bad43aa52e
that used TYPE_LENGTH directly. * bfin-tdep.c (bfin_extract_return_value): Likewise. (bfin_store_return_value): Likewise. * cris-tdep.c (cris_store_return_value): Likewise. (cris_extract_return_value): Likewise. * h8300-tdep.c (h8300_extract_return_value): Likewise. * hppa-tdep.c (hppa64_return_value): Likewise. * lm32-tdep.c (lm32_store_return_value): Likewise. * microblaze-tdep.c (microblaze_store_return_value): Likewise. * spu-tdep.c (spu_value_from_register): Likewise. * vax-tdep.c (vax_return_value): Likewise.
1407 lines
43 KiB
C
1407 lines
43 KiB
C
/* Target-machine dependent code for Renesas H8/300, for GDB.
|
|
|
|
Copyright (C) 1988, 1990-1996, 1998-2003, 2005, 2007-2012 Free
|
|
Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
/*
|
|
Contributed by Steve Chamberlain
|
|
sac@cygnus.com
|
|
*/
|
|
|
|
#include "defs.h"
|
|
#include "value.h"
|
|
#include "arch-utils.h"
|
|
#include "regcache.h"
|
|
#include "gdbcore.h"
|
|
#include "objfiles.h"
|
|
#include "gdb_assert.h"
|
|
#include "dis-asm.h"
|
|
#include "dwarf2-frame.h"
|
|
#include "frame-base.h"
|
|
#include "frame-unwind.h"
|
|
|
|
enum gdb_regnum
|
|
{
|
|
E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
|
|
E_RET0_REGNUM = E_R0_REGNUM,
|
|
E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
|
|
E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
|
|
E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
|
|
E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
|
|
E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
|
|
E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
|
|
E_SP_REGNUM,
|
|
E_CCR_REGNUM,
|
|
E_PC_REGNUM,
|
|
E_CYCLES_REGNUM,
|
|
E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
|
|
E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
|
|
E_INSTS_REGNUM,
|
|
E_MACH_REGNUM,
|
|
E_MACL_REGNUM,
|
|
E_SBR_REGNUM,
|
|
E_VBR_REGNUM
|
|
};
|
|
|
|
#define H8300_MAX_NUM_REGS 18
|
|
|
|
#define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch))
|
|
#define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1)
|
|
|
|
struct h8300_frame_cache
|
|
{
|
|
/* Base address. */
|
|
CORE_ADDR base;
|
|
CORE_ADDR sp_offset;
|
|
CORE_ADDR pc;
|
|
|
|
/* Flag showing that a frame has been created in the prologue code. */
|
|
int uses_fp;
|
|
|
|
/* Saved registers. */
|
|
CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
|
|
CORE_ADDR saved_sp;
|
|
};
|
|
|
|
enum
|
|
{
|
|
h8300_reg_size = 2,
|
|
h8300h_reg_size = 4,
|
|
h8300_max_reg_size = 4,
|
|
};
|
|
|
|
static int is_h8300hmode (struct gdbarch *gdbarch);
|
|
static int is_h8300smode (struct gdbarch *gdbarch);
|
|
static int is_h8300sxmode (struct gdbarch *gdbarch);
|
|
static int is_h8300_normal_mode (struct gdbarch *gdbarch);
|
|
|
|
#define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \
|
|
&& !is_h8300_normal_mode (gdbarch)) \
|
|
? h8300h_reg_size : h8300_reg_size)
|
|
|
|
static CORE_ADDR
|
|
h8300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
h8300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
|
|
}
|
|
|
|
static struct frame_id
|
|
h8300_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
|
{
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
|
|
return frame_id_build (sp, get_frame_pc (this_frame));
|
|
}
|
|
|
|
/* Normal frames. */
|
|
|
|
/* Allocate and initialize a frame cache. */
|
|
|
|
static void
|
|
h8300_init_frame_cache (struct gdbarch *gdbarch,
|
|
struct h8300_frame_cache *cache)
|
|
{
|
|
int i;
|
|
|
|
/* Base address. */
|
|
cache->base = 0;
|
|
cache->sp_offset = 0;
|
|
cache->pc = 0;
|
|
|
|
/* Frameless until proven otherwise. */
|
|
cache->uses_fp = 0;
|
|
|
|
/* Saved registers. We initialize these to -1 since zero is a valid
|
|
offset (that's where %fp is supposed to be stored). */
|
|
for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
|
|
cache->saved_regs[i] = -1;
|
|
}
|
|
|
|
#define IS_MOVB_RnRm(x) (((x) & 0xff88) == 0x0c88)
|
|
#define IS_MOVW_RnRm(x) (((x) & 0xff88) == 0x0d00)
|
|
#define IS_MOVL_RnRm(x) (((x) & 0xff88) == 0x0f80)
|
|
#define IS_MOVB_Rn16_SP(x) (((x) & 0xfff0) == 0x6ee0)
|
|
#define IS_MOVB_EXT(x) ((x) == 0x7860)
|
|
#define IS_MOVB_Rn24_SP(x) (((x) & 0xfff0) == 0x6aa0)
|
|
#define IS_MOVW_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
|
|
#define IS_MOVW_EXT(x) ((x) == 0x78e0)
|
|
#define IS_MOVW_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
|
|
/* Same instructions as mov.w, just prefixed with 0x0100. */
|
|
#define IS_MOVL_PRE(x) ((x) == 0x0100)
|
|
#define IS_MOVL_Rn16_SP(x) (((x) & 0xfff0) == 0x6fe0)
|
|
#define IS_MOVL_EXT(x) ((x) == 0x78e0)
|
|
#define IS_MOVL_Rn24_SP(x) (((x) & 0xfff0) == 0x6ba0)
|
|
|
|
#define IS_PUSHFP_MOVESPFP(x) ((x) == 0x6df60d76)
|
|
#define IS_PUSH_FP(x) ((x) == 0x01006df6)
|
|
#define IS_MOV_SP_FP(x) ((x) == 0x0ff6)
|
|
#define IS_SUB2_SP(x) ((x) == 0x1b87)
|
|
#define IS_SUB4_SP(x) ((x) == 0x1b97)
|
|
#define IS_ADD_IMM_SP(x) ((x) == 0x7a1f)
|
|
#define IS_SUB_IMM_SP(x) ((x) == 0x7a3f)
|
|
#define IS_SUBL4_SP(x) ((x) == 0x1acf)
|
|
#define IS_MOV_IMM_Rn(x) (((x) & 0xfff0) == 0x7905)
|
|
#define IS_SUB_RnSP(x) (((x) & 0xff0f) == 0x1907)
|
|
#define IS_ADD_RnSP(x) (((x) & 0xff0f) == 0x0907)
|
|
#define IS_PUSH(x) (((x) & 0xfff0) == 0x6df0)
|
|
|
|
/* If the instruction at PC is an argument register spill, return its
|
|
length. Otherwise, return zero.
