binutils-gdb/gdb/breakpoint.h
Jan Kratochvil 628fe4e4a9 gdb/
Fix PR 9436.
	* breakpoint.c (handle_jit_event): New function.
	(bpstat_what): Remove enum class, kc, ss, sn, sgl, slr, clr, sr, shl,
	jit, err, table and bs_class.  New variables shlib_event, jit_event,
	this_action and bptype.  Change bs_class assignments to this_action
	assignments.  new unhandled bptype internal error.  Move here
	shlib_event and jit_event handling from handle_inferior_event.
	* breakpoint.h (enum bpstat_what_main_action): Extend the comment.
	Reorder items.  Remove BPSTAT_WHAT_CHECK_SHLIBS and
	BPSTAT_WHAT_CHECK_JIT.
	* inferior.h (debug_infrun, stop_on_solib_events): New declarations.
	* infrun.c (debug_infrun, stop_on_solib_events): Remove static.
	(handle_inferior_event): Reinitialize frame and gdbarch after
	bpstat_what call.  Move BPSTAT_WHAT_CHECK_SHLIBS and
	BPSTAT_WHAT_CHECK_JIT handling to bpstat_what.  Reinitialize even
	gdbarch when frame gets reinitialized.

gdb/testsuite/
	Test PR 9436.
	* gdb.base/nostdlib.exp, gdb.base/nostdlib.c: New.
2010-06-24 15:17:32 +00:00

1057 lines
39 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Data structures associated with breakpoints in GDB.
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#if !defined (BREAKPOINT_H)
#define BREAKPOINT_H 1
#include "frame.h"
#include "value.h"
#include "vec.h"
struct value;
struct block;
/* This is the maximum number of bytes a breakpoint instruction can take.
Feel free to increase it. It's just used in a few places to size
arrays that should be independent of the target architecture. */
#define BREAKPOINT_MAX 16
/* Type of breakpoint. */
/* FIXME In the future, we should fold all other breakpoint-like things into
here. This includes:
* single-step (for machines where we have to simulate single stepping)
(probably, though perhaps it is better for it to look as much as
possible like a single-step to wait_for_inferior). */
enum bptype
{
bp_none = 0, /* Eventpoint has been deleted. */
bp_breakpoint, /* Normal breakpoint */
bp_hardware_breakpoint, /* Hardware assisted breakpoint */
bp_until, /* used by until command */
bp_finish, /* used by finish command */
bp_watchpoint, /* Watchpoint */
bp_hardware_watchpoint, /* Hardware assisted watchpoint */
bp_read_watchpoint, /* read watchpoint, (hardware assisted) */
bp_access_watchpoint, /* access watchpoint, (hardware assisted) */
bp_longjmp, /* secret breakpoint to find longjmp() */
bp_longjmp_resume, /* secret breakpoint to escape longjmp() */
/* Used by wait_for_inferior for stepping over subroutine calls, for
stepping over signal handlers, and for skipping prologues. */
bp_step_resume,
/* Used to detect when a watchpoint expression has gone out of
scope. These breakpoints are usually not visible to the user.
This breakpoint has some interesting properties:
1) There's always a 1:1 mapping between watchpoints
on local variables and watchpoint_scope breakpoints.
2) It automatically deletes itself and the watchpoint it's
associated with when hit.
3) It can never be disabled. */
bp_watchpoint_scope,
/* The breakpoint at the end of a call dummy. */
/* FIXME: What if the function we are calling longjmp()s out of the
call, or the user gets out with the "return" command? We currently
have no way of cleaning up the breakpoint in these (obscure) situations.
(Probably can solve this by noticing longjmp, "return", etc., it's
similar to noticing when a watchpoint on a local variable goes out
of scope (with hardware support for watchpoints)). */
bp_call_dummy,
/* A breakpoint set on std::terminate, that is used to catch
otherwise uncaught exceptions thrown during an inferior call. */
bp_std_terminate,
/* Some dynamic linkers (HP, maybe Solaris) can arrange for special
code in the inferior to run when significant events occur in the
dynamic linker (for example a library is loaded or unloaded).
By placing a breakpoint in this magic code GDB will get control
when these significant events occur. GDB can then re-examine
the dynamic linker's data structures to discover any newly loaded
dynamic libraries. */
bp_shlib_event,
/* Some multi-threaded systems can arrange for a location in the
inferior to be executed when certain thread-related events occur
(such as thread creation or thread death).
