fd0fd00cde
PR ld/16202 * elf32-arm.c (elf32_arm_final_link_relocate): Refetch addends for R_ARM_ABS8 and R_ARM_ABS16.
16368 lines
475 KiB
C
16368 lines
475 KiB
C
/* 32-bit ELF support for ARM
|
|
Copyright 1998-2013 Free Software Foundation, Inc.
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
|
MA 02110-1301, USA. */
|
|
|
|
#include "sysdep.h"
|
|
#include <limits.h>
|
|
|
|
#include "bfd.h"
|
|
#include "bfd_stdint.h"
|
|
#include "libiberty.h"
|
|
#include "libbfd.h"
|
|
#include "elf-bfd.h"
|
|
#include "elf-nacl.h"
|
|
#include "elf-vxworks.h"
|
|
#include "elf/arm.h"
|
|
|
|
/* Return the relocation section associated with NAME. HTAB is the
|
|
bfd's elf32_arm_link_hash_entry. */
|
|
#define RELOC_SECTION(HTAB, NAME) \
|
|
((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
|
|
|
|
/* Return size of a relocation entry. HTAB is the bfd's
|
|
elf32_arm_link_hash_entry. */
|
|
#define RELOC_SIZE(HTAB) \
|
|
((HTAB)->use_rel \
|
|
? sizeof (Elf32_External_Rel) \
|
|
: sizeof (Elf32_External_Rela))
|
|
|
|
/* Return function to swap relocations in. HTAB is the bfd's
|
|
elf32_arm_link_hash_entry. */
|
|
#define SWAP_RELOC_IN(HTAB) \
|
|
((HTAB)->use_rel \
|
|
? bfd_elf32_swap_reloc_in \
|
|
: bfd_elf32_swap_reloca_in)
|
|
|
|
/* Return function to swap relocations out. HTAB is the bfd's
|
|
elf32_arm_link_hash_entry. */
|
|
#define SWAP_RELOC_OUT(HTAB) \
|
|
((HTAB)->use_rel \
|
|
? bfd_elf32_swap_reloc_out \
|
|
: bfd_elf32_swap_reloca_out)
|
|
|
|
#define elf_info_to_howto 0
|
|
#define elf_info_to_howto_rel elf32_arm_info_to_howto
|
|
|
|
#define ARM_ELF_ABI_VERSION 0
|
|
#define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
|
|
|
|
/* The Adjusted Place, as defined by AAELF. */
|
|
#define Pa(X) ((X) & 0xfffffffc)
|
|
|
|
static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
|
|
struct bfd_link_info *link_info,
|
|
asection *sec,
|
|
bfd_byte *contents);
|
|
|
|
/* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
|
|
R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
|
|
in that slot. */
|
|
|
|
static reloc_howto_type elf32_arm_howto_table_1[] =
|
|
{
|
|
/* No relocation. */
|
|
HOWTO (R_ARM_NONE, /* type */
|
|
0, /* rightshift */
|
|
0, /* size (0 = byte, 1 = short, 2 = long) */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_NONE", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_PC24, /* type */
|
|
2, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
24, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_PC24", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00ffffff, /* src_mask */
|
|
0x00ffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 32 bit absolute */
|
|
HOWTO (R_ARM_ABS32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ABS32", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* standard 32bit pc-relative reloc */
|
|
HOWTO (R_ARM_REL32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_REL32", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
|
|
HOWTO (R_ARM_LDR_PC_G0, /* type */
|
|
0, /* rightshift */
|
|
0, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDR_PC_G0", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* 16 bit absolute */
|
|
HOWTO (R_ARM_ABS16, /* type */
|
|
0, /* rightshift */
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ABS16", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0000ffff, /* src_mask */
|
|
0x0000ffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 12 bit absolute */
|
|
HOWTO (R_ARM_ABS12, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
12, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ABS12", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00000fff, /* src_mask */
|
|
0x00000fff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_ABS5, /* type */
|
|
6, /* rightshift */
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
|
5, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_ABS5", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x000007e0, /* src_mask */
|
|
0x000007e0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 8 bit absolute */
|
|
HOWTO (R_ARM_ABS8, /* type */
|
|
0, /* rightshift */
|
|
0, /* size (0 = byte, 1 = short, 2 = long) */
|
|
8, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ABS8", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x000000ff, /* src_mask */
|
|
0x000000ff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_SBREL32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_SBREL32", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_CALL, /* type */
|
|
1, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
24, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_CALL", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x07ff2fff, /* src_mask */
|
|
0x07ff2fff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_PC8, /* type */
|
|
1, /* rightshift */
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
|
8, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_PC8", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x000000ff, /* src_mask */
|
|
0x000000ff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_BREL_ADJ, /* type */
|
|
1, /* rightshift */
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_BREL_ADJ", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_TLS_DESC, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_TLS_DESC", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_SWI8, /* type */
|
|
0, /* rightshift */
|
|
0, /* size (0 = byte, 1 = short, 2 = long) */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_SWI8", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00000000, /* src_mask */
|
|
0x00000000, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* BLX instruction for the ARM. */
|
|
HOWTO (R_ARM_XPC25, /* type */
|
|
2, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
24, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_XPC25", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00ffffff, /* src_mask */
|
|
0x00ffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* BLX instruction for the Thumb. */
|
|
HOWTO (R_ARM_THM_XPC22, /* type */
|
|
2, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
24, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_XPC22", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x07ff2fff, /* src_mask */
|
|
0x07ff2fff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* Dynamic TLS relocations. */
|
|
|
|
HOWTO (R_ARM_TLS_DTPMOD32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_TLS_DTPMOD32", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_TLS_DTPOFF32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_TLS_DTPOFF32", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_TLS_TPOFF32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_TLS_TPOFF32", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* Relocs used in ARM Linux */
|
|
|
|
HOWTO (R_ARM_COPY, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_COPY", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_GLOB_DAT, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_GLOB_DAT", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_JUMP_SLOT, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_JUMP_SLOT", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_RELATIVE, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_RELATIVE", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_GOTOFF32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_GOTOFF32", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_GOTPC, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_GOTPC", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_GOT32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_GOT32", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_PLT32, /* type */
|
|
2, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
24, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_PLT32", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00ffffff, /* src_mask */
|
|
0x00ffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_CALL, /* type */
|
|
2, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
24, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_CALL", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00ffffff, /* src_mask */
|
|
0x00ffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_JUMP24, /* type */
|
|
2, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
24, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_JUMP24", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00ffffff, /* src_mask */
|
|
0x00ffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_JUMP24, /* type */
|
|
1, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
24, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_JUMP24", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x07ff2fff, /* src_mask */
|
|
0x07ff2fff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_BASE_ABS, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_BASE_ABS", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_ALU_PCREL7_0, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
12, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ALU_PCREL_7_0", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00000fff, /* src_mask */
|
|
0x00000fff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_ALU_PCREL15_8, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
12, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
8, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ALU_PCREL_15_8",/* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00000fff, /* src_mask */
|
|
0x00000fff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_ALU_PCREL23_15, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
12, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
16, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ALU_PCREL_23_15",/* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00000fff, /* src_mask */
|
|
0x00000fff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
12, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDR_SBREL_11_0",/* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00000fff, /* src_mask */
|
|
0x00000fff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
8, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
12, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ALU_SBREL_19_12",/* name */
|
|
FALSE, /* partial_inplace */
|
|
0x000ff000, /* src_mask */
|
|
0x000ff000, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
8, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
20, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ALU_SBREL_27_20",/* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0ff00000, /* src_mask */
|
|
0x0ff00000, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_TARGET1, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_TARGET1", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_ROSEGREL32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ROSEGREL32", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_V4BX, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_V4BX", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_TARGET2, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_TARGET2", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_PREL31, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
31, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_PREL31", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x7fffffff, /* src_mask */
|
|
0x7fffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_MOVW_ABS_NC, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_MOVW_ABS_NC", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x000f0fff, /* src_mask */
|
|
0x000f0fff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_MOVT_ABS, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_MOVT_ABS", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x000f0fff, /* src_mask */
|
|
0x000f0fff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_MOVW_PREL_NC, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_MOVW_PREL_NC", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x000f0fff, /* src_mask */
|
|
0x000f0fff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_MOVT_PREL, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_MOVT_PREL", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x000f0fff, /* src_mask */
|
|
0x000f0fff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_MOVW_ABS_NC",/* name */
|
|
FALSE, /* partial_inplace */
|
|
0x040f70ff, /* src_mask */
|
|
0x040f70ff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_MOVT_ABS, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_MOVT_ABS", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x040f70ff, /* src_mask */
|
|
0x040f70ff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_MOVW_PREL_NC",/* name */
|
|
FALSE, /* partial_inplace */
|
|
0x040f70ff, /* src_mask */
|
|
0x040f70ff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_MOVT_PREL, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_MOVT_PREL", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x040f70ff, /* src_mask */
|
|
0x040f70ff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_JUMP19, /* type */
|
|
1, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
19, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_JUMP19", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x043f2fff, /* src_mask */
|
|
0x043f2fff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_JUMP6, /* type */
|
|
1, /* rightshift */
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
|
6, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_unsigned,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_JUMP6", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x02f8, /* src_mask */
|
|
0x02f8, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* These are declared as 13-bit signed relocations because we can
|
|
address -4095 .. 4095(base) by altering ADDW to SUBW or vice
|
|
versa. */
|
|
HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
13, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_ALU_PREL_11_0",/* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_PC12, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
13, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_PC12", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_ABS32_NOI, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ABS32_NOI", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_REL32_NOI, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_REL32_NOI", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* Group relocations. */
|
|
|
|
HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ALU_PC_G0_NC", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_ALU_PC_G0, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ALU_PC_G0", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ALU_PC_G1_NC", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_ALU_PC_G1, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ALU_PC_G1", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_ALU_PC_G2, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ALU_PC_G2", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDR_PC_G1, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDR_PC_G1", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDR_PC_G2, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDR_PC_G2", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDRS_PC_G0, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDRS_PC_G0", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDRS_PC_G1, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDRS_PC_G1", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDRS_PC_G2, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDRS_PC_G2", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDC_PC_G0, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDC_PC_G0", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDC_PC_G1, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDC_PC_G1", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDC_PC_G2, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDC_PC_G2", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ALU_SB_G0_NC", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_ALU_SB_G0, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ALU_SB_G0", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ALU_SB_G1_NC", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_ALU_SB_G1, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ALU_SB_G1", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_ALU_SB_G2, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_ALU_SB_G2", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDR_SB_G0, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDR_SB_G0", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDR_SB_G1, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDR_SB_G1", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDR_SB_G2, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDR_SB_G2", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDRS_SB_G0, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDRS_SB_G0", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDRS_SB_G1, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDRS_SB_G1", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDRS_SB_G2, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDRS_SB_G2", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDC_SB_G0, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDC_SB_G0", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDC_SB_G1, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDC_SB_G1", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_LDC_SB_G2, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_LDC_SB_G2", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* End of group relocations. */
|
|
|
|
HOWTO (R_ARM_MOVW_BREL_NC, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_MOVW_BREL_NC", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0000ffff, /* src_mask */
|
|
0x0000ffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_MOVT_BREL, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_MOVT_BREL", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0000ffff, /* src_mask */
|
|
0x0000ffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_MOVW_BREL, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_MOVW_BREL", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x0000ffff, /* src_mask */
|
|
0x0000ffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_MOVW_BREL_NC",/* name */
|
|
FALSE, /* partial_inplace */
|
|
0x040f70ff, /* src_mask */
|
|
0x040f70ff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_MOVT_BREL, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_MOVT_BREL", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x040f70ff, /* src_mask */
|
|
0x040f70ff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_MOVW_BREL, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
16, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_MOVW_BREL", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x040f70ff, /* src_mask */
|
|
0x040f70ff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_TLS_GOTDESC, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_ARM_TLS_GOTDESC", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_TLS_CALL, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
24, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_TLS_CALL", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00ffffff, /* src_mask */
|
|
0x00ffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_TLS_DESCSEQ, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_TLS_DESCSEQ", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00000000, /* src_mask */
|
|
0x00000000, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_TLS_CALL, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
24, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_TLS_CALL", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x07ff07ff, /* src_mask */
|
|
0x07ff07ff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_PLT32_ABS, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_PLT32_ABS", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_GOT_ABS, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_GOT_ABS", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_GOT_PREL, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_GOT_PREL", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_GOT_BREL12, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
12, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_GOT_BREL12", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00000fff, /* src_mask */
|
|
0x00000fff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_GOTOFF12, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
12, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_GOTOFF12", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00000fff, /* src_mask */
|
|
0x00000fff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
|
|
|
|
/* GNU extension to record C++ vtable member usage */
|
|
HOWTO (R_ARM_GNU_VTENTRY, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
_bfd_elf_rel_vtable_reloc_fn, /* special_function */
|
|
"R_ARM_GNU_VTENTRY", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* GNU extension to record C++ vtable hierarchy */
|
|
HOWTO (R_ARM_GNU_VTINHERIT, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont, /* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_ARM_GNU_VTINHERIT", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_JUMP11, /* type */
|
|
1, /* rightshift */
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
|
11, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_JUMP11", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x000007ff, /* src_mask */
|
|
0x000007ff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_THM_JUMP8, /* type */
|
|
1, /* rightshift */
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
|
8, /* bitsize */
|
|
TRUE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_signed, /* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_JUMP8", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x000000ff, /* src_mask */
|
|
0x000000ff, /* dst_mask */
|
|
TRUE), /* pcrel_offset */
|
|
|
|
/* TLS relocations */
|
|
HOWTO (R_ARM_TLS_GD32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_ARM_TLS_GD32", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_TLS_LDM32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_TLS_LDM32", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_TLS_LDO32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_TLS_LDO32", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_TLS_IE32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
NULL, /* special_function */
|
|
"R_ARM_TLS_IE32", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_TLS_LE32, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_TLS_LE32", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_TLS_LDO12, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
12, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_TLS_LDO12", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00000fff, /* src_mask */
|
|
0x00000fff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_TLS_LE12, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
12, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_TLS_LE12", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00000fff, /* src_mask */
|
|
0x00000fff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_TLS_IE12GP, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
12, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_TLS_IE12GP", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00000fff, /* src_mask */
|
|
0x00000fff, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
/* 112-127 private relocations. */
|
|
EMPTY_HOWTO (112),
|
|
EMPTY_HOWTO (113),
|
|
EMPTY_HOWTO (114),
|
|
EMPTY_HOWTO (115),
|
|
EMPTY_HOWTO (116),
|
|
EMPTY_HOWTO (117),
|
|
EMPTY_HOWTO (118),
|
|
EMPTY_HOWTO (119),
|
|
EMPTY_HOWTO (120),
|
|
EMPTY_HOWTO (121),
|
|
EMPTY_HOWTO (122),
|
|
EMPTY_HOWTO (123),
|
|
EMPTY_HOWTO (124),
|
|
EMPTY_HOWTO (125),
|
|
EMPTY_HOWTO (126),
|
|
EMPTY_HOWTO (127),
|
|
|
|
/* R_ARM_ME_TOO, obsolete. */
|
|
EMPTY_HOWTO (128),
|
|
|
|
HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
|
|
0, /* rightshift */
|
|
1, /* size (0 = byte, 1 = short, 2 = long) */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_THM_TLS_DESCSEQ",/* name */
|
|
FALSE, /* partial_inplace */
|
|
0x00000000, /* src_mask */
|
|
0x00000000, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
};
|
|
|
|
/* 160 onwards: */
|
|
static reloc_howto_type elf32_arm_howto_table_2[1] =
|
|
{
|
|
HOWTO (R_ARM_IRELATIVE, /* type */
|
|
0, /* rightshift */
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
|
32, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_bitfield,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_IRELATIVE", /* name */
|
|
TRUE, /* partial_inplace */
|
|
0xffffffff, /* src_mask */
|
|
0xffffffff, /* dst_mask */
|
|
FALSE) /* pcrel_offset */
|
|
};
|
|
|
|
/* 249-255 extended, currently unused, relocations: */
|
|
static reloc_howto_type elf32_arm_howto_table_3[4] =
|
|
{
|
|
HOWTO (R_ARM_RREL32, /* type */
|
|
0, /* rightshift */
|
|
0, /* size (0 = byte, 1 = short, 2 = long) */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_RREL32", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_RABS32, /* type */
|
|
0, /* rightshift */
|
|
0, /* size (0 = byte, 1 = short, 2 = long) */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_RABS32", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_RPC24, /* type */
|
|
0, /* rightshift */
|
|
0, /* size (0 = byte, 1 = short, 2 = long) */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_RPC24", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0, /* dst_mask */
|
|
FALSE), /* pcrel_offset */
|
|
|
|
HOWTO (R_ARM_RBASE, /* type */
|
|
0, /* rightshift */
|
|
0, /* size (0 = byte, 1 = short, 2 = long) */
|
|
0, /* bitsize */
|
|
FALSE, /* pc_relative */
|
|
0, /* bitpos */
|
|
complain_overflow_dont,/* complain_on_overflow */
|
|
bfd_elf_generic_reloc, /* special_function */
|
|
"R_ARM_RBASE", /* name */
|
|
FALSE, /* partial_inplace */
|
|
0, /* src_mask */
|
|
0, /* dst_mask */
|
|
FALSE) /* pcrel_offset */
|
|
};
|
|
|
|
static reloc_howto_type *
|
|
elf32_arm_howto_from_type (unsigned int r_type)
|
|
{
|
|
if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
|
|
return &elf32_arm_howto_table_1[r_type];
|
|
|
|
if (r_type == R_ARM_IRELATIVE)
|
|
return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
|
|
|
|
if (r_type >= R_ARM_RREL32
|
|
&& r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
|
|
return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
|
|
Elf_Internal_Rela * elf_reloc)
|
|
{
|
|
unsigned int r_type;
|
|
|
|
r_type = ELF32_R_TYPE (elf_reloc->r_info);
|
|
bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
|
|
}
|
|
|
|
struct elf32_arm_reloc_map
|
|
{
|
|
bfd_reloc_code_real_type bfd_reloc_val;
|
|
unsigned char elf_reloc_val;
|
|
};
|
|
|
|
/* All entries in this list must also be present in elf32_arm_howto_table. */
|
|
static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
|
|
{
|
|
{BFD_RELOC_NONE, R_ARM_NONE},
|
|
{BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
|
|
{BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
|
|
{BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
|
|
{BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
|
|
{BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
|
|
{BFD_RELOC_32, R_ARM_ABS32},
|
|
{BFD_RELOC_32_PCREL, R_ARM_REL32},
|
|
{BFD_RELOC_8, R_ARM_ABS8},
|
|
{BFD_RELOC_16, R_ARM_ABS16},
|
|
{BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
|
|
{BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
|
|
{BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
|
|
{BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
|
|
{BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
|
|
{BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
|
|
{BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
|
|
{BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
|
|
{BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
|
|
{BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
|
|
{BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
|
|
{BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
|
|
{BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
|
|
{BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
|
|
{BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
|
|
{BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
|
|
{BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
|
|
{BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
|
|
{BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
|
|
{BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
|
|
{BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
|
|
{BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
|
|
{BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
|
|
{BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
|
|
{BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
|
|
{BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
|
|
{BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
|
|
{BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
|
|
{BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
|
|
{BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
|
|
{BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
|
|
{BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
|
|
{BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
|
|
{BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
|
|
{BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
|
|
{BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
|
|
{BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
|
|
{BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
|
|
{BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
|
|
{BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
|
|
{BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
|
|
{BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
|
|
{BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
|
|
{BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
|
|
{BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
|
|
{BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
|
|
{BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
|
|
{BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
|
|
{BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
|
|
{BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
|
|
{BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
|
|
{BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
|
|
{BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
|
|
{BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
|
|
{BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
|
|
{BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
|
|
{BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
|
|
{BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
|
|
{BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
|
|
{BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
|
|
{BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
|
|
{BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
|
|
{BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
|
|
{BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
|
|
{BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
|
|
{BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
|
|
{BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
|
|
{BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
|
|
{BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
|
|
{BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
|
|
{BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
|
|
{BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
|
|
{BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
|
|
{BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
|
|
{BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
|
|
{BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
|
|
};
|
|
|
|
static reloc_howto_type *
|
|
elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
|
bfd_reloc_code_real_type code)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
|
|
if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
|
|
return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static reloc_howto_type *
|
|
elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
|
const char *r_name)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
|
|
if (elf32_arm_howto_table_1[i].name != NULL
|
|
&& strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
|
|
return &elf32_arm_howto_table_1[i];
|
|
|
|
for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
|
|
if (elf32_arm_howto_table_2[i].name != NULL
|
|
&& strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
|
|
return &elf32_arm_howto_table_2[i];
|
|
|
|
for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
|
|
if (elf32_arm_howto_table_3[i].name != NULL
|
|
&& strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
|
|
return &elf32_arm_howto_table_3[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Support for core dump NOTE sections. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
|
|
{
|
|
int offset;
|
|
size_t size;
|
|
|
|
switch (note->descsz)
|
|
{
|
|
default:
|
|
return FALSE;
|
|
|
|
case 148: /* Linux/ARM 32-bit. */
|
|
/* pr_cursig */
|
|
elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
|
|
|
|
/* pr_pid */
|
|
elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
|
|
|
|
/* pr_reg */
|
|
offset = 72;
|
|
size = 72;
|
|
|
|
break;
|
|
}
|
|
|
|
/* Make a ".reg/999" section. */
|
|
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
|
|
size, note->descpos + offset);
|
|
}
|
|
|
|
static bfd_boolean
|
|
elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
|
|
{
|
|
switch (note->descsz)
|
|
{
|
|
default:
|
|
return FALSE;
|
|
|
|
case 124: /* Linux/ARM elf_prpsinfo. */
|
|
elf_tdata (abfd)->core->pid
|
|
= bfd_get_32 (abfd, note->descdata + 12);
|
|
elf_tdata (abfd)->core->program
|
|
= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
|
|
elf_tdata (abfd)->core->command
|
|
= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
|
|
}
|
|
|
|
/* Note that for some reason, a spurious space is tacked
|
|
onto the end of the args in some (at least one anyway)
|
|
implementations, so strip it off if it exists. */
|
|
{
|
|
char *command = elf_tdata (abfd)->core->command;
|
|
int n = strlen (command);
|
|
|
|
if (0 < n && command[n - 1] == ' ')
|
|
command[n - 1] = '\0';
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static char *
|
|
elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
|
|
int note_type, ...)
