN_NORMAL, CRIS_INSN_NONE, CRIS_INSN_BRANCH
|
|
};
|
|
|
|
/* An instruction will have one of these prefixes.
|
|
Although the same bit-pattern, we handle BDAP with an immediate
|
|
expression (eventually quick or [pc+]) different from when we only have
|
|
register expressions. */
|
|
enum prefix_kind
|
|
{
|
|
PREFIX_NONE, PREFIX_BDAP_IMM, PREFIX_BDAP, PREFIX_BIAP, PREFIX_DIP,
|
|
PREFIX_PUSH
|
|
};
|
|
|
|
/* The prefix for an instruction. */
|
|
struct cris_prefix
|
|
{
|
|
enum prefix_kind kind;
|
|
int base_reg_number;
|
|
unsigned int opcode;
|
|
|
|
/* There might be an expression to be evaluated, like I in [rN+I]. */
|
|
expressionS expr;
|
|
|
|
/* If there's an expression, we might need a relocation. Here's the
|
|
type of what relocation to start relaxaton with.
|
|
The relocation is assumed to start immediately after the prefix insn,
|
|
so we don't provide an offset. */
|
|
enum bfd_reloc_code_real reloc;
|
|
};
|
|
|
|
/* The description of the instruction being assembled. */
|
|
struct cris_instruction
|
|
{
|
|
/* If CRIS_INSN_NONE, then this insn is of zero length. */
|
|
enum cris_insn_kind insn_type;
|
|
|
|
/* If a special register was mentioned, this is its description, else
|
|
it is NULL. */
|
|
const struct cris_spec_reg *spec_reg;
|
|
|
|
unsigned int opcode;
|
|
|
|
/* An insn may have at most one expression; theoretically there could be
|
|
another in its prefix (but I don't see how that could happen). */
|
|
expressionS expr;
|
|
|
|
/* The expression might need a relocation. Here's one to start
|
|
relaxation with. */
|
|
enum bfd_reloc_code_real reloc;
|
|
|
|
/* The size in bytes of an immediate expression, or zero if
|
|
nonapplicable. */
|
|
int imm_oprnd_size;
|
|
};
|
|
|
|
static void cris_process_instruction PARAMS ((char *,
|
|
struct cris_instruction *,
|
|
struct cris_prefix *));
|
|
static int get_bwd_size_modifier PARAMS ((char **, int *));
|
|
static int get_bw_size_modifier PARAMS ((char **, int *));
|
|
static int get_gen_reg PARAMS ((char **, int *));
|
|
static int get_spec_reg PARAMS ((char **,
|
|
const struct cris_spec_reg **));
|
|
static int get_autoinc_prefix_or_indir_op PARAMS ((char **,
|
|
struct cris_prefix *,
|
|
int *, int *, int *,
|
|
expressionS *));
|
|
static int get_3op_or_dip_prefix_op PARAMS ((char **,
|
|
struct cris_prefix *));
|
|
static int cris_get_expression PARAMS ((char **, expressionS *));
|
|
static int get_flags PARAMS ((char **, int *));
|
|
static void gen_bdap PARAMS ((int, expressionS *));
|
|
static int branch_disp PARAMS ((int));
|
|
static void gen_cond_branch_32 PARAMS ((char *, char *, fragS *,
|
|
symbolS *, symbolS *, long int));
|
|
static void cris_number_to_imm PARAMS ((char *, long, int, fixS *, segT));
|
|
static void cris_create_short_jump PARAMS ((char *, addressT, addressT,
|
|
fragS *, symbolS *));
|
|
static void s_syntax PARAMS ((int));
|
|
static void s_cris_file PARAMS ((int));
|
|
static void s_cris_loc PARAMS ((int));
|
|
|
|
/* Get ":GOT", ":GOTOFF", ":PLT" etc. suffixes. */
|
|
static void cris_get_pic_suffix PARAMS ((char **,
|
|
bfd_reloc_code_real_type *,
|
|
expressionS *));
|
|
static unsigned int cris_get_pic_reloc_size
|
|
PARAMS ((bfd_reloc_code_real_type));
|
|
|
|
/* All the .syntax functions. */
|
|
static void cris_force_reg_prefix PARAMS ((void));
|
|
static void cris_relax_reg_prefix PARAMS ((void));
|
|
static void cris_sym_leading_underscore PARAMS ((void));
|
|
static void cris_sym_no_leading_underscore PARAMS ((void));
|
|
static char *cris_insn_first_word_frag PARAMS ((void));
|
|
|
|
/* Handle to the opcode hash table. */
|
|
static struct hash_control *op_hash = NULL;
|
|
|
|
/* Whether we demand that registers have a `$' prefix. Default here. */
|
|
static bfd_boolean demand_register_prefix = FALSE;
|
|
|
|
/* Whether global user symbols have a leading underscore. Default here. */
|
|
static bfd_boolean symbols_have_leading_underscore = TRUE;
|
|
|
|
/* Whether or not we allow PIC, and expand to PIC-friendly constructs. */
|
|
static bfd_boolean pic = FALSE;
|
|
|
|
const pseudo_typeS md_pseudo_table[] =
|
|
{
|
|
{"dword", cons, 4},
|
|
{"syntax", s_syntax, 0},
|
|
{"file", s_cris_file, 0},
|
|
{"loc", s_cris_loc, 0},
|
|
{NULL, 0, 0}
|
|
};
|
|
|
|
static int warn_for_branch_expansion = 0;
|
|
|
|
const char cris_comment_chars[] = ";";
|
|
|
|
/* This array holds the chars that only start a comment at the beginning of
|
|
a line. If the line seems to have the form '# 123 filename'
|
|
.line and .file directives will appear in the pre-processed output. */
|
|
/* Note that input_file.c hand-checks for '#' at the beginning of the
|
|
first line of the input file. This is because the compiler outputs
|
|
#NO_APP at the beginning of its output. */
|
|
/* Also note that slash-star will always start a comment. */
|
|
const char line_comment_chars[] = "#";
|
|
const char line_separator_chars[] = "@";
|
|
|
|
/* Now all floating point support is shut off. See md_atof. */
|
|
const char EXP_CHARS[] = "";
|
|
const char FLT_CHARS[] = "";
|
|
|
|
/* For CRIS, we encode the relax_substateTs (in e.g. fr_substate) as:
|
|
2 1 0
|
|
---/ /--+-----------------+-----------------+-----------------+
|
|
| what state ? | how long ? |
|
|
---/ /--+-----------------+-----------------+-----------------+
|
|
|
|
The "how long" bits are 00 = byte, 01 = word, 10 = dword (long).
|
|
This is a Un*x convention.
|
|
Not all lengths are legit for a given value of (what state).
|
|
|
|
Groups for CRIS address relaxing:
|
|
|
|
1. Bcc
|
|
length: byte, word, 10-byte expansion
|
|
|
|
2. BDAP
|
|
length: byte, word, dword */
|
|
|
|
#define STATE_CONDITIONAL_BRANCH (1)
|
|
#define STATE_BASE_PLUS_DISP_PREFIX (2)
|
|
|
|
#define STATE_LENGTH_MASK (3)
|
|
#define STATE_BYTE (0)
|
|
#define STATE_WORD (1)
|
|
#define STATE_DWORD (2)
|
|
/* Symbol undefined. */
|
|
#define STATE_UNDF (3)
|
|
#define STATE_MAX_LENGTH (3)
|
|
|
|
/* These displacements are relative to the adress following the opcode
|
|
word of the instruction. The first letter is Byte, Word. The 2nd
|
|
letter is Forward, Backward. */
|
|
|
|
#define BRANCH_BF ( 254)
|
|
#define BRANCH_BB (-256)
|
|
#define BRANCH_WF (2 + 32767)
|
|
#define BRANCH_WB (2 + -32768)
|
|
|
|
#define BDAP_BF ( 127)
|
|
#define BDAP_BB (-128)
|
|
#define BDAP_WF ( 32767)
|
|
#define BDAP_WB (-32768)
|
|
|
|
#define ENCODE_RELAX(what, length) (((what) << 2) + (length))
|
|
|
|
const relax_typeS md_cris_relax_table[] =
|
|
{
|
|
/* Error sentinel (0, 0). */
|
|
{1, 1, 0, 0},
|
|
|
|
/* Unused (0, 1). */
|
|
{1, 1, 0, 0},
|
|
|
|
/* Unused (0, 2). */
|
|
{1, 1, 0, 0},
|
|
|
|
/* Unused (0, 3). */
|
|
{1, 1, 0, 0},
|
|
|
|
/* Bcc o (1, 0). */
|
|
{BRANCH_BF, BRANCH_BB, 0, ENCODE_RELAX (1, 1)},
|
|
|
|
/* Bcc [PC+] (1, 1). */
|
|
{BRANCH_WF, BRANCH_WB, 2, ENCODE_RELAX (1, 2)},
|
|
|
|
/* BEXT/BWF, BA, JUMP (external), JUMP (always), Bnot_cc, JUMP (default)
|
|
(1, 2). */
|
|
{0, 0, 10, 0},
|
|
|
|
/* Unused (1, 3). */
|
|
{1, 1, 0, 0},
|
|
|
|
/* BDAP o (2, 0). */
|
|
{BDAP_BF, BDAP_BB, 0, ENCODE_RELAX (2, 1)},
|
|
|
|
/* BDAP.[bw] [PC+] (2, 1). */
|
|
{BDAP_WF, BDAP_WB, 2, ENCODE_RELAX (2, 2)},
|
|
|
|
/* BDAP.d [PC+] (2, 2). */
|
|
{0, 0, 4, 0}
|
|
};
|
|
|
|
#undef BRANCH_BF
|
|
#undef BRANCH_BB
|
|
#undef BRANCH_WF
|
|
#undef BRANCH_WB
|
|
#undef BDAP_BF
|
|
#undef BDAP_BB
|
|
#undef BDAP_WF
|
|
#undef BDAP_WB
|
|
|
|
/* Target-specific multicharacter options, not const-declared at usage
|
|
in 2.9.1 and CVS of 2000-02-16. */
|
|
struct option md_longopts[] =
|
|
{
|
|
#define OPTION_NO_US (OPTION_MD_BASE + 0)
|
|
{"no-underscore", no_argument, NULL, OPTION_NO_US},
|
|
#define OPTION_US (OPTION_MD_BASE + 1)
|
|
{"underscore", no_argument, NULL, OPTION_US},
|
|
#define OPTION_PIC (OPTION_MD_BASE + 2)
|
|
{"pic", no_argument, NULL, OPTION_PIC},
|
|
{NULL, no_argument, NULL, 0}
|
|
};
|
|
|
|
/* Not const-declared at usage in 2.9.1. */
|
|
size_t md_longopts_size = sizeof (md_longopts);
|
|
const char *md_shortopts = "hHN";
|
|
|
|
/* At first glance, this may seems wrong and should be 4 (ba + nop); but
|
|
since a short_jump must skip a *number* of long jumps, it must also be
|
|
a long jump. Here, we hope to make it a "ba [16bit_offs]" and a "nop"
|
|
for the delay slot and hope that the jump table at most needs
|
|
32767/4=8191 long-jumps. A branch is better than a jump, since it is
|
|
relative; we will not have a reloc to fix up somewhere.
|
|
|
|
Note that we can't add relocs, because relaxation uses these fixed
|
|
numbers, and md_create_short_jump is called after relaxation. */
|
|
|
|
const int md_short_jump_size = 6;
|
|
const int md_long_jump_size = 6;
|
|
|
|
/* Report output format. Small changes in output format (like elf
|
|
variants below) can happen until all options are parsed, but after
|
|
that, the output format must remain fixed. */
|
|
|
|
const char *
|
|
cris_target_format ()
|
|
{
|
|
switch (OUTPUT_FLAVOR)
|
|
{
|
|
case bfd_target_aout_flavour:
|
|
return "a.out-cris";
|
|
|
|
case bfd_target_elf_flavour:
|
|
if (symbols_have_leading_underscore)
|
|
return "elf32-us-cris";
|
|
return "elf32-cris";
|
|
|
|
default:
|
|
abort ();
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* We need a port-specific relaxation function to cope with sym2 - sym1
|
|
relative expressions with both symbols in the same segment (but not
|
|
necessarily in the same frag as this insn), for example:
|
|
move.d [pc+sym2-(sym1-2)],r10
|
|
sym1:
|
|
The offset can be 8, 16 or 32 bits long. */
|
|
|
|
long
|
|
cris_relax_frag (seg, fragP, stretch)
|
|
segT seg ATTRIBUTE_UNUSED;
|
|
fragS *fragP;
|
|
long stretch ATTRIBUTE_UNUSED;
|
|
{
|
|
long growth;
|
|
offsetT aim = 0;
|
|
symbolS *symbolP;
|
|
const relax_typeS *this_type;
|
|
const relax_typeS *start_type;
|
|
relax_substateT next_state;
|
|
relax_substateT this_state;
|
|
const relax_typeS *table = TC_GENERIC_RELAX_TABLE;
|
|
|
|
/* We only have to cope with frags as prepared by
|
|
md_estimate_size_before_relax. The dword cases may get here
|
|
because of the different reasons that they aren't relaxable. */
|
|
switch (fragP->fr_subtype)
|
|
{
|
|
case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_DWORD):
|
|
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD):
|
|
/* When we get to these states, the frag won't grow any more. */
|
|
return 0;
|
|
|
|
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_WORD):
|
|
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE):
|
|
if (fragP->fr_symbol == NULL
|
|
|| S_GET_SEGMENT (fragP->fr_symbol) != absolute_section)
|
|
as_fatal (_("internal inconsistency problem in %s: fr_symbol %lx"),
|
|
__FUNCTION__, (long) fragP->fr_symbol);
|
|
symbolP = fragP->fr_symbol;
|
|
if (symbol_resolved_p (symbolP))
|
|
as_fatal (_("internal inconsistency problem in %s: resolved symbol"),
|
|
__FUNCTION__);
|
|
aim = S_GET_VALUE (symbolP);
|
|
break;
|
|
|
|
default:
|
|
as_fatal (_("internal inconsistency problem in %s: fr_subtype %d"),
|
|
__FUNCTION__, fragP->fr_subtype);
|
|
}
|
|
|
|
/* The rest is stolen from relax_frag. There's no obvious way to
|
|
share the code, but fortunately no requirement to keep in sync as
|
|
long as fragP->fr_symbol does not have its segment changed. */
|
|
|
|
this_state = fragP->fr_subtype;
|
|
start_type = this_type = table + this_state;
|
|
|
|
if (aim < 0)
|
|
{
|
|
/* Look backwards. */
|
|
for (next_state = this_type->rlx_more; next_state;)
|
|
if (aim >= this_type->rlx_backward)
|
|
next_state = 0;
|
|
else
|
|
{
|
|
/* Grow to next state. */
|
|
this_state = next_state;
|
|
this_type = table + this_state;
|
|
next_state = this_type->rlx_more;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Look forwards. */
|
|
for (next_state = this_type->rlx_more; next_state;)
|
|
if (aim <= this_type->rlx_forward)
|
|
next_state = 0;
|
|
else
|
|
{
|
|
/* Grow to next state. */
|
|
this_state = next_state;
|
|
this_type = table + this_state;
|
|
next_state = this_type->rlx_more;
|
|
}
|
|
}
|
|
|
|
growth = this_type->rlx_length - start_type->rlx_length;
|
|
if (growth != 0)
|
|
fragP->fr_subtype = this_state;
|
|
return growth;
|
|
}
|
|
|
|
/* Prepare machine-dependent frags for relaxation.
