binutils-gdb/sim/h8300/compile.c
2002-06-09 15:45:54 +00:00

2295 lines
46 KiB
C

/*
* Simulator for the Hitachi H8/300 architecture.
*
* Written by Steve Chamberlain of Cygnus Support. sac@cygnus.com
*
* This file is part of H8/300 sim
*
*
* THIS SOFTWARE IS NOT COPYRIGHTED
*
* Cygnus offers the following for use in the public domain. Cygnus makes no
* warranty with regard to the software or its performance and the user
* accepts the software "AS IS" with all faults.
*
* CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS
* SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#include "config.h"
#include <stdio.h>
#include <signal.h>
#ifdef HAVE_TIME_H
#include <time.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif
#include "ansidecl.h"
#include "bfd.h"
#include "gdb/callback.h"
#include "gdb/remote-sim.h"
#ifndef SIGTRAP
# define SIGTRAP 5
#endif
int debug;
host_callback *sim_callback;
static SIM_OPEN_KIND sim_kind;
static char *myname;
/* FIXME: Needs to live in header file.
This header should also include the things in remote-sim.h.
One could move this to remote-sim.h but this function isn't needed
by gdb. */
void sim_set_simcache_size PARAMS ((int));
#define X(op, size) op * 4 + size
#define SP (h8300hmode ? SL : SW)
#define SB 0
#define SW 1
#define SL 2
#define OP_REG 1
#define OP_DEC 2
#define OP_DISP 3
#define OP_INC 4
#define OP_PCREL 5
#define OP_MEM 6
#define OP_CCR 7
#define OP_IMM 8
#define OP_ABS 10
#define OP_EXR 11
#define h8_opcodes ops
#define DEFINE_TABLE
#include "opcode/h8300.h"
#include "inst.h"
/* The rate at which to call the host's poll_quit callback. */
#define POLL_QUIT_INTERVAL 0x80000
#define LOW_BYTE(x) ((x) & 0xff)
#define HIGH_BYTE(x) (((x) >> 8) & 0xff)
#define P(X,Y) ((X << 8) | Y)
#define BUILDSR() cpu.ccr = (I << 7) | (UI << 6)| (H<<5) | (U<<4) | \
(N << 3) | (Z << 2) | (V<<1) | C;
#define BUILDEXR() \
if (h8300smode) cpu.exr = (trace<<7) | intMask;
#define GETSR() \
c = (cpu.ccr >> 0) & 1;\
v = (cpu.ccr >> 1) & 1;\
nz = !((cpu.ccr >> 2) & 1);\
n = (cpu.ccr >> 3) & 1;\
u = (cpu.ccr >> 4) & 1;\
h = (cpu.ccr >> 5) & 1;\
ui = ((cpu.ccr >> 6) & 1);\
intMaskBit = (cpu.ccr >> 7) & 1;
#define GETEXR() \
if (h8300smode) { \
trace = (cpu.exr >> 7) & 1;\
intMask = cpu.exr & 7; }
#ifdef __CHAR_IS_SIGNED__
#define SEXTCHAR(x) ((char) (x))
#endif
#ifndef SEXTCHAR
#define SEXTCHAR(x) ((x & 0x80) ? (x | ~0xff): x & 0xff)
#endif
#define UEXTCHAR(x) ((x) & 0xff)
#define UEXTSHORT(x) ((x) & 0xffff)
#define SEXTSHORT(x) ((short) (x))
static cpu_state_type cpu;
int h8300hmode = 0;
int h8300smode = 0;
static int memory_size;
static int
get_now ()
{
return time (0); /* WinXX HAS UNIX like 'time', so why not using it? */
}
static int
now_persec ()
{
return 1;
}
static int
bitfrom (x)
{
switch (x & SIZE)
{
case L_8:
return SB;
case L_16:
return SW;
case L_32:
return SL;
case L_P:
return h8300hmode ? SL : SW;
}
}
static unsigned int
lvalue (x, rn)
{
switch (x / 4)
{
case OP_DISP:
if (rn == 8)
{
return X (OP_IMM, SP);
}
return X (OP_REG, SP);
case OP_MEM:
return X (OP_MEM, SP);
default:
abort (); /* ?? May be something more usefull? */
}
}
static unsigned int
decode (addr, data, dst)
int addr;
unsigned char *data;
decoded_inst *dst;
{
int rs = 0;
int rd = 0;
int rdisp = 0;
int abs = 0;
int bit = 0;
int plen = 0;
struct h8_opcode *q;
int size = 0;
dst->dst.type = -1;
dst->src.type = -1;
/* Find the exact opcode/arg combo. */
for (q = h8_opcodes; q->name; q++)
{
op_type *nib = q->data.nib;
unsigned int len = 0;
while (1)
{
op_type looking_for = *nib;
int thisnib = data[len >> 1];
thisnib = (len & 1) ? (thisnib & 0xf) : ((thisnib >> 4) & 0xf);
if (looking_for < 16 && looking_for >= 0)
{
if (looking_for != thisnib)
goto fail;
}
else
{
if ((int) looking_for & (int) B31)
{
if (!(((int) thisnib & 0x8) != 0))
goto fail;
looking_for = (op_type) ((int) looking_for & ~(int) B31);
thisnib &= 0x7;
}
if ((int) looking_for & (int) B30)
{
if (!(((int) thisnib & 0x8) == 0))
goto fail;
looking_for = (op_type) ((int) looking_for & ~(int) B30);
}
if (looking_for & DBIT)
{
/* Exclude adds/subs by looking at bit 0 and 2, and
make sure the operand size, either w or l,
matches by looking at bit 1. */
if ((looking_for & 7) != (thisnib & 7))
goto fail;
abs = (thisnib & 0x8) ? 2 : 1;
}
else if (looking_for & (REG | IND | INC | DEC))
{
if (looking_for & REG)
{
/* Can work out size from the register. */
size = bitfrom (looking_for);
}
if (looking_for & SRC)
rs = thisnib;
else
rd = thisnib;
}
else if (looking_for & L_16)
{
abs = (data[len >> 1]) * 256 + data[(len + 2) >> 1];
plen = 16;
if (looking_for & (PCREL | DISP))
{
abs = (short) (abs);
}
}
else if (looking_for & ABSJMP)
{
abs = (data[1] << 16) | (data[2] << 8) | (data[3]);
}
else if (looking_for & MEMIND)
{
abs = data[1];
}
else if (looking_for & L_32)
{
int i = len >> 1;
abs = (data[i] << 24)
| (data[i + 1] << 16)
| (data[i + 2] << 8)
| (data[i + 3]);
plen = 32;
}
else if (looking_for & L_24)
{
int i = len >> 1;
abs = (data[i] << 16) | (data[i + 1] << 8) | (data[i + 2]);
plen = 24;
}
else if (looking_for & IGNORE)
{
;
}
else if (looking_for & DISPREG)
{
rdisp = thisnib & 0x7;
}
else if (looking_for & KBIT)
{
switch (thisnib)
{
case 9:
abs = 4;
break;
case 8:
abs = 2;
break;
case 0:
abs = 1;
break;
default:
goto fail;
}
}
else if (looking_for & L_8)
{
plen = 8;
if (looking_for & PCREL)
{
abs = SEXTCHAR (data[len >> 1]);
}
else if (looking_for & ABS8MEM)
{
plen = 8;
abs = h8300hmode ? ~0xff0000ff : ~0xffff00ff;
abs |= data[len >> 1] & 0xff;
}
else
{
abs = data[len >> 1] & 0xff;
}
}
else if (looking_for & L_3)
{
plen = 3;
bit = thisnib;
}
else if (looking_for == E)
{
dst->op = q;
/* Fill in the args. */
{
op_type *args = q->args.nib;
int hadone = 0;
while (*args != E)
{
int x = *args;
int rn = (x & DST) ? rd : rs;
ea_type *p;
if (x & DST)
p = &(dst->dst);
else
p = &(dst->src);
if (x & L_3)
{
p->type = X (OP_IMM, size);
p->literal = bit;
}
else if (x & (IMM | KBIT | DBIT))
{
p->type = X (OP_IMM, size);
p->literal = abs;
}
else if (x & REG)
{
/* Reset the size.
