d851ecd373
The CTF file format has always supported "external strtabs", which internally are strtab offsets with their MSB on: such refs get their strings from the strtab passed in at CTF file open time: this is usually intended to be the ELF strtab, and that's what this implementation is meant to support, though in theory the external strtab could come from anywhere. This commit adds support for these external strings in the ctf-string.c strtab tracking layer. It's quite easy: we just add a field csa_offset to the atoms table that tracks all strings: this field tracks the offset of the string in the ELF strtab (with its MSB already on, courtesy of a new macro CTF_SET_STID), and adds a new function that sets the csa_offset to the specified offset (plus MSB). Then we just need to avoid writing out strings to the internal strtab if they have csa_offset set, and note that the internal strtab is shorter than it might otherwise be. (We could in theory save a little more time here by eschewing sorting such strings, since we never actually write the strings out anywhere, but that would mean storing them separately and it's just not worth the complexity cost until profiling shows it's worth doing.) We also have to go through a bit of extra effort at variable-sorting time. This was previously using direct references to the internal strtab: it couldn't use ctf_strptr or ctf_strraw because the new strtab is not yet ready to put in its usual field (in a ctf_file_t that hasn't even been allocated yet at this stage): but now we're using the external strtab, this will no longer do because it'll be looking things up in the wrong strtab, with disastrous results. Instead, pass the new internal strtab in to a new ctf_strraw_explicit function which is just like ctf_strraw except you can specify a ne winternal strtab to use. But even now that it is using a new internal strtab, this is not quite enough: it can't look up strings in the external strtab because ld hasn't written it out yet, and when it does will write it straight to disk. Instead, when we write the internal strtab, note all the offset -> string mappings that we have noted belong in the *external* strtab to a new "synthetic external strtab" dynhash, ctf_syn_ext_strtab, and look in there at ctf_strraw time if it is set. This uses minimal extra memory (because only strings in the external strtab that we actually use are stored, and even those come straight out of the atoms table), but let both variable sorting and name interning when ctf_bufopen is next called work fine. (This also means that we don't need to filter out spurious ECTF_STRTAB warnings from ctf_bufopen but can pass them back to the caller, once we wrap ctf_bufopen so that we have a new internal variant of ctf_bufopen etc that we can pass the synthetic external strtab to. That error has been filtered out since the days of Solaris libctf, which didn't try to handle the problem of getting external strtabs right at construction time at all.) v3: add the synthetic strtab and all associated machinery. v5: fix tabdamage. include/ * ctf.h (CTF_SET_STID): New. libctf/ * ctf-impl.h (ctf_str_atom_t) <csa_offset>: New field. (ctf_file_t) <ctf_syn_ext_strtab>: Likewise. (ctf_str_add_ref): Name the last arg. (ctf_str_add_external) New. (ctf_str_add_strraw_explicit): Likewise. (ctf_simple_open_internal): Likewise. (ctf_bufopen_internal): Likewise. * ctf-string.c (ctf_strraw_explicit): Split from... (ctf_strraw): ... here, with new support for ctf_syn_ext_strtab. (ctf_str_add_ref_internal): Return the atom, not the string. (ctf_str_add): Adjust accordingly. (ctf_str_add_ref): Likewise. Move up in the file. (ctf_str_add_external): New: update the csa_offset. (ctf_str_count_strtab): Only account for strings with no csa_offset in the internal strtab length. (ctf_str_write_strtab): If the csa_offset is set, update the string's refs without writing the string out, and update the ctf_syn_ext_strtab. Make OOM handling less ugly. * ctf-create.c (struct ctf_sort_var_arg_cb): New. (ctf_update): Handle failure to populate the strtab. Pass in the new ctf_sort_var arg. Adjust for ctf_syn_ext_strtab addition. Call ctf_simple_open_internal, not ctf_simple_open. (ctf_sort_var): Call ctf_strraw_explicit rather than looking up strings by hand. * ctf-hash.c (ctf_hash_insert_type): Likewise (but using ctf_strraw). Adjust to diagnose ECTF_STRTAB nonetheless. * ctf-open.c (init_types): No longer filter out ECTF_STRTAB. (ctf_file_close): Destroy the ctf_syn_ext_strtab. (ctf_simple_open): Rename to, and reimplement as a wrapper around... (ctf_simple_open_internal): ... this new function, which calls ctf_bufopen_internal. (ctf_bufopen): Rename to, and reimplement as a wrapper around... (ctf_bufopen_internal): ... this new function, which sets ctf_syn_ext_strtab.
