binutils-gdb/binutils/objdump.c
Nick Alcock 094e34f221 binutils, ld: work with --disable-libctf
This unfortunately means conditionalizing out all the libctf code, but
the result is not too unbearably ugly, if a bit repetitive.  I have
stubbed out code in the !ENABLE_LIBCTF path to avoid extra redundant
ifdefs where it seems that might be helpful.  (The stubs are not too
disruptive, but I've tried to keep them on one line where possible to
avoid filling up the screen with stubs that nobody would care about.
If this is too much of a coding style violation I can change it.)

Changes since v2: use GCC_ENABLE rather than repeating all the
                  AC_ARG_ENABLE stuff over and over again.

ld/
	* configure.ac [--enable-libctf]: New, default yes.
	Set ENABLE_LIBCTF accordingly.
	* Makefile.am [!ENABLE_LIBCTF]: Empty LIBCTF.
	* configure: Regenerate.
	* config.in: Regenerate.
	* Makefile.in: Regenerate.
	* aclocal.m4: Regenerate.
	* ldlang.c (ctf_output): Conditionalize on ENABLE_LIBCTF.
	(ldlang_open_ctf): Likewise.
	(lang_merge_ctf): Likewise.
	(ldlang_ctf_apply_strsym): Likewise.
	(lang_write_ctf): Likewise.
	(ldlang_write_ctf_late): Likewise.
	(ldlang_open_ctf) [!ENABLE_LIBCTF]: Warn about the presence of CTF
	sections.
	(lang_merge_ctf) [!ENABLE_LIBCTF]: New stub.
	(ldlang_ctf_apply_strsym) [!ENABLE_LIBCTF]: Likewise.
	(lang_write_ctf) [!ENABLE_LIBCTF]: Likewise.
	(ldlang_write_ctf_late) [!ENABLE_LIBCTF]: Likewise.
	* ldelfgen.c (ldelf_emit_ctf_early): Conditionalize on
	ENABLE_LIBCTF.
	(struct ctf_strsym_iter_cb_arg): Likewise.
	(ldelf_ctf_strtab_iter_cb): Likewise.
	(ldelf_ctf_symbols_iter_cb): Likewise.
	(ldelf_examine_strtab_for_ctf): Likewise.
	(ldelf_emit_ctf_early) [!ENABLE_LIBCTF]: New stub.
	(ldelf_examine_strtab_for_ctf) [!ENABLE_LIBCTF]: New stub.

binutils/
	* configure.ac [--enable-libctf]: New, default yes.
	Set ENABLE_LIBCTF accordingly.
	* Makefile.am [!ENABLE_LIBCTF]: Empty LIBCTF and LIBCTF_NOBFD.
	* configure: Regenerate.
	* config.in: Regenerate.
	* Makefile.in: Regenerate.
	* aclocal.m4: Regenerate.
	* objdump.c (usage): Conditionalize portions on ENABLE_LIBCTF.
	(option_values): Likewise.
	(long_options): Likewise.
	(main): Likewise.
	(dump_ctf_indent_lines): Conditionalize out when !ENABLE_LIBCTF.
	(make_ctfsect): Likewise.
	(dump_ctf_archive_member): Likewise.
	(dump_ctf) [ENABLE_LIBCTF]: Likewise.
	(dump_ctf) [!ENABLE_LIBCTF]: New empty stub.
	* readelf.c (options): Conditionalize portions on ENABLE_LIBCTF.
	(usage): Likewise.
	(process_section_contents): Likewise.
	(shdr_to_ctf_sect): Conditionalize out when !ENABLE_LIBCTF.
	(dump_ctf_indent_lines): Likewise.
	(dump_section_as_ctf) [ENABLE_LIBCTF]: Likewise.
2020-06-26 15:56:39 +01:00

5447 lines
141 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* objdump.c -- dump information about an object file.
Copyright (C) 1990-2020 Free Software Foundation, Inc.
This file is part of GNU Binutils.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
/* Objdump overview.
Objdump displays information about one or more object files, either on
their own, or inside libraries. It is commonly used as a disassembler,
but it can also display information about file headers, symbol tables,
relocations, debugging directives and more.
The flow of execution is as follows:
1. Command line arguments are checked for control switches and the
information to be displayed is selected.
2. Any remaining arguments are assumed to be object files, and they are
processed in order by display_bfd(). If the file is an archive each
of its elements is processed in turn.
3. The file's target architecture and binary file format are determined
by bfd_check_format(). If they are recognised, then dump_bfd() is
called.
4. dump_bfd() in turn calls separate functions to display the requested
item(s) of information(s). For example disassemble_data() is called if
a disassembly has been requested.
When disassembling the code loops through blocks of instructions bounded
by symbols, calling disassemble_bytes() on each block. The actual
disassembling is done by the libopcodes library, via a function pointer
supplied by the disassembler() function. */
#include "sysdep.h"
#include "bfd.h"
#include "elf-bfd.h"
#include "coff-bfd.h"
#include "progress.h"
#include "bucomm.h"
#include "elfcomm.h"
#include "dwarf.h"
#include "ctf-api.h"
#include "getopt.h"
#include "safe-ctype.h"
#include "dis-asm.h"
#include "libiberty.h"
#include "demangle.h"
#include "filenames.h"
#include "debug.h"
#include "budbg.h"
#include "objdump.h"
#ifdef HAVE_MMAP
#include <sys/mman.h>
#endif
/* Internal headers for the ELF .stab-dump code - sorry. */
#define BYTES_IN_WORD 32
#include "aout/aout64.h"
/* Exit status. */
static int exit_status = 0;
static char *default_target = NULL; /* Default at runtime. */
/* The following variables are set based on arguments passed on the
command line. */
static int show_version = 0; /* Show the version number. */
static int dump_section_contents; /* -s */
static int dump_section_headers; /* -h */
static bfd_boolean dump_file_header; /* -f */
static int dump_symtab; /* -t */
static int dump_dynamic_symtab; /* -T */
static int dump_reloc_info; /* -r */
static int dump_dynamic_reloc_info; /* -R */
static int dump_ar_hdrs; /* -a */
static int dump_private_headers; /* -p */
static char *dump_private_options; /* -P */
static int no_addresses; /* --no-addresses */
static int prefix_addresses; /* --prefix-addresses */
static int with_line_numbers; /* -l */
static bfd_boolean with_source_code; /* -S */
static int show_raw_insn; /* --show-raw-insn */
static int dump_dwarf_section_info; /* --dwarf */
static int dump_stab_section_info; /* --stabs */
static int dump_ctf_section_info; /* --ctf */
static char *dump_ctf_section_name;
static char *dump_ctf_parent_name; /* --ctf-parent */
static int do_demangle; /* -C, --demangle */
static bfd_boolean disassemble; /* -d */
static bfd_boolean disassemble_all; /* -D */
static int disassemble_zeroes; /* --disassemble-zeroes */
static bfd_boolean formats_info; /* -i */
static int wide_output; /* -w */
static int insn_width; /* --insn-width */
static bfd_vma start_address = (bfd_vma) -1; /* --start-address */
static bfd_vma stop_address = (bfd_vma) -1; /* --stop-address */
static int dump_debugging; /* --debugging */
static int dump_debugging_tags; /* --debugging-tags */
static int suppress_bfd_header;
static int dump_special_syms = 0; /* --special-syms */
static bfd_vma adjust_section_vma = 0; /* --adjust-vma */
static int file_start_context = 0; /* --file-start-context */
static bfd_boolean display_file_offsets;/* -F */
static const char *prefix; /* --prefix */
static int prefix_strip; /* --prefix-strip */
static size_t prefix_length;
static bfd_boolean unwind_inlines; /* --inlines. */
static const char * disasm_sym; /* Disassembly start symbol. */
static const char * source_comment; /* --source_comment. */
static bfd_boolean visualize_jumps = FALSE; /* --visualize-jumps. */
static bfd_boolean color_output = FALSE; /* --visualize-jumps=color. */
static bfd_boolean extended_color_output = FALSE; /* --visualize-jumps=extended-color. */
static int demangle_flags = DMGL_ANSI | DMGL_PARAMS;
/* A structure to record the sections mentioned in -j switches. */
struct only
{
const char * name; /* The name of the section. */
bfd_boolean seen; /* A flag to indicate that the section has been found in one or more input files. */
struct only * next; /* Pointer to the next structure in the list. */
};
/* Pointer to an array of 'only' structures.
This pointer is NULL if the -j switch has not been used. */
static struct only * only_list = NULL;
/* Variables for handling include file path table. */
static const char **include_paths;
static int include_path_count;
/* Extra info to pass to the section disassembler and address printing
function. */
struct objdump_disasm_info
{
bfd * abfd;
bfd_boolean require_sec;
arelent ** dynrelbuf;
long dynrelcount;
disassembler_ftype disassemble_fn;
arelent * reloc;
const char * symbol;
};
/* Architecture to disassemble for, or default if NULL. */
static char *machine = NULL;
/* Target specific options to the disassembler. */
static char *disassembler_options = NULL;
/* Endianness to disassemble for, or default if BFD_ENDIAN_UNKNOWN. */
static enum bfd_endian endian = BFD_ENDIAN_UNKNOWN;
/* The symbol table. */
static asymbol **syms;
/* Number of symbols in `syms'. */
static long symcount = 0;
/* The sorted symbol table. */
static asymbol **sorted_syms;
/* Number of symbols in `sorted_syms'. */
static long sorted_symcount = 0;
/* The dynamic symbol table. */
static asymbol **dynsyms;
/* The synthetic symbol table. */
static asymbol *synthsyms;
static long synthcount = 0;
/* Number of symbols in `dynsyms'. */
static long dynsymcount = 0;
static bfd_byte *stabs;
static bfd_size_type stab_size;
static bfd_byte *strtab;
static bfd_size_type stabstr_size;
/* Handlers for -P/--private. */
static const struct objdump_private_desc * const objdump_private_vectors[] =
{
OBJDUMP_PRIVATE_VECTORS
NULL
};
/* The list of detected jumps inside a function. */
static struct jump_info *detected_jumps = NULL;
static void usage (FILE *, int) ATTRIBUTE_NORETURN;
static void
usage (FILE *stream, int status)
{
fprintf (stream, _("Usage: %s <option(s)> <file(s)>\n"), program_name);
fprintf (stream, _(" Display information from object <file(s)>.\n"));
fprintf (stream, _(" At least one of the following switches must be given:\n"));
fprintf (stream, _("\
-a, --archive-headers Display archive header information\n\
-f, --file-headers Display the contents of the overall file header\n\
-p, --private-headers Display object format specific file header contents\n\
-P, --private=OPT,OPT... Display object format specific contents\n\
-h, --[section-]headers Display the contents of the section headers\n\
-x, --all-headers Display the contents of all headers\n\
-d, --disassemble Display assembler contents of executable sections\n\
-D, --disassemble-all Display assembler contents of all sections\n\
--disassemble=<sym> Display assembler contents from <sym>\n\
-S, --source Intermix source code with disassembly\n\
--source-comment[=<txt>] Prefix lines of source code with <txt>\n\
-s, --full-contents Display the full contents of all sections requested\n\
-g, --debugging Display debug information in object file\n\
-e, --debugging-tags Display debug information using ctags style\n\
-G, --stabs Display (in raw form) any STABS info in the file\n\
-W[lLiaprmfFsoORtUuTgAckK] or\n\
--dwarf[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
=frames-interp,=str,=str-offsets,=loc,=Ranges,=pubtypes,\n\
=gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
=addr,=cu_index,=links,=follow-links]\n\
Display DWARF info in the file\n\
"));
#ifdef ENABLE_LIBCTF
fprintf (stream, _("\
--ctf=SECTION Display CTF info from SECTION\n\
"));
#endif
fprintf (stream, _("\
-t, --syms Display the contents of the symbol table(s)\n\
-T, --dynamic-syms Display the contents of the dynamic symbol table\n\
-r, --reloc Display the relocation entries in the file\n\
-R, --dynamic-reloc Display the dynamic relocation entries in the file\n\
@<file> Read options from <file>\n\
-v, --version Display this program's version number\n\
-i, --info List object formats and architectures supported\n\
-H, --help Display this information\n\
"));
if (status != 2)
{
const struct objdump_private_desc * const *desc;
fprintf (stream, _("\n The following switches are optional:\n"));
fprintf (stream, _("\
-b, --target=BFDNAME Specify the target object format as BFDNAME\n\
-m, --architecture=MACHINE Specify the target architecture as MACHINE\n\
-j, --section=NAME Only display information for section NAME\n\
-M, --disassembler-options=OPT Pass text OPT on to the disassembler\n\
-EB --endian=big Assume big endian format when disassembling\n\
-EL --endian=little Assume little endian format when disassembling\n\
--file-start-context Include context from start of file (with -S)\n\
-I, --include=DIR Add DIR to search list for source files\n\
-l, --line-numbers Include line numbers and filenames in output\n\
-F, --file-offsets Include file offsets when displaying information\n\
-C, --demangle[=STYLE] Decode mangled/processed symbol names\n\
The STYLE, if specified, can be `auto', `gnu',\n\
`lucid', `arm', `hp', `edg', `gnu-v3', `java'\n\
or `gnat'\n\
--recurse-limit Enable a limit on recursion whilst demangling. [Default]\n\
--no-recurse-limit Disable a limit on recursion whilst demangling\n\
-w, --wide Format output for more than 80 columns\n\
-z, --disassemble-zeroes Do not skip blocks of zeroes when disassembling\n\
--start-address=ADDR Only process data whose address is >= ADDR\n\
--stop-address=ADDR Only process data whose address is < ADDR\n\
--no-addresses Do not print address alongside disassembly\n\
--prefix-addresses Print complete address alongside disassembly\n\
--[no-]show-raw-insn Display hex alongside symbolic disassembly\n\
--insn-width=WIDTH Display WIDTH bytes on a single line for -d\n\
--adjust-vma=OFFSET Add OFFSET to all displayed section addresses\n\
--special-syms Include special symbols in symbol dumps\n\
--inlines Print all inlines for source line (with -l)\n\
--prefix=PREFIX Add PREFIX to absolute paths for -S\n\
--prefix-strip=LEVEL Strip initial directory names for -S\n"));
fprintf (stream, _("\
--dwarf-depth=N Do not display DIEs at depth N or greater\n\
--dwarf-start=N Display DIEs starting with N, at the same depth\n\
or deeper\n\
--dwarf-check Make additional dwarf internal consistency checks.\n"));
#ifdef ENABLE_LIBCTF
fprintf (stream, _("\
--ctf-parent=SECTION Use SECTION as the CTF parent\n"));
#endif
fprintf (stream, _("\
--visualize-jumps Visualize jumps by drawing ASCII art lines\n\
--visualize-jumps=color Use colors in the ASCII art\n\
--visualize-jumps=extended-color Use extended 8-bit color codes\n\
--visualize-jumps=off Disable jump visualization\n\n"));
list_supported_targets (program_name, stream);
list_supported_architectures (program_name, stream);
disassembler_usage (stream);
if (objdump_private_vectors[0] != NULL)
{
fprintf (stream,
_("\nOptions supported for -P/--private switch:\n"));
for (desc = objdump_private_vectors; *desc != NULL; desc++)
(*desc)->help (stream);
}
}
if (REPORT_BUGS_TO[0] && status == 0)
fprintf (stream, _("Report bugs to %s.\n"), REPORT_BUGS_TO);
exit (status);
}
/* 150 isn't special; it's just an arbitrary non-ASCII char value. */
enum option_values
{
OPTION_ENDIAN=150,
OPTION_START_ADDRESS,
OPTION_STOP_ADDRESS,
OPTION_DWARF,
OPTION_PREFIX,
OPTION_PREFIX_STRIP,
OPTION_INSN_WIDTH,
OPTION_ADJUST_VMA,
OPTION_DWARF_DEPTH,
OPTION_DWARF_CHECK,
OPTION_DWARF_START,
OPTION_RECURSE_LIMIT,
OPTION_NO_RECURSE_LIMIT,
OPTION_INLINES,
OPTION_SOURCE_COMMENT,
#ifdef ENABLE_LIBCTF
OPTION_CTF,
OPTION_CTF_PARENT,
#endif
OPTION_VISUALIZE_JUMPS
};
static struct option long_options[]=
{
{"adjust-vma", required_argument, NULL, OPTION_ADJUST_VMA},
{"all-headers", no_argument, NULL, 'x'},
{"private-headers", no_argument, NULL, 'p'},
{"private", required_argument, NULL, 'P'},
{"architecture", required_argument, NULL, 'm'},
{"archive-headers", no_argument, NULL, 'a'},
{"debugging", no_argument, NULL, 'g'},
{"debugging-tags", no_argument, NULL, 'e'},
{"demangle", optional_argument, NULL, 'C'},
{"disassemble", optional_argument, NULL, 'd'},
{"disassemble-all", no_argument, NULL, 'D'},
{"disassembler-options", required_argument, NULL, 'M'},
{"disassemble-zeroes", no_argument, NULL, 'z'},
{"dynamic-reloc", no_argument, NULL, 'R'},
{"dynamic-syms", no_argument, NULL, 'T'},
{"endian", required_argument, NULL, OPTION_ENDIAN},
{"file-headers", no_argument, NULL, 'f'},
{"file-offsets", no_argument, NULL, 'F'},
{"file-start-context", no_argument, &file_start_context, 1},
{"full-contents", no_argument, NULL, 's'},
{"headers", no_argument, NULL, 'h'},
{"help", no_argument, NULL, 'H'},
{"info", no_argument, NULL, 'i'},
{"line-numbers", no_argument, NULL, 'l'},
{"no-show-raw-insn", no_argument, &show_raw_insn, -1},
{"no-addresses", no_argument, &no_addresses, 1},
{"prefix-addresses", no_argument, &prefix_addresses, 1},
{"recurse-limit", no_argument, NULL, OPTION_RECURSE_LIMIT},
{"recursion-limit", no_argument, NULL, OPTION_RECURSE_LIMIT},
{"no-recurse-limit", no_argument, NULL, OPTION_NO_RECURSE_LIMIT},
{"no-recursion-limit", no_argument, NULL, OPTION_NO_RECURSE_LIMIT},
{"reloc", no_argument, NULL, 'r'},
{"section", required_argument, NULL, 'j'},
{"section-headers", no_argument, NULL, 'h'},
{"show-raw-insn", no_argument, &show_raw_insn, 1},
{"source", no_argument, NULL, 'S'},
{"source-comment", optional_argument, NULL, OPTION_SOURCE_COMMENT},
{"special-syms", no_argument, &dump_special_syms, 1},
{"include", required_argument, NULL, 'I'},
{"dwarf", optional_argument, NULL, OPTION_DWARF},
#ifdef ENABLE_LIBCTF
{"ctf", required_argument, NULL, OPTION_CTF},
{"ctf-parent", required_argument, NULL, OPTION_CTF_PARENT},
#endif
{"stabs", no_argument, NULL, 'G'},
{"start-address", required_argument, NULL, OPTION_START_ADDRESS},
{"stop-address", required_argument, NULL, OPTION_STOP_ADDRESS},
{"syms", no_argument, NULL, 't'},
{"target", required_argument, NULL, 'b'},
{"version", no_argument, NULL, 'V'},
{"wide", no_argument, NULL, 'w'},
{"prefix", required_argument, NULL, OPTION_PREFIX},
{"prefix-strip", required_argument, NULL, OPTION_PREFIX_STRIP},
{"insn-width", required_argument, NULL, OPTION_INSN_WIDTH},
{"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
{"dwarf-start", required_argument, 0, OPTION_DWARF_START},
{"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
{"inlines", no_argument, 0, OPTION_INLINES},
{"visualize-jumps", optional_argument, 0, OPTION_VISUALIZE_JUMPS},
{0, no_argument, 0, 0}
};
static void
nonfatal (const char *msg)
{
bfd_nonfatal (msg);
exit_status = 1;
}
/* Returns a version of IN with any control characters
replaced by escape sequences. Uses a static buffer
if necessary. */
static const char *
sanitize_string (const char * in)
{
static char * buffer = NULL;
static size_t buffer_len = 0;
const char * original = in;
char * out;
/* Paranoia. */
if (in == NULL)
return "";
/* See if any conversion is necessary. In the majority
of cases it will not be needed. */
do
{
char c = *in++;
if (c == 0)
return original;
if (ISCNTRL (c))
break;
}
while (1);
/* Copy the input, translating as needed. */
in = original;
if (buffer_len < (strlen (in) * 2))
{
free ((void *) buffer);
buffer_len = strlen (in) * 2;
buffer = xmalloc (buffer_len + 1);
}
out = buffer;
do
{
char c = *in++;
if (c == 0)
break;
if (!ISCNTRL (c))
*out++ = c;
else
{
*out++ = '^';
*out++ = c + 0x40;
}
}
while (1);
*out = 0;
return buffer;
}
/* Returns TRUE if the specified section should be dumped. */
static bfd_boolean
process_section_p (asection * section)
{
struct only * only;
if (only_list == NULL)
return TRUE;
for (only = only_list; only; only = only->next)
if (strcmp (only->name, section->name) == 0)
{
only->seen = TRUE;
return TRUE;
}
return FALSE;
}
/* Add an entry to the 'only' list. */
static void
add_only (char * name)
{
struct only * only;
/* First check to make sure that we do not
already have an entry for this name. */
for (only = only_list; only; only = only->next)
if (strcmp (only->name, name) == 0)
return;
only = xmalloc (sizeof * only);
only->name = name;
only->seen = FALSE;
only->next = only_list;
only_list = only;
}
/* Release the memory used by the 'only' list.
