1168 lines
34 KiB
C
1168 lines
34 KiB
C
/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
|
||
Copyright 2002, 2003 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "inferior.h"
|
||
#include "symfile.h" /* for entry_point_address */
|
||
#include "gdbcore.h"
|
||
#include "arch-utils.h"
|
||
#include "regcache.h"
|
||
|
||
extern void _initialize_frv_tdep (void);
|
||
|
||
static gdbarch_init_ftype frv_gdbarch_init;
|
||
|
||
static gdbarch_register_name_ftype frv_register_name;
|
||
static gdbarch_register_raw_size_ftype frv_register_raw_size;
|
||
static gdbarch_register_virtual_size_ftype frv_register_virtual_size;
|
||
static gdbarch_register_virtual_type_ftype frv_register_virtual_type;
|
||
static gdbarch_register_byte_ftype frv_register_byte;
|
||
static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
|
||
static gdbarch_frame_chain_ftype frv_frame_chain;
|
||
static gdbarch_frame_saved_pc_ftype frv_frame_saved_pc;
|
||
static gdbarch_skip_prologue_ftype frv_skip_prologue;
|
||
static gdbarch_frame_init_saved_regs_ftype frv_frame_init_saved_regs;
|
||
static gdbarch_deprecated_extract_return_value_ftype frv_extract_return_value;
|
||
static gdbarch_deprecated_extract_struct_value_address_ftype frv_extract_struct_value_address;
|
||
static gdbarch_use_struct_convention_ftype frv_use_struct_convention;
|
||
static gdbarch_frameless_function_invocation_ftype frv_frameless_function_invocation;
|
||
static gdbarch_init_extra_frame_info_ftype stupid_useless_init_extra_frame_info;
|
||
static gdbarch_store_struct_return_ftype frv_store_struct_return;
|
||
static gdbarch_push_arguments_ftype frv_push_arguments;
|
||
static gdbarch_push_return_address_ftype frv_push_return_address;
|
||
static gdbarch_pop_frame_ftype frv_pop_frame;
|
||
static gdbarch_saved_pc_after_call_ftype frv_saved_pc_after_call;
|
||
|
||
static void frv_pop_frame_regular (struct frame_info *frame);
|
||
|
||
/* Register numbers. You can change these as needed, but don't forget
|
||
to update the simulator accordingly. */
|
||
enum {
|
||
/* The total number of registers we know exist. */
|
||
frv_num_regs = 147,
|
||
|
||
/* Register numbers 0 -- 63 are always reserved for general-purpose
|
||
registers. The chip at hand may have less. */
|
||
first_gpr_regnum = 0,
|
||
sp_regnum = 1,
|
||
fp_regnum = 2,
|
||
struct_return_regnum = 3,
|
||
last_gpr_regnum = 63,
|
||
|
||
/* Register numbers 64 -- 127 are always reserved for floating-point
|
||
registers. The chip at hand may have less. */
|
||
first_fpr_regnum = 64,
|
||
last_fpr_regnum = 127,
|
||
|
||
/* Register numbers 128 on up are always reserved for special-purpose
|
||
registers. */
|
||
first_spr_regnum = 128,
|
||
pc_regnum = 128,
|
||
psr_regnum = 129,
|
||
ccr_regnum = 130,
|
||
cccr_regnum = 131,
|
||
tbr_regnum = 135,
|
||
brr_regnum = 136,
|
||
dbar0_regnum = 137,
|
||
dbar1_regnum = 138,
|
||
dbar2_regnum = 139,
|
||
dbar3_regnum = 140,
|
||
lr_regnum = 145,
|
||
lcr_regnum = 146,
|
||
last_spr_regnum = 146
|
||
};
|
||
|
||
static LONGEST frv_call_dummy_words[] =
|
||
{0};
|
||
|
||
|
||
/* The contents of this structure can only be trusted after we've
|
||
frv_frame_init_saved_regs on the frame. */
|
||
struct frame_extra_info
|
||
{
|
||
/* The offset from our frame pointer to our caller's stack
|
||
pointer. */
|
||
int fp_to_callers_sp_offset;
|
||
|
||
/* Non-zero if we've saved our return address on the stack yet.
|
||
Zero if it's still sitting in the link register. */
|
||
int lr_saved_on_stack;
|
||
};
|
||
|
||
|
||
/* A structure describing a particular variant of the FRV.
|
||
We allocate and initialize one of these structures when we create
|
||
the gdbarch object for a variant.
|
||
|
||
At the moment, all the FR variants we support differ only in which
|
||
registers are present; the portable code of GDB knows that
|
||
registers whose names are the empty string don't exist, so the
|
||
`register_names' array captures all the per-variant information we
|
||
need.