|
|
{
|
|
switch (note_type)
|
|
{
|
|
default:
|
|
return NULL;
|
|
|
|
case NT_PRPSINFO:
|
|
{
|
|
char data[124];
|
|
va_list ap;
|
|
|
|
va_start (ap, note_type);
|
|
memset (data, 0, sizeof (data));
|
|
strncpy (data + 28, va_arg (ap, const char *), 16);
|
|
strncpy (data + 44, va_arg (ap, const char *), 80);
|
|
va_end (ap);
|
|
|
|
return elfcore_write_note (abfd, buf, bufsiz,
|
|
"CORE", note_type, data, sizeof (data));
|
|
}
|
|
|
|
case NT_PRSTATUS:
|
|
{
|
|
char data[148];
|
|
va_list ap;
|
|
long pid;
|
|
int cursig;
|
|
const void *greg;
|
|
|
|
va_start (ap, note_type);
|
|
memset (data, 0, sizeof (data));
|
|
pid = va_arg (ap, long);
|
|
bfd_put_32 (abfd, pid, data + 24);
|
|
cursig = va_arg (ap, int);
|
|
bfd_put_16 (abfd, cursig, data + 12);
|
|
greg = va_arg (ap, const void *);
|
|
memcpy (data + 72, greg, 72);
|
|
va_end (ap);
|
|
|
|
return elfcore_write_note (abfd, buf, bufsiz,
|
|
"CORE", note_type, data, sizeof (data));
|
|
}
|
|
}
|
|
}
|
|
|
|
#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
|
|
#define TARGET_LITTLE_NAME "elf32-littlearm"
|
|
#define TARGET_BIG_SYM bfd_elf32_bigarm_vec
|
|
#define TARGET_BIG_NAME "elf32-bigarm"
|
|
|
|
#define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
|
|
#define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
|
|
#define elf_backend_write_core_note elf32_arm_nabi_write_core_note
|
|
|
|
typedef unsigned long int insn32;
|
|
typedef unsigned short int insn16;
|
|
|
|
/* In lieu of proper flags, assume all EABIv4 or later objects are
|
|
interworkable. */
|
|
#define INTERWORK_FLAG(abfd) \
|
|
(EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
|
|
|| (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
|
|
|| ((abfd)->flags & BFD_LINKER_CREATED))
|
|
|
|
/* The linker script knows the section names for placement.
|
|
The entry_names are used to do simple name mangling on the stubs.
|
|
Given a function name, and its type, the stub can be found. The
|
|
name can be changed. The only requirement is the %s be present. */
|
|
#define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
|
|
#define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
|
|
|
|
#define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
|
|
#define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
|
|
|
|
#define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
|
|
#define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
|
|
|
|
#define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
|
|
#define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
|
|
|
|
#define STUB_ENTRY_NAME "__%s_veneer"
|
|
|
|
/* The name of the dynamic interpreter. This is put in the .interp
|
|
section. */
|
|
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
|
|
|
|
static const unsigned long tls_trampoline [] =
|
|
{
|
|
0xe08e0000, /* add r0, lr, r0 */
|
|
0xe5901004, /* ldr r1, [r0,#4] */
|
|
0xe12fff11, /* bx r1 */
|
|
};
|
|
|
|
static const unsigned long dl_tlsdesc_lazy_trampoline [] =
|
|
{
|
|
0xe52d2004, /* push {r2} */
|
|
0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
|
|
0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
|
|
0xe79f2002, /* 1: ldr r2, [pc, r2] */
|
|
0xe081100f, /* 2: add r1, pc */
|
|
0xe12fff12, /* bx r2 */
|
|
0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
|
|
+ dl_tlsdesc_lazy_resolver(GOT) */
|
|
0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
|
|
};
|
|
|
|
#ifdef FOUR_WORD_PLT
|
|
|
|
/* The first entry in a procedure linkage table looks like
|
|
this. It is set up so that any shared library function that is
|
|
called before the relocation has been set up calls the dynamic
|
|
linker first. */
|
|
static const bfd_vma elf32_arm_plt0_entry [] =
|
|
{
|
|
0xe52de004, /* str lr, [sp, #-4]! */
|
|
0xe59fe010, /* ldr lr, [pc, #16] */
|
|
0xe08fe00e, /* add lr, pc, lr */
|
|
0xe5bef008, /* ldr pc, [lr, #8]! */
|
|
};
|
|
|
|
/* Subsequent entries in a procedure linkage table look like
|
|
this. */
|
|
static const bfd_vma elf32_arm_plt_entry [] =
|
|
{
|
|
0xe28fc600, /* add ip, pc, #NN */
|
|
0xe28cca00, /* add ip, ip, #NN */
|
|
0xe5bcf000, /* ldr pc, [ip, #NN]! */
|
|
0x00000000, /* unused */
|
|
};
|
|
|
|
#else
|
|
|
|
/* The first entry in a procedure linkage table looks like
|
|
this. It is set up so that any shared library function that is
|
|
called before the relocation has been set up calls the dynamic
|
|
linker first. */
|
|
static const bfd_vma elf32_arm_plt0_entry [] =
|
|
{
|
|
0xe52de004, /* str lr, [sp, #-4]! */
|
|
0xe59fe004, /* ldr lr, [pc, #4] */
|
|
0xe08fe00e, /* add lr, pc, lr */
|
|
0xe5bef008, /* ldr pc, [lr, #8]! */
|
|
0x00000000, /* &GOT[0] - . */
|
|
};
|
|
|
|
/* Subsequent entries in a procedure linkage table look like
|
|
this. */
|
|
static const bfd_vma elf32_arm_plt_entry [] =
|
|
{
|
|
0xe28fc600, /* add ip, pc, #0xNN00000 */
|
|
0xe28cca00, /* add ip, ip, #0xNN000 */
|
|
0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
|
|
};
|
|
|
|
#endif
|
|
|
|
/* The format of the first entry in the procedure linkage table
|
|
for a VxWorks executable. */
|
|
static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
|
|
{
|
|
0xe52dc008, /* str ip,[sp,#-8]! */
|
|
0xe59fc000, /* ldr ip,[pc] */
|
|
0xe59cf008, /* ldr pc,[ip,#8] */
|
|
0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
|
|
};
|
|
|
|
/* The format of subsequent entries in a VxWorks executable. */
|
|
static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
|
|
{
|
|
0xe59fc000, /* ldr ip,[pc] */
|
|
0xe59cf000, /* ldr pc,[ip] */
|
|
0x00000000, /* .long @got */
|
|
0xe59fc000, /* ldr ip,[pc] */
|
|
0xea000000, /* b _PLT */
|
|
0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
|
|
};
|
|
|
|
/* The format of entries in a VxWorks shared library. */
|
|
static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
|
|
{
|
|
0xe59fc000, /* ldr ip,[pc] */
|
|
0xe79cf009, /* ldr pc,[ip,r9] */
|
|
0x00000000, /* .long @got */
|
|
0xe59fc000, /* ldr ip,[pc] */
|
|
0xe599f008, /* ldr pc,[r9,#8] */
|
|
0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
|
|
};
|
|
|
|
/* An initial stub used if the PLT entry is referenced from Thumb code. */
|
|
#define PLT_THUMB_STUB_SIZE 4
|
|
static const bfd_vma elf32_arm_plt_thumb_stub [] =
|
|
{
|
|
0x4778, /* bx pc */
|
|
0x46c0 /* nop */
|
|
};
|
|
|
|
/* The entries in a PLT when using a DLL-based target with multiple
|
|
address spaces. */
|
|
static const bfd_vma elf32_arm_symbian_plt_entry [] =
|
|
{
|
|
0xe51ff004, /* ldr pc, [pc, #-4] */
|
|
0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
|
|
};
|
|
|
|
/* The first entry in a procedure linkage table looks like
|
|
this. It is set up so that any shared library function that is
|
|
called before the relocation has been set up calls the dynamic
|
|
linker first. */
|
|
static const bfd_vma elf32_arm_nacl_plt0_entry [] =
|
|
{
|
|
/* First bundle: */
|
|
0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
|
|
0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
|
|
0xe08cc00f, /* add ip, ip, pc */
|
|
0xe52dc008, /* str ip, [sp, #-8]! */
|
|
/* Second bundle: */
|
|
0xe3ccc103, /* bic ip, ip, #0xc0000000 */
|
|
0xe59cc000, /* ldr ip, [ip] */
|
|
0xe3ccc13f, /* bic ip, ip, #0xc000000f */
|
|
0xe12fff1c, /* bx ip */
|
|
/* Third bundle: */
|
|
0xe320f000, /* nop */
|
|
0xe320f000, /* nop */
|
|
0xe320f000, /* nop */
|
|
/* .Lplt_tail: */
|
|
0xe50dc004, /* str ip, [sp, #-4] */
|
|
/* Fourth bundle: */
|
|
0xe3ccc103, /* bic ip, ip, #0xc0000000 */
|
|
0xe59cc000, /* ldr ip, [ip] */
|
|
0xe3ccc13f, /* bic ip, ip, #0xc000000f */
|
|
0xe12fff1c, /* bx ip */
|
|
};
|
|
#define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
|
|
|
|
/* Subsequent entries in a procedure linkage table look like this. */
|
|
static const bfd_vma elf32_arm_nacl_plt_entry [] =
|
|
{
|
|
0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
|
|
0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
|
|
0xe08cc00f, /* add ip, ip, pc */
|
|
0xea000000, /* b .Lplt_tail */
|
|
};
|
|
|
|
#define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
|
|
#define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
|
|
#define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
|
|
#define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
|
|
#define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
|
|
#define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
|
|
|
|
enum stub_insn_type
|
|
{
|
|
THUMB16_TYPE = 1,
|
|
THUMB32_TYPE,
|
|
ARM_TYPE,
|
|
DATA_TYPE
|
|
};
|
|
|
|
#define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
|
|
/* A bit of a hack. A Thumb conditional branch, in which the proper condition
|
|
is inserted in arm_build_one_stub(). */
|
|
#define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
|
|
#define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
|
|
#define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
|
|
#define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
|
|
#define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
|
|
#define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
|
|
|
|
typedef struct
|
|
{
|
|
bfd_vma data;
|
|
enum stub_insn_type type;
|
|
unsigned int r_type;
|
|
int reloc_addend;
|
|
} insn_sequence;
|
|
|
|
/* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
|
|
to reach the stub if necessary. */
|
|
static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
|
|
{
|
|
ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
|
|
DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
|
|
};
|
|
|
|
/* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
|
|
available. */
|
|
static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
|
|
{
|
|
ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
|
|
ARM_INSN (0xe12fff1c), /* bx ip */
|
|
DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
|
|
};
|
|
|
|
/* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
|
|
static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
|
|
{
|
|
THUMB16_INSN (0xb401), /* push {r0} */
|
|
THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
|
|
THUMB16_INSN (0x4684), /* mov ip, r0 */
|
|
THUMB16_INSN (0xbc01), /* pop {r0} */
|
|
THUMB16_INSN (0x4760), /* bx ip */
|
|
THUMB16_INSN (0xbf00), /* nop */
|
|
DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
|
|
};
|
|
|
|
/* V4T Thumb -> Thumb long branch stub. Using the stack is not
|
|
allowed. */
|
|
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
|
|
{
|
|
THUMB16_INSN (0x4778), /* bx pc */
|
|
THUMB16_INSN (0x46c0), /* nop */
|
|
ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
|
|
ARM_INSN (0xe12fff1c), /* bx ip */
|
|
DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
|
|
};
|
|
|
|
/* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
|
|
available. */
|
|
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
|
|
{
|
|
THUMB16_INSN (0x4778), /* bx pc */
|
|
THUMB16_INSN (0x46c0), /* nop */
|
|
ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
|
|
DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
|
|
};
|
|
|
|
/* V4T Thumb -> ARM short branch stub. Shorter variant of the above
|
|
one, when the destination is close enough. */
|
|
static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
|
|
{
|
|
THUMB16_INSN (0x4778), /* bx pc */
|
|
THUMB16_INSN (0x46c0), /* nop */
|
|
ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
|
|
};
|
|
|
|
/* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
|
|
blx to reach the stub if necessary. */
|
|
static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
|
|
{
|
|
ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
|
|
ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
|
|
DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
|
|
};
|
|
|
|
/* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
|
|
blx to reach the stub if necessary. We can not add into pc;
|
|
it is not guaranteed to mode switch (different in ARMv6 and
|
|
ARMv7). */
|
|
static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
|
|
{
|
|
ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
|
|
ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
|
|
ARM_INSN (0xe12fff1c), /* bx ip */
|
|
DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
|
|
};
|
|
|
|
/* V4T ARM -> ARM long branch stub, PIC. */
|
|
static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
|
|
{
|
|
ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
|
|
ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
|
|
ARM_INSN (0xe12fff1c), /* bx ip */
|
|
DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
|
|
};
|
|
|
|
/* V4T Thumb -> ARM long branch stub, PIC. */
|
|
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
|
|
{
|
|
THUMB16_INSN (0x4778), /* bx pc */
|
|
THUMB16_INSN (0x46c0), /* nop */
|
|
ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
|
|
ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
|
|
DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
|
|
};
|
|
|
|
/* Thumb -> Thumb long branch stub, PIC. Used on M-profile
|
|
architectures. */
|
|
static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
|
|
{
|
|
THUMB16_INSN (0xb401), /* push {r0} */
|
|
THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
|
|
THUMB16_INSN (0x46fc), /* mov ip, pc */
|
|
THUMB16_INSN (0x4484), /* add ip, r0 */
|
|
THUMB16_INSN (0xbc01), /* pop {r0} */
|
|
THUMB16_INSN (0x4760), /* bx ip */
|
|
DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
|
|
};
|
|
|
|
/* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
|
|
allowed. */
|
|
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
|
|
{
|
|
THUMB16_INSN (0x4778), /* bx pc */
|
|
THUMB16_INSN (0x46c0), /* nop */
|
|
ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
|
|
ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
|
|
ARM_INSN (0xe12fff1c), /* bx ip */
|
|
DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
|
|
};
|
|
|
|
/* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
|
|
long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
|
|
static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
|
|
{
|
|
ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
|
|
ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
|
|
DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
|
|
};
|
|
|
|
/* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
|
|
long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
|
|
static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
|
|
{
|
|
THUMB16_INSN (0x4778), /* bx pc */
|
|
THUMB16_INSN (0x46c0), /* nop */
|
|
ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
|
|
ARM_INSN (0xe081f00f), /* add pc, r1, pc */
|
|
DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
|
|
};
|
|
|
|
/* NaCl ARM -> ARM long branch stub. */
|
|
static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
|
|
{
|
|
ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
|
|
ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
|
|
ARM_INSN (0xe12fff1c), /* bx ip */
|
|
ARM_INSN (0xe320f000), /* nop */
|
|
ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
|
|
DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
|
|
DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
|
|
DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
|
|
};
|
|
|
|
/* NaCl ARM -> ARM long branch stub, PIC. */
|
|
static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
|
|
{
|
|
ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
|
|
ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
|
|
ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
|
|
ARM_INSN (0xe12fff1c), /* bx ip */
|
|
ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
|
|
DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
|
|
DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
|
|
DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
|
|
};
|
|
|
|
|
|
/* Cortex-A8 erratum-workaround stubs. */
|
|
|
|
/* Stub used for conditional branches (which may be beyond +/-1MB away, so we
|
|
can't use a conditional branch to reach this stub). */
|
|
|
|
static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
|
|
{
|
|
THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
|
|
THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
|
|
THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
|
|
};
|
|
|
|
/* Stub used for b.w and bl.w instructions. */
|
|
|
|
static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
|
|
{
|
|
THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
|
|
};
|
|
|
|
static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
|
|
{
|
|
THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
|
|
};
|
|
|
|
/* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
|
|
instruction (which switches to ARM mode) to point to this stub. Jump to the
|
|
real destination using an ARM-mode branch. */
|
|
|
|
static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
|
|
{
|
|
ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
|
|
};
|
|
|
|
/* For each section group there can be a specially created linker section
|
|
to hold the stubs for that group. The name of the stub section is based
|
|
upon the name of another section within that group with the suffix below
|
|
applied.
|
|
|
|
PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
|
|
create what appeared to be a linker stub section when it actually
|
|
contained user code/data. For example, consider this fragment:
|
|
|
|
const char * stubborn_problems[] = { "np" };
|
|
|
|
If this is compiled with "-fPIC -fdata-sections" then gcc produces a
|
|
section called:
|
|
|
|
.data.rel.local.stubborn_problems
|
|
|
|
This then causes problems in arm32_arm_build_stubs() as it triggers:
|
|
|
|
// Ignore non-stub sections.