By placing a breakpoint at one of these locations, GDB will get
control when these events occur. GDB can then update its thread
lists etc. */
bp_thread_event,
/* On the same principal, an overlay manager can arrange to call a
magic location in the inferior whenever there is an interesting
change in overlay status. GDB can update its overlay tables
and fiddle with breakpoints in overlays when this breakpoint
is hit. */
bp_overlay_event,
/* Master copies of longjmp breakpoints. These are always installed
as soon as an objfile containing longjmp is loaded, but they are
always disabled. While necessary, temporary clones of bp_longjmp
type will be created and enabled. */
bp_longjmp_master,
/* Master copies of std::terminate breakpoints. */
bp_std_terminate_master,
bp_catchpoint,
bp_tracepoint,
bp_fast_tracepoint,
/* Event for JIT compiled code generation or deletion. */
bp_jit_event,
};
/* States of enablement of breakpoint. */
enum enable_state
{
bp_disabled, /* The eventpoint is inactive, and cannot trigger. */
bp_enabled, /* The eventpoint is active, and can trigger. */
bp_call_disabled, /* The eventpoint has been disabled while a call
into the inferior is "in flight", because some
eventpoints interfere with the implementation of
a call on some targets. The eventpoint will be
automatically enabled and reset when the call
"lands" (either completes, or stops at another
eventpoint). */
bp_startup_disabled,/* The eventpoint has been disabled during inferior
startup. This is necessary on some targets where
the main executable will get relocated during
startup, making breakpoint addresses invalid.
The eventpoint will be automatically enabled and
reset once inferior startup is complete. */
bp_permanent /* There is a breakpoint instruction hard-wired into
the target's code. Don't try to write another
breakpoint instruction on top of it, or restore
its value. Step over it using the architecture's
SKIP_INSN macro. */
};
/* Disposition of breakpoint. Ie: what to do after hitting it. */
enum bpdisp
{
disp_del, /* Delete it */
disp_del_at_next_stop, /* Delete at next stop, whether hit or not */
disp_disable, /* Disable it */
disp_donttouch /* Leave it alone */
};
enum target_hw_bp_type
{
hw_write = 0, /* Common HW watchpoint */
hw_read = 1, /* Read HW watchpoint */
hw_access = 2, /* Access HW watchpoint */
hw_execute = 3 /* Execute HW breakpoint */
};
/* Information used by targets to insert and remove breakpoints. */
struct bp_target_info
{
/* Address space at which the breakpoint was placed. */
struct address_space *placed_address_space;
/* Address at which the breakpoint was placed. This is normally the
same as ADDRESS from the bp_location, except when adjustment
happens in gdbarch_breakpoint_from_pc. The most common form of
adjustment is stripping an alternate ISA marker from the PC which
is used to determine the type of breakpoint to insert. */
CORE_ADDR placed_address;
/* If the breakpoint lives in memory and reading that memory would
give back the breakpoint, instead of the original contents, then
the original contents are cached here. Only SHADOW_LEN bytes of
this buffer are valid, and only when the breakpoint is inserted. */
gdb_byte shadow_contents[BREAKPOINT_MAX];
/* The length of the data cached in SHADOW_CONTENTS. */
int shadow_len;
/* The size of the placed breakpoint, according to
gdbarch_breakpoint_from_pc, when the breakpoint was inserted. This is
generally the same as SHADOW_LEN, unless we did not need
to read from the target to implement the memory breakpoint
(e.g. if a remote stub handled the details). We may still
need the size to remove the breakpoint safely. */
int placed_size;
};
/* GDB maintains two types of information about each breakpoint (or
watchpoint, or other related event). The first type corresponds
to struct breakpoint; this is a relatively high-level structure
which contains the source location(s), stopping conditions, user
commands to execute when the breakpoint is hit, and so forth.
The second type of information corresponds to struct bp_location.
Each breakpoint has one or (eventually) more locations associated
with it, which represent target-specific and machine-specific
mechanisms for stopping the program. For instance, a watchpoint
expression may require multiple hardware watchpoints in order to
catch all changes in the value of the expression being watched. */
enum bp_loc_type
{
bp_loc_software_breakpoint,
bp_loc_hardware_breakpoint,
bp_loc_hardware_watchpoint,
bp_loc_other /* Miscellaneous... */
};
struct bp_location
{
/* Chain pointer to the next breakpoint location for
the same parent breakpoint. */
struct bp_location *next;
/* Type of this breakpoint location. */
enum bp_loc_type loc_type;
/* Each breakpoint location must belong to exactly one higher-level
breakpoint. This and the DUPLICATE flag are more straightforward
than reference counting. This pointer is NULL iff this bp_location is in
(and therefore only in) moribund_locations. */
struct breakpoint *owner;
/* Conditional. Break only if this expression's value is nonzero.
