binutils-gdb/gdb/i386-linux-tdep.c

466 lines
14 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Target-dependent code for GNU/Linux running on i386's, for GDB.
Copyright 2000, 2001, 2002 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "gdbcore.h"
#include "frame.h"
#include "value.h"
#include "regcache.h"
#include "inferior.h"
/* For i386_linux_skip_solib_resolver. */
#include "symtab.h"
#include "symfile.h"
#include "objfiles.h"
#include "solib-svr4.h" /* For struct link_map_offsets. */
#include "i386-tdep.h"
#include "i386-linux-tdep.h"
/* Return the name of register REG. */
static const char *
i386_linux_register_name (int reg)
{
/* Deal with the extra "orig_eax" pseudo register. */
if (reg == I386_LINUX_ORIG_EAX_REGNUM)
return "orig_eax";
return i386_register_name (reg);
}
/* Recognizing signal handler frames. */
/* GNU/Linux has two flavors of signals. Normal signal handlers, and
"realtime" (RT) signals. The RT signals can provide additional
information to the signal handler if the SA_SIGINFO flag is set
when establishing a signal handler using `sigaction'. It is not
unlikely that future versions of GNU/Linux will support SA_SIGINFO
for normal signals too. */
/* When the i386 Linux kernel calls a signal handler and the
SA_RESTORER flag isn't set, the return address points to a bit of
code on the stack. This function returns whether the PC appears to
be within this bit of code.
The instruction sequence for normal signals is
pop %eax
mov $0x77,%eax
int $0x80
or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
Checking for the code sequence should be somewhat reliable, because
the effect is to call the system call sigreturn. This is unlikely
to occur anywhere other than a signal trampoline.
It kind of sucks that we have to read memory from the process in
order to identify a signal trampoline, but there doesn't seem to be
any other way. The PC_IN_SIGTRAMP macro in tm-linux.h arranges to
only call us if no function name could be identified, which should
be the case since the code is on the stack.
Detection of signal trampolines for handlers that set the
SA_RESTORER flag is in general not possible. Unfortunately this is
what the GNU C Library has been doing for quite some time now.
However, as of version 2.1.2, the GNU C Library uses signal
trampolines (named __restore and __restore_rt) that are identical
to the ones used by the kernel. Therefore, these trampolines are
supported too. */
#define LINUX_SIGTRAMP_INSN0 (0x58) /* pop %eax */
#define LINUX_SIGTRAMP_OFFSET0 (0)
#define LINUX_SIGTRAMP_INSN1 (0xb8) /* mov $NNNN,%eax */
#define LINUX_SIGTRAMP_OFFSET1 (1)
#define LINUX_SIGTRAMP_INSN2 (0xcd) /* int */
#define LINUX_SIGTRAMP_OFFSET2 (6)
static const unsigned char linux_sigtramp_code[] =
{
LINUX_SIGTRAMP_INSN0, /* pop %eax */
LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77,%eax */
LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
};
#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
/* If PC is in a sigtramp routine, return the address of the start of
the routine. Otherwise, return 0. */
static CORE_ADDR
i386_linux_sigtramp_start (CORE_ADDR pc)
{
unsigned char buf[LINUX_SIGTRAMP_LEN];
/* We only recognize a signal trampoline if PC is at the start of
one of the three instructions. We optimize for finding the PC at
the start, as will be the case when the trampoline is not the
first frame on the stack. We assume that in the case where the
PC is not at the start of the instruction sequence, there will be
a few trailing readable bytes on the stack. */
if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
return 0;
if (buf[0] != LINUX_SIGTRAMP_INSN0)
{
int adjust;
switch (buf[0])
{
case LINUX_SIGTRAMP_INSN1:
adjust = LINUX_SIGTRAMP_OFFSET1;
break;
case LINUX_SIGTRAMP_INSN2:
adjust = LINUX_SIGTRAMP_OFFSET2;
break;
default:
return 0;
}
pc -= adjust;
if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
return 0;
}
if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
return 0;
return pc;
}
/* This function does the same for RT signals. Here the instruction
sequence is
mov $0xad,%eax
int $0x80
or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
The effect is to call the system call rt_sigreturn. */
#define LINUX_RT_SIGTRAMP_INSN0 (0xb8) /* mov $NNNN,%eax */
#define LINUX_RT_SIGTRAMP_OFFSET0 (0)
#define LINUX_RT_SIGTRAMP_INSN1 (0xcd) /* int */
#define LINUX_RT_SIGTRAMP_OFFSET1 (5)
static const unsigned char linux_rt_sigtramp_code[] =
{
LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad,%eax */
LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
};
#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