|
||
|
||
in the future, if we need to have per-variant maps for raw size,
|
||
virtual type, etc., we should replace register_names with an array
|
||
of structures, each of which gives all the necessary info for one
|
||
register. Don't stick parallel arrays in here --- that's so
|
||
Fortran. */
|
||
struct gdbarch_tdep
|
||
{
|
||
/* How many general-purpose registers does this variant have? */
|
||
int num_gprs;
|
||
|
||
/* How many floating-point registers does this variant have? */
|
||
int num_fprs;
|
||
|
||
/* How many hardware watchpoints can it support? */
|
||
int num_hw_watchpoints;
|
||
|
||
/* How many hardware breakpoints can it support? */
|
||
int num_hw_breakpoints;
|
||
|
||
/* Register names. */
|
||
char **register_names;
|
||
};
|
||
|
||
#define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
|
||
|
||
|
||
/* Allocate a new variant structure, and set up default values for all
|
||
the fields. */
|
||
static struct gdbarch_tdep *
|
||
new_variant (void)
|
||
{
|
||
struct gdbarch_tdep *var;
|
||
int r;
|
||
char buf[20];
|
||
|
||
var = xmalloc (sizeof (*var));
|
||
memset (var, 0, sizeof (*var));
|
||
|
||
var->num_gprs = 64;
|
||
var->num_fprs = 64;
|
||
var->num_hw_watchpoints = 0;
|
||
var->num_hw_breakpoints = 0;
|
||
|
||
/* By default, don't supply any general-purpose or floating-point
|
||
register names. */
|
||
var->register_names = (char **) xmalloc (frv_num_regs * sizeof (char *));
|
||
for (r = 0; r < frv_num_regs; r++)
|
||
var->register_names[r] = "";
|
||
|
||
/* Do, however, supply default names for the special-purpose
|
||
registers. */
|
||
for (r = first_spr_regnum; r <= last_spr_regnum; ++r)
|
||
{
|
||
sprintf (buf, "x%d", r);
|
||
var->register_names[r] = xstrdup (buf);
|
||
}
|
||
|
||
var->register_names[pc_regnum] = "pc";
|
||
var->register_names[lr_regnum] = "lr";
|
||
var->register_names[lcr_regnum] = "lcr";
|
||
|
||
var->register_names[psr_regnum] = "psr";
|
||
var->register_names[ccr_regnum] = "ccr";
|
||
var->register_names[cccr_regnum] = "cccr";
|
||
var->register_names[tbr_regnum] = "tbr";
|
||
|
||
/* Debug registers. */
|
||
var->register_names[brr_regnum] = "brr";
|
||
var->register_names[dbar0_regnum] = "dbar0";
|
||
var->register_names[dbar1_regnum] = "dbar1";
|
||
var->register_names[dbar2_regnum] = "dbar2";
|
||
var->register_names[dbar3_regnum] = "dbar3";
|
||
|
||
return var;
|
||
}
|
||
|
||
|
||
/* Indicate that the variant VAR has NUM_GPRS general-purpose
|
||
registers, and fill in the names array appropriately. */
|
||
static void
|
||
set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
|
||
{
|
||
int r;
|
||
|
||
var->num_gprs = num_gprs;
|
||
|
||
for (r = 0; r < num_gprs; ++r)
|
||
{
|
||
char buf[20];
|
||
|
||
sprintf (buf, "gr%d", r);
|
||
var->register_names[first_gpr_regnum + r] = xstrdup (buf);
|
||
}
|
||
}
|
||
|
||
|
||
/* Indicate that the variant VAR has NUM_FPRS floating-point
|
||
registers, and fill in the names array appropriately. */
|
||
static void
|
||
set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
|
||
{
|
||
int r;
|
||
|
||
var->num_fprs = num_fprs;
|
||
|
||
for (r = 0; r < num_fprs; ++r)
|
||
{
|
||
char buf[20];
|
||
|
||
sprintf (buf, "fr%d", r);
|
||
var->register_names[first_fpr_regnum + r] = xstrdup (buf);
|
||
}
|
||
}
|
||
|
||
|
||
static const char *
|
||
frv_register_name (int reg)
|
||
{
|
||
if (reg < 0)
|
||
return "?toosmall?";
|
||
if (reg >= frv_num_regs)
|
||
return "?toolarge?";
|
||
|
||
return CURRENT_VARIANT->register_names[reg];
|
||
}
|
||
|
||
|
||
static int
|
||
frv_register_raw_size (int reg)
|
||
{
|
||
return 4;
|
||
}
|
||
|
||
static int
|
||
frv_register_virtual_size (int reg)
|
||
{
|
||
return 4;
|
||
}
|
||
|
||
static struct type *
|
||
frv_register_virtual_type (int reg)
|
||
{
|
||
if (reg >= 64 && reg <= 127)
|
||
return builtin_type_float;
|
||
else
|
||
return builtin_type_int;
|
||
}
|
||
|
||
static int
|
||
frv_register_byte (int reg)
|
||
{
|
||
return (reg * 4);
|
||
}
|
||
|
||
static const unsigned char *
|
||
frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
|
||
{
|
||
static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
|
||
*lenp = sizeof (breakpoint);
|
||
return breakpoint;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
frv_frame_chain (struct frame_info *frame)
|
||
{
|
||
CORE_ADDR saved_fp_addr;
|
||
|
||
if (frame->saved_regs && frame->saved_regs[fp_regnum] != 0)
|
||
saved_fp_addr = frame->saved_regs[fp_regnum];
|
||
else
|
||
/* Just assume it was saved in the usual place. */
|
||
saved_fp_addr = frame->frame;
|
||
|
||
return read_memory_integer (saved_fp_addr, 4);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
frv_frame_saved_pc (struct frame_info *frame)
|
||
{
|
||
frv_frame_init_saved_regs (frame);
|
||
|
||
/* Perhaps the prologue analyzer recorded where it was stored.