|
|
if (!strstr (stub_sec->name, STUB_SUFFIX))
|
|
continue;
|
|
|
|
And so the section would be ignored instead of being processed. Hence
|
|
the change in definition of STUB_SUFFIX to a name that cannot be a valid
|
|
C identifier. */
|
|
#define STUB_SUFFIX ".__stub"
|
|
|
|
/* One entry per long/short branch stub defined above. */
|
|
#define DEF_STUBS \
|
|
DEF_STUB(long_branch_any_any) \
|
|
DEF_STUB(long_branch_v4t_arm_thumb) \
|
|
DEF_STUB(long_branch_thumb_only) \
|
|
DEF_STUB(long_branch_v4t_thumb_thumb) \
|
|
DEF_STUB(long_branch_v4t_thumb_arm) \
|
|
DEF_STUB(short_branch_v4t_thumb_arm) \
|
|
DEF_STUB(long_branch_any_arm_pic) \
|
|
DEF_STUB(long_branch_any_thumb_pic) \
|
|
DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
|
|
DEF_STUB(long_branch_v4t_arm_thumb_pic) \
|
|
DEF_STUB(long_branch_v4t_thumb_arm_pic) \
|
|
DEF_STUB(long_branch_thumb_only_pic) \
|
|
DEF_STUB(long_branch_any_tls_pic) \
|
|
DEF_STUB(long_branch_v4t_thumb_tls_pic) \
|
|
DEF_STUB(long_branch_arm_nacl) \
|
|
DEF_STUB(long_branch_arm_nacl_pic) \
|
|
DEF_STUB(a8_veneer_b_cond) \
|
|
DEF_STUB(a8_veneer_b) \
|
|
DEF_STUB(a8_veneer_bl) \
|
|
DEF_STUB(a8_veneer_blx)
|
|
|
|
#define DEF_STUB(x) arm_stub_##x,
|
|
enum elf32_arm_stub_type
|
|
{
|
|
arm_stub_none,
|
|
DEF_STUBS
|
|
/* Note the first a8_veneer type */
|
|
arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
|
|
};
|
|
#undef DEF_STUB
|
|
|
|
typedef struct
|
|
{
|
|
const insn_sequence* template_sequence;
|
|
int template_size;
|
|
} stub_def;
|
|
|
|
#define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
|
|
static const stub_def stub_definitions[] =
|
|
{
|
|
{NULL, 0},
|
|
DEF_STUBS
|
|
};
|
|
|
|
struct elf32_arm_stub_hash_entry
|
|
{
|
|
/* Base hash table entry structure. */
|
|
struct bfd_hash_entry root;
|
|
|
|
/* The stub section. */
|
|
asection *stub_sec;
|
|
|
|
/* Offset within stub_sec of the beginning of this stub. */
|
|
bfd_vma stub_offset;
|
|
|
|
/* Given the symbol's value and its section we can determine its final
|
|
value when building the stubs (so the stub knows where to jump). */
|
|
bfd_vma target_value;
|
|
asection *target_section;
|
|
|
|
/* Offset to apply to relocation referencing target_value. */
|
|
bfd_vma target_addend;
|
|
|
|
/* The instruction which caused this stub to be generated (only valid for
|
|
Cortex-A8 erratum workaround stubs at present). */
|
|
unsigned long orig_insn;
|
|
|
|
/* The stub type. */
|
|
enum elf32_arm_stub_type stub_type;
|
|
/* Its encoding size in bytes. */
|
|
int stub_size;
|
|
/* Its template. */
|
|
const insn_sequence *stub_template;
|
|
/* The size of the template (number of entries). */
|
|
int stub_template_size;
|
|
|
|
/* The symbol table entry, if any, that this was derived from. */
|
|
struct elf32_arm_link_hash_entry *h;
|
|
|
|
/* Type of branch. */
|
|
enum arm_st_branch_type branch_type;
|
|
|
|
/* Where this stub is being called from, or, in the case of combined
|
|
stub sections, the first input section in the group. */
|
|
asection *id_sec;
|
|
|
|
/* The name for the local symbol at the start of this stub. The
|
|
stub name in the hash table has to be unique; this does not, so
|
|
it can be friendlier. */
|
|
char *output_name;
|
|
};
|
|
|
|
/* Used to build a map of a section. This is required for mixed-endian
|
|
code/data. */
|
|
|
|
typedef struct elf32_elf_section_map
|
|
{
|
|
bfd_vma vma;
|
|
char type;
|
|
}
|
|
elf32_arm_section_map;
|
|
|
|
/* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
|
|
|
|
typedef enum
|
|
{
|
|
VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
|
|
VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
|
|
VFP11_ERRATUM_ARM_VENEER,
|
|
VFP11_ERRATUM_THUMB_VENEER
|
|
}
|
|
elf32_vfp11_erratum_type;
|
|
|
|
typedef struct elf32_vfp11_erratum_list
|
|
{
|
|
struct elf32_vfp11_erratum_list *next;
|
|
bfd_vma vma;
|
|
union
|
|
{
|
|
struct
|
|
{
|
|
struct elf32_vfp11_erratum_list *veneer;
|
|
unsigned int vfp_insn;
|
|
} b;
|
|
struct
|
|
{
|
|
struct elf32_vfp11_erratum_list *branch;
|
|
unsigned int id;
|
|
} v;
|
|
} u;
|
|
elf32_vfp11_erratum_type type;
|
|
}
|
|
elf32_vfp11_erratum_list;
|
|
|
|
typedef enum
|
|
{
|
|
DELETE_EXIDX_ENTRY,
|
|
INSERT_EXIDX_CANTUNWIND_AT_END
|
|
}
|
|
arm_unwind_edit_type;
|
|
|
|
/* A (sorted) list of edits to apply to an unwind table. */
|
|
typedef struct arm_unwind_table_edit
|
|
{
|
|
arm_unwind_edit_type type;
|
|
/* Note: we sometimes want to insert an unwind entry corresponding to a
|
|
section different from the one we're currently writing out, so record the
|
|
(text) section this edit relates to here. */
|
|
asection *linked_section;
|
|
unsigned int index;
|
|
struct arm_unwind_table_edit *next;
|
|
}
|
|
arm_unwind_table_edit;
|
|
|
|
typedef struct _arm_elf_section_data
|
|
{
|
|
/* Information about mapping symbols. */
|
|
struct bfd_elf_section_data elf;
|
|
unsigned int mapcount;
|
|
unsigned int mapsize;
|
|
elf32_arm_section_map *map;
|
|
/* Information about CPU errata. */
|
|
unsigned int erratumcount;
|
|
elf32_vfp11_erratum_list *erratumlist;
|
|
/* Information about unwind tables. */
|
|
union
|
|
{
|
|
/* Unwind info attached to a text section. */
|
|
struct
|
|
{
|
|
asection *arm_exidx_sec;
|
|
} text;
|
|
|
|
/* Unwind info attached to an .ARM.exidx section. */
|
|
struct
|
|
{
|
|
arm_unwind_table_edit *unwind_edit_list;
|
|
arm_unwind_table_edit *unwind_edit_tail;
|
|
} exidx;
|
|
} u;
|
|
}
|
|
_arm_elf_section_data;
|
|
|
|
#define elf32_arm_section_data(sec) \
|
|
((_arm_elf_section_data *) elf_section_data (sec))
|
|
|
|
/* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
|
|
These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
|
|
so may be created multiple times: we use an array of these entries whilst
|
|
relaxing which we can refresh easily, then create stubs for each potentially
|
|
erratum-triggering instruction once we've settled on a solution. */
|
|
|
|
struct a8_erratum_fix
|
|
{
|
|
bfd *input_bfd;
|
|
asection *section;
|
|
bfd_vma offset;
|
|
bfd_vma addend;
|
|
unsigned long orig_insn;
|
|
char *stub_name;
|
|
enum elf32_arm_stub_type stub_type;
|
|
enum arm_st_branch_type branch_type;
|
|
};
|
|
|
|
/* A table of relocs applied to branches which might trigger Cortex-A8
|
|
erratum. */
|
|
|
|
struct a8_erratum_reloc
|
|
{
|
|
bfd_vma from;
|
|
bfd_vma destination;
|
|
struct elf32_arm_link_hash_entry *hash;
|
|
const char *sym_name;
|
|
unsigned int r_type;
|
|
enum arm_st_branch_type branch_type;
|
|
bfd_boolean non_a8_stub;
|
|
};
|
|
|
|
/* The size of the thread control block. */
|
|
#define TCB_SIZE 8
|
|
|
|
/* ARM-specific information about a PLT entry, over and above the usual
|
|
gotplt_union. */
|
|
struct arm_plt_info
|
|
{
|
|
/* We reference count Thumb references to a PLT entry separately,
|
|
so that we can emit the Thumb trampoline only if needed. */
|
|
bfd_signed_vma thumb_refcount;
|
|
|
|
/* Some references from Thumb code may be eliminated by BL->BLX
|
|
conversion, so record them separately. */
|
|
bfd_signed_vma maybe_thumb_refcount;
|
|
|
|
/* How many of the recorded PLT accesses were from non-call relocations.
|
|
This information is useful when deciding whether anything takes the
|
|
address of an STT_GNU_IFUNC PLT. A value of 0 means that all
|
|
non-call references to the function should resolve directly to the
|
|
real runtime target. */
|
|
unsigned int noncall_refcount;
|
|
|
|
/* Since PLT entries have variable size if the Thumb prologue is
|
|
used, we need to record the index into .got.plt instead of
|
|
recomputing it from the PLT offset. */
|
|
bfd_signed_vma got_offset;
|
|
};
|
|
|
|
/* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
|
|
struct arm_local_iplt_info
|
|
{
|
|
/* The information that is usually found in the generic ELF part of
|
|
the hash table entry. */
|
|
union gotplt_union root;
|
|
|
|
/* The information that is usually found in the ARM-specific part of
|
|
the hash table entry. */
|
|
struct arm_plt_info arm;
|
|
|
|
/* A list of all potential dynamic relocations against this symbol. */
|
|
struct elf_dyn_relocs *dyn_relocs;
|
|
};
|
|
|
|
struct elf_arm_obj_tdata
|
|
{
|
|
struct elf_obj_tdata root;
|
|
|
|
/* tls_type for each local got entry. */
|
|
char *local_got_tls_type;
|
|
|
|
/* GOTPLT entries for TLS descriptors. */
|
|
bfd_vma *local_tlsdesc_gotent;
|
|
|
|
/* Information for local symbols that need entries in .iplt. */
|
|
struct arm_local_iplt_info **local_iplt;
|
|
|
|
/* Zero to warn when linking objects with incompatible enum sizes. */
|
|
int no_enum_size_warning;
|
|
|
|
/* Zero to warn when linking objects with incompatible wchar_t sizes. */
|
|
int no_wchar_size_warning;
|
|
};
|
|
|
|
#define elf_arm_tdata(bfd) \
|
|
((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
|
|
|
|
#define elf32_arm_local_got_tls_type(bfd) \
|
|
(elf_arm_tdata (bfd)->local_got_tls_type)
|
|
|
|
#define elf32_arm_local_tlsdesc_gotent(bfd) \
|
|
(elf_arm_tdata (bfd)->local_tlsdesc_gotent)
|
|
|
|
#define elf32_arm_local_iplt(bfd) \
|
|
(elf_arm_tdata (bfd)->local_iplt)
|
|
|
|
#define is_arm_elf(bfd) \
|
|
(bfd_get_flavour (bfd) == bfd_target_elf_flavour \
|
|
&& elf_tdata (bfd) != NULL \
|
|
&& elf_object_id (bfd) == ARM_ELF_DATA)
|
|
|
|
static bfd_boolean
|
|
elf32_arm_mkobject (bfd *abfd)
|
|
{
|
|
return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
|
|
ARM_ELF_DATA);
|
|
}
|
|
|
|
#define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
|
|
|
|
/* Arm ELF linker hash entry. */
|
|
struct elf32_arm_link_hash_entry
|
|
{
|
|
struct elf_link_hash_entry root;
|
|
|
|
/* Track dynamic relocs copied for this symbol. */
|
|
struct elf_dyn_relocs *dyn_relocs;
|
|
|
|
/* ARM-specific PLT information. */
|
|
struct arm_plt_info plt;
|
|
|
|
#define GOT_UNKNOWN 0
|
|
#define GOT_NORMAL 1
|
|
#define GOT_TLS_GD 2
|
|
#define GOT_TLS_IE 4
|
|
#define GOT_TLS_GDESC 8
|
|
#define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
|
|
unsigned int tls_type : 8;
|
|
|
|
/* True if the symbol's PLT entry is in .iplt rather than .plt. */
|
|
unsigned int is_iplt : 1;
|
|
|
|
unsigned int unused : 23;
|
|
|
|
/* Offset of the GOTPLT entry reserved for the TLS descriptor,
|
|
starting at the end of the jump table. */
|
|
bfd_vma tlsdesc_got;
|
|
|
|
/* The symbol marking the real symbol location for exported thumb
|
|
symbols with Arm stubs. */
|
|
struct elf_link_hash_entry *export_glue;
|
|
|
|
/* A pointer to the most recently used stub hash entry against this
|
|
symbol. */
|
|
struct elf32_arm_stub_hash_entry *stub_cache;
|
|
};
|
|
|
|
/* Traverse an arm ELF linker hash table. */
|
|
#define elf32_arm_link_hash_traverse(table, func, info) \
|
|
(elf_link_hash_traverse \
|
|
(&(table)->root, \
|
|
(bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
|
|
(info)))
|
|
|
|
/* Get the ARM elf linker hash table from a link_info structure. */
|
|
#define elf32_arm_hash_table(info) \
|
|
(elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
|
|
== ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
|
|
|
|
#define arm_stub_hash_lookup(table, string, create, copy) \
|
|
((struct elf32_arm_stub_hash_entry *) \
|
|
bfd_hash_lookup ((table), (string), (create), (copy)))
|
|
|
|
/* Array to keep track of which stub sections have been created, and
|
|
information on stub grouping. */
|
|
struct map_stub
|
|
{
|
|
/* This is the section to which stubs in the group will be
|
|
attached. */
|
|
asection *link_sec;
|
|
/* The stub section. */
|
|
asection *stub_sec;
|
|
};
|
|
|
|
#define elf32_arm_compute_jump_table_size(htab) \
|
|
((htab)->next_tls_desc_index * 4)
|
|
|
|
/* ARM ELF linker hash table. */
|
|
struct elf32_arm_link_hash_table
|
|
{
|
|
/* The main hash table. */
|
|
struct elf_link_hash_table root;
|
|
|
|
/* The size in bytes of the section containing the Thumb-to-ARM glue. */
|
|
bfd_size_type thumb_glue_size;
|
|
|
|
/* The size in bytes of the section containing the ARM-to-Thumb glue. */
|
|
bfd_size_type arm_glue_size;
|
|
|
|
/* The size in bytes of section containing the ARMv4 BX veneers. */
|
|
bfd_size_type bx_glue_size;
|
|
|
|
/* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
|
|
veneer has been populated. */
|
|
bfd_vma bx_glue_offset[15];
|
|
|
|
/* The size in bytes of the section containing glue for VFP11 erratum
|
|
veneers. */
|
|
bfd_size_type vfp11_erratum_glue_size;
|
|
|
|
/* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
|
|
holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
|
|
elf32_arm_write_section(). */
|
|
struct a8_erratum_fix *a8_erratum_fixes;
|
|
unsigned int num_a8_erratum_fixes;
|
|
|
|
/* An arbitrary input BFD chosen to hold the glue sections. */
|
|
bfd * bfd_of_glue_owner;
|
|
|
|
/* Nonzero to output a BE8 image. */
|
|
int byteswap_code;
|
|
|
|
/* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
|
|
Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
|
|
int target1_is_rel;
|
|
|
|
/* The relocation to use for R_ARM_TARGET2 relocations. */
|
|
int target2_reloc;
|
|
|
|
/* 0 = Ignore R_ARM_V4BX.
|
|
1 = Convert BX to MOV PC.
|
|
2 = Generate v4 interworing stubs. */
|
|
int fix_v4bx;
|
|
|
|
/* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
|
|
int fix_cortex_a8;
|
|
|
|
/* Whether we should fix the ARM1176 BLX immediate issue. */
|
|
int fix_arm1176;
|
|
|
|
/* Nonzero if the ARM/Thumb BLX instructions are available for use. */
|
|
int use_blx;
|
|
|
|
/* What sort of code sequences we should look for which may trigger the
|
|
VFP11 denorm erratum. */
|
|
bfd_arm_vfp11_fix vfp11_fix;
|
|
|
|
/* Global counter for the number of fixes we have emitted. */
|
|
int num_vfp11_fixes;
|
|
|
|
/* Nonzero to force PIC branch veneers. */
|
|
int pic_veneer;
|
|
|
|
/* The number of bytes in the initial entry in the PLT. */
|
|
bfd_size_type plt_header_size;
|
|
|
|
/* The number of bytes in the subsequent PLT etries. */
|
|
bfd_size_type plt_entry_size;
|
|
|
|
/* True if the target system is VxWorks. */
|
|
int vxworks_p;
|
|
|
|
/* True if the target system is Symbian OS. */
|
|
int symbian_p;
|
|
|
|
/* True if the target system is Native Client. */
|
|
int nacl_p;
|
|
|
|
/* True if the target uses REL relocations. */
|
|
int use_rel;
|
|
|
|
/* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
|
|
bfd_vma next_tls_desc_index;
|
|
|
|
/* How many R_ARM_TLS_DESC relocations were generated so far. */
|
|
bfd_vma num_tls_desc;
|
|
|
|
/* Short-cuts to get to dynamic linker sections. */
|
|
asection *sdynbss;
|
|
asection *srelbss;
|
|
|
|
/* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
|
|
asection *srelplt2;
|
|
|
|
/* The offset into splt of the PLT entry for the TLS descriptor
|
|
resolver. Special values are 0, if not necessary (or not found
|
|
to be necessary yet), and -1 if needed but not determined
|
|
yet. */
|
|
bfd_vma dt_tlsdesc_plt;
|
|
|
|
/* The offset into sgot of the GOT entry used by the PLT entry
|
|
above. */
|
|
bfd_vma dt_tlsdesc_got;
|
|
|
|
/* Offset in .plt section of tls_arm_trampoline. */
|
|
bfd_vma tls_trampoline;
|
|
|
|
/* Data for R_ARM_TLS_LDM32 relocations. */
|
|
union
|
|
{
|
|
bfd_signed_vma refcount;
|
|
bfd_vma offset;
|
|
} tls_ldm_got;
|
|
|
|
/* Small local sym cache. */
|
|
struct sym_cache sym_cache;
|
|
|
|
/* For convenience in allocate_dynrelocs. */
|
|
bfd * obfd;
|
|
|
|
/* The amount of space used by the reserved portion of the sgotplt
|
|
section, plus whatever space is used by the jump slots. */
|
|
bfd_vma sgotplt_jump_table_size;
|
|
|
|
/* The stub hash table. */
|
|
struct bfd_hash_table stub_hash_table;
|
|
|
|
/* Linker stub bfd. */
|
|
bfd *stub_bfd;
|
|
|
|
/* Linker call-backs. */
|
|
asection * (*add_stub_section) (const char *, asection *, unsigned int);
|
|
void (*layout_sections_again) (void);
|
|
|
|
/* Array to keep track of which stub sections have been created, and
|
|
information on stub grouping. */
|
|
struct map_stub *stub_group;
|
|
|
|
/* Number of elements in stub_group. */
|
|
int top_id;
|
|
|
|
/* Assorted information used by elf32_arm_size_stubs. */
|
|
unsigned int bfd_count;
|
|
int top_index;
|
|
asection **input_list;
|
|
};
|
|
|
|
/* Create an entry in an ARM ELF linker hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
|
|
struct bfd_hash_table * table,
|
|
const char * string)
|
|
{
|
|
struct elf32_arm_link_hash_entry * ret =
|
|
(struct elf32_arm_link_hash_entry *) entry;
|
|
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (ret == NULL)
|
|
ret = (struct elf32_arm_link_hash_entry *)
|
|
bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
|
|
if (ret == NULL)
|
|
return (struct bfd_hash_entry *) ret;
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
ret = ((struct elf32_arm_link_hash_entry *)
|
|
_bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
|
|
table, string));
|
|
if (ret != NULL)
|
|
{
|
|
ret->dyn_relocs = NULL;
|
|
ret->tls_type = GOT_UNKNOWN;
|
|
ret->tlsdesc_got = (bfd_vma) -1;
|
|
ret->plt.thumb_refcount = 0;
|
|
ret->plt.maybe_thumb_refcount = 0;
|
|
ret->plt.noncall_refcount = 0;
|
|
ret->plt.got_offset = -1;
|
|
ret->is_iplt = FALSE;
|
|
ret->export_glue = NULL;
|
|
|
|
ret->stub_cache = NULL;
|
|
}
|
|
|
|
return (struct bfd_hash_entry *) ret;
|
|
}
|
|
|
|
/* Ensure that we have allocated bookkeeping structures for ABFD's local
|
|
symbols. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_allocate_local_sym_info (bfd *abfd)
|
|
{
|
|
if (elf_local_got_refcounts (abfd) == NULL)
|
|
{
|
|
bfd_size_type num_syms;
|
|
bfd_size_type size;
|
|
char *data;
|
|
|
|
num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
|
|
size = num_syms * (sizeof (bfd_signed_vma)
|
|
+ sizeof (struct arm_local_iplt_info *)
|
|
+ sizeof (bfd_vma)
|
|
+ sizeof (char));
|
|
data = bfd_zalloc (abfd, size);
|
|
if (data == NULL)
|
|
return FALSE;
|
|
|
|
elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
|
|
data += num_syms * sizeof (bfd_signed_vma);
|
|
|
|
elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
|
|
data += num_syms * sizeof (struct arm_local_iplt_info *);
|
|
|
|
elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
|
|
data += num_syms * sizeof (bfd_vma);
|
|
|
|
elf32_arm_local_got_tls_type (abfd) = data;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* Return the .iplt information for local symbol R_SYMNDX, which belongs
|
|
to input bfd ABFD. Create the information if it doesn't already exist.
