Tristan Gingold 66b4202f30 2009-10-27 Tristan Gingold <gingold@adacore.com>
* config/tc-avr.c (md_pseudo_table): Add dwarf2 debug pseudo.
	* config/tc-avr.h (DWARF2_LINE_MIN_INSN_LENGTH): Define.
	(DWARF2_ADDR_SIZE): Define.
2009-10-27 15:39:27 +00:00

1464 lines
39 KiB
C

/* tc-avr.c -- Assembler code for the ATMEL AVR
Copyright 1999, 2000, 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Contributed by Denis Chertykov <denisc@overta.ru>
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street - Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "as.h"
#include "safe-ctype.h"
#include "subsegs.h"
struct avr_opcodes_s
{
char * name;
char * constraints;
int insn_size; /* In words. */
int isa;
unsigned int bin_opcode;
};
#define AVR_INSN(NAME, CONSTR, OPCODE, SIZE, ISA, BIN) \
{#NAME, CONSTR, SIZE, ISA, BIN},
struct avr_opcodes_s avr_opcodes[] =
{
#include "opcode/avr.h"
{NULL, NULL, 0, 0, 0}
};
const char comment_chars[] = ";";
const char line_comment_chars[] = "#";
const char line_separator_chars[] = "$";
const char *md_shortopts = "m:";
struct mcu_type_s
{
char *name;
int isa;
int mach;
};
/* XXX - devices that don't seem to exist (renamed, replaced with larger
ones, or planned but never produced), left here for compatibility. */
static struct mcu_type_s mcu_types[] =
{
{"avr1", AVR_ISA_AVR1, bfd_mach_avr1},
/* TODO: insruction set for avr2 architecture should be AVR_ISA_AVR2,
but set to AVR_ISA_AVR25 for some following version
of GCC (from 4.3) for backward compatibility. */
{"avr2", AVR_ISA_AVR25, bfd_mach_avr2},
{"avr25", AVR_ISA_AVR25, bfd_mach_avr25},
/* TODO: insruction set for avr3 architecture should be AVR_ISA_AVR3,
but set to AVR_ISA_AVR3_ALL for some following version
of GCC (from 4.3) for backward compatibility. */
{"avr3", AVR_ISA_AVR3_ALL, bfd_mach_avr3},
{"avr31", AVR_ISA_AVR31, bfd_mach_avr31},
{"avr35", AVR_ISA_AVR35, bfd_mach_avr35},
{"avr4", AVR_ISA_AVR4, bfd_mach_avr4},
/* TODO: insruction set for avr5 architecture should be AVR_ISA_AVR5,
but set to AVR_ISA_AVR51 for some following version
of GCC (from 4.3) for backward compatibility. */
{"avr5", AVR_ISA_AVR51, bfd_mach_avr5},
{"avr51", AVR_ISA_AVR51, bfd_mach_avr51},
{"avr6", AVR_ISA_AVR6, bfd_mach_avr6},
{"at90s1200", AVR_ISA_1200, bfd_mach_avr1},
{"attiny11", AVR_ISA_AVR1, bfd_mach_avr1},
{"attiny12", AVR_ISA_AVR1, bfd_mach_avr1},
{"attiny15", AVR_ISA_AVR1, bfd_mach_avr1},
{"attiny28", AVR_ISA_AVR1, bfd_mach_avr1},
{"at90s2313", AVR_ISA_AVR2, bfd_mach_avr2},
{"at90s2323", AVR_ISA_AVR2, bfd_mach_avr2},
{"at90s2333", AVR_ISA_AVR2, bfd_mach_avr2}, /* XXX -> 4433 */
{"at90s2343", AVR_ISA_AVR2, bfd_mach_avr2},
{"attiny22", AVR_ISA_AVR2, bfd_mach_avr2}, /* XXX -> 2343 */
{"attiny26", AVR_ISA_2xxe, bfd_mach_avr2},
{"at90s4414", AVR_ISA_AVR2, bfd_mach_avr2}, /* XXX -> 8515 */
{"at90s4433", AVR_ISA_AVR2, bfd_mach_avr2},
{"at90s4434", AVR_ISA_AVR2, bfd_mach_avr2}, /* XXX -> 8535 */
{"at90s8515", AVR_ISA_AVR2, bfd_mach_avr2},
{"at90c8534", AVR_ISA_AVR2, bfd_mach_avr2},
{"at90s8535", AVR_ISA_AVR2, bfd_mach_avr2},
{"attiny13", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny13a", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny2313", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny2313a",AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny24", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny24a", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny4313", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny44", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny44a", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny84", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny25", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny45", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny85", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny261", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny261a", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny461", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny861", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny861a", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny87", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny43u", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny48", AVR_ISA_AVR25, bfd_mach_avr25},
{"attiny88", AVR_ISA_AVR25, bfd_mach_avr25},
{"at86rf401", AVR_ISA_RF401, bfd_mach_avr25},
{"ata6289", AVR_ISA_AVR25, bfd_mach_avr25},
{"at43usb355", AVR_ISA_AVR3, bfd_mach_avr3},
{"at76c711", AVR_ISA_AVR3, bfd_mach_avr3},
{"atmega103", AVR_ISA_AVR31, bfd_mach_avr31},
