f91a9e05e0
start_element, left_element, right_element, slice_size, lower_element, upper_element, first_element): Removed. (value_string_slice, value_array_slice): Replaced by ... (slice): New non-terminal, with working slice support. (primitive_value_lparen, rparen): New non-terminals. (maybe_tuple_elements): New non-terminal, to allow empty tuples. (idtokentab): Added "up". * value.h (COERCE_VARYING_ARRAY): New macro. * valarith.c (value_subscript): Use it. * valops.c (value_cast): Likewise. Also, do nothing if already correct type, and allow converting from/to range to/from scalar. * valops.c, value.h (varying_to_slice, value_slice): New functions. * eval.c (OP_ARRAY): Add cast for array element. * expression.h (TERNOP_SLICE, TERNOP_SLICE_COUNT): New exp_opcodes. * valops.c (chill_varying_type): Moved function frp, here ... * gdbtypes.c (chill_varying_type), gdbtypes.h: ... to here. * parse.c (length_of_subexp, prefixify_subexp): Add support for TERNOP_SLICE, TERNOP_SLICE_COUNT. * expprint.c (print_subexp, dump_expression): Likewise. * eval.c (evaluate_subexp): Likewise. * eval.c (evaluate_subexp case MULTI_SUBSCRIPT): Don't call value_x_binop on a Chill varying string.
1678 lines
48 KiB
C
1678 lines
48 KiB
C
/* Support routines for manipulating internal types for GDB.
|
|
Copyright (C) 1992 Free Software Foundation, Inc.
|
|
Contributed by Cygnus Support, using pieces from other GDB modules.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
#include "defs.h"
|
|
#include <string.h>
|
|
#include "bfd.h"
|
|
#include "symtab.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
#include "gdbtypes.h"
|
|
#include "expression.h"
|
|
#include "language.h"
|
|
#include "target.h"
|
|
#include "value.h"
|
|
#include "demangle.h"
|
|
#include "complaints.h"
|
|
|
|
/* These variables point to the objects
|
|
representing the predefined C data types. */
|
|
|
|
struct type *builtin_type_void;
|
|
struct type *builtin_type_char;
|
|
struct type *builtin_type_short;
|
|
struct type *builtin_type_int;
|
|
struct type *builtin_type_long;
|
|
struct type *builtin_type_long_long;
|
|
struct type *builtin_type_signed_char;
|
|
struct type *builtin_type_unsigned_char;
|
|
struct type *builtin_type_unsigned_short;
|
|
struct type *builtin_type_unsigned_int;
|
|
struct type *builtin_type_unsigned_long;
|
|
struct type *builtin_type_unsigned_long_long;
|
|
struct type *builtin_type_float;
|
|
struct type *builtin_type_double;
|
|
struct type *builtin_type_long_double;
|
|
struct type *builtin_type_complex;
|
|
struct type *builtin_type_double_complex;
|
|
struct type *builtin_type_string;
|
|
|
|
/* Alloc a new type structure and fill it with some defaults. If
|
|
OBJFILE is non-NULL, then allocate the space for the type structure
|
|
in that objfile's type_obstack. */
|
|
|
|
struct type *
|
|
alloc_type (objfile)
|
|
struct objfile *objfile;
|
|
{
|
|
register struct type *type;
|
|
|
|
/* Alloc the structure and start off with all fields zeroed. */
|
|
|
|
if (objfile == NULL)
|
|
{
|
|
type = (struct type *) xmalloc (sizeof (struct type));
|
|
}
|
|
else
|
|
{
|
|
type = (struct type *) obstack_alloc (&objfile -> type_obstack,
|
|
sizeof (struct type));
|
|
}
|
|
memset ((char *) type, 0, sizeof (struct type));
|
|
|
|
/* Initialize the fields that might not be zero. */
|
|
|
|
TYPE_CODE (type) = TYPE_CODE_UNDEF;
|
|
TYPE_OBJFILE (type) = objfile;
|
|
TYPE_VPTR_FIELDNO (type) = -1;
|
|
|
|
return (type);
|
|
}
|
|
|
|
/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
|
|
to a pointer to memory where the pointer type should be stored.
|
|
If *TYPEPTR is zero, update it to point to the pointer type we return.
|
|
We allocate new memory if needed. */
|
|
|
|
struct type *
|
|
make_pointer_type (type, typeptr)
|
|
struct type *type;
|
|
struct type **typeptr;
|
|
{
|
|
register struct type *ntype; /* New type */
|
|
struct objfile *objfile;
|
|
|
|
ntype = TYPE_POINTER_TYPE (type);
|
|
|
|
if (ntype)
|
|
if (typeptr == 0)
|
|
return ntype; /* Don't care about alloc, and have new type. */
|
|
else if (*typeptr == 0)
|
|
{
|
|
*typeptr = ntype; /* Tracking alloc, and we have new type. */
|
|
return ntype;
|
|
}
|
|
|
|
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
|
|
{
|
|
ntype = alloc_type (TYPE_OBJFILE (type));
|
|
if (typeptr)
|
|
*typeptr = ntype;
|
|
}
|
|
else /* We have storage, but need to reset it. */
|
|
{
|
|
ntype = *typeptr;
|
|
objfile = TYPE_OBJFILE (ntype);
|
|
memset ((char *) ntype, 0, sizeof (struct type));
|
|
TYPE_OBJFILE (ntype) = objfile;
|
|
}
|
|
|
|
TYPE_TARGET_TYPE (ntype) = type;
|
|
TYPE_POINTER_TYPE (type) = ntype;
|
|
|
|
/* FIXME! Assume the machine has only one representation for pointers! */
|
|
|
|
TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
|
|
TYPE_CODE (ntype) = TYPE_CODE_PTR;
|
|
|
|
/* pointers are unsigned */
|
|
TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
|
|
|
|
if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
|
|
TYPE_POINTER_TYPE (type) = ntype;
|
|
|
|
return ntype;
|
|
}
|
|
|
|
/* Given a type TYPE, return a type of pointers to that type.
|
|
May need to construct such a type if this is the first use. */
|
|
|
|
struct type *
|
|
lookup_pointer_type (type)
|
|
struct type *type;
|
|
{
|
|
return make_pointer_type (type, (struct type **)0);
|
|
}
|
|
|
|
/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, points
|
|
to a pointer to memory where the reference type should be stored.
|
|
If *TYPEPTR is zero, update it to point to the reference type we return.
|
|
We allocate new memory if needed. */
|
|
|
|
struct type *
|
|
make_reference_type (type, typeptr)
|
|
struct type *type;
|
|
struct type **typeptr;
|
|
{
|
|
register struct type *ntype; /* New type */
|
|
struct objfile *objfile;
|
|
|
|
ntype = TYPE_REFERENCE_TYPE (type);
|
|
|
|
if (ntype)
|
|
if (typeptr == 0)
|
|
return ntype; /* Don't care about alloc, and have new type. */
|
|
else if (*typeptr == 0)
|
|
{
|
|
*typeptr = ntype; /* Tracking alloc, and we have new type. */
|
|
return ntype;
|
|
}
|
|
|
|
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
|
|
{
|
|
ntype = alloc_type (TYPE_OBJFILE (type));
|
|
if (typeptr)
|
|
*typeptr = ntype;
|
|
}
|
|
else /* We have storage, but need to reset it. */
|
|
{
|
|
ntype = *typeptr;
|
|
objfile = TYPE_OBJFILE (ntype);
|
|
memset ((char *) ntype, 0, sizeof (struct type));
|
|
TYPE_OBJFILE (ntype) = objfile;
|
|
}
|
|
|
|
TYPE_TARGET_TYPE (ntype) = type;
|
|
TYPE_REFERENCE_TYPE (type) = ntype;
|
|
|
|
/* FIXME! Assume the machine has only one representation for references,
|
|
and that it matches the (only) representation for pointers! */
|
|
|
|
TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
|
|
TYPE_CODE (ntype) = TYPE_CODE_REF;
|
|
|
|
if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
|
|
TYPE_REFERENCE_TYPE (type) = ntype;
|
|
|
|
return ntype;
|
|
}
|
|
|
|
/* Same as above, but caller doesn't care about memory allocation details. */
|
|
|
|
struct type *
|
|
lookup_reference_type (type)
|
|
struct type *type;
|
|
{
|
|
return make_reference_type (type, (struct type **)0);
|
|
}
|
|
|
|
/* Lookup a function type that returns type TYPE. TYPEPTR, if nonzero, points
|
|
to a pointer to memory where the function type should be stored.