|
||
(As of 14 Oct 2001, it never does.) */
|
||
if (frame->saved_regs && frame->saved_regs[pc_regnum] != 0)
|
||
return read_memory_integer (frame->saved_regs[pc_regnum], 4);
|
||
|
||
/* If the prologue analyzer tells us the link register was saved on
|
||
the stack, get it from there. */
|
||
if (frame->extra_info->lr_saved_on_stack)
|
||
return read_memory_integer (frame->frame + 8, 4);
|
||
|
||
/* Otherwise, it's still in LR.
|
||
However, if FRAME isn't the youngest frame, this is kind of
|
||
suspicious --- if this frame called somebody else, then its LR
|
||
has certainly been overwritten. */
|
||
if (! frame->next)
|
||
return read_register (lr_regnum);
|
||
|
||
/* By default, assume it's saved in the standard place, relative to
|
||
the frame pointer. */
|
||
return read_memory_integer (frame->frame + 8, 4);
|
||
}
|
||
|
||
|
||
/* Return true if REG is a caller-saves ("scratch") register,
|
||
false otherwise. */
|
||
static int
|
||
is_caller_saves_reg (int reg)
|
||
{
|
||
return ((4 <= reg && reg <= 7)
|
||
|| (14 <= reg && reg <= 15)
|
||
|| (32 <= reg && reg <= 47));
|
||
}
|
||
|
||
|
||
/* Return true if REG is a callee-saves register, false otherwise. */
|
||
static int
|
||
is_callee_saves_reg (int reg)
|
||
{
|
||
return ((16 <= reg && reg <= 31)
|
||
|| (48 <= reg && reg <= 63));
|
||
}
|
||
|
||
|
||
/* Return true if REG is an argument register, false otherwise. */
|
||
static int
|
||
is_argument_reg (int reg)
|
||
{
|
||
return (8 <= reg && reg <= 13);
|
||
}
|
||
|
||
|
||
/* Scan an FR-V prologue, starting at PC, until frame->PC.
|
||
If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
|
||
We assume FRAME's saved_regs array has already been allocated and cleared.
|
||
Return the first PC value after the prologue.
|
||
|
||
Note that, for unoptimized code, we almost don't need this function
|
||
at all; all arguments and locals live on the stack, so we just need
|
||
the FP to find everything. The catch: structures passed by value
|
||
have their addresses living in registers; they're never spilled to
|
||
the stack. So if you ever want to be able to get to these
|
||
arguments in any frame but the top, you'll need to do this serious
|
||
prologue analysis. */
|
||
static CORE_ADDR
|
||
frv_analyze_prologue (CORE_ADDR pc, struct frame_info *frame)
|
||
{
|
||
/* When writing out instruction bitpatterns, we use the following
|
||
letters to label instruction fields:
|
||
P - The parallel bit. We don't use this.
|
||
J - The register number of GRj in the instruction description.
|
||
K - The register number of GRk in the instruction description.
|
||
I - The register number of GRi.
|
||
S - a signed imediate offset.
|
||
U - an unsigned immediate offset.
|
||
|
||
The dots below the numbers indicate where hex digit boundaries
|
||
fall, to make it easier to check the numbers. */
|
||
|
||
/* Non-zero iff we've seen the instruction that initializes the
|
||
frame pointer for this function's frame. */
|
||
int fp_set = 0;
|
||
|
||
/* If fp_set is non_zero, then this is the distance from
|
||
the stack pointer to frame pointer: fp = sp + fp_offset. */
|
||
int fp_offset = 0;
|
||
|
||
/* Total size of frame prior to any alloca operations. */
|
||
int framesize = 0;
|
||
|
||
/* The number of the general-purpose register we saved the return
|
||
address ("link register") in, or -1 if we haven't moved it yet. */
|
||
int lr_save_reg = -1;
|
||
|
||
/* Non-zero iff we've saved the LR onto the stack. */
|
||
int lr_saved_on_stack = 0;
|
||
|
||
/* If gr_saved[i] is non-zero, then we've noticed that general
|
||
register i has been saved at gr_sp_offset[i] from the stack
|
||
pointer. */
|
||
char gr_saved[64];
|
||
int gr_sp_offset[64];
|
||
|
||
memset (gr_saved, 0, sizeof (gr_saved));
|
||
|
||
while (! frame || pc < frame->pc)
|
||
{
|
||
LONGEST op = read_memory_integer (pc, 4);
|
||
|
||
/* The tests in this chain of ifs should be in order of
|
||
decreasing selectivity, so that more particular patterns get
|
||
to fire before less particular patterns. */
|
||
|
||
/* Setting the FP from the SP:
|
||
ori sp, 0, fp
|
||
P 000010 0100010 000001 000000000000 = 0x04881000
|
||
0 111111 1111111 111111 111111111111 = 0x7fffffff
|
||
. . . . . . . .
|
||
We treat this as part of the prologue. */
|
||
if ((op & 0x7fffffff) == 0x04881000)
|
||
{
|
||
fp_set = 1;
|
||
fp_offset = 0;
|
||
}
|
||
|
||
/* Move the link register to the scratch register grJ, before saving:
|
||
movsg lr, grJ
|
||
P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
|
||
0 111111 1111111 111111 111111 000000 = 0x7fffffc0
|
||
. . . . . . . .