|
|
Return null if an allocation fails. */
|
|
|
|
static struct arm_local_iplt_info *
|
|
elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
|
|
{
|
|
struct arm_local_iplt_info **ptr;
|
|
|
|
if (!elf32_arm_allocate_local_sym_info (abfd))
|
|
return NULL;
|
|
|
|
BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
|
|
ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
|
|
if (*ptr == NULL)
|
|
*ptr = bfd_zalloc (abfd, sizeof (**ptr));
|
|
return *ptr;
|
|
}
|
|
|
|
/* Try to obtain PLT information for the symbol with index R_SYMNDX
|
|
in ABFD's symbol table. If the symbol is global, H points to its
|
|
hash table entry, otherwise H is null.
|
|
|
|
Return true if the symbol does have PLT information. When returning
|
|
true, point *ROOT_PLT at the target-independent reference count/offset
|
|
union and *ARM_PLT at the ARM-specific information. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
|
|
unsigned long r_symndx, union gotplt_union **root_plt,
|
|
struct arm_plt_info **arm_plt)
|
|
{
|
|
struct arm_local_iplt_info *local_iplt;
|
|
|
|
if (h != NULL)
|
|
{
|
|
*root_plt = &h->root.plt;
|
|
*arm_plt = &h->plt;
|
|
return TRUE;
|
|
}
|
|
|
|
if (elf32_arm_local_iplt (abfd) == NULL)
|
|
return FALSE;
|
|
|
|
local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
|
|
if (local_iplt == NULL)
|
|
return FALSE;
|
|
|
|
*root_plt = &local_iplt->root;
|
|
*arm_plt = &local_iplt->arm;
|
|
return TRUE;
|
|
}
|
|
|
|
/* Return true if the PLT described by ARM_PLT requires a Thumb stub
|
|
before it. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
|
|
struct arm_plt_info *arm_plt)
|
|
{
|
|
struct elf32_arm_link_hash_table *htab;
|
|
|
|
htab = elf32_arm_hash_table (info);
|
|
return (arm_plt->thumb_refcount != 0
|
|
|| (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
|
|
}
|
|
|
|
/* Return a pointer to the head of the dynamic reloc list that should
|
|
be used for local symbol ISYM, which is symbol number R_SYMNDX in
|
|
ABFD's symbol table. Return null if an error occurs. */
|
|
|
|
static struct elf_dyn_relocs **
|
|
elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
|
|
Elf_Internal_Sym *isym)
|
|
{
|
|
if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
|
|
{
|
|
struct arm_local_iplt_info *local_iplt;
|
|
|
|
local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
|
|
if (local_iplt == NULL)
|
|
return NULL;
|
|
return &local_iplt->dyn_relocs;
|
|
}
|
|
else
|
|
{
|
|
/* Track dynamic relocs needed for local syms too.
|
|
We really need local syms available to do this
|
|
easily. Oh well. */
|
|
asection *s;
|
|
void *vpp;
|
|
|
|
s = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
|
if (s == NULL)
|
|
abort ();
|
|
|
|
vpp = &elf_section_data (s)->local_dynrel;
|
|
return (struct elf_dyn_relocs **) vpp;
|
|
}
|
|
}
|
|
|
|
/* Initialize an entry in the stub hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
stub_hash_newfunc (struct bfd_hash_entry *entry,
|
|
struct bfd_hash_table *table,
|
|
const char *string)
|
|
{
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (entry == NULL)
|
|
{
|
|
entry = (struct bfd_hash_entry *)
|
|
bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
|
|
if (entry == NULL)
|
|
return entry;
|
|
}
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
entry = bfd_hash_newfunc (entry, table, string);
|
|
if (entry != NULL)
|
|
{
|
|
struct elf32_arm_stub_hash_entry *eh;
|
|
|
|
/* Initialize the local fields. */
|
|
eh = (struct elf32_arm_stub_hash_entry *) entry;
|
|
eh->stub_sec = NULL;
|
|
eh->stub_offset = 0;
|
|
eh->target_value = 0;
|
|
eh->target_section = NULL;
|
|
eh->target_addend = 0;
|
|
eh->orig_insn = 0;
|
|
eh->stub_type = arm_stub_none;
|
|
eh->stub_size = 0;
|
|
eh->stub_template = NULL;
|
|
eh->stub_template_size = 0;
|
|
eh->h = NULL;
|
|
eh->id_sec = NULL;
|
|
eh->output_name = NULL;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
|
|
shortcuts to them in our hash table. */
|
|
|
|
static bfd_boolean
|
|
create_got_section (bfd *dynobj, struct bfd_link_info *info)
|
|
{
|
|
struct elf32_arm_link_hash_table *htab;
|
|
|
|
htab = elf32_arm_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
/* BPABI objects never have a GOT, or associated sections. */
|
|
if (htab->symbian_p)
|
|
return TRUE;
|
|
|
|
if (! _bfd_elf_create_got_section (dynobj, info))
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
|
|
|
|
static bfd_boolean
|
|
create_ifunc_sections (struct bfd_link_info *info)
|
|
{
|
|
struct elf32_arm_link_hash_table *htab;
|
|
const struct elf_backend_data *bed;
|
|
bfd *dynobj;
|
|
asection *s;
|
|
flagword flags;
|
|
|
|
htab = elf32_arm_hash_table (info);
|
|
dynobj = htab->root.dynobj;
|
|
bed = get_elf_backend_data (dynobj);
|
|
flags = bed->dynamic_sec_flags;
|
|
|
|
if (htab->root.iplt == NULL)
|
|
{
|
|
s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
|
|
flags | SEC_READONLY | SEC_CODE);
|
|
if (s == NULL
|
|
|| !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
|
|
return FALSE;
|
|
htab->root.iplt = s;
|
|
}
|
|
|
|
if (htab->root.irelplt == NULL)
|
|
{
|
|
s = bfd_make_section_anyway_with_flags (dynobj,
|
|
RELOC_SECTION (htab, ".iplt"),
|
|
flags | SEC_READONLY);
|
|
if (s == NULL
|
|
|| !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
|
|
return FALSE;
|
|
htab->root.irelplt = s;
|
|
}
|
|
|
|
if (htab->root.igotplt == NULL)
|
|
{
|
|
s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
|
|
if (s == NULL
|
|
|| !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
|
|
return FALSE;
|
|
htab->root.igotplt = s;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
|
|
.rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
|
|
hash table. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
|
|
{
|
|
struct elf32_arm_link_hash_table *htab;
|
|
|
|
htab = elf32_arm_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
if (!htab->root.sgot && !create_got_section (dynobj, info))
|
|
return FALSE;
|
|
|
|
if (!_bfd_elf_create_dynamic_sections (dynobj, info))
|
|
return FALSE;
|
|
|
|
htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
|
|
if (!info->shared)
|
|
htab->srelbss = bfd_get_linker_section (dynobj,
|
|
RELOC_SECTION (htab, ".bss"));
|
|
|
|
if (htab->vxworks_p)
|
|
{
|
|
if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
|
|
return FALSE;
|
|
|
|
if (info->shared)
|
|
{
|
|
htab->plt_header_size = 0;
|
|
htab->plt_entry_size
|
|
= 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
|
|
}
|
|
else
|
|
{
|
|
htab->plt_header_size
|
|
= 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
|
|
htab->plt_entry_size
|
|
= 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
|
|
}
|
|
}
|
|
|
|
if (!htab->root.splt
|
|
|| !htab->root.srelplt
|
|
|| !htab->sdynbss
|
|
|| (!info->shared && !htab->srelbss))
|
|
abort ();
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Copy the extra info we tack onto an elf_link_hash_entry. */
|
|
|
|
static void
|
|
elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *dir,
|
|
struct elf_link_hash_entry *ind)
|
|
{
|
|
struct elf32_arm_link_hash_entry *edir, *eind;
|
|
|
|
edir = (struct elf32_arm_link_hash_entry *) dir;
|
|
eind = (struct elf32_arm_link_hash_entry *) ind;
|
|
|
|
if (eind->dyn_relocs != NULL)
|
|
{
|
|
if (edir->dyn_relocs != NULL)
|
|
{
|
|
struct elf_dyn_relocs **pp;
|
|
struct elf_dyn_relocs *p;
|
|
|
|
/* Add reloc counts against the indirect sym to the direct sym
|
|
list. Merge any entries against the same section. */
|
|
for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
|
|
{
|
|
struct elf_dyn_relocs *q;
|
|
|
|
for (q = edir->dyn_relocs; q != NULL; q = q->next)
|
|
if (q->sec == p->sec)
|
|
{
|
|
q->pc_count += p->pc_count;
|
|
q->count += p->count;
|
|
*pp = p->next;
|
|
break;
|
|
}
|
|
if (q == NULL)
|
|
pp = &p->next;
|
|
}
|
|
*pp = edir->dyn_relocs;
|
|
}
|
|
|
|
edir->dyn_relocs = eind->dyn_relocs;
|
|
eind->dyn_relocs = NULL;
|
|
}
|
|
|
|
if (ind->root.type == bfd_link_hash_indirect)
|
|
{
|
|
/* Copy over PLT info. */
|
|
edir->plt.thumb_refcount += eind->plt.thumb_refcount;
|
|
eind->plt.thumb_refcount = 0;
|
|
edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
|
|
eind->plt.maybe_thumb_refcount = 0;
|
|
edir->plt.noncall_refcount += eind->plt.noncall_refcount;
|
|
eind->plt.noncall_refcount = 0;
|
|
|
|
/* We should only allocate a function to .iplt once the final
|
|
symbol information is known. */
|
|
BFD_ASSERT (!eind->is_iplt);
|
|
|
|
if (dir->got.refcount <= 0)
|
|
{
|
|
edir->tls_type = eind->tls_type;
|
|
eind->tls_type = GOT_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
_bfd_elf_link_hash_copy_indirect (info, dir, ind);
|
|
}
|
|
|
|
/* Create an ARM elf linker hash table. */
|
|
|
|
static struct bfd_link_hash_table *
|
|
elf32_arm_link_hash_table_create (bfd *abfd)
|
|
{
|
|
struct elf32_arm_link_hash_table *ret;
|
|
bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
|
|
|
|
ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
|
|
if (ret == NULL)
|
|
return NULL;
|
|
|
|
if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
|
|
elf32_arm_link_hash_newfunc,
|
|
sizeof (struct elf32_arm_link_hash_entry),
|
|
ARM_ELF_DATA))
|
|
{
|
|
free (ret);
|
|
return NULL;
|
|
}
|
|
|
|
ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
|
|
#ifdef FOUR_WORD_PLT
|
|
ret->plt_header_size = 16;
|
|
ret->plt_entry_size = 16;
|
|
#else
|
|
ret->plt_header_size = 20;
|
|
ret->plt_entry_size = 12;
|
|
#endif
|
|
ret->use_rel = 1;
|
|
ret->obfd = abfd;
|
|
|
|
if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
|
|
sizeof (struct elf32_arm_stub_hash_entry)))
|
|
{
|
|
free (ret);
|
|
return NULL;
|
|
}
|
|
|
|
return &ret->root.root;
|
|
}
|
|
|
|
/* Free the derived linker hash table. */
|
|
|
|
static void
|
|
elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
|
|
{
|
|
struct elf32_arm_link_hash_table *ret
|
|
= (struct elf32_arm_link_hash_table *) hash;
|
|
|
|
bfd_hash_table_free (&ret->stub_hash_table);
|
|
_bfd_elf_link_hash_table_free (hash);
|
|
}
|
|
|
|
/* Determine if we're dealing with a Thumb only architecture. */
|
|
|
|
static bfd_boolean
|
|
using_thumb_only (struct elf32_arm_link_hash_table *globals)
|
|
{
|
|
int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
|
|
Tag_CPU_arch);
|
|
int profile;
|
|
|
|
if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
|
|
return TRUE;
|
|
|
|
if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
|
|
return FALSE;
|
|
|
|
profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
|
|
Tag_CPU_arch_profile);
|
|
|
|
return profile == 'M';
|
|
}
|
|
|
|
/* Determine if we're dealing with a Thumb-2 object. */
|
|
|
|
static bfd_boolean
|
|
using_thumb2 (struct elf32_arm_link_hash_table *globals)
|
|
{
|
|
int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
|
|
Tag_CPU_arch);
|
|
return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
|
|
}
|
|
|
|
/* Determine what kind of NOPs are available. */
|
|
|
|
static bfd_boolean
|
|
arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
|
|
{
|
|
const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
|
|
Tag_CPU_arch);
|
|
return arch == TAG_CPU_ARCH_V6T2
|
|
|| arch == TAG_CPU_ARCH_V6K
|
|
|| arch == TAG_CPU_ARCH_V7
|
|
|| arch == TAG_CPU_ARCH_V7E_M;
|
|
}
|
|
|
|
static bfd_boolean
|
|
arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
|
|
{
|
|
const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
|
|
Tag_CPU_arch);
|
|
return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
|
|
|| arch == TAG_CPU_ARCH_V7E_M);
|
|
}
|
|
|
|
static bfd_boolean
|
|
arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
|
|
{
|
|
switch (stub_type)
|
|
{
|
|
case arm_stub_long_branch_thumb_only:
|
|
case arm_stub_long_branch_v4t_thumb_arm:
|
|
case arm_stub_short_branch_v4t_thumb_arm:
|
|
case arm_stub_long_branch_v4t_thumb_arm_pic:
|
|
case arm_stub_long_branch_v4t_thumb_tls_pic:
|
|
case arm_stub_long_branch_thumb_only_pic:
|
|
return TRUE;
|
|
case arm_stub_none:
|
|
BFD_FAIL ();
|
|
return FALSE;
|
|
break;
|
|
default:
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/* Determine the type of stub needed, if any, for a call. */
|
|
|
|
static enum elf32_arm_stub_type
|
|
arm_type_of_stub (struct bfd_link_info *info,
|
|
asection *input_sec,
|
|
const Elf_Internal_Rela *rel,
|
|
unsigned char st_type,
|
|
enum arm_st_branch_type *actual_branch_type,
|
|
struct elf32_arm_link_hash_entry *hash,
|
|
bfd_vma destination,
|
|
asection *sym_sec,
|
|
bfd *input_bfd,
|
|
const char *name)
|
|
{
|
|
bfd_vma location;
|
|
bfd_signed_vma branch_offset;
|
|
unsigned int r_type;
|
|
struct elf32_arm_link_hash_table * globals;
|
|
int thumb2;
|
|
int thumb_only;
|
|
enum elf32_arm_stub_type stub_type = arm_stub_none;
|
|
int use_plt = 0;
|
|
enum arm_st_branch_type branch_type = *actual_branch_type;
|
|
union gotplt_union *root_plt;
|
|
struct arm_plt_info *arm_plt;
|
|
|
|
if (branch_type == ST_BRANCH_LONG)
|
|
return stub_type;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
if (globals == NULL)
|
|
return stub_type;
|
|
|
|
thumb_only = using_thumb_only (globals);
|
|
|
|
thumb2 = using_thumb2 (globals);
|
|
|
|
/* Determine where the call point is. */
|
|
location = (input_sec->output_offset
|
|
+ input_sec->output_section->vma
|
|
+ rel->r_offset);
|
|
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
|
|
/* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
|
|
are considering a function call relocation. */
|
|
if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
|
|
&& branch_type == ST_BRANCH_TO_ARM)
|
|
branch_type = ST_BRANCH_TO_THUMB;
|
|
|
|
/* For TLS call relocs, it is the caller's responsibility to provide
|
|
the address of the appropriate trampoline. */
|
|
if (r_type != R_ARM_TLS_CALL
|
|
&& r_type != R_ARM_THM_TLS_CALL
|
|
&& elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
|
|
&root_plt, &arm_plt)
|
|
&& root_plt->offset != (bfd_vma) -1)
|
|
{
|
|
asection *splt;
|
|
|
|
if (hash == NULL || hash->is_iplt)
|
|
splt = globals->root.iplt;
|
|
else
|
|
splt = globals->root.splt;
|
|
if (splt != NULL)
|
|
{
|
|
use_plt = 1;
|
|
|
|
/* Note when dealing with PLT entries: the main PLT stub is in
|
|
ARM mode, so if the branch is in Thumb mode, another
|
|
Thumb->ARM stub will be inserted later just before the ARM
|
|
PLT stub. We don't take this extra distance into account
|
|
here, because if a long branch stub is needed, we'll add a
|
|
Thumb->Arm one and branch directly to the ARM PLT entry
|
|
because it avoids spreading offset corrections in several
|
|
places. */
|
|
|
|
destination = (splt->output_section->vma
|
|
+ splt->output_offset
|
|
+ root_plt->offset);
|
|
st_type = STT_FUNC;
|
|
branch_type = ST_BRANCH_TO_ARM;
|
|
}
|
|
}
|
|
/* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
|
|
BFD_ASSERT (st_type != STT_GNU_IFUNC);
|
|
|
|
branch_offset = (bfd_signed_vma)(destination - location);
|
|
|
|
if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
|
|
|| r_type == R_ARM_THM_TLS_CALL)
|
|
{
|
|
/* Handle cases where:
|
|
- this call goes too far (different Thumb/Thumb2 max
|
|
distance)
|
|
- it's a Thumb->Arm call and blx is not available, or it's a
|
|
Thumb->Arm branch (not bl). A stub is needed in this case,
|
|
but only if this call is not through a PLT entry. Indeed,
|
|
PLT stubs handle mode switching already.