|
|
If *TYPEPTR is zero, update it to point to the function type we return.
|
|
We allocate new memory if needed. */
|
|
|
|
struct type *
|
|
make_function_type (type, typeptr)
|
|
struct type *type;
|
|
struct type **typeptr;
|
|
{
|
|
register struct type *ntype; /* New type */
|
|
struct objfile *objfile;
|
|
|
|
ntype = TYPE_FUNCTION_TYPE (type);
|
|
|
|
if (ntype)
|
|
if (typeptr == 0)
|
|
return ntype; /* Don't care about alloc, and have new type. */
|
|
else if (*typeptr == 0)
|
|
{
|
|
*typeptr = ntype; /* Tracking alloc, and we have new type. */
|
|
return ntype;
|
|
}
|
|
|
|
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
|
|
{
|
|
ntype = alloc_type (TYPE_OBJFILE (type));
|
|
if (typeptr)
|
|
*typeptr = ntype;
|
|
}
|
|
else /* We have storage, but need to reset it. */
|
|
{
|
|
ntype = *typeptr;
|
|
objfile = TYPE_OBJFILE (ntype);
|
|
memset ((char *) ntype, 0, sizeof (struct type));
|
|
TYPE_OBJFILE (ntype) = objfile;
|
|
}
|
|
|
|
TYPE_TARGET_TYPE (ntype) = type;
|
|
TYPE_FUNCTION_TYPE (type) = ntype;
|
|
|
|
TYPE_LENGTH (ntype) = 1;
|
|
TYPE_CODE (ntype) = TYPE_CODE_FUNC;
|
|
|
|
if (!TYPE_FUNCTION_TYPE (type)) /* Remember it, if don't have one. */
|
|
TYPE_FUNCTION_TYPE (type) = ntype;
|
|
|
|
return ntype;
|
|
}
|
|
|
|
|
|
/* Given a type TYPE, return a type of functions that return that type.
|
|
May need to construct such a type if this is the first use. */
|
|
|
|
struct type *
|
|
lookup_function_type (type)
|
|
struct type *type;
|
|
{
|
|
return make_function_type (type, (struct type **)0);
|
|
}
|
|
|
|
/* Implement direct support for MEMBER_TYPE in GNU C++.
|
|
May need to construct such a type if this is the first use.
|
|
The TYPE is the type of the member. The DOMAIN is the type
|
|
of the aggregate that the member belongs to. */
|
|
|
|
struct type *
|
|
lookup_member_type (type, domain)
|
|
struct type *type;
|
|
struct type *domain;
|
|
{
|
|
register struct type *mtype;
|
|
|
|
mtype = alloc_type (TYPE_OBJFILE (type));
|
|
smash_to_member_type (mtype, domain, type);
|
|
return (mtype);
|
|
}
|
|
|
|
/* Allocate a stub method whose return type is TYPE.
|
|
This apparently happens for speed of symbol reading, since parsing
|
|
out the arguments to the method is cpu-intensive, the way we are doing
|
|
it. So, we will fill in arguments later.
|
|
This always returns a fresh type. */
|
|
|
|
struct type *
|
|
allocate_stub_method (type)
|
|
struct type *type;
|
|
{
|
|
struct type *mtype;
|
|
|
|
mtype = alloc_type (TYPE_OBJFILE (type));
|
|
TYPE_TARGET_TYPE (mtype) = type;
|
|
/* _DOMAIN_TYPE (mtype) = unknown yet */
|
|
/* _ARG_TYPES (mtype) = unknown yet */
|
|
TYPE_FLAGS (mtype) = TYPE_FLAG_STUB;
|
|
TYPE_CODE (mtype) = TYPE_CODE_METHOD;
|
|
TYPE_LENGTH (mtype) = 1;
|
|
return (mtype);
|
|
}
|
|
|
|
/* Create a range type using either a blank type supplied in RESULT_TYPE,
|
|
or creating a new type, inheriting the objfile from INDEX_TYPE.
|
|
|
|
Indices will be of type INDEX_TYPE, and will range from LOW_BOUND to
|
|
HIGH_BOUND, inclusive.
|
|
|
|
FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
|
|
sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
|
|
|
|
struct type *
|
|
create_range_type (result_type, index_type, low_bound, high_bound)
|
|
struct type *result_type;
|
|
struct type *index_type;
|
|
int low_bound;
|
|
int high_bound;
|
|
{
|
|
if (result_type == NULL)
|
|
{
|
|
result_type = alloc_type (TYPE_OBJFILE (index_type));
|
|
}
|
|
TYPE_CODE (result_type) = TYPE_CODE_RANGE;
|
|
TYPE_TARGET_TYPE (result_type) = index_type;
|
|
TYPE_LENGTH (result_type) = TYPE_LENGTH (index_type);
|
|
TYPE_NFIELDS (result_type) = 2;
|
|
TYPE_FIELDS (result_type) = (struct field *)
|
|
TYPE_ALLOC (result_type, 2 * sizeof (struct field));
|
|
memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
|
|
TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
|
|
TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
|
|
TYPE_FIELD_TYPE (result_type, 0) = builtin_type_int; /* FIXME */
|
|
TYPE_FIELD_TYPE (result_type, 1) = builtin_type_int; /* FIXME */
|
|
|
|
return (result_type);
|
|
}
|
|
|
|
/* A lot of code assumes that the "index type" of an array/string/
|
|
set/bitstring is specifically a range type, though in some languages
|
|
it can be any discrete type. */
|
|
|
|
struct type *
|
|
force_to_range_type (type)
|
|
struct type *type;
|
|
{
|
|
switch (TYPE_CODE (type))
|
|
{
|
|
case TYPE_CODE_RANGE:
|
|
return type;
|
|
|
|
case TYPE_CODE_ENUM:
|
|
{
|
|
int low_bound = TYPE_FIELD_BITPOS (type, 0);
|
|
int high_bound = TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
|
|
struct type *range_type =
|
|
create_range_type (NULL, type, low_bound, high_bound);
|
|
TYPE_NAME (range_type) = TYPE_NAME (range_type);
|
|
TYPE_DUMMY_RANGE (range_type) = 1;
|
|
return range_type;
|
|
}
|
|
case TYPE_CODE_BOOL:
|
|
{
|
|
struct type *range_type = create_range_type (NULL, type, 0, 1);
|
|
TYPE_NAME (range_type) = TYPE_NAME (range_type);
|
|
TYPE_DUMMY_RANGE (range_type) = 1;
|
|
return range_type;
|
|
}
|
|
case TYPE_CODE_CHAR:
|
|
{
|
|
struct type *range_type = create_range_type (NULL, type, 0, 255);
|
|
TYPE_NAME (range_type) = TYPE_NAME (range_type);
|
|
TYPE_DUMMY_RANGE (range_type) = 1;
|
|
return range_type;
|
|
}
|
|
default:
|
|
{
|
|
static struct complaint msg =
|
|
{ "array index type must be a discrete type", 0, 0};
|
|
complain (&msg);
|
|
|
|
return create_range_type (NULL, builtin_type_int, 0, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Create an array type using either a blank type supplied in RESULT_TYPE,
|
|
or creating a new type, inheriting the objfile from RANGE_TYPE.