|
||
We treat this as part of the prologue. */
|
||
else if ((op & 0x7fffffc0) == 0x080d01c0)
|
||
{
|
||
int gr_j = op & 0x3f;
|
||
|
||
/* If we're moving it to a scratch register, that's fine. */
|
||
if (is_caller_saves_reg (gr_j))
|
||
lr_save_reg = gr_j;
|
||
/* Otherwise it's not a prologue instruction that we
|
||
recognize. */
|
||
else
|
||
break;
|
||
}
|
||
|
||
/* To save multiple callee-saves registers on the stack, at
|
||
offset zero:
|
||
|
||
std grK,@(sp,gr0)
|
||
P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
|
||
0 000000 1111111 111111 111111 111111 = 0x01ffffff
|
||
|
||
stq grK,@(sp,gr0)
|
||
P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
|
||
0 000000 1111111 111111 111111 111111 = 0x01ffffff
|
||
. . . . . . . .
|
||
We treat this as part of the prologue, and record the register's
|
||
saved address in the frame structure. */
|
||
else if ((op & 0x01ffffff) == 0x000c10c0
|
||
|| (op & 0x01ffffff) == 0x000c1100)
|
||
{
|
||
int gr_k = ((op >> 25) & 0x3f);
|
||
int ope = ((op >> 6) & 0x3f);
|
||
int count;
|
||
int i;
|
||
|
||
/* Is it an std or an stq? */
|
||
if (ope == 0x03)
|
||
count = 2;
|
||
else
|
||
count = 4;
|
||
|
||
/* Is it really a callee-saves register? */
|
||
if (is_callee_saves_reg (gr_k))
|
||
{
|
||
for (i = 0; i < count; i++)
|
||
{
|
||
gr_saved[gr_k + i] = 1;
|
||
gr_sp_offset[gr_k + i] = 4 * i;
|
||
}
|
||
}
|
||
else
|
||
/* It's not a prologue instruction. */
|
||
break;
|
||
}
|
||
|
||
/* Adjusting the stack pointer. (The stack pointer is GR1.)
|
||
addi sp, S, sp
|
||
P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
|
||
0 111111 1111111 111111 000000000000 = 0x7ffff000
|
||
. . . . . . . .
|
||
We treat this as part of the prologue. */
|
||
else if ((op & 0x7ffff000) == 0x02401000)
|
||
{
|
||
/* Sign-extend the twelve-bit field.
|
||
(Isn't there a better way to do this?) */
|
||
int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
|
||
|
||
framesize -= s;
|
||
}
|
||
|
||
/* Setting the FP to a constant distance from the SP:
|
||
addi sp, S, fp
|
||
P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
|
||
0 111111 1111111 111111 000000000000 = 0x7ffff000
|
||
. . . . . . . .
|
||
We treat this as part of the prologue. */
|
||
else if ((op & 0x7ffff000) == 0x04401000)
|
||
{
|
||
/* Sign-extend the twelve-bit field.
|
||
(Isn't there a better way to do this?) */
|
||
int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
|
||
fp_set = 1;
|
||
fp_offset = s;
|
||
}
|
||
|
||
/* To spill an argument register to a scratch register:
|
||
ori GRi, 0, GRk
|
||
P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
|
||
0 000000 1111111 000000 111111111111 = 0x01fc0fff
|
||
. . . . . . . .
|
||
For the time being, we treat this as a prologue instruction,
|
||
assuming that GRi is an argument register. This one's kind
|
||
of suspicious, because it seems like it could be part of a
|
||
legitimate body instruction. But we only come here when the
|
||
source info wasn't helpful, so we have to do the best we can.
|
||
Hopefully once GCC and GDB agree on how to emit line number
|
||
info for prologues, then this code will never come into play. */
|
||
else if ((op & 0x01fc0fff) == 0x00880000)
|
||
{
|
||
int gr_i = ((op >> 12) & 0x3f);
|
||
|
||
/* If the source isn't an arg register, then this isn't a
|
||
prologue instruction. */
|
||
if (! is_argument_reg (gr_i))
|
||
break;
|
||
}
|
||
|
||
/* To spill 16-bit values to the stack:
|
||
sthi GRk, @(fp, s)
|
||
P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
|
||
0 000000 1111111 111111 000000000000 = 0x01fff000
|
||
. . . . . . . .
|
||
And for 8-bit values, we use STB instructions.
|
||
stbi GRk, @(fp, s)
|
||
P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
|
||
0 000000 1111111 111111 000000000000 = 0x01fff000
|
||
. . . . . . . .
|
||
We check that GRk is really an argument register, and treat
|
||
all such as part of the prologue. */
|
||
else if ( (op & 0x01fff000) == 0x01442000
|
||
|| (op & 0x01fff000) == 0x01402000)
|
||
{
|
||
int gr_k = ((op >> 25) & 0x3f);
|
||
|
||
if (! is_argument_reg (gr_k))
|
||
break; /* Source isn't an arg register. */
|
||
}
|
||
|
||
/* To save multiple callee-saves register on the stack, at a
|
||
non-zero offset:
|
||
|
||
stdi GRk, @(sp, s)
|
||
P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
|
||
0 000000 1111111 111111 000000000000 = 0x01fff000
|
||
. . . . . . . .