|
|
|
|
Called just before relaxation starts. Any symbol that is now undefined
|
|
will not become defined.
|
|
|
|
Return the correct fr_subtype in the frag.
|
|
|
|
Return the initial "guess for fr_var" to caller. The guess for fr_var
|
|
is *actually* the growth beyond fr_fix. Whatever we do to grow fr_fix
|
|
or fr_var contributes to our returned value.
|
|
|
|
Although it may not be explicit in the frag, pretend
|
|
fr_var starts with a value. */
|
|
|
|
int
|
|
md_estimate_size_before_relax (fragP, segment_type)
|
|
fragS *fragP;
|
|
/* The segment is either N_DATA or N_TEXT. */
|
|
segT segment_type;
|
|
{
|
|
int old_fr_fix;
|
|
|
|
old_fr_fix = fragP->fr_fix;
|
|
|
|
switch (fragP->fr_subtype)
|
|
{
|
|
case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_UNDF):
|
|
if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
|
|
/* The symbol lies in the same segment - a relaxable case. */
|
|
fragP->fr_subtype
|
|
= ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE);
|
|
else
|
|
/* Unknown or not the same segment, so not relaxable. */
|
|
fragP->fr_subtype
|
|
= ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_DWORD);
|
|
fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length;
|
|
break;
|
|
|
|
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_UNDF):
|
|
/* Note that we can not do anything sane with relaxing
|
|
[rX + a_known_symbol_in_text], it will have to be a 32-bit
|
|
value.
|
|
|
|
We could play tricks with managing a constant pool and make
|
|
a_known_symbol_in_text a "bdap [pc + offset]" pointing there
|
|
(like the GOT for ELF shared libraries), but that's no use, it
|
|
would in general be no shorter or faster code, only more
|
|
complicated. */
|
|
|
|
if (S_GET_SEGMENT (fragP->fr_symbol) != absolute_section)
|
|
{
|
|
/* Go for dword if not absolute or same segment. */
|
|
fragP->fr_subtype
|
|
= ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD);
|
|
fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length;
|
|
}
|
|
else if (!symbol_resolved_p (fragP->fr_symbol))
|
|
{
|
|
/* The symbol will eventually be completely resolved as an
|
|
absolute expression, but right now it depends on the result
|
|
of relaxation and we don't know anything else about the
|
|
value. We start relaxation with the assumption that it'll
|
|
fit in a byte. */
|
|
fragP->fr_subtype
|
|
= ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE);
|
|
fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length;
|
|
}
|
|
else
|
|
{
|
|
/* Absolute expression. */
|
|
long int value;
|
|
value = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
|
|
|
|
if (value >= -128 && value <= 127)
|
|
{
|
|
/* Byte displacement. */
|
|
(fragP->fr_opcode)[0] = value;
|
|
}
|
|
else
|
|
{
|
|
/* Word or dword displacement. */
|
|
int pow2_of_size = 1;
|
|
char *writep;
|
|
|
|
if (value < -32768 || value > 32767)
|
|
{
|
|
/* Outside word range, make it a dword. */
|
|
pow2_of_size = 2;
|
|
}
|
|
|
|
/* Modify the byte-offset BDAP into a word or dword offset
|
|
BDAP. Or really, a BDAP rX,8bit into a
|
|
BDAP.[wd] rX,[PC+] followed by a word or dword. */
|
|
(fragP->fr_opcode)[0] = BDAP_PC_LOW + pow2_of_size * 16;
|
|
|
|
/* Keep the register number in the highest four bits. */
|
|
(fragP->fr_opcode)[1] &= 0xF0;
|
|
(fragP->fr_opcode)[1] |= BDAP_INCR_HIGH;
|
|
|
|
/* It grew by two or four bytes. */
|
|
fragP->fr_fix += 1 << pow2_of_size;
|
|
writep = fragP->fr_literal + old_fr_fix;
|
|
md_number_to_chars (writep, value, 1 << pow2_of_size);
|
|
}
|
|
frag_wane (fragP);
|
|
}
|
|
break;
|
|
|
|
case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE):
|
|
case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD):
|
|
case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_DWORD):
|
|
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE):
|
|
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_WORD):
|
|
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD):
|
|
/* When relaxing a section for the second time, we don't need to
|
|
do anything except making sure that fr_var is set right. */
|
|
fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length;
|
|
break;
|
|
|
|
default:
|
|
BAD_CASE (fragP->fr_subtype);
|
|
}
|
|
|
|
return fragP->fr_var + (fragP->fr_fix - old_fr_fix);
|
|
}
|
|
|
|
/* Perform post-processing of machine-dependent frags after relaxation.
|
|
Called after relaxation is finished.
|
|
In: Address of frag.
|
|
fr_type == rs_machine_dependent.
|
|
fr_subtype is what the address relaxed to.
|
|
|
|
Out: Any fixS:s and constants are set up.
|
|
|
|
The caller will turn the frag into a ".space 0". */
|
|
|
|
void
|
|
md_convert_frag (abfd, sec, fragP)
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
|
segT sec ATTRIBUTE_UNUSED;
|
|
fragS *fragP;
|
|
{
|
|
/* Pointer to first byte in variable-sized part of the frag. */
|
|
char *var_partp;
|
|
|
|
/* Pointer to first opcode byte in frag. */
|
|
char *opcodep;
|
|
|
|
/* Used to check integrity of the relaxation.
|
|
One of 2 = long, 1 = word, or 0 = byte. */
|
|
int length_code;
|
|
|
|
/* Size in bytes of variable-sized part of frag. */
|
|
int var_part_size = 0;
|
|
|
|
/* This is part of *fragP. It contains all information about addresses
|
|
and offsets to varying parts. */
|
|
symbolS *symbolP;
|
|
unsigned long var_part_offset;
|
|
|
|
/* Where, in file space, is _var of *fragP? */
|
|
unsigned long address_of_var_part = 0;
|
|
|
|
/* Where, in file space, does addr point? */
|
|
unsigned long target_address;
|
|
|
|
know (fragP->fr_type == rs_machine_dependent);
|
|
|
|
length_code = fragP->fr_subtype & STATE_LENGTH_MASK;
|
|
know (length_code >= 0 && length_code < STATE_MAX_LENGTH);
|
|
|
|
var_part_offset = fragP->fr_fix;
|
|
var_partp = fragP->fr_literal + var_part_offset;
|
|
opcodep = fragP->fr_opcode;
|
|
|
|
symbolP = fragP->fr_symbol;
|
|
target_address = (symbolP ? S_GET_VALUE (symbolP) : 0) + fragP->fr_offset;
|
|
address_of_var_part = fragP->fr_address + var_part_offset;
|
|
|
|
switch (fragP->fr_subtype)
|
|
{
|
|
case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE):
|
|
opcodep[0] = branch_disp ((target_address - address_of_var_part));
|
|
var_part_size = 0;
|
|
break;
|
|
|
|
case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD):
|
|
/* We had a quick immediate branch, now turn it into a word one i.e. a
|
|
PC autoincrement. */
|
|
opcodep[0] = BRANCH_PC_LOW;
|
|
opcodep[1] &= 0xF0;
|
|
opcodep[1] |= BRANCH_INCR_HIGH;
|
|
md_number_to_chars (var_partp,
|
|
(long) (target_address - (address_of_var_part + 2)),
|
|
2);
|
|
var_part_size = 2;
|
|
break;
|
|
|
|
case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_DWORD):
|
|
gen_cond_branch_32 (fragP->fr_opcode, var_partp, fragP,
|
|
fragP->fr_symbol, (symbolS *) NULL,
|
|
fragP->fr_offset);
|
|
/* Ten bytes added: a branch, nop and a jump. */
|
|
var_part_size = 2 + 2 + 4 + 2;
|
|
break;
|
|
|
|
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE):
|
|
if (symbolP == NULL)
|
|
as_fatal (_("internal inconsistency in %s: bdapq no symbol"),
|
|
__FUNCTION__);
|
|
opcodep[0] = S_GET_VALUE (symbolP);
|
|
var_part_size = 0;
|
|
break;
|
|
|
|
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_WORD):
|
|
/* We had a BDAP 8-bit "quick immediate", now turn it into a 16-bit
|
|
one that uses PC autoincrement. */
|
|
opcodep[0] = BDAP_PC_LOW + (1 << 4);
|
|
opcodep[1] &= 0xF0;
|
|
opcodep[1] |= BDAP_INCR_HIGH;
|
|
if (symbolP == NULL)
|
|
as_fatal (_("internal inconsistency in %s: bdap.w with no symbol"),
|
|
__FUNCTION__);
|
|
md_number_to_chars (var_partp, S_GET_VALUE (symbolP), 2);
|
|
var_part_size = 2;
|
|
break;
|
|
|
|
case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD):
|
|
/* We had a BDAP 16-bit "word", change the offset to a dword. */
|
|
opcodep[0] = BDAP_PC_LOW + (2 << 4);
|
|
opcodep[1] &= 0xF0;
|
|
opcodep[1] |= BDAP_INCR_HIGH;
|
|
if (fragP->fr_symbol == NULL)
|
|
md_number_to_chars (var_partp, fragP->fr_offset, 4);
|
|
else
|
|
fix_new (fragP, var_partp - fragP->fr_literal, 4, fragP->fr_symbol,
|
|
fragP->fr_offset, 0, BFD_RELOC_32);
|
|
var_part_size = 4;
|
|
break;
|
|
|
|
default:
|
|
BAD_CASE (fragP->fr_subtype);
|
|
break;
|
|
}
|
|
|
|
fragP->fr_fix += var_part_size;
|
|
}
|
|
|
|
/* Generate a short jump around a secondary jump table.
|
|
Used by md_create_long_jump.
|
|
|
|
This used to be md_create_short_jump, but is now called from
|
|
md_create_long_jump instead, when sufficient.
|
|
since the sizes of the jumps are the same. It used to be brittle,
|
|
making possibilities for creating bad code. */
|
|
|
|
static void
|
|
cris_create_short_jump (storep, from_addr, to_addr, fragP, to_symbol)
|
|
char *storep;
|
|
addressT from_addr;
|
|
addressT to_addr;
|
|
fragS *fragP ATTRIBUTE_UNUSED;
|
|
symbolS *to_symbol ATTRIBUTE_UNUSED;
|
|
{
|
|
long int distance;
|
|
|
|
distance = to_addr - from_addr;
|
|
|
|
if (-254 <= distance && distance <= 256)
|
|
{
|
|
/* Create a "short" short jump: "BA distance - 2". */
|
|
storep[0] = branch_disp (distance - 2);
|
|
storep[1] = BA_QUICK_HIGH;
|
|
|
|
/* A nop for the delay slot. */
|
|
md_number_to_chars (storep + 2, NOP_OPCODE, 2);
|
|
|
|
/* The extra word should be filled with something sane too. Make it
|
|
a nop to keep disassembly sane. */
|
|
md_number_to_chars (storep + 4, NOP_OPCODE, 2);
|
|
}
|
|
else
|
|
{
|
|
/* Make it a "long" short jump: "BA (PC+)". */
|
|
md_number_to_chars (storep, BA_PC_INCR_OPCODE, 2);
|
|
|
|
/* ".WORD distance - 4". */
|
|
md_number_to_chars (storep + 2, (long) (distance - 4), 2);
|
|
|
|
/* A nop for the delay slot. */
|
|
md_number_to_chars (storep + 4, NOP_OPCODE, 2);
|
|
}
|
|
}
|
|
|
|
/* Generate a long jump in a secondary jump table.
|
|
|
|
storep Where to store the jump instruction.
|
|
from_addr Address of the jump instruction.
|
|
to_addr Destination address of the jump.
|
|
fragP Which frag the destination address operand
|
|
lies in.
|
|
to_symbol Destination symbol. */
|
|
|
|
void
|
|
md_create_long_jump (storep, from_addr, to_addr, fragP, to_symbol)
|
|
char *storep;
|
|
addressT from_addr;
|
|
addressT to_addr;
|
|
fragS *fragP;
|
|
symbolS *to_symbol;
|
|
{
|
|
long int distance;
|
|
|
|
distance = to_addr - from_addr;
|
|
|
|
if (-32763 <= distance && distance <= 32772)
|
|
{
|
|
/* Then make it a "short" long jump. */
|
|
cris_create_short_jump (storep, from_addr, to_addr, fragP,
|
|
to_symbol);
|
|
}
|
|
else
|
|
{
|
|
/* We have a "long" long jump: "JUMP [PC+]".