Unlike string form of condition, which is associated with
breakpoint, this is associated with location, since if breakpoint
has several locations, the evaluation of expression can be
different for different locations. Only valid for real
breakpoints; a watchpoint's conditional expression is stored in
the owner breakpoint object. */
struct expression *cond;
/* This location's address is in an unloaded solib, and so this
location should not be inserted. It will be automatically
enabled when that solib is loaded. */
char shlib_disabled;
/* Is this particular location enabled. */
char enabled;
/* Nonzero if this breakpoint is now inserted. */
char inserted;
/* Nonzero if this is not the first breakpoint in the list
for the given address. */
char duplicate;
/* If we someday support real thread-specific breakpoints, then
the breakpoint location will need a thread identifier. */
/* Data for specific breakpoint types. These could be a union, but
simplicity is more important than memory usage for breakpoints. */
/* Architecture associated with this location's address. May be
different from the breakpoint architecture. */
struct gdbarch *gdbarch;
/* The program space associated with this breakpoint location
address. Note that an address space may be represented in more
than one program space (e.g. each uClinux program will be given
its own program space, but there will only be one address space
for all of them), but we must not insert more than one location
at the same address in the same address space. */
struct program_space *pspace;
/* Note that zero is a perfectly valid code address on some platforms
(for example, the mn10200 (OBSOLETE) and mn10300 simulators). NULL
is not a special value for this field. Valid for all types except
bp_loc_other. */
CORE_ADDR address;
/* For hardware watchpoints, the size of data ad ADDRESS being watches. */
int length;
/* Type of hardware watchpoint. */
enum target_hw_bp_type watchpoint_type;
/* For any breakpoint type with an address, this is the section
associated with the address. Used primarily for overlay debugging. */
struct obj_section *section;
/* Address at which breakpoint was requested, either by the user or
by GDB for internal breakpoints. This will usually be the same
as ``address'' (above) except for cases in which
ADJUST_BREAKPOINT_ADDRESS has computed a different address at
which to place the breakpoint in order to comply with a
processor's architectual constraints. */
CORE_ADDR requested_address;
char *function_name;
/* Details of the placed breakpoint, when inserted. */
struct bp_target_info target_info;
/* Similarly, for the breakpoint at an overlay's LMA, if necessary. */
struct bp_target_info overlay_target_info;
/* In a non-stop mode, it's possible that we delete a breakpoint,
but as we do that, some still running thread hits that breakpoint.
For that reason, we need to keep locations belonging to deleted
breakpoints for a bit, so that don't report unexpected SIGTRAP.
We can't keep such locations forever, so we use a heuristic --
after we process certain number of inferior events since
breakpoint was deleted, we retire all locations of that breakpoint.
This variable keeps a number of events still to go, when
it becomes 0 this location is retired. */
int events_till_retirement;
};
/* This structure is a collection of function pointers that, if available,
will be called instead of the performing the default action for this
bptype. */
struct breakpoint_ops
{
/* Insert the breakpoint or activate the catchpoint. Should raise
an exception if the operation failed. */
void (*insert) (struct breakpoint *);
/* Remove the breakpoint/catchpoint that was previously inserted
with the "insert" method above. Return non-zero if the operation
succeeded. */
int (*remove) (struct breakpoint *);
/* Return non-zero if the debugger should tell the user that this
breakpoint was hit. */
int (*breakpoint_hit) (struct breakpoint *);
/* The normal print routine for this breakpoint, called when we
hit it. */
enum print_stop_action (*print_it) (struct breakpoint *);
/* Display information about this breakpoint, for "info breakpoints". */
void (*print_one) (struct breakpoint *, struct bp_location **);
/* Display information about this breakpoint after setting it (roughly
speaking; this is called from "mention"). */
void (*print_mention) (struct breakpoint *);
/* Print to FP the CLI command that recreates this breakpoint. */
void (*print_recreate) (struct breakpoint *, struct ui_file *fp);
};
enum watchpoint_triggered
{
/* This watchpoint definitely did not trigger. */
watch_triggered_no = 0,
/* Some hardware watchpoint triggered, and it might have been this
one, but we do not know which it was. */
watch_triggered_unknown,
/* This hardware watchpoint definitely did trigger. */
watch_triggered_yes
};