|
|
|
|
An argument register spill is an instruction that moves an argument
|
|
from the register in which it was passed to the stack slot in which
|
|
it really lives. It is a byte, word, or longword move from an
|
|
argument register to a negative offset from the frame pointer.
|
|
|
|
CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
|
|
is used, it could be a byte, word or long move to registers r3-r5. */
|
|
|
|
static int
|
|
h8300_is_argument_spill (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int w = read_memory_unsigned_integer (pc, 2, byte_order);
|
|
|
|
if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
|
|
&& (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
|
|
&& (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5) /* Rd is R3, R4 or R5 */
|
|
return 2;
|
|
|
|
if (IS_MOVB_Rn16_SP (w)
|
|
&& 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
|
|
{
|
|
/* ... and d:16 is negative. */
|
|
if (read_memory_integer (pc + 2, 2, byte_order) < 0)
|
|
return 4;
|
|
}
|
|
else if (IS_MOVB_EXT (w))
|
|
{
|
|
if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2,
|
|
2, byte_order)))
|
|
{
|
|
LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
|
|
|
|
/* ... and d:24 is negative. */
|
|
if (disp < 0 && disp > 0xffffff)
|
|
return 8;
|
|
}
|
|
}
|
|
else if (IS_MOVW_Rn16_SP (w)
|
|
&& (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
|
|
{
|
|
/* ... and d:16 is negative. */
|
|
if (read_memory_integer (pc + 2, 2, byte_order) < 0)
|
|
return 4;
|
|
}
|
|
else if (IS_MOVW_EXT (w))
|
|
{
|
|
if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2,
|
|
2, byte_order)))
|
|
{
|
|
LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);
|
|
|
|
/* ... and d:24 is negative. */
|
|
if (disp < 0 && disp > 0xffffff)
|
|
return 8;
|
|
}
|
|
}
|
|
else if (IS_MOVL_PRE (w))
|
|
{
|
|
int w2 = read_memory_integer (pc + 2, 2, byte_order);
|
|
|
|
if (IS_MOVL_Rn16_SP (w2)
|
|
&& (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
|
|
{
|
|
/* ... and d:16 is negative. */
|
|
if (read_memory_integer (pc + 4, 2, byte_order) < 0)
|
|
return 6;
|
|
}
|
|
else if (IS_MOVL_EXT (w2))
|
|
{
|
|
int w3 = read_memory_integer (pc + 4, 2, byte_order);
|
|
|
|
if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2, byte_order)))
|
|
{
|
|
LONGEST disp = read_memory_integer (pc + 6, 4, byte_order);
|
|
|
|
/* ... and d:24 is negative. */
|
|
if (disp < 0 && disp > 0xffffff)
|
|
return 10;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Do a full analysis of the prologue at PC and update CACHE
|
|
accordingly. Bail out early if CURRENT_PC is reached. Return the
|
|
address where the analysis stopped.
|
|
|
|
We handle all cases that can be generated by gcc.