PR 11225: Issue a warning message for unseen sections.
Only do this if none of the sections were seen. This is mainly to support
tools like the GAS testsuite where an object file is dumped with a list of
generic section names known to be present in a range of different file
formats. */
static void
free_only_list (void)
{
bfd_boolean at_least_one_seen = FALSE;
struct only * only;
struct only * next;
if (only_list == NULL)
return;
for (only = only_list; only; only = only->next)
if (only->seen)
{
at_least_one_seen = TRUE;
break;
}
for (only = only_list; only; only = next)
{
if (! at_least_one_seen)
{
non_fatal (_("section '%s' mentioned in a -j option, "
"but not found in any input file"),
only->name);
exit_status = 1;
}
next = only->next;
free (only);
}
}
static void
dump_section_header (bfd *abfd, asection *section, void *data)
{
char *comma = "";
unsigned int opb = bfd_octets_per_byte (abfd, section);
int longest_section_name = *((int *) data);
/* Ignore linker created section. See elfNN_ia64_object_p in
bfd/elfxx-ia64.c. */
if (section->flags & SEC_LINKER_CREATED)
return;
/* PR 10413: Skip sections that we are ignoring. */
if (! process_section_p (section))
return;
printf ("%3d %-*s %08lx ", section->index, longest_section_name,
sanitize_string (bfd_section_name (section)),
(unsigned long) bfd_section_size (section) / opb);
bfd_printf_vma (abfd, bfd_section_vma (section));
printf (" ");
bfd_printf_vma (abfd, section->lma);
printf (" %08lx 2**%u", (unsigned long) section->filepos,
bfd_section_alignment (section));
if (! wide_output)
printf ("\n ");
printf (" ");
#define PF(x, y) \
if (section->flags & x) { printf ("%s%s", comma, y); comma = ", "; }
PF (SEC_HAS_CONTENTS, "CONTENTS");
PF (SEC_ALLOC, "ALLOC");
PF (SEC_CONSTRUCTOR, "CONSTRUCTOR");
PF (SEC_LOAD, "LOAD");
PF (SEC_RELOC, "RELOC");
PF (SEC_READONLY, "READONLY");
PF (SEC_CODE, "CODE");
PF (SEC_DATA, "DATA");
PF (SEC_ROM, "ROM");
PF (SEC_DEBUGGING, "DEBUGGING");
PF (SEC_NEVER_LOAD, "NEVER_LOAD");
PF (SEC_EXCLUDE, "EXCLUDE");
PF (SEC_SORT_ENTRIES, "SORT_ENTRIES");
if (bfd_get_arch (abfd) == bfd_arch_tic54x)
{
PF (SEC_TIC54X_BLOCK, "BLOCK");
PF (SEC_TIC54X_CLINK, "CLINK");
}
PF (SEC_SMALL_DATA, "SMALL_DATA");
if (bfd_get_flavour (abfd) == bfd_target_coff_flavour)
{
PF (SEC_COFF_SHARED, "SHARED");
PF (SEC_COFF_NOREAD, "NOREAD");
}
else if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
{
PF (SEC_ELF_OCTETS, "OCTETS");
PF (SEC_ELF_PURECODE, "PURECODE");
}
PF (SEC_THREAD_LOCAL, "THREAD_LOCAL");
PF (SEC_GROUP, "GROUP");
if (bfd_get_arch (abfd) == bfd_arch_mep)
{
PF (SEC_MEP_VLIW, "VLIW");
}
if ((section->flags & SEC_LINK_ONCE) != 0)
{
const char *ls;
struct coff_comdat_info *comdat;
switch (section->flags & SEC_LINK_DUPLICATES)
{
default:
abort ();
case SEC_LINK_DUPLICATES_DISCARD:
ls = "LINK_ONCE_DISCARD";
break;
case SEC_LINK_DUPLICATES_ONE_ONLY:
ls = "LINK_ONCE_ONE_ONLY";
break;
case SEC_LINK_DUPLICATES_SAME_SIZE:
ls = "LINK_ONCE_SAME_SIZE";
break;
case SEC_LINK_DUPLICATES_SAME_CONTENTS:
ls = "LINK_ONCE_SAME_CONTENTS";
break;
}
printf ("%s%s", comma, ls);
comdat = bfd_coff_get_comdat_section (abfd, section);
if (comdat != NULL)
printf (" (COMDAT %s %ld)", comdat->name, comdat->symbol);
comma = ", ";
}
printf ("\n");
#undef PF
}
/* Called on each SECTION in ABFD, update the int variable pointed to by
DATA which contains the string length of the longest section name. */
static void
find_longest_section_name (bfd *abfd ATTRIBUTE_UNUSED,
asection *section, void *data)
{
int *longest_so_far = (int *) data;
const char *name;
int len;
/* Ignore linker created section. */
if (section->flags & SEC_LINKER_CREATED)
return;
/* Skip sections that we are ignoring. */
if (! process_section_p (section))
return;
name = bfd_section_name (section);
len = (int) strlen (name);
if (len > *longest_so_far)
*longest_so_far = len;
}
static void
dump_headers (bfd *abfd)
{
/* The default width of 13 is just an arbitrary choice. */
int max_section_name_length = 13;
int bfd_vma_width;
#ifndef BFD64
bfd_vma_width = 10;
#else
/* With BFD64, non-ELF returns -1 and wants always 64 bit addresses. */
if (bfd_get_arch_size (abfd) == 32)
bfd_vma_width = 10;
else
bfd_vma_width = 18;
#endif
printf (_("Sections:\n"));
if (wide_output)
bfd_map_over_sections (abfd, find_longest_section_name,
&max_section_name_length);
printf (_("Idx %-*s Size %-*s%-*sFile off Algn"),
max_section_name_length, "Name",
bfd_vma_width, "VMA",
bfd_vma_width, "LMA");
if (wide_output)
printf (_(" Flags"));
printf ("\n");
bfd_map_over_sections (abfd, dump_section_header,
&max_section_name_length);
}
static asymbol **
slurp_symtab (bfd *abfd)
{
asymbol **sy = NULL;
long storage;
if (!(bfd_get_file_flags (abfd) & HAS_SYMS))
{
symcount = 0;
return NULL;
}
storage = bfd_get_symtab_upper_bound (abfd);
if (storage < 0)
{
non_fatal (_("failed to read symbol table from: %s"), bfd_get_filename (abfd));
bfd_fatal (_("error message was"));
}
if (storage)
{
off_t filesize = bfd_get_file_size (abfd);
/* qv PR 24707. */
if (filesize > 0
&& filesize < storage
/* The MMO file format supports its own special compression
technique, so its sections can be larger than the file size. */
&& bfd_get_flavour (abfd) != bfd_target_mmo_flavour)
{
bfd_nonfatal_message (bfd_get_filename (abfd), abfd, NULL,
_("error: symbol table size (%#lx) is larger than filesize (%#lx)"),
storage, (long) filesize);
exit_status = 1;
symcount = 0;
return NULL;
}
sy = (asymbol **) xmalloc (storage);
}
symcount = bfd_canonicalize_symtab (abfd, sy);
if (symcount < 0)
bfd_fatal (bfd_get_filename (abfd));
return sy;
}
/* Read in the dynamic symbols. */
static asymbol **
slurp_dynamic_symtab (bfd *abfd)
{
asymbol **sy = NULL;
long storage;
storage = bfd_get_dynamic_symtab_upper_bound (abfd);
if (storage < 0)
{
if (!(bfd_get_file_flags (abfd) & DYNAMIC))
{
non_fatal (_("%s: not a dynamic object"), bfd_get_filename (abfd));
exit_status = 1;
dynsymcount = 0;
return NULL;
}
bfd_fatal (bfd_get_filename (abfd));
}
if (storage)
sy = (asymbol **) xmalloc (storage);
dynsymcount = bfd_canonicalize_dynamic_symtab (abfd, sy);
if (dynsymcount < 0)
bfd_fatal (bfd_get_filename (abfd));
return sy;
}
/* Some symbol names are significant and should be kept in the
table of sorted symbol names, even if they are marked as
debugging/section symbols. */
static bfd_boolean
is_significant_symbol_name (const char * name)
{
return strncmp (name, ".plt", 4) == 0 || strcmp (name, ".got") == 0;
}
/* Filter out (in place) symbols that are useless for disassembly.
COUNT is the number of elements in SYMBOLS.
Return the number of useful symbols. */
static long
remove_useless_symbols (asymbol **symbols, long count)
{
asymbol **in_ptr = symbols, **out_ptr = symbols;
while (--count >= 0)
{
asymbol *sym = *in_ptr++;
if (sym->name == NULL || sym->name[0] == '\0')
continue;
if ((sym->flags & (BSF_DEBUGGING | BSF_SECTION_SYM))
&& ! is_significant_symbol_name (sym->name))
continue;
if (bfd_is_und_section (sym->section)
|| bfd_is_com_section (sym->section))
continue;
*out_ptr++ = sym;
}
return out_ptr - symbols;
}
static const asection *compare_section;
/* Sort symbols into value order. */
static int
compare_symbols (const void *ap, const void *bp)
{
const asymbol *a = * (const asymbol **) ap;
const asymbol *b = * (const asymbol **) bp;
const char *an;
const char *bn;
size_t anl;
size_t bnl;
bfd_boolean as, af, bs, bf;
flagword aflags;
flagword bflags;
if (bfd_asymbol_value (a) > bfd_asymbol_value (b))
return 1;
else if (bfd_asymbol_value (a) < bfd_asymbol_value (b))
return -1;
/* Prefer symbols from the section currently being disassembled.
Don't sort symbols from other sections by section, since there
isn't much reason to prefer one section over another otherwise.
See sym_ok comment for why we compare by section name. */
as = strcmp (compare_section->name, a->section->name) == 0;
bs = strcmp (compare_section->name, b->section->name) == 0;
if (as && !bs)
return -1;
if (!as && bs)
return 1;
an = bfd_asymbol_name (a);
bn = bfd_asymbol_name (b);
anl = strlen (an);
bnl = strlen (bn);
/* The symbols gnu_compiled and gcc2_compiled convey no real
information, so put them after other symbols with the same value. */
af = (strstr (an, "gnu_compiled") != NULL
|| strstr (an, "gcc2_compiled") != NULL);
bf = (strstr (bn, "gnu_compiled") != NULL
|| strstr (bn, "gcc2_compiled") != NULL);
if (af && ! bf)
return 1;
if (! af && bf)
return -1;
/* We use a heuristic for the file name, to try to sort it after
more useful symbols. It may not work on non Unix systems, but it
doesn't really matter; the only difference is precisely which
symbol names get printed. */
#define file_symbol(s, sn, snl) \
(((s)->flags & BSF_FILE) != 0 \
|| ((snl) > 2 \
&& (sn)[(snl) - 2] == '.' \
&& ((sn)[(snl) - 1] == 'o' \
|| (sn)[(snl) - 1] == 'a')))
af = file_symbol (a, an, anl);
bf = file_symbol (b, bn, bnl);
if (af && ! bf)
return 1;
if (! af && bf)
return -1;
/* Sort function and object symbols before global symbols before
local symbols before section symbols before debugging symbols. */
aflags = a->flags;
bflags = b->flags;
if ((aflags & BSF_DEBUGGING) != (bflags & BSF_DEBUGGING))
{
if ((aflags & BSF_DEBUGGING) != 0)
return 1;
else
return -1;
}
if ((aflags & BSF_SECTION_SYM) != (bflags & BSF_SECTION_SYM))
{
if ((aflags & BSF_SECTION_SYM) != 0)
return 1;
else
return -1;
}
if ((aflags & BSF_FUNCTION) != (bflags & BSF_FUNCTION))
{
if ((aflags & BSF_FUNCTION) != 0)
return -1;
else
return 1;
}
if ((aflags & BSF_OBJECT) != (bflags & BSF_OBJECT))
{
if ((aflags & BSF_OBJECT) != 0)
return -1;
else
return 1;
}
if ((aflags & BSF_LOCAL) != (bflags & BSF_LOCAL))
{
if ((aflags & BSF_LOCAL) != 0)
return 1;
else
return -1;
}
if ((aflags & BSF_GLOBAL) != (bflags & BSF_GLOBAL))
{
if ((aflags & BSF_GLOBAL) != 0)
return -1;
else
return 1;
}
if (bfd_get_flavour (bfd_asymbol_bfd (a)) == bfd_target_elf_flavour
&& bfd_get_flavour (bfd_asymbol_bfd (b)) == bfd_target_elf_flavour)
{
bfd_vma asz, bsz;
asz = 0;
if ((a->flags & (BSF_SECTION_SYM | BSF_SYNTHETIC)) == 0)
asz = ((elf_symbol_type *) a)->internal_elf_sym.st_size;
bsz = 0;
if ((b->flags & (BSF_SECTION_SYM | BSF_SYNTHETIC)) == 0)
bsz = ((elf_symbol_type *) b)->internal_elf_sym.st_size;
if (asz != bsz)
return asz > bsz ? -1 : 1;
}
/* Symbols that start with '.' might be section names, so sort them
after symbols that don't start with '.'. */
if (an[0] == '.' && bn[0] != '.')
return 1;
if (an[0] != '.' && bn[0] == '.')
return -1;
/* Finally, if we can't distinguish them in any other way, try to
get consistent results by sorting the symbols by name. */
return strcmp (an, bn);
}
/* Sort relocs into address order. */
static int
compare_relocs (const void *ap, const void *bp)
{
const arelent *a = * (const arelent **) ap;
const arelent *b = * (const arelent **) bp;
if (a->address > b->address)
return 1;
else if (a->address < b->address)
return -1;
/* So that associated relocations tied to the same address show up
in the correct order, we don't do any further sorting. */
if (a > b)
return 1;
else if (a < b)
return -1;
else
return 0;
}
/* Print an address (VMA) to the output stream in INFO.
If SKIP_ZEROES is TRUE, omit leading zeroes. */
static void
objdump_print_value (bfd_vma vma, struct disassemble_info *inf,
bfd_boolean skip_zeroes)
{
char buf[30];
char *p;
struct objdump_disasm_info *aux;
aux = (struct objdump_disasm_info *) inf->application_data;
bfd_sprintf_vma (aux->abfd, buf, vma);
if (! skip_zeroes)
p = buf;
else
{
for (p = buf; *p == '0'; ++p)
;
if (*p == '\0')
--p;
}
(*inf->fprintf_func) (inf->stream, "%s", p);
}
/* Print the name of a symbol. */
static void
objdump_print_symname (bfd *abfd, struct disassemble_info *inf,
asymbol *sym)
{
char *alloc;
const char *name, *version_string = NULL;
bfd_boolean hidden = FALSE;
alloc = NULL;
name = bfd_asymbol_name (sym);
if (do_demangle && name[0] != '\0')
{
/* Demangle the name. */
alloc = bfd_demangle (abfd, name, demangle_flags);
if (alloc != NULL)
name = alloc;
}
if ((sym->flags & (BSF_SECTION_SYM | BSF_SYNTHETIC)) == 0)
version_string = bfd_get_symbol_version_string (abfd, sym, TRUE,
&hidden);
if (bfd_is_und_section (bfd_asymbol_section (sym)))
hidden = TRUE;
name = sanitize_string (name);
if (inf != NULL)
{
(*inf->fprintf_func) (inf->stream, "%s", name);
if (version_string && *version_string != '\0')
(*inf->fprintf_func) (inf->stream, hidden ? "@%s" : "@@%s",
version_string);
}
else
{
printf ("%s", name);
if (version_string && *version_string != '\0')
printf (hidden ? "@%s" : "@@%s", version_string);
}
if (alloc != NULL)
free (alloc);
}
static inline bfd_boolean
sym_ok (bfd_boolean want_section,
bfd * abfd ATTRIBUTE_UNUSED,
long place,
asection * sec,
struct disassemble_info * inf)
{
if (want_section)
{
/* NB: An object file can have different sections with the same
section name. Compare compare section pointers if they have
the same owner. */
if (sorted_syms[place]->section->owner == sec->owner
&& sorted_syms[place]->section != sec)
return FALSE;
/* Note - we cannot just compare section pointers because they could
be different, but the same... Ie the symbol that we are trying to
find could have come from a separate debug info file. Under such
circumstances the symbol will be associated with a section in the
debug info file, whilst the section we want is in a normal file.