Some ops (like mul) have two sizes. */
size = bitfrom (x);
p->type = X (OP_REG, size);
p->reg = rn;
}
else if (x & INC)
{
p->type = X (OP_INC, size);
p->reg = rn & 0x7;
}
else if (x & DEC)
{
p->type = X (OP_DEC, size);
p->reg = rn & 0x7;
}
else if (x & IND)
{
p->type = X (OP_DISP, size);
p->reg = rn & 0x7;
p->literal = 0;
}
else if (x & (ABS | ABSJMP | ABS8MEM))
{
p->type = X (OP_DISP, size);
p->literal = abs;
p->reg = 8;
}
else if (x & MEMIND)
{
p->type = X (OP_MEM, size);
p->literal = abs;
}
else if (x & PCREL)
{
p->type = X (OP_PCREL, size);
p->literal = abs + addr + 2;
if (x & L_16)
p->literal += 2;
}
else if (x & ABSJMP)
{
p->type = X (OP_IMM, SP);
p->literal = abs;
}
else if (x & DISP)
{
p->type = X (OP_DISP, size);
p->literal = abs;
p->reg = rdisp & 0x7;
}
else if (x & CCR)
{
p->type = OP_CCR;
}
else if (x & EXR)
{
p->type = OP_EXR;
}
else
printf ("Hmmmm %x", x);
args++;
}
}
/* But a jmp or a jsr gets automagically lvalued,
since we branch to their address not their
contents. */
if (q->how == O (O_JSR, SB)
|| q->how == O (O_JMP, SB))
{
dst->src.type = lvalue (dst->src.type, dst->src.reg);
}
if (dst->dst.type == -1)
dst->dst = dst->src;
dst->opcode = q->how;
dst->cycles = q->time;
/* And a jsr to 0xc4 is turned into a magic trap. */
if (dst->opcode == O (O_JSR, SB))
{
if (dst->src.literal == 0xc4)
{
dst->opcode = O (O_SYSCALL, SB);
}
}
dst->next_pc = addr + len / 2;
return;
}
else
printf ("Don't understand %x \n", looking_for);
}
len++;
nib++;
}
fail:
;
}
/* Fell off the end. */
dst->opcode = O (O_ILL, SB);
}
static void
compile (pc)
{
int idx;
/* Find the next cache entry to use. */
idx = cpu.cache_top + 1;
cpu.compiles++;
if (idx >= cpu.csize)
{
idx = 1;
}
cpu.cache_top = idx;
/* Throw away its old meaning. */
cpu.cache_idx[cpu.cache[idx].oldpc] = 0;
/* Set to new address. */
cpu.cache[idx].oldpc = pc;
/* Fill in instruction info. */
decode (pc, cpu.memory + pc, cpu.cache + idx);
/* Point to new cache entry. */
cpu.cache_idx[pc] = idx;
}
static unsigned char *breg[18];
static unsigned short *wreg[18];
static unsigned int *lreg[18];
#define GET_B_REG(x) *(breg[x])
#define SET_B_REG(x,y) (*(breg[x])) = (y)
#define GET_W_REG(x) *(wreg[x])
#define SET_W_REG(x,y) (*(wreg[x])) = (y)
#define GET_L_REG(x) *(lreg[x])
#define SET_L_REG(x,y) (*(lreg[x])) = (y)
#define GET_MEMORY_L(x) \
(x < memory_size \
? ((cpu.memory[x+0] << 24) | (cpu.memory[x+1] << 16) \
| (cpu.memory[x+2] << 8) | cpu.memory[x+3]) \
: ((cpu.eightbit[(x+0) & 0xff] << 24) | (cpu.eightbit[(x+1) & 0xff] << 16) \
| (cpu.eightbit[(x+2) & 0xff] << 8) | cpu.eightbit[(x+3) & 0xff]))
#define GET_MEMORY_W(x) \
(x < memory_size \
? ((cpu.memory[x+0] << 8) | (cpu.memory[x+1] << 0)) \
: ((cpu.eightbit[(x+0) & 0xff] << 8) | (cpu.eightbit[(x+1) & 0xff] << 0)))
#define GET_MEMORY_B(x) \
(x < memory_size ? (cpu.memory[x]) : (cpu.eightbit[x & 0xff]))
#define SET_MEMORY_L(x,y) \
{ register unsigned char *_p; register int __y = y; \
_p = (x < memory_size ? cpu.memory+x : cpu.eightbit + (x & 0xff)); \
_p[0] = (__y)>>24; _p[1] = (__y)>>16; \
_p[2] = (__y)>>8; _p[3] = (__y)>>0;}
#define SET_MEMORY_W(x,y) \
{ register unsigned char *_p; register int __y = y; \
_p = (x < memory_size ? cpu.memory+x : cpu.eightbit + (x & 0xff)); \
_p[0] = (__y)>>8; _p[1] =(__y);}
#define SET_MEMORY_B(x,y) \
(x < memory_size ? (cpu.memory[(x)] = y) : (cpu.eightbit[x & 0xff] = y))
int
fetch (arg, n)
ea_type *arg;
{
int rn = arg->reg;
int abs = arg->literal;
int r;
int t;
switch (arg->type)
{
case X (OP_REG, SB):
return GET_B_REG (rn);
case X (OP_REG, SW):
return GET_W_REG (rn);
case X (OP_REG, SL):
return GET_L_REG (rn);
case X (OP_IMM, SB):
case X (OP_IMM, SW):
case X (OP_IMM, SL):
return abs;
case X (OP_DEC, SB):
abort ();
case X (OP_INC, SB):
t = GET_L_REG (rn);
t &= cpu.mask;
r = GET_MEMORY_B (t);
t++;
t = t & cpu.mask;
SET_L_REG (rn, t);
return r;
break;
case X (OP_INC, SW):
t = GET_L_REG (rn);
t &= cpu.mask;
r = GET_MEMORY_W (t);
t += 2;
t = t & cpu.mask;
SET_L_REG (rn, t);
return r;
case X (OP_INC, SL):
t = GET_L_REG (rn);
t &= cpu.mask;
r = GET_MEMORY_L (t);
t += 4;
t = t & cpu.mask;
SET_L_REG (rn, t);
return r;
case X (OP_DISP, SB):
t = GET_L_REG (rn) + abs;
t &= cpu.mask;
return GET_MEMORY_B (t);
case X (OP_DISP, SW):
t = GET_L_REG (rn) + abs;
t &= cpu.mask;
return GET_MEMORY_W (t);
case X (OP_DISP, SL):
t = GET_L_REG (rn) + abs;
t &= cpu.mask;
return GET_MEMORY_L (t);
case X (OP_MEM, SL):
t = GET_MEMORY_L (abs);
t &= cpu.mask;
return t;
case X (OP_MEM, SW):
t = GET_MEMORY_W (abs);
t &= cpu.mask;
return t;
default:
abort (); /* ?? May be something more usefull? */
}
}
static void
store (arg, n)
ea_type *arg;
int n;
{
int rn = arg->reg;
int abs = arg->literal;
int t;
switch (arg->type)
{
case X (OP_REG, SB):