|
|
|
|
For allocating a stack frame:
|
|
|
|
mov.w r6,@-sp
|
|
mov.w sp,r6
|
|
mov.w #-n,rN
|
|
add.w rN,sp
|
|
|
|
mov.w r6,@-sp
|
|
mov.w sp,r6
|
|
subs #2,sp
|
|
(repeat)
|
|
|
|
mov.l er6,@-sp
|
|
mov.l sp,er6
|
|
add.l #-n,sp
|
|
|
|
mov.w r6,@-sp
|
|
mov.w sp,r6
|
|
subs #4,sp
|
|
(repeat)
|
|
|
|
For saving registers:
|
|
|
|
mov.w rN,@-sp
|
|
mov.l erN,@-sp
|
|
stm.l reglist,@-sp
|
|
|
|
*/
|
|
|
|
static CORE_ADDR
|
|
h8300_analyze_prologue (struct gdbarch *gdbarch,
|
|
CORE_ADDR pc, CORE_ADDR current_pc,
|
|
struct h8300_frame_cache *cache)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
unsigned int op;
|
|
int regno, i, spill_size;
|
|
|
|
cache->sp_offset = 0;
|
|
|
|
if (pc >= current_pc)
|
|
return current_pc;
|
|
|
|
op = read_memory_unsigned_integer (pc, 4, byte_order);
|
|
|
|
if (IS_PUSHFP_MOVESPFP (op))
|
|
{
|
|
cache->saved_regs[E_FP_REGNUM] = 0;
|
|
cache->uses_fp = 1;
|
|
pc += 4;
|
|
}
|
|
else if (IS_PUSH_FP (op))
|
|
{
|
|
cache->saved_regs[E_FP_REGNUM] = 0;
|
|
pc += 4;
|
|
if (pc >= current_pc)
|
|
return current_pc;
|
|
op = read_memory_unsigned_integer (pc, 2, byte_order);
|
|
if (IS_MOV_SP_FP (op))
|
|
{
|
|
cache->uses_fp = 1;
|
|
pc += 2;
|
|
}
|
|
}
|
|
|
|
while (pc < current_pc)
|
|
{
|
|
op = read_memory_unsigned_integer (pc, 2, byte_order);
|
|
if (IS_SUB2_SP (op))
|
|
{
|
|
cache->sp_offset += 2;
|
|
pc += 2;
|
|
}
|
|
else if (IS_SUB4_SP (op))
|
|
{
|
|
cache->sp_offset += 4;
|
|
pc += 2;
|
|
}
|
|
else if (IS_ADD_IMM_SP (op))
|
|
{
|
|
cache->sp_offset += -read_memory_integer (pc + 2, 2, byte_order);
|
|
pc += 4;
|
|
}
|
|
else if (IS_SUB_IMM_SP (op))
|
|
{
|
|
cache->sp_offset += read_memory_integer (pc + 2, 2, byte_order);
|
|
pc += 4;
|
|
}
|
|
else if (IS_SUBL4_SP (op))
|
|
{
|
|
cache->sp_offset += 4;
|
|
pc += 2;
|
|
}
|
|
else if (IS_MOV_IMM_Rn (op))
|
|
{
|
|
int offset = read_memory_integer (pc + 2, 2, byte_order);
|
|
regno = op & 0x000f;
|
|
op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
|
|
if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
|
|
{
|
|
cache->sp_offset -= offset;
|
|
pc += 6;
|
|
}
|
|
else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
|
|
{
|
|
cache->sp_offset += offset;
|
|
pc += 6;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
else if (IS_PUSH (op))
|
|
{
|
|
regno = op & 0x000f;
|
|
cache->sp_offset += 2;
|
|
cache->saved_regs[regno] = cache->sp_offset;
|
|
pc += 2;
|
|
}
|
|
else if (op == 0x0100)
|
|
{
|
|
op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
|
|
if (IS_PUSH (op))
|
|
{
|
|
regno = op & 0x000f;
|
|
cache->sp_offset += 4;
|
|
cache->saved_regs[regno] = cache->sp_offset;
|
|
pc += 4;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
else if ((op & 0xffcf) == 0x0100)
|
|
{
|
|
int op1;
|
|
op1 = read_memory_unsigned_integer (pc + 2, 2, byte_order);
|
|
if (IS_PUSH (op1))
|
|
{
|
|
/* Since the prefix is 0x01x0, this is not a simple pushm but a
|
|
stm.l reglist,@-sp */
|
|
i = ((op & 0x0030) >> 4) + 1;
|
|
regno = op1 & 0x000f;
|
|
for (; i > 0; regno++, --i)
|
|
{
|
|
cache->sp_offset += 4;
|
|
cache->saved_regs[regno] = cache->sp_offset;
|
|
}
|
|
pc += 4;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
/* Check for spilling an argument register to the stack frame.
|
|
This could also be an initializing store from non-prologue code,
|
|
but I don't think there's any harm in skipping that. */
|
|
while ((spill_size = h8300_is_argument_spill (gdbarch, pc)) > 0
|
|
&& pc + spill_size <= current_pc)
|
|
pc += spill_size;
|
|
|
|
return pc;
|
|
}
|
|
|
|
static struct h8300_frame_cache *
|
|
h8300_frame_cache (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
struct h8300_frame_cache *cache;
|
|
int i;
|
|
CORE_ADDR current_pc;
|
|
|
|
if (*this_cache)
|
|
return *this_cache;
|
|
|
|
cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
|
|
h8300_init_frame_cache (gdbarch, cache);
|
|
*this_cache = cache;
|
|
|
|
/* In principle, for normal frames, %fp holds the frame pointer,
|
|
which holds the base address for the current stack frame.
|
|
However, for functions that don't need it, the frame pointer is
|
|
optional. For these "frameless" functions the frame pointer is
|
|
actually the frame pointer of the calling frame. */
|
|
|
|
cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
|
|
if (cache->base == 0)
|
|
return cache;
|
|
|
|
cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
|
|
|
|
cache->pc = get_frame_func (this_frame);
|
|
current_pc = get_frame_pc (this_frame);
|
|
if (cache->pc != 0)
|
|
h8300_analyze_prologue (gdbarch, cache->pc, current_pc, cache);
|
|
|
|
if (!cache->uses_fp)
|
|
{
|
|
/* We didn't find a valid frame, which means that CACHE->base
|
|
currently holds the frame pointer for our calling frame. If
|
|
we're at the start of a function, or somewhere half-way its
|
|
prologue, the function's frame probably hasn't been fully
|
|
setup yet. Try to reconstruct the base address for the stack
|
|
frame by looking at the stack pointer. For truly "frameless"
|
|
functions this might work too. */
|
|
|
|
cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM)
|
|
+ cache->sp_offset;
|
|
cache->saved_sp = cache->base + BINWORD (gdbarch);
|
|
cache->saved_regs[E_PC_REGNUM] = 0;
|
|
}
|
|
else
|
|
{
|
|
cache->saved_sp = cache->base + 2 * BINWORD (gdbarch);
|
|
cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
|
|
}
|
|
|
|
/* Adjust all the saved registers such that they contain addresses
|
|
instead of offsets. */
|
|
for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
|
|
if (cache->saved_regs[i] != -1)
|
|
cache->saved_regs[i] = cache->base - cache->saved_regs[i];
|
|
|
|
return cache;
|
|
}
|
|
|
|
static void
|
|
h8300_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct h8300_frame_cache *cache =
|
|
h8300_frame_cache (this_frame, this_cache);
|
|
|
|
/* This marks the outermost frame. */