|
|
Make it an "ADD [PC+],PC" if we're supposed to emit PIC code. */
|
|
md_number_to_chars (storep,
|
|
pic ? ADD_PC_INCR_OPCODE : JUMP_PC_INCR_OPCODE, 2);
|
|
|
|
/* Follow with a ".DWORD to_addr", PC-relative for PIC. */
|
|
fix_new (fragP, storep + 2 - fragP->fr_literal, 4, to_symbol,
|
|
0, pic ? 1 : 0, pic ? BFD_RELOC_32_PCREL : BFD_RELOC_32);
|
|
}
|
|
}
|
|
|
|
/* Allocate space for the first piece of an insn, and mark it as the
|
|
start of the insn for debug-format use. */
|
|
|
|
static char *
|
|
cris_insn_first_word_frag ()
|
|
{
|
|
char *insnp = frag_more (2);
|
|
|
|
/* We need to mark the start of the insn by passing dwarf2_emit_insn
|
|
the offset from the current fragment position. This must be done
|
|
after the first fragment is created but before any other fragments
|
|
(fixed or varying) are created. Note that the offset only
|
|
corresponds to the "size" of the insn for a fixed-size,
|
|
non-expanded insn. */
|
|
if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
|
|
dwarf2_emit_insn (2);
|
|
|
|
return insnp;
|
|
}
|
|
|
|
/* Port-specific assembler initialization. */
|
|
|
|
void
|
|
md_begin ()
|
|
{
|
|
const char *hashret = NULL;
|
|
int i = 0;
|
|
|
|
/* Set up a hash table for the instructions. */
|
|
op_hash = hash_new ();
|
|
if (op_hash == NULL)
|
|
as_fatal (_("Virtual memory exhausted"));
|
|
|
|
while (cris_opcodes[i].name != NULL)
|
|
{
|
|
const char *name = cris_opcodes[i].name;
|
|
hashret = hash_insert (op_hash, name, (PTR) &cris_opcodes[i]);
|
|
|
|
if (hashret != NULL && *hashret != '\0')
|
|
as_fatal (_("Can't hash `%s': %s\n"), cris_opcodes[i].name,
|
|
*hashret == 0 ? _("(unknown reason)") : hashret);
|
|
do
|
|
{
|
|
if (cris_opcodes[i].match & cris_opcodes[i].lose)
|
|
as_fatal (_("Buggy opcode: `%s' \"%s\"\n"), cris_opcodes[i].name,
|
|
cris_opcodes[i].args);
|
|
|
|
++i;
|
|
}
|
|
while (cris_opcodes[i].name != NULL
|
|
&& strcmp (cris_opcodes[i].name, name) == 0);
|
|
}
|
|
}
|
|
|
|
/* Assemble a source line. */
|
|
|
|
void
|
|
md_assemble (str)
|
|
char *str;
|
|
{
|
|
struct cris_instruction output_instruction;
|
|
struct cris_prefix prefix;
|
|
char *opcodep;
|
|
char *p;
|
|
|
|
know (str);
|
|
|
|
/* Do the low-level grunt - assemble to bits and split up into a prefix
|
|
and ordinary insn. */
|
|
cris_process_instruction (str, &output_instruction, &prefix);
|
|
|
|
/* Handle any prefixes to the instruction. */
|
|
switch (prefix.kind)
|
|
{
|
|
case PREFIX_NONE:
|
|
break;
|
|
|
|
/* When the expression is unknown for a BDAP, it can need 0, 2 or 4
|
|
extra bytes, so we handle it separately. */
|
|
case PREFIX_BDAP_IMM:
|
|
/* We only do it if the relocation is unspecified, i.e. not a PIC
|
|
relocation. */
|
|
if (prefix.reloc == BFD_RELOC_NONE)
|
|
{
|
|
gen_bdap (prefix.base_reg_number, &prefix.expr);
|
|
break;
|
|
}
|
|
/* Fall through. */
|
|
case PREFIX_BDAP:
|
|
case PREFIX_BIAP:
|
|
case PREFIX_DIP:
|
|
opcodep = cris_insn_first_word_frag ();
|
|
|
|
/* Output the prefix opcode. */
|
|
md_number_to_chars (opcodep, (long) prefix.opcode, 2);
|
|
|
|
/* Having a specified reloc only happens for DIP and for BDAP with
|
|
PIC operands, but it is ok to drop through here for the other
|
|
prefixes as they can have no relocs specified. */
|
|
if (prefix.reloc != BFD_RELOC_NONE)
|
|
{
|
|
unsigned int relocsize
|
|
= (prefix.kind == PREFIX_DIP
|
|
? 4 : cris_get_pic_reloc_size (prefix.reloc));
|
|
|
|
p = frag_more (relocsize);
|
|
fix_new_exp (frag_now, (p - frag_now->fr_literal), relocsize,
|
|
&prefix.expr, 0, prefix.reloc);
|
|
}
|
|
break;
|
|
|
|
case PREFIX_PUSH:
|
|
opcodep = cris_insn_first_word_frag ();
|
|
|
|
/* Output the prefix opcode. Being a "push", we add the negative
|
|
size of the register to "sp". */
|
|
if (output_instruction.spec_reg != NULL)
|
|
{
|
|
/* Special register. */
|
|
opcodep[0] = -output_instruction.spec_reg->reg_size;
|
|
}
|
|
else
|
|
{
|
|
/* General register. */
|
|
opcodep[0] = -4;
|
|
}
|
|
opcodep[1] = (REG_SP << 4) + (BDAP_QUICK_OPCODE >> 8);
|
|
break;
|
|
|
|
default:
|
|
BAD_CASE (prefix.kind);
|
|
}
|
|
|
|
/* If we only had a prefix insn, we're done. */
|
|
if (output_instruction.insn_type == CRIS_INSN_NONE)
|
|
return;
|
|
|
|
/* Done with the prefix. Continue with the main instruction. */
|
|
if (prefix.kind == PREFIX_NONE)
|
|
opcodep = cris_insn_first_word_frag ();
|
|
else
|
|
opcodep = frag_more (2);
|
|
|
|
/* Output the instruction opcode. */
|
|
md_number_to_chars (opcodep, (long) (output_instruction.opcode), 2);
|
|
|
|
/* Output the symbol-dependent instruction stuff. */
|
|
if (output_instruction.insn_type == CRIS_INSN_BRANCH)
|
|
{
|
|
segT to_seg = absolute_section;
|
|
int is_undefined = 0;
|
|
int length_code;
|
|
|
|
if (output_instruction.expr.X_op != O_constant)
|
|
{
|
|
to_seg = S_GET_SEGMENT (output_instruction.expr.X_add_symbol);
|
|
|
|
if (to_seg == undefined_section)
|
|
is_undefined = 1;
|
|
}
|
|
|
|
if (to_seg == now_seg || is_undefined)
|
|
{
|
|
/* Handle complex expressions. */
|
|
valueT addvalue
|
|
= (SIMPLE_EXPR (&output_instruction.expr)
|
|
? output_instruction.expr.X_add_number
|
|
: 0);
|
|
symbolS *sym
|
|
= (SIMPLE_EXPR (&output_instruction.expr)
|
|
? output_instruction.expr.X_add_symbol
|
|
: make_expr_symbol (&output_instruction.expr));
|
|
|
|
/* If is_undefined, then the expression may BECOME now_seg. */
|
|
length_code = is_undefined ? STATE_UNDF : STATE_BYTE;
|
|
|
|
/* Make room for max ten bytes of variable length. */
|
|
frag_var (rs_machine_dependent, 10, 0,
|
|
ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, length_code),
|
|
sym, addvalue, opcodep);
|
|
}
|
|
else
|
|
{
|
|
/* We have: to_seg != now_seg && to_seg != undefined_section.
|
|
This means it is a branch to a known symbol in another
|
|
section, perhaps an absolute address. Emit a 32-bit branch. */
|
|
char *cond_jump = frag_more (10);
|
|
|
|
gen_cond_branch_32 (opcodep, cond_jump, frag_now,
|
|
output_instruction.expr.X_add_symbol,
|
|
(symbolS *) NULL,
|
|
output_instruction.expr.X_add_number);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (output_instruction.imm_oprnd_size > 0)
|
|
{
|
|
/* The intruction has an immediate operand. */
|
|
enum bfd_reloc_code_real reloc = BFD_RELOC_NONE;
|
|
|
|
switch (output_instruction.imm_oprnd_size)
|
|
{
|
|
/* Any byte-size immediate constants are treated as
|
|
word-size. FIXME: Thus overflow check does not work
|
|
correctly. */
|
|
|
|
case 2:
|
|
/* Note that size-check for the explicit reloc has already
|
|
been done when we get here. */
|
|
if (output_instruction.reloc != BFD_RELOC_NONE)
|
|
reloc = output_instruction.reloc;
|
|
else
|
|
reloc = BFD_RELOC_16;
|
|
break;
|
|
|
|
case 4:
|
|
/* Allow a relocation specified in the operand. */
|
|
if (output_instruction.reloc != BFD_RELOC_NONE)
|
|
reloc = output_instruction.reloc;
|
|
else
|
|
reloc = BFD_RELOC_32;
|
|
break;
|
|
|
|
default:
|
|
BAD_CASE (output_instruction.imm_oprnd_size);
|
|
}
|
|
|
|
p = frag_more (output_instruction.imm_oprnd_size);
|
|
fix_new_exp (frag_now, (p - frag_now->fr_literal),
|
|
output_instruction.imm_oprnd_size,
|
|
&output_instruction.expr, 0, reloc);
|
|
}
|
|
else if (output_instruction.reloc != BFD_RELOC_NONE)
|
|
{
|
|
/* An immediate operand that has a relocation and needs to be
|
|
processed further. */
|
|
|
|
/* It is important to use fix_new_exp here and everywhere else
|
|
(and not fix_new), as fix_new_exp can handle "difference
|
|
expressions" - where the expression contains a difference of
|
|
two symbols in the same segment. */
|
|
fix_new_exp (frag_now, (opcodep - frag_now->fr_literal), 2,
|
|
&output_instruction.expr, 0,
|
|
output_instruction.reloc);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Low level text-to-bits assembly. */
|
|
|
|
static void
|
|
cris_process_instruction (insn_text, out_insnp, prefixp)
|
|
char *insn_text;
|
|
struct cris_instruction *out_insnp;
|
|
struct cris_prefix *prefixp;
|
|
{
|
|
char *s;
|
|
char modified_char = 0;
|
|
const char *args;
|
|
struct cris_opcode *instruction;
|
|
char *operands;
|
|
int match = 0;
|
|
int mode;
|
|
int regno;
|
|
int size_bits;
|
|
|
|
/* Reset these fields to a harmless state in case we need to return in
|
|
error. */
|
|
prefixp->kind = PREFIX_NONE;
|
|
prefixp->reloc = BFD_RELOC_NONE;
|
|
out_insnp->insn_type = CRIS_INSN_NORMAL;
|
|
out_insnp->imm_oprnd_size = 0;
|
|
|
|
/* Find the end of the opcode mnemonic. We assume (true in 2.9.1)
|
|
that the caller has translated the opcode to lower-case, up to the
|
|
first non-letter. */
|
|
for (operands = insn_text; ISLOWER (*operands); ++operands)
|
|
;
|
|
|
|
/* Terminate the opcode after letters, but save the character there if
|
|
it was of significance. */
|
|
switch (*operands)
|
|
{
|
|
case '\0':
|
|
break;
|
|
|
|
case '.':
|
|
/* Put back the modified character later. */
|
|
modified_char = *operands;
|
|
/* Fall through. */
|
|
|
|
case ' ':
|
|
/* Consume the character after the mnemonic
|
|
and replace it with '\0'. */
|
|
*operands++ = '\0';
|
|
break;
|
|
|
|
default:
|
|
as_bad (_("Unknown opcode: `%s'"), insn_text);
|
|
return;
|
|
}
|
|
|
|
/* Find the instruction. */
|
|
instruction = (struct cris_opcode *) hash_find (op_hash, insn_text);
|
|
if (instruction == NULL)
|
|
{
|
|
as_bad (_("Unknown opcode: `%s'"), insn_text);
|
|
return;
|
|
}
|
|
|
|
/* Put back the modified character. */
|
|
switch (modified_char)
|
|
{
|
|
case 0:
|
|
break;
|
|
|
|
default:
|
|
*--operands = modified_char;
|
|
}
|
|
|
|
/* Try to match an opcode table slot. */
|
|
for (s = operands;;)
|
|
{
|
|
int imm_expr_found;
|
|
|
|
/* Initialize *prefixp, perhaps after being modified for a
|
|
"near match". */
|
|
prefixp->kind = PREFIX_NONE;
|
|
prefixp->reloc = BFD_RELOC_NONE;
|
|
|
|
/* Initialize *out_insnp. */
|
|
memset (out_insnp, 0, sizeof (*out_insnp));
|
|
out_insnp->opcode = instruction->match;
|
|
out_insnp->reloc = BFD_RELOC_NONE;
|
|
out_insnp->insn_type = CRIS_INSN_NORMAL;
|
|
out_insnp->imm_oprnd_size = 0;
|
|
|
|
imm_expr_found = 0;
|
|
|
|
/* Build the opcode, checking as we go to make sure that the
|
|
operands match. */
|
|
for (args = instruction->args;; ++args)
|
|
{
|
|
switch (*args)
|
|
{
|
|
case '\0':
|
|
/* If we've come to the end of arguments, we're done. */
|
|
if (*s == '\0')
|
|
match = 1;
|
|
break;
|
|
|
|
case '!':
|
|
/* Non-matcher character for disassembly.