{"at43usb320", AVR_ISA_AVR31, bfd_mach_avr31},
{"attiny167", AVR_ISA_AVR35, bfd_mach_avr35},
{"attiny327", AVR_ISA_AVR35, bfd_mach_avr35},
{"at90usb82", AVR_ISA_AVR35, bfd_mach_avr35},
{"at90usb162", AVR_ISA_AVR35, bfd_mach_avr35},
{"atmega8u2", AVR_ISA_AVR35, bfd_mach_avr35},
{"atmega16u2", AVR_ISA_AVR35, bfd_mach_avr35},
{"atmega32u2", AVR_ISA_AVR35, bfd_mach_avr35},
{"atmega8", AVR_ISA_M8, bfd_mach_avr4},
{"atmega48", AVR_ISA_AVR4, bfd_mach_avr4},
{"atmega48p", AVR_ISA_AVR4, bfd_mach_avr4},
{"atmega88", AVR_ISA_AVR4, bfd_mach_avr4},
{"atmega88p", AVR_ISA_AVR4, bfd_mach_avr4},
{"atmega8515", AVR_ISA_M8, bfd_mach_avr4},
{"atmega8535", AVR_ISA_M8, bfd_mach_avr4},
{"atmega8hva", AVR_ISA_AVR4, bfd_mach_avr4},
{"atmega4hvd", AVR_ISA_AVR4, bfd_mach_avr4},
{"atmega8hvd", AVR_ISA_AVR4, bfd_mach_avr4},
{"atmega8c1", AVR_ISA_AVR4, bfd_mach_avr4},
{"atmega8m1", AVR_ISA_AVR4, bfd_mach_avr4},
{"at90pwm1", AVR_ISA_AVR4, bfd_mach_avr4},
{"at90pwm2", AVR_ISA_AVR4, bfd_mach_avr4},
{"at90pwm2b", AVR_ISA_AVR4, bfd_mach_avr4},
{"at90pwm3", AVR_ISA_AVR4, bfd_mach_avr4},
{"at90pwm3b", AVR_ISA_AVR4, bfd_mach_avr4},
{"at90pwm81", AVR_ISA_AVR4, bfd_mach_avr4},
{"atmega16", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega161", AVR_ISA_M161, bfd_mach_avr5},
{"atmega162", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega163", AVR_ISA_M161, bfd_mach_avr5},
{"atmega164p", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega165", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega165p", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega168", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega168p", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega169", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega169p", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega16c1", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega32", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega323", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega324p", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega325", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega325p", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega3250", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega3250p",AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega328p", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega329", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega329p", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega3290", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega3290p",AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega406", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega64", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega640", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega644", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega644p", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega644pa",AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega645", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega649", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega6450", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega6490", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega16hva",AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega16hvb",AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega32hvb",AVR_ISA_AVR5, bfd_mach_avr5},
{"at90can32" , AVR_ISA_AVR5, bfd_mach_avr5},
{"at90can64" , AVR_ISA_AVR5, bfd_mach_avr5},
{"at90pwm216", AVR_ISA_AVR5, bfd_mach_avr5},
{"at90pwm316", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega32c1", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega64c1", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega16m1", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega32m1", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega64m1", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega16u4", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega32u4", AVR_ISA_AVR5, bfd_mach_avr5},
{"atmega32u6", AVR_ISA_AVR5, bfd_mach_avr5},
{"at90usb646", AVR_ISA_AVR5, bfd_mach_avr5},
{"at90usb647", AVR_ISA_AVR5, bfd_mach_avr5},
{"at90scr100", AVR_ISA_AVR5, bfd_mach_avr5},
{"at94k", AVR_ISA_94K, bfd_mach_avr5},
{"atmega128", AVR_ISA_AVR51, bfd_mach_avr51},
{"atmega1280", AVR_ISA_AVR51, bfd_mach_avr51},
{"atmega1281", AVR_ISA_AVR51, bfd_mach_avr51},
{"atmega1284p",AVR_ISA_AVR51, bfd_mach_avr51},
{"atmega128rfa1",AVR_ISA_AVR51, bfd_mach_avr51},
{"at90can128", AVR_ISA_AVR51, bfd_mach_avr51},
{"at90usb1286",AVR_ISA_AVR51, bfd_mach_avr51},
{"at90usb1287",AVR_ISA_AVR51, bfd_mach_avr51},
