binutils-gdb/bfd/syms.c

453 lines
12 KiB
C

/* Generic symbol-table support for the BFD library.
Copyright (C) 1990-1991 Free Software Foundation, Inc.
Written by Cygnus Support.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/*
SECTION
Symbols
DESCRIPTION
BFD trys to maintain as much symbol information as it can when
it moves information from file to file. BFD passes information
to applications though the <<asymbol>> structure. When the
applicationrequests the symbol table, BFD reads the table in
the native form and translates parts of it into the internal
format. To maintain more than the infomation passed to
applications some targets keep some information 'behind the
sceans', in a structure only the particular back end knows
about. For example, the coff back end keeps the original
symbol table structure as well as the canonical structure when
a BFD is read in. On output, the coff back end can reconstruct
the output symbol table so that no information is lost, even
information unique to coff which BFD doesn't know or
understand. If a coff symbol table was read, but was written
through an a.out back end, all the coff specific information
would be lost. (.. until BFD 2 :). The symbol table of a BFD
is not necessarily read in until a canonicalize request is
made. Then the BFD back end fills in a table provided by the
application with pointers to the canonical information. To
output symbols, the application provides BFD with a table of
pointers to pointers to <<asymbol>>s. This allows applications
like the linker to output a symbol as read, since the 'behind
the sceens' information will be still available.
@menu
* Reading Symbols::
* Writing Symbols::
* typedef asymbol::
* symbol handling functions::
@end menu
@node Reading Symbols, Writing Symbols, Symbols, Symbols
SUBSECTION
Reading Symbols
DESCRIPTION
There are two stages to reading a symbol table from a BFD;
allocating storage, and the actual reading process. This is an
excerpt from an appliction which reads the symbol table:
EXAMPLE
unsigned int storage_needed;
asymbol **symbol_table;
unsigned int number_of_symbols;
unsigned int i;
storage_needed = get_symtab_upper_bound (abfd);
if (storage_needed == 0) {
return ;
}
symbol_table = (asymbol **) bfd_xmalloc (storage_needed);
...
number_of_symbols =
bfd_canonicalize_symtab (abfd, symbol_table);
for (i = 0; i < number_of_symbols; i++) {
process_symbol (symbol_table[i]);
}
DESCRIPTION
All storage for the symbols themselves is in an obstack
connected to the BFD, and is freed when the BFD is closed.
@node Writing Symbols, typedef asymbol, Reading Symbols, Symbols
SUBSECTION
Writing Symbols
DESCRIPTION
Writing of a symbol table is automatic when a BFD open for
writing is closed. The application attaches a vector of
pointers to pointers to symbols to the BFD being written, and
fills in the symbol count. The close and cleanup code reads
through the table provided and performs all the necessary
operations. The outputing code must always be provided with an
'owned' symbol; one which has come from another BFD, or one
which has been created using <<bfd_make_empty_symbol>>. An
example showing the creation of a symbol table with only one element:
EXAMPLE
#include "bfd.h"
main()
{
bfd *abfd;
asymbol *ptrs[2];
asymbol *new;
abfd = bfd_openw("foo","a.out-sunos-big");
bfd_set_format(abfd, bfd_object);
new = bfd_make_empty_symbol(abfd);
new->name = "dummy_symbol";
new->section = (asection *)0;
new->flags = BSF_ABSOLUTE | BSF_GLOBAL;
new->value = 0x12345;
ptrs[0] = new;
ptrs[1] = (asymbol *)0;
bfd_set_symtab(abfd, ptrs, 1);
bfd_close(abfd);
}
./makesym
nm foo
00012345 A dummy_symbol
DESCRIPTION
Many formats cannot represent arbitary symbol information; for
instance the <<a.out>> object format does not allow an
arbitary number of sections. A symbol pointing to a section
which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
be described.
*/
/*doc*
@node typedef asymbol, symbol handling functions, Writing Symbols, Symbols
*/
/*
TYPEDEF
typedef asymbol
DESCRIPTION
An <<asymbol>> has the form:
.typedef struct symbol_cache_entry
.{
A pointer to the BFD which owns the symbol. This information
is necessary so that a back end can work out what additional
(invisible to the application writer) information is carried
with the symbol.