|
|
*/
|
|
if ((!thumb2
|
|
&& (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
|
|
|| (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
|
|
|| (thumb2
|
|
&& (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
|
|
|| (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
|
|
|| (branch_type == ST_BRANCH_TO_ARM
|
|
&& (((r_type == R_ARM_THM_CALL
|
|
|| r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
|
|
|| (r_type == R_ARM_THM_JUMP24))
|
|
&& !use_plt))
|
|
{
|
|
if (branch_type == ST_BRANCH_TO_THUMB)
|
|
{
|
|
/* Thumb to thumb. */
|
|
if (!thumb_only)
|
|
{
|
|
stub_type = (info->shared | globals->pic_veneer)
|
|
/* PIC stubs. */
|
|
? ((globals->use_blx
|
|
&& (r_type == R_ARM_THM_CALL))
|
|
/* V5T and above. Stub starts with ARM code, so
|
|
we must be able to switch mode before
|
|
reaching it, which is only possible for 'bl'
|
|
(ie R_ARM_THM_CALL relocation). */
|
|
? arm_stub_long_branch_any_thumb_pic
|
|
/* On V4T, use Thumb code only. */
|
|
: arm_stub_long_branch_v4t_thumb_thumb_pic)
|
|
|
|
/* non-PIC stubs. */
|
|
: ((globals->use_blx
|
|
&& (r_type == R_ARM_THM_CALL))
|
|
/* V5T and above. */
|
|
? arm_stub_long_branch_any_any
|
|
/* V4T. */
|
|
: arm_stub_long_branch_v4t_thumb_thumb);
|
|
}
|
|
else
|
|
{
|
|
stub_type = (info->shared | globals->pic_veneer)
|
|
/* PIC stub. */
|
|
? arm_stub_long_branch_thumb_only_pic
|
|
/* non-PIC stub. */
|
|
: arm_stub_long_branch_thumb_only;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Thumb to arm. */
|
|
if (sym_sec != NULL
|
|
&& sym_sec->owner != NULL
|
|
&& !INTERWORK_FLAG (sym_sec->owner))
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%s): warning: interworking not enabled.\n"
|
|
" first occurrence: %B: Thumb call to ARM"),
|
|
sym_sec->owner, input_bfd, name);
|
|
}
|
|
|
|
stub_type =
|
|
(info->shared | globals->pic_veneer)
|
|
/* PIC stubs. */
|
|
? (r_type == R_ARM_THM_TLS_CALL
|
|
/* TLS PIC stubs */
|
|
? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
|
|
: arm_stub_long_branch_v4t_thumb_tls_pic)
|
|
: ((globals->use_blx && r_type == R_ARM_THM_CALL)
|
|
/* V5T PIC and above. */
|
|
? arm_stub_long_branch_any_arm_pic
|
|
/* V4T PIC stub. */
|
|
: arm_stub_long_branch_v4t_thumb_arm_pic))
|
|
|
|
/* non-PIC stubs. */
|
|
: ((globals->use_blx && r_type == R_ARM_THM_CALL)
|
|
/* V5T and above. */
|
|
? arm_stub_long_branch_any_any
|
|
/* V4T. */
|
|
: arm_stub_long_branch_v4t_thumb_arm);
|
|
|
|
/* Handle v4t short branches. */
|
|
if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
|
|
&& (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
|
|
&& (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
|
|
stub_type = arm_stub_short_branch_v4t_thumb_arm;
|
|
}
|
|
}
|
|
}
|
|
else if (r_type == R_ARM_CALL
|
|
|| r_type == R_ARM_JUMP24
|
|
|| r_type == R_ARM_PLT32
|
|
|| r_type == R_ARM_TLS_CALL)
|
|
{
|
|
if (branch_type == ST_BRANCH_TO_THUMB)
|
|
{
|
|
/* Arm to thumb. */
|
|
|
|
if (sym_sec != NULL
|
|
&& sym_sec->owner != NULL
|
|
&& !INTERWORK_FLAG (sym_sec->owner))
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%s): warning: interworking not enabled.\n"
|
|
" first occurrence: %B: ARM call to Thumb"),
|
|
sym_sec->owner, input_bfd, name);
|
|
}
|
|
|
|
/* We have an extra 2-bytes reach because of
|
|
the mode change (bit 24 (H) of BLX encoding). */
|
|
if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
|
|
|| (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
|
|
|| (r_type == R_ARM_CALL && !globals->use_blx)
|
|
|| (r_type == R_ARM_JUMP24)
|
|
|| (r_type == R_ARM_PLT32))
|
|
{
|
|
stub_type = (info->shared | globals->pic_veneer)
|
|
/* PIC stubs. */
|
|
? ((globals->use_blx)
|
|
/* V5T and above. */
|
|
? arm_stub_long_branch_any_thumb_pic
|
|
/* V4T stub. */
|
|
: arm_stub_long_branch_v4t_arm_thumb_pic)
|
|
|
|
/* non-PIC stubs. */
|
|
: ((globals->use_blx)
|
|
/* V5T and above. */
|
|
? arm_stub_long_branch_any_any
|
|
/* V4T. */
|
|
: arm_stub_long_branch_v4t_arm_thumb);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Arm to arm. */
|
|
if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
|
|
|| (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
|
|
{
|
|
stub_type =
|
|
(info->shared | globals->pic_veneer)
|
|
/* PIC stubs. */
|
|
? (r_type == R_ARM_TLS_CALL
|
|
/* TLS PIC Stub */
|
|
? arm_stub_long_branch_any_tls_pic
|
|
: (globals->nacl_p
|
|
? arm_stub_long_branch_arm_nacl_pic
|
|
: arm_stub_long_branch_any_arm_pic))
|
|
/* non-PIC stubs. */
|
|
: (globals->nacl_p
|
|
? arm_stub_long_branch_arm_nacl
|
|
: arm_stub_long_branch_any_any);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If a stub is needed, record the actual destination type. */
|
|
if (stub_type != arm_stub_none)
|
|
*actual_branch_type = branch_type;
|
|
|
|
return stub_type;
|
|
}
|
|
|
|
/* Build a name for an entry in the stub hash table. */
|
|
|
|
static char *
|
|
elf32_arm_stub_name (const asection *input_section,
|
|
const asection *sym_sec,
|
|
const struct elf32_arm_link_hash_entry *hash,
|
|
const Elf_Internal_Rela *rel,
|
|
enum elf32_arm_stub_type stub_type)
|
|
{
|
|
char *stub_name;
|
|
bfd_size_type len;
|
|
|
|
if (hash)
|
|
{
|
|
len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
|
|
stub_name = (char *) bfd_malloc (len);
|
|
if (stub_name != NULL)
|
|
sprintf (stub_name, "%08x_%s+%x_%d",
|
|
input_section->id & 0xffffffff,
|
|
hash->root.root.root.string,
|
|
(int) rel->r_addend & 0xffffffff,
|
|
(int) stub_type);
|
|
}
|
|
else
|
|
{
|
|
len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
|
|
stub_name = (char *) bfd_malloc (len);
|
|
if (stub_name != NULL)
|
|
sprintf (stub_name, "%08x_%x:%x+%x_%d",
|
|
input_section->id & 0xffffffff,
|
|
sym_sec->id & 0xffffffff,
|
|
ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
|
|
|| ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
|
|
? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
|
|
(int) rel->r_addend & 0xffffffff,
|
|
(int) stub_type);
|
|
}
|
|
|
|
return stub_name;
|
|
}
|
|
|
|
/* Look up an entry in the stub hash. Stub entries are cached because
|
|
creating the stub name takes a bit of time. */
|
|
|
|
static struct elf32_arm_stub_hash_entry *
|
|
elf32_arm_get_stub_entry (const asection *input_section,
|
|
const asection *sym_sec,
|
|
struct elf_link_hash_entry *hash,
|
|
const Elf_Internal_Rela *rel,
|
|
struct elf32_arm_link_hash_table *htab,
|
|
enum elf32_arm_stub_type stub_type)
|
|
{
|
|
struct elf32_arm_stub_hash_entry *stub_entry;
|
|
struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
|
|
const asection *id_sec;
|
|
|
|
if ((input_section->flags & SEC_CODE) == 0)
|
|
return NULL;
|
|
|
|
/* If this input section is part of a group of sections sharing one
|
|
stub section, then use the id of the first section in the group.
|
|
Stub names need to include a section id, as there may well be
|
|
more than one stub used to reach say, printf, and we need to
|
|
distinguish between them. */
|
|
id_sec = htab->stub_group[input_section->id].link_sec;
|
|
|
|
if (h != NULL && h->stub_cache != NULL
|
|
&& h->stub_cache->h == h
|
|
&& h->stub_cache->id_sec == id_sec
|
|
&& h->stub_cache->stub_type == stub_type)
|
|
{
|
|
stub_entry = h->stub_cache;
|
|
}
|
|
else
|
|
{
|
|
char *stub_name;
|
|
|
|
stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
|
|
if (stub_name == NULL)
|
|
return NULL;
|
|
|
|
stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
|
|
stub_name, FALSE, FALSE);
|
|
if (h != NULL)
|
|
h->stub_cache = stub_entry;
|
|
|
|
free (stub_name);
|
|
}
|
|
|
|
return stub_entry;
|
|
}
|
|
|
|
/* Find or create a stub section. Returns a pointer to the stub section, and
|
|
the section to which the stub section will be attached (in *LINK_SEC_P).
|
|
LINK_SEC_P may be NULL. */
|
|
|
|
static asection *
|
|
elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
|
|
struct elf32_arm_link_hash_table *htab)
|
|
{
|
|
asection *link_sec;
|
|
asection *stub_sec;
|
|
|
|
link_sec = htab->stub_group[section->id].link_sec;
|
|
BFD_ASSERT (link_sec != NULL);
|
|
stub_sec = htab->stub_group[section->id].stub_sec;
|
|
|
|
if (stub_sec == NULL)
|
|
{
|
|
stub_sec = htab->stub_group[link_sec->id].stub_sec;
|
|
if (stub_sec == NULL)
|
|
{
|
|
size_t namelen;
|
|
bfd_size_type len;
|
|
char *s_name;
|
|
|
|
namelen = strlen (link_sec->name);
|
|
len = namelen + sizeof (STUB_SUFFIX);
|
|
s_name = (char *) bfd_alloc (htab->stub_bfd, len);
|
|
if (s_name == NULL)
|
|
return NULL;
|
|
|
|
memcpy (s_name, link_sec->name, namelen);
|
|
memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
|
|
stub_sec = (*htab->add_stub_section) (s_name, link_sec,
|
|
htab->nacl_p ? 4 : 3);
|
|
if (stub_sec == NULL)
|
|
return NULL;
|
|
htab->stub_group[link_sec->id].stub_sec = stub_sec;
|
|
}
|
|
htab->stub_group[section->id].stub_sec = stub_sec;
|
|
}
|
|
|
|
if (link_sec_p)
|
|
*link_sec_p = link_sec;
|
|
|
|
return stub_sec;
|
|
}
|
|
|
|
/* Add a new stub entry to the stub hash. Not all fields of the new
|
|
stub entry are initialised. */
|
|
|
|
static struct elf32_arm_stub_hash_entry *
|
|
elf32_arm_add_stub (const char *stub_name,
|
|
asection *section,
|
|
struct elf32_arm_link_hash_table *htab)
|
|
{
|
|
asection *link_sec;
|
|
asection *stub_sec;
|
|
struct elf32_arm_stub_hash_entry *stub_entry;
|
|
|
|
stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
|
|
if (stub_sec == NULL)
|
|
return NULL;
|
|
|
|
/* Enter this entry into the linker stub hash table. */
|
|
stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
|
|
TRUE, FALSE);
|
|
if (stub_entry == NULL)
|
|
{
|
|
(*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
|
|
section->owner,
|
|
stub_name);
|
|
return NULL;
|
|
}
|
|
|
|
stub_entry->stub_sec = stub_sec;
|
|
stub_entry->stub_offset = 0;
|
|
stub_entry->id_sec = link_sec;
|
|
|
|
return stub_entry;
|
|
}
|
|
|
|
/* Store an Arm insn into an output section not processed by
|
|
elf32_arm_write_section. */
|
|
|
|
static void
|
|
put_arm_insn (struct elf32_arm_link_hash_table * htab,
|
|
bfd * output_bfd, bfd_vma val, void * ptr)
|
|
{
|
|
if (htab->byteswap_code != bfd_little_endian (output_bfd))
|
|
bfd_putl32 (val, ptr);
|
|
else
|
|
bfd_putb32 (val, ptr);
|
|
}
|
|
|
|
/* Store a 16-bit Thumb insn into an output section not processed by
|
|
elf32_arm_write_section. */
|
|
|
|
static void
|
|
put_thumb_insn (struct elf32_arm_link_hash_table * htab,
|
|
bfd * output_bfd, bfd_vma val, void * ptr)
|
|
{
|
|
if (htab->byteswap_code != bfd_little_endian (output_bfd))
|
|
bfd_putl16 (val, ptr);
|
|
else
|
|
bfd_putb16 (val, ptr);
|
|
}
|
|
|
|
/* If it's possible to change R_TYPE to a more efficient access
|
|
model, return the new reloc type. */
|
|
|
|
static unsigned
|
|
elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
|
|
struct elf_link_hash_entry *h)
|
|
{
|
|
int is_local = (h == NULL);
|
|
|
|
if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
|
|
return r_type;
|
|
|
|
/* We do not support relaxations for Old TLS models. */
|
|
switch (r_type)
|
|
{
|
|
case R_ARM_TLS_GOTDESC:
|
|
case R_ARM_TLS_CALL:
|
|
case R_ARM_THM_TLS_CALL:
|
|
case R_ARM_TLS_DESCSEQ:
|
|
case R_ARM_THM_TLS_DESCSEQ:
|
|
return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
|
|
}
|
|
|
|
return r_type;
|
|
}
|
|
|
|
static bfd_reloc_status_type elf32_arm_final_link_relocate
|
|
(reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
|
|
Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
|
|
const char *, unsigned char, enum arm_st_branch_type,
|
|
struct elf_link_hash_entry *, bfd_boolean *, char **);
|
|
|
|
static unsigned int
|
|
arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
|
|
{
|
|
switch (stub_type)
|
|
{
|
|
case arm_stub_a8_veneer_b_cond:
|
|
case arm_stub_a8_veneer_b:
|
|
case arm_stub_a8_veneer_bl:
|
|
return 2;
|
|
|
|
case arm_stub_long_branch_any_any:
|
|
case arm_stub_long_branch_v4t_arm_thumb:
|
|
case arm_stub_long_branch_thumb_only:
|
|
case arm_stub_long_branch_v4t_thumb_thumb:
|
|
case arm_stub_long_branch_v4t_thumb_arm:
|
|
case arm_stub_short_branch_v4t_thumb_arm:
|
|
case arm_stub_long_branch_any_arm_pic:
|
|
case arm_stub_long_branch_any_thumb_pic:
|
|
case arm_stub_long_branch_v4t_thumb_thumb_pic:
|
|
case arm_stub_long_branch_v4t_arm_thumb_pic:
|
|
case arm_stub_long_branch_v4t_thumb_arm_pic:
|
|
case arm_stub_long_branch_thumb_only_pic:
|
|
case arm_stub_long_branch_any_tls_pic:
|
|
case arm_stub_long_branch_v4t_thumb_tls_pic:
|
|
case arm_stub_a8_veneer_blx:
|
|
return 4;
|
|
|
|
case arm_stub_long_branch_arm_nacl:
|
|
case arm_stub_long_branch_arm_nacl_pic:
|
|
return 16;
|
|
|
|
default:
|
|
abort (); /* Should be unreachable. */
|
|
}
|
|
}
|
|
|
|
static bfd_boolean
|
|
arm_build_one_stub (struct bfd_hash_entry *gen_entry,
|
|
void * in_arg)
|
|
{
|
|
#define MAXRELOCS 3
|
|
struct elf32_arm_stub_hash_entry *stub_entry;
|
|
struct elf32_arm_link_hash_table *globals;
|
|
struct bfd_link_info *info;
|
|
asection *stub_sec;
|
|
bfd *stub_bfd;
|
|
bfd_byte *loc;
|
|
bfd_vma sym_value;
|
|
int template_size;
|
|
int size;
|
|
const insn_sequence *template_sequence;
|
|
int i;
|
|
int stub_reloc_idx[MAXRELOCS] = {-1, -1};
|
|
int stub_reloc_offset[MAXRELOCS] = {0, 0};
|
|
int nrelocs = 0;
|
|
|
|
/* Massage our args to the form they really have. */
|
|
stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
|
|
info = (struct bfd_link_info *) in_arg;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
if (globals == NULL)
|
|
return FALSE;
|
|
|
|
stub_sec = stub_entry->stub_sec;
|
|
|
|
if ((globals->fix_cortex_a8 < 0)
|
|
!= (arm_stub_required_alignment (stub_entry->stub_type) == 2))
|
|
/* We have to do less-strictly-aligned fixes last. */
|
|
return TRUE;
|
|
|
|
/* Make a note of the offset within the stubs for this entry. */
|
|
stub_entry->stub_offset = stub_sec->size;
|
|
loc = stub_sec->contents + stub_entry->stub_offset;
|
|
|
|
stub_bfd = stub_sec->owner;
|
|
|
|
/* This is the address of the stub destination. */
|
|
sym_value = (stub_entry->target_value
|
|
+ stub_entry->target_section->output_offset
|
|
+ stub_entry->target_section->output_section->vma);
|
|
|
|
template_sequence = stub_entry->stub_template;
|
|
template_size = stub_entry->stub_template_size;
|
|
|
|
size = 0;
|
|
for (i = 0; i < template_size; i++)
|
|
{
|
|
switch (template_sequence[i].type)
|
|
{
|
|
case THUMB16_TYPE:
|
|
{
|
|
bfd_vma data = (bfd_vma) template_sequence[i].data;
|
|
if (template_sequence[i].reloc_addend != 0)
|
|
{
|
|
/* We've borrowed the reloc_addend field to mean we should
|
|
insert a condition code into this (Thumb-1 branch)
|
|
instruction. See THUMB16_BCOND_INSN. */
|
|
BFD_ASSERT ((data & 0xff00) == 0xd000);
|
|
data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
|
|
}
|
|
bfd_put_16 (stub_bfd, data, loc + size);
|
|
size += 2;
|
|
}
|
|
break;
|
|
|
|
case THUMB32_TYPE:
|
|
bfd_put_16 (stub_bfd,
|
|
(template_sequence[i].data >> 16) & 0xffff,
|
|
loc + size);
|
|
bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
|
|
loc + size + 2);
|
|
if (template_sequence[i].r_type != R_ARM_NONE)
|
|
{
|
|
stub_reloc_idx[nrelocs] = i;
|
|
stub_reloc_offset[nrelocs++] = size;
|
|
}
|
|
size += 4;
|
|
break;
|
|
|
|
case ARM_TYPE:
|
|
bfd_put_32 (stub_bfd, template_sequence[i].data,
|
|
loc + size);
|
|
/* Handle cases where the target is encoded within the
|
|
instruction. */
|
|
if (template_sequence[i].r_type == R_ARM_JUMP24)
|
|
{
|
|
stub_reloc_idx[nrelocs] = i;
|
|
stub_reloc_offset[nrelocs++] = size;
|
|
}
|
|
size += 4;
|
|
break;
|
|
|
|
case DATA_TYPE:
|
|
bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
|
|
stub_reloc_idx[nrelocs] = i;
|
|
stub_reloc_offset[nrelocs++] = size;
|
|
size += 4;
|
|
break;
|
|
|
|
default:
|
|
BFD_FAIL ();
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
stub_sec->size += size;
|
|
|
|
/* Stub size has already been computed in arm_size_one_stub. Check
|
|
consistency. */
|
|
BFD_ASSERT (size == stub_entry->stub_size);
|
|
|
|
/* Destination is Thumb. Force bit 0 to 1 to reflect this. */
|
|
if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
|
|
sym_value |= 1;
|
|
|
|
/* Assume there is at least one and at most MAXRELOCS entries to relocate
|
|
in each stub. */
|
|
BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
|
|
|
|
for (i = 0; i < nrelocs; i++)
|
|
if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
|
|
|| template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
|
|
|| template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
|
|
|| template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
|
|
{
|
|
Elf_Internal_Rela rel;
|
|
bfd_boolean unresolved_reloc;
|
|
char *error_message;
|
|
enum arm_st_branch_type branch_type
|
|
= (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
|
|
? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
|
|
bfd_vma points_to = sym_value + stub_entry->target_addend;
|
|
|
|
rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
|
|
rel.r_info = ELF32_R_INFO (0,
|
|
template_sequence[stub_reloc_idx[i]].r_type);
|
|
rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
|
|
|
|
if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
|
|
/* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
|
|
template should refer back to the instruction after the original
|
|
branch. */
|
|
points_to = sym_value;
|
|
|
|
/* There may be unintended consequences if this is not true. */
|
|
BFD_ASSERT (stub_entry->h == NULL);
|
|
|
|
/* Note: _bfd_final_link_relocate doesn't handle these relocations
|
|
properly. We should probably use this function unconditionally,
|
|
rather than only for certain relocations listed in the enclosing
|
|
conditional, for the sake of consistency. */
|
|
elf32_arm_final_link_relocate (elf32_arm_howto_from_type
|
|
(template_sequence[stub_reloc_idx[i]].r_type),
|
|
stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
|
|
points_to, info, stub_entry->target_section, "", STT_FUNC,
|
|
branch_type, (struct elf_link_hash_entry *) stub_entry->h,
|
|
&unresolved_reloc, &error_message);
|
|
}
|
|
else
|
|
{
|
|
Elf_Internal_Rela rel;
|
|
bfd_boolean unresolved_reloc;
|
|
char *error_message;
|
|
bfd_vma points_to = sym_value + stub_entry->target_addend
|
|
+ template_sequence[stub_reloc_idx[i]].reloc_addend;
|
|
|
|
rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
|
|
rel.r_info = ELF32_R_INFO (0,
|
|
template_sequence[stub_reloc_idx[i]].r_type);
|
|
rel.r_addend = 0;
|
|
|
|
elf32_arm_final_link_relocate (elf32_arm_howto_from_type
|
|
(template_sequence[stub_reloc_idx[i]].r_type),
|
|
stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
|
|
points_to, info, stub_entry->target_section, "", STT_FUNC,
|
|
stub_entry->branch_type,
|
|
(struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
|
|
&error_message);
|
|
}
|
|
|
|
return TRUE;
|
|
#undef MAXRELOCS
|
|
}
|
|
|
|
/* Calculate the template, template size and instruction size for a stub.