{"m3000f", AVR_ISA_AVR51, bfd_mach_avr51},
{"m3000s", AVR_ISA_AVR51, bfd_mach_avr51},
{"m3001b", AVR_ISA_AVR51, bfd_mach_avr51},
{"atmega2560", AVR_ISA_AVR6, bfd_mach_avr6},
{"atmega2561", AVR_ISA_AVR6, bfd_mach_avr6},
{NULL, 0, 0}
};
/* Current MCU type. */
static struct mcu_type_s default_mcu = {"avr2", AVR_ISA_AVR2, bfd_mach_avr2};
static struct mcu_type_s * avr_mcu = & default_mcu;
/* AVR target-specific switches. */
struct avr_opt_s
{
int all_opcodes; /* -mall-opcodes: accept all known AVR opcodes. */
int no_skip_bug; /* -mno-skip-bug: no warnings for skipping 2-word insns. */
int no_wrap; /* -mno-wrap: reject rjmp/rcall with 8K wrap-around. */
};
static struct avr_opt_s avr_opt = { 0, 0, 0 };
const char EXP_CHARS[] = "eE";
const char FLT_CHARS[] = "dD";
static void avr_set_arch (int);
/* The target specific pseudo-ops which we support. */
const pseudo_typeS md_pseudo_table[] =
{
{"arch", avr_set_arch, 0},
{"file", (void (*) (int)) dwarf2_directive_file, 0},
{"loc", dwarf2_directive_loc, 0},
{"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
{ NULL, NULL, 0}
};
#define LDI_IMMEDIATE(x) (((x) & 0xf) | (((x) << 4) & 0xf00))
#define EXP_MOD_NAME(i) exp_mod[i].name
#define EXP_MOD_RELOC(i) exp_mod[i].reloc
#define EXP_MOD_NEG_RELOC(i) exp_mod[i].neg_reloc
#define HAVE_PM_P(i) exp_mod[i].have_pm
struct exp_mod_s
{
char * name;
bfd_reloc_code_real_type reloc;
bfd_reloc_code_real_type neg_reloc;
int have_pm;
};
static struct exp_mod_s exp_mod[] =
{
{"hh8", BFD_RELOC_AVR_HH8_LDI, BFD_RELOC_AVR_HH8_LDI_NEG, 1},
{"pm_hh8", BFD_RELOC_AVR_HH8_LDI_PM, BFD_RELOC_AVR_HH8_LDI_PM_NEG, 0},
{"hi8", BFD_RELOC_AVR_HI8_LDI, BFD_RELOC_AVR_HI8_LDI_NEG, 1},
{"pm_hi8", BFD_RELOC_AVR_HI8_LDI_PM, BFD_RELOC_AVR_HI8_LDI_PM_NEG, 0},
{"lo8", BFD_RELOC_AVR_LO8_LDI, BFD_RELOC_AVR_LO8_LDI_NEG, 1},
{"pm_lo8", BFD_RELOC_AVR_LO8_LDI_PM, BFD_RELOC_AVR_LO8_LDI_PM_NEG, 0},
{"hlo8", BFD_RELOC_AVR_HH8_LDI, BFD_RELOC_AVR_HH8_LDI_NEG, 0},
{"hhi8", BFD_RELOC_AVR_MS8_LDI, BFD_RELOC_AVR_MS8_LDI_NEG, 0},
};
/* A union used to store indicies into the exp_mod[] array
in a hash table which expects void * data types. */
typedef union
{
void * ptr;
int index;
} mod_index;
/* Opcode hash table. */
static struct hash_control *avr_hash;
/* Reloc modifiers hash control (hh8,hi8,lo8,pm_xx). */
static struct hash_control *avr_mod_hash;
#define OPTION_MMCU 'm'
enum options
{
OPTION_ALL_OPCODES = OPTION_MD_BASE + 1,
OPTION_NO_SKIP_BUG,
OPTION_NO_WRAP
};
struct option md_longopts[] =
{
{ "mmcu", required_argument, NULL, OPTION_MMCU },
{ "mall-opcodes", no_argument, NULL, OPTION_ALL_OPCODES },
{ "mno-skip-bug", no_argument, NULL, OPTION_NO_SKIP_BUG },
{ "mno-wrap", no_argument, NULL, OPTION_NO_WRAP },
{ NULL, no_argument, NULL, 0 }
};
size_t md_longopts_size = sizeof (md_longopts);
/* Display nicely formatted list of known MCU names. */
static void
show_mcu_list (FILE *stream)
{
int i, x;
fprintf (stream, _("Known MCU names:"));
x = 1000;
for (i = 0; mcu_types[i].name; i++)
{
int len = strlen (mcu_types[i].name);
x += len + 1;
if (x < 75)
fprintf (stream, " %s", mcu_types[i].name);
else
{
fprintf (stream, "\n %s", mcu_types[i].name);
x = len + 2;
}
}
fprintf (stream, "\n");
}
static inline char *
skip_space (char *s)
{
while (*s == ' ' || *s == '\t')
++s;
return s;
}
/* Extract one word from FROM and copy it to TO. */
static char *
extract_word (char *from, char *to, int limit)
{
char *op_start;
char *op_end;
int size = 0;
/* Drop leading whitespace. */
from = skip_space (from);
*to = 0;
/* Find the op code end. */
for (op_start = op_end = from; *op_end != 0 && is_part_of_name (*op_end);)
{
to[size++] = *op_end++;
if (size + 1 >= limit)
break;
}
to[size] = 0;
return op_end;
}
int
md_estimate_size_before_relax (fragS *fragp ATTRIBUTE_UNUSED,
asection *seg ATTRIBUTE_UNUSED)
{
abort ();
return 0;
}
void
md_show_usage (FILE *stream)
{
fprintf (stream,
_("AVR options:\n"
" -mmcu=[avr-name] select microcontroller variant\n"
" [avr-name] can be:\n"
" avr1 - classic AVR core without data RAM\n"
" avr2 - classic AVR core with up to 8K program memory\n"
" avr25 - classic AVR core with up to 8K program memory\n"
" plus the MOVW instruction\n"
" avr3 - classic AVR core with up to 64K program memory\n"
" avr31 - classic AVR core with up to 128K program memory\n"
" avr35 - classic AVR core with up to 64K program memory\n"
" plus the MOVW instruction\n"
" avr4 - enhanced AVR core with up to 8K program memory\n"
" avr5 - enhanced AVR core with up to 64K program memory\n"
" avr51 - enhanced AVR core with up to 128K program memory\n"