/* This is used to declare the VEC syscalls_to_be_caught. */
DEF_VEC_I(int);
typedef struct bp_location *bp_location_p;
DEF_VEC_P(bp_location_p);
/* A reference-counted struct command_line. This lets multiple
breakpoints share a single command list. This is an implementation
detail to the breakpoints module. */
struct counted_command_line;
/* Note that the ->silent field is not currently used by any commands
(though the code is in there if it was to be, and set_raw_breakpoint
does set it to 0). I implemented it because I thought it would be
useful for a hack I had to put in; I'm going to leave it in because
I can see how there might be times when it would indeed be useful */
/* This is for a breakpoint or a watchpoint. */
struct breakpoint
{
struct breakpoint *next;
/* Type of breakpoint. */
enum bptype type;
/* Zero means disabled; remember the info but don't break here. */
enum enable_state enable_state;
/* What to do with this breakpoint after we hit it. */
enum bpdisp disposition;
/* Number assigned to distinguish breakpoints. */
int number;
/* Location(s) associated with this high-level breakpoint. */
struct bp_location *loc;
/* Line number of this address. */
int line_number;
/* Source file name of this address. */
char *source_file;
/* Non-zero means a silent breakpoint (don't print frame info
if we stop here). */
unsigned char silent;
/* Number of stops at this breakpoint that should
be continued automatically before really stopping. */
int ignore_count;
/* Chain of command lines to execute when this breakpoint is hit. */
struct counted_command_line *commands;
/* Stack depth (address of frame). If nonzero, break only if fp
equals this. */
struct frame_id frame_id;
/* The program space used to set the breakpoint. */
struct program_space *pspace;
/* String we used to set the breakpoint (malloc'd). */
char *addr_string;
/* Architecture we used to set the breakpoint. */
struct gdbarch *gdbarch;
/* Language we used to set the breakpoint. */
enum language language;
/* Input radix we used to set the breakpoint. */
int input_radix;
/* String form of the breakpoint condition (malloc'd), or NULL if there
is no condition. */
char *cond_string;
/* String form of exp (malloc'd), or NULL if none. */
char *exp_string;
/* The expression we are watching, or NULL if not a watchpoint. */
struct expression *exp;
/* The largest block within which it is valid, or NULL if it is
valid anywhere (e.g. consists just of global symbols). */
struct block *exp_valid_block;
/* The conditional expression if any. NULL if not a watchpoint. */
struct expression *cond_exp;
/* The largest block within which it is valid, or NULL if it is
valid anywhere (e.g. consists just of global symbols). */
struct block *cond_exp_valid_block;
/* Value of the watchpoint the last time we checked it, or NULL
when we do not know the value yet or the value was not
readable. VAL is never lazy. */
struct value *val;
/* Nonzero if VAL is valid. If VAL_VALID is set but VAL is NULL,
then an error occurred reading the value. */
int val_valid;
/* Holds the address of the related watchpoint_scope breakpoint
when using watchpoints on local variables (might the concept
of a related breakpoint be useful elsewhere, if not just call
it the watchpoint_scope breakpoint or something like that. FIXME). */
struct breakpoint *related_breakpoint;
/* Holds the frame address which identifies the frame this
watchpoint should be evaluated in, or `null' if the watchpoint
should be evaluated on the outermost frame. */
struct frame_id watchpoint_frame;
/* Holds the thread which identifies the frame this watchpoint
should be considered in scope for, or `null_ptid' if the
watchpoint should be evaluated in all threads. */
ptid_t watchpoint_thread;
/* For hardware watchpoints, the triggered status according to the
hardware. */
enum watchpoint_triggered watchpoint_triggered;
/* Thread number for thread-specific breakpoint, or -1 if don't care. */
int thread;
/* Ada task number for task-specific breakpoint, or 0 if don't care. */
int task;
/* Count of the number of times this breakpoint was taken, dumped
with the info, but not used for anything else. Useful for
seeing how many times you hit a break prior to the program
aborting, so you can back up to just before the abort. */
int hit_count;
/* Process id of a child process whose forking triggered this
catchpoint. This field is only valid immediately after this
catchpoint has triggered. */
ptid_t forked_inferior_pid;
/* Filename of a program whose exec triggered this catchpoint.
This field is only valid immediately after this catchpoint has
triggered. */
char *exec_pathname;
/* Syscall numbers used for the 'catch syscall' feature.
If no syscall has been specified for filtering, its value is NULL.
Otherwise, it holds a list of all syscalls to be caught.