SET_B_REG (rn, n);
break;
case X (OP_REG, SW):
SET_W_REG (rn, n);
break;
case X (OP_REG, SL):
SET_L_REG (rn, n);
break;
case X (OP_DEC, SB):
t = GET_L_REG (rn) - 1;
t &= cpu.mask;
SET_L_REG (rn, t);
SET_MEMORY_B (t, n);
break;
case X (OP_DEC, SW):
t = (GET_L_REG (rn) - 2) & cpu.mask;
SET_L_REG (rn, t);
SET_MEMORY_W (t, n);
break;
case X (OP_DEC, SL):
t = (GET_L_REG (rn) - 4) & cpu.mask;
SET_L_REG (rn, t);
SET_MEMORY_L (t, n);
break;
case X (OP_DISP, SB):
t = GET_L_REG (rn) + abs;
t &= cpu.mask;
SET_MEMORY_B (t, n);
break;
case X (OP_DISP, SW):
t = GET_L_REG (rn) + abs;
t &= cpu.mask;
SET_MEMORY_W (t, n);
break;
case X (OP_DISP, SL):
t = GET_L_REG (rn) + abs;
t &= cpu.mask;
SET_MEMORY_L (t, n);
break;
default:
abort ();
}
}
static union
{
short int i;
struct
{
char low;
char high;
}
u;
}
littleendian;
static void
init_pointers ()
{
static int init;
if (!init)
{
int i;
init = 1;
littleendian.i = 1;
if (h8300smode)
memory_size = H8300S_MSIZE;
else if (h8300hmode)
memory_size = H8300H_MSIZE;
else
memory_size = H8300_MSIZE;
cpu.memory = (unsigned char *) calloc (sizeof (char), memory_size);
cpu.cache_idx = (unsigned short *) calloc (sizeof (short), memory_size);
cpu.eightbit = (unsigned char *) calloc (sizeof (char), 256);
/* `msize' must be a power of two. */
if ((memory_size & (memory_size - 1)) != 0)
abort ();
cpu.mask = memory_size - 1;
for (i = 0; i < 9; i++)
{
cpu.regs[i] = 0;
}
for (i = 0; i < 8; i++)
{
unsigned char *p = (unsigned char *) (cpu.regs + i);
unsigned char *e = (unsigned char *) (cpu.regs + i + 1);
unsigned short *q = (unsigned short *) (cpu.regs + i);
unsigned short *u = (unsigned short *) (cpu.regs + i + 1);
cpu.regs[i] = 0x00112233;
while (p < e)
{
if (*p == 0x22)
{
breg[i] = p;
}
if (*p == 0x33)
{
breg[i + 8] = p;
}
p++;
}
while (q < u)
{
if (*q == 0x2233)
{
wreg[i] = q;
}
if (*q == 0x0011)
{
wreg[i + 8] = q;
}
q++;
}
cpu.regs[i] = 0;
lreg[i] = &cpu.regs[i];
}
lreg[8] = &cpu.regs[8];
/* Initialize the seg registers. */
if (!cpu.cache)
sim_set_simcache_size (CSIZE);
}
}
static void
control_c (sig, code, scp, addr)
int sig;
int code;
char *scp;
char *addr;
{
cpu.state = SIM_STATE_STOPPED;
cpu.exception = SIGINT;
}
#define C (c != 0)
#define Z (nz == 0)
#define V (v != 0)
#define N (n != 0)
#define U (u != 0)
#define H (h != 0)
#define UI (ui != 0)
#define I (intMaskBit != 0)
static int
mop (code, bsize, sign)
decoded_inst *code;
int bsize;
int sign;
{
int multiplier;
int multiplicand;
int result;
int n, nz;
if (sign)
{
multiplicand =
bsize ? SEXTCHAR (GET_W_REG (code->dst.reg)) :
SEXTSHORT (GET_W_REG (code->dst.reg));
multiplier =
bsize ? SEXTCHAR (GET_B_REG (code->src.reg)) :
SEXTSHORT (GET_W_REG (code->src.reg));
}
else
{
multiplicand = bsize ? UEXTCHAR (GET_W_REG (code->dst.reg)) :
UEXTSHORT (GET_W_REG (code->dst.reg));
multiplier =
bsize ? UEXTCHAR (GET_B_REG (code->src.reg)) :
UEXTSHORT (GET_W_REG (code->src.reg));
}
result = multiplier * multiplicand;
if (sign)
{
n = result & (bsize ? 0x8000 : 0x80000000);
nz = result & (bsize ? 0xffff : 0xffffffff);
}
if (bsize)
{
SET_W_REG (code->dst.reg, result);
}
else
{
SET_L_REG (code->dst.reg, result);
}
#if 0
return ((n == 1) << 1) | (nz == 1);
#endif
}
#define ONOT(name, how) \
case O (name, SB): \
{ \
int t; \
int hm = 0x80; \
rd = GET_B_REG (code->src.reg); \
how; \
goto shift8; \
} \
case O (name, SW): \
{ \
int t; \
int hm = 0x8000; \
rd = GET_W_REG (code->src.reg); \
how; \
goto shift16; \
} \
case O (name, SL): \
{ \
int t; \
int hm = 0x80000000; \
rd = GET_L_REG (code->src.reg); \
how; \
goto shift32; \
}
#define OSHIFTS(name, how1, how2) \
case O (name, SB): \
{ \
int t; \
int hm = 0x80; \
rd = GET_B_REG (code->src.reg); \
if ((GET_MEMORY_B (pc + 1) & 0x40) == 0) \
{ \
how1; \
} \
else \
{ \
how2; \
} \
goto shift8; \
} \
case O (name, SW): \
{ \
int t; \
int hm = 0x8000; \
rd = GET_W_REG (code->src.reg); \
if ((GET_MEMORY_B (pc + 1) & 0x40) == 0) \
{ \
how1; \
} \
else \
{ \
how2; \
} \
goto shift16; \
} \
case O (name, SL): \
{ \
int t; \
int hm = 0x80000000; \
rd = GET_L_REG (code->src.reg); \
if ((GET_MEMORY_B (pc + 1) & 0x40) == 0) \
{ \
how1; \
} \
else \
{ \
how2; \
} \
goto shift32; \
}
#define OBITOP(name,f, s, op) \
case O (name, SB): \
{ \
int m; \
int b; \
if (f) ea = fetch (&code->dst); \
m=1<< fetch (&code->src); \
op; \
if (s) store (&code->dst,ea); goto next; \
}
int
sim_stop (sd)
SIM_DESC sd;
{
cpu.state = SIM_STATE_STOPPED;
cpu.exception = SIGINT;
return 1;
}
#define R0_REGNUM 0
#define R1_REGNUM 1
#define R2_REGNUM 2
#define R3_REGNUM 3
#define R4_REGNUM 4
#define R5_REGNUM 5
#define R6_REGNUM 6
#define R7_REGNUM 7
#define SP_REGNUM R7_REGNUM /* Contains address of top of stack */
#define FP_REGNUM R6_REGNUM /* Contains address of executing