" avr6 - enhanced AVR core with up to 256K program memory\n"
" or immediate microcontroller name.\n"));
fprintf (stream,
_(" -mall-opcodes accept all AVR opcodes, even if not supported by MCU\n"
" -mno-skip-bug disable warnings for skipping two-word instructions\n"
" (default for avr4, avr5)\n"
" -mno-wrap reject rjmp/rcall instructions with 8K wrap-around\n"
" (default for avr3, avr5)\n"));
show_mcu_list (stream);
}
static void
avr_set_arch (int dummy ATTRIBUTE_UNUSED)
{
char str[20];
input_line_pointer = extract_word (input_line_pointer, str, 20);
md_parse_option (OPTION_MMCU, str);
bfd_set_arch_mach (stdoutput, TARGET_ARCH, avr_mcu->mach);
}
int
md_parse_option (int c, char *arg)
{
switch (c)
{
case OPTION_MMCU:
{
int i;
char *s = alloca (strlen (arg) + 1);
{
char *t = s;
char *arg1 = arg;
do
*t = TOLOWER (*arg1++);
while (*t++);
}
for (i = 0; mcu_types[i].name; ++i)
if (strcmp (mcu_types[i].name, s) == 0)
break;
if (!mcu_types[i].name)
{
show_mcu_list (stderr);
as_fatal (_("unknown MCU: %s\n"), arg);
}
/* It is OK to redefine mcu type within the same avr[1-5] bfd machine
type - this for allows passing -mmcu=... via gcc ASM_SPEC as well
as .arch ... in the asm output at the same time. */
if (avr_mcu == &default_mcu || avr_mcu->mach == mcu_types[i].mach)
avr_mcu = &mcu_types[i];
else
as_fatal (_("redefinition of mcu type `%s' to `%s'"),
avr_mcu->name, mcu_types[i].name);
return 1;
}
case OPTION_ALL_OPCODES:
avr_opt.all_opcodes = 1;
return 1;
case OPTION_NO_SKIP_BUG:
avr_opt.no_skip_bug = 1;
return 1;
case OPTION_NO_WRAP:
avr_opt.no_wrap = 1;
return 1;
}
return 0;
}
symbolS *
md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
{
return NULL;
}
char *
md_atof (int type, char *litP, int *sizeP)
{
return ieee_md_atof (type, litP, sizeP, FALSE);
}
void
md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED,
asection *sec ATTRIBUTE_UNUSED,
fragS *fragP ATTRIBUTE_UNUSED)
{
abort ();
}
void
md_begin (void)
{
unsigned int i;
struct avr_opcodes_s *opcode;
avr_hash = hash_new ();
/* Insert unique names into hash table. This hash table then provides a
quick index to the first opcode with a particular name in the opcode
table. */
for (opcode = avr_opcodes; opcode->name; opcode++)
hash_insert (avr_hash, opcode->name, (char *) opcode);
avr_mod_hash = hash_new ();
for (i = 0; i < ARRAY_SIZE (exp_mod); ++i)
{
mod_index m;
m.index = i + 10;
hash_insert (avr_mod_hash, EXP_MOD_NAME (i), m.ptr);
}
bfd_set_arch_mach (stdoutput, TARGET_ARCH, avr_mcu->mach);
}
/* Resolve STR as a constant expression and return the result.
If result greater than MAX then error. */
static unsigned int
avr_get_constant (char *str, int max)
{
expressionS ex;
str = skip_space (str);
input_line_pointer = str;
expression (& ex);
if (ex.X_op != O_constant)
as_bad (_("constant value required"));
if (ex.X_add_number > max || ex.X_add_number < 0)
as_bad (_("number must be positive and less than %d"), max + 1);
return ex.X_add_number;
}
/* Parse for ldd/std offset. */
static void
avr_offset_expression (expressionS *exp)
{
char *str = input_line_pointer;
char *tmp;
char op[8];
tmp = str;
str = extract_word (str, op, sizeof (op));
input_line_pointer = tmp;
expression (exp);
/* Warn about expressions that fail to use lo8 (). */
if (exp->X_op == O_constant)
{
int x = exp->X_add_number;
if (x < -255 || x > 255)
as_warn (_("constant out of 8-bit range: %d"), x);
}
}
/* Parse ordinary expression. */
static char *
parse_exp (char *s, expressionS *op)
{
input_line_pointer = s;
expression (op);
if (op->X_op == O_absent)
as_bad (_("missing operand"));
return input_line_pointer;
}
/* Parse special expressions (needed for LDI command):
xx8 (address)
xx8 (-address)
pm_xx8 (address)
pm_xx8 (-address)
where xx is: hh, hi, lo. */
static bfd_reloc_code_real_type
avr_ldi_expression (expressionS *exp)
{
char *str = input_line_pointer;
char *tmp;
char op[8];
int mod;
int linker_stubs_should_be_generated = 0;
tmp = str;
str = extract_word (str, op, sizeof (op));
if (op[0])
{
mod_index m;
m.ptr = hash_find (avr_mod_hash, op);
mod = m.index;
if (mod)
{
int closes = 0;
mod -= 10;
str = skip_space (str);
if (*str == '(')
{
bfd_reloc_code_real_type reloc_to_return;
int neg_p = 0;
++str;
if (strncmp ("pm(", str, 3) == 0
|| strncmp ("gs(",str,3) == 0
|| strncmp ("-(gs(",str,5) == 0
|| strncmp ("-(pm(", str, 5) == 0)
{
if (HAVE_PM_P (mod))
{
++mod;
++closes;
}
else
as_bad (_("illegal expression"));
if (str[0] == 'g' || str[2] == 'g')
linker_stubs_should_be_generated = 1;
if (*str == '-')
{
neg_p = 1;
++closes;
str += 5;
}
else
str += 3;
}
if (*str == '-' && *(str + 1) == '(')