The list elements are allocated with xmalloc. */
VEC(int) *syscalls_to_be_caught;
/* Methods associated with this breakpoint. */
struct breakpoint_ops *ops;
/* Is breakpoint's condition not yet parsed because we found
no location initially so had no context to parse
the condition in. */
int condition_not_parsed;
/* Number of times this tracepoint should single-step
and collect additional data. */
long step_count;
/* Number of times this tracepoint should be hit before
disabling/ending. */
int pass_count;
/* The number of the tracepoint on the target. */
int number_on_target;
};
typedef struct breakpoint *breakpoint_p;
DEF_VEC_P(breakpoint_p);
/* The following stuff is an abstract data type "bpstat" ("breakpoint
status"). This provides the ability to determine whether we have
stopped at a breakpoint, and what we should do about it. */
typedef struct bpstats *bpstat;
/* Frees any storage that is part of a bpstat.
Does not walk the 'next' chain. */
extern void bpstat_free (bpstat);
/* Clears a chain of bpstat, freeing storage
of each. */
extern void bpstat_clear (bpstat *);
/* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
is part of the bpstat is copied as well. */
extern bpstat bpstat_copy (bpstat);
extern bpstat bpstat_stop_status (struct address_space *aspace,
CORE_ADDR pc, ptid_t ptid);
/* This bpstat_what stuff tells wait_for_inferior what to do with a
breakpoint (a challenging task).
The enum values order defines priority-like order of the actions.
Once you've decided that some action is appropriate, you'll never
go back and decide something of a lower priority is better. Each
of these actions is mutually exclusive with the others. That
means, that if you find yourself adding a new action class here and
wanting to tell GDB that you have two simultaneous actions to
handle, something is wrong, and you probably don't actually need a
new action type.
Note that a step resume breakpoint overrides another breakpoint of
signal handling (see comment in wait_for_inferior at where we set
the step_resume breakpoint). */
enum bpstat_what_main_action
{
/* Perform various other tests; that is, this bpstat does not
say to perform any action (e.g. failed watchpoint and nothing
else). */
BPSTAT_WHAT_KEEP_CHECKING,
/* Remove breakpoints, single step once, then put them back in and
go back to what we were doing. It's possible that this should be
removed from the main_action and put into a separate field, to more
cleanly handle BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE. */
BPSTAT_WHAT_SINGLE,
/* Set longjmp_resume breakpoint, remove all other breakpoints,
and continue. The "remove all other breakpoints" part is required
if we are also stepping over another breakpoint as well as doing
the longjmp handling. */
BPSTAT_WHAT_SET_LONGJMP_RESUME,
/* Clear longjmp_resume breakpoint, then handle as
BPSTAT_WHAT_KEEP_CHECKING. */
BPSTAT_WHAT_CLEAR_LONGJMP_RESUME,
/* Rather than distinguish between noisy and silent stops here, it
might be cleaner to have bpstat_print make that decision (also
taking into account stop_print_frame and source_only). But the
implications are a bit scary (interaction with auto-displays, etc.),
so I won't try it. */
/* Stop silently. */
BPSTAT_WHAT_STOP_SILENT,
/* Stop and print. */
BPSTAT_WHAT_STOP_NOISY,
/* Clear step resume breakpoint, and keep checking. */
BPSTAT_WHAT_STEP_RESUME,
};
/* An enum indicating the kind of "stack dummy" stop. This is a bit
of a misnomer because only one kind of truly a stack dummy. */
enum stop_stack_kind
{
/* We didn't stop at a stack dummy breakpoint. */
STOP_NONE = 0,
/* Stopped at a stack dummy. */
STOP_STACK_DUMMY,
/* Stopped at std::terminate. */
STOP_STD_TERMINATE
};
struct bpstat_what
{
enum bpstat_what_main_action main_action;
/* Did we hit a call dummy breakpoint? This only goes with a main_action
of BPSTAT_WHAT_STOP_SILENT or BPSTAT_WHAT_STOP_NOISY (the concept of
continuing from a call dummy without popping the frame is not a
useful one). */
enum stop_stack_kind call_dummy;
};
/* The possible return values for print_bpstat, print_it_normal,
print_it_done, print_it_noop. */
enum print_stop_action
{
PRINT_UNKNOWN = -1,
PRINT_SRC_AND_LOC,
PRINT_SRC_ONLY,
PRINT_NOTHING
};
/* Tell what to do about this bpstat. */
struct bpstat_what bpstat_what (bpstat);
/* Find the bpstat associated with a breakpoint. NULL otherwise. */
bpstat bpstat_find_breakpoint (bpstat, struct breakpoint *);
/* Nonzero if a signal that we got in wait() was due to circumstances
explained by the BS. */
/* Currently that is true if we have hit a breakpoint, or if there is
a watchpoint enabled. */
#define bpstat_explains_signal(bs) ((bs) != NULL)
/* Nonzero is this bpstat causes a stop. */
extern int bpstat_causes_stop (bpstat);
/* Nonzero if we should step constantly (e.g. watchpoints on machines
without hardware support). This isn't related to a specific bpstat,
just to things like whether watchpoints are set. */
extern int bpstat_should_step (void);
/* Print a message indicating what happened. Returns nonzero to
say that only the source line should be printed after this (zero
return means print the frame as well as the source line). */
extern enum print_stop_action bpstat_print (bpstat);
/* Put in *NUM the breakpoint number of the first breakpoint we are stopped
at. *BSP upon return is a bpstat which points to the remaining
breakpoints stopped at (but which is not guaranteed to be good for
anything but further calls to bpstat_num).