* stack frame */
#define CCR_REGNUM 8 /* Contains processor status */
#define PC_REGNUM 9 /* Contains program counter */
#define CYCLE_REGNUM 10
#define EXR_REGNUM 11
#define INST_REGNUM 12
#define TICK_REGNUM 13
void
sim_resume (sd, step, siggnal)
SIM_DESC sd;
{
static int init1;
int cycles = 0;
int insts = 0;
int tick_start = get_now ();
void (*prev) ();
int poll_count = 0;
int res;
int tmp;
int rd;
int ea;
int bit;
int pc;
int c, nz, v, n, u, h, ui, intMaskBit;
int trace, intMask;
int oldmask;
init_pointers ();
prev = signal (SIGINT, control_c);
if (step)
{
cpu.state = SIM_STATE_STOPPED;
cpu.exception = SIGTRAP;
}
else
{
cpu.state = SIM_STATE_RUNNING;
cpu.exception = 0;
}
pc = cpu.pc;
/* The PC should never be odd. */
if (pc & 0x1)
abort ();
GETSR ();
GETEXR ();
oldmask = cpu.mask;
if (!h8300hmode)
cpu.mask = 0xffff;
do
{
int cidx;
decoded_inst *code;
top:
cidx = cpu.cache_idx[pc];
code = cpu.cache + cidx;
#define ALUOP(STORE, NAME, HOW) \
case O (NAME,SB): HOW; if (STORE)goto alu8;else goto just_flags_alu8; \
case O (NAME, SW): HOW; if (STORE)goto alu16;else goto just_flags_alu16; \
case O (NAME,SL): HOW; if (STORE)goto alu32;else goto just_flags_alu32;
#define LOGOP(NAME, HOW) \
case O (NAME,SB): HOW; goto log8;\
case O (NAME, SW): HOW; goto log16;\
case O (NAME,SL): HOW; goto log32;
#if ADEBUG
if (debug)
{
printf ("%x %d %s\n", pc, code->opcode,
code->op ? code->op->name : "**");
}
cpu.stats[code->opcode]++;
#endif
if (code->opcode)
{
cycles += code->cycles;
insts++;
}
switch (code->opcode)
{
case 0:
/*
* This opcode is a fake for when we get to an
* instruction which hasnt been compiled
*/
compile (pc);
goto top;
break;
case O (O_SUBX, SB):
rd = fetch (&code->dst);
ea = fetch (&code->src);
ea = -(ea + C);
res = rd + ea;
goto alu8;
case O (O_ADDX, SB):
rd = fetch (&code->dst);
ea = fetch (&code->src);
ea = C + ea;
res = rd + ea;
goto alu8;
#define EA ea = fetch (&code->src);
#define RD_EA ea = fetch (&code->src); rd = fetch (&code->dst);
ALUOP (1, O_SUB, RD_EA;
ea = -ea;
res = rd + ea);
ALUOP (1, O_NEG, EA;
ea = -ea;
rd = 0;
res = rd + ea);
case O (O_ADD, SB):
rd = GET_B_REG (code->dst.reg);
ea = fetch (&code->src);
res = rd + ea;
goto alu8;
case O (O_ADD, SW):
rd = GET_W_REG (code->dst.reg);
ea = fetch (&code->src);
res = rd + ea;
goto alu16;
case O (O_ADD, SL):
rd = GET_L_REG (code->dst.reg);
ea = fetch (&code->src);
res = rd + ea;
goto alu32;
LOGOP (O_AND, RD_EA;
res = rd & ea);
LOGOP (O_OR, RD_EA;
res = rd | ea);
LOGOP (O_XOR, RD_EA;
res = rd ^ ea);
case O (O_MOV_TO_MEM, SB):
res = GET_B_REG (code->src.reg);
goto log8;
case O (O_MOV_TO_MEM, SW):
res = GET_W_REG (code->src.reg);
goto log16;
case O (O_MOV_TO_MEM, SL):
res = GET_L_REG (code->src.reg);
goto log32;
case O (O_MOV_TO_REG, SB):
res = fetch (&code->src);
SET_B_REG (code->dst.reg, res);
goto just_flags_log8;
case O (O_MOV_TO_REG, SW):
res = fetch (&code->src);
SET_W_REG (code->dst.reg, res);
goto just_flags_log16;
case O (O_MOV_TO_REG, SL):
res = fetch (&code->src);
SET_L_REG (code->dst.reg, res);
goto just_flags_log32;
case O (O_EEPMOV, SB):
case O (O_EEPMOV, SW):
if (h8300hmode||h8300smode)
{
register unsigned char *_src,*_dst;
unsigned int count = (code->opcode == O(O_EEPMOV, SW))?cpu.regs[R4_REGNUM]&0xffff:
cpu.regs[R4_REGNUM]&0xff;
_src = cpu.regs[R5_REGNUM] < memory_size ? cpu.memory+cpu.regs[R5_REGNUM] :
cpu.eightbit + (cpu.regs[R5_REGNUM] & 0xff);
if ((_src+count)>=(cpu.memory+memory_size))
{
if ((_src+count)>=(cpu.eightbit+0x100))
goto illegal;
}
_dst = cpu.regs[R6_REGNUM] < memory_size ? cpu.memory+cpu.regs[R6_REGNUM] :
cpu.eightbit + (cpu.regs[R6_REGNUM] & 0xff);
if ((_dst+count)>=(cpu.memory+memory_size))
{
if ((_dst+count)>=(cpu.eightbit+0x100))
goto illegal;
}
memcpy(_dst,_src,count);
cpu.regs[R5_REGNUM]+=count;
cpu.regs[R6_REGNUM]+=count;
cpu.regs[R4_REGNUM]&=(code->opcode == O(O_EEPMOV, SW))?(~0xffff):(~0xff);
cycles += 2*count;
goto next;
}
goto illegal;
case O (O_ADDS, SL):
SET_L_REG (code->dst.reg,
GET_L_REG (code->dst.reg)
+ code->src.literal);
goto next;
case O (O_SUBS, SL):
SET_L_REG (code->dst.reg,
GET_L_REG (code->dst.reg)
- code->src.literal);
goto next;
case O (O_CMP, SB):
rd = fetch (&code->dst);
ea = fetch (&code->src);
ea = -ea;
res = rd + ea;
goto just_flags_alu8;
case O (O_CMP, SW):
rd = fetch (&code->dst);
ea = fetch (&code->src);
ea = -ea;
res = rd + ea;
goto just_flags_alu16;
case O (O_CMP, SL):
rd = fetch (&code->dst);
ea = fetch (&code->src);
ea = -ea;
res = rd + ea;
goto just_flags_alu32;
case O (O_DEC, SB):
rd = GET_B_REG (code->src.reg);
ea = -1;
res = rd + ea;
SET_B_REG (code->src.reg, res);
goto just_flags_inc8;
case O (O_DEC, SW):
rd = GET_W_REG (code->dst.reg);
ea = -code->src.literal;
res = rd + ea;