{
neg_p ^= 1;
++closes;
str += 2;
}
input_line_pointer = str;
expression (exp);
do
{
if (*input_line_pointer != ')')
{
as_bad (_("`)' required"));
break;
}
input_line_pointer++;
}
while (closes--);
reloc_to_return =
neg_p ? EXP_MOD_NEG_RELOC (mod) : EXP_MOD_RELOC (mod);
if (linker_stubs_should_be_generated)
{
switch (reloc_to_return)
{
case BFD_RELOC_AVR_LO8_LDI_PM:
reloc_to_return = BFD_RELOC_AVR_LO8_LDI_GS;
break;
case BFD_RELOC_AVR_HI8_LDI_PM:
reloc_to_return = BFD_RELOC_AVR_HI8_LDI_GS;
break;
default:
/* PR 5523: Do not generate a warning here,
legitimate code can trigger this case. */
break;
}
}
return reloc_to_return;
}
}
}
input_line_pointer = tmp;
expression (exp);
/* Warn about expressions that fail to use lo8 (). */
if (exp->X_op == O_constant)
{
int x = exp->X_add_number;
if (x < -255 || x > 255)
as_warn (_("constant out of 8-bit range: %d"), x);
}
return BFD_RELOC_AVR_LDI;
}
/* Parse one instruction operand.
Return operand bitmask. Also fixups can be generated. */
static unsigned int
avr_operand (struct avr_opcodes_s *opcode,
int where,
char *op,
char **line)
{
expressionS op_expr;
unsigned int op_mask = 0;
char *str = skip_space (*line);
switch (*op)
{
/* Any register operand. */
case 'w':
case 'd':
case 'r':
case 'a':
case 'v':
if (*str == 'r' || *str == 'R')
{
char r_name[20];
str = extract_word (str, r_name, sizeof (r_name));
op_mask = 0xff;
if (ISDIGIT (r_name[1]))
{
if (r_name[2] == '\0')
op_mask = r_name[1] - '0';
else if (r_name[1] != '0'
&& ISDIGIT (r_name[2])
&& r_name[3] == '\0')
op_mask = (r_name[1] - '0') * 10 + r_name[2] - '0';
}
}
else
{
op_mask = avr_get_constant (str, 31);
str = input_line_pointer;
}
if (op_mask <= 31)
{
switch (*op)
{
case 'a':
if (op_mask < 16 || op_mask > 23)
as_bad (_("register r16-r23 required"));
op_mask -= 16;
break;
case 'd':
if (op_mask < 16)
as_bad (_("register number above 15 required"));
op_mask -= 16;
break;
case 'v':
if (op_mask & 1)
as_bad (_("even register number required"));
op_mask >>= 1;
break;
case 'w':
if ((op_mask & 1) || op_mask < 24)
as_bad (_("register r24, r26, r28 or r30 required"));
op_mask = (op_mask - 24) >> 1;
break;
}
break;
}
as_bad (_("register name or number from 0 to 31 required"));
break;
case 'e':
{
char c;
if (*str == '-')
{
str = skip_space (str + 1);
op_mask = 0x1002;
}
c = TOLOWER (*str);
if (c == 'x')
op_mask |= 0x100c;
else if (c == 'y')
op_mask |= 0x8;
else if (c != 'z')
as_bad (_("pointer register (X, Y or Z) required"));
str = skip_space (str + 1);
if (*str == '+')
{
++str;
if (op_mask & 2)
as_bad (_("cannot both predecrement and postincrement"));
op_mask |= 0x1001;
}
/* avr1 can do "ld r,Z" and "st Z,r" but no other pointer
registers, no predecrement, no postincrement. */
if (!avr_opt.all_opcodes && (op_mask & 0x100F)
&& !(avr_mcu->isa & AVR_ISA_SRAM))
as_bad (_("addressing mode not supported"));
}
break;
case 'z':
if (*str == '-')
as_bad (_("can't predecrement"));
if (! (*str == 'z' || *str == 'Z'))
as_bad (_("pointer register Z required"));
str = skip_space (str + 1);
if (*str == '+')
{
++str;
op_mask |= 1;
}
/* attiny26 can do "lpm" and "lpm r,Z" but not "lpm r,Z+". */
if (!avr_opt.all_opcodes
&& (op_mask & 0x0001)
&& !(avr_mcu->isa & AVR_ISA_MOVW))
as_bad (_("postincrement not supported"));
break;
case 'b':
{
char c = TOLOWER (*str++);
if (c == 'y')
op_mask |= 0x8;
else if (c != 'z')
as_bad (_("pointer register (Y or Z) required"));
str = skip_space (str);
if (*str++ == '+')
{
input_line_pointer = str;
avr_offset_expression (& op_expr);
str = input_line_pointer;
fix_new_exp (frag_now, where, 3,
&op_expr, FALSE, BFD_RELOC_AVR_6);
}
}
break;
case 'h':
str = parse_exp (str, &op_expr);
fix_new_exp (frag_now, where, opcode->insn_size * 2,
&op_expr, FALSE, BFD_RELOC_AVR_CALL);
break;
case 'L':
str = parse_exp (str, &op_expr);
fix_new_exp (frag_now, where, opcode->insn_size * 2,
&op_expr, TRUE, BFD_RELOC_AVR_13_PCREL);
break;
case 'l':
str = parse_exp (str, &op_expr);
fix_new_exp (frag_now, where, opcode->insn_size * 2,
&op_expr, TRUE, BFD_RELOC_AVR_7_PCREL);
break;
case 'i':
str = parse_exp (str, &op_expr);
fix_new_exp (frag_now, where + 2, opcode->insn_size * 2,
&op_expr, FALSE, BFD_RELOC_16);
break;
case 'M':
{
bfd_reloc_code_real_type r_type;
input_line_pointer = str;
r_type = avr_ldi_expression (&op_expr);
str = input_line_pointer;
fix_new_exp (frag_now, where, 3,
&op_expr, FALSE, r_type);
}
break;
case 'n':
{
unsigned int x;
x = ~avr_get_constant (str, 255);
str = input_line_pointer;
op_mask |= (x & 0xf) | ((x << 4) & 0xf00);
}
break;
case 'K':
input_line_pointer = str;
avr_offset_expression (& op_expr);