330 lines
7.9 KiB
C
330 lines
7.9 KiB
C
/* Interface to hashtable implementations.
|
|
Copyright (C) 2006-2019 Free Software Foundation, Inc.
|
|
|
|
This file is part of libctf.
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <ctf-impl.h>
|
|
#include <string.h>
|
|
#include "libiberty.h"
|
|
#include "hashtab.h"
|
|
|
|
/* We have two hashtable implementations: one, ctf_dynhash_*(), is an interface to
|
|
a dynamically-expanding hash with unknown size that should support addition
|
|
of large numbers of items, and removal as well, and is used only at
|
|
type-insertion time; the other, ctf_dynhash_*(), is an interface to a
|
|
fixed-size hash from const char * -> ctf_id_t with number of elements
|
|
specified at creation time, that should support addition of items but need
|
|
not support removal. These can be implemented by the same underlying hashmap
|
|
if you wish. */
|
|
|
|
typedef struct ctf_helem
|
|
{
|
|
void *key; /* Either a pointer, or a coerced ctf_id_t. */
|
|
void *value; /* The value (possibly a coerced int). */
|
|
ctf_hash_free_fun key_free;
|
|
ctf_hash_free_fun value_free;
|
|
} ctf_helem_t;
|
|
|
|
struct ctf_dynhash
|
|
{
|
|
struct htab *htab;
|
|
ctf_hash_free_fun key_free;
|
|
ctf_hash_free_fun value_free;
|
|
};
|
|
|
|
/* Hash functions. */
|
|
|
|
unsigned int
|
|
ctf_hash_integer (const void *ptr)
|
|
{
|
|
ctf_helem_t *hep = (ctf_helem_t *) ptr;
|
|
|
|
return htab_hash_pointer (hep->key);
|
|
}
|
|
|
|
int
|
|
ctf_hash_eq_integer (const void *a, const void *b)
|
|
{
|
|
ctf_helem_t *hep_a = (ctf_helem_t *) a;
|
|
ctf_helem_t *hep_b = (ctf_helem_t *) b;
|
|
|
|
return htab_eq_pointer (hep_a->key, hep_b->key);
|
|
}
|
|
|
|
unsigned int
|
|
ctf_hash_string (const void *ptr)
|
|
{
|
|
ctf_helem_t *hep = (ctf_helem_t *) ptr;
|
|
|
|
return htab_hash_string (hep->key);
|
|
}
|
|
|
|
int
|
|
ctf_hash_eq_string (const void *a, const void *b)
|
|
{
|
|
ctf_helem_t *hep_a = (ctf_helem_t *) a;
|
|
ctf_helem_t *hep_b = (ctf_helem_t *) b;
|
|
|
|
return !strcmp((const char *) hep_a->key, (const char *) hep_b->key);
|
|
}
|
|
|
|
/* The dynhash, used for hashes whose size is not known at creation time. */
|
|
|
|
/* Free a single ctf_helem. */
|
|
|
|
static void
|
|
ctf_dynhash_item_free (void *item)
|
|
{
|
|
ctf_helem_t *helem = item;
|
|
|
|
if (helem->key_free && helem->key)
|
|
helem->key_free (helem->key);
|
|
if (helem->value_free && helem->value)
|
|
helem->value_free (helem->value);
|
|
free (helem);
|
|
}
|
|
|
|
ctf_dynhash_t *
|
|
ctf_dynhash_create (ctf_hash_fun hash_fun, ctf_hash_eq_fun eq_fun,
|
|
ctf_hash_free_fun key_free, ctf_hash_free_fun value_free)
|
|
{
|
|
ctf_dynhash_t *dynhash;
|
|
|
|
dynhash = malloc (sizeof (ctf_dynhash_t));
|
|
if (!dynhash)
|
|
return NULL;
|
|
|
|