So the section pointers will be different, but the section names
will be the same. */
if (strcmp (bfd_section_name (sorted_syms[place]->section),
bfd_section_name (sec)) != 0)
return FALSE;
}
return inf->symbol_is_valid (sorted_syms[place], inf);
}
/* Locate a symbol given a bfd and a section (from INFO->application_data),
and a VMA. If INFO->application_data->require_sec is TRUE, then always
require the symbol to be in the section. Returns NULL if there is no
suitable symbol. If PLACE is not NULL, then *PLACE is set to the index
of the symbol in sorted_syms. */
static asymbol *
find_symbol_for_address (bfd_vma vma,
struct disassemble_info *inf,
long *place)
{
/* @@ Would it speed things up to cache the last two symbols returned,
and maybe their address ranges? For many processors, only one memory
operand can be present at a time, so the 2-entry cache wouldn't be
constantly churned by code doing heavy memory accesses. */
/* Indices in `sorted_syms'. */
long min = 0;
long max_count = sorted_symcount;
long thisplace;
struct objdump_disasm_info *aux;
bfd *abfd;
asection *sec;
unsigned int opb;
bfd_boolean want_section;
long rel_count;
if (sorted_symcount < 1)
return NULL;
aux = (struct objdump_disasm_info *) inf->application_data;
abfd = aux->abfd;
sec = inf->section;
opb = inf->octets_per_byte;
/* Perform a binary search looking for the closest symbol to the
required value. We are searching the range (min, max_count]. */
while (min + 1 < max_count)
{
asymbol *sym;
thisplace = (max_count + min) / 2;
sym = sorted_syms[thisplace];
if (bfd_asymbol_value (sym) > vma)
max_count = thisplace;
else if (bfd_asymbol_value (sym) < vma)
min = thisplace;
else
{
min = thisplace;
break;
}
}
/* The symbol we want is now in min, the low end of the range we
were searching. If there are several symbols with the same
value, we want the first one. */
thisplace = min;
while (thisplace > 0
&& (bfd_asymbol_value (sorted_syms[thisplace])
== bfd_asymbol_value (sorted_syms[thisplace - 1])))
--thisplace;
/* Prefer a symbol in the current section if we have multple symbols
with the same value, as can occur with overlays or zero size
sections. */
min = thisplace;
while (min < max_count
&& (bfd_asymbol_value (sorted_syms[min])
== bfd_asymbol_value (sorted_syms[thisplace])))
{
if (sym_ok (TRUE, abfd, min, sec, inf))
{
thisplace = min;
if (place != NULL)
*place = thisplace;
return sorted_syms[thisplace];
}
++min;
}
/* If the file is relocatable, and the symbol could be from this
section, prefer a symbol from this section over symbols from
others, even if the other symbol's value might be closer.
Note that this may be wrong for some symbol references if the
sections have overlapping memory ranges, but in that case there's
no way to tell what's desired without looking at the relocation
table.
Also give the target a chance to reject symbols. */
want_section = (aux->require_sec
|| ((abfd->flags & HAS_RELOC) != 0
&& vma >= bfd_section_vma (sec)
&& vma < (bfd_section_vma (sec)
+ bfd_section_size (sec) / opb)));
if (! sym_ok (want_section, abfd, thisplace, sec, inf))
{
long i;
long newplace = sorted_symcount;
for (i = min - 1; i >= 0; i--)
{
if (sym_ok (want_section, abfd, i, sec, inf))
{
if (newplace == sorted_symcount)
newplace = i;
if (bfd_asymbol_value (sorted_syms[i])
!= bfd_asymbol_value (sorted_syms[newplace]))
break;
/* Remember this symbol and keep searching until we reach
an earlier address. */
newplace = i;
}
}
if (newplace != sorted_symcount)
thisplace = newplace;
else
{
/* We didn't find a good symbol with a smaller value.
Look for one with a larger value. */
for (i = thisplace + 1; i < sorted_symcount; i++)
{
if (sym_ok (want_section, abfd, i, sec, inf))
{
thisplace = i;
break;
}
}
}
if (! sym_ok (want_section, abfd, thisplace, sec, inf))
/* There is no suitable symbol. */
return NULL;
}
/* If we have not found an exact match for the specified address
and we have dynamic relocations available, then we can produce
a better result by matching a relocation to the address and
using the symbol associated with that relocation. */
rel_count = aux->dynrelcount;
if (!want_section
&& sorted_syms[thisplace]->value != vma
&& rel_count > 0
&& aux->dynrelbuf != NULL
&& aux->dynrelbuf[0]->address <= vma
&& aux->dynrelbuf[rel_count - 1]->address >= vma
/* If we have matched a synthetic symbol, then stick with that. */
&& (sorted_syms[thisplace]->flags & BSF_SYNTHETIC) == 0)
{
arelent ** rel_low;
arelent ** rel_high;
rel_low = aux->dynrelbuf;
rel_high = rel_low + rel_count - 1;
while (rel_low <= rel_high)
{
arelent **rel_mid = &rel_low[(rel_high - rel_low) / 2];
arelent * rel = *rel_mid;
if (rel->address == vma)
{
/* Absolute relocations do not provide a more helpful
symbolic address. Find a non-absolute relocation
with the same address. */
arelent **rel_vma = rel_mid;
for (rel_mid--;
rel_mid >= rel_low && rel_mid[0]->address == vma;
rel_mid--)
rel_vma = rel_mid;
for (; rel_vma <= rel_high && rel_vma[0]->address == vma;
rel_vma++)
{
rel = *rel_vma;
if (rel->sym_ptr_ptr != NULL
&& ! bfd_is_abs_section ((* rel->sym_ptr_ptr)->section))
{
if (place != NULL)
* place = thisplace;
return * rel->sym_ptr_ptr;
}
}
break;
}
if (vma < rel->address)
rel_high = rel_mid;
else if (vma >= rel_mid[1]->address)
rel_low = rel_mid + 1;
else
break;
}
}
if (place != NULL)
*place = thisplace;
return sorted_syms[thisplace];
}
/* Print an address and the offset to the nearest symbol. */
static void
objdump_print_addr_with_sym (bfd *abfd, asection *sec, asymbol *sym,
bfd_vma vma, struct disassemble_info *inf,
bfd_boolean skip_zeroes)
{
if (!no_addresses)
{
objdump_print_value (vma, inf, skip_zeroes);
(*inf->fprintf_func) (inf->stream, " ");
}
if (sym == NULL)
{
bfd_vma secaddr;
(*inf->fprintf_func) (inf->stream, "<%s",
sanitize_string (bfd_section_name (sec)));
secaddr = bfd_section_vma (sec);
if (vma < secaddr)
{
(*inf->fprintf_func) (inf->stream, "-0x");
objdump_print_value (secaddr - vma, inf, TRUE);
}
else if (vma > secaddr)
{
(*inf->fprintf_func) (inf->stream, "+0x");
objdump_print_value (vma - secaddr, inf, TRUE);
}
(*inf->fprintf_func) (inf->stream, ">");
}
else
{
(*inf->fprintf_func) (inf->stream, "<");
objdump_print_symname (abfd, inf, sym);
if (bfd_asymbol_value (sym) == vma)
;
/* Undefined symbols in an executables and dynamic objects do not have
a value associated with them, so it does not make sense to display
an offset relative to them. Normally we would not be provided with
this kind of symbol, but the target backend might choose to do so,
and the code in find_symbol_for_address might return an as yet
unresolved symbol associated with a dynamic reloc. */
else if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC))
&& bfd_is_und_section (sym->section))
;
else if (bfd_asymbol_value (sym) > vma)
{
(*inf->fprintf_func) (inf->stream, "-0x");
objdump_print_value (bfd_asymbol_value (sym) - vma, inf, TRUE);
}
else if (vma > bfd_asymbol_value (sym))
{
(*inf->fprintf_func) (inf->stream, "+0x");
objdump_print_value (vma - bfd_asymbol_value (sym), inf, TRUE);
}
(*inf->fprintf_func) (inf->stream, ">");
}
if (display_file_offsets)
inf->fprintf_func (inf->stream, _(" (File Offset: 0x%lx)"),
(long int)(sec->filepos + (vma - sec->vma)));
}
/* Print an address (VMA), symbolically if possible.
If SKIP_ZEROES is TRUE, don't output leading zeroes. */
static void
objdump_print_addr (bfd_vma vma,
struct disassemble_info *inf,
bfd_boolean skip_zeroes)
{
struct objdump_disasm_info *aux;
asymbol *sym = NULL;
bfd_boolean skip_find = FALSE;
aux = (struct objdump_disasm_info *) inf->application_data;
if (sorted_symcount < 1)
{
if (!no_addresses)
{
(*inf->fprintf_func) (inf->stream, "0x");
objdump_print_value (vma, inf, skip_zeroes);
}
if (display_file_offsets)
inf->fprintf_func (inf->stream, _(" (File Offset: 0x%lx)"),
(long int) (inf->section->filepos
+ (vma - inf->section->vma)));
return;
}
if (aux->reloc != NULL
&& aux->reloc->sym_ptr_ptr != NULL
&& * aux->reloc->sym_ptr_ptr != NULL)
{
sym = * aux->reloc->sym_ptr_ptr;
/* Adjust the vma to the reloc. */
vma += bfd_asymbol_value (sym);
if (bfd_is_und_section (bfd_asymbol_section (sym)))
skip_find = TRUE;
}
if (!skip_find)
sym = find_symbol_for_address (vma, inf, NULL);
objdump_print_addr_with_sym (aux->abfd, inf->section, sym, vma, inf,
skip_zeroes);
}
/* Print VMA to INFO. This function is passed to the disassembler
routine. */
static void
objdump_print_address (bfd_vma vma, struct disassemble_info *inf)
{
objdump_print_addr (vma, inf, ! prefix_addresses);
}
/* Determine if the given address has a symbol associated with it. */
static int
objdump_symbol_at_address (bfd_vma vma, struct disassemble_info * inf)
{
asymbol * sym;
sym = find_symbol_for_address (vma, inf, NULL);
return (sym != NULL && (bfd_asymbol_value (sym) == vma));
}
/* Hold the last function name and the last line number we displayed
in a disassembly. */
static char *prev_functionname;
static unsigned int prev_line;
static unsigned int prev_discriminator;
/* We keep a list of all files that we have seen when doing a
disassembly with source, so that we know how much of the file to
display. This can be important for inlined functions. */
struct print_file_list
{
struct print_file_list *next;
const char *filename;
const char *modname;
const char *map;
size_t mapsize;
const char **linemap;
unsigned maxline;
unsigned last_line;
unsigned max_printed;
int first;
};
static struct print_file_list *print_files;
/* The number of preceding context lines to show when we start
displaying a file for the first time. */
#define SHOW_PRECEDING_CONTEXT_LINES (5)
/* Read a complete file into memory. */
static const char *
slurp_file (const char *fn, size_t *size, struct stat *fst)
{
#ifdef HAVE_MMAP
int ps = getpagesize ();
size_t msize;
#endif
const char *map;
int fd = open (fn, O_RDONLY | O_BINARY);
if (fd < 0)
return NULL;
if (fstat (fd, fst) < 0)
{
close (fd);
return NULL;
}
*size = fst->st_size;
#ifdef HAVE_MMAP
msize = (*size + ps - 1) & ~(ps - 1);
map = mmap (NULL, msize, PROT_READ, MAP_SHARED, fd, 0);
if (map != (char *) -1L)
{
close (fd);
return map;
}
#endif
map = (const char *) malloc (*size);
if (!map || (size_t) read (fd, (char *) map, *size) != *size)
{
free ((void *) map);
map = NULL;
}
close (fd);
return map;
}
#define line_map_decrease 5
/* Precompute array of lines for a mapped file. */
static const char **
index_file (const char *map, size_t size, unsigned int *maxline)
{
const char *p, *lstart, *end;
int chars_per_line = 45; /* First iteration will use 40. */
unsigned int lineno;
const char **linemap = NULL;
unsigned long line_map_size = 0;
lineno = 0;
lstart = map;
end = map + size;
for (p = map; p < end; p++)
{
if (*p == '\n')
{
if (p + 1 < end && p[1] == '\r')
p++;
}
else if (*p == '\r')
{
if (p + 1 < end && p[1] == '\n')
p++;
}
else
continue;
/* End of line found. */
if (linemap == NULL || line_map_size < lineno + 1)
{
unsigned long newsize;
chars_per_line -= line_map_decrease;
if (chars_per_line <= 1)
chars_per_line = 1;
line_map_size = size / chars_per_line + 1;
if (line_map_size < lineno + 1)
line_map_size = lineno + 1;
newsize = line_map_size * sizeof (char *);
linemap = (const char **) xrealloc (linemap, newsize);
}
linemap[lineno++] = lstart;
lstart = p + 1;
}
*maxline = lineno;
return linemap;
}
/* Tries to open MODNAME, and if successful adds a node to print_files
linked list and returns that node. Returns NULL on failure. */
static struct print_file_list *
try_print_file_open (const char *origname, const char *modname, struct stat *fst)
{
struct print_file_list *p;
p = (struct print_file_list *) xmalloc (sizeof (struct print_file_list));
p->map = slurp_file (modname, &p->mapsize, fst);
if (p->map == NULL)
{
free (p);
return NULL;
}
p->linemap = index_file (p->map, p->mapsize, &p->maxline);
p->last_line = 0;
p->max_printed = 0;
p->filename = origname;
p->modname = modname;
p->next = print_files;
p->first = 1;
print_files = p;
return p;
}
/* If the source file, as described in the symtab, is not found
try to locate it in one of the paths specified with -I
If found, add location to print_files linked list. */
static struct print_file_list *
update_source_path (const char *filename, bfd *abfd)
{
struct print_file_list *p;
const char *fname;
struct stat fst;
int i;
p = try_print_file_open (filename, filename, &fst);
if (p == NULL)
{
if (include_path_count == 0)
return NULL;
/* Get the name of the file. */
fname = lbasename (filename);
/* If file exists under a new path, we need to add it to the list
so that show_line knows about it. */
for (i = 0; i < include_path_count; i++)
{
char *modname = concat (include_paths[i], "/", fname,
(const char *) 0);
p = try_print_file_open (filename, modname, &fst);
if (p)
break;
free (modname);
}
}
if (p != NULL)
{
long mtime = bfd_get_mtime (abfd);
if (fst.st_mtime > mtime)
warn (_("source file %s is more recent than object file\n"),
filename);
}
return p;
}
/* Print a source file line. */
static void
print_line (struct print_file_list *p, unsigned int linenum)
{
const char *l;
size_t len;
--linenum;
if (linenum >= p->maxline)
return;
l = p->linemap [linenum];
if (source_comment != NULL && strlen (l) > 0)
printf ("%s", source_comment);
len = strcspn (l, "\n\r");
/* Test fwrite return value to quiet glibc warning. */
if (len == 0 || fwrite (l, len, 1, stdout) == 1)
putchar ('\n');
}
/* Print a range of source code lines. */
static void
dump_lines (struct print_file_list *p, unsigned int start, unsigned int end)
{
if (p->map == NULL)
return;
while (start <= end)
{
print_line (p, start);
start++;
}
}
/* Show the line number, or the source line, in a disassembly
listing. */
static void
show_line (bfd *abfd, asection *section, bfd_vma addr_offset)
{
const char *filename;
const char *functionname;
unsigned int linenumber;
unsigned int discriminator;
bfd_boolean reloc;
char *path = NULL;
if (! with_line_numbers && ! with_source_code)
return;
if (! bfd_find_nearest_line_discriminator (abfd, section, syms, addr_offset,
&filename, &functionname,
&linenumber, &discriminator))
return;
if (filename != NULL && *filename == '\0')
filename = NULL;
if (functionname != NULL && *functionname == '\0')
functionname = NULL;
if (filename
&& IS_ABSOLUTE_PATH (filename)
&& prefix)
{
char *path_up;
const char *fname = filename;
path = xmalloc (prefix_length + PATH_MAX + 1);
if (prefix_length)
memcpy (path, prefix, prefix_length);
path_up = path + prefix_length;
/* Build relocated filename, stripping off leading directories
from the initial filename if requested. */
if (prefix_strip > 0)
{
int level = 0;
const char *s;
/* Skip selected directory levels. */
for (s = fname + 1; *s != '\0' && level < prefix_strip; s++)
if (IS_DIR_SEPARATOR (*s))
{
fname = s;
level++;
}
}
/* Update complete filename. */
strncpy (path_up, fname, PATH_MAX);
path_up[PATH_MAX] = '\0';
filename = path;
reloc = TRUE;
}
else
reloc = FALSE;
if (with_line_numbers)
{
if (functionname != NULL
&& (prev_functionname == NULL
|| strcmp (functionname, prev_functionname) != 0))
{
char *demangle_alloc = NULL;
if (do_demangle && functionname[0] != '\0')
{
/* Demangle the name. */
demangle_alloc = bfd_demangle (abfd, functionname,
demangle_flags);
}
/* Demangling adds trailing parens, so don't print those. */
if (demangle_alloc != NULL)
printf ("%s:\n", sanitize_string (demangle_alloc));
else
printf ("%s():\n", sanitize_string (functionname));
prev_line = -1;
free (demangle_alloc);
}
if (linenumber > 0
&& (linenumber != prev_line
|| discriminator != prev_discriminator))
{
if (discriminator > 0)
printf ("%s:%u (discriminator %u)\n",
filename == NULL ? "???" : sanitize_string (filename),
linenumber, discriminator);
else
printf ("%s:%u\n", filename == NULL
? "???" : sanitize_string (filename),
linenumber);
}
if (unwind_inlines)
{
const char *filename2;
const char *functionname2;
unsigned line2;
while (bfd_find_inliner_info (abfd, &filename2, &functionname2,
&line2))
{
printf ("inlined by %s:%u",
sanitize_string (filename2), line2);
printf (" (%s)\n", sanitize_string (functionname2));
}
}
}
if (with_source_code
&& filename != NULL
&& linenumber > 0)
{
struct print_file_list **pp, *p;
unsigned l;
for (pp = &print_files; *pp != NULL; pp = &(*pp)->next)
if (filename_cmp ((*pp)->filename, filename) == 0)
break;
p = *pp;
if (p == NULL)
{
if (reloc)
filename = xstrdup (filename);
p = update_source_path (filename, abfd);
}
if (p != NULL && linenumber != p->last_line)
{
if (file_start_context && p->first)
l = 1;
else
{
l = linenumber - SHOW_PRECEDING_CONTEXT_LINES;
if (l >= linenumber)
l = 1;
if (p->max_printed >= l)
{
if (p->max_printed < linenumber)
l = p->max_printed + 1;
else
l = linenumber;
}
}
dump_lines (p, l, linenumber);
if (p->max_printed < linenumber)
p->max_printed = linenumber;
p->last_line = linenumber;
p->first = 0;
}
}
if (functionname != NULL
&& (prev_functionname == NULL
|| strcmp (functionname, prev_functionname) != 0))
{
if (prev_functionname != NULL)
free (prev_functionname);
prev_functionname = (char *) xmalloc (strlen (functionname) + 1);
strcpy (prev_functionname, functionname);
}
if (linenumber > 0 && linenumber != prev_line)
prev_line = linenumber;
if (discriminator != prev_discriminator)
prev_discriminator = discriminator;
if (path)
free (path);
}
/* Pseudo FILE object for strings. */
typedef struct
{
char *buffer;
size_t pos;
size_t alloc;
} SFILE;
/* sprintf to a "stream". */
static int ATTRIBUTE_PRINTF_2
objdump_sprintf (SFILE *f, const char *format, ...)