|
|
if (cache->base == 0)
|
|
return;
|
|
|
|
*this_id = frame_id_build (cache->saved_sp, cache->pc);
|
|
}
|
|
|
|
static struct value *
|
|
h8300_frame_prev_register (struct frame_info *this_frame, void **this_cache,
|
|
int regnum)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
struct h8300_frame_cache *cache =
|
|
h8300_frame_cache (this_frame, this_cache);
|
|
|
|
gdb_assert (regnum >= 0);
|
|
|
|
if (regnum == E_SP_REGNUM && cache->saved_sp)
|
|
return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
|
|
|
|
if (regnum < gdbarch_num_regs (gdbarch)
|
|
&& cache->saved_regs[regnum] != -1)
|
|
return frame_unwind_got_memory (this_frame, regnum,
|
|
cache->saved_regs[regnum]);
|
|
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
|
}
|
|
|
|
static const struct frame_unwind h8300_frame_unwind = {
|
|
NORMAL_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
h8300_frame_this_id,
|
|
h8300_frame_prev_register,
|
|
NULL,
|
|
default_frame_sniffer
|
|
};
|
|
|
|
static CORE_ADDR
|
|
h8300_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct h8300_frame_cache *cache = h8300_frame_cache (this_frame, this_cache);
|
|
return cache->base;
|
|
}
|
|
|
|
static const struct frame_base h8300_frame_base = {
|
|
&h8300_frame_unwind,
|
|
h8300_frame_base_address,
|
|
h8300_frame_base_address,
|
|
h8300_frame_base_address
|
|
};
|
|
|
|
static CORE_ADDR
|
|
h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR func_addr = 0 , func_end = 0;
|
|
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
{
|
|
struct symtab_and_line sal;
|
|
struct h8300_frame_cache cache;
|
|
|
|
/* Found a function. */
|
|
sal = find_pc_line (func_addr, 0);
|
|
if (sal.end && sal.end < func_end)
|
|
/* Found a line number, use it as end of prologue. */
|
|
return sal.end;
|
|
|
|
/* No useable line symbol. Use prologue parsing method. */
|
|
h8300_init_frame_cache (gdbarch, &cache);
|
|
return h8300_analyze_prologue (gdbarch, func_addr, func_end, &cache);
|
|
}
|
|
|
|
/* No function symbol -- just return the PC. */
|
|
return (CORE_ADDR) pc;
|
|
}
|
|
|
|
/* Function: push_dummy_call
|
|
Setup the function arguments for calling a function in the inferior.
|
|
In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
|
|
on the H8/300H.
|
|
|
|
There are actually two ABI's here: -mquickcall (the default) and
|
|
-mno-quickcall. With -mno-quickcall, all arguments are passed on
|
|
the stack after the return address, word-aligned. With
|
|
-mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
|
|
GCC doesn't indicate in the object file which ABI was used to
|
|
compile it, GDB only supports the default --- -mquickcall.
|
|
|
|
Here are the rules for -mquickcall, in detail:
|
|
|
|
Each argument, whether scalar or aggregate, is padded to occupy a
|
|
whole number of words. Arguments smaller than a word are padded at
|
|
the most significant end; those larger than a word are padded at
|
|
the least significant end.
|
|
|
|
The initial arguments are passed in r0 -- r2. Earlier arguments go in
|
|
lower-numbered registers. Multi-word arguments are passed in
|
|
consecutive registers, with the most significant end in the
|
|
lower-numbered register.
|
|
|
|
If an argument doesn't fit entirely in the remaining registers, it
|
|
is passed entirely on the stack. Stack arguments begin just after
|
|
the return address. Once an argument has overflowed onto the stack
|
|
this way, all subsequent arguments are passed on the stack.
|
|
|
|
The above rule has odd consequences. For example, on the h8/300s,
|
|
if a function takes two longs and an int as arguments:
|
|
- the first long will be passed in r0/r1,
|
|
- the second long will be passed entirely on the stack, since it
|
|
doesn't fit in r2,
|
|
- and the int will be passed on the stack, even though it could fit
|
|
in r2.
|
|
|
|
A weird exception: if an argument is larger than a word, but not a
|
|
whole number of words in length (before padding), it is passed on
|
|
the stack following the rules for stack arguments above, even if
|
|
there are sufficient registers available to hold it. Stranger
|
|
still, the argument registers are still `used up' --- even though
|
|
there's nothing in them.
|
|
|
|
So, for example, on the h8/300s, if a function expects a three-byte
|
|
structure and an int, the structure will go on the stack, and the
|
|
int will go in r2, not r0.
|
|
|
|
If the function returns an aggregate type (struct, union, or class)
|
|
by value, the caller must allocate space to hold the return value,
|
|
and pass the callee a pointer to this space as an invisible first
|
|
argument, in R0.
|
|
|
|
For varargs functions, the last fixed argument and all the variable
|
|
arguments are always passed on the stack. This means that calls to
|
|
varargs functions don't work properly unless there is a prototype
|
|
in scope.
|
|
|
|
Basically, this ABI is not good, for the following reasons:
|
|
- You can't call vararg functions properly unless a prototype is in scope.
|
|
- Structure passing is inconsistent, to no purpose I can see.
|
|
- It often wastes argument registers, of which there are only three
|
|
to begin with. */
|
|
|
|
static CORE_ADDR
|
|
h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int stack_alloc = 0, stack_offset = 0;
|
|
int wordsize = BINWORD (gdbarch);
|
|
int reg = E_ARG0_REGNUM;
|
|
int argument;
|
|
|
|
/* First, make sure the stack is properly aligned. */
|
|
sp = align_down (sp, wordsize);
|
|
|
|
/* Now make sure there's space on the stack for the arguments. We
|
|
may over-allocate a little here, but that won't hurt anything. */
|
|
for (argument = 0; argument < nargs; argument++)
|
|
stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
|
|
wordsize);
|
|
sp -= stack_alloc;
|
|
|
|
/* Now load as many arguments as possible into registers, and push
|
|
the rest onto the stack.