/* 7 is arbitrary and untested for now.. */
|
|
if ((dynhash->htab = htab_create_alloc (7, (htab_hash) hash_fun, eq_fun,
|
|
ctf_dynhash_item_free, xcalloc, free)) == NULL)
|
|
{
|
|
free (dynhash);
|
|
return NULL;
|
|
}
|
|
|
|
dynhash->key_free = key_free;
|
|
dynhash->value_free = value_free;
|
|
|
|
return dynhash;
|
|
}
|
|
|
|
static ctf_helem_t **
|
|
ctf_hashtab_lookup (struct htab *htab, const void *key, enum insert_option insert)
|
|
{
|
|
ctf_helem_t tmp = { .key = (void *) key };
|
|
return (ctf_helem_t **) htab_find_slot (htab, &tmp, insert);
|
|
}
|
|
|
|
static ctf_helem_t *
|
|
ctf_hashtab_insert (struct htab *htab, void *key, void *value)
|
|
{
|
|
ctf_helem_t **slot;
|
|
|
|
slot = ctf_hashtab_lookup (htab, key, INSERT);
|
|
|
|
if (!slot)
|
|
{
|
|
errno = -ENOMEM;
|
|
return NULL;
|
|
}
|
|
|
|
if (!*slot)
|
|
{
|
|
*slot = malloc (sizeof (ctf_helem_t));
|
|
if (!*slot)
|
|
return NULL;
|
|
(*slot)->key = key;
|
|
}
|
|
(*slot)->value = value;
|
|
return *slot;
|
|
}
|
|
|
|
int
|
|
ctf_dynhash_insert (ctf_dynhash_t *hp, void *key, void *value)
|
|
{
|
|
ctf_helem_t *slot;
|
|
|
|
slot = ctf_hashtab_insert (hp->htab, key, value);
|
|
|
|
if (!slot)
|
|
return errno;
|
|
|
|
/* We need to keep the key_free and value_free around in each item because the
|
|
del function has no visiblity into the hash as a whole, only into the
|
|
individual items. */
|
|
|
|
slot->key_free = hp->key_free;
|
|
slot->value_free = hp->value_free;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ctf_dynhash_remove (ctf_dynhash_t *hp, const void *key)
|
|
{
|
|
ctf_helem_t hep = { (void *) key, NULL, NULL, NULL };
|
|
htab_remove_elt (hp->htab, &hep);
|
|
}
|
|
|
|
void *
|
|
ctf_dynhash_lookup (ctf_dynhash_t *hp, const void *key)
|
|
{
|
|
ctf_helem_t **slot;
|
|
|
|
slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT);
|
|
|
|
if (slot)
|
|
return (*slot)->value;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
typedef struct ctf_traverse_cb_arg
|
|
{
|
|
ctf_hash_iter_f fun;
|
|
void *arg;
|
|
} ctf_traverse_cb_arg_t;
|
|
|
|
static int
|
|
ctf_hashtab_traverse (void **slot, void *arg_)
|
|
{
|
|
ctf_helem_t *helem = *((ctf_helem_t **) slot);
|
|
ctf_traverse_cb_arg_t *arg = (ctf_traverse_cb_arg_t *) arg_;
|
|
|
|
arg->fun (helem->key, helem->value, arg->arg);
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
ctf_dynhash_iter (ctf_dynhash_t *hp, ctf_hash_iter_f fun, void *arg_)
|
|
{
|
|
ctf_traverse_cb_arg_t arg = { fun, arg_ };
|
|
htab_traverse (hp->htab, ctf_hashtab_traverse, &arg);
|
|
}
|
|
|
|
typedef struct ctf_traverse_remove_cb_arg
|
|
{
|
|
struct htab *htab;
|
|
ctf_hash_iter_remove_f fun;
|
|
void *arg;
|
|
} ctf_traverse_remove_cb_arg_t;
|
|
|
|
static int
|
|
ctf_hashtab_traverse_remove (void **slot, void *arg_)