str = input_line_pointer;
fix_new_exp (frag_now, where, 3,
& op_expr, FALSE, BFD_RELOC_AVR_6_ADIW);
break;
case 'S':
case 's':
{
unsigned int x;
x = avr_get_constant (str, 7);
str = input_line_pointer;
if (*op == 'S')
x <<= 4;
op_mask |= x;
}
break;
case 'P':
{
unsigned int x;
x = avr_get_constant (str, 63);
str = input_line_pointer;
op_mask |= (x & 0xf) | ((x & 0x30) << 5);
}
break;
case 'p':
{
unsigned int x;
x = avr_get_constant (str, 31);
str = input_line_pointer;
op_mask |= x << 3;
}
break;
case '?':
break;
default:
as_bad (_("unknown constraint `%c'"), *op);
}
*line = str;
return op_mask;
}
/* Parse instruction operands.
Return binary opcode. */
static unsigned int
avr_operands (struct avr_opcodes_s *opcode, char **line)
{
char *op = opcode->constraints;
unsigned int bin = opcode->bin_opcode;
char *frag = frag_more (opcode->insn_size * 2);
char *str = *line;
int where = frag - frag_now->fr_literal;
static unsigned int prev = 0; /* Previous opcode. */
/* Opcode have operands. */
if (*op)
{
unsigned int reg1 = 0;
unsigned int reg2 = 0;
int reg1_present = 0;
int reg2_present = 0;
/* Parse first operand. */
if (REGISTER_P (*op))
reg1_present = 1;
reg1 = avr_operand (opcode, where, op, &str);
++op;
/* Parse second operand. */
if (*op)
{
if (*op == ',')
++op;
if (*op == '=')
{
reg2 = reg1;
reg2_present = 1;
}
else
{
if (REGISTER_P (*op))
reg2_present = 1;
str = skip_space (str);
if (*str++ != ',')
as_bad (_("`,' required"));
str = skip_space (str);
reg2 = avr_operand (opcode, where, op, &str);
}
if (reg1_present && reg2_present)
reg2 = (reg2 & 0xf) | ((reg2 << 5) & 0x200);
else if (reg2_present)
reg2 <<= 4;
}
if (reg1_present)
reg1 <<= 4;
bin |= reg1 | reg2;
}
/* Detect undefined combinations (like ld r31,Z+). */
if (!avr_opt.all_opcodes && AVR_UNDEF_P (bin))
as_warn (_("undefined combination of operands"));
if (opcode->insn_size == 2)
{
/* Warn if the previous opcode was cpse/sbic/sbis/sbrc/sbrs
(AVR core bug, fixed in the newer devices). */
if (!(avr_opt.no_skip_bug ||
(avr_mcu->isa & (AVR_ISA_MUL | AVR_ISA_MOVW)))
&& AVR_SKIP_P (prev))
as_warn (_("skipping two-word instruction"));
bfd_putl32 ((bfd_vma) bin, frag);
}
else
bfd_putl16 ((bfd_vma) bin, frag);
prev = bin;
*line = str;
return bin;
}
/* GAS will call this function for each section at the end of the assembly,
to permit the CPU backend to adjust the alignment of a section. */
valueT
md_section_align (asection *seg, valueT addr)
{
int align = bfd_get_section_alignment (stdoutput, seg);
return ((addr + (1 << align) - 1) & (-1 << align));
}
/* If you define this macro, it should return the offset between the
address of a PC relative fixup and the position from which the PC
relative adjustment should be made. On many processors, the base
of a PC relative instruction is the next instruction, so this
macro would return the length of an instruction. */
long
md_pcrel_from_section (fixS *fixp, segT sec)
{
if (fixp->fx_addsy != (symbolS *) NULL
&& (!S_IS_DEFINED (fixp->fx_addsy)
|| (S_GET_SEGMENT (fixp->fx_addsy) != sec)))
return 0;
return fixp->fx_frag->fr_address + fixp->fx_where;
}
/* GAS will call this for each fixup. It should store the correct
value in the object file. */
void
md_apply_fix (fixS *fixP, valueT * valP, segT seg)
{
unsigned char *where;
unsigned long insn;
long value = *valP;
if (fixP->fx_addsy == (symbolS *) NULL)
fixP->fx_done = 1;
else if (fixP->fx_pcrel)
{
segT s = S_GET_SEGMENT (fixP->fx_addsy);
if (s == seg || s == absolute_section)
{
value += S_GET_VALUE (fixP->fx_addsy);
fixP->fx_done = 1;
}
}
/* We don't actually support subtracting a symbol. */
if (fixP->fx_subsy != (symbolS *) NULL)
as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
switch (fixP->fx_r_type)
{
default:
fixP->fx_no_overflow = 1;
break;
case BFD_RELOC_AVR_7_PCREL:
case BFD_RELOC_AVR_13_PCREL:
case BFD_RELOC_32:
case BFD_RELOC_16:
case BFD_RELOC_AVR_CALL:
break;
}
if (fixP->fx_done)
{
/* Fetch the instruction, insert the fully resolved operand
value, and stuff the instruction back again. */
where = (unsigned char *) fixP->fx_frag->fr_literal + fixP->fx_where;
insn = bfd_getl16 (where);
switch (fixP->fx_r_type)
{
case BFD_RELOC_AVR_7_PCREL:
if (value & 1)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("odd address operand: %ld"), value);
/* Instruction addresses are always right-shifted by 1. */
value >>= 1;
--value; /* Correct PC. */
if (value < -64 || value > 63)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("operand out of range: %ld"), value);
value = (value << 3) & 0x3f8;
bfd_putl16 ((bfd_vma) (value | insn), where);