|
||
stqi GRk, @(sp, s)
|
||
P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
|
||
0 000000 1111111 111111 000000000000 = 0x01fff000
|
||
. . . . . . . .
|
||
We treat this as part of the prologue, and record the register's
|
||
saved address in the frame structure. */
|
||
else if ((op & 0x01fff000) == 0x014c1000
|
||
|| (op & 0x01fff000) == 0x01501000)
|
||
{
|
||
int gr_k = ((op >> 25) & 0x3f);
|
||
int count;
|
||
int i;
|
||
|
||
/* Is it a stdi or a stqi? */
|
||
if ((op & 0x01fff000) == 0x014c1000)
|
||
count = 2;
|
||
else
|
||
count = 4;
|
||
|
||
/* Is it really a callee-saves register? */
|
||
if (is_callee_saves_reg (gr_k))
|
||
{
|
||
/* Sign-extend the twelve-bit field.
|
||
(Isn't there a better way to do this?) */
|
||
int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
|
||
|
||
for (i = 0; i < count; i++)
|
||
{
|
||
gr_saved[gr_k + i] = 1;
|
||
gr_sp_offset[gr_k + i] = s + (4 * i);
|
||
}
|
||
}
|
||
else
|
||
/* It's not a prologue instruction. */
|
||
break;
|
||
}
|
||
|
||
/* Storing any kind of integer register at any constant offset
|
||
from any other register.
|
||
|
||
st GRk, @(GRi, gr0)
|
||
P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
|
||
0 000000 1111111 000000 111111 111111 = 0x01fc0fff
|
||
. . . . . . . .
|
||
sti GRk, @(GRi, d12)
|
||
P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
|
||
0 000000 1111111 000000 000000000000 = 0x01fc0000
|
||
. . . . . . . .
|
||
These could be almost anything, but a lot of prologue
|
||
instructions fall into this pattern, so let's decode the
|
||
instruction once, and then work at a higher level. */
|
||
else if (((op & 0x01fc0fff) == 0x000c0080)
|
||
|| ((op & 0x01fc0000) == 0x01480000))
|
||
{
|
||
int gr_k = ((op >> 25) & 0x3f);
|
||
int gr_i = ((op >> 12) & 0x3f);
|
||
int offset;
|
||
|
||
/* Are we storing with gr0 as an offset, or using an
|
||
immediate value? */
|
||
if ((op & 0x01fc0fff) == 0x000c0080)
|
||
offset = 0;
|
||
else
|
||
offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
|
||
|
||
/* If the address isn't relative to the SP or FP, it's not a
|
||
prologue instruction. */
|
||
if (gr_i != sp_regnum && gr_i != fp_regnum)
|
||
break;
|
||
|
||
/* Saving the old FP in the new frame (relative to the SP). */
|
||
if (gr_k == fp_regnum && gr_i == sp_regnum)
|
||
;
|
||
|
||
/* Saving callee-saves register(s) on the stack, relative to
|
||
the SP. */
|
||
else if (gr_i == sp_regnum
|
||
&& is_callee_saves_reg (gr_k))
|
||
{
|
||
gr_saved[gr_k] = 1;
|
||
gr_sp_offset[gr_k] = offset;
|
||
}
|
||
|
||
/* Saving the scratch register holding the return address. */
|
||
else if (lr_save_reg != -1
|
||
&& gr_k == lr_save_reg)
|
||
lr_saved_on_stack = 1;
|
||
|
||
/* Spilling int-sized arguments to the stack. */
|
||
else if (is_argument_reg (gr_k))
|
||
;
|
||
|
||
/* It's not a store instruction we recognize, so this must
|
||
be the end of the prologue. */
|
||
else
|
||
break;
|
||
}
|
||
|
||
/* It's not any instruction we recognize, so this must be the end
|
||
of the prologue. */
|
||
else
|
||
break;
|
||
|
||
pc += 4;
|
||
}
|
||
|
||
if (frame)
|
||
{
|
||
frame->extra_info->lr_saved_on_stack = lr_saved_on_stack;
|
||
|
||
/* If we know the relationship between the stack and frame
|
||
pointers, record the addresses of the registers we noticed.
|
||
Note that we have to do this as a separate step at the end,
|
||
because instructions may save relative to the SP, but we need
|
||
their addresses relative to the FP. */
|
||
if (fp_set)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < 64; i++)
|
||
if (gr_saved[i])
|
||
frame->saved_regs[i] = (frame->frame
|
||
- fp_offset + gr_sp_offset[i]);
|
||
|
||
frame->extra_info->fp_to_callers_sp_offset = framesize - fp_offset;
|
||
}
|
||
}
|
||
|
||
return pc;
|
||
}
|
||
|
||
|
||
static CORE_ADDR
|
||
frv_skip_prologue (CORE_ADDR pc)
|
||
{
|
||
CORE_ADDR func_addr, func_end, new_pc;
|
||
|
||
new_pc = pc;
|
||
|
||
/* If the line table has entry for a line *within* the function
|
||
(i.e., not in the prologue, and not past the end), then that's
|
||
our location. */
|
||
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
||
{
|
||
struct symtab_and_line sal;
|
||
|
||
sal = find_pc_line (func_addr, 0);
|
||
|
||
if (sal.line != 0 && sal.end < func_end)
|
||
{
|
||
new_pc = sal.end;
|
||
}
|
||
}
|
||
|
||
/* The FR-V prologue is at least five instructions long (twenty bytes).