Return 0 if passed a bpstat which does not indicate any breakpoints.
Return -1 if stopped at a breakpoint that has been deleted since
we set it.
Return 1 otherwise. */
extern int bpstat_num (bpstat *, int *);
/* Perform actions associated with the stopped inferior. Actually, we
just use this for breakpoint commands. Perhaps other actions will
go here later, but this is executed at a late time (from the
command loop). */
extern void bpstat_do_actions (void);
/* Modify BS so that the actions will not be performed. */
extern void bpstat_clear_actions (bpstat);
/* Implementation: */
/* Values used to tell the printing routine how to behave for this bpstat. */
enum bp_print_how
{
/* This is used when we want to do a normal printing of the reason
for stopping. The output will depend on the type of eventpoint
we are dealing with. This is the default value, most commonly
used. */
print_it_normal,
/* This is used when nothing should be printed for this bpstat entry. */
print_it_noop,
/* This is used when everything which needs to be printed has
already been printed. But we still want to print the frame. */
print_it_done
};
struct bpstats
{
/* Linked list because there can be two breakpoints at the same
place, and a bpstat reflects the fact that both have been hit. */
bpstat next;
/* Breakpoint that we are at. */
const struct bp_location *breakpoint_at;
/* The associated command list. */
struct counted_command_line *commands;
/* Commands left to be done. This points somewhere in
base_command. */
struct command_line *commands_left;
/* Old value associated with a watchpoint. */
struct value *old_val;
/* Nonzero if this breakpoint tells us to print the frame. */
char print;
/* Nonzero if this breakpoint tells us to stop. */
char stop;
/* Tell bpstat_print and print_bp_stop_message how to print stuff
associated with this element of the bpstat chain. */
enum bp_print_how print_it;
};
enum inf_context
{
inf_starting,
inf_running,
inf_exited,
inf_execd
};
/* The possible return values for breakpoint_here_p.
We guarantee that zero always means "no breakpoint here". */
enum breakpoint_here
{
no_breakpoint_here = 0,
ordinary_breakpoint_here,
permanent_breakpoint_here
};
/* Prototypes for breakpoint-related functions. */
extern enum breakpoint_here breakpoint_here_p (struct address_space *, CORE_ADDR);
extern int moribund_breakpoint_here_p (struct address_space *, CORE_ADDR);
extern int breakpoint_inserted_here_p (struct address_space *, CORE_ADDR);
extern int regular_breakpoint_inserted_here_p (struct address_space *, CORE_ADDR);
extern int software_breakpoint_inserted_here_p (struct address_space *, CORE_ADDR);
/* Returns true if there's a hardware watchpoint or access watchpoint
inserted in the range defined by ADDR and LEN. */
extern int hardware_watchpoint_inserted_in_range (struct address_space *,
CORE_ADDR addr,
ULONGEST len);
extern int breakpoint_thread_match (struct address_space *, CORE_ADDR, ptid_t);
extern void until_break_command (char *, int, int);
extern void breakpoint_re_set (void);
extern void breakpoint_re_set_thread (struct breakpoint *);
extern struct breakpoint *set_momentary_breakpoint
(struct gdbarch *, struct symtab_and_line, struct frame_id, enum bptype);
extern struct breakpoint *set_momentary_breakpoint_at_pc
(struct gdbarch *, CORE_ADDR pc, enum bptype type);
extern struct breakpoint *clone_momentary_breakpoint (struct breakpoint *bpkt);
extern void set_ignore_count (int, int, int);
extern void set_default_breakpoint (int, struct program_space *,
CORE_ADDR, struct symtab *, int);
extern void breakpoint_init_inferior (enum inf_context);
extern struct cleanup *make_cleanup_delete_breakpoint (struct breakpoint *);
extern void delete_breakpoint (struct breakpoint *);
extern void breakpoint_auto_delete (bpstat);
/* Return the chain of command lines to execute when this breakpoint
is hit. */
extern struct command_line *breakpoint_commands (struct breakpoint *b);
extern void break_command (char *, int);
extern void hbreak_command_wrapper (char *, int);
extern void thbreak_command_wrapper (char *, int);
extern void rbreak_command_wrapper (char *, int);