{
size_t n;
va_list args;
while (1)
{
size_t space = f->alloc - f->pos;
va_start (args, format);
n = vsnprintf (f->buffer + f->pos, space, format, args);
va_end (args);
if (space > n)
break;
f->alloc = (f->alloc + n) * 2;
f->buffer = (char *) xrealloc (f->buffer, f->alloc);
}
f->pos += n;
return n;
}
/* Code for generating (colored) diagrams of control flow start and end
points. */
/* Structure used to store the properties of a jump. */
struct jump_info
{
/* The next jump, or NULL if this is the last object. */
struct jump_info *next;
/* The previous jump, or NULL if this is the first object. */
struct jump_info *prev;
/* The start addresses of the jump. */
struct
{
/* The list of start addresses. */
bfd_vma *addresses;
/* The number of elements. */
size_t count;
/* The maximum number of elements that fit into the array. */
size_t max_count;
} start;
/* The end address of the jump. */
bfd_vma end;
/* The drawing level of the jump. */
int level;
};
/* Construct a jump object for a jump from start
to end with the corresponding level. */
static struct jump_info *
jump_info_new (bfd_vma start, bfd_vma end, int level)
{
struct jump_info *result = xmalloc (sizeof (struct jump_info));
result->next = NULL;
result->prev = NULL;
result->start.addresses = xmalloc (sizeof (bfd_vma *) * 2);
result->start.addresses[0] = start;
result->start.count = 1;
result->start.max_count = 2;
result->end = end;
result->level = level;
return result;
}
/* Free a jump object and return the next object
or NULL if this was the last one. */
static struct jump_info *
jump_info_free (struct jump_info *ji)
{
struct jump_info *result = NULL;
if (ji)
{
result = ji->next;
if (ji->start.addresses)
free (ji->start.addresses);
free (ji);
}
return result;
}
/* Get the smallest value of all start and end addresses. */
static bfd_vma
jump_info_min_address (const struct jump_info *ji)
{
bfd_vma min_address = ji->end;
size_t i;
for (i = ji->start.count; i-- > 0;)
if (ji->start.addresses[i] < min_address)
min_address = ji->start.addresses[i];
return min_address;
}
/* Get the largest value of all start and end addresses. */
static bfd_vma
jump_info_max_address (const struct jump_info *ji)
{
bfd_vma max_address = ji->end;
size_t i;
for (i = ji->start.count; i-- > 0;)
if (ji->start.addresses[i] > max_address)
max_address = ji->start.addresses[i];
return max_address;
}
/* Get the target address of a jump. */
static bfd_vma
jump_info_end_address (const struct jump_info *ji)
{
return ji->end;
}
/* Test if an address is one of the start addresses of a jump. */
static bfd_boolean
jump_info_is_start_address (const struct jump_info *ji, bfd_vma address)
{
bfd_boolean result = FALSE;
size_t i;
for (i = ji->start.count; i-- > 0;)
if (address == ji->start.addresses[i])
{
result = TRUE;
break;
}
return result;
}
/* Test if an address is the target address of a jump. */
static bfd_boolean
jump_info_is_end_address (const struct jump_info *ji, bfd_vma address)
{
return (address == ji->end);
}
/* Get the difference between the smallest and largest address of a jump. */
static bfd_vma
jump_info_size (const struct jump_info *ji)
{
return jump_info_max_address (ji) - jump_info_min_address (ji);
}
/* Unlink a jump object from a list. */
static void
jump_info_unlink (struct jump_info *node,
struct jump_info **base)
{
if (node->next)
node->next->prev = node->prev;
if (node->prev)
node->prev->next = node->next;
else
*base = node->next;
node->next = NULL;
node->prev = NULL;
}
/* Insert unlinked jump info node into a list. */
static void
jump_info_insert (struct jump_info *node,
struct jump_info *target,
struct jump_info **base)
{
node->next = target;
node->prev = target->prev;
target->prev = node;
if (node->prev)
node->prev->next = node;
else
*base = node;
}
/* Add unlinked node to the front of a list. */
static void
jump_info_add_front (struct jump_info *node,
struct jump_info **base)
{
node->next = *base;
if (node->next)
node->next->prev = node;
node->prev = NULL;
*base = node;
}
/* Move linked node to target position. */
static void
jump_info_move_linked (struct jump_info *node,
struct jump_info *target,
struct jump_info **base)
{
/* Unlink node. */
jump_info_unlink (node, base);
/* Insert node at target position. */
jump_info_insert (node, target, base);
}
/* Test if two jumps intersect. */
static bfd_boolean
jump_info_intersect (const struct jump_info *a,
const struct jump_info *b)
{
return ((jump_info_max_address (a) >= jump_info_min_address (b))
&& (jump_info_min_address (a) <= jump_info_max_address (b)));
}
/* Merge two compatible jump info objects. */
static void
jump_info_merge (struct jump_info **base)
{
struct jump_info *a;
for (a = *base; a; a = a->next)
{
struct jump_info *b;
for (b = a->next; b; b = b->next)
{
/* Merge both jumps into one. */
if (a->end == b->end)
{
/* Reallocate addresses. */
size_t needed_size = a->start.count + b->start.count;
size_t i;
if (needed_size > a->start.max_count)
{
a->start.max_count += b->start.max_count;
a->start.addresses =
xrealloc (a->start.addresses,
a->start.max_count * sizeof (bfd_vma *));
}
/* Append start addresses. */
for (i = 0; i < b->start.count; ++i)
a->start.addresses[a->start.count++] =
b->start.addresses[i];
/* Remove and delete jump. */
struct jump_info *tmp = b->prev;
jump_info_unlink (b, base);
jump_info_free (b);
b = tmp;
}
}
}
}
/* Sort jumps by their size and starting point using a stable
minsort. This could be improved if sorting performance is
an issue, for example by using mergesort. */
static void
jump_info_sort (struct jump_info **base)
{
struct jump_info *current_element = *base;
while (current_element)
{
struct jump_info *best_match = current_element;
struct jump_info *runner = current_element->next;
bfd_vma best_size = jump_info_size (best_match);
while (runner)
{
bfd_vma runner_size = jump_info_size (runner);
if ((runner_size < best_size)
|| ((runner_size == best_size)
&& (jump_info_min_address (runner)
< jump_info_min_address (best_match))))
{
best_match = runner;
best_size = runner_size;
}
runner = runner->next;
}
if (best_match == current_element)
current_element = current_element->next;
else
jump_info_move_linked (best_match, current_element, base);
}
}
/* Visualize all jumps at a given address. */
static void
jump_info_visualize_address (bfd_vma address,
int max_level,
char *line_buffer,
uint8_t *color_buffer)
{
struct jump_info *ji = detected_jumps;
size_t len = (max_level + 1) * 3;
/* Clear line buffer. */
memset (line_buffer, ' ', len);
memset (color_buffer, 0, len);
/* Iterate over jumps and add their ASCII art. */
while (ji)
{
/* Discard jumps that are never needed again. */
if (jump_info_max_address (ji) < address)
{
struct jump_info *tmp = ji;
ji = ji->next;
jump_info_unlink (tmp, &detected_jumps);
jump_info_free (tmp);
continue;
}
/* This jump intersects with the current address. */
if (jump_info_min_address (ji) <= address)
{
/* Hash target address to get an even
distribution between all values. */
bfd_vma hash_address = jump_info_end_address (ji);
uint8_t color = iterative_hash_object (hash_address, 0);
/* Fetch line offset. */
int offset = (max_level - ji->level) * 3;
/* Draw start line. */
if (jump_info_is_start_address (ji, address))
{
size_t i = offset + 1;
for (; i < len - 1; ++i)
if (line_buffer[i] == ' ')
{
line_buffer[i] = '-';
color_buffer[i] = color;
}
if (line_buffer[i] == ' ')
{
line_buffer[i] = '-';
color_buffer[i] = color;
}
else if (line_buffer[i] == '>')
{
line_buffer[i] = 'X';
color_buffer[i] = color;
}
if (line_buffer[offset] == ' ')
{
if (address <= ji->end)
line_buffer[offset] =
(jump_info_min_address (ji) == address) ? '/': '+';
else
line_buffer[offset] =
(jump_info_max_address (ji) == address) ? '\\': '+';
color_buffer[offset] = color;
}
}
/* Draw jump target. */
else if (jump_info_is_end_address (ji, address))
{
size_t i = offset + 1;
for (; i < len - 1; ++i)
if (line_buffer[i] == ' ')
{
line_buffer[i] = '-';
color_buffer[i] = color;
}
if (line_buffer[i] == ' ')
{
line_buffer[i] = '>';
color_buffer[i] = color;
}
else if (line_buffer[i] == '-')
{
line_buffer[i] = 'X';
color_buffer[i] = color;
}
if (line_buffer[offset] == ' ')
{
if (jump_info_min_address (ji) < address)
line_buffer[offset] =
(jump_info_max_address (ji) > address) ? '>' : '\\';
else
line_buffer[offset] = '/';
color_buffer[offset] = color;
}
}
/* Draw intermediate line segment. */
else if (line_buffer[offset] == ' ')
{
line_buffer[offset] = '|';
color_buffer[offset] = color;
}
}
ji = ji->next;
}
}
/* Clone of disassemble_bytes to detect jumps inside a function. */
/* FIXME: is this correct? Can we strip it down even further? */
static struct jump_info *
disassemble_jumps (struct disassemble_info * inf,
disassembler_ftype disassemble_fn,
bfd_vma start_offset,
bfd_vma stop_offset,
bfd_vma rel_offset,
arelent *** relppp,
arelent ** relppend)
{
struct objdump_disasm_info *aux;
struct jump_info *jumps = NULL;
asection *section;
bfd_vma addr_offset;
unsigned int opb = inf->octets_per_byte;
int octets = opb;
SFILE sfile;
aux = (struct objdump_disasm_info *) inf->application_data;
section = inf->section;
sfile.alloc = 120;
sfile.buffer = (char *) xmalloc (sfile.alloc);
sfile.pos = 0;
inf->insn_info_valid = 0;
inf->fprintf_func = (fprintf_ftype) objdump_sprintf;
inf->stream = &sfile;
addr_offset = start_offset;
while (addr_offset < stop_offset)
{
int previous_octets;
/* Remember the length of the previous instruction. */
previous_octets = octets;
octets = 0;
sfile.pos = 0;
inf->bytes_per_line = 0;
inf->bytes_per_chunk = 0;
inf->flags = ((disassemble_all ? DISASSEMBLE_DATA : 0)
| (wide_output ? WIDE_OUTPUT : 0));
if (machine)
inf->flags |= USER_SPECIFIED_MACHINE_TYPE;
if (inf->disassembler_needs_relocs
&& (bfd_get_file_flags (aux->abfd) & EXEC_P) == 0
&& (bfd_get_file_flags (aux->abfd) & DYNAMIC) == 0
&& *relppp < relppend)
{
bfd_signed_vma distance_to_rel;
distance_to_rel = (**relppp)->address - (rel_offset + addr_offset);
/* Check to see if the current reloc is associated with
the instruction that we are about to disassemble. */
if (distance_to_rel == 0
/* FIXME: This is wrong. We are trying to catch
relocs that are addressed part way through the
current instruction, as might happen with a packed
VLIW instruction. Unfortunately we do not know the
length of the current instruction since we have not
disassembled it yet. Instead we take a guess based
upon the length of the previous instruction. The
proper solution is to have a new target-specific
disassembler function which just returns the length
of an instruction at a given address without trying
to display its disassembly. */
|| (distance_to_rel > 0
&& distance_to_rel < (bfd_signed_vma) (previous_octets/ opb)))
{
inf->flags |= INSN_HAS_RELOC;
}
}
if (! disassemble_all
&& (section->flags & (SEC_CODE | SEC_HAS_CONTENTS))
== (SEC_CODE | SEC_HAS_CONTENTS))
/* Set a stop_vma so that the disassembler will not read
beyond the next symbol. We assume that symbols appear on
the boundaries between instructions. We only do this when
disassembling code of course, and when -D is in effect. */
inf->stop_vma = section->vma + stop_offset;
inf->stop_offset = stop_offset;
/* Extract jump information. */
inf->insn_info_valid = 0;
octets = (*disassemble_fn) (section->vma + addr_offset, inf);
/* Test if a jump was detected. */
if (inf->insn_info_valid
&& ((inf->insn_type == dis_branch)
|| (inf->insn_type == dis_condbranch)
|| (inf->insn_type == dis_jsr)
|| (inf->insn_type == dis_condjsr))
&& (inf->target >= section->vma + start_offset)
&& (inf->target < section->vma + stop_offset))
{
struct jump_info *ji =
jump_info_new (section->vma + addr_offset, inf->target, -1);
jump_info_add_front (ji, &jumps);
}
inf->stop_vma = 0;
addr_offset += octets / opb;
}
inf->fprintf_func = (fprintf_ftype) fprintf;
inf->stream = stdout;
free (sfile.buffer);
/* Merge jumps. */
jump_info_merge (&jumps);
/* Process jumps. */
jump_info_sort (&jumps);
/* Group jumps by level. */
struct jump_info *last_jump = jumps;
int max_level = -1;
while (last_jump)
{
/* The last jump is part of the next group. */
struct jump_info *base = last_jump;
/* Increment level. */
base->level = ++max_level;
/* Find jumps that can be combined on the same
level, with the largest jumps tested first.
This has the advantage that large jumps are on
lower levels and do not intersect with small
jumps that get grouped on higher levels. */
struct jump_info *exchange_item = last_jump->next;
struct jump_info *it = exchange_item;
for (; it; it = it->next)
{
/* Test if the jump intersects with any
jump from current group. */
bfd_boolean ok = TRUE;
struct jump_info *it_collision;
for (it_collision = base;
it_collision != exchange_item;
it_collision = it_collision->next)
{
/* This jump intersects so we leave it out. */
if (jump_info_intersect (it_collision, it))
{
ok = FALSE;
break;
}
}
/* Add jump to group. */
if (ok)
{
/* Move current element to the front. */
if (it != exchange_item)
{
struct jump_info *save = it->prev;
jump_info_move_linked (it, exchange_item, &jumps);
last_jump = it;
it = save;
}
else
{
last_jump = exchange_item;
exchange_item = exchange_item->next;
}
last_jump->level = max_level;
}
}
/* Move to next group. */
last_jump = exchange_item;
}
return jumps;
}
/* The number of zeroes we want to see before we start skipping them.
The number is arbitrarily chosen. */
#define DEFAULT_SKIP_ZEROES 8
/* The number of zeroes to skip at the end of a section. If the
number of zeroes at the end is between SKIP_ZEROES_AT_END and
SKIP_ZEROES, they will be disassembled. If there are fewer than
SKIP_ZEROES_AT_END, they will be skipped. This is a heuristic
attempt to avoid disassembling zeroes inserted by section
alignment. */
#define DEFAULT_SKIP_ZEROES_AT_END 3
static int
null_print (const void * stream ATTRIBUTE_UNUSED, const char * format ATTRIBUTE_UNUSED, ...)