/* If PC is in a RT sigtramp routine, return the address of the start
of the routine. Otherwise, return 0. */
static CORE_ADDR
i386_linux_rt_sigtramp_start (CORE_ADDR pc)
{
unsigned char buf[LINUX_RT_SIGTRAMP_LEN];
/* We only recognize a signal trampoline if PC is at the start of
one of the two instructions. We optimize for finding the PC at
the start, as will be the case when the trampoline is not the
first frame on the stack. We assume that in the case where the
PC is not at the start of the instruction sequence, there will be
a few trailing readable bytes on the stack. */
if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
return 0;
if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
{
if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
return 0;
pc -= LINUX_RT_SIGTRAMP_OFFSET1;
if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
return 0;
}
if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
return 0;
return pc;
}
/* Return whether PC is in a GNU/Linux sigtramp routine. */
static int
i386_linux_pc_in_sigtramp (CORE_ADDR pc, char *name)
{
if (name)
return STREQ ("__restore", name) || STREQ ("__restore_rt", name);
return (i386_linux_sigtramp_start (pc) != 0
|| i386_linux_rt_sigtramp_start (pc) != 0);
}
/* Assuming FRAME is for a GNU/Linux sigtramp routine, return the
address of the associated sigcontext structure. */
static CORE_ADDR
i386_linux_sigcontext_addr (struct frame_info *frame)
{
CORE_ADDR pc;
pc = i386_linux_sigtramp_start (frame->pc);
if (pc)
{
CORE_ADDR sp;
if (frame->next)
/* If this isn't the top frame, the next frame must be for the
signal handler itself. The sigcontext structure lives on
the stack, right after the signum argument. */
return frame->next->frame + 12;
/* This is the top frame. We'll have to find the address of the
sigcontext structure by looking at the stack pointer. Keep
in mind that the first instruction of the sigtramp code is
"pop %eax". If the PC is at this instruction, adjust the
returned value accordingly. */
sp = read_register (SP_REGNUM);
if (pc == frame->pc)
return sp + 4;
return sp;
}
pc = i386_linux_rt_sigtramp_start (frame->pc);
if (pc)
{
if (frame->next)
/* If this isn't the top frame, the next frame must be for the
signal handler itself. The sigcontext structure is part of
the user context. A pointer to the user context is passed
as the third argument to the signal handler. */
return read_memory_integer (frame->next->frame + 16, 4) + 20;
/* This is the top frame. Again, use the stack pointer to find
the address of the sigcontext structure. */
return read_memory_integer (read_register (SP_REGNUM) + 8, 4) + 20;
}
error ("Couldn't recognize signal trampoline.");
return 0;
}
/* Set the program counter for process PTID to PC. */
static void
i386_linux_write_pc (CORE_ADDR pc, ptid_t ptid)
{
write_register_pid (PC_REGNUM, pc, ptid);
/* We must be careful with modifying the program counter. If we
just interrupted a system call, the kernel might try to restart
it when we resume the inferior. On restarting the system call,
the kernel will try backing up the program counter even though it
no longer points at the system call. This typically results in a
SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
"orig_eax" pseudo-register.
Note that "orig_eax" is saved when setting up a dummy call frame.
This means that it is properly restored when that frame is
popped, and that the interrupted system call will be restarted
when we resume the inferior on return from a function call from
within GDB. In all other cases the system call will not be
restarted. */
write_register_pid (I386_LINUX_ORIG_EAX_REGNUM, -1, ptid);
}
/* Calling functions in shared libraries. */
/* Find the minimal symbol named NAME, and return both the minsym
struct and its objfile. This probably ought to be in minsym.c, but
everything there is trying to deal with things like C++ and
SOFUN_ADDRESS_MAYBE_TURQUOISE, ... Since this is so simple, it may
be considered too special-purpose for general consumption. */
static struct minimal_symbol *
find_minsym_and_objfile (char *name, struct objfile **objfile_p)
{
struct objfile *objfile;
ALL_OBJFILES (objfile)
{
struct minimal_symbol *msym;
ALL_OBJFILE_MSYMBOLS (objfile, msym)
{
if (SYMBOL_NAME (msym)
&& STREQ (SYMBOL_NAME (msym), name))
{
*objfile_p = objfile;
return msym;
}
}
}
return 0;
}
static CORE_ADDR
skip_hurd_resolver (CORE_ADDR pc)
{
/* The HURD dynamic linker is part of the GNU C library, so many
GNU/Linux distributions use it. (All ELF versions, as far as I
know.) An unresolved PLT entry points to "_dl_runtime_resolve",
which calls "fixup" to patch the PLT, and then passes control to
the function.