|
|
Ignore it here. */
|
|
continue;
|
|
|
|
case ',':
|
|
case ' ':
|
|
/* These must match exactly. */
|
|
if (*s++ == *args)
|
|
continue;
|
|
break;
|
|
|
|
case 'B':
|
|
/* This is not really an operand, but causes a "BDAP
|
|
-size,SP" prefix to be output, for PUSH instructions. */
|
|
prefixp->kind = PREFIX_PUSH;
|
|
continue;
|
|
|
|
case 'b':
|
|
/* This letter marks an operand that should not be matched
|
|
in the assembler. It is a branch with 16-bit
|
|
displacement. The assembler will create them from the
|
|
8-bit flavor when necessary. The assembler does not
|
|
support the [rN+] operand, as the [r15+] that is
|
|
generated for 16-bit displacements. */
|
|
break;
|
|
|
|
case 'c':
|
|
/* A 5-bit unsigned immediate in bits <4:0>. */
|
|
if (! cris_get_expression (&s, &out_insnp->expr))
|
|
break;
|
|
else
|
|
{
|
|
if (out_insnp->expr.X_op == O_constant
|
|
&& (out_insnp->expr.X_add_number < 0
|
|
|| out_insnp->expr.X_add_number > 31))
|
|
as_bad (_("Immediate value not in 5 bit unsigned range: %ld"),
|
|
out_insnp->expr.X_add_number);
|
|
|
|
out_insnp->reloc = BFD_RELOC_CRIS_UNSIGNED_5;
|
|
continue;
|
|
}
|
|
|
|
case 'C':
|
|
/* A 4-bit unsigned immediate in bits <3:0>. */
|
|
if (! cris_get_expression (&s, &out_insnp->expr))
|
|
break;
|
|
else
|
|
{
|
|
if (out_insnp->expr.X_op == O_constant
|
|
&& (out_insnp->expr.X_add_number < 0
|
|
|| out_insnp->expr.X_add_number > 15))
|
|
as_bad (_("Immediate value not in 4 bit unsigned range: %ld"),
|
|
out_insnp->expr.X_add_number);
|
|
|
|
out_insnp->reloc = BFD_RELOC_CRIS_UNSIGNED_4;
|
|
continue;
|
|
}
|
|
|
|
case 'D':
|
|
/* General register in bits <15:12> and <3:0>. */
|
|
if (! get_gen_reg (&s, ®no))
|
|
break;
|
|
else
|
|
{
|
|
out_insnp->opcode |= regno /* << 0 */;
|
|
out_insnp->opcode |= regno << 12;
|
|
continue;
|
|
}
|
|
|
|
case 'f':
|
|
/* Flags from the condition code register. */
|
|
{
|
|
int flags = 0;
|
|
|
|
if (! get_flags (&s, &flags))
|
|
break;
|
|
|
|
out_insnp->opcode |= ((flags & 0xf0) << 8) | (flags & 0xf);
|
|
continue;
|
|
}
|
|
|
|
case 'i':
|
|
/* A 6-bit signed immediate in bits <5:0>. */
|
|
if (! cris_get_expression (&s, &out_insnp->expr))
|
|
break;
|
|
else
|
|
{
|
|
if (out_insnp->expr.X_op == O_constant
|
|
&& (out_insnp->expr.X_add_number < -32
|
|
|| out_insnp->expr.X_add_number > 31))
|
|
as_bad (_("Immediate value not in 6 bit range: %ld"),
|
|
out_insnp->expr.X_add_number);
|
|
out_insnp->reloc = BFD_RELOC_CRIS_SIGNED_6;
|
|
continue;
|
|
}
|
|
|
|
case 'I':
|
|
/* A 6-bit unsigned immediate in bits <5:0>. */
|
|
if (! cris_get_expression (&s, &out_insnp->expr))
|
|
break;
|
|
else
|
|
{
|
|
if (out_insnp->expr.X_op == O_constant
|
|
&& (out_insnp->expr.X_add_number < 0
|
|
|| out_insnp->expr.X_add_number > 63))
|
|
as_bad (_("Immediate value not in 6 bit unsigned range: %ld"),
|
|
out_insnp->expr.X_add_number);
|
|
out_insnp->reloc = BFD_RELOC_CRIS_UNSIGNED_6;
|
|
continue;
|
|
}
|
|
|
|
case 'M':
|
|
/* A size modifier, B, W or D, to be put in a bit position
|
|
suitable for CLEAR instructions (i.e. reflecting a zero
|
|
register). */
|
|
if (! get_bwd_size_modifier (&s, &size_bits))
|
|
break;
|
|
else
|
|
{
|
|
switch (size_bits)
|
|
{
|
|
case 0:
|
|
out_insnp->opcode |= 0 << 12;
|
|
break;
|
|
|
|
case 1:
|
|
out_insnp->opcode |= 4 << 12;
|
|
break;
|
|
|
|
case 2:
|
|
out_insnp->opcode |= 8 << 12;
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
case 'm':
|
|
/* A size modifier, B, W or D, to be put in bits <5:4>. */
|
|
if (! get_bwd_size_modifier (&s, &size_bits))
|
|
break;
|
|
else
|
|
{
|
|
out_insnp->opcode |= size_bits << 4;
|
|
continue;
|
|
}
|
|
|
|
case 'o':
|
|
/* A branch expression. */
|
|
if (! cris_get_expression (&s, &out_insnp->expr))
|
|
break;
|
|
else
|
|
{
|
|
out_insnp->insn_type = CRIS_INSN_BRANCH;
|
|
continue;
|
|
}
|
|
|
|
case 'O':
|
|
/* A BDAP expression for any size, "expr,r". */
|
|
if (! cris_get_expression (&s, &prefixp->expr))
|
|
break;
|
|
else
|
|
{
|
|
if (*s != ',')
|
|
break;
|
|
|
|
s++;
|
|
|
|
if (!get_gen_reg (&s, &prefixp->base_reg_number))
|
|
break;
|
|
|
|
/* Since 'O' is used with an explicit bdap, we have no
|
|
"real" instruction. */
|
|
prefixp->kind = PREFIX_BDAP_IMM;
|
|
prefixp->opcode
|
|
= BDAP_QUICK_OPCODE | (prefixp->base_reg_number << 12);
|
|
|
|
out_insnp->insn_type = CRIS_INSN_NONE;
|
|
continue;
|
|
}
|
|
|
|
case 'P':
|
|
/* Special register in bits <15:12>. */
|
|
if (! get_spec_reg (&s, &out_insnp->spec_reg))
|
|
break;
|
|
else
|
|
{
|
|
/* Use of some special register names come with a
|
|
specific warning. Note that we have no ".cpu type"
|
|
pseudo yet, so some of this is just unused
|
|
framework. */
|
|
if (out_insnp->spec_reg->warning)
|
|
as_warn (out_insnp->spec_reg->warning);
|
|
else if (out_insnp->spec_reg->applicable_version
|
|
== cris_ver_warning)
|
|
/* Others have a generic warning. */
|
|
as_warn (_("Unimplemented register `%s' specified"),
|
|
out_insnp->spec_reg->name);
|
|
|
|
out_insnp->opcode
|
|
|= out_insnp->spec_reg->number << 12;
|
|
continue;
|
|
}
|
|
|
|
case 'p':
|
|
/* This character is used in the disassembler to
|
|
recognize a prefix instruction to fold into the
|
|
addressing mode for the next instruction. It is
|
|
ignored here. */
|
|
continue;
|
|
|
|
case 'R':
|
|
/* General register in bits <15:12>. */
|
|
if (! get_gen_reg (&s, ®no))
|
|
break;
|
|
else
|
|
{
|
|
out_insnp->opcode |= regno << 12;
|
|
continue;
|
|
}
|
|
|
|
case 'r':
|
|
/* General register in bits <3:0>. */
|
|
if (! get_gen_reg (&s, ®no))
|
|
break;
|
|
else
|
|
{
|
|
out_insnp->opcode |= regno /* << 0 */;
|
|
continue;
|
|
}
|
|
|
|
case 'S':
|
|
/* Source operand in bit <10> and a prefix; a 3-operand
|
|
prefix. */
|
|
if (! get_3op_or_dip_prefix_op (&s, prefixp))
|
|
break;
|
|
else
|
|
continue;
|
|
|
|
case 's':
|
|
/* Source operand in bits <10>, <3:0> and optionally a
|
|
prefix; i.e. an indirect operand or an side-effect
|
|
prefix. */
|
|
if (! get_autoinc_prefix_or_indir_op (&s, prefixp, &mode,
|
|
®no,
|
|
&imm_expr_found,
|
|
&out_insnp->expr))
|
|
break;
|
|
else
|
|
{
|
|
if (prefixp->kind != PREFIX_NONE)
|
|
{
|
|
/* A prefix, so it has the autoincrement bit
|
|
set. */
|
|
out_insnp->opcode |= (AUTOINCR_BIT << 8);
|
|
}
|
|
else
|
|
{
|
|
/* No prefix. The "mode" variable contains bits like
|
|
whether or not this is autoincrement mode. */
|
|
out_insnp->opcode |= (mode << 10);
|
|
|
|
/* If there was a PIC reloc specifier, then it was
|
|
attached to the prefix. Note that we can't check
|
|
that the reloc size matches, since we don't have
|
|
all the operands yet in all cases. */
|
|
if (prefixp->reloc != BFD_RELOC_NONE)
|
|
out_insnp->reloc = prefixp->reloc;
|
|
}
|
|
|
|
out_insnp->opcode |= regno /* << 0 */ ;
|
|
continue;
|
|
}
|
|
|
|
case 'x':
|
|
/* Rs.m in bits <15:12> and <5:4>. */
|
|
if (! get_gen_reg (&s, ®no)
|
|
|| ! get_bwd_size_modifier (&s, &size_bits))
|
|
break;
|
|
else
|
|
{
|
|
out_insnp->opcode |= (regno << 12) | (size_bits << 4);
|
|
continue;
|
|
}
|
|
|
|
case 'y':
|
|
/* Source operand in bits <10>, <3:0> and optionally a
|
|
prefix; i.e. an indirect operand or an side-effect
|
|
prefix.
|
|
|
|
The difference to 's' is that this does not allow an
|
|
"immediate" expression. */
|
|
if (! get_autoinc_prefix_or_indir_op (&s, prefixp,
|
|
&mode, ®no,
|
|
&imm_expr_found,
|
|
&out_insnp->expr)
|
|
|| imm_expr_found)
|
|
break;
|
|
else
|
|
{
|
|
if (prefixp->kind != PREFIX_NONE)
|
|
{
|
|
/* A prefix, and those matched here always have
|
|
side-effects (see 's' case). */
|
|
out_insnp->opcode |= (AUTOINCR_BIT << 8);
|
|
}
|
|
else
|
|
{
|
|
/* No prefix. The "mode" variable contains bits
|
|
like whether or not this is autoincrement
|
|
mode. */
|
|
out_insnp->opcode |= (mode << 10);
|
|
}
|
|
|
|
out_insnp->opcode |= regno /* << 0 */;
|
|
continue;
|
|
}
|
|
|
|
case 'z':
|
|
/* Size modifier (B or W) in bit <4>. */
|
|
if (! get_bw_size_modifier (&s, &size_bits))
|
|
break;
|
|
else
|
|
{
|
|
out_insnp->opcode |= size_bits << 4;
|
|
continue;
|
|
}
|
|
|
|
default:
|
|
BAD_CASE (*args);
|
|
}
|
|
|
|
/* We get here when we fail a match above or we found a
|
|
complete match. Break out of this loop. */
|
|
break;
|
|
}
|
|
|
|
/* Was it a match or a miss? */
|
|
if (match == 0)
|
|
{
|
|
/* If it's just that the args don't match, maybe the next
|
|
item in the table is the same opcode but with
|
|
matching operands. */
|
|
if (instruction[1].name != NULL
|
|
&& ! strcmp (instruction->name, instruction[1].name))
|
|
{
|
|
/* Yep. Restart and try that one instead. */
|
|
++instruction;
|
|
s = operands;
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
/* We've come to the end of instructions with this
|
|
opcode, so it must be an error. */
|
|
as_bad (_("Illegal operands"));
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We have a match. Check if there's anything more to do. */
|
|
if (imm_expr_found)
|
|
{
|
|
/* There was an immediate mode operand, so we must check
|
|
that it has an appropriate size. */
|
|
switch (instruction->imm_oprnd_size)
|
|
{
|
|
default:
|
|
case SIZE_NONE:
|
|
/* Shouldn't happen; this one does not have immediate
|
|
operands with different sizes. */
|
|
BAD_CASE (instruction->imm_oprnd_size);
|
|
break;
|
|
|
|
case SIZE_FIX_32:
|
|
out_insnp->imm_oprnd_size = 4;
|
|
break;
|
|
|
|
case SIZE_SPEC_REG:
|
|
switch (out_insnp->spec_reg->reg_size)
|
|
{
|
|
case 1:
|
|
if (out_insnp->expr.X_op == O_constant
|
|
&& (out_insnp->expr.X_add_number < -128
|
|
|| out_insnp->expr.X_add_number > 255))
|
|
as_bad (_("Immediate value not in 8 bit range: %ld"),
|
|
out_insnp->expr.X_add_number);
|
|
/* Fall through. */
|
|
case 2:
|
|
/* FIXME: We need an indicator in the instruction
|
|
table to pass on, to indicate if we need to check
|
|
overflow for a signed or unsigned number. */
|
|
if (out_insnp->expr.X_op == O_constant
|
|
&& (out_insnp->expr.X_add_number < -32768
|
|
|| out_insnp->expr.X_add_number > 65535))
|
|
as_bad (_("Immediate value not in 16 bit range: %ld"),
|
|
out_insnp->expr.X_add_number);
|
|
out_insnp->imm_oprnd_size = 2;
|
|
break;
|
|
|
|
case 4:
|
|
out_insnp->imm_oprnd_size = 4;
|
|
break;
|
|
|
|
default:
|
|
BAD_CASE (out_insnp->spec_reg->reg_size);
|
|
}
|
|
break;
|
|
|
|
case SIZE_FIELD:
|
|
switch (size_bits)
|
|
{
|
|
case 0:
|
|
if (out_insnp->expr.X_op == O_constant
|
|
&& (out_insnp->expr.X_add_number < -128
|
|
|| out_insnp->expr.X_add_number > 255))
|
|
as_bad (_("Immediate value not in 8 bit range: %ld"),
|
|
out_insnp->expr.X_add_number);
|
|
/* Fall through. */
|
|
case 1:
|
|
if (out_insnp->expr.X_op == O_constant
|
|
&& (out_insnp->expr.X_add_number < -32768
|
|
|| out_insnp->expr.X_add_number > 65535))
|
|
as_bad (_("Immediate value not in 16 bit range: %ld"),
|
|
out_insnp->expr.X_add_number);
|
|
out_insnp->imm_oprnd_size = 2;
|
|
break;
|
|
|
|
case 2:
|
|
out_insnp->imm_oprnd_size = 4;
|
|
break;
|
|
|
|
default:
|
|
BAD_CASE (out_insnp->spec_reg->reg_size);
|
|
}
|
|
}
|
|
|
|
/* If there was a relocation specified for the immediate
|
|
expression (i.e. it had a PIC modifier) check that the
|
|
size of the PIC relocation matches the size specified by
|
|
the opcode. */
|
|
if (out_insnp->reloc != BFD_RELOC_NONE
|
|
&& (cris_get_pic_reloc_size (out_insnp->reloc)
|
|
!= (unsigned int) out_insnp->imm_oprnd_size))
|
|
as_bad (_("PIC relocation size does not match operand size"));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Get a B, W, or D size modifier from the string pointed out by *cPP,
|
|
which must point to a '.' in front of the modifier. On successful
|
|
return, *cPP is advanced to the character following the size
|
|
modifier, and is undefined otherwise.
|
|
|
|
cPP Pointer to pointer to string starting
|
|
with the size modifier.
|
|
|
|
size_bitsp Pointer to variable to contain the size bits on
|
|
successful return.
|
|
|
|
Return 1 iff a correct size modifier is found, else 0. */
|
|
|
|
static int
|
|
get_bwd_size_modifier (cPP, size_bitsp)
|
|
char **cPP;
|
|
int *size_bitsp;
|
|
{
|
|
if (**cPP != '.')
|
|
return 0;
|
|
else
|
|
{
|
|
/* Consume the '.'. */
|
|
(*cPP)++;
|
|
|
|
switch (**cPP)
|
|
{
|
|
case 'B':
|
|
case 'b':
|
|
*size_bitsp = 0;
|
|
break;
|
|
|
|
case 'W':
|
|
case 'w':
|
|
*size_bitsp = 1;
|
|
break;
|
|
|
|
case 'D':
|
|
case 'd':
|
|
*size_bitsp = 2;
|
|
break;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
/* Consume the size letter. */
|
|
(*cPP)++;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Get a B or W size modifier from the string pointed out by *cPP,
|
|
which must point to a '.' in front of the modifier. On successful
|
|
return, *cPP is advanced to the character following the size
|
|
modifier, and is undefined otherwise.
|
|
|
|
cPP Pointer to pointer to string starting
|
|
with the size modifier.
|
|
|
|
size_bitsp Pointer to variable to contain the size bits on
|
|
successful return.
|
|
|
|
Return 1 iff a correct size modifier is found, else 0. */
|
|
|
|
static int
|
|
get_bw_size_modifier (cPP, size_bitsp)
|
|
char **cPP;
|
|
int *size_bitsp;
|
|
{
|
|
if (**cPP != '.')
|
|
return 0;
|
|
else
|
|
{
|
|
/* Consume the '.'. */
|
|
(*cPP)++;
|
|
|
|
switch (**cPP)
|
|
{
|
|
case 'B':
|
|
case 'b':
|
|
*size_bitsp = 0;
|
|
break;
|
|
|
|
case 'W':
|
|
case 'w':
|
|
*size_bitsp = 1;
|
|
break;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
/* Consume the size letter. */
|
|
(*cPP)++;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Get a general register from the string pointed out by *cPP. The
|
|
variable *cPP is advanced to the character following the general
|
|
register name on a successful return, and has its initial position
|
|
otherwise.
|
|
|
|
cPP Pointer to pointer to string, beginning with a general
|
|
register name.
|
|
|
|
regnop Pointer to int containing the register number.