. struct _bfd *the_bfd;
The text of the symbol. The name is left alone, and not copied - the
application may not alter it.
. CONST char *name;
The value of the symbol.
. symvalue value;
Attributes of a symbol:
.#define BSF_NO_FLAGS 0x00
The symbol has local scope; <<static>> in <<C>>. The value is
the offset into the section of the data.
.#define BSF_LOCAL 0x01
The symbol has global scope; initialized data in <<C>>. The value
is the offset into the section of the data.
.#define BSF_GLOBAL 0x02
Obsolete
.#define BSF_IMPORT 0x04
The symbol has global scope, and is exported. The value is the offset
into the section of the data.
.#define BSF_EXPORT 0x08
The symbol is undefined. <<extern>> in <<C>>. The value has no meaning.
.#define BSF_UNDEFINED 0x10
The symbol is common, initialized to zero; default in <<C>>. The
value is the size of the object in bytes.
.#define BSF_FORT_COMM 0x20
A normal <<C>> symbol would be one of:
<<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or <<BSF_EXPORT|BSD_GLOBAL>>
The symbol is a debugging record. The value has an arbitary meaning.
.#define BSF_DEBUGGING 0x40
The symbol has no section attached, any value is the actual value and
is not a relative offset to a section.
.#define BSF_ABSOLUTE 0x80
Used by the linker
.#define BSF_KEEP 0x10000
.#define BSF_KEEP_G 0x80000
Unused
.#define BSF_WEAK 0x100000
.#define BSF_CTOR 0x200000
.#define BSF_FAKE 0x400000
The symbol used to be a common symbol, but now it is allocated.
.#define BSF_OLD_COMMON 0x800000
The default value for common data.
.#define BFD_FORT_COMM_DEFAULT_VALUE 0
In some files the type of a symbol sometimes alters its location
in an output file - ie in coff a <<ISFCN>> symbol which is also <<C_EXT>>
symbol appears where it was declared and not at the end of a section.
This bit is set by the target BFD part to convey this information.
.#define BSF_NOT_AT_END 0x40000
Signal that the symbol is the label of constructor section.
.#define BSF_CONSTRUCTOR 0x1000000
Signal that the symbol is a warning symbol. If the symbol is a warning
symbol, then the value field (I know this is tacky) will point to the
asymbol which when referenced will cause the warning.
.#define BSF_WARNING 0x2000000
Signal that the symbol is indirect. The value of the symbol is a
pointer to an undefined asymbol which contains the name to use
instead.
.#define BSF_INDIRECT 0x4000000
. flagword flags;
A pointer to the section to which this symbol is relative, or 0 if the
symbol is absolute or undefined. Note that it is not sufficient to set
this location to 0 to mark a symbol as absolute - the flag
<<BSF_ABSOLUTE>> must be set also.
. struct sec *section;
Back end special data. This is being phased out in favour of making
this a union.
. PTR udata;
.} asymbol;
*/
#include "bfd.h"
#include "sysdep.h"
#include "libbfd.h"
#include "stab.gnu.h"
/*
@node symbol handling functions, , typedef asymbol, Symbols
SUBSECTION
Symbol Handling Functions
*/
/*
FUNCTION
get_symtab_upper_bound
DESCRIPTION
Returns the number of bytes required in a vector of pointers
to <<asymbols>> for all the symbols in the supplied BFD,
including a terminal NULL pointer. If there are no symbols in
the BFD, then 0 is returned.
.#define get_symtab_upper_bound(abfd) \
. BFD_SEND (abfd, _get_symtab_upper_bound, (abfd))
*/
/*
FUNCTION
bfd_canonicalize_symtab
DESCRIPTION
Supplied a BFD and a pointer to an uninitialized vector of
pointers. This reads in the symbols from the BFD, and fills in
the table with pointers to the symbols, and a trailing NULL.