|
||
If we didn't find a real source location past that, then
|
||
do a full analysis of the prologue. */
|
||
if (new_pc < pc + 20)
|
||
new_pc = frv_analyze_prologue (pc, 0);
|
||
|
||
return new_pc;
|
||
}
|
||
|
||
static void
|
||
frv_frame_init_saved_regs (struct frame_info *frame)
|
||
{
|
||
if (frame->saved_regs)
|
||
return;
|
||
|
||
frame_saved_regs_zalloc (frame);
|
||
frame->saved_regs[fp_regnum] = frame->frame;
|
||
|
||
/* Find the beginning of this function, so we can analyze its
|
||
prologue. */
|
||
{
|
||
CORE_ADDR func_addr, func_end;
|
||
|
||
if (find_pc_partial_function (frame->pc, NULL, &func_addr, &func_end))
|
||
frv_analyze_prologue (func_addr, frame);
|
||
}
|
||
}
|
||
|
||
/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
|
||
EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
|
||
and TYPE is the type (which is known to be struct, union or array).
|
||
|
||
The frv returns all structs in memory. */
|
||
|
||
static int
|
||
frv_use_struct_convention (int gcc_p, struct type *type)
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
static void
|
||
frv_extract_return_value (struct type *type, char *regbuf, char *valbuf)
|
||
{
|
||
memcpy (valbuf, (regbuf
|
||
+ frv_register_byte (8)
|
||
+ (TYPE_LENGTH (type) < 4 ? 4 - TYPE_LENGTH (type) : 0)),
|
||
TYPE_LENGTH (type));
|
||
}
|
||
|
||
static CORE_ADDR
|
||
frv_extract_struct_value_address (char *regbuf)
|
||
{
|
||
return extract_address (regbuf + frv_register_byte (struct_return_regnum),
|
||
4);
|
||
}
|
||
|
||
static void
|
||
frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
||
{
|
||
write_register (struct_return_regnum, addr);
|
||
}
|
||
|
||
static int
|
||
frv_frameless_function_invocation (struct frame_info *frame)
|
||
{
|
||
return frameless_look_for_prologue (frame);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
frv_saved_pc_after_call (struct frame_info *frame)
|
||
{
|
||
return read_register (lr_regnum);
|
||
}
|
||
|
||
static void
|
||
frv_init_extra_frame_info (int fromleaf, struct frame_info *frame)
|
||
{
|
||
frame_extra_info_zalloc (frame, sizeof (struct frame_extra_info));
|
||
frame->extra_info->fp_to_callers_sp_offset = 0;
|
||
frame->extra_info->lr_saved_on_stack = 0;
|
||
}
|
||
|
||
#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
|
||
#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
|
||
|
||
static CORE_ADDR
|
||
frv_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
int argreg;
|
||
int argnum;
|
||
char *val;
|
||
char valbuf[4];
|
||
struct value *arg;
|
||
struct type *arg_type;
|
||
int len;
|
||
enum type_code typecode;
|
||
CORE_ADDR regval;
|
||
int stack_space;
|
||
int stack_offset;
|
||
|
||
#if 0
|
||
printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
|
||
nargs, (int) sp, struct_return, struct_addr);
|
||
#endif
|
||
|
||
stack_space = 0;
|
||
for (argnum = 0; argnum < nargs; ++argnum)
|
||
stack_space += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
|
||
|
||
stack_space -= (6 * 4);
|
||
if (stack_space > 0)
|
||
sp -= stack_space;
|
||
|
||
/* Make sure stack is dword aligned. */
|
||
sp = ROUND_DOWN (sp, 8);
|
||
|
||
stack_offset = 0;
|
||
|
||
argreg = 8;
|
||
|
||
if (struct_return)
|
||
write_register (struct_return_regnum, struct_addr);
|
||
|
||
for (argnum = 0; argnum < nargs; ++argnum)
|
||
{
|
||
arg = args[argnum];
|
||
arg_type = check_typedef (VALUE_TYPE (arg));
|
||
len = TYPE_LENGTH (arg_type);
|
||
typecode = TYPE_CODE (arg_type);
|
||
|
||
if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
|
||
{
|
||
store_address (valbuf, 4, VALUE_ADDRESS (arg));
|
||
typecode = TYPE_CODE_PTR;
|
||
len = 4;
|
||
val = valbuf;
|
||
}
|
||
else
|
||
{
|
||
val = (char *) VALUE_CONTENTS (arg);
|
||
}
|
||
|
||
while (len > 0)
|
||
{
|
||
int partial_len = (len < 4 ? len : 4);
|
||
|
||
if (argreg < 14)
|
||
{
|
||
regval = extract_address (val, partial_len);
|
||
#if 0
|
||
printf(" Argnum %d data %x -> reg %d\n",
|
||
argnum, (int) regval, argreg);
|
||
#endif
|
||
write_register (argreg, regval);
|
||
++argreg;
|
||
}
|
||
else
|
||
{
|
||
#if 0
|
||
printf(" Argnum %d data %x -> offset %d (%x)\n",
|
||
argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
|
||
#endif
|
||
write_memory (sp + stack_offset, val, partial_len);
|
||
stack_offset += ROUND_UP(partial_len, 4);
|
||
}
|
||
len -= partial_len;
|
||
val += partial_len;
|
||
}
|