|
|
|
|
Elements will be of type ELEMENT_TYPE, the indices will be of type
|
|
RANGE_TYPE.
|
|
|
|
FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
|
|
sure it is TYPE_CODE_UNDEF before we bash it into an array type? */
|
|
|
|
struct type *
|
|
create_array_type (result_type, element_type, range_type)
|
|
struct type *result_type;
|
|
struct type *element_type;
|
|
struct type *range_type;
|
|
{
|
|
int low_bound;
|
|
int high_bound;
|
|
|
|
range_type = force_to_range_type (range_type);
|
|
if (result_type == NULL)
|
|
{
|
|
result_type = alloc_type (TYPE_OBJFILE (range_type));
|
|
}
|
|
TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
|
|
TYPE_TARGET_TYPE (result_type) = element_type;
|
|
low_bound = TYPE_LOW_BOUND (range_type);
|
|
high_bound = TYPE_HIGH_BOUND (range_type);
|
|
TYPE_LENGTH (result_type) =
|
|
TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
|
|
TYPE_NFIELDS (result_type) = 1;
|
|
TYPE_FIELDS (result_type) =
|
|
(struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
|
|
memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
|
|
TYPE_FIELD_TYPE (result_type, 0) = range_type;
|
|
TYPE_VPTR_FIELDNO (result_type) = -1;
|
|
|
|
return (result_type);
|
|
}
|
|
|
|
/* Create a string type using either a blank type supplied in RESULT_TYPE,
|
|
or creating a new type. String types are similar enough to array of
|
|
char types that we can use create_array_type to build the basic type
|
|
and then bash it into a string type.
|
|
|
|
For fixed length strings, the range type contains 0 as the lower
|
|
bound and the length of the string minus one as the upper bound.
|
|
|
|
FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
|
|
sure it is TYPE_CODE_UNDEF before we bash it into a string type? */
|
|
|
|
struct type *
|
|
create_string_type (result_type, range_type)
|
|
struct type *result_type;
|
|
struct type *range_type;
|
|
{
|
|
result_type = create_array_type (result_type, builtin_type_char, range_type);
|
|
TYPE_CODE (result_type) = TYPE_CODE_STRING;
|
|
return (result_type);
|
|
}
|
|
|
|
struct type *
|
|
create_set_type (result_type, domain_type)
|
|
struct type *result_type;
|
|
struct type *domain_type;
|
|
{
|
|
int low_bound, high_bound, bit_length;
|
|
if (result_type == NULL)
|
|
{
|
|
result_type = alloc_type (TYPE_OBJFILE (domain_type));
|
|
}
|
|
TYPE_CODE (result_type) = TYPE_CODE_SET;
|
|
TYPE_NFIELDS (result_type) = 1;
|
|
TYPE_FIELDS (result_type) = (struct field *)
|
|
TYPE_ALLOC (result_type, 1 * sizeof (struct field));
|
|
memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
|
|
|
|
if (! (TYPE_FLAGS (domain_type) & TYPE_FLAG_STUB))
|
|
{
|
|
domain_type = force_to_range_type (domain_type);
|
|
low_bound = TYPE_LOW_BOUND (domain_type);
|
|
high_bound = TYPE_HIGH_BOUND (domain_type);
|
|
bit_length = high_bound - low_bound + 1;
|
|
TYPE_LENGTH (result_type)
|
|
= ((bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT)
|
|
* TARGET_CHAR_BIT;
|
|
}
|
|
TYPE_FIELD_TYPE (result_type, 0) = domain_type;
|
|
return (result_type);
|
|
}
|
|
|
|
/* Create an F77 literal complex type composed of the two types we are
|
|
given as arguments. */
|
|
|
|
struct type *
|
|
f77_create_literal_complex_type (type_arg1, type_arg2)
|
|
struct type *type_arg1;
|
|
struct type *type_arg2;
|
|
{
|
|
struct type *result;
|
|
|
|
/* First make sure that the 2 components of the complex
|
|
number both have the same type */
|
|
|
|
if (TYPE_CODE (type_arg1) != TYPE_CODE (type_arg2))
|
|
error ("Both components of a F77 complex number must have the same type!");
|
|
|
|
result = alloc_type (TYPE_OBJFILE (type_arg1));
|
|
|
|
TYPE_CODE (result) = TYPE_CODE_LITERAL_COMPLEX;
|
|
TYPE_LENGTH (result) = TYPE_LENGTH(type_arg1) * 2;
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Create a F77 LITERAL string type supplied by the user from the keyboard.
|
|
|
|
Elements will be of type ELEMENT_TYPE, the indices will be of type
|
|
RANGE_TYPE.
|
|
|
|
FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
|
|
sure it is TYPE_CODE_UNDEF before we bash it into an array type?
|
|
|
|
This is a total clone of create_array_type() except that there are
|
|
a few simplyfing assumptions (e.g all bound types are simple). */
|
|
|
|
struct type *
|
|
f77_create_literal_string_type (result_type, range_type)
|
|
struct type *result_type;
|
|
struct type *range_type;
|
|
{
|
|
int low_bound;
|
|
int high_bound;
|
|
|
|
if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
|
|
{
|
|
/* FIXME: We only handle range types at the moment. Complain and
|
|
create a dummy range type to use. */
|
|
warning ("internal error: array index type must be a range type");
|
|
range_type = lookup_fundamental_type (TYPE_OBJFILE (range_type),
|
|
FT_INTEGER);
|
|
range_type = create_range_type ((struct type *) NULL, range_type, 0, 0);
|
|
}
|
|
if (result_type == NULL)
|
|
result_type = alloc_type (TYPE_OBJFILE (range_type));
|
|
TYPE_CODE (result_type) = TYPE_CODE_LITERAL_STRING;
|
|
TYPE_TARGET_TYPE (result_type) = builtin_type_f_character;
|
|
low_bound = TYPE_FIELD_BITPOS (range_type, 0);
|
|
high_bound = TYPE_FIELD_BITPOS (range_type, 1);
|
|
|
|
/* Safely can assume that all bound types are simple */
|
|
|
|
TYPE_LENGTH (result_type) =
|
|
TYPE_LENGTH (builtin_type_f_character) * (high_bound - low_bound + 1);
|
|
|
|
TYPE_NFIELDS (result_type) = 1;
|
|
TYPE_FIELDS (result_type) =
|
|
(struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
|
|
memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
|
|
TYPE_FIELD_TYPE (result_type, 0) = range_type;
|
|
TYPE_VPTR_FIELDNO (result_type) = -1;
|
|
|
|
/* Remember that all literal strings in F77 are of the
|
|
character*N type. */
|
|
|
|
TYPE_ARRAY_LOWER_BOUND_TYPE (result_type) = BOUND_SIMPLE;
|
|
TYPE_ARRAY_UPPER_BOUND_TYPE (result_type) = BOUND_SIMPLE;
|
|
|
|
return result_type;
|
|
}
|
|
|
|
/* Smash TYPE to be a type of members of DOMAIN with type TO_TYPE.
|
|
A MEMBER is a wierd thing -- it amounts to a typed offset into
|
|
a struct, e.g. "an int at offset 8". A MEMBER TYPE doesn't
|
|
include the offset (that's the value of the MEMBER itself), but does
|
|
include the structure type into which it points (for some reason).
|
|
|
|
When "smashing" the type, we preserve the objfile that the
|
|
old type pointed to, since we aren't changing where the type is actually
|
|
allocated. */
|
|
|
|
void
|
|
smash_to_member_type (type, domain, to_type)
|
|
struct type *type;
|
|
struct type *domain;
|
|
struct type *to_type;
|
|
{
|
|
struct objfile *objfile;
|
|
|
|
objfile = TYPE_OBJFILE (type);
|
|
|
|
memset ((char *) type, 0, sizeof (struct type));
|
|
TYPE_OBJFILE (type) = objfile;
|
|
TYPE_TARGET_TYPE (type) = to_type;
|
|
TYPE_DOMAIN_TYPE (type) = domain;
|
|
TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
|
|
TYPE_CODE (type) = TYPE_CODE_MEMBER;
|
|
}
|
|
|
|
/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
|
|
METHOD just means `function that gets an extra "this" argument'.