SET_W_REG (code->dst.reg, res);
goto just_flags_inc16;
case O (O_DEC, SL):
rd = GET_L_REG (code->dst.reg);
ea = -code->src.literal;
res = rd + ea;
SET_L_REG (code->dst.reg, res);
goto just_flags_inc32;
case O (O_INC, SB):
rd = GET_B_REG (code->src.reg);
ea = 1;
res = rd + ea;
SET_B_REG (code->src.reg, res);
goto just_flags_inc8;
case O (O_INC, SW):
rd = GET_W_REG (code->dst.reg);
ea = code->src.literal;
res = rd + ea;
SET_W_REG (code->dst.reg, res);
goto just_flags_inc16;
case O (O_INC, SL):
rd = GET_L_REG (code->dst.reg);
ea = code->src.literal;
res = rd + ea;
SET_L_REG (code->dst.reg, res);
goto just_flags_inc32;
#define GET_CCR(x) BUILDSR();x = cpu.ccr
#define GET_EXR(x) BUILDEXR ();x = cpu.exr
case O (O_LDC, SB):
case O (O_LDC, SW):
res = fetch (&code->src);
goto setc;
case O (O_STC, SB):
case O (O_STC, SW):
if (code->src.type == OP_CCR)
{
GET_CCR (res);
}
else if (code->src.type == OP_EXR && h8300smode)
{
GET_EXR (res);
}
else
goto illegal;
store (&code->dst, res);
goto next;
case O (O_ANDC, SB):
if (code->dst.type == OP_CCR)
{
GET_CCR (rd);
}
else if (code->dst.type == OP_EXR && h8300smode)
{
GET_EXR (rd);
}
else
goto illegal;
ea = code->src.literal;
res = rd & ea;
goto setc;
case O (O_ORC, SB):
if (code->dst.type == OP_CCR)
{
GET_CCR (rd);
}
else if (code->dst.type == OP_EXR && h8300smode)
{
GET_EXR (rd);
}
else
goto illegal;
ea = code->src.literal;
res = rd | ea;
goto setc;
case O (O_XORC, SB):
if (code->dst.type == OP_CCR)
{
GET_CCR (rd);
}
else if (code->dst.type == OP_EXR && h8300smode)
{
GET_EXR (rd);
}
else
goto illegal;
ea = code->src.literal;
res = rd ^ ea;
goto setc;
case O (O_BRA, SB):
if (1)
goto condtrue;
goto next;
case O (O_BRN, SB):
if (0)
goto condtrue;
goto next;
case O (O_BHI, SB):
if ((C || Z) == 0)
goto condtrue;
goto next;
case O (O_BLS, SB):
if ((C || Z))
goto condtrue;
goto next;
case O (O_BCS, SB):
if ((C == 1))
goto condtrue;
goto next;
case O (O_BCC, SB):
if ((C == 0))
goto condtrue;
goto next;
case O (O_BEQ, SB):
if (Z)
goto condtrue;
goto next;
case O (O_BGT, SB):
if (((Z || (N ^ V)) == 0))
goto condtrue;
goto next;
case O (O_BLE, SB):
if (((Z || (N ^ V)) == 1))
goto condtrue;
goto next;
case O (O_BGE, SB):
if ((N ^ V) == 0)
goto condtrue;
goto next;
case O (O_BLT, SB):
if ((N ^ V))
goto condtrue;
goto next;
case O (O_BMI, SB):
if ((N))
goto condtrue;
goto next;
case O (O_BNE, SB):
if ((Z == 0))
goto condtrue;
goto next;
case O (O_BPL, SB):
if (N == 0)
goto condtrue;
goto next;
case O (O_BVC, SB):
if ((V == 0))
goto condtrue;
goto next;
case O (O_BVS, SB):
if ((V == 1))
goto condtrue;
goto next;
case O (O_SYSCALL, SB):
{
char c = cpu.regs[2];
sim_callback->write_stdout (sim_callback, &c, 1);
}
goto next;
ONOT (O_NOT, rd = ~rd; v = 0;);
OSHIFTS (O_SHLL,
c = rd & hm; v = 0; rd <<= 1,
c = rd & (hm >> 1); v = 0; rd <<= 2);
OSHIFTS (O_SHLR,
c = rd & 1; v = 0; rd = (unsigned int) rd >> 1,
c = rd & 2; v = 0; rd = (unsigned int) rd >> 2);
OSHIFTS (O_SHAL,
c = rd & hm; v = (rd & hm) != ((rd & (hm >> 1)) << 1); rd <<= 1,
c = rd & (hm >> 1); v = (rd & (hm >> 1)) != ((rd & (hm >> 2)) << 2); rd <<= 2);
OSHIFTS (O_SHAR,
t = rd & hm; c = rd & 1; v = 0; rd >>= 1; rd |= t,
t = rd & hm; c = rd & 2; v = 0; rd >>= 2; rd |= t | t >> 1);
OSHIFTS (O_ROTL,
c = rd & hm; v = 0; rd <<= 1; rd |= C,
c = rd & hm; v = 0; rd <<= 1; rd |= C; c = rd & hm; rd <<= 1; rd |= C);
OSHIFTS (O_ROTR,
c = rd & 1; v = 0; rd = (unsigned int) rd >> 1; if (c) rd |= hm,
c = rd & 1; v = 0; rd = (unsigned int) rd >> 1; if (c) rd |= hm; c = rd & 1; rd = (unsigned int) rd >> 1; if (c) rd |= hm);
OSHIFTS (O_ROTXL,
t = rd & hm; rd <<= 1; rd |= C; c = t; v = 0,
t = rd & hm; rd <<= 1; rd |= C; c = t; v = 0; t = rd & hm; rd <<= 1; rd |= C; c = t);
OSHIFTS (O_ROTXR,
t = rd & 1; rd = (unsigned int) rd >> 1; if (C) rd |= hm; c = t; v = 0,
t = rd & 1; rd = (unsigned int) rd >> 1; if (C) rd |= hm; c = t; v = 0; t = rd & 1; rd = (unsigned int) rd >> 1; if (C) rd |= hm; c = t);
case O (O_JMP, SB):
{
pc = fetch (&code->src);
goto end;
}
case O (O_JSR, SB):
{
int tmp;
pc = fetch (&code->src);
call:
tmp = cpu.regs[7];
if (h8300hmode)
{
tmp -= 4;
SET_MEMORY_L (tmp, code->next_pc);
}
else
{
tmp -= 2;
SET_MEMORY_W (tmp, code->next_pc);
}
cpu.regs[7] = tmp;
goto end;
}
case O (O_BSR, SB):
pc = code->src.literal;
goto call;
case O (O_RTS, SN):
{
int tmp;
tmp = cpu.regs[7];
if (h8300hmode)
{
pc = GET_MEMORY_L (tmp);
tmp += 4;
}
else
{
pc = GET_MEMORY_W (tmp);
tmp += 2;
}
cpu.regs[7] = tmp;
goto end;
}
case O (O_ILL, SB):
cpu.state = SIM_STATE_STOPPED;
cpu.exception = SIGILL;
goto end;
case O (O_SLEEP, SN):
/* FIXME: Doesn't this break for breakpoints when r0
contains just the right (er, wrong) value? */
cpu.state = SIM_STATE_STOPPED;
/* The format of r0 is defined by target newlib. Expand