|
|
If we're returning a structure by value, then we must pass a
|
|
pointer to the buffer for the return value as an invisible first
|
|
argument. */
|
|
if (struct_return)
|
|
regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
|
|
|
|
for (argument = 0; argument < nargs; argument++)
|
|
{
|
|
struct cleanup *back_to;
|
|
struct type *type = value_type (args[argument]);
|
|
int len = TYPE_LENGTH (type);
|
|
char *contents = (char *) value_contents (args[argument]);
|
|
|
|
/* Pad the argument appropriately. */
|
|
int padded_len = align_up (len, wordsize);
|
|
gdb_byte *padded = xmalloc (padded_len);
|
|
back_to = make_cleanup (xfree, padded);
|
|
|
|
memset (padded, 0, padded_len);
|
|
memcpy (len < wordsize ? padded + padded_len - len : padded,
|
|
contents, len);
|
|
|
|
/* Could the argument fit in the remaining registers? */
|
|
if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
|
|
{
|
|
/* Are we going to pass it on the stack anyway, for no good
|
|
reason? */
|
|
if (len > wordsize && len % wordsize)
|
|
{
|
|
/* I feel so unclean. */
|
|
write_memory (sp + stack_offset, padded, padded_len);
|
|
stack_offset += padded_len;
|
|
|
|
/* That's right --- even though we passed the argument
|
|
on the stack, we consume the registers anyway! Love
|
|
me, love my dog. */
|
|
reg += padded_len / wordsize;
|
|
}
|
|
else
|
|
{
|
|
/* Heavens to Betsy --- it's really going in registers!
|
|
Note that on the h8/300s, there are gaps between the
|
|
registers in the register file. */
|
|
int offset;
|
|
|
|
for (offset = 0; offset < padded_len; offset += wordsize)
|
|
{
|
|
ULONGEST word
|
|
= extract_unsigned_integer (padded + offset,
|
|
wordsize, byte_order);
|
|
regcache_cooked_write_unsigned (regcache, reg++, word);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* It doesn't fit in registers! Onto the stack it goes. */
|
|
write_memory (sp + stack_offset, padded, padded_len);
|
|
stack_offset += padded_len;
|
|
|
|
/* Once one argument has spilled onto the stack, all
|
|
subsequent arguments go on the stack. */
|
|
reg = E_ARGLAST_REGNUM + 1;
|
|
}
|
|
|
|
do_cleanups (back_to);
|
|
}
|
|
|
|
/* Store return address. */
|
|
sp -= wordsize;
|
|
write_memory_unsigned_integer (sp, wordsize, byte_order, bp_addr);
|
|
|
|
/* Update stack pointer. */
|
|
regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
|
|
|
|
/* Return the new stack pointer minus the return address slot since
|
|
that's what DWARF2/GCC uses as the frame's CFA. */
|
|
return sp + wordsize;
|
|
}
|
|
|
|
/* Function: extract_return_value
|
|
Figure out where in REGBUF the called function has left its return value.
|
|
Copy that into VALBUF. Be sure to account for CPU type. */
|
|
|
|
static void
|
|
h8300_extract_return_value (struct type *type, struct regcache *regcache,
|
|
void *valbuf)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int len = TYPE_LENGTH (type);
|
|
ULONGEST c, addr;
|
|
|
|
switch (len)
|
|
{
|
|
case 1:
|
|
case 2:
|
|
regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
|
|
store_unsigned_integer (valbuf, len, byte_order, c);
|
|
break;
|
|
case 4: /* Needs two registers on plain H8/300 */
|
|
regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
|
|
store_unsigned_integer (valbuf, 2, byte_order, c);
|
|
regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
|
|
store_unsigned_integer ((void *)((char *) valbuf + 2), 2, byte_order, c);
|
|
break;
|
|
case 8: /* long long is now 8 bytes. */
|
|
if (TYPE_CODE (type) == TYPE_CODE_INT)
|
|
{
|
|
regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
|
|
c = read_memory_unsigned_integer ((CORE_ADDR) addr, len, byte_order);
|
|
store_unsigned_integer (valbuf, len, byte_order, c);
|
|
}
|
|
else
|
|
{
|
|
error (_("I don't know how this 8 byte value is returned."));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
h8300h_extract_return_value (struct type *type, struct regcache *regcache,
|
|
void *valbuf)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
ULONGEST c;
|
|
|
|
switch (TYPE_LENGTH (type))
|
|
{
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
|
|
store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, c);
|
|
break;
|
|
case 8: /* long long is now 8 bytes. */
|
|
if (TYPE_CODE (type) == TYPE_CODE_INT)
|
|
{
|
|
regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
|
|
store_unsigned_integer (valbuf, 4, byte_order, c);
|
|
regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
|
|
store_unsigned_integer ((void *) ((char *) valbuf + 4), 4,
|
|
byte_order, c);
|
|
}
|
|
else
|
|
{
|
|
error (_("I don't know how this 8 byte value is returned."));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int
|
|
h8300_use_struct_convention (struct type *value_type)
|
|
{
|
|
/* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
|
|
stack. */
|
|
|
|
if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (value_type) == TYPE_CODE_UNION)
|
|
return 1;
|
|
return !(TYPE_LENGTH (value_type) == 1
|
|
|| TYPE_LENGTH (value_type) == 2
|
|
|| TYPE_LENGTH (value_type) == 4);
|
|
}
|
|
|
|
static int
|
|
h8300h_use_struct_convention (struct type *value_type)
|
|
{
|
|
/* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
|
|
returned in R0/R1, everything else on the stack. */
|
|
if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
|
|
|| TYPE_CODE (value_type) == TYPE_CODE_UNION)
|
|
return 1;
|
|
return !(TYPE_LENGTH (value_type) == 1
|
|
|| TYPE_LENGTH (value_type) == 2
|
|
|| TYPE_LENGTH (value_type) == 4
|
|
|| (TYPE_LENGTH (value_type) == 8
|
|
&& TYPE_CODE (value_type) == TYPE_CODE_INT));
|
|
}
|
|
|
|
/* Function: store_return_value
|
|
Place the appropriate value in the appropriate registers.