|
|
|
|
When "smashing" the type, we preserve the objfile that the
|
|
old type pointed to, since we aren't changing where the type is actually
|
|
allocated. */
|
|
|
|
void
|
|
smash_to_method_type (type, domain, to_type, args)
|
|
struct type *type;
|
|
struct type *domain;
|
|
struct type *to_type;
|
|
struct type **args;
|
|
{
|
|
struct objfile *objfile;
|
|
|
|
objfile = TYPE_OBJFILE (type);
|
|
|
|
memset ((char *) type, 0, sizeof (struct type));
|
|
TYPE_OBJFILE (type) = objfile;
|
|
TYPE_TARGET_TYPE (type) = to_type;
|
|
TYPE_DOMAIN_TYPE (type) = domain;
|
|
TYPE_ARG_TYPES (type) = args;
|
|
TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
|
|
TYPE_CODE (type) = TYPE_CODE_METHOD;
|
|
}
|
|
|
|
/* Return a typename for a struct/union/enum type without "struct ",
|
|
"union ", or "enum ". If the type has a NULL name, return NULL. */
|
|
|
|
char *
|
|
type_name_no_tag (type)
|
|
register const struct type *type;
|
|
{
|
|
if (TYPE_TAG_NAME (type) != NULL)
|
|
return TYPE_TAG_NAME (type);
|
|
|
|
/* Is there code which expects this to return the name if there is no
|
|
tag name? My guess is that this is mainly used for C++ in cases where
|
|
the two will always be the same. */
|
|
return TYPE_NAME (type);
|
|
}
|
|
|
|
/* Lookup a primitive type named NAME.
|
|
Return zero if NAME is not a primitive type.*/
|
|
|
|
struct type *
|
|
lookup_primitive_typename (name)
|
|
char *name;
|
|
{
|
|
struct type ** const *p;
|
|
|
|
for (p = current_language -> la_builtin_type_vector; *p != NULL; p++)
|
|
{
|
|
if (STREQ ((**p) -> name, name))
|
|
{
|
|
return (**p);
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/* Lookup a typedef or primitive type named NAME,
|
|
visible in lexical block BLOCK.
|
|
If NOERR is nonzero, return zero if NAME is not suitably defined. */
|
|
|
|
struct type *
|
|
lookup_typename (name, block, noerr)
|
|
char *name;
|
|
struct block *block;
|
|
int noerr;
|
|
{
|
|
register struct symbol *sym;
|
|
register struct type *tmp;
|
|
|
|
sym = lookup_symbol (name, block, VAR_NAMESPACE, 0, (struct symtab **) NULL);
|
|
if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
|
|
{
|
|
tmp = lookup_primitive_typename (name);
|
|
if (tmp)
|
|
{
|
|
return (tmp);
|
|
}
|
|
else if (!tmp && noerr)
|
|
{
|
|
return (NULL);
|
|
}
|
|
else
|
|
{
|
|
error ("No type named %s.", name);
|
|
}
|
|
}
|
|
return (SYMBOL_TYPE (sym));
|
|
}
|
|
|
|
struct type *
|
|
lookup_unsigned_typename (name)
|
|
char *name;
|
|
{
|
|
char *uns = alloca (strlen (name) + 10);
|
|
|
|
strcpy (uns, "unsigned ");
|
|
strcpy (uns + 9, name);
|
|
return (lookup_typename (uns, (struct block *) NULL, 0));
|
|
}
|
|
|
|
struct type *
|
|
lookup_signed_typename (name)
|
|
char *name;
|
|
{
|
|
struct type *t;
|
|
char *uns = alloca (strlen (name) + 8);
|
|
|
|
strcpy (uns, "signed ");
|
|
strcpy (uns + 7, name);
|
|
t = lookup_typename (uns, (struct block *) NULL, 1);
|
|
/* If we don't find "signed FOO" just try again with plain "FOO". */
|
|
if (t != NULL)
|
|
return t;
|
|
return lookup_typename (name, (struct block *) NULL, 0);
|
|
}
|
|
|
|
/* Lookup a structure type named "struct NAME",
|
|
visible in lexical block BLOCK. */
|
|
|
|
struct type *
|
|
lookup_struct (name, block)
|
|
char *name;
|
|
struct block *block;
|
|
{
|
|
register struct symbol *sym;
|
|
|
|
sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
|
|
(struct symtab **) NULL);
|
|
|
|
if (sym == NULL)
|
|
{
|
|
error ("No struct type named %s.", name);
|
|
}
|
|
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
|
|
{
|
|
error ("This context has class, union or enum %s, not a struct.", name);
|
|
}
|
|
return (SYMBOL_TYPE (sym));
|
|
}
|
|
|
|
/* Lookup a union type named "union NAME",
|
|
visible in lexical block BLOCK. */
|
|
|
|
struct type *
|
|
lookup_union (name, block)
|
|
char *name;
|
|
struct block *block;
|
|
{
|
|
register struct symbol *sym;
|
|
|
|
sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
|
|
(struct symtab **) NULL);
|
|
|
|
if (sym == NULL)
|
|
{
|
|
error ("No union type named %s.", name);
|
|
}
|
|
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_UNION)
|
|
{
|
|
error ("This context has class, struct or enum %s, not a union.", name);
|
|
}
|
|
return (SYMBOL_TYPE (sym));
|
|
}
|
|
|
|
/* Lookup an enum type named "enum NAME",
|
|
visible in lexical block BLOCK. */
|
|
|
|
struct type *
|
|
lookup_enum (name, block)
|
|
char *name;
|
|
struct block *block;
|
|
{
|
|
register struct symbol *sym;
|
|
|
|
sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
|
|
(struct symtab **) NULL);
|
|
if (sym == NULL)
|
|
{
|
|
error ("No enum type named %s.", name);
|
|
}
|
|
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
|
|
{
|
|
error ("This context has class, struct or union %s, not an enum.", name);
|
|
}
|
|
return (SYMBOL_TYPE (sym));
|
|
}
|
|
|
|
/* Lookup a template type named "template NAME<TYPE>",
|
|
visible in lexical block BLOCK. */
|
|
|
|
struct type *
|
|
lookup_template_type (name, type, block)
|
|
char *name;
|
|
struct type *type;
|
|
struct block *block;
|
|
{
|
|
struct symbol *sym;
|
|
char *nam = (char*) alloca(strlen(name) + strlen(type->name) + 4);
|
|
strcpy (nam, name);
|
|
strcat (nam, "<");
|
|
strcat (nam, type->name);
|
|
strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
|
|
|
|
sym = lookup_symbol (nam, block, VAR_NAMESPACE, 0, (struct symtab **)NULL);
|
|
|
|
if (sym == NULL)
|
|
{
|
|
error ("No template type named %s.", name);
|
|
}
|
|
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
|
|
{
|
|
error ("This context has class, union or enum %s, not a struct.", name);
|
|
}
|
|
return (SYMBOL_TYPE (sym));
|
|
}
|
|
|
|
/* Given a type TYPE, lookup the type of the component of type named NAME.
|
|
|
|
TYPE can be either a struct or union, or a pointer or reference to a struct or
|
|
union. If it is a pointer or reference, its target type is automatically used.
|
|
Thus '.' and '->' are interchangable, as specified for the definitions of the
|
|
expression element types STRUCTOP_STRUCT and STRUCTOP_PTR.
|
|
|
|
If NOERR is nonzero, return zero if NAME is not suitably defined.