||
}
|
||
return sp;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
frv_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
||
{
|
||
write_register (lr_regnum, CALL_DUMMY_ADDRESS ());
|
||
return sp;
|
||
}
|
||
|
||
static void
|
||
frv_store_return_value (struct type *type, char *valbuf)
|
||
{
|
||
int length = TYPE_LENGTH (type);
|
||
int reg8_offset = frv_register_byte (8);
|
||
|
||
if (length <= 4)
|
||
deprecated_write_register_bytes (reg8_offset + (4 - length), valbuf,
|
||
length);
|
||
else if (length == 8)
|
||
deprecated_write_register_bytes (reg8_offset, valbuf, length);
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
"Don't know how to return a %d-byte value.", length);
|
||
}
|
||
|
||
static void
|
||
frv_pop_frame (void)
|
||
{
|
||
generic_pop_current_frame (frv_pop_frame_regular);
|
||
}
|
||
|
||
static void
|
||
frv_pop_frame_regular (struct frame_info *frame)
|
||
{
|
||
CORE_ADDR fp;
|
||
int regno;
|
||
|
||
fp = frame->frame;
|
||
|
||
frv_frame_init_saved_regs (frame);
|
||
|
||
write_register (pc_regnum, frv_frame_saved_pc (frame));
|
||
for (regno = 0; regno < frv_num_regs; ++regno)
|
||
{
|
||
if (frame->saved_regs[regno]
|
||
&& regno != pc_regnum
|
||
&& regno != sp_regnum)
|
||
{
|
||
write_register (regno,
|
||
read_memory_integer (frame->saved_regs[regno], 4));
|
||
}
|
||
}
|
||
write_register (sp_regnum, fp + frame->extra_info->fp_to_callers_sp_offset);
|
||
flush_cached_frames ();
|
||
}
|
||
|
||
|
||
static void
|
||
frv_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
|
||
CORE_ADDR *targ_addr, int *targ_len)
|
||
{
|
||
*targ_addr = memaddr;
|
||
*targ_len = nr_bytes;
|
||
}
|
||
|
||
|
||
/* Hardware watchpoint / breakpoint support for the FR500
|
||
and FR400. */
|
||
|
||
int
|
||
frv_check_watch_resources (int type, int cnt, int ot)
|
||
{
|
||
struct gdbarch_tdep *var = CURRENT_VARIANT;
|
||
|
||
/* Watchpoints not supported on simulator. */
|
||
if (strcmp (target_shortname, "sim") == 0)
|
||
return 0;
|
||
|
||
if (type == bp_hardware_breakpoint)
|
||
{
|
||
if (var->num_hw_breakpoints == 0)
|
||
return 0;
|
||
else if (cnt <= var->num_hw_breakpoints)
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
if (var->num_hw_watchpoints == 0)
|
||
return 0;
|
||
else if (ot)
|
||
return -1;
|
||
else if (cnt <= var->num_hw_watchpoints)
|
||
return 1;
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
|
||
CORE_ADDR
|
||
frv_stopped_data_address (void)
|
||
{
|
||
CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
|
||
|
||
brr = read_register (brr_regnum);
|
||
dbar0 = read_register (dbar0_regnum);
|
||
dbar1 = read_register (dbar1_regnum);
|
||
dbar2 = read_register (dbar2_regnum);
|
||
dbar3 = read_register (dbar3_regnum);
|
||
|
||
if (brr & (1<<11))
|
||
return dbar0;
|
||
else if (brr & (1<<10))
|
||
return dbar1;
|
||
else if (brr & (1<<9))
|
||
return dbar2;
|
||
else if (brr & (1<<8))
|
||
return dbar3;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
static struct gdbarch *
|
||
frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
struct gdbarch_tdep *var;
|
||
|
||
/* Check to see if we've already built an appropriate architecture
|
||
object for this executable. */
|
||
arches = gdbarch_list_lookup_by_info (arches, &info);
|
||
if (arches)
|
||
return arches->gdbarch;
|
||
|
||
/* Select the right tdep structure for this variant. */
|
||
var = new_variant ();
|
||
switch (info.bfd_arch_info->mach)
|
||
{
|
||
case bfd_mach_frv:
|
||
case bfd_mach_frvsimple:
|
||
case bfd_mach_fr500:
|
||
case bfd_mach_frvtomcat:
|
||
set_variant_num_gprs (var, 64);
|
||
set_variant_num_fprs (var, 64);
|
||
break;
|
||
|
||
case bfd_mach_fr400:
|
||
set_variant_num_gprs (var, 32);
|
||
set_variant_num_fprs (var, 32);
|
||
break;
|
||
|
||
default:
|
||
/* Never heard of this variant. */
|
||
return 0;
|
||
}
|
||
|
||
gdbarch = gdbarch_alloc (&info, var);
|
||
|
||
/* NOTE: cagney/2002-12-06: This can be deleted when this arch is
|
||
ready to unwind the PC first (see frame.c:get_prev_frame()). */
|
||
set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
|
||
|
||
set_gdbarch_short_bit (gdbarch, 16);
|
||
set_gdbarch_int_bit (gdbarch, 32);
|
||
set_gdbarch_long_bit (gdbarch, 32);
|
||
set_gdbarch_long_long_bit (gdbarch, 64);
|
||
set_gdbarch_float_bit (gdbarch, 32);
|
||
set_gdbarch_double_bit (gdbarch, 64);
|
||
set_gdbarch_long_double_bit (gdbarch, 64);