The routine returns the actual number of symbol pointers not
including the NULL.
.#define bfd_canonicalize_symtab(abfd, location) \
. BFD_SEND (abfd, _bfd_canonicalize_symtab,\
. (abfd, location))
*/
/*
FUNCTION
bfd_set_symtab
DESCRIPTION
Provided a table of pointers to symbols and a count, writes to
the output BFD the symbols when closed.
SYNOPSIS
boolean bfd_set_symtab (bfd *, asymbol **, unsigned int );
*/
boolean
bfd_set_symtab (abfd, location, symcount)
bfd *abfd;
asymbol **location;
unsigned int symcount;
{
if ((abfd->format != bfd_object) || (bfd_read_p (abfd))) {
bfd_error = invalid_operation;
return false;
}
bfd_get_outsymbols (abfd) = location;
bfd_get_symcount (abfd) = symcount;
return true;
}
/*
FUNCTION
bfd_print_symbol_vandf
DESCRIPTION
Prints the value and flags of the symbol supplied to the stream file.
SYNOPSIS
void bfd_print_symbol_vandf(PTR file, asymbol *symbol);
*/
void
DEFUN(bfd_print_symbol_vandf,(file, symbol),
PTR file AND
asymbol *symbol)
{
flagword type = symbol->flags;
if (symbol->section != (asection *)NULL)
{
fprintf_vma(file, symbol->value+symbol->section->vma);
}
else
{
fprintf_vma(file, symbol->value);
}
fprintf(file," %c%c%c%c%c%c%c%c%c%c",
(type & BSF_LOCAL) ? 'l':' ',
(type & BSF_GLOBAL) ? 'g' : ' ',
(type & BSF_IMPORT) ? 'i' : ' ',
(type & BSF_EXPORT) ? 'e' : ' ',
(type & BSF_UNDEFINED) ? 'u' : ' ',
(type & BSF_FORT_COMM) ? 'c' : ' ',
(type & BSF_CONSTRUCTOR) ? 'C' : ' ',
(type & BSF_WARNING) ? 'W' : ' ',
(type & BSF_INDIRECT) ? 'I' : ' ',
(type & BSF_DEBUGGING) ? 'd' :' ');
}
/*
FUNCTION
bfd_make_empty_symbol
DESCRIPTION
This function creates a new <<asymbol>> structure for the BFD,
and returns a pointer to it.
This routine is necessary, since each back end has private
information surrounding the <<asymbol>>. Building your own
<<asymbol>> and pointing to it will not create the private
information, and will cause problems later on.
.#define bfd_make_empty_symbol(abfd) \
. BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
*/
/*
FUNCTION
bfd_decode_symclass
DESCRIPTION
Return a lower-case character corresponding to the symbol
class of symbol.
SYNOPSIS
int bfd_decode_symclass(asymbol *symbol);
*/
int
DEFUN(bfd_decode_symclass,(symbol),
asymbol *symbol)
{
flagword flags = symbol->flags;
if (flags & BSF_FORT_COMM) return 'C';
if (flags & BSF_UNDEFINED) return 'U';
if (flags & BSF_ABSOLUTE)
return (flags & BSF_GLOBAL) ? 'A' : 'a';
if ( flags & (BSF_GLOBAL|BSF_LOCAL) ) {
if (symbol->section == (asection *)NULL)
return '*';
else if ( !strcmp(symbol->section->name, ".text") )
return (flags & BSF_GLOBAL) ? 'T' : 't';
else if ( !strcmp(symbol->section->name, ".data") )
return (flags & BSF_GLOBAL) ? 'D' : 'd';
else if ( !strcmp(symbol->section->name, ".bss") )
return (flags & BSF_GLOBAL) ? 'B' : 'b';
else
return (flags & BSF_GLOBAL) ? 'O' : 'o';
}
/* We don't have to handle these cases just yet, but we will soon:
N_SETV: 'v';
N_SETA: 'l';
N_SETT: 'x';
N_SETD: 'z';
N_SETB: 's';
N_INDR: 'i';
*/
return '?';
}