|
|
|
|
Return 1 iff a correct general register designator is found,
|
|
else 0. */
|
|
|
|
static int
|
|
get_gen_reg (cPP, regnop)
|
|
char **cPP;
|
|
int *regnop;
|
|
{
|
|
char *oldp;
|
|
oldp = *cPP;
|
|
|
|
/* Handle a sometimes-mandatory dollar sign as register prefix. */
|
|
if (**cPP == REGISTER_PREFIX_CHAR)
|
|
(*cPP)++;
|
|
else if (demand_register_prefix)
|
|
return 0;
|
|
|
|
switch (**cPP)
|
|
{
|
|
case 'P':
|
|
case 'p':
|
|
/* "P" as in "PC"? Consume the "P". */
|
|
(*cPP)++;
|
|
|
|
if ((**cPP == 'C' || **cPP == 'c')
|
|
&& ! ISALNUM ((*cPP)[1]))
|
|
{
|
|
/* It's "PC": consume the "c" and we're done. */
|
|
(*cPP)++;
|
|
*regnop = REG_PC;
|
|
return 1;
|
|
}
|
|
break;
|
|
|
|
case 'R':
|
|
case 'r':
|
|
/* Hopefully r[0-9] or r1[0-5]. Consume 'R' or 'r'. */
|
|
(*cPP)++;
|
|
|
|
if (ISDIGIT (**cPP))
|
|
{
|
|
/* It's r[0-9]. Consume and check the next digit. */
|
|
*regnop = **cPP - '0';
|
|
(*cPP)++;
|
|
|
|
if (! ISALNUM (**cPP))
|
|
{
|
|
/* No more digits, we're done. */
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
/* One more digit. Consume and add. */
|
|
*regnop = *regnop * 10 + (**cPP - '0');
|
|
|
|
/* We need to check for a valid register number; Rn,
|
|
0 <= n <= MAX_REG. */
|
|
if (*regnop <= MAX_REG)
|
|
{
|
|
/* Consume second digit. */
|
|
(*cPP)++;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 'S':
|
|
case 's':
|
|
/* "S" as in "SP"? Consume the "S". */
|
|
(*cPP)++;
|
|
if (**cPP == 'P' || **cPP == 'p')
|
|
{
|
|
/* It's "SP": consume the "p" and we're done. */
|
|
(*cPP)++;
|
|
*regnop = REG_SP;
|
|
return 1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
/* Just here to silence compilation warnings. */
|
|
;
|
|
}
|
|
|
|
/* We get here if we fail. Restore the pointer. */
|
|
*cPP = oldp;
|
|
return 0;
|
|
}
|
|
|
|
/* Get a special register from the string pointed out by *cPP. The
|
|
variable *cPP is advanced to the character following the special
|
|
register name if one is found, and retains its original position
|
|
otherwise.
|
|
|
|
cPP Pointer to pointer to string starting with a special register
|
|
name.
|
|
|
|
sregpp Pointer to Pointer to struct spec_reg, where a pointer to the
|
|
register description will be stored.
|
|
|
|
Return 1 iff a correct special register name is found. */
|
|
|
|
static int
|
|
get_spec_reg (cPP, sregpp)
|
|
char **cPP;
|
|
const struct cris_spec_reg **sregpp;
|
|
{
|
|
char *s1;
|
|
const char *s2;
|
|
char *name_begin = *cPP;
|
|
|
|
const struct cris_spec_reg *sregp;
|
|
|
|
/* Handle a sometimes-mandatory dollar sign as register prefix. */
|
|
if (*name_begin == REGISTER_PREFIX_CHAR)
|
|
name_begin++;
|
|
else if (demand_register_prefix)
|
|
return 0;
|
|
|
|
/* Loop over all special registers. */
|
|
for (sregp = cris_spec_regs; sregp->name != NULL; sregp++)
|
|
{
|
|
/* Start over from beginning of the supposed name. */
|
|
s1 = name_begin;
|
|
s2 = sregp->name;
|
|
|
|
while (*s2 != '\0' && TOLOWER (*s1) == *s2)
|
|
{
|
|
s1++;
|
|
s2++;
|
|
}
|
|
|
|
/* For a match, we must have consumed the name in the table, and we
|
|
must be outside what could be part of a name. Assume here that a
|
|
test for alphanumerics is sufficient for a name test. */
|
|
if (*s2 == 0 && ! ISALNUM (*s1))
|
|
{
|
|
/* We have a match. Update the pointer and be done. */
|
|
*cPP = s1;
|
|
*sregpp = sregp;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* If we got here, we did not find any name. */
|
|
return 0;
|
|
}
|
|
|
|
/* Get an unprefixed or side-effect-prefix operand from the string pointed
|
|
out by *cPP. The pointer *cPP is advanced to the character following
|
|
the indirect operand if we have success, else it contains an undefined
|
|
value.
|
|
|
|
cPP Pointer to pointer to string beginning with the first
|
|
character of the supposed operand.
|
|
|
|
prefixp Pointer to structure containing an optional instruction
|
|
prefix.
|
|
|
|
is_autoincp Pointer to int indicating the indirect or autoincrement
|
|
bits.
|
|
|
|
src_regnop Pointer to int containing the source register number in
|
|
the instruction.
|
|
|
|
imm_foundp Pointer to an int indicating if an immediate expression
|
|
is found.
|
|
|
|
imm_exprP Pointer to a structure containing an immediate
|
|
expression, if success and if *imm_foundp is nonzero.
|
|
|
|
Return 1 iff a correct indirect operand is found. */
|
|
|
|
static int
|
|
get_autoinc_prefix_or_indir_op (cPP, prefixp, is_autoincp, src_regnop,
|
|
imm_foundp, imm_exprP)
|
|
char **cPP;
|
|
struct cris_prefix *prefixp;
|
|
int *is_autoincp;
|
|
int *src_regnop;
|
|
int *imm_foundp;
|
|
expressionS *imm_exprP;
|
|
{
|
|
/* Assume there was no immediate mode expression. */
|
|
*imm_foundp = 0;
|
|
|
|
if (**cPP == '[')
|
|
{
|
|
/* So this operand is one of:
|
|
Indirect: [rN]
|
|
Autoincrement: [rN+]
|
|
Indexed with assign: [rN=rM+rO.S]
|
|
Offset with assign: [rN=rM+I], [rN=rM+[rO].s], [rN=rM+[rO+].s]
|
|
|
|
Either way, consume the '['. */
|
|
(*cPP)++;
|
|
|
|
/* Get the rN register. */
|
|
if (! get_gen_reg (cPP, src_regnop))
|
|
/* If there was no register, then this cannot match. */
|
|
return 0;
|
|
else
|
|
{
|
|
/* We got the register, now check the next character. */
|
|
switch (**cPP)
|
|
{
|
|
case ']':
|
|
/* Indirect mode. We're done here. */
|
|
prefixp->kind = PREFIX_NONE;
|
|
*is_autoincp = 0;
|
|
break;
|
|
|
|
case '+':
|
|
/* This must be an auto-increment mode, if there's a
|
|
match. */
|
|
prefixp->kind = PREFIX_NONE;
|
|
*is_autoincp = 1;
|
|
|
|
/* We consume this character and break out to check the
|
|
closing ']'. */
|
|
(*cPP)++;
|
|
break;
|
|
|
|
case '=':
|
|
/* This must be indexed with assign, or offset with assign
|
|
to match. */
|
|
(*cPP)++;
|
|
|
|
/* Either way, the next thing must be a register. */
|
|
if (! get_gen_reg (cPP, &prefixp->base_reg_number))
|
|
/* No register, no match. */
|
|
return 0;
|
|
else
|
|
{
|
|
/* We've consumed "[rN=rM", so we must be looking at
|
|
"+rO.s]" or "+I]", or "-I]", or "+[rO].s]" or
|
|
"+[rO+].s]". */
|
|
if (**cPP == '+')
|
|
{
|
|
int index_reg_number;
|
|
(*cPP)++;
|
|
|
|
if (**cPP == '[')
|
|
{
|
|
int size_bits;
|
|
/* This must be [rx=ry+[rz].s] or
|
|
[rx=ry+[rz+].s] or no match. We must be
|
|
looking at rz after consuming the '['. */
|
|
(*cPP)++;
|
|
|
|
if (!get_gen_reg (cPP, &index_reg_number))
|
|
return 0;
|
|
|
|
prefixp->kind = PREFIX_BDAP;
|
|
prefixp->opcode
|
|
= (BDAP_INDIR_OPCODE
|
|
+ (prefixp->base_reg_number << 12)
|
|
+ index_reg_number);
|
|
|
|
if (**cPP == '+')
|
|
{
|
|
/* We've seen "[rx=ry+[rz+" here, so now we
|
|
know that there must be "].s]" left to
|
|
check. */
|
|
(*cPP)++;
|
|
prefixp->opcode |= AUTOINCR_BIT << 8;
|
|
}
|
|
|
|
/* If it wasn't autoincrement, we don't need to
|
|
add anything. */
|
|
|
|
/* Check the next-to-last ']'. */
|
|
if (**cPP != ']')
|
|
return 0;
|
|
|
|
(*cPP)++;
|
|
|
|
/* Check the ".s" modifier. */
|
|
if (! get_bwd_size_modifier (cPP, &size_bits))
|
|
return 0;
|
|
|
|
prefixp->opcode |= size_bits << 4;
|
|
|
|
/* Now we got [rx=ry+[rz+].s or [rx=ry+[rz].s.
|
|
We break out to check the final ']'. */
|
|
break;
|
|
}
|
|
/* It wasn't an indirection. Check if it's a
|
|
register. */
|
|
else if (get_gen_reg (cPP, &index_reg_number))
|
|
{
|
|
int size_bits;
|
|
|
|
/* Indexed with assign mode: "[rN+rM.S]". */
|
|
prefixp->kind = PREFIX_BIAP;
|
|
prefixp->opcode
|
|
= (BIAP_OPCODE + (index_reg_number << 12)
|
|
+ prefixp->base_reg_number /* << 0 */);
|
|
|
|
if (! get_bwd_size_modifier (cPP, &size_bits))
|
|
/* Size missing, this isn't a match. */
|
|
return 0;
|
|
else
|
|
{
|
|
/* Size found, break out to check the
|
|
final ']'. */
|
|
prefixp->opcode |= size_bits << 4;
|
|
break;
|
|
}
|
|
}
|
|
/* Not a register. Then this must be "[rN+I]". */
|
|
else if (cris_get_expression (cPP, &prefixp->expr))
|
|
{
|
|
/* We've got offset with assign mode. Fill
|
|
in the blanks and break out to match the
|
|
final ']'. */
|
|
prefixp->kind = PREFIX_BDAP_IMM;
|
|
|
|
/* We tentatively put an opcode corresponding to
|
|
a 32-bit operand here, although it may be
|
|
relaxed when there's no PIC specifier for the
|
|
operand. */
|
|
prefixp->opcode
|
|
= (BDAP_INDIR_OPCODE
|
|
| (prefixp->base_reg_number << 12)
|
|
| (AUTOINCR_BIT << 8)
|
|
| (2 << 4)
|
|
| REG_PC /* << 0 */);
|
|
|
|
/* This can have a PIC suffix, specifying reloc
|
|
type to use. */
|
|
if (pic && **cPP == PIC_SUFFIX_CHAR)
|
|
{
|
|
unsigned int relocsize;
|
|
|
|
cris_get_pic_suffix (cPP, &prefixp->reloc,
|
|
&prefixp->expr);
|
|
|
|
/* Tweak the size of the immediate operand
|
|
in the prefix opcode if it isn't what we
|
|
set. */
|
|
relocsize
|
|
= cris_get_pic_reloc_size (prefixp->reloc);
|
|
if (relocsize != 4)
|
|
prefixp->opcode
|
|
= ((prefixp->opcode & ~(3 << 4))
|
|
| ((relocsize >> 1) << 4));
|
|
}
|
|
break;
|
|
}
|
|
else
|
|
/* Neither register nor expression found, so
|
|
this can't be a match. */
|
|
return 0;
|
|
}
|
|
/* Not "[rN+" but perhaps "[rN-"? */
|
|
else if (**cPP == '-')
|
|
{
|
|
/* We must have an offset with assign mode. */
|
|
if (! cris_get_expression (cPP, &prefixp->expr))
|
|
/* No expression, no match. */
|
|
return 0;
|
|
else
|
|
{
|
|
/* We've got offset with assign mode. Fill
|
|
in the blanks and break out to match the
|
|
final ']'.
|
|
|
|
Note that we don't allow a PIC suffix for an
|
|
operand with a minus sign. */
|
|
prefixp->kind = PREFIX_BDAP_IMM;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
/* Neither '+' nor '-' after "[rN=rM". Lose. */
|
|
return 0;
|
|
}
|
|
default:
|
|
/* Neither ']' nor '+' nor '=' after "[rN". Lose. */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* When we get here, we have a match and will just check the closing
|
|
']'. We can still fail though. */
|
|
if (**cPP != ']')
|
|
return 0;
|
|
else
|
|
{
|
|
/* Don't forget to consume the final ']'.
|
|
Then return in glory. */
|
|
(*cPP)++;
|
|
return 1;
|
|
}
|
|
}
|
|
/* No indirection. Perhaps a constant? */
|
|
else if (cris_get_expression (cPP, imm_exprP))
|
|
{
|
|
/* Expression found, this is immediate mode. */
|
|
prefixp->kind = PREFIX_NONE;
|
|
*is_autoincp = 1;
|
|
*src_regnop = REG_PC;
|
|
*imm_foundp = 1;
|
|
|
|
/* This can have a PIC suffix, specifying reloc type to use. The
|
|
caller must check that the reloc size matches the operand size. */
|
|
if (pic && **cPP == PIC_SUFFIX_CHAR)
|
|
cris_get_pic_suffix (cPP, &prefixp->reloc, imm_exprP);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* No luck today. */
|
|
return 0;
|
|
}
|
|
|
|
/* This function gets an indirect operand in a three-address operand
|
|
combination from the string pointed out by *cPP. The pointer *cPP is
|
|
advanced to the character following the indirect operand on success, or
|
|
has an unspecified value on failure.