|
|
If NAME is the name of a baseclass type, return that type. */
|
|
|
|
struct type *
|
|
lookup_struct_elt_type (type, name, noerr)
|
|
struct type *type;
|
|
char *name;
|
|
int noerr;
|
|
{
|
|
int i;
|
|
|
|
while (TYPE_CODE (type) == TYPE_CODE_PTR ||
|
|
TYPE_CODE (type) == TYPE_CODE_REF)
|
|
type = TYPE_TARGET_TYPE (type);
|
|
|
|
if (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
|
|
TYPE_CODE (type) != TYPE_CODE_UNION)
|
|
{
|
|
target_terminal_ours ();
|
|
gdb_flush (gdb_stdout);
|
|
fprintf_unfiltered (gdb_stderr, "Type ");
|
|
type_print (type, "", gdb_stderr, -1);
|
|
error (" is not a structure or union type.");
|
|
}
|
|
|
|
check_stub_type (type);
|
|
|
|
#if 0
|
|
/* FIXME: This change put in by Michael seems incorrect for the case where
|
|
the structure tag name is the same as the member name. I.E. when doing
|
|
"ptype bell->bar" for "struct foo { int bar; int foo; } bell;"
|
|
Disabled by fnf. */
|
|
{
|
|
char *typename;
|
|
|
|
typename = type_name_no_tag (type);
|
|
if (typename != NULL && STREQ (typename, name))
|
|
return type;
|
|
}
|
|
#endif
|
|
|
|
for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
|
|
{
|
|
char *t_field_name = TYPE_FIELD_NAME (type, i);
|
|
|
|
if (t_field_name && STREQ (t_field_name, name))
|
|
{
|
|
return TYPE_FIELD_TYPE (type, i);
|
|
}
|
|
}
|
|
|
|
/* OK, it's not in this class. Recursively check the baseclasses. */
|
|
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
|
|
{
|
|
struct type *t;
|
|
|
|
t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, noerr);
|
|
if (t != NULL)
|
|
{
|
|
return t;
|
|
}
|
|
}
|
|
|
|
if (noerr)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
target_terminal_ours ();
|
|
gdb_flush (gdb_stdout);
|
|
fprintf_unfiltered (gdb_stderr, "Type ");
|
|
type_print (type, "", gdb_stderr, -1);
|
|
fprintf_unfiltered (gdb_stderr, " has no component named ");
|
|
fputs_filtered (name, gdb_stderr);
|
|
error (".");
|
|
return (struct type *)-1; /* For lint */
|
|
}
|
|
|
|
/* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE
|
|
valid. Callers should be aware that in some cases (for example,
|
|
the type or one of its baseclasses is a stub type and we are
|
|
debugging a .o file), this function will not be able to find the virtual
|
|
function table pointer, and vptr_fieldno will remain -1 and vptr_basetype
|
|
will remain NULL. */
|
|
|
|
void
|
|
fill_in_vptr_fieldno (type)
|
|
struct type *type;
|
|
{
|
|
check_stub_type (type);
|
|
|
|
if (TYPE_VPTR_FIELDNO (type) < 0)
|
|
{
|
|
int i;
|
|
|
|
/* We must start at zero in case the first (and only) baseclass is
|
|
virtual (and hence we cannot share the table pointer). */
|
|
for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
|
|
{
|
|
fill_in_vptr_fieldno (TYPE_BASECLASS (type, i));
|
|
if (TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i)) >= 0)
|
|
{
|
|
TYPE_VPTR_FIELDNO (type)
|
|
= TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i));
|
|
TYPE_VPTR_BASETYPE (type)
|
|
= TYPE_VPTR_BASETYPE (TYPE_BASECLASS (type, i));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
|
|
|
|
If this is a stubbed struct (i.e. declared as struct foo *), see if
|
|
we can find a full definition in some other file. If so, copy this
|
|
definition, so we can use it in future. There used to be a comment (but
|
|
not any code) that if we don't find a full definition, we'd set a flag
|
|
so we don't spend time in the future checking the same type. That would
|
|
be a mistake, though--we might load in more symbols which contain a
|
|
full definition for the type.
|
|
|
|
This used to be coded as a macro, but I don't think it is called
|
|
often enough to merit such treatment. */
|
|
|
|
struct complaint stub_noname_complaint =
|
|
{"stub type has NULL name", 0, 0};
|
|
|
|
void
|
|
check_stub_type (type)
|
|
struct type *type;
|
|
{
|
|
if (TYPE_FLAGS(type) & TYPE_FLAG_STUB)
|
|
{
|
|
char* name = type_name_no_tag (type);
|
|
/* FIXME: shouldn't we separately check the TYPE_NAME and the
|
|
TYPE_TAG_NAME, and look in STRUCT_NAMESPACE and/or VAR_NAMESPACE
|
|
as appropriate? (this code was written before TYPE_NAME and
|
|
TYPE_TAG_NAME were separate). */
|
|
struct symbol *sym;
|
|
if (name == NULL)
|
|
{
|
|
complain (&stub_noname_complaint);
|
|
return;
|
|
}
|
|
sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0,
|
|
(struct symtab **) NULL);
|
|
if (sym)
|
|
{
|
|
memcpy ((char *)type,
|
|
(char *)SYMBOL_TYPE(sym),
|
|
sizeof (struct type));
|
|
}
|
|
}
|
|
|
|
if (TYPE_FLAGS (type) & TYPE_FLAG_TARGET_STUB)
|
|
{
|
|
struct type *range_type;
|
|
|
|
check_stub_type (TYPE_TARGET_TYPE (type));
|
|
if (!(TYPE_FLAGS (TYPE_TARGET_TYPE (type)) & TYPE_FLAG_STUB)
|
|
&& TYPE_CODE (type) == TYPE_CODE_ARRAY
|
|
&& TYPE_NFIELDS (type) == 1
|
|
&& (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
|
|
== TYPE_CODE_RANGE))
|
|
{
|
|
/* Now recompute the length of the array type, based on its
|
|
number of elements and the target type's length. */
|
|
TYPE_LENGTH (type) =
|
|
((TYPE_FIELD_BITPOS (range_type, 1)
|
|
- TYPE_FIELD_BITPOS (range_type, 0)
|
|
+ 1)
|
|
* TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
|
|
TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Ugly hack to convert method stubs into method types.