|
|
Primarily used by the RETURN command. */
|
|
|
|
static void
|
|
h8300_store_return_value (struct type *type, struct regcache *regcache,
|
|
const void *valbuf)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
ULONGEST val;
|
|
|
|
switch (TYPE_LENGTH (type))
|
|
{
|
|
case 1:
|
|
case 2: /* short... */
|
|
val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
|
|
regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
|
|
break;
|
|
case 4: /* long, float */
|
|
val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
|
|
regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
|
|
(val >> 16) & 0xffff);
|
|
regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
|
|
break;
|
|
case 8: /* long long, double and long double
|
|
are all defined as 4 byte types so
|
|
far so this shouldn't happen. */
|
|
error (_("I don't know how to return an 8 byte value."));
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
h8300h_store_return_value (struct type *type, struct regcache *regcache,
|
|
const void *valbuf)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
ULONGEST val;
|
|
|
|
switch (TYPE_LENGTH (type))
|
|
{
|
|
case 1:
|
|
case 2:
|
|
case 4: /* long, float */
|
|
val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
|
|
regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
|
|
break;
|
|
case 8:
|
|
val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
|
|
regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
|
|
(val >> 32) & 0xffffffff);
|
|
regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
|
|
val & 0xffffffff);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static enum return_value_convention
|
|
h8300_return_value (struct gdbarch *gdbarch, struct value *function,
|
|
struct type *type, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
if (h8300_use_struct_convention (type))
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
if (writebuf)
|
|
h8300_store_return_value (type, regcache, writebuf);
|
|
else if (readbuf)
|
|
h8300_extract_return_value (type, regcache, readbuf);
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
static enum return_value_convention
|
|
h8300h_return_value (struct gdbarch *gdbarch, struct value *function,
|
|
struct type *type, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
if (h8300h_use_struct_convention (type))
|
|
{
|
|
if (readbuf)
|
|
{
|
|
ULONGEST addr;
|
|
|
|
regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
|
|
read_memory (addr, readbuf, TYPE_LENGTH (type));
|
|
}
|
|
|
|
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
|
|
}
|
|
if (writebuf)
|
|
h8300h_store_return_value (type, regcache, writebuf);
|
|
else if (readbuf)
|
|
h8300h_extract_return_value (type, regcache, readbuf);
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
static struct cmd_list_element *setmachinelist;
|
|
|
|
static const char *
|
|
h8300_register_name (struct gdbarch *gdbarch, int regno)
|
|
{
|
|
/* The register names change depending on which h8300 processor
|
|
type is selected. */
|
|
static char *register_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6",
|
|
"sp", "", "pc", "cycles", "tick", "inst",
|
|
"ccr", /* pseudo register */
|
|
};
|
|
if (regno < 0
|
|
|| regno >= (sizeof (register_names) / sizeof (*register_names)))
|
|
internal_error (__FILE__, __LINE__,
|
|
_("h8300_register_name: illegal register number %d"),
|
|
regno);
|
|
else
|
|
return register_names[regno];
|
|
}
|
|
|
|
static const char *
|
|
h8300s_register_name (struct gdbarch *gdbarch, int regno)
|
|
{
|
|
static char *register_names[] = {
|
|
"er0", "er1", "er2", "er3", "er4", "er5", "er6",
|
|
"sp", "", "pc", "cycles", "", "tick", "inst",
|
|
"mach", "macl",
|
|
"ccr", "exr" /* pseudo registers */
|
|
};
|
|
if (regno < 0
|
|
|| regno >= (sizeof (register_names) / sizeof (*register_names)))
|
|
internal_error (__FILE__, __LINE__,
|
|
_("h8300s_register_name: illegal register number %d"),
|
|
regno);
|
|
else
|
|
return register_names[regno];
|
|
}
|
|
|
|
static const char *
|
|
h8300sx_register_name (struct gdbarch *gdbarch, int regno)
|
|
{
|
|
static char *register_names[] = {
|
|
"er0", "er1", "er2", "er3", "er4", "er5", "er6",
|
|
"sp", "", "pc", "cycles", "", "tick", "inst",
|
|
"mach", "macl", "sbr", "vbr",
|
|
"ccr", "exr" /* pseudo registers */
|
|
};
|
|
if (regno < 0
|
|
|| regno >= (sizeof (register_names) / sizeof (*register_names)))
|
|
internal_error (__FILE__, __LINE__,
|
|
_("h8300sx_register_name: illegal register number %d"),
|
|
regno);
|
|
else
|
|
return register_names[regno];
|
|
}
|
|
|
|
static void
|
|
h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
|
|
struct frame_info *frame, int regno)
|
|
{
|
|
LONGEST rval;
|
|
const char *name = gdbarch_register_name (gdbarch, regno);
|
|
|
|
if (!name || !*name)
|
|
return;
|
|
|
|
rval = get_frame_register_signed (frame, regno);
|
|
|
|
fprintf_filtered (file, "%-14s ", name);
|
|
if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \
|
|
(regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)))
|
|
{
|
|
fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
|
|
print_longest (file, 'u', 1, rval);
|
|
}
|
|
else
|
|
{
|
|
fprintf_filtered (file, "0x%s ", phex ((ULONGEST) rval,
|
|
BINWORD (gdbarch)));
|
|
print_longest (file, 'd', 1, rval);
|
|
}
|
|
if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
|
|
{
|
|
/* CCR register */
|
|
int C, Z, N, V;
|
|
unsigned char l = rval & 0xff;
|
|
fprintf_filtered (file, "\t");
|
|
fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
|
|
fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
|
|
fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
|
|
fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
|
|
N = (l & 0x8) != 0;