extern void watch_command_wrapper (char *, int);
extern void awatch_command_wrapper (char *, int);
extern void rwatch_command_wrapper (char *, int);
extern void tbreak_command (char *, int);
extern int create_breakpoint (struct gdbarch *gdbarch, char *arg,
char *cond_string, int thread,
int parse_condition_and_thread,
int tempflag, int hardwareflag, int traceflag,
int ignore_count,
enum auto_boolean pending_break_support,
struct breakpoint_ops *ops,
int from_tty,
int enabled);
extern void insert_breakpoints (void);
extern int remove_breakpoints (void);
extern int remove_breakpoints_pid (int pid);
/* This function can be used to physically insert eventpoints from the
specified traced inferior process, without modifying the breakpoint
package's state. This can be useful for those targets which support
following the processes of a fork() or vfork() system call, when both
of the resulting two processes are to be followed. */
extern int reattach_breakpoints (int);
/* This function can be used to update the breakpoint package's state
after an exec() system call has been executed.
This function causes the following:
- All eventpoints are marked "not inserted".
- All eventpoints with a symbolic address are reset such that
the symbolic address must be reevaluated before the eventpoints
can be reinserted.
- The solib breakpoints are explicitly removed from the breakpoint
list.
- A step-resume breakpoint, if any, is explicitly removed from the
breakpoint list.
- All eventpoints without a symbolic address are removed from the
breakpoint list. */
extern void update_breakpoints_after_exec (void);
/* This function can be used to physically remove hardware breakpoints
and watchpoints from the specified traced inferior process, without
modifying the breakpoint package's state. This can be useful for
those targets which support following the processes of a fork() or
vfork() system call, when one of the resulting two processes is to
be detached and allowed to run free.
It is an error to use this function on the process whose id is
inferior_ptid. */
extern int detach_breakpoints (int);
/* This function is called when program space PSPACE is about to be
deleted. It takes care of updating breakpoints to not reference
this PSPACE anymore. */
extern void breakpoint_program_space_exit (struct program_space *pspace);
extern void set_longjmp_breakpoint (int thread);
extern void delete_longjmp_breakpoint (int thread);
extern void enable_overlay_breakpoints (void);
extern void disable_overlay_breakpoints (void);
extern void set_std_terminate_breakpoint (void);
extern void delete_std_terminate_breakpoint (void);
/* These functions respectively disable or reenable all currently
enabled watchpoints. When disabled, the watchpoints are marked
call_disabled. When reenabled, they are marked enabled.
The intended client of these functions is call_function_by_hand.
The inferior must be stopped, and all breakpoints removed, when
these functions are used.
The need for these functions is that on some targets (e.g., HP-UX),
gdb is unable to unwind through the dummy frame that is pushed as
part of the implementation of a call command. Watchpoints can
cause the inferior to stop in places where this frame is visible,
and that can cause execution control to become very confused.
Note that if a user sets breakpoints in an interactively called
function, the call_disabled watchpoints will have been reenabled
when the first such breakpoint is reached. However, on targets
that are unable to unwind through the call dummy frame, watches
of stack-based storage may then be deleted, because gdb will
believe that their watched storage is out of scope. (Sigh.) */
extern void disable_watchpoints_before_interactive_call_start (void);
extern void enable_watchpoints_after_interactive_call_stop (void);
/* These functions disable and re-enable all breakpoints during
inferior startup. They are intended to be called from solib
code where necessary. This is needed on platforms where the
main executable is relocated at some point during startup
processing, making breakpoint addresses invalid.