|
|
|
|
He ain't kiddin'. This demangles the name of the method into a string
|
|
including argument types, parses out each argument type, generates
|
|
a string casting a zero to that type, evaluates the string, and stuffs
|
|
the resulting type into an argtype vector!!! Then it knows the type
|
|
of the whole function (including argument types for overloading),
|
|
which info used to be in the stab's but was removed to hack back
|
|
the space required for them. */
|
|
|
|
void
|
|
check_stub_method (type, i, j)
|
|
struct type *type;
|
|
int i;
|
|
int j;
|
|
{
|
|
struct fn_field *f;
|
|
char *mangled_name = gdb_mangle_name (type, i, j);
|
|
char *demangled_name = cplus_demangle (mangled_name,
|
|
DMGL_PARAMS | DMGL_ANSI);
|
|
char *argtypetext, *p;
|
|
int depth = 0, argcount = 1;
|
|
struct type **argtypes;
|
|
struct type *mtype;
|
|
|
|
if (demangled_name == NULL)
|
|
{
|
|
error ("Internal: Cannot demangle mangled name `%s'.", mangled_name);
|
|
}
|
|
|
|
/* Now, read in the parameters that define this type. */
|
|
argtypetext = strchr (demangled_name, '(') + 1;
|
|
p = argtypetext;
|
|
while (*p)
|
|
{
|
|
if (*p == '(')
|
|
{
|
|
depth += 1;
|
|
}
|
|
else if (*p == ')')
|
|
{
|
|
depth -= 1;
|
|
}
|
|
else if (*p == ',' && depth == 0)
|
|
{
|
|
argcount += 1;
|
|
}
|
|
|
|
p += 1;
|
|
}
|
|
|
|
/* We need two more slots: one for the THIS pointer, and one for the
|
|
NULL [...] or void [end of arglist]. */
|
|
|
|
argtypes = (struct type **)
|
|
TYPE_ALLOC (type, (argcount + 2) * sizeof (struct type *));
|
|
p = argtypetext;
|
|
/* FIXME: This is wrong for static member functions. */
|
|
argtypes[0] = lookup_pointer_type (type);
|
|
argcount = 1;
|
|
|
|
if (*p != ')') /* () means no args, skip while */
|
|
{
|
|
depth = 0;
|
|
while (*p)
|
|
{
|
|
if (depth <= 0 && (*p == ',' || *p == ')'))
|
|
{
|
|
/* Avoid parsing of ellipsis, they will be handled below. */
|
|
if (strncmp (argtypetext, "...", p - argtypetext) != 0)
|
|
{
|
|
argtypes[argcount] =
|
|
parse_and_eval_type (argtypetext, p - argtypetext);
|
|
argcount += 1;
|
|
}
|
|
argtypetext = p + 1;
|
|
}
|
|
|
|
if (*p == '(')
|
|
{
|
|
depth += 1;
|
|
}
|
|
else if (*p == ')')
|
|
{
|
|
depth -= 1;
|
|
}
|
|
|
|
p += 1;
|
|
}
|
|
}
|
|
|
|
if (p[-2] != '.') /* Not '...' */
|
|
{
|
|
argtypes[argcount] = builtin_type_void; /* List terminator */
|
|
}
|
|
else
|
|
{
|
|
argtypes[argcount] = NULL; /* Ellist terminator */
|
|
}
|
|
|
|
free (demangled_name);
|
|
|
|
f = TYPE_FN_FIELDLIST1 (type, i);
|
|
TYPE_FN_FIELD_PHYSNAME (f, j) = mangled_name;
|
|
|
|
/* Now update the old "stub" type into a real type. */
|
|
mtype = TYPE_FN_FIELD_TYPE (f, j);
|
|
TYPE_DOMAIN_TYPE (mtype) = type;
|
|
TYPE_ARG_TYPES (mtype) = argtypes;
|
|
TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
|
|
TYPE_FN_FIELD_STUB (f, j) = 0;
|
|
}
|
|
|
|
const struct cplus_struct_type cplus_struct_default;
|
|
|
|
void
|
|
allocate_cplus_struct_type (type)
|
|
struct type *type;
|
|
{
|
|
if (!HAVE_CPLUS_STRUCT (type))
|
|
{
|
|
TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
|
|
TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
|
|
*(TYPE_CPLUS_SPECIFIC(type)) = cplus_struct_default;
|
|
}
|
|
}
|
|
|
|
/* Helper function to initialize the standard scalar types.
|
|
|
|
If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy
|
|
of the string pointed to by name in the type_obstack for that objfile,
|
|
and initialize the type name to that copy. There are places (mipsread.c
|
|
in particular, where init_type is called with a NULL value for NAME). */
|
|
|
|
struct type *
|
|
init_type (code, length, flags, name, objfile)
|
|
enum type_code code;
|
|
int length;
|
|
int flags;
|
|
char *name;
|
|
struct objfile *objfile;
|
|
{
|
|
register struct type *type;
|
|
|
|
type = alloc_type (objfile);
|
|
TYPE_CODE (type) = code;
|
|
TYPE_LENGTH (type) = length;
|
|
TYPE_FLAGS (type) |= flags;
|
|
if ((name != NULL) && (objfile != NULL))
|
|
{
|
|
TYPE_NAME (type) =
|
|
obsavestring (name, strlen (name), &objfile -> type_obstack);
|
|
}
|
|
else
|
|
{
|
|
TYPE_NAME (type) = name;
|
|
}
|
|
|
|
/* C++ fancies. */
|
|
|
|
if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
|
|
{
|
|
INIT_CPLUS_SPECIFIC (type);
|
|
}
|
|
return (type);
|
|
}
|
|
|
|
/* Look up a fundamental type for the specified objfile.
|
|
May need to construct such a type if this is the first use.
|
|
|
|
Some object file formats (ELF, COFF, etc) do not define fundamental
|
|
types such as "int" or "double". Others (stabs for example), do
|
|
define fundamental types.
|
|
|
|
For the formats which don't provide fundamental types, gdb can create
|
|
such types, using defaults reasonable for the current language and
|
|
the current target machine.
|
|
|
|
NOTE: This routine is obsolescent. Each debugging format reader
|
|
should manage it's own fundamental types, either creating them from
|
|
suitable defaults or reading them from the debugging information,
|
|
whichever is appropriate. The DWARF reader has already been
|
|
fixed to do this. Once the other readers are fixed, this routine
|
|
will go away. Also note that fundamental types should be managed
|
|
on a compilation unit basis in a multi-language environment, not
|
|
on a linkage unit basis as is done here. */
|
|
|
|
|
|
struct type *
|
|
lookup_fundamental_type (objfile, typeid)
|
|
struct objfile *objfile;
|
|
int typeid;
|
|
{
|
|
register struct type **typep;
|
|
register int nbytes;
|
|
|
|
if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
|
|
{
|
|
error ("internal error - invalid fundamental type id %d", typeid);
|
|
}
|
|
|
|
/* If this is the first time we need a fundamental type for this objfile
|
|
then we need to initialize the vector of type pointers. */
|
|
|
|
if (objfile -> fundamental_types == NULL)
|
|
{
|
|
nbytes = FT_NUM_MEMBERS * sizeof (struct type *);
|
|
objfile -> fundamental_types = (struct type **)
|
|
obstack_alloc (&objfile -> type_obstack, nbytes);
|
|
memset ((char *) objfile -> fundamental_types, 0, nbytes);
|
|
}
|
|
|
|
/* Look for this particular type in the fundamental type vector. If one is
|
|
not found, create and install one appropriate for the current language. */
|
|
|
|
typep = objfile -> fundamental_types + typeid;
|
|
if (*typep == NULL)
|
|
{
|
|
*typep = create_fundamental_type (objfile, typeid);
|
|
}
|
|
|
|
return (*typep);
|
|
}
|
|
|
|
int
|
|
can_dereference (t)
|
|
struct type *t;
|
|
{
|
|
/* FIXME: Should we return true for references as well as pointers? */
|
|
return
|
|
(t != NULL
|
|
&& TYPE_CODE (t) == TYPE_CODE_PTR
|
|
&& TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
|
|
}
|
|
|
|
/* Chill varying string and arrays are represented as follows:
|
|
|
|
struct { int __var_length; ELEMENT_TYPE[MAX_SIZE] __var_data};