|
|
Return value is the instruction size. */
|
|
|
|
static unsigned int
|
|
find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
|
|
const insn_sequence **stub_template,
|
|
int *stub_template_size)
|
|
{
|
|
const insn_sequence *template_sequence = NULL;
|
|
int template_size = 0, i;
|
|
unsigned int size;
|
|
|
|
template_sequence = stub_definitions[stub_type].template_sequence;
|
|
if (stub_template)
|
|
*stub_template = template_sequence;
|
|
|
|
template_size = stub_definitions[stub_type].template_size;
|
|
if (stub_template_size)
|
|
*stub_template_size = template_size;
|
|
|
|
size = 0;
|
|
for (i = 0; i < template_size; i++)
|
|
{
|
|
switch (template_sequence[i].type)
|
|
{
|
|
case THUMB16_TYPE:
|
|
size += 2;
|
|
break;
|
|
|
|
case ARM_TYPE:
|
|
case THUMB32_TYPE:
|
|
case DATA_TYPE:
|
|
size += 4;
|
|
break;
|
|
|
|
default:
|
|
BFD_FAIL ();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
/* As above, but don't actually build the stub. Just bump offset so
|
|
we know stub section sizes. */
|
|
|
|
static bfd_boolean
|
|
arm_size_one_stub (struct bfd_hash_entry *gen_entry,
|
|
void *in_arg ATTRIBUTE_UNUSED)
|
|
{
|
|
struct elf32_arm_stub_hash_entry *stub_entry;
|
|
const insn_sequence *template_sequence;
|
|
int template_size, size;
|
|
|
|
/* Massage our args to the form they really have. */
|
|
stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
|
|
|
|
BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
|
|
&& stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
|
|
|
|
size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
|
|
&template_size);
|
|
|
|
stub_entry->stub_size = size;
|
|
stub_entry->stub_template = template_sequence;
|
|
stub_entry->stub_template_size = template_size;
|
|
|
|
size = (size + 7) & ~7;
|
|
stub_entry->stub_sec->size += size;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* External entry points for sizing and building linker stubs. */
|
|
|
|
/* Set up various things so that we can make a list of input sections
|
|
for each output section included in the link. Returns -1 on error,
|
|
0 when no stubs will be needed, and 1 on success. */
|
|
|
|
int
|
|
elf32_arm_setup_section_lists (bfd *output_bfd,
|
|
struct bfd_link_info *info)
|
|
{
|
|
bfd *input_bfd;
|
|
unsigned int bfd_count;
|
|
int top_id, top_index;
|
|
asection *section;
|
|
asection **input_list, **list;
|
|
bfd_size_type amt;
|
|
struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
|
|
|
|
if (htab == NULL)
|
|
return 0;
|
|
if (! is_elf_hash_table (htab))
|
|
return 0;
|
|
|
|
/* Count the number of input BFDs and find the top input section id. */
|
|
for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link_next)
|
|
{
|
|
bfd_count += 1;
|
|
for (section = input_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
if (top_id < section->id)
|
|
top_id = section->id;
|
|
}
|
|
}
|
|
htab->bfd_count = bfd_count;
|
|
|
|
amt = sizeof (struct map_stub) * (top_id + 1);
|
|
htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
|
|
if (htab->stub_group == NULL)
|
|
return -1;
|
|
htab->top_id = top_id;
|
|
|
|
/* We can't use output_bfd->section_count here to find the top output
|
|
section index as some sections may have been removed, and
|
|
_bfd_strip_section_from_output doesn't renumber the indices. */
|
|
for (section = output_bfd->sections, top_index = 0;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
if (top_index < section->index)
|
|
top_index = section->index;
|
|
}
|
|
|
|
htab->top_index = top_index;
|
|
amt = sizeof (asection *) * (top_index + 1);
|
|
input_list = (asection **) bfd_malloc (amt);
|
|
htab->input_list = input_list;
|
|
if (input_list == NULL)
|
|
return -1;
|
|
|
|
/* For sections we aren't interested in, mark their entries with a
|
|
value we can check later. */
|
|
list = input_list + top_index;
|
|
do
|
|
*list = bfd_abs_section_ptr;
|
|
while (list-- != input_list);
|
|
|
|
for (section = output_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
if ((section->flags & SEC_CODE) != 0)
|
|
input_list[section->index] = NULL;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* The linker repeatedly calls this function for each input section,
|
|
in the order that input sections are linked into output sections.
|
|
Build lists of input sections to determine groupings between which
|
|
we may insert linker stubs. */
|
|
|
|
void
|
|
elf32_arm_next_input_section (struct bfd_link_info *info,
|
|
asection *isec)
|
|
{
|
|
struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
|
|
|
|
if (htab == NULL)
|
|
return;
|
|
|
|
if (isec->output_section->index <= htab->top_index)
|
|
{
|
|
asection **list = htab->input_list + isec->output_section->index;
|
|
|
|
if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
|
|
{
|
|
/* Steal the link_sec pointer for our list. */
|
|
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
|
|
/* This happens to make the list in reverse order,
|
|
which we reverse later. */
|
|
PREV_SEC (isec) = *list;
|
|
*list = isec;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See whether we can group stub sections together. Grouping stub
|
|
sections may result in fewer stubs. More importantly, we need to
|
|
put all .init* and .fini* stubs at the end of the .init or
|
|
.fini output sections respectively, because glibc splits the
|
|
_init and _fini functions into multiple parts. Putting a stub in
|
|
the middle of a function is not a good idea. */
|
|
|
|
static void
|
|
group_sections (struct elf32_arm_link_hash_table *htab,
|
|
bfd_size_type stub_group_size,
|
|
bfd_boolean stubs_always_after_branch)
|
|
{
|
|
asection **list = htab->input_list;
|
|
|
|
do
|
|
{
|
|
asection *tail = *list;
|
|
asection *head;
|
|
|
|
if (tail == bfd_abs_section_ptr)
|
|
continue;
|
|
|
|
/* Reverse the list: we must avoid placing stubs at the
|
|
beginning of the section because the beginning of the text
|
|
section may be required for an interrupt vector in bare metal
|
|
code. */
|
|
#define NEXT_SEC PREV_SEC
|
|
head = NULL;
|
|
while (tail != NULL)
|
|
{
|
|
/* Pop from tail. */
|
|
asection *item = tail;
|
|
tail = PREV_SEC (item);
|
|
|
|
/* Push on head. */
|
|
NEXT_SEC (item) = head;
|
|
head = item;
|
|
}
|
|
|
|
while (head != NULL)
|
|
{
|
|
asection *curr;
|
|
asection *next;
|
|
bfd_vma stub_group_start = head->output_offset;
|
|
bfd_vma end_of_next;
|
|
|
|
curr = head;
|
|
while (NEXT_SEC (curr) != NULL)
|
|
{
|
|
next = NEXT_SEC (curr);
|
|
end_of_next = next->output_offset + next->size;
|
|
if (end_of_next - stub_group_start >= stub_group_size)
|
|
/* End of NEXT is too far from start, so stop. */
|
|
break;
|
|
/* Add NEXT to the group. */
|
|
curr = next;
|
|
}
|
|
|
|
/* OK, the size from the start to the start of CURR is less
|
|
than stub_group_size and thus can be handled by one stub
|
|
section. (Or the head section is itself larger than
|
|
stub_group_size, in which case we may be toast.)
|
|
We should really be keeping track of the total size of
|
|
stubs added here, as stubs contribute to the final output
|
|
section size. */
|
|
do
|
|
{
|
|
next = NEXT_SEC (head);
|
|
/* Set up this stub group. */
|
|
htab->stub_group[head->id].link_sec = curr;
|
|
}
|
|
while (head != curr && (head = next) != NULL);
|
|
|
|
/* But wait, there's more! Input sections up to stub_group_size
|
|
bytes after the stub section can be handled by it too. */
|
|
if (!stubs_always_after_branch)
|
|
{
|
|
stub_group_start = curr->output_offset + curr->size;
|
|
|
|
while (next != NULL)
|
|
{
|
|
end_of_next = next->output_offset + next->size;
|
|
if (end_of_next - stub_group_start >= stub_group_size)
|
|
/* End of NEXT is too far from stubs, so stop. */
|
|
break;
|
|
/* Add NEXT to the stub group. */
|
|
head = next;
|
|
next = NEXT_SEC (head);
|
|
htab->stub_group[head->id].link_sec = curr;
|
|
}
|
|
}
|
|
head = next;
|
|
}
|
|
}
|
|
while (list++ != htab->input_list + htab->top_index);
|
|
|
|
free (htab->input_list);
|
|
#undef PREV_SEC
|
|
#undef NEXT_SEC
|
|
}
|
|
|
|
/* Comparison function for sorting/searching relocations relating to Cortex-A8
|
|
erratum fix. */
|
|
|
|
static int
|
|
a8_reloc_compare (const void *a, const void *b)
|
|
{
|
|
const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
|
|
const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
|
|
|
|
if (ra->from < rb->from)
|
|
return -1;
|
|
else if (ra->from > rb->from)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
|
|
const char *, char **);
|
|
|
|
/* Helper function to scan code for sequences which might trigger the Cortex-A8
|
|
branch/TLB erratum. Fill in the table described by A8_FIXES_P,
|
|
NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
|
|
otherwise. */
|
|
|
|
static bfd_boolean
|
|
cortex_a8_erratum_scan (bfd *input_bfd,
|
|
struct bfd_link_info *info,
|
|
struct a8_erratum_fix **a8_fixes_p,
|
|
unsigned int *num_a8_fixes_p,
|
|
unsigned int *a8_fix_table_size_p,
|
|
struct a8_erratum_reloc *a8_relocs,
|
|
unsigned int num_a8_relocs,
|
|
unsigned prev_num_a8_fixes,
|
|
bfd_boolean *stub_changed_p)
|
|
{
|
|
asection *section;
|
|
struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
|
|
struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
|
|
unsigned int num_a8_fixes = *num_a8_fixes_p;
|
|
unsigned int a8_fix_table_size = *a8_fix_table_size_p;
|
|
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
for (section = input_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
bfd_byte *contents = NULL;
|
|
struct _arm_elf_section_data *sec_data;
|
|
unsigned int span;
|
|
bfd_vma base_vma;
|
|
|
|
if (elf_section_type (section) != SHT_PROGBITS
|
|
|| (elf_section_flags (section) & SHF_EXECINSTR) == 0
|
|
|| (section->flags & SEC_EXCLUDE) != 0
|
|
|| (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
|
|
|| (section->output_section == bfd_abs_section_ptr))
|
|
continue;
|
|
|
|
base_vma = section->output_section->vma + section->output_offset;
|
|
|
|
if (elf_section_data (section)->this_hdr.contents != NULL)
|
|
contents = elf_section_data (section)->this_hdr.contents;
|
|
else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
|
|
return TRUE;
|
|
|
|
sec_data = elf32_arm_section_data (section);
|
|
|
|
for (span = 0; span < sec_data->mapcount; span++)
|
|
{
|
|
unsigned int span_start = sec_data->map[span].vma;
|
|
unsigned int span_end = (span == sec_data->mapcount - 1)
|
|
? section->size : sec_data->map[span + 1].vma;
|
|
unsigned int i;
|
|
char span_type = sec_data->map[span].type;
|
|
bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
|
|
|
|
if (span_type != 't')
|
|
continue;
|
|
|
|
/* Span is entirely within a single 4KB region: skip scanning. */
|
|
if (((base_vma + span_start) & ~0xfff)
|
|
== ((base_vma + span_end) & ~0xfff))
|
|
continue;
|
|
|
|
/* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
|
|
|
|
* The opcode is BLX.W, BL.W, B.W, Bcc.W
|
|
* The branch target is in the same 4KB region as the
|
|
first half of the branch.
|
|
* The instruction before the branch is a 32-bit
|
|
length non-branch instruction. */
|
|
for (i = span_start; i < span_end;)
|
|
{
|
|
unsigned int insn = bfd_getl16 (&contents[i]);
|
|
bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
|
|
bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
|
|
|
|
if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
|
|
insn_32bit = TRUE;
|
|
|
|
if (insn_32bit)
|
|
{
|
|
/* Load the rest of the insn (in manual-friendly order). */
|
|
insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
|
|
|
|
/* Encoding T4: B<c>.W. */
|
|
is_b = (insn & 0xf800d000) == 0xf0009000;
|
|
/* Encoding T1: BL<c>.W. */
|
|
is_bl = (insn & 0xf800d000) == 0xf000d000;
|
|
/* Encoding T2: BLX<c>.W. */
|
|
is_blx = (insn & 0xf800d000) == 0xf000c000;
|
|
/* Encoding T3: B<c>.W (not permitted in IT block). */
|
|
is_bcc = (insn & 0xf800d000) == 0xf0008000
|
|
&& (insn & 0x07f00000) != 0x03800000;
|
|
}
|
|
|
|
is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
|
|
|
|
if (((base_vma + i) & 0xfff) == 0xffe
|
|
&& insn_32bit
|
|
&& is_32bit_branch
|
|
&& last_was_32bit
|
|
&& ! last_was_branch)
|
|
{
|
|
bfd_signed_vma offset = 0;
|
|
bfd_boolean force_target_arm = FALSE;
|
|
bfd_boolean force_target_thumb = FALSE;
|
|
bfd_vma target;
|
|
enum elf32_arm_stub_type stub_type = arm_stub_none;
|
|
struct a8_erratum_reloc key, *found;
|
|
bfd_boolean use_plt = FALSE;
|
|
|
|
key.from = base_vma + i;
|
|
found = (struct a8_erratum_reloc *)
|
|
bsearch (&key, a8_relocs, num_a8_relocs,
|
|
sizeof (struct a8_erratum_reloc),
|
|
&a8_reloc_compare);
|
|
|
|
if (found)
|
|
{
|
|
char *error_message = NULL;
|
|
struct elf_link_hash_entry *entry;
|
|
|
|
/* We don't care about the error returned from this
|
|
function, only if there is glue or not. */
|
|
entry = find_thumb_glue (info, found->sym_name,
|
|
&error_message);
|
|
|
|
if (entry)
|
|
found->non_a8_stub = TRUE;
|
|
|
|
/* Keep a simpler condition, for the sake of clarity. */
|
|
if (htab->root.splt != NULL && found->hash != NULL
|
|
&& found->hash->root.plt.offset != (bfd_vma) -1)
|
|
use_plt = TRUE;
|
|
|
|
if (found->r_type == R_ARM_THM_CALL)
|
|
{
|
|
if (found->branch_type == ST_BRANCH_TO_ARM
|
|
|| use_plt)
|
|
force_target_arm = TRUE;
|
|
else
|
|
force_target_thumb = TRUE;
|
|
}
|
|
}
|
|
|
|
/* Check if we have an offending branch instruction. */
|
|
|
|
if (found && found->non_a8_stub)
|
|
/* We've already made a stub for this instruction, e.g.
|
|
it's a long branch or a Thumb->ARM stub. Assume that
|
|
stub will suffice to work around the A8 erratum (see
|
|
setting of always_after_branch above). */
|
|
;
|
|
else if (is_bcc)
|
|
{
|
|
offset = (insn & 0x7ff) << 1;
|
|
offset |= (insn & 0x3f0000) >> 4;
|
|
offset |= (insn & 0x2000) ? 0x40000 : 0;
|
|
offset |= (insn & 0x800) ? 0x80000 : 0;
|
|
offset |= (insn & 0x4000000) ? 0x100000 : 0;
|
|
if (offset & 0x100000)
|
|
offset |= ~ ((bfd_signed_vma) 0xfffff);
|
|
stub_type = arm_stub_a8_veneer_b_cond;
|
|
}
|
|
else if (is_b || is_bl || is_blx)
|
|
{
|
|
int s = (insn & 0x4000000) != 0;
|
|
int j1 = (insn & 0x2000) != 0;
|
|
int j2 = (insn & 0x800) != 0;
|
|
int i1 = !(j1 ^ s);
|
|
int i2 = !(j2 ^ s);
|
|
|
|
offset = (insn & 0x7ff) << 1;
|
|
offset |= (insn & 0x3ff0000) >> 4;
|
|
offset |= i2 << 22;
|
|
offset |= i1 << 23;
|
|
offset |= s << 24;
|
|
if (offset & 0x1000000)
|
|
offset |= ~ ((bfd_signed_vma) 0xffffff);
|
|
|
|
if (is_blx)
|
|
offset &= ~ ((bfd_signed_vma) 3);
|
|
|
|
stub_type = is_blx ? arm_stub_a8_veneer_blx :
|
|
is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
|
|
}
|
|
|
|
if (stub_type != arm_stub_none)
|
|
{
|
|
bfd_vma pc_for_insn = base_vma + i + 4;
|
|
|
|
/* The original instruction is a BL, but the target is
|
|
an ARM instruction. If we were not making a stub,
|
|
the BL would have been converted to a BLX. Use the
|
|
BLX stub instead in that case. */
|
|
if (htab->use_blx && force_target_arm
|
|
&& stub_type == arm_stub_a8_veneer_bl)
|
|
{
|
|
stub_type = arm_stub_a8_veneer_blx;
|
|
is_blx = TRUE;
|
|
is_bl = FALSE;
|
|
}
|
|
/* Conversely, if the original instruction was
|
|
BLX but the target is Thumb mode, use the BL
|
|
stub. */
|
|
else if (force_target_thumb
|
|
&& stub_type == arm_stub_a8_veneer_blx)
|
|
{
|
|
stub_type = arm_stub_a8_veneer_bl;
|
|
is_blx = FALSE;
|
|
is_bl = TRUE;
|
|
}
|
|
|
|
if (is_blx)
|
|
pc_for_insn &= ~ ((bfd_vma) 3);
|
|
|
|
/* If we found a relocation, use the proper destination,
|
|
not the offset in the (unrelocated) instruction.
|
|
Note this is always done if we switched the stub type
|
|
above. */
|
|
if (found)
|
|
offset =
|
|
(bfd_signed_vma) (found->destination - pc_for_insn);
|
|
|
|
/* If the stub will use a Thumb-mode branch to a
|
|
PLT target, redirect it to the preceding Thumb
|
|
entry point. */
|
|
if (stub_type != arm_stub_a8_veneer_blx && use_plt)
|
|
offset -= PLT_THUMB_STUB_SIZE;
|
|
|
|
target = pc_for_insn + offset;
|
|
|
|
/* The BLX stub is ARM-mode code. Adjust the offset to
|
|
take the different PC value (+8 instead of +4) into
|
|
account. */
|
|
if (stub_type == arm_stub_a8_veneer_blx)
|
|
offset += 4;
|
|
|
|
if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
|
|
{
|
|
char *stub_name = NULL;
|
|
|
|
if (num_a8_fixes == a8_fix_table_size)
|
|
{
|
|
a8_fix_table_size *= 2;
|
|
a8_fixes = (struct a8_erratum_fix *)
|
|
bfd_realloc (a8_fixes,
|
|
sizeof (struct a8_erratum_fix)
|
|
* a8_fix_table_size);
|
|
}
|
|
|
|
if (num_a8_fixes < prev_num_a8_fixes)
|
|
{
|
|
/* If we're doing a subsequent scan,
|
|
check if we've found the same fix as
|
|
before, and try and reuse the stub
|
|
name. */
|
|
stub_name = a8_fixes[num_a8_fixes].stub_name;
|
|
if ((a8_fixes[num_a8_fixes].section != section)
|
|
|| (a8_fixes[num_a8_fixes].offset != i))
|
|
{
|
|
free (stub_name);
|
|
stub_name = NULL;
|
|
*stub_changed_p = TRUE;
|
|
}
|
|
}
|
|
|
|
if (!stub_name)
|
|
{
|
|
stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
|
|
if (stub_name != NULL)
|
|
sprintf (stub_name, "%x:%x", section->id, i);
|
|
}
|
|
|
|
a8_fixes[num_a8_fixes].input_bfd = input_bfd;
|
|
a8_fixes[num_a8_fixes].section = section;
|
|
a8_fixes[num_a8_fixes].offset = i;
|
|
a8_fixes[num_a8_fixes].addend = offset;
|
|
a8_fixes[num_a8_fixes].orig_insn = insn;
|
|
a8_fixes[num_a8_fixes].stub_name = stub_name;
|
|
a8_fixes[num_a8_fixes].stub_type = stub_type;
|
|
a8_fixes[num_a8_fixes].branch_type =
|
|
is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
|
|
|
|
num_a8_fixes++;
|
|
}
|
|
}
|
|
}
|
|
|
|
i += insn_32bit ? 4 : 2;
|
|
last_was_32bit = insn_32bit;
|
|
last_was_branch = is_32bit_branch;
|
|
}
|
|
}
|
|
|
|
if (elf_section_data (section)->this_hdr.contents == NULL)
|
|
free (contents);
|
|
}
|
|
|
|
*a8_fixes_p = a8_fixes;
|
|
*num_a8_fixes_p = num_a8_fixes;
|
|
*a8_fix_table_size_p = a8_fix_table_size;
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/* Determine and set the size of the stub section for a final link.