break;
case BFD_RELOC_AVR_13_PCREL:
if (value & 1)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("odd address operand: %ld"), value);
/* Instruction addresses are always right-shifted by 1. */
value >>= 1;
--value; /* Correct PC. */
if (value < -2048 || value > 2047)
{
/* No wrap for devices with >8K of program memory. */
if ((avr_mcu->isa & AVR_ISA_MEGA) || avr_opt.no_wrap)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("operand out of range: %ld"), value);
}
value &= 0xfff;
bfd_putl16 ((bfd_vma) (value | insn), where);
break;
case BFD_RELOC_32:
bfd_putl16 ((bfd_vma) value, where);
break;
case BFD_RELOC_16:
bfd_putl16 ((bfd_vma) value, where);
break;
case BFD_RELOC_AVR_16_PM:
bfd_putl16 ((bfd_vma) (value >> 1), where);
break;
case BFD_RELOC_AVR_LDI:
if (value > 255)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("operand out of range: %ld"), value);
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value), where);
break;
case BFD_RELOC_AVR_6:
if ((value > 63) || (value < 0))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("operand out of range: %ld"), value);
bfd_putl16 ((bfd_vma) insn | ((value & 7) | ((value & (3 << 3)) << 7) | ((value & (1 << 5)) << 8)), where);
break;
case BFD_RELOC_AVR_6_ADIW:
if ((value > 63) || (value < 0))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("operand out of range: %ld"), value);
bfd_putl16 ((bfd_vma) insn | (value & 0xf) | ((value & 0x30) << 2), where);
break;
case BFD_RELOC_AVR_LO8_LDI:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value), where);
break;
case BFD_RELOC_AVR_HI8_LDI:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 8), where);
break;
case BFD_RELOC_AVR_MS8_LDI:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 24), where);
break;
case BFD_RELOC_AVR_HH8_LDI:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 16), where);
break;
case BFD_RELOC_AVR_LO8_LDI_NEG:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value), where);
break;
case BFD_RELOC_AVR_HI8_LDI_NEG:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 8), where);
break;
case BFD_RELOC_AVR_MS8_LDI_NEG:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 24), where);
break;
case BFD_RELOC_AVR_HH8_LDI_NEG:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 16), where);
break;
case BFD_RELOC_AVR_LO8_LDI_PM:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 1), where);
break;
case BFD_RELOC_AVR_HI8_LDI_PM:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 9), where);
break;
case BFD_RELOC_AVR_HH8_LDI_PM:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (value >> 17), where);
break;
case BFD_RELOC_AVR_LO8_LDI_PM_NEG:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 1), where);
break;
case BFD_RELOC_AVR_HI8_LDI_PM_NEG:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 9), where);
break;
case BFD_RELOC_AVR_HH8_LDI_PM_NEG:
bfd_putl16 ((bfd_vma) insn | LDI_IMMEDIATE (-value >> 17), where);
break;
case BFD_RELOC_AVR_CALL:
{
unsigned long x;
x = bfd_getl16 (where);
if (value & 1)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("odd address operand: %ld"), value);
value >>= 1;
x |= ((value & 0x10000) | ((value << 3) & 0x1f00000)) >> 16;
bfd_putl16 ((bfd_vma) x, where);
bfd_putl16 ((bfd_vma) (value & 0xffff), where + 2);
}
break;
default:
as_fatal (_("line %d: unknown relocation type: 0x%x"),
fixP->fx_line, fixP->fx_r_type);
break;
}
}
else
{
switch ((int) fixP->fx_r_type)
{
case -BFD_RELOC_AVR_HI8_LDI_NEG:
case -BFD_RELOC_AVR_HI8_LDI:
case -BFD_RELOC_AVR_LO8_LDI_NEG:
case -BFD_RELOC_AVR_LO8_LDI:
as_bad_where (fixP->fx_file, fixP->fx_line,
_("only constant expression allowed"));
fixP->fx_done = 1;
break;
default:
break;
}
}
}
/* GAS will call this to generate a reloc, passing the resulting reloc
to `bfd_install_relocation'. This currently works poorly, as
`bfd_install_relocation' often does the wrong thing, and instances of
`tc_gen_reloc' have been written to work around the problems, which
in turns makes it difficult to fix `bfd_install_relocation'. */
/* If while processing a fixup, a reloc really needs to be created
then it is done here. */
arelent *
tc_gen_reloc (asection *seg ATTRIBUTE_UNUSED,
fixS *fixp)
{
arelent *reloc;
if (fixp->fx_addsy && fixp->fx_subsy)
{
long value = 0;
if ((S_GET_SEGMENT (fixp->fx_addsy) != S_GET_SEGMENT (fixp->fx_subsy))
|| S_GET_SEGMENT (fixp->fx_addsy) == undefined_section)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
"Difference of symbols in different sections is not supported");
return NULL;
}
/* We are dealing with two symbols defined in the same section.