|
|
|
|
Return true if TYPE is such a Chill varying type. */
|
|
|
|
int
|
|
chill_varying_type (type)
|
|
struct type *type;
|
|
{
|
|
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
|
|
|| TYPE_NFIELDS (type) != 2
|
|
|| strcmp (TYPE_FIELD_NAME (type, 0), "__var_length") != 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
#if MAINTENANCE_CMDS
|
|
|
|
static void
|
|
print_bit_vector (bits, nbits)
|
|
B_TYPE *bits;
|
|
int nbits;
|
|
{
|
|
int bitno;
|
|
|
|
for (bitno = 0; bitno < nbits; bitno++)
|
|
{
|
|
if ((bitno % 8) == 0)
|
|
{
|
|
puts_filtered (" ");
|
|
}
|
|
if (B_TST (bits, bitno))
|
|
{
|
|
printf_filtered ("1");
|
|
}
|
|
else
|
|
{
|
|
printf_filtered ("0");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The args list is a strange beast. It is either terminated by a NULL
|
|
pointer for varargs functions, or by a pointer to a TYPE_CODE_VOID
|
|
type for normal fixed argcount functions. (FIXME someday)
|
|
Also note the first arg should be the "this" pointer, we may not want to
|
|
include it since we may get into a infinitely recursive situation. */
|
|
|
|
static void
|
|
print_arg_types (args, spaces)
|
|
struct type **args;
|
|
int spaces;
|
|
{
|
|
if (args != NULL)
|
|
{
|
|
while (*args != NULL)
|
|
{
|
|
recursive_dump_type (*args, spaces + 2);
|
|
if ((*args++) -> code == TYPE_CODE_VOID)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
dump_fn_fieldlists (type, spaces)
|
|
struct type *type;
|
|
int spaces;
|
|
{
|
|
int method_idx;
|
|
int overload_idx;
|
|
struct fn_field *f;
|
|
|
|
printfi_filtered (spaces, "fn_fieldlists ");
|
|
gdb_print_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
|
|
printf_filtered ("\n");
|
|
for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
|
|
{
|
|
f = TYPE_FN_FIELDLIST1 (type, method_idx);
|
|
printfi_filtered (spaces + 2, "[%d] name '%s' (",
|
|
method_idx,
|
|
TYPE_FN_FIELDLIST_NAME (type, method_idx));
|
|
gdb_print_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
|
|
gdb_stdout);
|
|
printf_filtered (") length %d\n",
|
|
TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
|
|
for (overload_idx = 0;
|
|
overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
|
|
overload_idx++)
|
|
{
|
|
printfi_filtered (spaces + 4, "[%d] physname '%s' (",
|
|
overload_idx,
|
|
TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
|
|
gdb_print_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
|
|
gdb_stdout);
|
|
printf_filtered (")\n");
|
|
printfi_filtered (spaces + 8, "type ");
|
|
gdb_print_address (TYPE_FN_FIELD_TYPE (f, overload_idx), gdb_stdout);
|
|
printf_filtered ("\n");
|
|
|
|
recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
|
|
spaces + 8 + 2);
|
|
|
|
printfi_filtered (spaces + 8, "args ");
|
|
gdb_print_address (TYPE_FN_FIELD_ARGS (f, overload_idx), gdb_stdout);
|
|
printf_filtered ("\n");
|
|
|
|
print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx), spaces);
|
|
printfi_filtered (spaces + 8, "fcontext ");
|
|
gdb_print_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
|
|
gdb_stdout);
|
|
printf_filtered ("\n");
|
|
|
|
printfi_filtered (spaces + 8, "is_const %d\n",
|
|
TYPE_FN_FIELD_CONST (f, overload_idx));
|
|
printfi_filtered (spaces + 8, "is_volatile %d\n",
|
|
TYPE_FN_FIELD_VOLATILE (f, overload_idx));
|
|
printfi_filtered (spaces + 8, "is_private %d\n",
|
|
TYPE_FN_FIELD_PRIVATE (f, overload_idx));
|
|
printfi_filtered (spaces + 8, "is_protected %d\n",
|
|
TYPE_FN_FIELD_PROTECTED (f, overload_idx));
|
|
printfi_filtered (spaces + 8, "is_stub %d\n",
|
|
TYPE_FN_FIELD_STUB (f, overload_idx));
|
|
printfi_filtered (spaces + 8, "voffset %u\n",
|
|
TYPE_FN_FIELD_VOFFSET (f, overload_idx));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_cplus_stuff (type, spaces)
|
|
struct type *type;
|
|
int spaces;
|
|
{
|
|
printfi_filtered (spaces, "n_baseclasses %d\n",
|
|
TYPE_N_BASECLASSES (type));
|
|
printfi_filtered (spaces, "nfn_fields %d\n",
|
|
TYPE_NFN_FIELDS (type));
|
|
printfi_filtered (spaces, "nfn_fields_total %d\n",
|
|
TYPE_NFN_FIELDS_TOTAL (type));
|
|
if (TYPE_N_BASECLASSES (type) > 0)
|
|
{
|
|
printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
|
|
TYPE_N_BASECLASSES (type));
|
|
gdb_print_address (TYPE_FIELD_VIRTUAL_BITS (type), gdb_stdout);
|
|
printf_filtered (")");
|
|
|
|
print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
|
|
TYPE_N_BASECLASSES (type));
|
|
puts_filtered ("\n");
|
|
}
|
|
if (TYPE_NFIELDS (type) > 0)
|
|
{
|
|
if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
|
|
{
|
|
printfi_filtered (spaces, "private_field_bits (%d bits at *",
|
|
TYPE_NFIELDS (type));
|
|
gdb_print_address (TYPE_FIELD_PRIVATE_BITS (type), gdb_stdout);
|
|
printf_filtered (")");
|
|
print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
|
|
TYPE_NFIELDS (type));
|
|
puts_filtered ("\n");
|
|
}
|
|
if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
|
|
{
|
|
printfi_filtered (spaces, "protected_field_bits (%d bits at *",
|
|
TYPE_NFIELDS (type));
|
|
gdb_print_address (TYPE_FIELD_PROTECTED_BITS (type), gdb_stdout);
|
|
printf_filtered (")");
|
|
print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
|
|
TYPE_NFIELDS (type));
|
|
puts_filtered ("\n");
|
|
}
|
|
}
|
|
if (TYPE_NFN_FIELDS (type) > 0)
|
|
{
|
|
dump_fn_fieldlists (type, spaces);
|
|
}
|
|
}
|
|
|
|
void
|
|
recursive_dump_type (type, spaces)
|
|
struct type *type;
|
|
int spaces;
|
|
{
|
|
int idx;
|
|
|
|
printfi_filtered (spaces, "type node ");
|
|
gdb_print_address (type, gdb_stdout);
|
|
printf_filtered ("\n");
|
|
printfi_filtered (spaces, "name '%s' (",
|
|
TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
|
|
gdb_print_address (TYPE_NAME (type), gdb_stdout);
|
|
printf_filtered (")\n");
|
|
if (TYPE_TAG_NAME (type) != NULL)
|
|
{
|
|
printfi_filtered (spaces, "tagname '%s' (",
|
|
TYPE_TAG_NAME (type));
|
|
gdb_print_address (TYPE_TAG_NAME (type), gdb_stdout);
|
|
printf_filtered (")\n");
|
|
}
|
|
printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
|
|
switch (TYPE_CODE (type))
|
|
{
|
|
case TYPE_CODE_UNDEF:
|
|
printf_filtered ("(TYPE_CODE_UNDEF)");
|
|
break;
|
|
case TYPE_CODE_PTR:
|
|
printf_filtered ("(TYPE_CODE_PTR)");
|
|
break;
|
|
case TYPE_CODE_ARRAY:
|
|
printf_filtered ("(TYPE_CODE_ARRAY)");
|
|
break;
|
|
case TYPE_CODE_STRUCT:
|
|
printf_filtered ("(TYPE_CODE_STRUCT)");
|
|
break;
|
|
case TYPE_CODE_UNION:
|
|
printf_filtered ("(TYPE_CODE_UNION)");
|
|
break;
|
|
case TYPE_CODE_ENUM:
|
|
printf_filtered ("(TYPE_CODE_ENUM)");
|
|
break;
|
|
case TYPE_CODE_FUNC:
|
|
printf_filtered ("(TYPE_CODE_FUNC)");
|
|
break;
|
|
case TYPE_CODE_INT:
|
|
printf_filtered ("(TYPE_CODE_INT)");
|
|
break;
|
|
case TYPE_CODE_FLT:
|
|
printf_filtered ("(TYPE_CODE_FLT)");
|
|
break;
|
|
case TYPE_CODE_VOID:
|
|