the macros here instead of looking for .../sys/wait.h. */
#define SIM_WIFEXITED(v) (((v) & 0xff) == 0)
#define SIM_WIFSIGNALED(v) (((v) & 0x7f) > 0 && (((v) & 0x7f) < 0x7f))
if (! SIM_WIFEXITED (cpu.regs[0]) && SIM_WIFSIGNALED (cpu.regs[0]))
cpu.exception = SIGILL;
else
cpu.exception = SIGTRAP;
goto end;
case O (O_BPT, SN):
cpu.state = SIM_STATE_STOPPED;
cpu.exception = SIGTRAP;
goto end;
OBITOP (O_BNOT, 1, 1, ea ^= m);
OBITOP (O_BTST, 1, 0, nz = ea & m);
OBITOP (O_BCLR, 1, 1, ea &= ~m);
OBITOP (O_BSET, 1, 1, ea |= m);
OBITOP (O_BLD, 1, 0, c = ea & m);
OBITOP (O_BILD, 1, 0, c = !(ea & m));
OBITOP (O_BST, 1, 1, ea &= ~m;
if (C) ea |= m);
OBITOP (O_BIST, 1, 1, ea &= ~m;
if (!C) ea |= m);
OBITOP (O_BAND, 1, 0, c = (ea & m) && C);
OBITOP (O_BIAND, 1, 0, c = !(ea & m) && C);
OBITOP (O_BOR, 1, 0, c = (ea & m) || C);
OBITOP (O_BIOR, 1, 0, c = !(ea & m) || C);
OBITOP (O_BXOR, 1, 0, c = (ea & m) != C);
OBITOP (O_BIXOR, 1, 0, c = !(ea & m) != C);
#define MOP(bsize, signed) \
mop (code, bsize, signed); \
goto next;
case O (O_MULS, SB):
MOP (1, 1);
break;
case O (O_MULS, SW):
MOP (0, 1);
break;
case O (O_MULU, SB):
MOP (1, 0);
break;
case O (O_MULU, SW):
MOP (0, 0);
break;
case O (O_TAS, SB):
if (!h8300smode || code->src.type != X (OP_REG, SL))
goto illegal;
switch (code->src.reg)
{
case R0_REGNUM:
case R1_REGNUM:
case R4_REGNUM:
case R5_REGNUM:
break;
default:
goto illegal;
}
res = fetch (&code->src);
store (&code->src,res|0x80);
goto just_flags_log8;
case O (O_DIVU, SB):
{
rd = GET_W_REG (code->dst.reg);
ea = GET_B_REG (code->src.reg);
if (ea)
{
tmp = (unsigned) rd % ea;
rd = (unsigned) rd / ea;
}
SET_W_REG (code->dst.reg, (rd & 0xff) | (tmp << 8));
n = ea & 0x80;
nz = ea & 0xff;
goto next;
}
case O (O_DIVU, SW):
{
rd = GET_L_REG (code->dst.reg);
ea = GET_W_REG (code->src.reg);
n = ea & 0x8000;
nz = ea & 0xffff;
if (ea)
{
tmp = (unsigned) rd % ea;
rd = (unsigned) rd / ea;
}
SET_L_REG (code->dst.reg, (rd & 0xffff) | (tmp << 16));
goto next;
}
case O (O_DIVS, SB):
{
rd = SEXTSHORT (GET_W_REG (code->dst.reg));
ea = SEXTCHAR (GET_B_REG (code->src.reg));
if (ea)
{
tmp = (int) rd % (int) ea;
rd = (int) rd / (int) ea;
n = rd & 0x8000;
nz = 1;
}
else
nz = 0;
SET_W_REG (code->dst.reg, (rd & 0xff) | (tmp << 8));
goto next;
}
case O (O_DIVS, SW):
{
rd = GET_L_REG (code->dst.reg);
ea = SEXTSHORT (GET_W_REG (code->src.reg));
if (ea)
{
tmp = (int) rd % (int) ea;
rd = (int) rd / (int) ea;
n = rd & 0x80000000;
nz = 1;
}
else
nz = 0;
SET_L_REG (code->dst.reg, (rd & 0xffff) | (tmp << 16));
goto next;
}
case O (O_EXTS, SW):
rd = GET_B_REG (code->src.reg + 8) & 0xff; /* Yes, src, not dst. */
ea = rd & 0x80 ? -256 : 0;
res = rd + ea;
goto log16;
case O (O_EXTS, SL):
rd = GET_W_REG (code->src.reg) & 0xffff;
ea = rd & 0x8000 ? -65536 : 0;
res = rd + ea;
goto log32;
case O (O_EXTU, SW):
rd = GET_B_REG (code->src.reg + 8) & 0xff;
ea = 0;
res = rd + ea;
goto log16;
case O (O_EXTU, SL):
rd = GET_W_REG (code->src.reg) & 0xffff;
ea = 0;
res = rd + ea;
goto log32;
case O (O_NOP, SN):
goto next;
case O (O_STM, SL):
{
int nregs, firstreg, i;
nregs = GET_MEMORY_B (pc + 1);
nregs >>= 4;
nregs &= 0xf;
firstreg = GET_MEMORY_B (pc + 3);
firstreg &= 0xf;
for (i = firstreg; i <= firstreg + nregs; i++)
{
cpu.regs[7] -= 4;
SET_MEMORY_L (cpu.regs[7], cpu.regs[i]);
}
}
goto next;
case O (O_LDM, SL):
{
int nregs, firstreg, i;
nregs = GET_MEMORY_B (pc + 1);
nregs >>= 4;
nregs &= 0xf;
firstreg = GET_MEMORY_B (pc + 3);
firstreg &= 0xf;
for (i = firstreg; i >= firstreg - nregs; i--)
{
cpu.regs[i] = GET_MEMORY_L (cpu.regs[7]);
cpu.regs[7] += 4;
}
}
goto next;
default:
illegal:
cpu.state = SIM_STATE_STOPPED;
cpu.exception = SIGILL;
goto end;
}
abort ();
setc:
if (code->dst.type == OP_CCR)
{
cpu.ccr = res;
GETSR ();
}
else if (code->dst.type == OP_EXR && h8300smode)
{
cpu.exr = res;
GETEXR ();
}
else
goto illegal;
goto next;
condtrue:
/* When a branch works */
pc = code->src.literal;
goto end;
/* Set the cond codes from res */
bitop:
/* Set the flags after an 8 bit inc/dec operation */
just_flags_inc8:
n = res & 0x80;
nz = res & 0xff;
v = (rd & 0x7f) == 0x7f;
goto next;
/* Set the flags after an 16 bit inc/dec operation */
just_flags_inc16:
n = res & 0x8000;
nz = res & 0xffff;
v = (rd & 0x7fff) == 0x7fff;
goto next;
/* Set the flags after an 32 bit inc/dec operation */
just_flags_inc32:
n = res & 0x80000000;
nz = res & 0xffffffff;
v = (rd & 0x7fffffff) == 0x7fffffff;
goto next;
shift8:
/* Set flags after an 8 bit shift op, carry,overflow set in insn */
n = (rd & 0x80);
nz = rd & 0xff;
SET_B_REG (code->src.reg, rd);
goto next;
shift16:
/* Set flags after an 16 bit shift op, carry,overflow set in insn */
n = (rd & 0x8000);
nz = rd & 0xffff;
SET_W_REG (code->src.reg, rd);
goto next;
shift32:
/* Set flags after an 32 bit shift op, carry,overflow set in insn */
n = (rd & 0x80000000);
nz = rd & 0xffffffff;
SET_L_REG (code->src.reg, rd);
goto next;
log32:
store (&code->dst, res);
just_flags_log32:
/* flags after a 32bit logical operation */
n = res & 0x80000000;
nz = res & 0xffffffff;
v = 0;
goto next;
log16:
store (&code->dst, res);
just_flags_log16:
/* flags after a 16bit logical operation */
n = res & 0x8000;
nz = res & 0xffff;
v = 0;
goto next;
log8:
store (&code->dst, res);
just_flags_log8:
n = res & 0x80;
nz = res & 0xff;
v = 0;
goto next;
alu8:
SET_B_REG (code->dst.reg, res);
just_flags_alu8:
n = res & 0x80;
nz = res & 0xff;
c = (res & 0x100);
switch (code->opcode / 4)
{
case O_ADD:
v = ((rd & 0x80) == (ea & 0x80)
&& (rd & 0x80) != (res & 0x80));
break;
case O_SUB:
case O_CMP:
v = ((rd & 0x80) != (-ea & 0x80)
&& (rd & 0x80) != (res & 0x80));
break;
case O_NEG:
v = (rd == 0x80);
break;
}
goto next;
alu16:
SET_W_REG (code->dst.reg, res);
just_flags_alu16:
n = res & 0x8000;
nz = res & 0xffff;
c = (res & 0x10000);
switch (code->opcode / 4)
{
case O_ADD:
v = ((rd & 0x8000) == (ea & 0x8000)
&& (rd & 0x8000) != (res & 0x8000));
break;
case O_SUB:
case O_CMP:
v = ((rd & 0x8000) != (-ea & 0x8000)
&& (rd & 0x8000) != (res & 0x8000));
break;
case O_NEG:
v = (rd == 0x8000);
break;
}
goto next;
alu32:
SET_L_REG (code->dst.reg, res);
just_flags_alu32:
n = res & 0x80000000;
nz = res & 0xffffffff;
switch (code->opcode / 4)
{
case O_ADD:
v = ((rd & 0x80000000) == (ea & 0x80000000)
&& (rd & 0x80000000) != (res & 0x80000000));
c = ((unsigned) res < (unsigned) rd) || ((unsigned) res < (unsigned) ea);
break;
case O_SUB:
case O_CMP:
v = ((rd & 0x80000000) != (-ea & 0x80000000)
&& (rd & 0x80000000) != (res & 0x80000000));
c = (unsigned) rd < (unsigned) -ea;
break;
case O_NEG:
v = (rd == 0x80000000);
c = res != 0;
break;
}
goto next;
next:;
pc = code->next_pc;
end:
;
#if 0
if (cpu.regs[8])
abort ();
#endif
if (--poll_count < 0)
{
poll_count = POLL_QUIT_INTERVAL;
if ((*sim_callback->poll_quit) != NULL
&& (*sim_callback->poll_quit) (sim_callback))
sim_stop (sd);
}
}
while (cpu.state == SIM_STATE_RUNNING);
cpu.ticks += get_now () - tick_start;
cpu.cycles += cycles;
cpu.insts += insts;
cpu.pc = pc;
BUILDSR ();
BUILDEXR ();
cpu.mask = oldmask;
signal (SIGINT, prev);
}
int
sim_trace (sd)
SIM_DESC sd;
{
/* FIXME: Unfinished. */
abort ();
}
int
sim_write (sd, addr, buffer, size)
SIM_DESC sd;
SIM_ADDR addr;
unsigned char *buffer;
int size;
{
int i;
init_pointers ();
if (addr < 0)
return 0;
for (i = 0; i < size; i++)
{
if (addr < memory_size)
{
cpu.memory[addr + i] = buffer[i];
cpu.cache_idx[addr + i] = 0;
}
else
cpu.eightbit[(addr + i) & 0xff] = buffer[i];
}
return size;
}
int
sim_read (sd, addr, buffer, size)
SIM_DESC sd;
SIM_ADDR addr;
unsigned char *buffer;
int size;
{
init_pointers ();
if (addr < 0)
return 0;
if (addr < memory_size)
memcpy (buffer, cpu.memory + addr, size);
else
memcpy (buffer, cpu.eightbit + (addr & 0xff), size);
return size;
}
int
sim_store_register (sd, rn, value, length)
SIM_DESC sd;
int rn;
unsigned char *value;
int length;
{
int longval;
int shortval;
int intval;
longval = (value[0] << 24) | (value[1] << 16) | (value[2] << 8) | value[3];
shortval = (value[0] << 8) | (value[1]);
intval = h8300hmode ? longval : shortval;
init_pointers ();
switch (rn)
{
case PC_REGNUM:
cpu.pc = intval;
break;
default:
abort ();
case R0_REGNUM:
case R1_REGNUM:
case R2_REGNUM:
case R3_REGNUM:
case R4_REGNUM:
case R5_REGNUM:
case R6_REGNUM:
case R7_REGNUM:
cpu.regs[rn] = intval;
break;
case CCR_REGNUM:
cpu.ccr = intval;
break;
case EXR_REGNUM:
cpu.exr = intval;
break;
case CYCLE_REGNUM:
cpu.cycles = longval;
break;
case INST_REGNUM:
cpu.insts = longval;
break;
case TICK_REGNUM:
cpu.ticks = longval;
break;
}
return -1;
}
int
sim_fetch_register (sd, rn, buf, length)
SIM_DESC sd;
int rn;
unsigned char *buf;
int length;
{
int v;
int longreg = 0;
init_pointers ();
if (!h8300smode && rn >=EXR_REGNUM)
rn++;
switch (rn)
{
default:
abort ();
case CCR_REGNUM:
v = cpu.ccr;
break;
case EXR_REGNUM:
v = cpu.exr;
break;
case PC_REGNUM:
v = cpu.pc;
break;
case R0_REGNUM:
case R1_REGNUM:
case R2_REGNUM:
case R3_REGNUM:
case R4_REGNUM:
case R5_REGNUM:
case R6_REGNUM:
case R7_REGNUM:
v = cpu.regs[rn];
break;
case CYCLE_REGNUM:
v = cpu.cycles;
longreg = 1;
break;
case TICK_REGNUM:
v = cpu.ticks;
longreg = 1;
break;
case INST_REGNUM:
v = cpu.insts;
longreg = 1;
break;
}
if (h8300hmode || longreg)
{
buf[0] = v >> 24;
buf[1] = v >> 16;
buf[2] = v >> 8;
buf[3] = v >> 0;
}
else
{
buf[0] = v >> 8;
buf[1] = v;
}
return -1;
}
void
sim_stop_reason (sd, reason, sigrc)
SIM_DESC sd;
enum sim_stop *reason;
int *sigrc;
{
#if 0 /* FIXME: This should work but we can't use it.