|
|
{
|
|
ctf_helem_t *helem = *((ctf_helem_t **) slot);
|
|
ctf_traverse_remove_cb_arg_t *arg = (ctf_traverse_remove_cb_arg_t *) arg_;
|
|
|
|
if (arg->fun (helem->key, helem->value, arg->arg))
|
|
htab_clear_slot (arg->htab, slot);
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
ctf_dynhash_iter_remove (ctf_dynhash_t *hp, ctf_hash_iter_remove_f fun,
|
|
void *arg_)
|
|
{
|
|
ctf_traverse_remove_cb_arg_t arg = { hp->htab, fun, arg_ };
|
|
htab_traverse (hp->htab, ctf_hashtab_traverse_remove, &arg);
|
|
}
|
|
|
|
void
|
|
ctf_dynhash_destroy (ctf_dynhash_t *hp)
|
|
{
|
|
if (hp != NULL)
|
|
htab_delete (hp->htab);
|
|
free (hp);
|
|
}
|
|
|
|
/* ctf_hash, used for fixed-size maps from const char * -> ctf_id_t without
|
|
removal. This is a straight cast of a hashtab. */
|
|
|
|
ctf_hash_t *
|
|
ctf_hash_create (unsigned long nelems, ctf_hash_fun hash_fun,
|
|
ctf_hash_eq_fun eq_fun)
|
|
{
|
|
return (ctf_hash_t *) htab_create_alloc (nelems, (htab_hash) hash_fun,
|
|
eq_fun, free, xcalloc, free);
|
|
}
|
|
|
|
uint32_t
|
|
ctf_hash_size (const ctf_hash_t *hp)
|
|
{
|
|
return htab_elements ((struct htab *) hp);
|
|
}
|
|
|
|
int
|
|
ctf_hash_insert_type (ctf_hash_t *hp, ctf_file_t *fp, uint32_t type,
|
|
uint32_t name)
|
|
{
|
|
const char *str = ctf_strraw (fp, name);
|
|
|
|
if (type == 0)
|
|
return EINVAL;
|
|
|
|
if (str == NULL
|
|
&& CTF_NAME_STID (name) == CTF_STRTAB_1
|
|
&& fp->ctf_syn_ext_strtab == NULL
|
|
&& fp->ctf_str[CTF_NAME_STID (name)].cts_strs == NULL)
|
|
return ECTF_STRTAB;
|
|
|
|
if (str == NULL)
|
|
return ECTF_BADNAME;
|
|
|
|
if (str[0] == '\0')
|
|
return 0; /* Just ignore empty strings on behalf of caller. */
|
|
|
|
if (ctf_hashtab_insert ((struct htab *) hp, (char *) str,
|
|
(void *) (ptrdiff_t) type) != NULL)
|
|
return 0;
|
|
return errno;
|
|
}
|
|
|
|
/* if the key is already in the hash, override the previous definition with
|
|
this new official definition. If the key is not present, then call
|
|
ctf_hash_insert_type() and hash it in. */
|
|
int
|
|
ctf_hash_define_type (ctf_hash_t *hp, ctf_file_t *fp, uint32_t type,
|
|
uint32_t name)
|
|
{
|
|
/* This matches the semantics of ctf_hash_insert_type() in this
|
|
implementation anyway. */
|
|
|
|
return ctf_hash_insert_type (hp, fp, type, name);
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_hash_lookup_type (ctf_hash_t *hp, ctf_file_t *fp __attribute__ ((__unused__)),
|
|
const char *key)
|
|
{
|
|
ctf_helem_t **slot;
|
|
|
|
slot = ctf_hashtab_lookup ((struct htab *) hp, key, NO_INSERT);
|
|
|
|
if (slot)
|
|
return (ctf_id_t) ((*slot)->value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ctf_hash_destroy (ctf_hash_t *hp)
|
|
{
|
|
if (hp != NULL)
|
|
htab_delete ((struct htab *) hp);
|
|
}
|