|
||
set_gdbarch_ptr_bit (gdbarch, 32);
|
||
|
||
set_gdbarch_num_regs (gdbarch, frv_num_regs);
|
||
set_gdbarch_sp_regnum (gdbarch, sp_regnum);
|
||
set_gdbarch_fp_regnum (gdbarch, fp_regnum);
|
||
set_gdbarch_pc_regnum (gdbarch, pc_regnum);
|
||
|
||
set_gdbarch_register_name (gdbarch, frv_register_name);
|
||
set_gdbarch_register_size (gdbarch, 4);
|
||
set_gdbarch_register_bytes (gdbarch, frv_num_regs * 4);
|
||
set_gdbarch_register_byte (gdbarch, frv_register_byte);
|
||
set_gdbarch_register_raw_size (gdbarch, frv_register_raw_size);
|
||
set_gdbarch_max_register_raw_size (gdbarch, 4);
|
||
set_gdbarch_register_virtual_size (gdbarch, frv_register_virtual_size);
|
||
set_gdbarch_max_register_virtual_size (gdbarch, 4);
|
||
set_gdbarch_register_virtual_type (gdbarch, frv_register_virtual_type);
|
||
|
||
set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
|
||
set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
|
||
|
||
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
|
||
set_gdbarch_frame_args_skip (gdbarch, 0);
|
||
set_gdbarch_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
|
||
|
||
set_gdbarch_saved_pc_after_call (gdbarch, frv_saved_pc_after_call);
|
||
|
||
set_gdbarch_frame_chain (gdbarch, frv_frame_chain);
|
||
set_gdbarch_frame_saved_pc (gdbarch, frv_frame_saved_pc);
|
||
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, frv_frame_init_saved_regs);
|
||
|
||
set_gdbarch_use_struct_convention (gdbarch, frv_use_struct_convention);
|
||
set_gdbarch_deprecated_extract_return_value (gdbarch, frv_extract_return_value);
|
||
|
||
set_gdbarch_store_struct_return (gdbarch, frv_store_struct_return);
|
||
set_gdbarch_deprecated_store_return_value (gdbarch, frv_store_return_value);
|
||
set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
|
||
|
||
/* Settings for calling functions in the inferior. */
|
||
set_gdbarch_call_dummy_length (gdbarch, 0);
|
||
set_gdbarch_push_arguments (gdbarch, frv_push_arguments);
|
||
set_gdbarch_push_return_address (gdbarch, frv_push_return_address);
|
||
set_gdbarch_pop_frame (gdbarch, frv_pop_frame);
|
||
|
||
set_gdbarch_call_dummy_p (gdbarch, 1);
|
||
set_gdbarch_call_dummy_words (gdbarch, frv_call_dummy_words);
|
||
set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (frv_call_dummy_words));
|
||
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
|
||
set_gdbarch_init_extra_frame_info (gdbarch, frv_init_extra_frame_info);
|
||
|
||
/* Settings that should be unnecessary. */
|
||
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
||
|
||
set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
|
||
set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
|
||
set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
|
||
set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
|
||
set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
|
||
|
||
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
|
||
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
||
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
||
set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
|
||
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
|
||
set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
|
||
|
||
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
||
set_gdbarch_function_start_offset (gdbarch, 0);
|
||
set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
|
||
|
||
set_gdbarch_remote_translate_xfer_address
|
||
(gdbarch, frv_remote_translate_xfer_address);
|
||
|
||
/* Hardware watchpoint / breakpoint support. */
|
||
switch (info.bfd_arch_info->mach)
|
||
{
|
||
case bfd_mach_frv:
|
||
case bfd_mach_frvsimple:
|
||
case bfd_mach_fr500:
|
||
case bfd_mach_frvtomcat:
|
||
/* fr500-style hardware debugging support. */
|
||
var->num_hw_watchpoints = 4;
|
||
var->num_hw_breakpoints = 4;
|
||
break;
|
||
|
||
case bfd_mach_fr400:
|
||
/* fr400-style hardware debugging support. */
|
||
var->num_hw_watchpoints = 2;
|
||
var->num_hw_breakpoints = 4;
|
||
break;
|
||
|
||
default:
|
||
/* Otherwise, assume we don't have hardware debugging support. */
|
||
var->num_hw_watchpoints = 0;
|
||
var->num_hw_breakpoints = 0;
|
||
break;
|
||
}
|
||
|
||
return gdbarch;
|
||
}
|
||
|
||
void
|
||
_initialize_frv_tdep (void)
|
||
{
|
||
register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
|
||
|
||
tm_print_insn = print_insn_frv;
|
||
}
|
||
|
||
|