{
return 1;
}
/* Print out jump visualization. */
static void
print_jump_visualisation (bfd_vma addr, int max_level, char *line_buffer,
uint8_t *color_buffer)
{
if (!line_buffer)
return;
jump_info_visualize_address (addr, max_level, line_buffer, color_buffer);
size_t line_buffer_size = strlen (line_buffer);
char last_color = 0;
size_t i;
for (i = 0; i <= line_buffer_size; ++i)
{
if (color_output)
{
uint8_t color = (i < line_buffer_size) ? color_buffer[i]: 0;
if (color != last_color)
{
if (color)
if (extended_color_output)
/* Use extended 8bit color, but
do not choose dark colors. */
printf ("\033[38;5;%dm", 124 + (color % 108));
else
/* Use simple terminal colors. */
printf ("\033[%dm", 31 + (color % 7));
else
/* Clear color. */
printf ("\033[0m");
last_color = color;
}
}
putchar ((i < line_buffer_size) ? line_buffer[i]: ' ');
}
}
/* Disassemble some data in memory between given values. */
static void
disassemble_bytes (struct disassemble_info * inf,
disassembler_ftype disassemble_fn,
bfd_boolean insns,
bfd_byte * data,
bfd_vma start_offset,
bfd_vma stop_offset,
bfd_vma rel_offset,
arelent *** relppp,
arelent ** relppend)
{
struct objdump_disasm_info *aux;
asection *section;
unsigned int octets_per_line;
unsigned int skip_addr_chars;
bfd_vma addr_offset;
unsigned int opb = inf->octets_per_byte;
unsigned int skip_zeroes = inf->skip_zeroes;
unsigned int skip_zeroes_at_end = inf->skip_zeroes_at_end;
size_t octets;
SFILE sfile;
aux = (struct objdump_disasm_info *) inf->application_data;
section = inf->section;
sfile.alloc = 120;
sfile.buffer = (char *) xmalloc (sfile.alloc);
sfile.pos = 0;
if (insn_width)
octets_per_line = insn_width;
else if (insns)
octets_per_line = 4;
else
octets_per_line = 16;
/* Figure out how many characters to skip at the start of an
address, to make the disassembly look nicer. We discard leading
zeroes in chunks of 4, ensuring that there is always a leading
zero remaining. */
skip_addr_chars = 0;
if (!no_addresses && !prefix_addresses)
{
char buf[30];
bfd_sprintf_vma (aux->abfd, buf, section->vma + section->size / opb);
while (buf[skip_addr_chars] == '0')
++skip_addr_chars;
/* Don't discard zeros on overflow. */
if (buf[skip_addr_chars] == '\0' && section->vma != 0)
skip_addr_chars = 0;
if (skip_addr_chars != 0)
skip_addr_chars = (skip_addr_chars - 1) & -4;
}
inf->insn_info_valid = 0;
/* Determine maximum level. */
uint8_t *color_buffer = NULL;
char *line_buffer = NULL;
int max_level = -1;
/* Some jumps were detected. */
if (detected_jumps)
{
struct jump_info *ji;
/* Find maximum jump level. */
for (ji = detected_jumps; ji; ji = ji->next)
{
if (ji->level > max_level)
max_level = ji->level;
}
/* Allocate buffers. */
size_t len = (max_level + 1) * 3 + 1;
line_buffer = xmalloc (len);
line_buffer[len - 1] = 0;
color_buffer = xmalloc (len);
color_buffer[len - 1] = 0;
}
addr_offset = start_offset;
while (addr_offset < stop_offset)
{
bfd_boolean need_nl = FALSE;
octets = 0;
/* Make sure we don't use relocs from previous instructions. */
aux->reloc = NULL;
/* If we see more than SKIP_ZEROES octets of zeroes, we just
print `...'. */
if (! disassemble_zeroes)
for (; addr_offset * opb + octets < stop_offset * opb; octets++)
if (data[addr_offset * opb + octets] != 0)
break;
if (! disassemble_zeroes
&& (inf->insn_info_valid == 0
|| inf->branch_delay_insns == 0)
&& (octets >= skip_zeroes
|| (addr_offset * opb + octets == stop_offset * opb
&& octets < skip_zeroes_at_end)))
{
/* If there are more nonzero octets to follow, we only skip
zeroes in multiples of 4, to try to avoid running over
the start of an instruction which happens to start with
zero. */
if (addr_offset * opb + octets != stop_offset * opb)
octets &= ~3;
/* If we are going to display more data, and we are displaying
file offsets, then tell the user how many zeroes we skip
and the file offset from where we resume dumping. */
if (display_file_offsets
&& addr_offset + octets / opb < stop_offset)
printf (_("\t... (skipping %lu zeroes, "
"resuming at file offset: 0x%lx)\n"),
(unsigned long) (octets / opb),
(unsigned long) (section->filepos
+ addr_offset + octets / opb));
else
printf ("\t...\n");
}
else
{
char buf[50];
unsigned int bpc = 0;
unsigned int pb = 0;
if (with_line_numbers || with_source_code)
show_line (aux->abfd, section, addr_offset);
if (no_addresses)
printf ("\t");
else if (!prefix_addresses)
{
char *s;
bfd_sprintf_vma (aux->abfd, buf, section->vma + addr_offset);
for (s = buf + skip_addr_chars; *s == '0'; s++)
*s = ' ';
if (*s == '\0')
*--s = '0';
printf ("%s:\t", buf + skip_addr_chars);
}
else
{
aux->require_sec = TRUE;
objdump_print_address (section->vma + addr_offset, inf);
aux->require_sec = FALSE;
putchar (' ');
}
print_jump_visualisation (section->vma + addr_offset,
max_level, line_buffer,
color_buffer);
if (insns)
{
int insn_size;
sfile.pos = 0;
inf->fprintf_func = (fprintf_ftype) objdump_sprintf;
inf->stream = &sfile;
inf->bytes_per_line = 0;
inf->bytes_per_chunk = 0;
inf->flags = ((disassemble_all ? DISASSEMBLE_DATA : 0)
| (wide_output ? WIDE_OUTPUT : 0));
if (machine)
inf->flags |= USER_SPECIFIED_MACHINE_TYPE;
if (inf->disassembler_needs_relocs
&& (bfd_get_file_flags (aux->abfd) & EXEC_P) == 0
&& (bfd_get_file_flags (aux->abfd) & DYNAMIC) == 0
&& *relppp < relppend)
{
bfd_signed_vma distance_to_rel;
int max_reloc_offset
= aux->abfd->arch_info->max_reloc_offset_into_insn;
distance_to_rel = ((**relppp)->address - rel_offset
- addr_offset);
insn_size = 0;
if (distance_to_rel > 0
&& (max_reloc_offset < 0
|| distance_to_rel <= max_reloc_offset))
{
/* This reloc *might* apply to the current insn,
starting somewhere inside it. Discover the length
of the current insn so that the check below will
work. */
if (insn_width)
insn_size = insn_width;
else
{
/* We find the length by calling the dissassembler
function with a dummy print handler. This should
work unless the disassembler is not expecting to
be called multiple times for the same address.
This does mean disassembling the instruction
twice, but we only do this when there is a high
probability that there is a reloc that will
affect the instruction. */
inf->fprintf_func = (fprintf_ftype) null_print;
insn_size = disassemble_fn (section->vma
+ addr_offset, inf);
inf->fprintf_func = (fprintf_ftype) objdump_sprintf;
}
}
/* Check to see if the current reloc is associated with
the instruction that we are about to disassemble. */
if (distance_to_rel == 0
|| (distance_to_rel > 0
&& distance_to_rel < insn_size / (int) opb))
{
inf->flags |= INSN_HAS_RELOC;
aux->reloc = **relppp;
}
}
if (! disassemble_all
&& ((section->flags & (SEC_CODE | SEC_HAS_CONTENTS))
== (SEC_CODE | SEC_HAS_CONTENTS)))
/* Set a stop_vma so that the disassembler will not read
beyond the next symbol. We assume that symbols appear on
the boundaries between instructions. We only do this when
disassembling code of course, and when -D is in effect. */
inf->stop_vma = section->vma + stop_offset;
inf->stop_offset = stop_offset;
insn_size = (*disassemble_fn) (section->vma + addr_offset, inf);
octets = insn_size;
inf->stop_vma = 0;
inf->fprintf_func = (fprintf_ftype) fprintf;
inf->stream = stdout;
if (insn_width == 0 && inf->bytes_per_line != 0)
octets_per_line = inf->bytes_per_line;
if (insn_size < (int) opb)
{
if (sfile.pos)
printf ("%s\n", sfile.buffer);
if (insn_size >= 0)
{
non_fatal (_("disassemble_fn returned length %d"),
insn_size);
exit_status = 1;
}
break;
}
}
else
{
bfd_vma j;
octets = octets_per_line;
if (addr_offset + octets / opb > stop_offset)
octets = (stop_offset - addr_offset) * opb;
for (j = addr_offset * opb; j < addr_offset * opb + octets; ++j)
{
if (ISPRINT (data[j]))
buf[j - addr_offset * opb] = data[j];
else
buf[j - addr_offset * opb] = '.';
}
buf[j - addr_offset * opb] = '\0';
}
if (prefix_addresses
? show_raw_insn > 0
: show_raw_insn >= 0)
{
bfd_vma j;
/* If ! prefix_addresses and ! wide_output, we print
octets_per_line octets per line. */
pb = octets;
if (pb > octets_per_line && ! prefix_addresses && ! wide_output)
pb = octets_per_line;
if (inf->bytes_per_chunk)
bpc = inf->bytes_per_chunk;
else
bpc = 1;
for (j = addr_offset * opb; j < addr_offset * opb + pb; j += bpc)
{
/* PR 21580: Check for a buffer ending early. */
if (j + bpc <= stop_offset * opb)
{
unsigned int k;
if (inf->display_endian == BFD_ENDIAN_LITTLE)
{
for (k = bpc; k-- != 0; )
printf ("%02x", (unsigned) data[j + k]);
}
else
{
for (k = 0; k < bpc; k++)
printf ("%02x", (unsigned) data[j + k]);
}
}
putchar (' ');
}
for (; pb < octets_per_line; pb += bpc)
{
unsigned int k;
for (k = 0; k < bpc; k++)
printf (" ");
putchar (' ');
}
/* Separate raw data from instruction by extra space. */
if (insns)
putchar ('\t');
else
printf (" ");
}
if (! insns)
printf ("%s", buf);
else if (sfile.pos)
printf ("%s", sfile.buffer);
if (prefix_addresses
? show_raw_insn > 0
: show_raw_insn >= 0)
{
while (pb < octets)
{
bfd_vma j;
char *s;
putchar ('\n');
j = addr_offset * opb + pb;
if (no_addresses)
printf ("\t");
else
{
bfd_sprintf_vma (aux->abfd, buf, section->vma + j / opb);
for (s = buf + skip_addr_chars; *s == '0'; s++)
*s = ' ';
if (*s == '\0')
*--s = '0';
printf ("%s:\t", buf + skip_addr_chars);
}
print_jump_visualisation (section->vma + j / opb,
max_level, line_buffer,
color_buffer);
pb += octets_per_line;
if (pb > octets)
pb = octets;
for (; j < addr_offset * opb + pb; j += bpc)
{
/* PR 21619: Check for a buffer ending early. */
if (j + bpc <= stop_offset * opb)
{
unsigned int k;
if (inf->display_endian == BFD_ENDIAN_LITTLE)
{
for (k = bpc; k-- != 0; )
printf ("%02x", (unsigned) data[j + k]);
}
else
{
for (k = 0; k < bpc; k++)
printf ("%02x", (unsigned) data[j + k]);
}
}
putchar (' ');
}
}
}
if (!wide_output)
putchar ('\n');
else
need_nl = TRUE;
}
while ((*relppp) < relppend
&& (**relppp)->address < rel_offset + addr_offset + octets / opb)
{
if (dump_reloc_info || dump_dynamic_reloc_info)
{
arelent *q;
q = **relppp;
if (wide_output)
putchar ('\t');
else
printf ("\t\t\t");
if (!no_addresses)
{
objdump_print_value (section->vma - rel_offset + q->address,
inf, TRUE);
printf (": ");
}
if (q->howto == NULL)
printf ("*unknown*\t");
else if (q->howto->name)
printf ("%s\t", q->howto->name);
else
printf ("%d\t", q->howto->type);
if (q->sym_ptr_ptr == NULL || *q->sym_ptr_ptr == NULL)
printf ("*unknown*");
else
{
const char *sym_name;
sym_name = bfd_asymbol_name (*q->sym_ptr_ptr);
if (sym_name != NULL && *sym_name != '\0')
objdump_print_symname (aux->abfd, inf, *q->sym_ptr_ptr);
else
{
asection *sym_sec;
sym_sec = bfd_asymbol_section (*q->sym_ptr_ptr);
sym_name = bfd_section_name (sym_sec);
if (sym_name == NULL || *sym_name == '\0')
sym_name = "*unknown*";
printf ("%s", sanitize_string (sym_name));
}
}
if (q->addend)
{
bfd_signed_vma addend = q->addend;
if (addend < 0)
{
printf ("-0x");
addend = -addend;
}
else
printf ("+0x");
objdump_print_value (addend, inf, TRUE);
}
printf ("\n");
need_nl = FALSE;
}
++(*relppp);
}
if (need_nl)
printf ("\n");
addr_offset += octets / opb;
}
free (sfile.buffer);
free (line_buffer);
free (color_buffer);
}
static void
disassemble_section (bfd *abfd, asection *section, void *inf)
{
const struct elf_backend_data * bed;
bfd_vma sign_adjust = 0;
struct disassemble_info * pinfo = (struct disassemble_info *) inf;
struct objdump_disasm_info * paux;
unsigned int opb = pinfo->octets_per_byte;
bfd_byte * data = NULL;
bfd_size_type datasize = 0;
arelent ** rel_pp = NULL;
arelent ** rel_ppstart = NULL;
arelent ** rel_ppend;
bfd_vma stop_offset;
asymbol * sym = NULL;
long place = 0;
long rel_count;
bfd_vma rel_offset;
unsigned long addr_offset;
bfd_boolean do_print;
enum loop_control
{
stop_offset_reached,
function_sym,
next_sym
} loop_until;
/* Sections that do not contain machine
code are not normally disassembled. */
if (! disassemble_all
&& only_list == NULL
&& ((section->flags & (SEC_CODE | SEC_HAS_CONTENTS))
!= (SEC_CODE | SEC_HAS_CONTENTS)))
return;
if (! process_section_p (section))
return;
datasize = bfd_section_size (section);
if (datasize == 0)
return;
if (start_address == (bfd_vma) -1
|| start_address < section->vma)
addr_offset = 0;
else
addr_offset = start_address - section->vma;
if (stop_address == (bfd_vma) -1)
stop_offset = datasize / opb;
else
{
if (stop_address < section->vma)
stop_offset = 0;
else
stop_offset = stop_address - section->vma;
if (stop_offset > datasize / opb)
stop_offset = datasize / opb;
}
if (addr_offset >= stop_offset)
return;
/* Decide which set of relocs to use. Load them if necessary. */
paux = (struct objdump_disasm_info *) pinfo->application_data;
if (paux->dynrelbuf && dump_dynamic_reloc_info)
{
rel_pp = paux->dynrelbuf;
rel_count = paux->dynrelcount;
/* Dynamic reloc addresses are absolute, non-dynamic are section
relative. REL_OFFSET specifies the reloc address corresponding
to the start of this section. */
rel_offset = section->vma;
}
else
{
rel_count = 0;
rel_pp = NULL;
rel_offset = 0;
if ((section->flags & SEC_RELOC) != 0
&& (dump_reloc_info || pinfo->disassembler_needs_relocs))
{
long relsize;
relsize = bfd_get_reloc_upper_bound (abfd, section);
if (relsize < 0)
bfd_fatal (bfd_get_filename (abfd));
if (relsize > 0)
{
rel_ppstart = rel_pp = (arelent **) xmalloc (relsize);
rel_count = bfd_canonicalize_reloc (abfd, section, rel_pp, syms);
if (rel_count < 0)
bfd_fatal (bfd_get_filename (abfd));
/* Sort the relocs by address. */
qsort (rel_pp, rel_count, sizeof (arelent *), compare_relocs);
}
}
}
rel_ppend = rel_pp + rel_count;
if (!bfd_malloc_and_get_section (abfd, section, &data))
{
non_fatal (_("Reading section %s failed because: %s"),
section->name, bfd_errmsg (bfd_get_error ()));
return;
}
pinfo->buffer = data;
pinfo->buffer_vma = section->vma;
pinfo->buffer_length = datasize;
pinfo->section = section;
/* Sort the symbols into value and section order. */
compare_section = section;
if (sorted_symcount > 1)
qsort (sorted_syms, sorted_symcount, sizeof (asymbol *), compare_symbols);
/* Skip over the relocs belonging to addresses below the
start address. */
while (rel_pp < rel_ppend
&& (*rel_pp)->address < rel_offset + addr_offset)
++rel_pp;
printf (_("\nDisassembly of section %s:\n"), sanitize_string (section->name));
/* Find the nearest symbol forwards from our current position. */
paux->require_sec = TRUE;
sym = (asymbol *) find_symbol_for_address (section->vma + addr_offset,
(struct disassemble_info *) inf,
&place);
paux->require_sec = FALSE;
/* PR 9774: If the target used signed addresses then we must make
sure that we sign extend the value that we calculate for 'addr'
in the loop below. */
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
&& (bed = get_elf_backend_data (abfd)) != NULL
&& bed->sign_extend_vma)
sign_adjust = (bfd_vma) 1 << (bed->s->arch_size - 1);
/* Disassemble a block of instructions up to the address associated with
the symbol we have just found. Then print the symbol and find the
next symbol on. Repeat until we have disassembled the entire section
or we have reached the end of the address range we are interested in. */
do_print = paux->symbol == NULL;
loop_until = stop_offset_reached;
while (addr_offset < stop_offset)
{
bfd_vma addr;
asymbol *nextsym;
bfd_vma nextstop_offset;
bfd_boolean insns;
addr = section->vma + addr_offset;
addr = ((addr & ((sign_adjust << 1) - 1)) ^ sign_adjust) - sign_adjust;
if (sym != NULL && bfd_asymbol_value (sym) <= addr)
{
int x;
for (x = place;
(x < sorted_symcount
&& (bfd_asymbol_value (sorted_syms[x]) <= addr));
++x)
continue;
pinfo->symbols = sorted_syms + place;
pinfo->num_symbols = x - place;
pinfo->symtab_pos = place;
}
else
{
pinfo->symbols = NULL;
pinfo->num_symbols = 0;
pinfo->symtab_pos = -1;
}
/* If we are only disassembling from a specific symbol,
check to see if we should start or stop displaying. */
if (sym && paux->symbol)
{
if (do_print)
{
/* See if we should stop printing. */
switch (loop_until)
{
case function_sym:
if (sym->flags & BSF_FUNCTION)
do_print = FALSE;
break;
case stop_offset_reached:
/* Handled by the while loop. */
break;
case next_sym:
/* FIXME: There is an implicit assumption here
that the name of sym is different from
paux->symbol. */
if (! bfd_is_local_label (abfd, sym))
do_print = FALSE;
break;
}
}
else
{
const char * name = bfd_asymbol_name (sym);
char * alloc = NULL;
if (do_demangle && name[0] != '\0')
{
/* Demangle the name. */
alloc = bfd_demangle (abfd, name, demangle_flags);
if (alloc != NULL)
name = alloc;
}
/* We are not currently printing. Check to see