If additional breakpoints are created after the routine
disable_breakpoints_before_startup but before the routine
enable_breakpoints_after_startup was called, they will also
be marked as disabled. */
extern void disable_breakpoints_before_startup (void);
extern void enable_breakpoints_after_startup (void);
/* For script interpreters that need to define breakpoint commands
after they've already read the commands into a struct command_line. */
extern enum command_control_type commands_from_control_command
(char *arg, struct command_line *cmd);
extern void clear_breakpoint_hit_counts (void);
extern int get_number (char **);
extern int get_number_or_range (char **);
extern struct breakpoint *get_breakpoint (int num);
/* The following are for displays, which aren't really breakpoints, but
here is as good a place as any for them. */
extern void disable_current_display (void);
extern void do_displays (void);
extern void disable_display (int);
extern void clear_displays (void);
extern void disable_breakpoint (struct breakpoint *);
extern void enable_breakpoint (struct breakpoint *);
extern void breakpoint_set_commands (struct breakpoint *b,
struct command_line *commands);
/* Clear the "inserted" flag in all breakpoints. */
extern void mark_breakpoints_out (void);
extern void make_breakpoint_permanent (struct breakpoint *);
extern struct breakpoint *create_jit_event_breakpoint (struct gdbarch *,
CORE_ADDR);
extern struct breakpoint *create_solib_event_breakpoint (struct gdbarch *,
CORE_ADDR);
extern struct breakpoint *create_thread_event_breakpoint (struct gdbarch *,
CORE_ADDR);
extern void remove_solib_event_breakpoints (void);
extern void remove_thread_event_breakpoints (void);
extern void disable_breakpoints_in_shlibs (void);
/* This function returns TRUE if ep is a catchpoint. */
extern int ep_is_catchpoint (struct breakpoint *);
/* Enable breakpoints and delete when hit. Called with ARG == NULL
deletes all breakpoints. */
extern void delete_command (char *arg, int from_tty);
/* Pull all H/W watchpoints from the target. Return non-zero if the
remove fails. */
extern int remove_hw_watchpoints (void);
/* Manage a software single step breakpoint (or two). Insert may be called
twice before remove is called. */
extern void insert_single_step_breakpoint (struct gdbarch *,
struct address_space *, CORE_ADDR);
extern void remove_single_step_breakpoints (void);
extern void cancel_single_step_breakpoints (void);
/* Manage manual breakpoints, separate from the normal chain of
breakpoints. These functions are used in murky target-specific
ways. Please do not add more uses! */
extern void *deprecated_insert_raw_breakpoint (struct gdbarch *,
struct address_space *, CORE_ADDR);
extern int deprecated_remove_raw_breakpoint (struct gdbarch *, void *);
/* Check if any hardware watchpoints have triggered, according to the
target. */
int watchpoints_triggered (struct target_waitstatus *);
/* Update BUF, which is LEN bytes read from the target address MEMADDR,
by replacing any memory breakpoints with their shadowed contents. */
void breakpoint_restore_shadows (gdb_byte *buf, ULONGEST memaddr,
LONGEST len);
extern int breakpoints_always_inserted_mode (void);
/* Called each time new event from target is processed.
Retires previously deleted breakpoint locations that
in our opinion won't ever trigger. */
extern void breakpoint_retire_moribund (void);
/* Set break condition of breakpoint B to EXP. */
extern void set_breakpoint_condition (struct breakpoint *b, char *exp,
int from_tty);
/* Checks if we are catching syscalls or not.
Returns 0 if not, greater than 0 if we are. */
extern int catch_syscall_enabled (void);
/* Checks if we are catching syscalls with the specific
syscall_number. Used for "filtering" the catchpoints.
Returns 0 if not, greater than 0 if we are. */
extern int catching_syscall_number (int syscall_number);
/* Tell a breakpoint to be quiet. */
extern void make_breakpoint_silent (struct breakpoint *);
/* Return a tracepoint with the given number if found. */
extern struct breakpoint *get_tracepoint (int num);
extern struct breakpoint *get_tracepoint_by_number_on_target (int num);
/* Find a tracepoint by parsing a number in the supplied string. */
extern struct breakpoint *get_tracepoint_by_number (char **arg, int multi_p,
int optional_p);
/* Return a vector of all tracepoints currently defined. The vector
is newly allocated; the caller should free when done with it. */
extern VEC(breakpoint_p) *all_tracepoints (void);
extern int is_tracepoint (const struct breakpoint *b);
/* Function that can be passed to read_command_line to validate
that each command is suitable for tracepoint command list. */
extern void check_tracepoint_command (char *line, void *closure);
/* Call at the start and end of an "rbreak" command to register
breakpoint numbers for a later "commands" command. */
extern void start_rbreak_breakpoints (void);
extern void end_rbreak_breakpoints (void);
#endif /* !defined (BREAKPOINT_H) */