|
|
Z = (l & 0x4) != 0;
|
|
V = (l & 0x2) != 0;
|
|
C = (l & 0x1) != 0;
|
|
fprintf_filtered (file, "N-%d ", N);
|
|
fprintf_filtered (file, "Z-%d ", Z);
|
|
fprintf_filtered (file, "V-%d ", V);
|
|
fprintf_filtered (file, "C-%d ", C);
|
|
if ((C | Z) == 0)
|
|
fprintf_filtered (file, "u> ");
|
|
if ((C | Z) == 1)
|
|
fprintf_filtered (file, "u<= ");
|
|
if ((C == 0))
|
|
fprintf_filtered (file, "u>= ");
|
|
if (C == 1)
|
|
fprintf_filtered (file, "u< ");
|
|
if (Z == 0)
|
|
fprintf_filtered (file, "!= ");
|
|
if (Z == 1)
|
|
fprintf_filtered (file, "== ");
|
|
if ((N ^ V) == 0)
|
|
fprintf_filtered (file, ">= ");
|
|
if ((N ^ V) == 1)
|
|
fprintf_filtered (file, "< ");
|
|
if ((Z | (N ^ V)) == 0)
|
|
fprintf_filtered (file, "> ");
|
|
if ((Z | (N ^ V)) == 1)
|
|
fprintf_filtered (file, "<= ");
|
|
}
|
|
else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))
|
|
{
|
|
/* EXR register */
|
|
unsigned char l = rval & 0xff;
|
|
fprintf_filtered (file, "\t");
|
|
fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
|
|
fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
|
|
fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
|
|
fprintf_filtered (file, "I0-%d", (l & 1) != 0);
|
|
}
|
|
fprintf_filtered (file, "\n");
|
|
}
|
|
|
|
static void
|
|
h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
|
|
struct frame_info *frame, int regno, int cpregs)
|
|
{
|
|
if (regno < 0)
|
|
{
|
|
for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
|
|
h8300_print_register (gdbarch, file, frame, regno);
|
|
h8300_print_register (gdbarch, file, frame,
|
|
E_PSEUDO_CCR_REGNUM (gdbarch));
|
|
h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
|
|
if (is_h8300smode (gdbarch))
|
|
{
|
|
h8300_print_register (gdbarch, file, frame,
|
|
E_PSEUDO_EXR_REGNUM (gdbarch));
|
|
if (is_h8300sxmode (gdbarch))
|
|
{
|
|
h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
|
|
h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
|
|
}
|
|
h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
|
|
h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
|
|
h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
|
|
h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
|
|
h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
|
|
}
|
|
else
|
|
{
|
|
h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
|
|
h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
|
|
h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (regno == E_CCR_REGNUM)
|
|
h8300_print_register (gdbarch, file, frame,
|
|
E_PSEUDO_CCR_REGNUM (gdbarch));
|
|
else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)
|
|
&& is_h8300smode (gdbarch))
|
|
h8300_print_register (gdbarch, file, frame,
|
|
E_PSEUDO_EXR_REGNUM (gdbarch));
|
|
else
|
|
h8300_print_register (gdbarch, file, frame, regno);
|
|
}
|
|
}
|
|
|
|
static struct type *
|
|
h8300_register_type (struct gdbarch *gdbarch, int regno)
|
|
{
|
|
if (regno < 0 || regno >= gdbarch_num_regs (gdbarch)
|
|
+ gdbarch_num_pseudo_regs (gdbarch))
|
|
internal_error (__FILE__, __LINE__,
|
|
_("h8300_register_type: illegal register number %d"),
|
|
regno);
|
|
else
|
|
{
|
|
switch (regno)
|
|
{
|
|
case E_PC_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_func_ptr;
|
|
case E_SP_REGNUM:
|
|
case E_FP_REGNUM:
|
|
return builtin_type (gdbarch)->builtin_data_ptr;
|
|
default:
|
|
if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
|
|
return builtin_type (gdbarch)->builtin_uint8;
|
|
else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
|
|
return builtin_type (gdbarch)->builtin_uint8;
|
|
else if (is_h8300hmode (gdbarch))
|
|
return builtin_type (gdbarch)->builtin_int32;
|
|
else
|
|
return builtin_type (gdbarch)->builtin_int16;
|
|
}
|
|
}
|
|
}
|
|
|
|
static enum register_status
|
|
h8300_pseudo_register_read (struct gdbarch *gdbarch,
|
|
struct regcache *regcache, int regno,
|
|
gdb_byte *buf)
|
|
{
|
|
if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
|
|
return regcache_raw_read (regcache, E_CCR_REGNUM, buf);
|
|
else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
|
|
return regcache_raw_read (regcache, E_EXR_REGNUM, buf);
|
|
else
|
|
return regcache_raw_read (regcache, regno, buf);
|
|
}
|
|
|
|
static void
|
|
h8300_pseudo_register_write (struct gdbarch *gdbarch,
|
|
struct regcache *regcache, int regno,
|
|
const gdb_byte *buf)
|
|
{
|
|
if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
|
|
regcache_raw_write (regcache, E_CCR_REGNUM, buf);
|
|
else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
|
|
regcache_raw_write (regcache, E_EXR_REGNUM, buf);
|
|
else
|
|
regcache_raw_write (regcache, regno, buf);
|
|
}
|
|
|
|
static int
|
|
h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
|
|
{
|
|
if (regno == E_CCR_REGNUM)
|
|
return E_PSEUDO_CCR_REGNUM (gdbarch);
|
|
return regno;
|
|
}
|
|
|
|
static int
|
|
h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
|
|
{
|
|
if (regno == E_CCR_REGNUM)
|
|
return E_PSEUDO_CCR_REGNUM (gdbarch);
|
|
if (regno == E_EXR_REGNUM)
|
|
return E_PSEUDO_EXR_REGNUM (gdbarch);
|
|
return regno;
|
|
}
|
|
|
|
const static unsigned char *
|
|
h8300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
|
|
int *lenptr)
|
|
{
|
|
/*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
|
|
static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
|
|
|
|
*lenptr = sizeof (breakpoint);
|
|
return breakpoint;
|
|
}
|
|
|
|
static void
|
|
h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
|
|
struct frame_info *frame, const char *args)
|
|
{
|
|
fprintf_filtered (file, "\
|
|
No floating-point info available for this processor.\n");
|
|
}
|
|
|
|
static struct gdbarch *
|
|
h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch_tdep *tdep = NULL;