|
|
|
|
cPP Pointer to pointer to string begining
|
|
with the operand
|
|
|
|
prefixp Pointer to structure containing an
|
|
instruction prefix
|
|
|
|
Returns 1 iff a correct indirect operand is found. */
|
|
|
|
static int
|
|
get_3op_or_dip_prefix_op (cPP, prefixp)
|
|
char **cPP;
|
|
struct cris_prefix *prefixp;
|
|
{
|
|
int reg_number;
|
|
|
|
if (**cPP != '[')
|
|
/* We must have a '[' or it's a clean failure. */
|
|
return 0;
|
|
|
|
/* Eat the first '['. */
|
|
(*cPP)++;
|
|
|
|
if (**cPP == '[')
|
|
{
|
|
/* A second '[', so this must be double-indirect mode. */
|
|
(*cPP)++;
|
|
prefixp->kind = PREFIX_DIP;
|
|
prefixp->opcode = DIP_OPCODE;
|
|
|
|
/* Get the register or fail entirely. */
|
|
if (! get_gen_reg (cPP, ®_number))
|
|
return 0;
|
|
else
|
|
{
|
|
prefixp->opcode |= reg_number /* << 0 */ ;
|
|
if (**cPP == '+')
|
|
{
|
|
/* Since we found a '+', this must be double-indirect
|
|
autoincrement mode. */
|
|
(*cPP)++;
|
|
prefixp->opcode |= AUTOINCR_BIT << 8;
|
|
}
|
|
|
|
/* There's nothing particular to do, if this was a
|
|
double-indirect *without* autoincrement. */
|
|
}
|
|
|
|
/* Check the first ']'. The second one is checked at the end. */
|
|
if (**cPP != ']')
|
|
return 0;
|
|
|
|
/* Eat the first ']', so we'll be looking at a second ']'. */
|
|
(*cPP)++;
|
|
}
|
|
/* No second '['. Then we should have a register here, making
|
|
it "[rN". */
|
|
else if (get_gen_reg (cPP, &prefixp->base_reg_number))
|
|
{
|
|
/* This must be indexed or offset mode: "[rN+I]" or
|
|
"[rN+rM.S]" or "[rN+[rM].S]" or "[rN+[rM+].S]". */
|
|
if (**cPP == '+')
|
|
{
|
|
int index_reg_number;
|
|
|
|
(*cPP)++;
|
|
|
|
if (**cPP == '[')
|
|
{
|
|
/* This is "[rx+["... Expect a register next. */
|
|
int size_bits;
|
|
(*cPP)++;
|
|
|
|
if (!get_gen_reg (cPP, &index_reg_number))
|
|
return 0;
|
|
|
|
prefixp->kind = PREFIX_BDAP;
|
|
prefixp->opcode
|
|
= (BDAP_INDIR_OPCODE
|
|
+ (prefixp->base_reg_number << 12)
|
|
+ index_reg_number);
|
|
|
|
/* We've seen "[rx+[ry", so check if this is
|
|
autoincrement. */
|
|
if (**cPP == '+')
|
|
{
|
|
/* Yep, now at "[rx+[ry+". */
|
|
(*cPP)++;
|
|
prefixp->opcode |= AUTOINCR_BIT << 8;
|
|
}
|
|
/* If it wasn't autoincrement, we don't need to
|
|
add anything. */
|
|
|
|
/* Check a first closing ']': "[rx+[ry]" or
|
|
"[rx+[ry+]". */
|
|
if (**cPP != ']')
|
|
return 0;
|
|
(*cPP)++;
|
|
|
|
/* Now expect a size modifier ".S". */
|
|
if (! get_bwd_size_modifier (cPP, &size_bits))
|
|
return 0;
|
|
|
|
prefixp->opcode |= size_bits << 4;
|
|
|
|
/* Ok, all interesting stuff has been seen:
|
|
"[rx+[ry+].S" or "[rx+[ry].S". We only need to
|
|
expect a final ']', which we'll do in a common
|
|
closing session. */
|
|
}
|
|
/* Seen "[rN+", but not a '[', so check if we have a
|
|
register. */
|
|
else if (get_gen_reg (cPP, &index_reg_number))
|
|
{
|
|
/* This is indexed mode: "[rN+rM.S]" or
|
|
"[rN+rM.S+]". */
|
|
int size_bits;
|
|
prefixp->kind = PREFIX_BIAP;
|
|
prefixp->opcode
|
|
= (BIAP_OPCODE
|
|
| prefixp->base_reg_number /* << 0 */
|
|
| (index_reg_number << 12));
|
|
|
|
/* Consume the ".S". */
|
|
if (! get_bwd_size_modifier (cPP, &size_bits))
|
|
/* Missing size, so fail. */
|
|
return 0;
|
|
else
|
|
/* Size found. Add that piece and drop down to
|
|
the common checking of the closing ']'. */
|
|
prefixp->opcode |= size_bits << 4;
|
|
}
|
|
/* Seen "[rN+", but not a '[' or a register, so then
|
|
it must be a constant "I". */
|
|
else if (cris_get_expression (cPP, &prefixp->expr))
|
|
{
|
|
/* Expression found, so fill in the bits of offset
|
|
mode and drop down to check the closing ']'. */
|
|
prefixp->kind = PREFIX_BDAP_IMM;
|
|
|
|
/* We tentatively put an opcode corresponding to a 32-bit
|
|
operand here, although it may be relaxed when there's no
|
|
PIC specifier for the operand. */
|
|
prefixp->opcode
|
|
= (BDAP_INDIR_OPCODE
|
|
| (prefixp->base_reg_number << 12)
|
|
| (AUTOINCR_BIT << 8)
|
|
| (2 << 4)
|
|
| REG_PC /* << 0 */);
|
|
|
|
/* This can have a PIC suffix, specifying reloc type to use. */
|
|
if (pic && **cPP == PIC_SUFFIX_CHAR)
|
|
{
|
|
unsigned int relocsize;
|
|
|
|
cris_get_pic_suffix (cPP, &prefixp->reloc, &prefixp->expr);
|
|
|
|
/* Tweak the size of the immediate operand in the prefix
|
|
opcode if it isn't what we set. */
|
|
relocsize = cris_get_pic_reloc_size (prefixp->reloc);
|
|
if (relocsize != 4)
|
|
prefixp->opcode
|
|
= ((prefixp->opcode & ~(3 << 4))
|
|
| ((relocsize >> 1) << 4));
|
|
}
|
|
}
|
|
else
|
|
/* Nothing valid here: lose. */
|
|
return 0;
|
|
}
|
|
/* Seen "[rN" but no '+', so check if it's a '-'. */
|
|
else if (**cPP == '-')
|
|
{
|
|
/* Yep, we must have offset mode. */
|
|
if (! cris_get_expression (cPP, &prefixp->expr))
|
|
/* No expression, so we lose. */
|
|
return 0;
|
|
else
|
|
{
|
|
/* Expression found to make this offset mode, so
|
|
fill those bits and drop down to check the
|
|
closing ']'.
|
|
|
|
Note that we don't allow a PIC suffix for
|
|
an operand with a minus sign like this. */
|
|
prefixp->kind = PREFIX_BDAP_IMM;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We've seen "[rN", but not '+' or '-'; rather a ']'.
|
|
Hmm. Normally this is a simple indirect mode that we
|
|
shouldn't match, but if we expect ']', then we have a
|
|
zero offset, so it can be a three-address-operand,
|
|
like "[rN],rO,rP", thus offset mode.
|
|
|
|
Don't eat the ']', that will be done in the closing
|
|
ceremony. */
|
|
prefixp->expr.X_op = O_constant;
|
|
prefixp->expr.X_add_number = 0;
|
|
prefixp->expr.X_add_symbol = NULL;
|
|
prefixp->expr.X_op_symbol = NULL;
|
|
prefixp->kind = PREFIX_BDAP_IMM;
|
|
}
|
|
}
|
|
/* A '[', but no second '[', and no register. Check if we
|
|
have an expression, making this "[I]" for a double-indirect
|
|
prefix. */
|
|
else if (cris_get_expression (cPP, &prefixp->expr))
|
|
{
|
|
/* Expression found, the so called absolute mode for a
|
|
double-indirect prefix on PC. */
|
|
prefixp->kind = PREFIX_DIP;
|
|
prefixp->opcode = DIP_OPCODE | (AUTOINCR_BIT << 8) | REG_PC;
|
|
prefixp->reloc = BFD_RELOC_32;
|
|
}
|
|
else
|
|
/* Neither '[' nor register nor expression. We lose. */
|
|
return 0;
|
|
|
|
/* We get here as a closing ceremony to a successful match. We just
|
|
need to check the closing ']'. */
|
|
if (**cPP != ']')
|
|
/* Oops. Close but no air-polluter. */
|
|
return 0;
|
|
|
|
/* Don't forget to consume that ']', before returning in glory. */
|
|
(*cPP)++;
|
|
return 1;
|
|
}
|
|
|
|
/* Get an expression from the string pointed out by *cPP.
|
|
The pointer *cPP is advanced to the character following the expression
|
|
on a success, or retains its original value otherwise.
|
|
|
|
cPP Pointer to pointer to string beginning with the expression.
|
|
|
|
exprP Pointer to structure containing the expression.
|
|
|
|
Return 1 iff a correct expression is found. */
|
|
|
|
static int
|
|
cris_get_expression (cPP, exprP)
|
|
char **cPP;
|
|
expressionS *exprP;
|
|
{
|
|
char *saved_input_line_pointer;
|
|
segT exp;
|
|
|
|
/* The "expression" function expects to find an expression at the
|
|
global variable input_line_pointer, so we have to save it to give
|
|
the impression that we don't fiddle with global variables. */
|
|
saved_input_line_pointer = input_line_pointer;
|
|
input_line_pointer = *cPP;
|
|
|
|
exp = expression (exprP);
|
|
if (exprP->X_op == O_illegal || exprP->X_op == O_absent)
|
|
{
|
|
input_line_pointer = saved_input_line_pointer;
|
|
return 0;
|
|
}
|
|
|
|
/* Everything seems to be fine, just restore the global
|
|
input_line_pointer and say we're successful. */
|
|
*cPP = input_line_pointer;
|
|
input_line_pointer = saved_input_line_pointer;
|
|
return 1;
|
|
}
|
|
|
|
/* Get a sequence of flag characters from *spp. The pointer *cPP is
|
|
advanced to the character following the expression. The flag
|
|
characters are consecutive, no commas or spaces.
|
|
|
|
cPP Pointer to pointer to string beginning with the expression.
|
|
|
|
flagp Pointer to int to return the flags expression.
|
|
|
|
Return 1 iff a correct flags expression is found. */
|
|
|
|
static int
|
|
get_flags (cPP, flagsp)
|
|
char **cPP;
|
|
int *flagsp;
|
|
{
|
|
for (;;)
|
|
{
|
|
switch (**cPP)
|
|
{
|
|
case 'd':
|
|
case 'D':
|
|
case 'm':
|
|
case 'M':
|
|
*flagsp |= 0x80;
|
|
break;
|
|
|
|
case 'e':
|
|
case 'E':
|
|
case 'b':
|
|
case 'B':
|
|
*flagsp |= 0x40;
|
|
break;
|
|
|
|
case 'i':
|
|
case 'I':
|
|
*flagsp |= 0x20;
|
|
break;
|
|
|
|
case 'x':
|
|
case 'X':
|
|
*flagsp |= 0x10;
|
|
break;
|
|
|
|
case 'n':
|
|
case 'N':
|
|
*flagsp |= 0x8;
|
|
break;
|
|
|
|
case 'z':
|
|
case 'Z':
|
|
*flagsp |= 0x4;
|
|
break;
|
|
|
|
case 'v':
|
|
case 'V':
|
|
*flagsp |= 0x2;
|
|
break;
|
|
|
|
case 'c':
|
|
case 'C':
|
|
*flagsp |= 1;
|
|
break;
|
|
|
|
default:
|
|
/* We consider this successful if we stop at a comma or
|
|
whitespace. Anything else, and we consider it a failure. */
|
|
if (**cPP != ','
|
|
&& **cPP != 0
|
|
&& ! ISSPACE (**cPP))
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
/* Don't forget to consume each flag character. */
|
|
(*cPP)++;
|
|
}
|
|
}
|
|
|
|
/* Generate code and fixes for a BDAP prefix.
|
|
|
|
base_regno Int containing the base register number.
|
|
|
|
exprP Pointer to structure containing the offset expression. */
|
|
|
|
static void
|
|
gen_bdap (base_regno, exprP)
|
|
int base_regno;
|
|
expressionS *exprP;
|
|
{
|
|
unsigned int opcode;
|
|
char *opcodep;
|
|
|
|
/* Put out the prefix opcode; assume quick immediate mode at first. */
|
|
opcode = BDAP_QUICK_OPCODE | (base_regno << 12);
|
|
opcodep = cris_insn_first_word_frag ();
|
|
md_number_to_chars (opcodep, opcode, 2);
|
|
|
|
if (exprP->X_op == O_constant)
|
|
{
|
|
/* We have an absolute expression that we know the size of right
|
|
now. */
|
|
long int value;
|
|
int size;
|
|
|
|
value = exprP->X_add_number;
|
|
if (value < -32768 || value > 32767)
|
|
/* Outside range for a "word", make it a dword. */
|
|
size = 2;
|
|
else
|
|
/* Assume "word" size. */
|
|
size = 1;
|
|
|
|
/* If this is a signed-byte value, we can fit it into the prefix
|
|
insn itself. */
|
|
if (value >= -128 && value <= 127)
|
|
opcodep[0] = value;
|
|
else
|
|
{
|
|
/* This is a word or dword displacement, which will be put in a
|
|
word or dword after the prefix. */
|
|
char *p;
|
|
|
|
opcodep[0] = BDAP_PC_LOW + (size << 4);
|
|
opcodep[1] &= 0xF0;
|
|
opcodep[1] |= BDAP_INCR_HIGH;
|
|
p = frag_more (1 << size);
|
|
md_number_to_chars (p, value, 1 << size);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Handle complex expressions. */
|
|
valueT addvalue
|
|
= SIMPLE_EXPR (exprP) ? exprP->X_add_number : 0;
|
|
symbolS *sym
|
|
= (SIMPLE_EXPR (exprP)
|
|
? exprP->X_add_symbol : make_expr_symbol (exprP));
|
|
|
|
/* The expression is not defined yet but may become absolute. We
|
|
make it a relocation to be relaxed. */
|
|
frag_var (rs_machine_dependent, 4, 0,
|
|
ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_UNDF),
|
|
sym, addvalue, opcodep);
|
|
}
|
|
}
|
|
|
|
/* Encode a branch displacement in the range -256..254 into the form used
|
|
by CRIS conditional branch instructions.
|
|
|
|
offset The displacement value in bytes. */
|
|
|
|
static int
|
|
branch_disp (offset)
|
|
int offset;
|
|
{
|
|
int disp;
|
|
|
|
disp = offset & 0xFE;
|
|
|
|
if (offset < 0)
|
|
disp |= 1;
|
|
|
|
return disp;
|
|
}
|
|
|
|
/* Generate code and fixes for a 32-bit conditional branch instruction
|
|
created by "extending" an existing 8-bit branch instruction.
|
|
|
|
opcodep Pointer to the word containing the original 8-bit branch
|
|
instruction.
|
|
|
|
writep Pointer to "extension area" following the first instruction
|
|
word.
|
|
|
|
fragP Pointer to the frag containing the instruction.
|
|
|
|
add_symP, Parts of the destination address expression.