|
|
|
|
The basic idea here is to examine all the relocations looking for
|
|
PC-relative calls to a target that is unreachable with a "bl"
|
|
instruction. */
|
|
|
|
bfd_boolean
|
|
elf32_arm_size_stubs (bfd *output_bfd,
|
|
bfd *stub_bfd,
|
|
struct bfd_link_info *info,
|
|
bfd_signed_vma group_size,
|
|
asection * (*add_stub_section) (const char *, asection *,
|
|
unsigned int),
|
|
void (*layout_sections_again) (void))
|
|
{
|
|
bfd_size_type stub_group_size;
|
|
bfd_boolean stubs_always_after_branch;
|
|
struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
|
|
struct a8_erratum_fix *a8_fixes = NULL;
|
|
unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
|
|
struct a8_erratum_reloc *a8_relocs = NULL;
|
|
unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
|
|
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
if (htab->fix_cortex_a8)
|
|
{
|
|
a8_fixes = (struct a8_erratum_fix *)
|
|
bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
|
|
a8_relocs = (struct a8_erratum_reloc *)
|
|
bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
|
|
}
|
|
|
|
/* Propagate mach to stub bfd, because it may not have been
|
|
finalized when we created stub_bfd. */
|
|
bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
|
|
bfd_get_mach (output_bfd));
|
|
|
|
/* Stash our params away. */
|
|
htab->stub_bfd = stub_bfd;
|
|
htab->add_stub_section = add_stub_section;
|
|
htab->layout_sections_again = layout_sections_again;
|
|
stubs_always_after_branch = group_size < 0;
|
|
|
|
/* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
|
|
as the first half of a 32-bit branch straddling two 4K pages. This is a
|
|
crude way of enforcing that. */
|
|
if (htab->fix_cortex_a8)
|
|
stubs_always_after_branch = 1;
|
|
|
|
if (group_size < 0)
|
|
stub_group_size = -group_size;
|
|
else
|
|
stub_group_size = group_size;
|
|
|
|
if (stub_group_size == 1)
|
|
{
|
|
/* Default values. */
|
|
/* Thumb branch range is +-4MB has to be used as the default
|
|
maximum size (a given section can contain both ARM and Thumb
|
|
code, so the worst case has to be taken into account).
|
|
|
|
This value is 24K less than that, which allows for 2025
|
|
12-byte stubs. If we exceed that, then we will fail to link.
|
|
The user will have to relink with an explicit group size
|
|
option. */
|
|
stub_group_size = 4170000;
|
|
}
|
|
|
|
group_sections (htab, stub_group_size, stubs_always_after_branch);
|
|
|
|
/* If we're applying the cortex A8 fix, we need to determine the
|
|
program header size now, because we cannot change it later --
|
|
that could alter section placements. Notice the A8 erratum fix
|
|
ends up requiring the section addresses to remain unchanged
|
|
modulo the page size. That's something we cannot represent
|
|
inside BFD, and we don't want to force the section alignment to
|
|
be the page size. */
|
|
if (htab->fix_cortex_a8)
|
|
(*htab->layout_sections_again) ();
|
|
|
|
while (1)
|
|
{
|
|
bfd *input_bfd;
|
|
unsigned int bfd_indx;
|
|
asection *stub_sec;
|
|
bfd_boolean stub_changed = FALSE;
|
|
unsigned prev_num_a8_fixes = num_a8_fixes;
|
|
|
|
num_a8_fixes = 0;
|
|
for (input_bfd = info->input_bfds, bfd_indx = 0;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link_next, bfd_indx++)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *section;
|
|
Elf_Internal_Sym *local_syms = NULL;
|
|
|
|
if (!is_arm_elf (input_bfd))
|
|
continue;
|
|
|
|
num_a8_relocs = 0;
|
|
|
|
/* We'll need the symbol table in a second. */
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
if (symtab_hdr->sh_info == 0)
|
|
continue;
|
|
|
|
/* Walk over each section attached to the input bfd. */
|
|
for (section = input_bfd->sections;
|
|
section != NULL;
|
|
section = section->next)
|
|
{
|
|
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
|
|
|
|
/* If there aren't any relocs, then there's nothing more
|
|
to do. */
|
|
if ((section->flags & SEC_RELOC) == 0
|
|
|| section->reloc_count == 0
|
|
|| (section->flags & SEC_CODE) == 0)
|
|
continue;
|
|
|
|
/* If this section is a link-once section that will be
|
|
discarded, then don't create any stubs. */
|
|
if (section->output_section == NULL
|
|
|| section->output_section->owner != output_bfd)
|
|
continue;
|
|
|
|
/* Get the relocs. */
|
|
internal_relocs
|
|
= _bfd_elf_link_read_relocs (input_bfd, section, NULL,
|
|
NULL, info->keep_memory);
|
|
if (internal_relocs == NULL)
|
|
goto error_ret_free_local;
|
|
|
|
/* Now examine each relocation. */
|
|
irela = internal_relocs;
|
|
irelaend = irela + section->reloc_count;
|
|
for (; irela < irelaend; irela++)
|
|
{
|
|
unsigned int r_type, r_indx;
|
|
enum elf32_arm_stub_type stub_type;
|
|
struct elf32_arm_stub_hash_entry *stub_entry;
|
|
asection *sym_sec;
|
|
bfd_vma sym_value;
|
|
bfd_vma destination;
|
|
struct elf32_arm_link_hash_entry *hash;
|
|
const char *sym_name;
|
|
char *stub_name;
|
|
const asection *id_sec;
|
|
unsigned char st_type;
|
|
enum arm_st_branch_type branch_type;
|
|
bfd_boolean created_stub = FALSE;
|
|
|
|
r_type = ELF32_R_TYPE (irela->r_info);
|
|
r_indx = ELF32_R_SYM (irela->r_info);
|
|
|
|
if (r_type >= (unsigned int) R_ARM_max)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
error_ret_free_internal:
|
|
if (elf_section_data (section)->relocs == NULL)
|
|
free (internal_relocs);
|
|
goto error_ret_free_local;
|
|
}
|
|
|
|
hash = NULL;
|
|
if (r_indx >= symtab_hdr->sh_info)
|
|
hash = elf32_arm_hash_entry
|
|
(elf_sym_hashes (input_bfd)
|
|
[r_indx - symtab_hdr->sh_info]);
|
|
|
|
/* Only look for stubs on branch instructions, or
|
|
non-relaxed TLSCALL */
|
|
if ((r_type != (unsigned int) R_ARM_CALL)
|
|
&& (r_type != (unsigned int) R_ARM_THM_CALL)
|
|
&& (r_type != (unsigned int) R_ARM_JUMP24)
|
|
&& (r_type != (unsigned int) R_ARM_THM_JUMP19)
|
|
&& (r_type != (unsigned int) R_ARM_THM_XPC22)
|
|
&& (r_type != (unsigned int) R_ARM_THM_JUMP24)
|
|
&& (r_type != (unsigned int) R_ARM_PLT32)
|
|
&& !((r_type == (unsigned int) R_ARM_TLS_CALL
|
|
|| r_type == (unsigned int) R_ARM_THM_TLS_CALL)
|
|
&& r_type == elf32_arm_tls_transition
|
|
(info, r_type, &hash->root)
|
|
&& ((hash ? hash->tls_type
|
|
: (elf32_arm_local_got_tls_type
|
|
(input_bfd)[r_indx]))
|
|
& GOT_TLS_GDESC) != 0))
|
|
continue;
|
|
|
|
/* Now determine the call target, its name, value,
|
|
section. */
|
|
sym_sec = NULL;
|
|
sym_value = 0;
|
|
destination = 0;
|
|
sym_name = NULL;
|
|
|
|
if (r_type == (unsigned int) R_ARM_TLS_CALL
|
|
|| r_type == (unsigned int) R_ARM_THM_TLS_CALL)
|
|
{
|
|
/* A non-relaxed TLS call. The target is the
|
|
plt-resident trampoline and nothing to do
|
|
with the symbol. */
|
|
BFD_ASSERT (htab->tls_trampoline > 0);
|
|
sym_sec = htab->root.splt;
|
|
sym_value = htab->tls_trampoline;
|
|
hash = 0;
|
|
st_type = STT_FUNC;
|
|
branch_type = ST_BRANCH_TO_ARM;
|
|
}
|
|
else if (!hash)
|
|
{
|
|
/* It's a local symbol. */
|
|
Elf_Internal_Sym *sym;
|
|
|
|
if (local_syms == NULL)
|
|
{
|
|
local_syms
|
|
= (Elf_Internal_Sym *) symtab_hdr->contents;
|
|
if (local_syms == NULL)
|
|
local_syms
|
|
= bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
|
|
symtab_hdr->sh_info, 0,
|
|
NULL, NULL, NULL);
|
|
if (local_syms == NULL)
|
|
goto error_ret_free_internal;
|
|
}
|
|
|
|
sym = local_syms + r_indx;
|
|
if (sym->st_shndx == SHN_UNDEF)
|
|
sym_sec = bfd_und_section_ptr;
|
|
else if (sym->st_shndx == SHN_ABS)
|
|
sym_sec = bfd_abs_section_ptr;
|
|
else if (sym->st_shndx == SHN_COMMON)
|
|
sym_sec = bfd_com_section_ptr;
|
|
else
|
|
sym_sec =
|
|
bfd_section_from_elf_index (input_bfd, sym->st_shndx);
|
|
|
|
if (!sym_sec)
|
|
/* This is an undefined symbol. It can never
|
|
be resolved. */
|
|
continue;
|
|
|
|
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
|
|
sym_value = sym->st_value;
|
|
destination = (sym_value + irela->r_addend
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
st_type = ELF_ST_TYPE (sym->st_info);
|
|
branch_type = ARM_SYM_BRANCH_TYPE (sym);
|
|
sym_name
|
|
= bfd_elf_string_from_elf_section (input_bfd,
|
|
symtab_hdr->sh_link,
|
|
sym->st_name);
|
|
}
|
|
else
|
|
{
|
|
/* It's an external symbol. */
|
|
while (hash->root.root.type == bfd_link_hash_indirect
|
|
|| hash->root.root.type == bfd_link_hash_warning)
|
|
hash = ((struct elf32_arm_link_hash_entry *)
|
|
hash->root.root.u.i.link);
|
|
|
|
if (hash->root.root.type == bfd_link_hash_defined
|
|
|| hash->root.root.type == bfd_link_hash_defweak)
|
|
{
|
|
sym_sec = hash->root.root.u.def.section;
|
|
sym_value = hash->root.root.u.def.value;
|
|
|
|
struct elf32_arm_link_hash_table *globals =
|
|
elf32_arm_hash_table (info);
|
|
|
|
/* For a destination in a shared library,
|
|
use the PLT stub as target address to
|
|
decide whether a branch stub is
|
|
needed. */
|
|
if (globals != NULL
|
|
&& globals->root.splt != NULL
|
|
&& hash != NULL
|
|
&& hash->root.plt.offset != (bfd_vma) -1)
|
|
{
|
|
sym_sec = globals->root.splt;
|
|
sym_value = hash->root.plt.offset;
|
|
if (sym_sec->output_section != NULL)
|
|
destination = (sym_value
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else if (sym_sec->output_section != NULL)
|
|
destination = (sym_value + irela->r_addend
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else if ((hash->root.root.type == bfd_link_hash_undefined)
|
|
|| (hash->root.root.type == bfd_link_hash_undefweak))
|
|
{
|
|
/* For a shared library, use the PLT stub as
|
|
target address to decide whether a long
|
|
branch stub is needed.
|
|
For absolute code, they cannot be handled. */
|
|
struct elf32_arm_link_hash_table *globals =
|
|
elf32_arm_hash_table (info);
|
|
|
|
if (globals != NULL
|
|
&& globals->root.splt != NULL
|
|
&& hash != NULL
|
|
&& hash->root.plt.offset != (bfd_vma) -1)
|
|
{
|
|
sym_sec = globals->root.splt;
|
|
sym_value = hash->root.plt.offset;
|
|
if (sym_sec->output_section != NULL)
|
|
destination = (sym_value
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
goto error_ret_free_internal;
|
|
}
|
|
st_type = hash->root.type;
|
|
branch_type = hash->root.target_internal;
|
|
sym_name = hash->root.root.root.string;
|
|
}
|
|
|
|
do
|
|
{
|
|
/* Determine what (if any) linker stub is needed. */
|
|
stub_type = arm_type_of_stub (info, section, irela,
|
|
st_type, &branch_type,
|
|
hash, destination, sym_sec,
|
|
input_bfd, sym_name);
|
|
if (stub_type == arm_stub_none)
|
|
break;
|
|
|
|
/* Support for grouping stub sections. */
|
|
id_sec = htab->stub_group[section->id].link_sec;
|
|
|
|
/* Get the name of this stub. */
|
|
stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
|
|
irela, stub_type);
|
|
if (!stub_name)
|
|
goto error_ret_free_internal;
|
|
|
|
/* We've either created a stub for this reloc already,
|
|
or we are about to. */
|
|
created_stub = TRUE;
|
|
|
|
stub_entry = arm_stub_hash_lookup
|
|
(&htab->stub_hash_table, stub_name,
|
|
FALSE, FALSE);
|
|
if (stub_entry != NULL)
|
|
{
|
|
/* The proper stub has already been created. */
|
|
free (stub_name);
|
|
stub_entry->target_value = sym_value;
|
|
break;
|
|
}
|
|
|
|
stub_entry = elf32_arm_add_stub (stub_name, section,
|
|
htab);
|
|
if (stub_entry == NULL)
|
|
{
|
|
free (stub_name);
|
|
goto error_ret_free_internal;
|
|
}
|
|
|
|
stub_entry->target_value = sym_value;
|
|
stub_entry->target_section = sym_sec;
|
|
stub_entry->stub_type = stub_type;
|
|
stub_entry->h = hash;
|
|
stub_entry->branch_type = branch_type;
|
|
|
|
if (sym_name == NULL)
|
|
sym_name = "unnamed";
|
|
stub_entry->output_name = (char *)
|
|
bfd_alloc (htab->stub_bfd,
|
|
sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
|
|
+ strlen (sym_name));
|
|
if (stub_entry->output_name == NULL)
|
|
{
|
|
free (stub_name);
|
|
goto error_ret_free_internal;
|
|
}
|
|
|
|
/* For historical reasons, use the existing names for
|
|
ARM-to-Thumb and Thumb-to-ARM stubs. */
|
|
if ((r_type == (unsigned int) R_ARM_THM_CALL
|
|
|| r_type == (unsigned int) R_ARM_THM_JUMP24)
|
|
&& branch_type == ST_BRANCH_TO_ARM)
|
|
sprintf (stub_entry->output_name,
|
|
THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
|
|
else if ((r_type == (unsigned int) R_ARM_CALL
|
|
|| r_type == (unsigned int) R_ARM_JUMP24)
|
|
&& branch_type == ST_BRANCH_TO_THUMB)
|
|
sprintf (stub_entry->output_name,
|
|
ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
|
|
else
|
|
sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
|
|
sym_name);
|
|
|
|
stub_changed = TRUE;
|
|
}
|
|
while (0);
|
|
|
|
/* Look for relocations which might trigger Cortex-A8
|
|
erratum. */
|
|
if (htab->fix_cortex_a8
|
|
&& (r_type == (unsigned int) R_ARM_THM_JUMP24
|
|
|| r_type == (unsigned int) R_ARM_THM_JUMP19
|
|
|| r_type == (unsigned int) R_ARM_THM_CALL
|
|
|| r_type == (unsigned int) R_ARM_THM_XPC22))
|
|
{
|
|
bfd_vma from = section->output_section->vma
|
|
+ section->output_offset
|
|
+ irela->r_offset;
|
|
|
|
if ((from & 0xfff) == 0xffe)
|
|
{
|
|
/* Found a candidate. Note we haven't checked the
|
|
destination is within 4K here: if we do so (and
|
|
don't create an entry in a8_relocs) we can't tell
|
|
that a branch should have been relocated when
|
|
scanning later. */
|
|
if (num_a8_relocs == a8_reloc_table_size)
|
|
{
|
|
a8_reloc_table_size *= 2;
|
|
a8_relocs = (struct a8_erratum_reloc *)
|
|
bfd_realloc (a8_relocs,
|
|
sizeof (struct a8_erratum_reloc)
|
|
* a8_reloc_table_size);
|
|
}
|
|
|
|
a8_relocs[num_a8_relocs].from = from;
|
|
a8_relocs[num_a8_relocs].destination = destination;
|
|
a8_relocs[num_a8_relocs].r_type = r_type;
|
|
a8_relocs[num_a8_relocs].branch_type = branch_type;
|
|
a8_relocs[num_a8_relocs].sym_name = sym_name;
|
|
a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
|
|
a8_relocs[num_a8_relocs].hash = hash;
|
|
|
|
num_a8_relocs++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We're done with the internal relocs, free them. */
|
|
if (elf_section_data (section)->relocs == NULL)
|
|
free (internal_relocs);
|
|
}
|
|
|
|
if (htab->fix_cortex_a8)
|
|
{
|
|
/* Sort relocs which might apply to Cortex-A8 erratum. */
|
|
qsort (a8_relocs, num_a8_relocs,
|
|
sizeof (struct a8_erratum_reloc),
|
|
&a8_reloc_compare);
|
|
|
|
/* Scan for branches which might trigger Cortex-A8 erratum. */
|
|
if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
|
|
&num_a8_fixes, &a8_fix_table_size,
|
|
a8_relocs, num_a8_relocs,
|
|
prev_num_a8_fixes, &stub_changed)
|
|
!= 0)
|
|
goto error_ret_free_local;
|
|
}
|
|
}
|
|
|
|
if (prev_num_a8_fixes != num_a8_fixes)
|
|
stub_changed = TRUE;
|
|
|
|
if (!stub_changed)
|
|
break;
|
|
|
|
/* OK, we've added some stubs. Find out the new size of the
|
|
stub sections. */
|
|
for (stub_sec = htab->stub_bfd->sections;
|
|
stub_sec != NULL;
|
|
stub_sec = stub_sec->next)
|
|
{
|
|
/* Ignore non-stub sections. */
|
|
if (!strstr (stub_sec->name, STUB_SUFFIX))
|
|
continue;
|
|
|
|
stub_sec->size = 0;
|
|
}
|
|
|
|
bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
|
|
|
|
/* Add Cortex-A8 erratum veneers to stub section sizes too. */
|
|
if (htab->fix_cortex_a8)
|
|
for (i = 0; i < num_a8_fixes; i++)
|
|
{
|
|
stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
|
|
a8_fixes[i].section, htab);
|
|
|
|
if (stub_sec == NULL)
|
|
goto error_ret_free_local;
|
|
|
|
stub_sec->size
|
|
+= find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
|
|
NULL);
|
|
}
|
|
|
|
|
|
/* Ask the linker to do its stuff. */
|
|
(*htab->layout_sections_again) ();
|
|
}
|
|
|
|
/* Add stubs for Cortex-A8 erratum fixes now. */
|
|
if (htab->fix_cortex_a8)
|
|
{
|
|
for (i = 0; i < num_a8_fixes; i++)
|
|
{
|
|
struct elf32_arm_stub_hash_entry *stub_entry;
|
|
char *stub_name = a8_fixes[i].stub_name;
|
|
asection *section = a8_fixes[i].section;
|
|
unsigned int section_id = a8_fixes[i].section->id;
|
|
asection *link_sec = htab->stub_group[section_id].link_sec;
|
|
asection *stub_sec = htab->stub_group[section_id].stub_sec;
|
|
const insn_sequence *template_sequence;
|
|
int template_size, size = 0;
|
|
|
|
stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
|
|
TRUE, FALSE);
|
|
if (stub_entry == NULL)
|
|
{
|
|
(*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
|
|
section->owner,
|
|
stub_name);
|
|
return FALSE;
|
|
}
|
|
|
|
stub_entry->stub_sec = stub_sec;
|
|
stub_entry->stub_offset = 0;
|
|
stub_entry->id_sec = link_sec;
|
|
stub_entry->stub_type = a8_fixes[i].stub_type;
|
|
stub_entry->target_section = a8_fixes[i].section;
|
|