printf_filtered ("(TYPE_CODE_VOID)");
|
|
break;
|
|
case TYPE_CODE_SET:
|
|
printf_filtered ("(TYPE_CODE_SET)");
|
|
break;
|
|
case TYPE_CODE_RANGE:
|
|
printf_filtered ("(TYPE_CODE_RANGE)");
|
|
break;
|
|
case TYPE_CODE_STRING:
|
|
printf_filtered ("(TYPE_CODE_STRING)");
|
|
break;
|
|
case TYPE_CODE_ERROR:
|
|
printf_filtered ("(TYPE_CODE_ERROR)");
|
|
break;
|
|
case TYPE_CODE_MEMBER:
|
|
printf_filtered ("(TYPE_CODE_MEMBER)");
|
|
break;
|
|
case TYPE_CODE_METHOD:
|
|
printf_filtered ("(TYPE_CODE_METHOD)");
|
|
break;
|
|
case TYPE_CODE_REF:
|
|
printf_filtered ("(TYPE_CODE_REF)");
|
|
break;
|
|
case TYPE_CODE_CHAR:
|
|
printf_filtered ("(TYPE_CODE_CHAR)");
|
|
break;
|
|
case TYPE_CODE_BOOL:
|
|
printf_filtered ("(TYPE_CODE_BOOL)");
|
|
break;
|
|
default:
|
|
printf_filtered ("(UNKNOWN TYPE CODE)");
|
|
break;
|
|
}
|
|
puts_filtered ("\n");
|
|
printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
|
|
printfi_filtered (spaces, "objfile ");
|
|
gdb_print_address (TYPE_OBJFILE (type), gdb_stdout);
|
|
printf_filtered ("\n");
|
|
printfi_filtered (spaces, "target_type ");
|
|
gdb_print_address (TYPE_TARGET_TYPE (type), gdb_stdout);
|
|
printf_filtered ("\n");
|
|
if (TYPE_TARGET_TYPE (type) != NULL)
|
|
{
|
|
recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
|
|
}
|
|
printfi_filtered (spaces, "pointer_type ");
|
|
gdb_print_address (TYPE_POINTER_TYPE (type), gdb_stdout);
|
|
printf_filtered ("\n");
|
|
printfi_filtered (spaces, "reference_type ");
|
|
gdb_print_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
|
|
printf_filtered ("\n");
|
|
printfi_filtered (spaces, "function_type ");
|
|
gdb_print_address (TYPE_FUNCTION_TYPE (type), gdb_stdout);
|
|
printf_filtered ("\n");
|
|
printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
|
|
if (TYPE_FLAGS (type) & TYPE_FLAG_UNSIGNED)
|
|
{
|
|
puts_filtered (" TYPE_FLAG_UNSIGNED");
|
|
}
|
|
if (TYPE_FLAGS (type) & TYPE_FLAG_STUB)
|
|
{
|
|
puts_filtered (" TYPE_FLAG_STUB");
|
|
}
|
|
puts_filtered ("\n");
|
|
printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
|
|
gdb_print_address (TYPE_FIELDS (type), gdb_stdout);
|
|
puts_filtered ("\n");
|
|
for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
|
|
{
|
|
printfi_filtered (spaces + 2,
|
|
"[%d] bitpos %d bitsize %d type ",
|
|
idx, TYPE_FIELD_BITPOS (type, idx),
|
|
TYPE_FIELD_BITSIZE (type, idx));
|
|
gdb_print_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
|
|
printf_filtered (" name '%s' (",
|
|
TYPE_FIELD_NAME (type, idx) != NULL
|
|
? TYPE_FIELD_NAME (type, idx)
|
|
: "<NULL>");
|
|
gdb_print_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
|
|
printf_filtered (")\n");
|
|
if (TYPE_FIELD_TYPE (type, idx) != NULL)
|
|
{
|
|
recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
|
|
}
|
|
}
|
|
printfi_filtered (spaces, "vptr_basetype ");
|
|
gdb_print_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
|
|
puts_filtered ("\n");
|
|
if (TYPE_VPTR_BASETYPE (type) != NULL)
|
|
{
|
|
recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
|
|
}
|
|
printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
|
|
switch (TYPE_CODE (type))
|
|
{
|
|
case TYPE_CODE_METHOD:
|
|
case TYPE_CODE_FUNC:
|
|
printfi_filtered (spaces, "arg_types ");
|
|
gdb_print_address (TYPE_ARG_TYPES (type), gdb_stdout);
|
|
puts_filtered ("\n");
|
|
print_arg_types (TYPE_ARG_TYPES (type), spaces);
|
|
break;
|
|
|
|
case TYPE_CODE_STRUCT:
|
|
printfi_filtered (spaces, "cplus_stuff ");
|
|
gdb_print_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
|
|
puts_filtered ("\n");
|
|
print_cplus_stuff (type, spaces);
|
|
break;
|
|
|
|
default:
|
|
/* We have to pick one of the union types to be able print and test
|
|
the value. Pick cplus_struct_type, even though we know it isn't
|
|
any particular one. */
|
|
printfi_filtered (spaces, "type_specific ");
|
|
gdb_print_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
|
|
if (TYPE_CPLUS_SPECIFIC (type) != NULL)
|
|
{
|
|
printf_filtered (" (unknown data form)");
|
|
}
|
|
printf_filtered ("\n");
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
#endif /* MAINTENANCE_CMDS */
|
|
|
|
void
|
|
_initialize_gdbtypes ()
|
|
{
|
|
builtin_type_void =
|
|
init_type (TYPE_CODE_VOID, 1,
|
|
0,
|
|
"void", (struct objfile *) NULL);
|
|
builtin_type_char =
|
|
init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
|
|
0,
|
|
"char", (struct objfile *) NULL);
|
|
builtin_type_signed_char =
|
|
init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
|
|
0,
|
|
"signed char", (struct objfile *) NULL);
|
|
builtin_type_unsigned_char =
|
|
init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
|
|
TYPE_FLAG_UNSIGNED,
|
|
"unsigned char", (struct objfile *) NULL);
|
|
builtin_type_short =
|
|
init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
|
|
0,
|
|
"short", (struct objfile *) NULL);
|
|
builtin_type_unsigned_short =
|
|
init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
|
|
TYPE_FLAG_UNSIGNED,
|
|
"unsigned short", (struct objfile *) NULL);
|
|
builtin_type_int =
|
|
init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
|
|
0,
|
|
"int", (struct objfile *) NULL);
|
|
builtin_type_unsigned_int =
|
|
init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
|
|
TYPE_FLAG_UNSIGNED,
|
|
"unsigned int", (struct objfile *) NULL);
|
|
builtin_type_long =
|
|
init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
|
|
0,
|
|
"long", (struct objfile *) NULL);
|
|
builtin_type_unsigned_long =
|
|
init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
|
|
TYPE_FLAG_UNSIGNED,
|
|
"unsigned long", (struct objfile *) NULL);
|
|
builtin_type_long_long =
|
|
init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
|
|
0,
|
|
"long long", (struct objfile *) NULL);
|
|
builtin_type_unsigned_long_long =
|
|
init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
|
|
TYPE_FLAG_UNSIGNED,
|
|
"unsigned long long", (struct objfile *) NULL);
|
|
builtin_type_float =
|
|
init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
|
|
0,
|
|
"float", (struct objfile *) NULL);
|
|
builtin_type_double =
|
|
init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
|
|
0,
|
|
"double", (struct objfile *) NULL);
|
|
builtin_type_long_double =
|
|
init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
|
|
0,
|
|
"long double", (struct objfile *) NULL);
|
|
builtin_type_complex =
|
|
init_type (TYPE_CODE_FLT, TARGET_COMPLEX_BIT / TARGET_CHAR_BIT,
|
|
0,
|
|
"complex", (struct objfile *) NULL);
|
|
builtin_type_double_complex =
|
|
init_type (TYPE_CODE_FLT, TARGET_DOUBLE_COMPLEX_BIT / TARGET_CHAR_BIT,
|
|
0,
|
|
"double complex", (struct objfile *) NULL);
|
|
builtin_type_string =
|
|
init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
|
|
0,
|
|
"string", (struct objfile *) NULL);
|
|
}
|