if the current symbol matches the requested symbol. */
if (streq (name, paux->symbol))
{
do_print = TRUE;
if (sym->flags & BSF_FUNCTION)
{
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
&& ((elf_symbol_type *) sym)->internal_elf_sym.st_size > 0)
{
/* Sym is a function symbol with a size associated
with it. Turn on automatic disassembly for the
next VALUE bytes. */
stop_offset = addr_offset
+ ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
loop_until = stop_offset_reached;
}
else
{
/* Otherwise we need to tell the loop heuristic to
loop until the next function symbol is encountered. */
loop_until = function_sym;
}
}
else
{
/* Otherwise loop until the next symbol is encountered. */
loop_until = next_sym;
}
}
free (alloc);
}
}
if (! prefix_addresses && do_print)
{
pinfo->fprintf_func (pinfo->stream, "\n");
objdump_print_addr_with_sym (abfd, section, sym, addr,
pinfo, FALSE);
pinfo->fprintf_func (pinfo->stream, ":\n");
}
if (sym != NULL && bfd_asymbol_value (sym) > addr)
nextsym = sym;
else if (sym == NULL)
nextsym = NULL;
else
{
#define is_valid_next_sym(SYM) \
(strcmp (bfd_section_name ((SYM)->section), bfd_section_name (section)) == 0 \
&& (bfd_asymbol_value (SYM) > bfd_asymbol_value (sym)) \
&& pinfo->symbol_is_valid (SYM, pinfo))
/* Search forward for the next appropriate symbol in
SECTION. Note that all the symbols are sorted
together into one big array, and that some sections
may have overlapping addresses. */
while (place < sorted_symcount
&& ! is_valid_next_sym (sorted_syms [place]))
++place;
if (place >= sorted_symcount)
nextsym = NULL;
else
nextsym = sorted_syms[place];
}
if (sym != NULL && bfd_asymbol_value (sym) > addr)
nextstop_offset = bfd_asymbol_value (sym) - section->vma;
else if (nextsym == NULL)
nextstop_offset = stop_offset;
else
nextstop_offset = bfd_asymbol_value (nextsym) - section->vma;
if (nextstop_offset > stop_offset
|| nextstop_offset <= addr_offset)
nextstop_offset = stop_offset;
/* If a symbol is explicitly marked as being an object
rather than a function, just dump the bytes without
disassembling them. */
if (disassemble_all
|| sym == NULL
|| sym->section != section
|| bfd_asymbol_value (sym) > addr
|| ((sym->flags & BSF_OBJECT) == 0
&& (strstr (bfd_asymbol_name (sym), "gnu_compiled")
== NULL)
&& (strstr (bfd_asymbol_name (sym), "gcc2_compiled")
== NULL))
|| (sym->flags & BSF_FUNCTION) != 0)
insns = TRUE;
else
insns = FALSE;
if (do_print)
{
/* Resolve symbol name. */
if (visualize_jumps && abfd && sym && sym->name)
{
struct disassemble_info di;
SFILE sf;
sf.alloc = strlen (sym->name) + 40;
sf.buffer = (char*) xmalloc (sf.alloc);
sf.pos = 0;
di.fprintf_func = (fprintf_ftype) objdump_sprintf;
di.stream = &sf;
objdump_print_symname (abfd, &di, sym);
/* Fetch jump information. */
detected_jumps = disassemble_jumps
(pinfo, paux->disassemble_fn,
addr_offset, nextstop_offset,
rel_offset, &rel_pp, rel_ppend);
/* Free symbol name. */
free (sf.buffer);
}
/* Add jumps to output. */
disassemble_bytes (pinfo, paux->disassemble_fn, insns, data,
addr_offset, nextstop_offset,
rel_offset, &rel_pp, rel_ppend);
/* Free jumps. */
while (detected_jumps)
{
detected_jumps = jump_info_free (detected_jumps);
}
}
addr_offset = nextstop_offset;
sym = nextsym;
}
free (data);
if (rel_ppstart != NULL)
free (rel_ppstart);
}
/* Disassemble the contents of an object file. */
static void
disassemble_data (bfd *abfd)
{
struct disassemble_info disasm_info;
struct objdump_disasm_info aux;
long i;
print_files = NULL;
prev_functionname = NULL;
prev_line = -1;
prev_discriminator = 0;
/* We make a copy of syms to sort. We don't want to sort syms
because that will screw up the relocs. */
sorted_symcount = symcount ? symcount : dynsymcount;
sorted_syms = (asymbol **) xmalloc ((sorted_symcount + synthcount)
* sizeof (asymbol *));
if (sorted_symcount != 0)
{
memcpy (sorted_syms, symcount ? syms : dynsyms,
sorted_symcount * sizeof (asymbol *));
sorted_symcount = remove_useless_symbols (sorted_syms, sorted_symcount);
}
for (i = 0; i < synthcount; ++i)
{
sorted_syms[sorted_symcount] = synthsyms + i;
++sorted_symcount;
}
init_disassemble_info (&disasm_info, stdout, (fprintf_ftype) fprintf);
disasm_info.application_data = (void *) &aux;
aux.abfd = abfd;
aux.require_sec = FALSE;
aux.dynrelbuf = NULL;
aux.dynrelcount = 0;
aux.reloc = NULL;
aux.symbol = disasm_sym;
disasm_info.print_address_func = objdump_print_address;
disasm_info.symbol_at_address_func = objdump_symbol_at_address;
if (machine != NULL)
{
const bfd_arch_info_type *inf = bfd_scan_arch (machine);
if (inf == NULL)
fatal (_("can't use supplied machine %s"), machine);
abfd->arch_info = inf;
}
if (endian != BFD_ENDIAN_UNKNOWN)
{
struct bfd_target *xvec;
xvec = (struct bfd_target *) xmalloc (sizeof (struct bfd_target));
memcpy (xvec, abfd->xvec, sizeof (struct bfd_target));
xvec->byteorder = endian;
abfd->xvec = xvec;
}
/* Use libopcodes to locate a suitable disassembler. */
aux.disassemble_fn = disassembler (bfd_get_arch (abfd),
bfd_big_endian (abfd),
bfd_get_mach (abfd), abfd);
if (!aux.disassemble_fn)
{
non_fatal (_("can't disassemble for architecture %s\n"),
bfd_printable_arch_mach (bfd_get_arch (abfd), 0));
exit_status = 1;
return;
}
disasm_info.flavour = bfd_get_flavour (abfd);
disasm_info.arch = bfd_get_arch (abfd);
disasm_info.mach = bfd_get_mach (abfd);
disasm_info.disassembler_options = disassembler_options;
disasm_info.octets_per_byte = bfd_octets_per_byte (abfd, NULL);
disasm_info.skip_zeroes = DEFAULT_SKIP_ZEROES;
disasm_info.skip_zeroes_at_end = DEFAULT_SKIP_ZEROES_AT_END;
disasm_info.disassembler_needs_relocs = FALSE;
if (bfd_big_endian (abfd))
disasm_info.display_endian = disasm_info.endian = BFD_ENDIAN_BIG;
else if (bfd_little_endian (abfd))
disasm_info.display_endian = disasm_info.endian = BFD_ENDIAN_LITTLE;
else
/* ??? Aborting here seems too drastic. We could default to big or little
instead. */
disasm_info.endian = BFD_ENDIAN_UNKNOWN;
disasm_info.endian_code = disasm_info.endian;
/* Allow the target to customize the info structure. */
disassemble_init_for_target (& disasm_info);
/* Pre-load the dynamic relocs as we may need them during the disassembly. */
{
long relsize = bfd_get_dynamic_reloc_upper_bound (abfd);
if (relsize < 0 && dump_dynamic_reloc_info)
bfd_fatal (bfd_get_filename (abfd));
if (relsize > 0)
{
aux.dynrelbuf = (arelent **) xmalloc (relsize);
aux.dynrelcount = bfd_canonicalize_dynamic_reloc (abfd,
aux.dynrelbuf,
dynsyms);
if (aux.dynrelcount < 0)
bfd_fatal (bfd_get_filename (abfd));
/* Sort the relocs by address. */
qsort (aux.dynrelbuf, aux.dynrelcount, sizeof (arelent *),
compare_relocs);
}
}
disasm_info.symtab = sorted_syms;
disasm_info.symtab_size = sorted_symcount;
bfd_map_over_sections (abfd, disassemble_section, & disasm_info);
if (aux.dynrelbuf != NULL)
free (aux.dynrelbuf);
free (sorted_syms);
disassemble_free_target (&disasm_info);
}
static bfd_boolean
load_specific_debug_section (enum dwarf_section_display_enum debug,
asection *sec, void *file)
{
struct dwarf_section *section = &debug_displays [debug].section;
bfd *abfd = (bfd *) file;
bfd_byte *contents;
bfd_size_type amt;
size_t alloced;
if (section->start != NULL)
{
/* If it is already loaded, do nothing. */
if (streq (section->filename, bfd_get_filename (abfd)))
return TRUE;
free (section->start);
}
section->filename = bfd_get_filename (abfd);
section->reloc_info = NULL;
section->num_relocs = 0;
section->address = bfd_section_vma (sec);
section->user_data = sec;
section->size = bfd_section_size (sec);
/* PR 24360: On 32-bit hosts sizeof (size_t) < sizeof (bfd_size_type). */
alloced = amt = section->size + 1;
if (alloced != amt || alloced == 0)
{
section->start = NULL;
free_debug_section (debug);
printf (_("\nSection '%s' has an invalid size: %#llx.\n"),
sanitize_string (section->name),
(unsigned long long) section->size);
return FALSE;
}
section->start = contents = malloc (alloced);
if (section->start == NULL
|| !bfd_get_full_section_contents (abfd, sec, &contents))
{
free_debug_section (debug);
printf (_("\nCan't get contents for section '%s'.\n"),
sanitize_string (section->name));
return FALSE;
}
/* Ensure any string section has a terminating NUL. */
section->start[section->size] = 0;
if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
&& debug_displays [debug].relocate)
{
long reloc_size;
bfd_boolean ret;
bfd_cache_section_contents (sec, section->start);
ret = bfd_simple_get_relocated_section_contents (abfd,
sec,
section->start,
syms) != NULL;
if (! ret)
{
free_debug_section (debug);
printf (_("\nCan't get contents for section '%s'.\n"),
sanitize_string (section->name));
return FALSE;
}
reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
if (reloc_size > 0)
{
unsigned long reloc_count;
arelent **relocs;
relocs = (arelent **) xmalloc (reloc_size);
reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, NULL);
if (reloc_count == 0)
free (relocs);
else
{
section->reloc_info = relocs;
section->num_relocs = reloc_count;
}
}
}
return TRUE;
}
bfd_boolean
reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
{
arelent ** relocs;
arelent * rp;
if (dsec == NULL || dsec->reloc_info == NULL)
return FALSE;
relocs = (arelent **) dsec->reloc_info;
for (; (rp = * relocs) != NULL; ++ relocs)
if (rp->address == offset)
return TRUE;
return FALSE;
}
bfd_boolean
load_debug_section (enum dwarf_section_display_enum debug, void *file)
{
struct dwarf_section *section = &debug_displays [debug].section;
bfd *abfd = (bfd *) file;
asection *sec;
/* If it is already loaded, do nothing. */
if (section->start != NULL)
{
if (streq (section->filename, bfd_get_filename (abfd)))
return TRUE;
}
/* Locate the debug section. */
sec = bfd_get_section_by_name (abfd, section->uncompressed_name);
if (sec != NULL)
section->name = section->uncompressed_name;
else
{
sec = bfd_get_section_by_name (abfd, section->compressed_name);
if (sec != NULL)
section->name = section->compressed_name;
}
if (sec == NULL)
return FALSE;
return load_specific_debug_section (debug, sec, file);
}
void
free_debug_section (enum dwarf_section_display_enum debug)
{
struct dwarf_section *section = &debug_displays [debug].section;
if (section->start == NULL)
return;
/* PR 17512: file: 0f67f69d. */
if (section->user_data != NULL)
{
asection * sec = (asection *) section->user_data;
/* If we are freeing contents that are also pointed to by the BFD
library's section structure then make sure to update those pointers
too. Otherwise, the next time we try to load data for this section
we can end up using a stale pointer. */
if (section->start == sec->contents)
{
sec->contents = NULL;
sec->flags &= ~ SEC_IN_MEMORY;
sec->compress_status = COMPRESS_SECTION_NONE;
}
}
free ((char *) section->start);
section->start = NULL;
section->address = 0;
section->size = 0;
}
void
close_debug_file (void * file)
{
bfd * abfd = (bfd *) file;
bfd_close (abfd);
}
void *
open_debug_file (const char * pathname)
{
bfd * data;
data = bfd_openr (pathname, NULL);
if (data == NULL)
return NULL;
if (! bfd_check_format (data, bfd_object))
return NULL;
return data;
}
#if HAVE_LIBDEBUGINFOD
/* Return a hex string represention of the build-id. */
unsigned char *
get_build_id (void * data)
{
unsigned i;
char * build_id_str;
bfd * abfd = (bfd *) data;
const struct bfd_build_id * build_id;
build_id = abfd->build_id;
if (build_id == NULL)
return NULL;
build_id_str = malloc (build_id->size * 2 + 1);
if (build_id_str == NULL)
return NULL;
for (i = 0; i < build_id->size; i++)
sprintf (build_id_str + (i * 2), "%02x", build_id->data[i]);
build_id_str[build_id->size * 2] = '\0';
return (unsigned char *)build_id_str;
}
#endif /* HAVE_LIBDEBUGINFOD */
static void
dump_dwarf_section (bfd *abfd, asection *section,
void *arg ATTRIBUTE_UNUSED)
{
const char *name = bfd_section_name (section);
const char *match;
int i;
if (CONST_STRNEQ (name, ".gnu.linkonce.wi."))
match = ".debug_info";
else
match = name;
for (i = 0; i < max; i++)
if ((strcmp (debug_displays [i].section.uncompressed_name, match) == 0
|| strcmp (debug_displays [i].section.compressed_name, match) == 0)
&& debug_displays [i].enabled != NULL
&& *debug_displays [i].enabled)
{
struct dwarf_section *sec = &debug_displays [i].section;
if (strcmp (sec->uncompressed_name, match) == 0)
sec->name = sec->uncompressed_name;
else
sec->name = sec->compressed_name;
if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
section, abfd))
{
debug_displays [i].display (sec, abfd);
if (i != info && i != abbrev)
free_debug_section ((enum dwarf_section_display_enum) i);
}
break;
}
}
/* Dump the dwarf debugging information. */
static void
dump_dwarf (bfd *abfd)
{
/* The byte_get pointer should have been set at the start of dump_bfd(). */
if (byte_get == NULL)
{
warn (_("File %s does not contain any dwarf debug information\n"),
bfd_get_filename (abfd));
return;
}
switch (bfd_get_arch (abfd))
{
case bfd_arch_s12z:
/* S12Z has a 24 bit address space. But the only known
producer of dwarf_info encodes addresses into 32 bits. */
eh_addr_size = 4;
break;
default:
eh_addr_size = bfd_arch_bits_per_address (abfd) / 8;
break;
}
init_dwarf_regnames_by_bfd_arch_and_mach (bfd_get_arch (abfd),
bfd_get_mach (abfd));
bfd_map_over_sections (abfd, dump_dwarf_section, NULL);
}
/* Read ABFD's stabs section STABSECT_NAME, and return a pointer to
it. Return NULL on failure. */
static bfd_byte *
read_section_stabs (bfd *abfd, const char *sect_name, bfd_size_type *size_ptr,
bfd_size_type *entsize_ptr)
{
asection *stabsect;
bfd_byte *contents;
stabsect = bfd_get_section_by_name (abfd, sect_name);
if (stabsect == NULL)
{
printf (_("No %s section present\n\n"),
sanitize_string (sect_name));
return FALSE;
}
if (!bfd_malloc_and_get_section (abfd, stabsect, &contents))
{
non_fatal (_("reading %s section of %s failed: %s"),
sect_name, bfd_get_filename (abfd),
bfd_errmsg (bfd_get_error ()));
exit_status = 1;
free (contents);
return NULL;
}
*size_ptr = bfd_section_size (stabsect);
if (entsize_ptr)
*entsize_ptr = stabsect->entsize;
return contents;
}
/* Stabs entries use a 12 byte format:
4 byte string table index
1 byte stab type
1 byte stab other field
2 byte stab desc field
4 byte stab value
FIXME: This will have to change for a 64 bit object format. */
#define STRDXOFF (0)
#define TYPEOFF (4)
#define OTHEROFF (5)
#define DESCOFF (6)
#define VALOFF (8)
#define STABSIZE (12)
/* Print ABFD's stabs section STABSECT_NAME (in `stabs'),
using string table section STRSECT_NAME (in `strtab'). */
static void
print_section_stabs (bfd *abfd,
const char *stabsect_name,
unsigned *string_offset_ptr)
{
int i;
unsigned file_string_table_offset = 0;
unsigned next_file_string_table_offset = *string_offset_ptr;
bfd_byte *stabp, *stabs_end;
stabp = stabs;
stabs_end = stabp + stab_size;
printf (_("Contents of %s section:\n\n"), sanitize_string (stabsect_name));
printf ("Symnum n_type n_othr n_desc n_value n_strx String\n");
/* Loop through all symbols and print them.
We start the index at -1 because there is a dummy symbol on
the front of stabs-in-{coff,elf} sections that supplies sizes. */
for (i = -1; stabp <= stabs_end - STABSIZE; stabp += STABSIZE, i++)
{
const char *name;
unsigned long strx;
unsigned char type, other;
unsigned short desc;
bfd_vma value;
strx = bfd_h_get_32 (abfd, stabp + STRDXOFF);
type = bfd_h_get_8 (abfd, stabp + TYPEOFF);
other = bfd_h_get_8 (abfd, stabp + OTHEROFF);
desc = bfd_h_get_16 (abfd, stabp + DESCOFF);
value = bfd_h_get_32 (abfd, stabp + VALOFF);
printf ("\n%-6d ", i);
/* Either print the stab name, or, if unnamed, print its number
again (makes consistent formatting for tools like awk). */
name = bfd_get_stab_name (type);
if (name != NULL)
printf ("%-6s", sanitize_string (name));
else if (type == N_UNDF)
printf ("HdrSym");
else
printf ("%-6d", type);
printf (" %-6d %-6d ", other, desc);
bfd_printf_vma (abfd, value);
printf (" %-6lu", strx);
/* Symbols with type == 0 (N_UNDF) specify the length of the
string table associated with this file. We use that info
to know how to relocate the *next* file's string table indices. */
if (type == N_UNDF)
{
file_string_table_offset = next_file_string_table_offset;
next_file_string_table_offset += value;
}
else
{
bfd_size_type amt = strx + file_string_table_offset;
/* Using the (possibly updated) string table offset, print the
string (if any) associated with this symbol. */
if (amt < stabstr_size)
/* PR 17512: file: 079-79389-0.001:0.1.