grep for SLEEP above. */
switch (cpu.state)
{
case SIM_STATE_EXITED : *reason = sim_exited; break;
case SIM_STATE_SIGNALLED : *reason = sim_signalled; break;
case SIM_STATE_STOPPED : *reason = sim_stopped; break;
default : abort ();
}
#else
*reason = sim_stopped;
#endif
*sigrc = cpu.exception;
}
/* FIXME: Rename to sim_set_mem_size. */
void
sim_size (n)
int n;
{
/* Memory size is fixed. */
}
void
sim_set_simcache_size (n)
{
if (cpu.cache)
free (cpu.cache);
if (n < 2)
n = 2;
cpu.cache = (decoded_inst *) malloc (sizeof (decoded_inst) * n);
memset (cpu.cache, 0, sizeof (decoded_inst) * n);
cpu.csize = n;
}
void
sim_info (sd, verbose)
SIM_DESC sd;
int verbose;
{
double timetaken = (double) cpu.ticks / (double) now_persec ();
double virttime = cpu.cycles / 10.0e6;
(*sim_callback->printf_filtered) (sim_callback,
"\n\n#instructions executed %10d\n",
cpu.insts);
(*sim_callback->printf_filtered) (sim_callback,
"#cycles (v approximate) %10d\n",
cpu.cycles);
(*sim_callback->printf_filtered) (sim_callback,
"#real time taken %10.4f\n",
timetaken);
(*sim_callback->printf_filtered) (sim_callback,
"#virtual time taked %10.4f\n",
virttime);
if (timetaken != 0.0)
(*sim_callback->printf_filtered) (sim_callback,
"#simulation ratio %10.4f\n",
virttime / timetaken);
(*sim_callback->printf_filtered) (sim_callback,
"#compiles %10d\n",
cpu.compiles);
(*sim_callback->printf_filtered) (sim_callback,
"#cache size %10d\n",
cpu.csize);
#ifdef ADEBUG
/* This to be conditional on `what' (aka `verbose'),
however it was never passed as non-zero. */
if (1)
{
int i;
for (i = 0; i < O_LAST; i++)
{
if (cpu.stats[i])
(*sim_callback->printf_filtered) (sim_callback,
"%d: %d\n", i, cpu.stats[i]);
}
}
#endif
}
/* Indicate whether the cpu is an H8/300 or H8/300H.
FLAG is non-zero for the H8/300H. */
void
set_h8300h (h_flag, s_flag)
int h_flag, s_flag;
{
/* FIXME: Much of the code in sim_load can be moved to sim_open.
This function being replaced by a sim_open:ARGV configuration
option. */
h8300hmode = h_flag;
h8300smode = s_flag;
}
SIM_DESC
sim_open (kind, ptr, abfd, argv)
SIM_OPEN_KIND kind;
struct host_callback_struct *ptr;
struct _bfd *abfd;
char **argv;
{
/* FIXME: Much of the code in sim_load can be moved here. */
sim_kind = kind;
myname = argv[0];
sim_callback = ptr;
/* Fudge our descriptor. */
return (SIM_DESC) 1;
}
void
sim_close (sd, quitting)
SIM_DESC sd;
int quitting;
{
/* Nothing to do. */
}
/* Called by gdb to load a program into memory. */
SIM_RC
sim_load (sd, prog, abfd, from_tty)
SIM_DESC sd;
char *prog;
bfd *abfd;
int from_tty;
{
bfd *prog_bfd;
/* FIXME: The code below that sets a specific variant of the H8/300
being simulated should be moved to sim_open(). */
/* See if the file is for the H8/300 or H8/300H. */
/* ??? This may not be the most efficient way. The z8k simulator
does this via a different mechanism (INIT_EXTRA_SYMTAB_INFO). */
if (abfd != NULL)
prog_bfd = abfd;
else
prog_bfd = bfd_openr (prog, "coff-h8300");
if (prog_bfd != NULL)
{
/* Set the cpu type. We ignore failure from bfd_check_format
and bfd_openr as sim_load_file checks too. */
if (bfd_check_format (prog_bfd, bfd_object))
{
unsigned long mach = bfd_get_mach (prog_bfd);
set_h8300h (mach == bfd_mach_h8300h || mach == bfd_mach_h8300s,
mach == bfd_mach_h8300s);
}
}
/* If we're using gdb attached to the simulator, then we have to
reallocate memory for the simulator.
When gdb first starts, it calls fetch_registers (among other
functions), which in turn calls init_pointers, which allocates
simulator memory.
The problem is when we do that, we don't know whether we're
debugging an H8/300 or H8/300H program.
This is the first point at which we can make that determination,
so we just reallocate memory now; this will also allow us to handle
switching between H8/300 and H8/300H programs without exiting
gdb. */
if (h8300smode)
memory_size = H8300S_MSIZE;
else if (h8300hmode)
memory_size = H8300H_MSIZE;
else
memory_size = H8300_MSIZE;
if (cpu.memory)
free (cpu.memory);
if (cpu.cache_idx)
free (cpu.cache_idx);
if (cpu.eightbit)
free (cpu.eightbit);
cpu.memory = (unsigned char *) calloc (sizeof (char), memory_size);
cpu.cache_idx = (unsigned short *) calloc (sizeof (short), memory_size);
cpu.eightbit = (unsigned char *) calloc (sizeof (char), 256);
/* `msize' must be a power of two. */
if ((memory_size & (memory_size - 1)) != 0)
abort ();
cpu.mask = memory_size - 1;
if (sim_load_file (sd, myname, sim_callback, prog, prog_bfd,
sim_kind == SIM_OPEN_DEBUG,
0, sim_write)
== NULL)
{
/* Close the bfd if we opened it. */
if (abfd == NULL && prog_bfd != NULL)
bfd_close (prog_bfd);
return SIM_RC_FAIL;
}
/* Close the bfd if we opened it. */
if (abfd == NULL && prog_bfd != NULL)
bfd_close (prog_bfd);
return SIM_RC_OK;
}
SIM_RC
sim_create_inferior (sd, abfd, argv, env)
SIM_DESC sd;
struct _bfd *abfd;
char **argv;
char **env;
{
if (abfd != NULL)
cpu.pc = bfd_get_start_address (abfd);
else
cpu.pc = 0;
return SIM_RC_OK;
}
void
sim_do_command (sd, cmd)
SIM_DESC sd;
char *cmd;
{
(*sim_callback->printf_filtered) (sim_callback,
"This simulator does not accept any commands.\n");
}
void
sim_set_callbacks (ptr)
struct host_callback_struct *ptr;
{
sim_callback = ptr;
}