We look for the symbol `_dl_runtime_resolve', and find `fixup' in
the same objfile. If we are at the entry point of `fixup', then
we set a breakpoint at the return address (at the top of the
stack), and continue.
It's kind of gross to do all these checks every time we're
called, since they don't change once the executable has gotten
started. But this is only a temporary hack --- upcoming versions
of GNU/Linux will provide a portable, efficient interface for
debugging programs that use shared libraries. */
struct objfile *objfile;
struct minimal_symbol *resolver
= find_minsym_and_objfile ("_dl_runtime_resolve", &objfile);
if (resolver)
{
struct minimal_symbol *fixup
= lookup_minimal_symbol ("fixup", NULL, objfile);
if (fixup && SYMBOL_VALUE_ADDRESS (fixup) == pc)
return (SAVED_PC_AFTER_CALL (get_current_frame ()));
}
return 0;
}
/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c.
This function:
1) decides whether a PLT has sent us into the linker to resolve
a function reference, and
2) if so, tells us where to set a temporary breakpoint that will
trigger when the dynamic linker is done. */
CORE_ADDR
i386_linux_skip_solib_resolver (CORE_ADDR pc)
{
CORE_ADDR result;
/* Plug in functions for other kinds of resolvers here. */
result = skip_hurd_resolver (pc);
if (result)
return result;
return 0;
}
/* Fetch (and possibly build) an appropriate link_map_offsets
structure for native GNU/Linux x86 targets using the struct offsets
defined in link.h (but without actual reference to that file).
This makes it possible to access GNU/Linux x86 shared libraries
from a GDB that was not built on an GNU/Linux x86 host (for cross
debugging). */
static struct link_map_offsets *
i386_linux_svr4_fetch_link_map_offsets (void)
{
static struct link_map_offsets lmo;
static struct link_map_offsets *lmp = NULL;
if (lmp == NULL)
{
lmp = &lmo;
lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
this is all we need. */
lmo.r_map_offset = 4;
lmo.r_map_size = 4;
lmo.link_map_size = 20; /* The actual size is 552 bytes, but
this is all we need. */
lmo.l_addr_offset = 0;
lmo.l_addr_size = 4;
lmo.l_name_offset = 4;
lmo.l_name_size = 4;
lmo.l_next_offset = 12;
lmo.l_next_size = 4;
lmo.l_prev_offset = 16;
lmo.l_prev_size = 4;
}
return lmp;
}
static void
i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* GNU/Linux uses ELF. */
i386_elf_init_abi (info, gdbarch);
/* We support the SSE registers on GNU/Linux. */
tdep->num_xmm_regs = I386_NUM_XREGS - 1;
/* set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS); */
/* Since we have the extra "orig_eax" register on GNU/Linux, we have
to adjust a few things. */
set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS + 1);
set_gdbarch_register_name (gdbarch, i386_linux_register_name);
set_gdbarch_register_bytes (gdbarch, I386_SSE_SIZEOF_REGS + 4);
tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
tdep->sigcontext_addr = i386_linux_sigcontext_addr;
tdep->sc_pc_offset = 14 * 4; /* From <asm/sigcontext.h>. */
tdep->sc_sp_offset = 7 * 4;
/* When the i386 Linux kernel calls a signal handler, the return
address points to a bit of code on the stack. This function is
used to identify this bit of code as a signal trampoline in order
to support backtracing through calls to signal handlers. */
set_gdbarch_pc_in_sigtramp (gdbarch, i386_linux_pc_in_sigtramp);
set_solib_svr4_fetch_link_map_offsets (gdbarch,
i386_linux_svr4_fetch_link_map_offsets);
}
/* Provide a prototype to silence -Wmissing-prototypes. */
extern void _initialize_i386_linux_tdep (void);
void
_initialize_i386_linux_tdep (void)
{
gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_LINUX,
i386_linux_init_abi);
}