FIXME: May need to sanitize this string before displaying. */
printf (" %.*s", (int)(stabstr_size - amt), strtab + amt);
else
printf (" *");
}
}
printf ("\n\n");
*string_offset_ptr = next_file_string_table_offset;
}
typedef struct
{
const char * section_name;
const char * string_section_name;
unsigned string_offset;
}
stab_section_names;
static void
find_stabs_section (bfd *abfd, asection *section, void *names)
{
int len;
stab_section_names * sought = (stab_section_names *) names;
/* Check for section names for which stabsect_name is a prefix, to
handle .stab.N, etc. */
len = strlen (sought->section_name);
/* If the prefix matches, and the files section name ends with a
nul or a digit, then we match. I.e., we want either an exact
match or a section followed by a number. */
if (strncmp (sought->section_name, section->name, len) == 0
&& (section->name[len] == 0
|| (section->name[len] == '.' && ISDIGIT (section->name[len + 1]))))
{
if (strtab == NULL)
strtab = read_section_stabs (abfd, sought->string_section_name,
&stabstr_size, NULL);
if (strtab)
{
stabs = read_section_stabs (abfd, section->name, &stab_size, NULL);
if (stabs)
print_section_stabs (abfd, section->name, &sought->string_offset);
}
}
}
static void
dump_stabs_section (bfd *abfd, char *stabsect_name, char *strsect_name)
{
stab_section_names s;
s.section_name = stabsect_name;
s.string_section_name = strsect_name;
s.string_offset = 0;
bfd_map_over_sections (abfd, find_stabs_section, & s);
free (strtab);
strtab = NULL;
}
/* Dump the any sections containing stabs debugging information. */
static void
dump_stabs (bfd *abfd)
{
dump_stabs_section (abfd, ".stab", ".stabstr");
dump_stabs_section (abfd, ".stab.excl", ".stab.exclstr");
dump_stabs_section (abfd, ".stab.index", ".stab.indexstr");
/* For Darwin. */
dump_stabs_section (abfd, "LC_SYMTAB.stabs", "LC_SYMTAB.stabstr");
dump_stabs_section (abfd, "$GDB_SYMBOLS$", "$GDB_STRINGS$");
}
static void
dump_bfd_header (bfd *abfd)
{
char *comma = "";
printf (_("architecture: %s, "),
bfd_printable_arch_mach (bfd_get_arch (abfd),
bfd_get_mach (abfd)));
printf (_("flags 0x%08x:\n"), abfd->flags & ~BFD_FLAGS_FOR_BFD_USE_MASK);
#define PF(x, y) if (abfd->flags & x) {printf ("%s%s", comma, y); comma=", ";}
PF (HAS_RELOC, "HAS_RELOC");
PF (EXEC_P, "EXEC_P");
PF (HAS_LINENO, "HAS_LINENO");
PF (HAS_DEBUG, "HAS_DEBUG");
PF (HAS_SYMS, "HAS_SYMS");
PF (HAS_LOCALS, "HAS_LOCALS");
PF (DYNAMIC, "DYNAMIC");
PF (WP_TEXT, "WP_TEXT");
PF (D_PAGED, "D_PAGED");
PF (BFD_IS_RELAXABLE, "BFD_IS_RELAXABLE");
printf (_("\nstart address 0x"));
bfd_printf_vma (abfd, abfd->start_address);
printf ("\n");
}
#ifdef ENABLE_LIBCTF
/* Formatting callback function passed to ctf_dump. Returns either the pointer
it is passed, or a pointer to newly-allocated storage, in which case
dump_ctf() will free it when it no longer needs it. */
static char *
dump_ctf_indent_lines (ctf_sect_names_t sect ATTRIBUTE_UNUSED,
char *s, void *arg)
{
const char *blanks = arg;
char *new_s;
if (asprintf (&new_s, "%s%s", blanks, s) < 0)
return s;
return new_s;
}
/* Make a ctfsect suitable for ctf_bfdopen_ctfsect(). */
static ctf_sect_t
make_ctfsect (const char *name, bfd_byte *data,
bfd_size_type size)
{
ctf_sect_t ctfsect;
ctfsect.cts_name = name;
ctfsect.cts_entsize = 1;
ctfsect.cts_size = size;
ctfsect.cts_data = data;
return ctfsect;
}
/* Dump one CTF archive member. */
static int
dump_ctf_archive_member (ctf_file_t *ctf, const char *name, void *arg)
{
ctf_file_t *parent = (ctf_file_t *) arg;
const char *things[] = {"Header", "Labels", "Data objects",
"Function objects", "Variables", "Types", "Strings",
""};
const char **thing;
size_t i;
/* Only print out the name of non-default-named archive members.
The name .ctf appears everywhere, even for things that aren't
really archives, so printing it out is liable to be confusing.
The parent, if there is one, is the default-owned archive member:
avoid importing it into itself. (This does no harm, but looks
confusing.) */
if (strcmp (name, ".ctf") != 0)
{
printf (_("\nCTF archive member: %s:\n"), sanitize_string (name));
ctf_import (ctf, parent);
}
for (i = 0, thing = things; *thing[0]; thing++, i++)
{
ctf_dump_state_t *s = NULL;
char *item;
printf ("\n %s:\n", *thing);
while ((item = ctf_dump (ctf, &s, i, dump_ctf_indent_lines,
(void *) " ")) != NULL)
{
printf ("%s\n", item);
free (item);
}
if (ctf_errno (ctf))
{
non_fatal (_("Iteration failed: %s, %s\n"), *thing,
ctf_errmsg (ctf_errno (ctf)));
break;
}
}
return 0;
}
/* Dump the CTF debugging information. */
static void
dump_ctf (bfd *abfd, const char *sect_name, const char *parent_name)
{
ctf_archive_t *ctfa, *parenta = NULL, *lookparent;
bfd_byte *ctfdata, *parentdata = NULL;
bfd_size_type ctfsize, parentsize;
ctf_sect_t ctfsect;
ctf_file_t *parent = NULL;
int err;
if ((ctfdata = read_section_stabs (abfd, sect_name, &ctfsize, NULL)) == NULL)
bfd_fatal (bfd_get_filename (abfd));
if (parent_name
&& (parentdata = read_section_stabs (abfd, parent_name, &parentsize,
NULL)) == NULL)
bfd_fatal (bfd_get_filename (abfd));
/* Load the CTF file and dump it. */
ctfsect = make_ctfsect (sect_name, ctfdata, ctfsize);
if ((ctfa = ctf_bfdopen_ctfsect (abfd, &ctfsect, &err)) == NULL)
{
non_fatal (_("CTF open failure: %s\n"), ctf_errmsg (err));
bfd_fatal (bfd_get_filename (abfd));
}
if (parentdata)
{
ctfsect = make_ctfsect (parent_name, parentdata, parentsize);
if ((parenta = ctf_bfdopen_ctfsect (abfd, &ctfsect, &err)) == NULL)
{
non_fatal (_("CTF open failure: %s\n"), ctf_errmsg (err));
bfd_fatal (bfd_get_filename (abfd));
}
lookparent = parenta;
}
else
lookparent = ctfa;
/* Assume that the applicable parent archive member is the default one.
(This is what all known implementations are expected to do, if they
put CTFs and their parents in archives together.) */
if ((parent = ctf_arc_open_by_name (lookparent, NULL, &err)) == NULL)
{
non_fatal (_("CTF open failure: %s\n"), ctf_errmsg (err));
bfd_fatal (bfd_get_filename (abfd));
}
printf (_("Contents of CTF section %s:\n"), sanitize_string (sect_name));
ctf_archive_iter (ctfa, dump_ctf_archive_member, parent);
ctf_file_close (parent);
ctf_close (ctfa);
ctf_close (parenta);
free (parentdata);
free (ctfdata);
}
#else
static void
dump_ctf (bfd *abfd ATTRIBUTE_UNUSED, const char *sect_name ATTRIBUTE_UNUSED,
const char *parent_name ATTRIBUTE_UNUSED) {}
#endif
static void
dump_bfd_private_header (bfd *abfd)
{
if (!bfd_print_private_bfd_data (abfd, stdout))
non_fatal (_("warning: private headers incomplete: %s"),
bfd_errmsg (bfd_get_error ()));
}
static void
dump_target_specific (bfd *abfd)
{
const struct objdump_private_desc * const *desc;
struct objdump_private_option *opt;
char *e, *b;
/* Find the desc. */
for (desc = objdump_private_vectors; *desc != NULL; desc++)
if ((*desc)->filter (abfd))
break;
if (*desc == NULL)
{
non_fatal (_("option -P/--private not supported by this file"));
return;
}
/* Clear all options. */
for (opt = (*desc)->options; opt->name; opt++)
opt->selected = FALSE;
/* Decode options. */
b = dump_private_options;
do
{
e = strchr (b, ',');
if (e)
*e = 0;
for (opt = (*desc)->options; opt->name; opt++)
if (strcmp (opt->name, b) == 0)
{
opt->selected = TRUE;
break;
}
if (opt->name == NULL)
non_fatal (_("target specific dump '%s' not supported"), b);
if (e)
{
*e = ',';
b = e + 1;
}
}
while (e != NULL);
/* Dump. */
(*desc)->dump (abfd);
}
/* Display a section in hexadecimal format with associated characters.
Each line prefixed by the zero padded address. */
static void
dump_section (bfd *abfd, asection *section, void *dummy ATTRIBUTE_UNUSED)
{
bfd_byte *data = NULL;
bfd_size_type datasize;
bfd_vma addr_offset;
bfd_vma start_offset;
bfd_vma stop_offset;
unsigned int opb = bfd_octets_per_byte (abfd, section);
/* Bytes per line. */
const int onaline = 16;
char buf[64];
int count;
int width;
if ((section->flags & SEC_HAS_CONTENTS) == 0)
return;
if (! process_section_p (section))
return;
if ((datasize = bfd_section_size (section)) == 0)
return;
/* Compute the address range to display. */
if (start_address == (bfd_vma) -1
|| start_address < section->vma)
start_offset = 0;
else
start_offset = start_address - section->vma;
if (stop_address == (bfd_vma) -1)
stop_offset = datasize / opb;
else
{
if (stop_address < section->vma)
stop_offset = 0;
else
stop_offset = stop_address - section->vma;
if (stop_offset > datasize / opb)
stop_offset = datasize / opb;
}
if (start_offset >= stop_offset)
return;
printf (_("Contents of section %s:"), sanitize_string (section->name));
if (display_file_offsets)
printf (_(" (Starting at file offset: 0x%lx)"),
(unsigned long) (section->filepos + start_offset));
printf ("\n");
if (!bfd_get_full_section_contents (abfd, section, &data))
{
non_fatal (_("Reading section %s failed because: %s"),
section->name, bfd_errmsg (bfd_get_error ()));
return;
}
width = 4;
bfd_sprintf_vma (abfd, buf, start_offset + section->vma);
if (strlen (buf) >= sizeof (buf))
abort ();
count = 0;
while (buf[count] == '0' && buf[count+1] != '\0')
count++;
count = strlen (buf) - count;
if (count > width)
width = count;
bfd_sprintf_vma (abfd, buf, stop_offset + section->vma - 1);
if (strlen (buf) >= sizeof (buf))
abort ();
count = 0;
while (buf[count] == '0' && buf[count+1] != '\0')
count++;
count = strlen (buf) - count;
if (count > width)
width = count;
for (addr_offset = start_offset;
addr_offset < stop_offset; addr_offset += onaline / opb)
{
bfd_size_type j;
bfd_sprintf_vma (abfd, buf, (addr_offset + section->vma));
count = strlen (buf);
if ((size_t) count >= sizeof (buf))
abort ();
putchar (' ');
while (count < width)
{
putchar ('0');
count++;
}
fputs (buf + count - width, stdout);
putchar (' ');
for (j = addr_offset * opb;
j < addr_offset * opb + onaline; j++)
{
if (j < stop_offset * opb)
printf ("%02x", (unsigned) (data[j]));
else
printf (" ");
if ((j & 3) == 3)
printf (" ");
}
printf (" ");
for (j = addr_offset * opb;
j < addr_offset * opb + onaline; j++)
{
if (j >= stop_offset * opb)
printf (" ");
else
printf ("%c", ISPRINT (data[j]) ? data[j] : '.');
}
putchar ('\n');
}
free (data);
}
/* Actually display the various requested regions. */
static void
dump_data (bfd *abfd)
{
bfd_map_over_sections (abfd, dump_section, NULL);
}
/* Should perhaps share code and display with nm? */
static void
dump_symbols (bfd *abfd ATTRIBUTE_UNUSED, bfd_boolean dynamic)
{
asymbol **current;
long max_count;
long count;
if (dynamic)
{
current = dynsyms;
max_count = dynsymcount;
printf ("DYNAMIC SYMBOL TABLE:\n");
}
else
{
current = syms;
max_count = symcount;
printf ("SYMBOL TABLE:\n");
}
if (max_count == 0)
printf (_("no symbols\n"));
for (count = 0; count < max_count; count++)
{
bfd *cur_bfd;
if (*current == NULL)
printf (_("no information for symbol number %ld\n"), count);
else if ((cur_bfd = bfd_asymbol_bfd (*current)) == NULL)
printf (_("could not determine the type of symbol number %ld\n"),
count);
else if (process_section_p ((* current)->section)
&& (dump_special_syms
|| !bfd_is_target_special_symbol (cur_bfd, *current)))
{
const char *name = (*current)->name;
if (do_demangle && name != NULL && *name != '\0')
{
char *alloc;
/* If we want to demangle the name, we demangle it
here, and temporarily clobber it while calling
bfd_print_symbol. FIXME: This is a gross hack. */
alloc = bfd_demangle (cur_bfd, name, demangle_flags);
if (alloc != NULL)
(*current)->name = alloc;
bfd_print_symbol (cur_bfd, stdout, *current,
bfd_print_symbol_all);
if (alloc != NULL)
{
(*current)->name = name;
free (alloc);
}
}
else
bfd_print_symbol (cur_bfd, stdout, *current,
bfd_print_symbol_all);
printf ("\n");
}
current++;
}
printf ("\n\n");
}
static void
dump_reloc_set (bfd *abfd, asection *sec, arelent **relpp, long relcount)
{
arelent **p;
char *last_filename, *last_functionname;
unsigned int last_line;
unsigned int last_discriminator;
/* Get column headers lined up reasonably. */
{
static int width;
if (width == 0)
{
char buf[30];
bfd_sprintf_vma (abfd, buf, (bfd_vma) -1);
width = strlen (buf) - 7;
}
printf ("OFFSET %*s TYPE %*s VALUE \n", width, "", 12, "");
}
last_filename = NULL;
last_functionname = NULL;
last_line = 0;
last_discriminator = 0;
for (p = relpp; relcount && *p != NULL; p++, relcount--)
{
arelent *q = *p;
const char *filename, *functionname;
unsigned int linenumber;
unsigned int discriminator;
const char *sym_name;
const char *section_name;
bfd_vma addend2 = 0;
if (start_address != (bfd_vma) -1
&& q->address < start_address)
continue;
if (stop_address != (bfd_vma) -1
&& q->address > stop_address)
continue;
if (with_line_numbers
&& sec != NULL
&& bfd_find_nearest_line_discriminator (abfd, sec, syms, q->address,
&filename, &functionname,
&linenumber, &discriminator))
{
if (functionname != NULL
&& (last_functionname == NULL
|| strcmp (functionname, last_functionname) != 0))
{
printf ("%s():\n", sanitize_string (functionname));
if (last_functionname != NULL)
free (last_functionname);
last_functionname = xstrdup (functionname);
}
if (linenumber > 0
&& (linenumber != last_line
|| (filename != NULL
&& last_filename != NULL
&& filename_cmp (filename, last_filename) != 0)
|| (discriminator != last_discriminator)))
{
if (discriminator > 0)
printf ("%s:%u\n", filename == NULL ? "???" :
sanitize_string (filename), linenumber);
else
printf ("%s:%u (discriminator %u)\n",
filename == NULL ? "???" : sanitize_string (filename),
linenumber, discriminator);
last_line = linenumber;
last_discriminator = discriminator;
if (last_filename != NULL)
free (last_filename);
if (filename == NULL)
last_filename = NULL;
else
last_filename = xstrdup (filename);
}
}
if (q->sym_ptr_ptr && *q->sym_ptr_ptr)
{
sym_name = (*(q->sym_ptr_ptr))->name;
section_name = (*(q->sym_ptr_ptr))->section->name;
}
else
{
sym_name = NULL;
section_name = NULL;
}
bfd_printf_vma (abfd, q->address);
if (q->howto == NULL)
printf (" *unknown* ");
else if (q->howto->name)
{
const char *name = q->howto->name;
/* R_SPARC_OLO10 relocations contain two addends.
But because 'arelent' lacks enough storage to
store them both, the 64-bit ELF Sparc backend
records this as two relocations. One R_SPARC_LO10
and one R_SPARC_13, both pointing to the same
address. This is merely so that we have some
place to store both addend fields.
Undo this transformation, otherwise the output
will be confusing. */
if (abfd->xvec->flavour == bfd_target_elf_flavour
&& elf_tdata (abfd)->elf_header->e_machine == EM_SPARCV9
&& relcount > 1
&& !strcmp (q->howto->name, "R_SPARC_LO10"))
{
arelent *q2 = *(p + 1);
if (q2 != NULL
&& q2->howto
&& q->address == q2->address
&& !strcmp (q2->howto->name, "R_SPARC_13"))
{
name = "R_SPARC_OLO10";
addend2 = q2->addend;
p++;
}
}
printf (" %-16s ", name);
}
else
printf (" %-16d ", q->howto->type);
if (sym_name)
{
objdump_print_symname (abfd, NULL, *q->sym_ptr_ptr);
}
else
{
if (section_name == NULL)
section_name = "*unknown*";
printf ("[%s]", sanitize_string (section_name));
}
if (q->addend)
{
bfd_signed_vma addend = q->addend;
if (addend < 0)
{
printf ("-0x");
addend = -addend;
}
else
printf ("+0x");
bfd_printf_vma (abfd, addend);
}
if (addend2)
{
printf ("+0x");
bfd_printf_vma (abfd, addend2);
}
printf ("\n");
}
if (last_filename != NULL)
free (last_filename);
if (last_functionname != NULL)
free (last_functionname);
}
static void
dump_relocs_in_section (bfd *abfd,
asection *section,
void *dummy ATTRIBUTE_UNUSED)
{
arelent **relpp = NULL;
long relcount;
long relsize;
if ( bfd_is_abs_section (section)
|| bfd_is_und_section (section)
|| bfd_is_com_section (section)
|| (! process_section_p (section))
|| ((section->flags & SEC_RELOC) == 0))
return;
printf ("RELOCATION RECORDS FOR [%s]:", sanitize_string (section->name));
relsize = bfd_get_reloc_upper_bound (abfd, section);
if (relsize == 0)
{
printf (" (none)\n\n");
return;
}
if (relsize < 0)
relcount = relsize;
else
{
relpp = (arelent **) xmalloc (relsize);
relcount = bfd_canonicalize_reloc (abfd, section, relpp, syms);
}
if (relcount < 0)
{
printf ("\n");
non_fatal (_("failed to read relocs in: %s"),
sanitize_string (bfd_get_filename (abfd)));
bfd_fatal (_("error message was"));
}
else if (relcount == 0)
printf (" (none)\n\n");
else
{
printf ("\n");
dump_reloc_set (abfd, section, relpp, relcount);
printf ("\n\n");
}
free (relpp);
}
static void
dump_relocs (bfd *abfd)
{
bfd_map_over_sections (abfd, dump_relocs_in_section, NULL);
}
static void
dump_dynamic_relocs (bfd *abfd)
{
long relsize;
arelent **relpp;
long relcount;
relsize = bfd_get_dynamic_reloc_upper_bound (abfd);
if (relsize < 0)
bfd_fatal (bfd_get_filename (abfd));
printf ("DYNAMIC RELOCATION RECORDS");
if (relsize == 0)
printf (" (none)\n\n");
else
{
relpp = (arelent **) xmalloc (relsize);
relcount = bfd_canonicalize_dynamic_reloc (abfd, relpp, dynsyms);
if (relcount < 0)
bfd_fatal (bfd_get_filename (abfd));
else if (relcount == 0)
printf (" (none)\n\n");
else
{
printf ("\n");
dump_reloc_set (abfd, NULL, relpp, relcount);
printf ("\n\n");
}
free (relpp);
}
}
/* Creates a table of paths, to search for source files. */
static void
add_include_path (const char *path)
{
if (path[0] == 0)
return;
include_path_count++;
include_paths = (const char **)
xrealloc (include_paths, include_path_count * sizeof (*include_paths));
#ifdef HAVE_DOS_BASED_FILE_SYSTEM
if (path[1] == ':' && path[2] == 0)
path = concat (path, ".", (const char *) 0);
#endif
include_paths[include_path_count - 1] = path;
}
static void
adjust_addresses (bfd *abfd ATTRIBUTE_UNUSED,
asection *section,
void *arg)
{
if ((section->flags & SEC_DEBUGGING) == 0)
{
bfd_boolean *has_reloc_p = (bfd_boolean *) arg;
section->vma += adjust_section_vma;
if (*has_reloc_p)
section->lma += adjust_section_vma;
}
}
/* Return the sign-extended form of an ARCH_SIZE sized VMA. */
static bfd_vma
sign_extend_address (bfd *abfd ATTRIBUTE_UNUSED,
bfd_vma vma,
unsigned arch_size)
{
bfd_vma mask;
mask = (bfd_vma) 1 << (arch_size - 1);
return (((vma & ((mask << 1) - 1)) ^ mask) - mask);
}
/* Dump selected contents of ABFD. */
static void
dump_bfd (bfd *abfd, bfd_boolean is_mainfile)
{
const struct elf_backend_data * bed;
if (bfd_big_endian (abfd))
byte_get = byte_get_big_endian;
else if (bfd_little_endian (abfd))
byte_get = byte_get_little_endian;
else
byte_get = NULL;
/* Load any separate debug information files.