|
|
struct gdbarch *gdbarch;
|
|
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
if (arches != NULL)
|
|
return arches->gdbarch;
|
|
|
|
#if 0
|
|
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
|
|
#endif
|
|
|
|
if (info.bfd_arch_info->arch != bfd_arch_h8300)
|
|
return NULL;
|
|
|
|
gdbarch = gdbarch_alloc (&info, 0);
|
|
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_h8300:
|
|
set_gdbarch_num_regs (gdbarch, 13);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, 1);
|
|
set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
|
|
set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
|
|
set_gdbarch_register_name (gdbarch, h8300_register_name);
|
|
set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_return_value (gdbarch, h8300_return_value);
|
|
set_gdbarch_print_insn (gdbarch, print_insn_h8300);
|
|
break;
|
|
case bfd_mach_h8300h:
|
|
case bfd_mach_h8300hn:
|
|
set_gdbarch_num_regs (gdbarch, 13);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, 1);
|
|
set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
|
|
set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
|
|
set_gdbarch_register_name (gdbarch, h8300_register_name);
|
|
if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
|
|
{
|
|
set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
}
|
|
else
|
|
{
|
|
set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
}
|
|
set_gdbarch_return_value (gdbarch, h8300h_return_value);
|
|
set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
|
|
break;
|
|
case bfd_mach_h8300s:
|
|
case bfd_mach_h8300sn:
|
|
set_gdbarch_num_regs (gdbarch, 16);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, 2);
|
|
set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
|
|
set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
|
|
set_gdbarch_register_name (gdbarch, h8300s_register_name);
|
|
if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
|
|
{
|
|
set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
}
|
|
else
|
|
{
|
|
set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
}
|
|
set_gdbarch_return_value (gdbarch, h8300h_return_value);
|
|
set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
|
|
break;
|
|
case bfd_mach_h8300sx:
|
|
case bfd_mach_h8300sxn:
|
|
set_gdbarch_num_regs (gdbarch, 18);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, 2);
|
|
set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
|
|
set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
|
|
set_gdbarch_register_name (gdbarch, h8300sx_register_name);
|
|
if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
|
|
{
|
|
set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
}
|
|
else
|
|
{
|
|
set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
}
|
|
set_gdbarch_return_value (gdbarch, h8300h_return_value);
|
|
set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
|
|
break;
|
|
}
|
|
|
|
set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
|
|
set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
|
|
|
|
/*
|
|
* Basic register fields and methods.
|
|
*/
|
|
|
|
set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
|
|
set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
|
|
set_gdbarch_register_type (gdbarch, h8300_register_type);
|
|
set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
|
|
set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
|
|
|
|
/*
|
|
* Frame Info
|
|
*/
|
|
set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
|
|
|
|
/* Frame unwinder. */
|
|
set_gdbarch_unwind_pc (gdbarch, h8300_unwind_pc);
|
|
set_gdbarch_unwind_sp (gdbarch, h8300_unwind_sp);
|
|
set_gdbarch_dummy_id (gdbarch, h8300_dummy_id);
|
|
frame_base_set_default (gdbarch, &h8300_frame_base);
|
|
|
|
/*
|
|
* Miscelany
|
|
*/
|
|
/* Stack grows up. */
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
|
|
set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
|
|
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
|
set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
|
|
set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
|
|
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
|
|
|
/* Hook in the DWARF CFI frame unwinder. */
|
|
dwarf2_append_unwinders (gdbarch);
|
|
frame_unwind_append_unwinder (gdbarch, &h8300_frame_unwind);
|
|
|
|
return gdbarch;
|
|
|
|
}
|
|
|
|
extern initialize_file_ftype _initialize_h8300_tdep; /* -Wmissing-prototypes */
|
|
|
|
void
|
|
_initialize_h8300_tdep (void)
|
|
{
|
|
register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
|
|
}
|
|
|
|
static int
|
|
is_h8300hmode (struct gdbarch *gdbarch)
|
|
{
|
|
return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
|
|
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
|
|
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
|
|
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
|
|
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
|
|
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
|
|
}
|
|
|
|
static int
|
|
is_h8300smode (struct gdbarch *gdbarch)
|
|
{
|
|
return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
|
|
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
|
|
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
|
|
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
|
|
}
|
|
|
|
static int
|
|
is_h8300sxmode (struct gdbarch *gdbarch)
|
|
{
|
|
return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
|
|
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
|
|
}
|
|
|
|
static int
|
|
is_h8300_normal_mode (struct gdbarch *gdbarch)
|
|
{
|
|
return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
|
|
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
|
|
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
|
|
}
|