|
|
sub_symP,
|
|
add_num. */
|
|
|
|
static void
|
|
gen_cond_branch_32 (opcodep, writep, fragP, add_symP, sub_symP, add_num)
|
|
char *opcodep;
|
|
char *writep;
|
|
fragS *fragP;
|
|
symbolS *add_symP;
|
|
symbolS *sub_symP;
|
|
long int add_num;
|
|
{
|
|
if (warn_for_branch_expansion)
|
|
as_warn_where (fragP->fr_file, fragP->fr_line,
|
|
_("32-bit conditional branch generated"));
|
|
|
|
/* Here, writep points to what will be opcodep + 2. First, we change
|
|
the actual branch in opcodep[0] and opcodep[1], so that in the
|
|
final insn, it will look like:
|
|
opcodep+10: Bcc .-6
|
|
|
|
This means we don't have to worry about changing the opcode or
|
|
messing with the delay-slot instruction. So, we move it to last in
|
|
the "extended" branch, and just change the displacement. Admittedly,
|
|
it's not the optimal extended construct, but we should get this
|
|
rarely enough that it shouldn't matter. */
|
|
|
|
writep[8] = branch_disp (-2 - 6);
|
|
writep[9] = opcodep[1];
|
|
|
|
/* Then, we change the branch to an unconditional branch over the
|
|
extended part, to the new location of the Bcc:
|
|
opcodep: BA .+10
|
|
opcodep+2: NOP
|
|
|
|
Note that these two writes are to currently different locations,
|
|
merged later. */
|
|
|
|
md_number_to_chars (opcodep, BA_QUICK_OPCODE + 8, 2);
|
|
md_number_to_chars (writep, NOP_OPCODE, 2);
|
|
|
|
/* Then the extended thing, the 32-bit jump insn.
|
|
opcodep+4: JUMP [PC+]
|
|
or, in the PIC case,
|
|
opcodep+4: ADD [PC+],PC. */
|
|
|
|
md_number_to_chars (writep + 2,
|
|
pic ? ADD_PC_INCR_OPCODE : JUMP_PC_INCR_OPCODE, 2);
|
|
|
|
/* We have to fill in the actual value too.
|
|
opcodep+6: .DWORD
|
|
This is most probably an expression, but we can cope with an absolute
|
|
value too. FIXME: Testcase needed with and without pic. */
|
|
|
|
if (add_symP == NULL && sub_symP == NULL)
|
|
{
|
|
/* An absolute address. */
|
|
if (pic)
|
|
fix_new (fragP, writep + 4 - fragP->fr_literal, 4,
|
|
section_symbol (absolute_section),
|
|
add_num, 1, BFD_RELOC_32_PCREL);
|
|
else
|
|
md_number_to_chars (writep + 4, add_num, 4);
|
|
}
|
|
else
|
|
{
|
|
if (sub_symP != NULL)
|
|
as_bad_where (fragP->fr_file, fragP->fr_line,
|
|
_("Complex expression not supported"));
|
|
|
|
/* Not absolute, we have to make it a frag for later evaluation. */
|
|
fix_new (fragP, writep + 4 - fragP->fr_literal, 4, add_symP,
|
|
add_num, pic ? 1 : 0, pic ? BFD_RELOC_32_PCREL : BFD_RELOC_32);
|
|
}
|
|
}
|
|
|
|
/* Get the size of an immediate-reloc in bytes. Only valid for PIC
|
|
relocs. */
|
|
|
|
static unsigned int
|
|
cris_get_pic_reloc_size (reloc)
|
|
bfd_reloc_code_real_type reloc;
|
|
{
|
|
return reloc == BFD_RELOC_CRIS_16_GOTPLT || reloc == BFD_RELOC_CRIS_16_GOT
|
|
? 2 : 4;
|
|
}
|
|
|
|
/* Store a reloc type at *RELOCP corresponding to the PIC suffix at *CPP.
|
|
Adjust *EXPRP with any addend found after the PIC suffix. */
|
|
|
|
static void
|
|
cris_get_pic_suffix (cPP, relocp, exprP)
|
|
char **cPP;
|
|
bfd_reloc_code_real_type *relocp;
|
|
expressionS *exprP;
|
|
{
|
|
char *s = *cPP;
|
|
unsigned int i;
|
|
expressionS const_expr;
|
|
|
|
const struct pic_suffixes_struct
|
|
{
|
|
const char *const suffix;
|
|
unsigned int len;
|
|
bfd_reloc_code_real_type reloc;
|
|
} pic_suffixes[] =
|
|
{
|
|
#undef PICMAP
|
|
#define PICMAP(s, r) {s, sizeof (s) - 1, r}
|
|
/* Keep this in order with longest unambiguous prefix first. */
|
|
PICMAP ("GOTPLT16", BFD_RELOC_CRIS_16_GOTPLT),
|
|
PICMAP ("GOTPLT", BFD_RELOC_CRIS_32_GOTPLT),
|
|
PICMAP ("PLTG", BFD_RELOC_CRIS_32_PLT_GOTREL),
|
|
PICMAP ("PLT", BFD_RELOC_CRIS_32_PLT_PCREL),
|
|
PICMAP ("GOTOFF", BFD_RELOC_CRIS_32_GOTREL),
|
|
PICMAP ("GOT16", BFD_RELOC_CRIS_16_GOT),
|
|
PICMAP ("GOT", BFD_RELOC_CRIS_32_GOT)
|
|
};
|
|
|
|
/* We've already seen the ':', so consume it. */
|
|
s++;
|
|
|
|
for (i = 0; i < sizeof (pic_suffixes)/sizeof (pic_suffixes[0]); i++)
|
|
{
|
|
if (strncmp (s, pic_suffixes[i].suffix, pic_suffixes[i].len) == 0
|
|
&& ! is_part_of_name (s[pic_suffixes[i].len]))
|
|
{
|
|
/* We have a match. Consume the suffix and set the relocation
|
|
type. */
|
|
s += pic_suffixes[i].len;
|
|
|
|
/* There can be a constant term appended. If so, we will add it
|
|
to *EXPRP. */
|
|
if (*s == '+' || *s == '-')
|
|
{
|
|
if (! cris_get_expression (&s, &const_expr))
|
|
/* There was some kind of syntax error. Bail out. */
|
|
break;
|
|
|
|
/* Allow complex expressions as the constant part. It still
|
|
has to be an assembly-time constant or there will be an
|
|
error emitting the reloc. This makes the PIC qualifiers
|
|
idempotent; foo:GOTOFF+32 == foo+32:GOTOFF. The former we
|
|
recognize here; the latter is parsed in the incoming
|
|
expression. */
|
|
exprP->X_add_symbol = make_expr_symbol (exprP);
|
|
exprP->X_op = O_add;
|
|
exprP->X_add_number = 0;
|
|
exprP->X_op_symbol = make_expr_symbol (&const_expr);
|
|
}
|
|
|
|
*relocp = pic_suffixes[i].reloc;
|
|
*cPP = s;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* No match. Don't consume anything; fall back and there will be a
|
|
syntax error. */
|
|
}
|
|
|
|
/* This *could* be:
|
|
|
|
Turn a string in input_line_pointer into a floating point constant
|
|
of type TYPE, and store the appropriate bytes in *LITP. The number
|
|
of LITTLENUMS emitted is stored in *SIZEP.
|
|
|
|
type A character from FLTCHARS that describes what kind of
|
|
floating-point number is wanted.
|
|
|
|
litp A pointer to an array that the result should be stored in.
|
|
|
|
sizep A pointer to an integer where the size of the result is stored.
|
|
|
|
But we don't support floating point constants in assembly code *at all*,
|
|
since it's suboptimal and just opens up bug opportunities. GCC emits
|
|
the bit patterns as hex. All we could do here is to emit what GCC
|
|
would have done in the first place. *Nobody* writes floating-point
|
|
code as assembly code, but if they do, they should be able enough to
|
|
find out the correct bit patterns and use them. */
|
|
|
|
char *
|
|
md_atof (type, litp, sizep)
|
|
char type ATTRIBUTE_UNUSED;
|
|
char *litp ATTRIBUTE_UNUSED;
|
|
int *sizep ATTRIBUTE_UNUSED;
|
|
{
|
|
/* FIXME: Is this function mentioned in the internals.texi manual? If
|
|
not, add it. */
|
|
return _("Bad call to md_atof () - floating point formats are not supported");
|
|
}
|
|
|
|
/* Turn a number as a fixS * into a series of bytes that represents the
|
|
number on the target machine. The purpose of this procedure is the
|
|
same as that of md_number_to_chars but this procedure is supposed to
|
|
handle general bit field fixes and machine-dependent fixups.
|
|
|
|
bufp Pointer to an array where the result should be stored.
|
|
|
|
val The value to store.
|
|
|
|
n The number of bytes in "val" that should be stored.
|
|
|
|
fixP The fix to be applied to the bit field starting at bufp.
|
|
|
|
seg The segment containing this number. */
|
|
|
|
static void
|
|
cris_number_to_imm (bufp, val, n, fixP, seg)
|
|
char *bufp;
|
|
long val;
|
|
int n;
|
|
fixS *fixP;
|
|
segT seg;
|
|
{
|
|
segT sym_seg;
|
|
|
|
know (n <= 4);
|
|
know (fixP);
|
|
|
|
/* We put the relative "vma" for the other segment for inter-segment
|
|
relocations in the object data to stay binary "compatible" (with an
|
|
uninteresting old version) for the relocation.
|
|
Maybe delete some day. */
|
|
if (fixP->fx_addsy
|
|
&& (sym_seg = S_GET_SEGMENT (fixP->fx_addsy)) != seg)
|
|
val += sym_seg->vma;
|
|
|
|
if (fixP->fx_addsy != NULL || fixP->fx_pcrel)
|
|
switch (fixP->fx_r_type)
|
|
{
|
|
/* These must be fully resolved when getting here. */
|
|
case BFD_RELOC_32_PCREL:
|
|
case BFD_RELOC_16_PCREL:
|
|
case BFD_RELOC_8_PCREL:
|
|
as_bad_where (fixP->fx_frag->fr_file, fixP->fx_frag->fr_line,
|
|
_("PC-relative relocation must be trivially resolved"));
|
|
default:
|
|
;
|
|
}
|
|
|
|
switch (fixP->fx_r_type)
|
|
{
|
|
/* Ditto here, we put the addend into the object code as
|
|
well as the reloc addend. Keep it that way for now, to simplify
|
|
regression tests on the object file contents. FIXME: Seems
|
|
uninteresting now that we have a test suite. */
|
|
|
|
case BFD_RELOC_CRIS_16_GOT:
|
|
case BFD_RELOC_CRIS_32_GOT:
|
|
case BFD_RELOC_CRIS_32_GOTREL:
|
|
case BFD_RELOC_CRIS_16_GOTPLT:
|
|
case BFD_RELOC_CRIS_32_GOTPLT:
|
|
case BFD_RELOC_CRIS_32_PLT_GOTREL:
|
|
case BFD_RELOC_CRIS_32_PLT_PCREL:
|
|
/* We don't want to put in any kind of non-zero bits in the data
|
|
being relocated for these. */
|
|
break;
|
|
|
|
case BFD_RELOC_32:
|
|
case BFD_RELOC_32_PCREL:
|
|
/* No use having warnings here, since most hosts have a 32-bit type
|
|
for "long" (which will probably change soon, now that I wrote
|
|
this). */
|
|
bufp[3] = (val >> 24) & 0xFF;
|
|
bufp[2] = (val >> 16) & 0xFF;
|
|
bufp[1] = (val >> 8) & 0xFF;
|
|
bufp[0] = val & 0xFF;
|
|
break;
|
|
|
|
/* FIXME: The 16 and 8-bit cases should have a way to check
|
|
whether a signed or unsigned (or any signedness) number is
|
|
accepted.
|
|
FIXME: Does the as_bad calls find the line number by themselves,
|
|
or should we change them into as_bad_where? */
|
|
|
|
case BFD_RELOC_16:
|
|
case BFD_RELOC_16_PCREL:
|
|
if (val > 0xffff || val < -32768)
|
|
as_bad (_("Value not in 16 bit range: %ld"), val);
|
|
if (! fixP->fx_addsy)
|
|
{
|
|
bufp[1] = (val >> 8) & 0xFF;
|
|
bufp[0] = val & 0xFF;
|
|
}
|
|
break;
|
|
|
|
case BFD_RELOC_8:
|
|
case BFD_RELOC_8_PCREL:
|
|
if (val > 255 || val < -128)
|
|
as_bad (_("Value not in 8 bit range: %ld"), val);
|
|
if (! fixP->fx_addsy)
|
|
bufp[0] = val & 0xFF;
|
|
break;
|
|
|
|
case BFD_RELOC_CRIS_UNSIGNED_4:
|
|
if (val > 15 || val < 0)
|
|
as_bad (_("Value not in 4 bit unsigned range: %ld"), val);
|
|
if (! fixP->fx_addsy)
|
|
bufp[0] |= val & 0x0F;
|
|
break;
|
|
|
|
case BFD_RELOC_CRIS_UNSIGNED_5:
|
|
if (val > 31 || val < 0)
|
|
as_bad (_("Value not in 5 bit unsigned range: %ld"), val);
|
|
if (! fixP->fx_addsy)
|
|
bufp[0] |= val & 0x1F;
|
|
break;
|
|
|
|
case BFD_RELOC_CRIS_SIGNED_6:
|
|
if (val > 31 || val < -32)
|
|
as_bad (_("Value not in 6 bit range: %ld"), val);
|
|
if (! fixP->fx_addsy)
|
|
bufp[0] |= val & 0x3F;
|
|
break;
|
|
|
|
case BFD_RELOC_CRIS_UNSIGNED_6:
|
|
if (val > 63 || val < 0)
|
|
as_bad (_("Value not in 6 bit unsigned range: %ld"), val);
|
|
if (! fixP->fx_addsy)
|
|
bufp[0] |= val & 0x3F;
|
|
break;
|
|
|
|
case BFD_RELOC_CRIS_BDISP8:
|
|
if (! fixP->fx_addsy)
|
|
bufp[0] = branch_disp (val);
|
|
break;
|
|
|
|
case BFD_RELOC_NONE:
|
|
/* May actually happen automatically. For example at broken
|
|
words, if the word turns out not to be broken.