We do this now and without checking do_follow_links because separate
debug info files may contain symbol tables that we will need when
displaying information about the main file. Any memory allocated by
load_separate_debug_files will be released when we call
free_debug_memory below.
The test on is_mainfile is there because the chain of separate debug
info files is a global variable shared by all invocations of dump_bfd. */
if (is_mainfile)
{
load_separate_debug_files (abfd, bfd_get_filename (abfd));
/* If asked to do so, recursively dump the separate files. */
if (do_follow_links)
{
separate_info * i;
for (i = first_separate_info; i != NULL; i = i->next)
dump_bfd (i->handle, FALSE);
}
}
/* Adjust user-specified start and stop limits for targets that use
signed addresses. */
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
&& (bed = get_elf_backend_data (abfd)) != NULL
&& bed->sign_extend_vma)
{
start_address = sign_extend_address (abfd, start_address,
bed->s->arch_size);
stop_address = sign_extend_address (abfd, stop_address,
bed->s->arch_size);
}
/* If we are adjusting section VMA's, change them all now. Changing
the BFD information is a hack. However, we must do it, or
bfd_find_nearest_line will not do the right thing. */
if (adjust_section_vma != 0)
{
bfd_boolean has_reloc = (abfd->flags & HAS_RELOC);
bfd_map_over_sections (abfd, adjust_addresses, &has_reloc);
}
if (! dump_debugging_tags && ! suppress_bfd_header)
printf (_("\n%s: file format %s\n"),
sanitize_string (bfd_get_filename (abfd)),
abfd->xvec->name);
if (dump_ar_hdrs)
print_arelt_descr (stdout, abfd, TRUE, FALSE);
if (dump_file_header)
dump_bfd_header (abfd);
if (dump_private_headers)
dump_bfd_private_header (abfd);
if (dump_private_options != NULL)
dump_target_specific (abfd);
if (! dump_debugging_tags && ! suppress_bfd_header)
putchar ('\n');
if (dump_symtab
|| dump_reloc_info
|| disassemble
|| dump_debugging
|| dump_dwarf_section_info)
{
syms = slurp_symtab (abfd);
/* If following links, load any symbol tables from the linked files as well. */
if (do_follow_links && is_mainfile)
{
separate_info * i;
for (i = first_separate_info; i != NULL; i = i->next)
{
asymbol ** extra_syms;
long old_symcount = symcount;
extra_syms = slurp_symtab (i->handle);
if (extra_syms)
{
if (old_symcount == 0)
{
syms = extra_syms;
}
else
{
syms = xrealloc (syms, (symcount + old_symcount) * sizeof (asymbol *));
memcpy (syms + old_symcount,
extra_syms,
symcount * sizeof (asymbol *));
}
}
symcount += old_symcount;
}
}
}
if (dump_section_headers)
dump_headers (abfd);
if (dump_dynamic_symtab || dump_dynamic_reloc_info
|| (disassemble && bfd_get_dynamic_symtab_upper_bound (abfd) > 0))
dynsyms = slurp_dynamic_symtab (abfd);
if (disassemble)
{
synthcount = bfd_get_synthetic_symtab (abfd, symcount, syms,
dynsymcount, dynsyms, &synthsyms);
if (synthcount < 0)
synthcount = 0;
}
if (dump_symtab)
dump_symbols (abfd, FALSE);
if (dump_dynamic_symtab)
dump_symbols (abfd, TRUE);
if (dump_dwarf_section_info)
dump_dwarf (abfd);
if (dump_ctf_section_info)
dump_ctf (abfd, dump_ctf_section_name, dump_ctf_parent_name);
if (dump_stab_section_info)
dump_stabs (abfd);
if (dump_reloc_info && ! disassemble)
dump_relocs (abfd);
if (dump_dynamic_reloc_info && ! disassemble)
dump_dynamic_relocs (abfd);
if (dump_section_contents)
dump_data (abfd);
if (disassemble)
disassemble_data (abfd);
if (dump_debugging)
{
void *dhandle;
dhandle = read_debugging_info (abfd, syms, symcount, TRUE);
if (dhandle != NULL)
{
if (!print_debugging_info (stdout, dhandle, abfd, syms,
bfd_demangle,
dump_debugging_tags ? TRUE : FALSE))
{
non_fatal (_("%s: printing debugging information failed"),
bfd_get_filename (abfd));
exit_status = 1;
}
free (dhandle);
}
/* PR 6483: If there was no STABS debug info in the file, try
DWARF instead. */
else if (! dump_dwarf_section_info)
{
dwarf_select_sections_all ();
dump_dwarf (abfd);
}
}
if (syms)
{
free (syms);
syms = NULL;
}
if (dynsyms)
{
free (dynsyms);
dynsyms = NULL;
}
if (synthsyms)
{
free (synthsyms);
synthsyms = NULL;
}
symcount = 0;
dynsymcount = 0;
synthcount = 0;
if (is_mainfile)
free_debug_memory ();
}
static void
display_object_bfd (bfd *abfd)
{
char **matching;
if (bfd_check_format_matches (abfd, bfd_object, &matching))
{
dump_bfd (abfd, TRUE);
return;
}
if (bfd_get_error () == bfd_error_file_ambiguously_recognized)
{
nonfatal (bfd_get_filename (abfd));
list_matching_formats (matching);
free (matching);
return;
}
if (bfd_get_error () != bfd_error_file_not_recognized)
{
nonfatal (bfd_get_filename (abfd));
return;
}
if (bfd_check_format_matches (abfd, bfd_core, &matching))
{
dump_bfd (abfd, TRUE);
return;
}
nonfatal (bfd_get_filename (abfd));
if (bfd_get_error () == bfd_error_file_ambiguously_recognized)
{
list_matching_formats (matching);
free (matching);
}
}
static void
display_any_bfd (bfd *file, int level)
{
/* Decompress sections unless dumping the section contents. */
if (!dump_section_contents)
file->flags |= BFD_DECOMPRESS;
/* If the file is an archive, process all of its elements. */
if (bfd_check_format (file, bfd_archive))
{
bfd *arfile = NULL;
bfd *last_arfile = NULL;
if (level == 0)
printf (_("In archive %s:\n"), sanitize_string (bfd_get_filename (file)));
else if (level > 100)
{
/* Prevent corrupted files from spinning us into an
infinite loop. 100 is an arbitrary heuristic. */
fatal (_("Archive nesting is too deep"));
return;
}
else
printf (_("In nested archive %s:\n"),
sanitize_string (bfd_get_filename (file)));
for (;;)
{
bfd_set_error (bfd_error_no_error);
arfile = bfd_openr_next_archived_file (file, arfile);
if (arfile == NULL)
{
if (bfd_get_error () != bfd_error_no_more_archived_files)
nonfatal (bfd_get_filename (file));
break;
}
display_any_bfd (arfile, level + 1);
if (last_arfile != NULL)
{
bfd_close (last_arfile);
/* PR 17512: file: ac585d01. */
if (arfile == last_arfile)
{
last_arfile = NULL;
break;
}
}
last_arfile = arfile;
}
if (last_arfile != NULL)
bfd_close (last_arfile);
}
else
display_object_bfd (file);
}
static void
display_file (char *filename, char *target, bfd_boolean last_file)
{
bfd *file;
if (get_file_size (filename) < 1)
{
exit_status = 1;
return;
}
file = bfd_openr (filename, target);
if (file == NULL)
{
nonfatal (filename);
return;
}
display_any_bfd (file, 0);
/* This is an optimization to improve the speed of objdump, especially when
dumping a file with lots of associated debug informatiom. Calling
bfd_close on such a file can take a non-trivial amount of time as there
are lots of lists to walk and buffers to free. This is only really
necessary however if we are about to load another file and we need the
memory back. Otherwise, if we are about to exit, then we can save (a lot
of) time by only doing a quick close, and allowing the OS to reclaim the
memory for us. */
if (! last_file)
bfd_close (file);
else
bfd_close_all_done (file);
}
int
main (int argc, char **argv)
{
int c;
char *target = default_target;
bfd_boolean seenflag = FALSE;
#if defined (HAVE_SETLOCALE)
#if defined (HAVE_LC_MESSAGES)
setlocale (LC_MESSAGES, "");
#endif
setlocale (LC_CTYPE, "");
#endif
bindtextdomain (PACKAGE, LOCALEDIR);
textdomain (PACKAGE);
program_name = *argv;
xmalloc_set_program_name (program_name);
bfd_set_error_program_name (program_name);
START_PROGRESS (program_name, 0);
expandargv (&argc, &argv);
if (bfd_init () != BFD_INIT_MAGIC)
fatal (_("fatal error: libbfd ABI mismatch"));
set_default_bfd_target ();
while ((c = getopt_long (argc, argv,
"pP:ib:m:M:VvCdDlfFaHhrRtTxsSI:j:wE:zgeGW::",
long_options, (int *) 0))
!= EOF)
{
switch (c)
{
case 0:
break; /* We've been given a long option. */
case 'm':
machine = optarg;
break;
case 'M':
{
char *options;
if (disassembler_options)
/* Ignore potential memory leak for now. */
options = concat (disassembler_options, ",",
optarg, (const char *) NULL);
else
options = optarg;
disassembler_options = remove_whitespace_and_extra_commas (options);
}
break;
case 'j':
add_only (optarg);
break;
case 'F':
display_file_offsets = TRUE;
break;
case 'l':
with_line_numbers = TRUE;
break;
case 'b':
target = optarg;
break;
case 'C':
do_demangle = TRUE;
if (optarg != NULL)
{
enum demangling_styles style;
style = cplus_demangle_name_to_style (optarg);
if (style == unknown_demangling)
fatal (_("unknown demangling style `%s'"),
optarg);
cplus_demangle_set_style (style);
}
break;
case OPTION_RECURSE_LIMIT:
demangle_flags &= ~ DMGL_NO_RECURSE_LIMIT;
break;
case OPTION_NO_RECURSE_LIMIT:
demangle_flags |= DMGL_NO_RECURSE_LIMIT;
break;
case 'w':
do_wide = wide_output = TRUE;
break;
case OPTION_ADJUST_VMA:
adjust_section_vma = parse_vma (optarg, "--adjust-vma");
break;
case OPTION_START_ADDRESS:
start_address = parse_vma (optarg, "--start-address");
if ((stop_address != (bfd_vma) -1) && stop_address <= start_address)
fatal (_("error: the start address should be before the end address"));
break;
case OPTION_STOP_ADDRESS:
stop_address = parse_vma (optarg, "--stop-address");
if ((start_address != (bfd_vma) -1) && stop_address <= start_address)
fatal (_("error: the stop address should be after the start address"));
break;
case OPTION_PREFIX:
prefix = optarg;
prefix_length = strlen (prefix);
/* Remove an unnecessary trailing '/' */
while (IS_DIR_SEPARATOR (prefix[prefix_length - 1]))
prefix_length--;
break;
case OPTION_PREFIX_STRIP:
prefix_strip = atoi (optarg);
if (prefix_strip < 0)
fatal (_("error: prefix strip must be non-negative"));
break;
case OPTION_INSN_WIDTH:
insn_width = strtoul (optarg, NULL, 0);
if (insn_width <= 0)
fatal (_("error: instruction width must be positive"));
break;
case OPTION_INLINES:
unwind_inlines = TRUE;
break;
case OPTION_VISUALIZE_JUMPS:
visualize_jumps = TRUE;
color_output = FALSE;
extended_color_output = FALSE;
if (optarg != NULL)
{
if (streq (optarg, "color"))
color_output = TRUE;
else if (streq (optarg, "extended-color"))
{
color_output = TRUE;
extended_color_output = TRUE;
}
else if (streq (optarg, "off"))
visualize_jumps = FALSE;
else
nonfatal (_("unrecognized argument to --visualize-option"));
}
break;
case 'E':
if (strcmp (optarg, "B") == 0)
endian = BFD_ENDIAN_BIG;
else if (strcmp (optarg, "L") == 0)
endian = BFD_ENDIAN_LITTLE;
else
{
nonfatal (_("unrecognized -E option"));
usage (stderr, 1);
}
break;
case OPTION_ENDIAN:
if (strncmp (optarg, "big", strlen (optarg)) == 0)
endian = BFD_ENDIAN_BIG;
else if (strncmp (optarg, "little", strlen (optarg)) == 0)
endian = BFD_ENDIAN_LITTLE;
else
{
non_fatal (_("unrecognized --endian type `%s'"), optarg);
exit_status = 1;
usage (stderr, 1);
}
break;
case 'f':
dump_file_header = TRUE;
seenflag = TRUE;
break;
case 'i':
formats_info = TRUE;
seenflag = TRUE;
break;
case 'I':
add_include_path (optarg);
break;
case 'p':
dump_private_headers = TRUE;
seenflag = TRUE;
break;
case 'P':
dump_private_options = optarg;
seenflag = TRUE;
break;
case 'x':
dump_private_headers = TRUE;
dump_symtab = TRUE;
dump_reloc_info = TRUE;
dump_file_header = TRUE;
dump_ar_hdrs = TRUE;
dump_section_headers = TRUE;
seenflag = TRUE;
break;
case 't':
dump_symtab = TRUE;
seenflag = TRUE;
break;
case 'T':
dump_dynamic_symtab = TRUE;
seenflag = TRUE;
break;
case 'd':
disassemble = TRUE;
seenflag = TRUE;
disasm_sym = optarg;
break;
case 'z':
disassemble_zeroes = TRUE;
break;
case 'D':
disassemble = TRUE;
disassemble_all = TRUE;
seenflag = TRUE;
break;
case 'S':
disassemble = TRUE;
with_source_code = TRUE;
seenflag = TRUE;
break;
case OPTION_SOURCE_COMMENT:
disassemble = TRUE;
with_source_code = TRUE;
seenflag = TRUE;
if (optarg)
source_comment = xstrdup (sanitize_string (optarg));
else
source_comment = xstrdup ("# ");
break;
case 'g':
dump_debugging = 1;
seenflag = TRUE;
break;
case 'e':
dump_debugging = 1;
dump_debugging_tags = 1;
do_demangle = TRUE;
seenflag = TRUE;
break;
case 'W':
dump_dwarf_section_info = TRUE;
seenflag = TRUE;
if (optarg)
dwarf_select_sections_by_letters (optarg);
else
dwarf_select_sections_all ();
break;
case OPTION_DWARF:
dump_dwarf_section_info = TRUE;
seenflag = TRUE;
if (optarg)
dwarf_select_sections_by_names (optarg);
else
dwarf_select_sections_all ();
break;
case OPTION_DWARF_DEPTH:
{
char *cp;
dwarf_cutoff_level = strtoul (optarg, & cp, 0);
}
break;
case OPTION_DWARF_START:
{
char *cp;
dwarf_start_die = strtoul (optarg, & cp, 0);
suppress_bfd_header = 1;
}
break;
case OPTION_DWARF_CHECK:
dwarf_check = TRUE;
break;
#ifdef ENABLE_LIBCTF
case OPTION_CTF:
dump_ctf_section_info = TRUE;
dump_ctf_section_name = xstrdup (optarg);
seenflag = TRUE;
break;
case OPTION_CTF_PARENT:
dump_ctf_parent_name = xstrdup (optarg);
break;
#endif
case 'G':
dump_stab_section_info = TRUE;
seenflag = TRUE;
break;
case 's':
dump_section_contents = TRUE;
seenflag = TRUE;
break;
case 'r':
dump_reloc_info = TRUE;
seenflag = TRUE;
break;
case 'R':
dump_dynamic_reloc_info = TRUE;
seenflag = TRUE;
break;
case 'a':
dump_ar_hdrs = TRUE;
seenflag = TRUE;
break;
case 'h':
dump_section_headers = TRUE;
seenflag = TRUE;
break;
case 'v':
case 'V':
show_version = TRUE;
seenflag = TRUE;
break;
case 'H':
usage (stdout, 0);
/* No need to set seenflag or to break - usage() does not return. */
default:
usage (stderr, 1);
}
}
if (show_version)
print_version ("objdump");
if (!seenflag)
usage (stderr, 2);
if (formats_info)
exit_status = display_info ();
else
{
if (optind == argc)
display_file ("a.out", target, TRUE);
else
for (; optind < argc;)
{
display_file (argv[optind], target, optind == argc - 1);
optind++;
}
}
free_only_list ();
free (dump_ctf_section_name);
free (dump_ctf_parent_name);
free ((void *) source_comment);
END_PROGRESS (program_name);
return exit_status;
}