binutils-gdb/gdb/dwarf2expr.h
Caroline Tice 42be36b328 Add ability to report when a variable's value is uninitialized,
based on information provided by the compiler.  Also add new
DWARF OP, DW_OP_GNU_uninit, for this purpose.
2007-05-18 19:42:42 +00:00

143 lines
5.4 KiB
C

/* DWARF 2 Expression Evaluator.
Copyright (C) 2001, 2002, 2003, 2005, 2007 Free Software Foundation, Inc.
Contributed by Daniel Berlin <dan@dberlin.org>.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#if !defined (DWARF2EXPR_H)
#define DWARF2EXPR_H
/* The expression evaluator works with a dwarf_expr_context, describing
its current state and its callbacks. */
struct dwarf_expr_context
{
/* The stack of values, allocated with xmalloc. */
CORE_ADDR *stack;
/* The number of values currently pushed on the stack, and the
number of elements allocated to the stack. */
int stack_len, stack_allocated;
/* An opaque argument provided by the caller, which will be passed
to all of the callback functions. */
void *baton;
/* Return the value of register number REGNUM. */
CORE_ADDR (*read_reg) (void *baton, int regnum);
/* Read LENGTH bytes at ADDR into BUF. */
void (*read_mem) (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t length);
/* Return the location expression for the frame base attribute, in
START and LENGTH. The result must be live until the current
expression evaluation is complete. */
void (*get_frame_base) (void *baton, gdb_byte **start, size_t *length);
/* Return the thread-local storage address for
DW_OP_GNU_push_tls_address. */
CORE_ADDR (*get_tls_address) (void *baton, CORE_ADDR offset);
#if 0
/* Not yet implemented. */
/* Return the location expression for the dwarf expression
subroutine in the die at OFFSET in the current compilation unit.
The result must be live until the current expression evaluation
is complete. */
unsigned char *(*get_subr) (void *baton, off_t offset, size_t *length);
/* Return the `object address' for DW_OP_push_object_address. */
CORE_ADDR (*get_object_address) (void *baton);
#endif
/* The current depth of dwarf expression recursion, via DW_OP_call*,
DW_OP_fbreg, DW_OP_push_object_address, etc., and the maximum
depth we'll tolerate before raising an error. */
int recursion_depth, max_recursion_depth;
/* Non-zero if the result is in a register. The register number
will be on the expression stack. */
int in_reg;
/* Initialization status of variable: Non-zero if variable has been
initialized; zero otherwise. */
int initialized;
/* An array of pieces. PIECES points to its first element;
NUM_PIECES is its length.
Each time DW_OP_piece is executed, we add a new element to the
end of this array, recording the current top of the stack, the
current in_reg flag, and the size given as the operand to
DW_OP_piece. We then pop the top value from the stack, clear the
in_reg flag, and resume evaluation.
The Dwarf spec doesn't say whether DW_OP_piece pops the top value
from the stack. We do, ensuring that clients of this interface
expecting to see a value left on the top of the stack (say, code
evaluating frame base expressions or CFA's specified with
DW_CFA_def_cfa_expression) will get an error if the expression
actually marks all the values it computes as pieces.
If an expression never uses DW_OP_piece, num_pieces will be zero.
(It would be nice to present these cases as expressions yielding
a single piece, with in_reg clear, so that callers need not
distinguish between the no-DW_OP_piece and one-DW_OP_piece cases.
But expressions with no DW_OP_piece operations have no value to
place in a piece's 'size' field; the size comes from the
surrounding data. So the two cases need to be handled
separately.) */
int num_pieces;
struct dwarf_expr_piece *pieces;
};
/* A piece of an object, as recorded by DW_OP_piece. */
struct dwarf_expr_piece
{
/* If IN_REG is zero, then the piece is in memory, and VALUE is its address.
If IN_REG is non-zero, then the piece is in a register, and VALUE
is the register number. */
int in_reg;
/* This piece's address or register number. */
CORE_ADDR value;
/* The length of the piece, in bytes. */
ULONGEST size;
};
struct dwarf_expr_context *new_dwarf_expr_context (void);
void free_dwarf_expr_context (struct dwarf_expr_context *ctx);
void dwarf_expr_push (struct dwarf_expr_context *ctx, CORE_ADDR value);
void dwarf_expr_pop (struct dwarf_expr_context *ctx);
void dwarf_expr_eval (struct dwarf_expr_context *ctx, unsigned char *addr,
size_t len);
CORE_ADDR dwarf_expr_fetch (struct dwarf_expr_context *ctx, int n);
gdb_byte *read_uleb128 (gdb_byte *buf, gdb_byte *buf_end, ULONGEST * r);
gdb_byte *read_sleb128 (gdb_byte *buf, gdb_byte *buf_end, LONGEST * r);
CORE_ADDR dwarf2_read_address (gdb_byte *buf, gdb_byte *buf_end,
int *bytes_read);
#endif /* dwarf2expr.h */