|
|
FIXME: When? Which testcase? */
|
|
if (! fixP->fx_addsy)
|
|
md_number_to_chars (bufp, val, n);
|
|
break;
|
|
|
|
case BFD_RELOC_VTABLE_INHERIT:
|
|
/* This borrowed from tc-ppc.c on a whim. */
|
|
if (fixP->fx_addsy
|
|
&& !S_IS_DEFINED (fixP->fx_addsy)
|
|
&& !S_IS_WEAK (fixP->fx_addsy))
|
|
S_SET_WEAK (fixP->fx_addsy);
|
|
/* Fall through. */
|
|
|
|
case BFD_RELOC_VTABLE_ENTRY:
|
|
fixP->fx_done = 0;
|
|
break;
|
|
|
|
default:
|
|
BAD_CASE (fixP->fx_r_type);
|
|
}
|
|
}
|
|
|
|
/* Processes machine-dependent command line options. Called once for
|
|
each option on the command line that the machine-independent part of
|
|
GAS does not understand. */
|
|
|
|
int
|
|
md_parse_option (arg, argp)
|
|
int arg;
|
|
char *argp ATTRIBUTE_UNUSED;
|
|
{
|
|
switch (arg)
|
|
{
|
|
case 'H':
|
|
case 'h':
|
|
printf (_("Please use --help to see usage and options for this assembler.\n"));
|
|
md_show_usage (stdout);
|
|
exit (EXIT_SUCCESS);
|
|
|
|
case 'N':
|
|
warn_for_branch_expansion = 1;
|
|
return 1;
|
|
|
|
case OPTION_NO_US:
|
|
demand_register_prefix = TRUE;
|
|
|
|
if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
|
|
as_bad (_("--no-underscore is invalid with a.out format"));
|
|
else
|
|
symbols_have_leading_underscore = FALSE;
|
|
return 1;
|
|
|
|
case OPTION_US:
|
|
demand_register_prefix = FALSE;
|
|
symbols_have_leading_underscore = TRUE;
|
|
return 1;
|
|
|
|
case OPTION_PIC:
|
|
pic = TRUE;
|
|
return 1;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Round up a section size to the appropriate boundary. */
|
|
valueT
|
|
md_section_align (segment, size)
|
|
segT segment;
|
|
valueT size;
|
|
{
|
|
/* Round all sects to multiple of 4, except the bss section, which
|
|
we'll round to word-size.
|
|
|
|
FIXME: Check if this really matters. All sections should be
|
|
rounded up, and all sections should (optionally) be assumed to be
|
|
dword-aligned, it's just that there is actual usage of linking to a
|
|
multiple of two. */
|
|
if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
|
|
{
|
|
if (segment == bss_section)
|
|
return (size + 1) & ~1;
|
|
return (size + 3) & ~3;
|
|
}
|
|
else
|
|
{
|
|
/* FIXME: Is this wanted? It matches the testsuite, but that's not
|
|
really a valid reason. */
|
|
if (segment == text_section)
|
|
return (size + 3) & ~3;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
/* Generate a machine-dependent relocation. */
|
|
arelent *
|
|
tc_gen_reloc (section, fixP)
|
|
asection *section ATTRIBUTE_UNUSED;
|
|
fixS *fixP;
|
|
{
|
|
arelent *relP;
|
|
bfd_reloc_code_real_type code;
|
|
|
|
switch (fixP->fx_r_type)
|
|
{
|
|
case BFD_RELOC_CRIS_16_GOT:
|
|
case BFD_RELOC_CRIS_32_GOT:
|
|
case BFD_RELOC_CRIS_16_GOTPLT:
|
|
case BFD_RELOC_CRIS_32_GOTPLT:
|
|
case BFD_RELOC_CRIS_32_GOTREL:
|
|
case BFD_RELOC_CRIS_32_PLT_GOTREL:
|
|
case BFD_RELOC_CRIS_32_PLT_PCREL:
|
|
case BFD_RELOC_32:
|
|
case BFD_RELOC_16:
|
|
case BFD_RELOC_8:
|
|
case BFD_RELOC_VTABLE_INHERIT:
|
|
case BFD_RELOC_VTABLE_ENTRY:
|
|
code = fixP->fx_r_type;
|
|
break;
|
|
default:
|
|
as_bad_where (fixP->fx_file, fixP->fx_line,
|
|
_("Semantics error. This type of operand can not be relocated, it must be an assembly-time constant"));
|
|
return 0;
|
|
}
|
|
|
|
relP = (arelent *) xmalloc (sizeof (arelent));
|
|
assert (relP != 0);
|
|
relP->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
|
|
*relP->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy);
|
|
relP->address = fixP->fx_frag->fr_address + fixP->fx_where;
|
|
|
|
if (fixP->fx_pcrel)
|
|
relP->addend = 0;
|
|
else
|
|
relP->addend = fixP->fx_offset;
|
|
|
|
/* This is the standard place for KLUDGEs to work around bugs in
|
|
bfd_install_relocation (first such note in the documentation
|
|
appears with binutils-2.8).
|
|
|
|
That function bfd_install_relocation does the wrong thing with
|
|
putting stuff into the addend of a reloc (it should stay out) for a
|
|
weak symbol. The really bad thing is that it adds the
|
|
"segment-relative offset" of the symbol into the reloc. In this
|
|
case, the reloc should instead be relative to the symbol with no
|
|
other offset than the assembly code shows; and since the symbol is
|
|
weak, any local definition should be ignored until link time (or
|
|
thereafter).
|
|
To wit: weaksym+42 should be weaksym+42 in the reloc,
|
|
not weaksym+(offset_from_segment_of_local_weaksym_definition)
|
|
|
|
To "work around" this, we subtract the segment-relative offset of
|
|
"known" weak symbols. This evens out the extra offset.
|
|
|
|
That happens for a.out but not for ELF, since for ELF,
|
|
bfd_install_relocation uses the "special function" field of the
|
|
howto, and does not execute the code that needs to be undone. */
|
|
|
|
if (OUTPUT_FLAVOR == bfd_target_aout_flavour
|
|
&& fixP->fx_addsy && S_IS_WEAK (fixP->fx_addsy)
|
|
&& ! bfd_is_und_section (S_GET_SEGMENT (fixP->fx_addsy)))
|
|
{
|
|
relP->addend -= S_GET_VALUE (fixP->fx_addsy);
|
|
}
|
|
|
|
relP->howto = bfd_reloc_type_lookup (stdoutput, code);
|
|
if (! relP->howto)
|
|
{
|
|
const char *name;
|
|
|
|
name = S_GET_NAME (fixP->fx_addsy);
|
|
if (name == NULL)
|
|
name = _("<unknown>");
|
|
as_fatal (_("Cannot generate relocation type for symbol %s, code %s"),
|
|
name, bfd_get_reloc_code_name (code));
|
|
}
|
|
|
|
return relP;
|
|
}
|
|
|
|
/* Machine-dependent usage-output. */
|
|
|
|
void
|
|
md_show_usage (stream)
|
|
FILE *stream;
|
|
{
|
|
/* The messages are formatted to line up with the generic options. */
|
|
fprintf (stream, _("CRIS-specific options:\n"));
|
|
fprintf (stream, "%s",
|
|
_(" -h, -H Don't execute, print this help text. Deprecated.\n"));
|
|
fprintf (stream, "%s",
|
|
_(" -N Warn when branches are expanded to jumps.\n"));
|
|
fprintf (stream, "%s",
|
|
_(" --underscore User symbols are normally prepended with underscore.\n"));
|
|
fprintf (stream, "%s",
|
|
_(" Registers will not need any prefix.\n"));
|
|
fprintf (stream, "%s",
|
|
_(" --no-underscore User symbols do not have any prefix.\n"));
|
|
fprintf (stream, "%s",
|
|
_(" Registers will require a `$'-prefix.\n"));
|
|
fprintf (stream, "%s",
|
|
_(" --pic Enable generation of position-independent code.\n"));
|
|
}
|
|
|
|
/* Apply a fixS (fixup of an instruction or data that we didn't have
|
|
enough info to complete immediately) to the data in a frag. */
|
|
|
|
void
|
|
md_apply_fix3 (fixP, valP, seg)
|
|
fixS *fixP;
|
|
valueT *valP;
|
|
segT seg;
|
|
{
|
|
/* This assignment truncates upper bits if valueT is 64 bits (as with
|
|
--enable-64-bit-bfd), which is fine here, though we cast to avoid
|
|
any compiler warnings. */
|
|
long val = (long) *valP;
|
|
char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
|
|
|
|
if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
|
|
fixP->fx_done = 1;
|
|
|
|
if (fixP->fx_bit_fixP || fixP->fx_im_disp != 0)
|
|
{
|
|
as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid relocation"));
|
|
fixP->fx_done = 1;
|
|
}
|
|
else
|
|
{
|
|
/* We can't actually support subtracting a symbol. */
|
|
if (fixP->fx_subsy != (symbolS *) NULL)
|
|
as_bad_where (fixP->fx_file, fixP->fx_line,
|
|
_("expression too complex"));
|
|
|
|
cris_number_to_imm (buf, val, fixP->fx_size, fixP, seg);
|
|
}
|
|
}
|
|
|
|
/* All relocations are relative to the location just after the fixup;
|
|
the address of the fixup plus its size. */
|
|
|
|
long
|
|
md_pcrel_from (fixP)
|
|
fixS *fixP;
|
|
{
|
|
valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
|
|
|
|
/* FIXME: We get here only at the end of assembly, when X in ".-X" is
|
|
still unknown. Since we don't have pc-relative relocations in a.out,
|
|
this is invalid. What to do if anything for a.out, is to add
|
|
pc-relative relocations everywhere including the elinux program
|
|
loader. For ELF, allow straight-forward PC-relative relocations,
|
|
which are always relative to the location after the relocation. */
|
|
if (OUTPUT_FLAVOR != bfd_target_elf_flavour
|
|
|| (fixP->fx_r_type != BFD_RELOC_8_PCREL
|
|
&& fixP->fx_r_type != BFD_RELOC_16_PCREL
|
|
&& fixP->fx_r_type != BFD_RELOC_32_PCREL))
|
|
as_bad_where (fixP->fx_file, fixP->fx_line,
|
|
_("Invalid pc-relative relocation"));
|
|
return fixP->fx_size + addr;
|
|
}
|
|
|
|
/* We have no need to give defaults for symbol-values. */
|
|
symbolS *
|
|
md_undefined_symbol (name)
|
|
char *name ATTRIBUTE_UNUSED;
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/* If this function returns non-zero, it prevents the relocation
|
|
against symbol(s) in the FIXP from being replaced with relocations
|
|
against section symbols, and guarantees that a relocation will be
|
|
emitted even when the value can be resolved locally. */
|
|
int
|
|
md_cris_force_relocation (fixp)
|
|
struct fix *fixp;
|
|
{
|
|
switch (fixp->fx_r_type)
|
|
{
|
|
case BFD_RELOC_CRIS_16_GOT:
|
|
case BFD_RELOC_CRIS_32_GOT:
|
|
case BFD_RELOC_CRIS_16_GOTPLT:
|
|
case BFD_RELOC_CRIS_32_GOTPLT:
|
|
case BFD_RELOC_CRIS_32_GOTREL:
|
|
case BFD_RELOC_CRIS_32_PLT_GOTREL:
|
|
case BFD_RELOC_CRIS_32_PLT_PCREL:
|
|
return 1;
|
|
default:
|
|
;
|
|
}
|
|
|
|
return generic_force_reloc (fixp);
|
|
}
|
|
|
|
/* Check and emit error if broken-word handling has failed to fix up a
|
|
case-table. This is called from write.c, after doing everything it
|
|
knows about how to handle broken words. */
|
|
|
|
void
|
|
tc_cris_check_adjusted_broken_word (new_offset, brokwP)
|
|
offsetT new_offset;
|
|
struct broken_word *brokwP;
|
|
{
|
|
if (new_offset > 32767 || new_offset < -32768)
|
|
/* We really want a genuine error, not a warning, so make it one. */
|
|
as_bad_where (brokwP->frag->fr_file, brokwP->frag->fr_line,
|
|
_("Adjusted signed .word (%ld) overflows: `switch'-statement too large."),
|
|
(long) new_offset);
|
|
}
|
|
|
|
/* Make a leading REGISTER_PREFIX_CHAR mandatory for all registers. */
|
|
|
|
static void cris_force_reg_prefix ()
|
|
{
|
|
demand_register_prefix = TRUE;
|
|
}
|
|
|
|
/* Do not demand a leading REGISTER_PREFIX_CHAR for all registers. */
|
|
|
|
static void cris_relax_reg_prefix ()
|
|
{
|
|
demand_register_prefix = FALSE;
|
|
}
|
|
|
|
/* Adjust for having a leading '_' on all user symbols. */
|
|
|
|
static void cris_sym_leading_underscore ()
|
|
{
|
|
/* We can't really do anything more than assert that what the program
|
|
thinks symbol starts with agrees with the command-line options, since
|
|
the bfd is already created. */
|
|
|
|
if (!symbols_have_leading_underscore)
|
|
as_bad (_(".syntax %s requires command-line option `--underscore'"),
|
|
SYNTAX_USER_SYM_LEADING_UNDERSCORE);
|
|
}
|
|
|
|
/* Adjust for not having any particular prefix on user symbols. */
|
|
|
|
static void cris_sym_no_leading_underscore ()
|
|
{
|
|
if (symbols_have_leading_underscore)
|
|
as_bad (_(".syntax %s requires command-line option `--no-underscore'"),
|
|
SYNTAX_USER_SYM_NO_LEADING_UNDERSCORE);
|
|
}
|
|
|
|
/* Handle the .syntax pseudo, which takes an argument that decides what
|
|
syntax the assembly code has. */
|
|
|
|
static void
|
|
s_syntax (ignore)
|
|
int ignore ATTRIBUTE_UNUSED;
|
|
{
|
|
static const struct syntaxes
|
|
{
|
|
const char *operand;
|
|
void (*fn) PARAMS ((void));
|
|
} syntax_table[] =
|
|
{{SYNTAX_ENFORCE_REG_PREFIX, cris_force_reg_prefix},
|
|
{SYNTAX_RELAX_REG_PREFIX, cris_relax_reg_prefix},
|
|
{SYNTAX_USER_SYM_LEADING_UNDERSCORE, cris_sym_leading_underscore},
|
|
{SYNTAX_USER_SYM_NO_LEADING_UNDERSCORE, cris_sym_no_leading_underscore}};
|
|
|
|
const struct syntaxes *sp;
|
|
|
|
for (sp = syntax_table;
|
|
sp < syntax_table + sizeof (syntax_table) / sizeof (syntax_table[0]);
|
|
sp++)
|
|
{
|
|
if (strncmp (input_line_pointer, sp->operand,
|
|
strlen (sp->operand)) == 0)
|
|
{
|
|
(sp->fn) ();
|
|
|
|
input_line_pointer += strlen (sp->operand);
|
|
demand_empty_rest_of_line ();
|
|
return;
|
|
}
|
|
}
|
|
|
|
as_bad (_("Unknown .syntax operand"));
|
|
}
|
|
|
|
/* Wrapper for dwarf2_directive_file to emit error if this is seen when
|
|
not emitting ELF. */
|
|
|
|
static void
|
|
s_cris_file (dummy)
|
|
int dummy;
|
|
{
|
|
if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
|
|
as_bad (_("Pseudodirective .file is only valid when generating ELF"));
|
|
else
|
|
dwarf2_directive_file (dummy);
|
|
}
|
|
|
|
/* Wrapper for dwarf2_directive_loc to emit error if this is seen when not
|
|
emitting ELF. */
|
|
|
|
static void
|
|
s_cris_loc (dummy)
|
|
int dummy;
|
|
{
|
|
if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
|
|
as_bad (_("Pseudodirective .loc is only valid when generating ELF"));
|
|
else
|
|
dwarf2_directive_loc (dummy);
|
|
}
|
|
|
|
/*
|
|
* Local variables:
|
|
* eval: (c-set-style "gnu")
|
|
* indent-tabs-mode: t
|
|
* End:
|
|
*/
|