Let us fix-up them here. */
value += S_GET_VALUE (fixp->fx_addsy);
value -= S_GET_VALUE (fixp->fx_subsy);
/* When fx_addsy and fx_subsy both are zero, md_apply_fix
only takes it's second operands for the fixup value. */
fixp->fx_addsy = NULL;
fixp->fx_subsy = NULL;
md_apply_fix (fixp, (valueT *) &value, NULL);
return NULL;
}
reloc = xmalloc (sizeof (arelent));
reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
*reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
if (reloc->howto == (reloc_howto_type *) NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
_("reloc %d not supported by object file format"),
(int) fixp->fx_r_type);
return NULL;
}
if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
reloc->address = fixp->fx_offset;
reloc->addend = fixp->fx_offset;
return reloc;
}
void
md_assemble (char *str)
{
struct avr_opcodes_s *opcode;
char op[11];
str = skip_space (extract_word (str, op, sizeof (op)));
if (!op[0])
as_bad (_("can't find opcode "));
opcode = (struct avr_opcodes_s *) hash_find (avr_hash, op);
if (opcode == NULL)
{
as_bad (_("unknown opcode `%s'"), op);
return;
}
/* Special case for opcodes with optional operands (lpm, elpm) -
version with operands exists in avr_opcodes[] in the next entry. */
if (*str && *opcode->constraints == '?')
++opcode;
if (!avr_opt.all_opcodes && (opcode->isa & avr_mcu->isa) != opcode->isa)
as_bad (_("illegal opcode %s for mcu %s"), opcode->name, avr_mcu->name);
dwarf2_emit_insn (0);
/* We used to set input_line_pointer to the result of get_operands,
but that is wrong. Our caller assumes we don't change it. */
{
char *t = input_line_pointer;
avr_operands (opcode, &str);
if (*skip_space (str))
as_bad (_("garbage at end of line"));
input_line_pointer = t;
}
}
/* Flag to pass `pm' mode between `avr_parse_cons_expression' and
`avr_cons_fix_new'. */
static int exp_mod_pm = 0;
/* Parse special CONS expression: pm (expression)
or alternatively: gs (expression).
These are used for addressing program memory.
Relocation: BFD_RELOC_AVR_16_PM. */
void
avr_parse_cons_expression (expressionS *exp, int nbytes)
{
char *tmp;
exp_mod_pm = 0;
tmp = input_line_pointer = skip_space (input_line_pointer);
if (nbytes == 2)
{
char *pm_name1 = "pm";
char *pm_name2 = "gs";
int len = strlen (pm_name1);
/* len must be the same for both pm identifiers. */
if (strncasecmp (input_line_pointer, pm_name1, len) == 0
|| strncasecmp (input_line_pointer, pm_name2, len) == 0)
{
input_line_pointer = skip_space (input_line_pointer + len);
if (*input_line_pointer == '(')
{
input_line_pointer = skip_space (input_line_pointer + 1);
exp_mod_pm = 1;
expression (exp);
if (*input_line_pointer == ')')
++input_line_pointer;
else
{
as_bad (_("`)' required"));
exp_mod_pm = 0;
}
return;
}
input_line_pointer = tmp;
}
}
expression (exp);
}
void
avr_cons_fix_new (fragS *frag,
int where,
int nbytes,
expressionS *exp)
{
if (exp_mod_pm == 0)
{
if (nbytes == 2)
fix_new_exp (frag, where, nbytes, exp, FALSE, BFD_RELOC_16);
else if (nbytes == 4)
fix_new_exp (frag, where, nbytes, exp, FALSE, BFD_RELOC_32);
else
as_bad (_("illegal %srelocation size: %d"), "", nbytes);
}
else
{
if (nbytes == 2)
fix_new_exp (frag, where, nbytes, exp, FALSE, BFD_RELOC_AVR_16_PM);
else
as_bad (_("illegal %srelocation size: %d"), "`pm' ", nbytes);
exp_mod_pm = 0;
}
}