stub_entry->target_value = a8_fixes[i].offset;
|
|
stub_entry->target_addend = a8_fixes[i].addend;
|
|
stub_entry->orig_insn = a8_fixes[i].orig_insn;
|
|
stub_entry->branch_type = a8_fixes[i].branch_type;
|
|
|
|
size = find_stub_size_and_template (a8_fixes[i].stub_type,
|
|
&template_sequence,
|
|
&template_size);
|
|
|
|
stub_entry->stub_size = size;
|
|
stub_entry->stub_template = template_sequence;
|
|
stub_entry->stub_template_size = template_size;
|
|
}
|
|
|
|
/* Stash the Cortex-A8 erratum fix array for use later in
|
|
elf32_arm_write_section(). */
|
|
htab->a8_erratum_fixes = a8_fixes;
|
|
htab->num_a8_erratum_fixes = num_a8_fixes;
|
|
}
|
|
else
|
|
{
|
|
htab->a8_erratum_fixes = NULL;
|
|
htab->num_a8_erratum_fixes = 0;
|
|
}
|
|
return TRUE;
|
|
|
|
error_ret_free_local:
|
|
return FALSE;
|
|
}
|
|
|
|
/* Build all the stubs associated with the current output file. The
|
|
stubs are kept in a hash table attached to the main linker hash
|
|
table. We also set up the .plt entries for statically linked PIC
|
|
functions here. This function is called via arm_elf_finish in the
|
|
linker. */
|
|
|
|
bfd_boolean
|
|
elf32_arm_build_stubs (struct bfd_link_info *info)
|
|
{
|
|
asection *stub_sec;
|
|
struct bfd_hash_table *table;
|
|
struct elf32_arm_link_hash_table *htab;
|
|
|
|
htab = elf32_arm_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
for (stub_sec = htab->stub_bfd->sections;
|
|
stub_sec != NULL;
|
|
stub_sec = stub_sec->next)
|
|
{
|
|
bfd_size_type size;
|
|
|
|
/* Ignore non-stub sections. */
|
|
if (!strstr (stub_sec->name, STUB_SUFFIX))
|
|
continue;
|
|
|
|
/* Allocate memory to hold the linker stubs. */
|
|
size = stub_sec->size;
|
|
stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
|
|
if (stub_sec->contents == NULL && size != 0)
|
|
return FALSE;
|
|
stub_sec->size = 0;
|
|
}
|
|
|
|
/* Build the stubs as directed by the stub hash table. */
|
|
table = &htab->stub_hash_table;
|
|
bfd_hash_traverse (table, arm_build_one_stub, info);
|
|
if (htab->fix_cortex_a8)
|
|
{
|
|
/* Place the cortex a8 stubs last. */
|
|
htab->fix_cortex_a8 = -1;
|
|
bfd_hash_traverse (table, arm_build_one_stub, info);
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Locate the Thumb encoded calling stub for NAME. */
|
|
|
|
static struct elf_link_hash_entry *
|
|
find_thumb_glue (struct bfd_link_info *link_info,
|
|
const char *name,
|
|
char **error_message)
|
|
{
|
|
char *tmp_name;
|
|
struct elf_link_hash_entry *hash;
|
|
struct elf32_arm_link_hash_table *hash_table;
|
|
|
|
/* We need a pointer to the armelf specific hash table. */
|
|
hash_table = elf32_arm_hash_table (link_info);
|
|
if (hash_table == NULL)
|
|
return NULL;
|
|
|
|
tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
|
|
+ strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
|
|
|
|
BFD_ASSERT (tmp_name);
|
|
|
|
sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
|
|
|
|
hash = elf_link_hash_lookup
|
|
(&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
|
|
|
|
if (hash == NULL
|
|
&& asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
|
|
tmp_name, name) == -1)
|
|
*error_message = (char *) bfd_errmsg (bfd_error_system_call);
|
|
|
|
free (tmp_name);
|
|
|
|
return hash;
|
|
}
|
|
|
|
/* Locate the ARM encoded calling stub for NAME. */
|
|
|
|
static struct elf_link_hash_entry *
|
|
find_arm_glue (struct bfd_link_info *link_info,
|
|
const char *name,
|
|
char **error_message)
|
|
{
|
|
char *tmp_name;
|
|
struct elf_link_hash_entry *myh;
|
|
struct elf32_arm_link_hash_table *hash_table;
|
|
|
|
/* We need a pointer to the elfarm specific hash table. */
|
|
hash_table = elf32_arm_hash_table (link_info);
|
|
if (hash_table == NULL)
|
|
return NULL;
|
|
|
|
tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
|
|
+ strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
|
|
|
|
BFD_ASSERT (tmp_name);
|
|
|
|
sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
|
|
|
|
myh = elf_link_hash_lookup
|
|
(&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
|
|
|
|
if (myh == NULL
|
|
&& asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
|
|
tmp_name, name) == -1)
|
|
*error_message = (char *) bfd_errmsg (bfd_error_system_call);
|
|
|
|
free (tmp_name);
|
|
|
|
return myh;
|
|
}
|
|
|
|
/* ARM->Thumb glue (static images):
|
|
|
|
.arm
|
|
__func_from_arm:
|
|
ldr r12, __func_addr
|
|
bx r12
|
|
__func_addr:
|
|
.word func @ behave as if you saw a ARM_32 reloc.
|
|
|
|
(v5t static images)
|
|
.arm
|
|
__func_from_arm:
|
|
ldr pc, __func_addr
|
|
__func_addr:
|
|
.word func @ behave as if you saw a ARM_32 reloc.
|
|
|
|
(relocatable images)
|
|
.arm
|
|
__func_from_arm:
|
|
ldr r12, __func_offset
|
|
add r12, r12, pc
|
|
bx r12
|
|
__func_offset:
|
|
.word func - . */
|
|
|
|
#define ARM2THUMB_STATIC_GLUE_SIZE 12
|
|
static const insn32 a2t1_ldr_insn = 0xe59fc000;
|
|
static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
|
|
static const insn32 a2t3_func_addr_insn = 0x00000001;
|
|
|
|
#define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
|
|
static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
|
|
static const insn32 a2t2v5_func_addr_insn = 0x00000001;
|
|
|
|
#define ARM2THUMB_PIC_GLUE_SIZE 16
|
|
static const insn32 a2t1p_ldr_insn = 0xe59fc004;
|
|
static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
|
|
static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
|
|
|
|
/* Thumb->ARM: Thumb->(non-interworking aware) ARM
|
|
|
|
.thumb .thumb
|
|
.align 2 .align 2
|
|
__func_from_thumb: __func_from_thumb:
|
|
bx pc push {r6, lr}
|
|
nop ldr r6, __func_addr
|
|
.arm mov lr, pc
|
|
b func bx r6
|
|
.arm
|
|
;; back_to_thumb
|
|
ldmia r13! {r6, lr}
|
|
bx lr
|
|
__func_addr:
|
|
.word func */
|
|
|
|
#define THUMB2ARM_GLUE_SIZE 8
|
|
static const insn16 t2a1_bx_pc_insn = 0x4778;
|
|
static const insn16 t2a2_noop_insn = 0x46c0;
|
|
static const insn32 t2a3_b_insn = 0xea000000;
|
|
|
|
#define VFP11_ERRATUM_VENEER_SIZE 8
|
|
|
|
#define ARM_BX_VENEER_SIZE 12
|
|
static const insn32 armbx1_tst_insn = 0xe3100001;
|
|
static const insn32 armbx2_moveq_insn = 0x01a0f000;
|
|
static const insn32 armbx3_bx_insn = 0xe12fff10;
|
|
|
|
#ifndef ELFARM_NABI_C_INCLUDED
|
|
static void
|
|
arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
|
|
{
|
|
asection * s;
|
|
bfd_byte * contents;
|
|
|
|
if (size == 0)
|
|
{
|
|
/* Do not include empty glue sections in the output. */
|
|
if (abfd != NULL)
|
|
{
|
|
s = bfd_get_linker_section (abfd, name);
|
|
if (s != NULL)
|
|
s->flags |= SEC_EXCLUDE;
|
|
}
|
|
return;
|
|
}
|
|
|
|
BFD_ASSERT (abfd != NULL);
|
|
|
|
s = bfd_get_linker_section (abfd, name);
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
contents = (bfd_byte *) bfd_alloc (abfd, size);
|
|
|
|
BFD_ASSERT (s->size == size);
|
|
s->contents = contents;
|
|
}
|
|
|
|
bfd_boolean
|
|
bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
|
|
{
|
|
struct elf32_arm_link_hash_table * globals;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
BFD_ASSERT (globals != NULL);
|
|
|
|
arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
|
|
globals->arm_glue_size,
|
|
ARM2THUMB_GLUE_SECTION_NAME);
|
|
|
|
arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
|
|
globals->thumb_glue_size,
|
|
THUMB2ARM_GLUE_SECTION_NAME);
|
|
|
|
arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
|
|
globals->vfp11_erratum_glue_size,
|
|
VFP11_ERRATUM_VENEER_SECTION_NAME);
|
|
|
|
arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
|
|
globals->bx_glue_size,
|
|
ARM_BX_GLUE_SECTION_NAME);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Allocate space and symbols for calling a Thumb function from Arm mode.
|
|
returns the symbol identifying the stub. */
|
|
|
|
static struct elf_link_hash_entry *
|
|
record_arm_to_thumb_glue (struct bfd_link_info * link_info,
|
|
struct elf_link_hash_entry * h)
|
|
{
|
|
const char * name = h->root.root.string;
|
|
asection * s;
|
|
char * tmp_name;
|
|
struct elf_link_hash_entry * myh;
|
|
struct bfd_link_hash_entry * bh;
|
|
struct elf32_arm_link_hash_table * globals;
|
|
bfd_vma val;
|
|
bfd_size_type size;
|
|
|
|
globals = elf32_arm_hash_table (link_info);
|
|
BFD_ASSERT (globals != NULL);
|
|
BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
|
|
|
|
s = bfd_get_linker_section
|
|
(globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
|
|
+ strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
|
|
|
|
BFD_ASSERT (tmp_name);
|
|
|
|
sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
|
|
|
|
myh = elf_link_hash_lookup
|
|
(&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
|
|
|
|
if (myh != NULL)
|
|
{
|
|
/* We've already seen this guy. */
|
|
free (tmp_name);
|
|
return myh;
|
|
}
|
|
|
|
/* The only trick here is using hash_table->arm_glue_size as the value.
|
|
Even though the section isn't allocated yet, this is where we will be
|
|
putting it. The +1 on the value marks that the stub has not been
|
|
output yet - not that it is a Thumb function. */
|
|
bh = NULL;
|
|
val = globals->arm_glue_size + 1;
|
|
_bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
|
|
tmp_name, BSF_GLOBAL, s, val,
|
|
NULL, TRUE, FALSE, &bh);
|
|
|
|
myh = (struct elf_link_hash_entry *) bh;
|
|
myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
|
|
myh->forced_local = 1;
|
|
|
|
free (tmp_name);
|
|
|
|
if (link_info->shared || globals->root.is_relocatable_executable
|
|
|| globals->pic_veneer)
|
|
size = ARM2THUMB_PIC_GLUE_SIZE;
|
|
else if (globals->use_blx)
|
|
size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
|
|
else
|
|
size = ARM2THUMB_STATIC_GLUE_SIZE;
|
|
|
|
s->size += size;
|
|
globals->arm_glue_size += size;
|
|
|
|
return myh;
|
|
}
|
|
|
|
/* Allocate space for ARMv4 BX veneers. */
|
|
|
|
static void
|
|
record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
|
|
{
|
|
asection * s;
|
|
struct elf32_arm_link_hash_table *globals;
|
|
char *tmp_name;
|
|
struct elf_link_hash_entry *myh;
|
|
struct bfd_link_hash_entry *bh;
|
|
bfd_vma val;
|
|
|
|
/* BX PC does not need a veneer. */
|
|
if (reg == 15)
|
|
return;
|
|
|
|
globals = elf32_arm_hash_table (link_info);
|
|
BFD_ASSERT (globals != NULL);
|
|
BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
|
|
|
|
/* Check if this veneer has already been allocated. */
|
|
if (globals->bx_glue_offset[reg])
|
|
return;
|
|
|
|
s = bfd_get_linker_section
|
|
(globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
/* Add symbol for veneer. */
|
|
tmp_name = (char *)
|
|
bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
|
|
|
|
BFD_ASSERT (tmp_name);
|
|
|
|
sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
|
|
|
|
myh = elf_link_hash_lookup
|
|
(&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
|
|
|
|
BFD_ASSERT (myh == NULL);
|
|
|
|
bh = NULL;
|
|
val = globals->bx_glue_size;
|
|
_bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
|
|
tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
|
|
NULL, TRUE, FALSE, &bh);
|
|
|
|
myh = (struct elf_link_hash_entry *) bh;
|
|
myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
|
|
myh->forced_local = 1;
|
|
|
|
s->size += ARM_BX_VENEER_SIZE;
|
|
globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
|
|
globals->bx_glue_size += ARM_BX_VENEER_SIZE;
|
|
}
|
|
|
|
|
|
/* Add an entry to the code/data map for section SEC. */
|
|
|
|
static void
|
|
elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
|
|
{
|
|
struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
|
|
unsigned int newidx;
|
|
|
|
if (sec_data->map == NULL)
|
|
{
|
|
sec_data->map = (elf32_arm_section_map *)
|
|
bfd_malloc (sizeof (elf32_arm_section_map));
|
|
sec_data->mapcount = 0;
|
|
sec_data->mapsize = 1;
|
|
}
|
|
|
|
newidx = sec_data->mapcount++;
|
|
|
|
if (sec_data->mapcount > sec_data->mapsize)
|
|
{
|
|
sec_data->mapsize *= 2;
|
|
sec_data->map = (elf32_arm_section_map *)
|
|
bfd_realloc_or_free (sec_data->map, sec_data->mapsize
|
|
* sizeof (elf32_arm_section_map));
|
|
}
|
|
|
|
if (sec_data->map)
|
|
{
|
|
sec_data->map[newidx].vma = vma;
|
|
sec_data->map[newidx].type = type;
|
|
}
|
|
}
|
|
|
|
|
|
/* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
|
|
veneers are handled for now. */
|
|
|
|
static bfd_vma
|
|
record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
|
|
elf32_vfp11_erratum_list *branch,
|
|
bfd *branch_bfd,
|
|
asection *branch_sec,
|
|
unsigned int offset)
|
|
{
|
|
asection *s;
|
|
struct elf32_arm_link_hash_table *hash_table;
|
|
char *tmp_name;
|
|
struct elf_link_hash_entry *myh;
|
|
struct bfd_link_hash_entry *bh;
|
|
bfd_vma val;
|
|
struct _arm_elf_section_data *sec_data;
|
|
elf32_vfp11_erratum_list *newerr;
|
|
|
|
hash_table = elf32_arm_hash_table (link_info);
|
|
BFD_ASSERT (hash_table != NULL);
|
|
BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
|
|
|
|
s = bfd_get_linker_section
|
|
(hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
|
|
|
|
sec_data = elf32_arm_section_data (s);
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
|
|
(VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
|
|
|
|
BFD_ASSERT (tmp_name);
|
|
|
|
sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
|
|
hash_table->num_vfp11_fixes);
|
|
|
|
myh = elf_link_hash_lookup
|
|
(&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
|
|
|
|
BFD_ASSERT (myh == NULL);
|
|
|
|
bh = NULL;
|
|
val = hash_table->vfp11_erratum_glue_size;
|
|
_bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
|
|
tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
|
|
NULL, TRUE, FALSE, &bh);
|
|
|
|
myh = (struct elf_link_hash_entry *) bh;
|
|
myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
|
|
myh->forced_local = 1;
|
|
|
|
/* Link veneer back to calling location. */
|
|
sec_data->erratumcount += 1;
|
|
newerr = (elf32_vfp11_erratum_list *)
|
|
bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
|
|
|
|
newerr->type = VFP11_ERRATUM_ARM_VENEER;
|
|
newerr->vma = -1;
|
|
newerr->u.v.branch = branch;
|
|
newerr->u.v.id = hash_table->num_vfp11_fixes;
|
|
branch->u.b.veneer = newerr;
|
|
|
|
newerr->next = sec_data->erratumlist;
|
|
sec_data->erratumlist = newerr;
|
|
|
|
/* A symbol for the return from the veneer. */
|
|
sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
|
|
hash_table->num_vfp11_fixes);
|
|
|
|
myh = elf_link_hash_lookup
|
|
(&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
|
|
|
|
if (myh != NULL)
|
|
abort ();
|
|
|
|
bh = NULL;
|
|
val = offset + 4;
|
|
_bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
|
|
branch_sec, val, NULL, TRUE, FALSE, &bh);
|
|
|
|
myh = (struct elf_link_hash_entry *) bh;
|
|
myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
|
|
myh->forced_local = 1;
|
|
|
|
free (tmp_name);
|
|
|
|
/* Generate a mapping symbol for the veneer section, and explicitly add an
|
|
entry for that symbol to the code/data map for the section. */
|
|
if (hash_table->vfp11_erratum_glue_size == 0)
|
|
{
|
|
bh = NULL;
|
|
/* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
|
|
ever requires this erratum fix. */
|
|
_bfd_generic_link_add_one_symbol (link_info,
|
|
hash_table->bfd_of_glue_owner, "$a",
|
|
BSF_LOCAL, s, 0, NULL,
|
|
TRUE, FALSE, &bh);
|
|
|
|
myh = (struct elf_link_hash_entry *) bh;
|
|
myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
|
|
myh->forced_local = 1;
|
|
|
|
/* The elf32_arm_init_maps function only cares about symbols from input
|
|
BFDs. We must make a note of this generated mapping symbol
|
|
ourselves so that code byteswapping works properly in
|
|
elf32_arm_write_section. */
|
|
elf32_arm_section_map_add (s, 'a', 0);
|
|
}
|
|
|
|
s->size += VFP11_ERRATUM_VENEER_SIZE;
|
|
hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
|
|
hash_table->num_vfp11_fixes++;
|
|
|
|
/* The offset of the veneer. */
|
|
return val;
|
|
}
|
|
|
|
#define ARM_GLUE_SECTION_FLAGS \
|
|
(SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
|
|
| SEC_READONLY | SEC_LINKER_CREATED)
|
|
|
|
/* Create a fake section for use by the ARM backend of the linker. */
|
|
|
|
static bfd_boolean
|
|
arm_make_glue_section (bfd * abfd, const char * name)
|
|
{
|
|
asection * sec;
|
|
|
|
sec = bfd_get_linker_section (abfd, name);
|
|
if (sec != NULL)
|
|
/* Already made. */
|
|
return TRUE;
|
|
|
|
sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
|
|
|
|
if (sec == NULL
|
|
|| !bfd_set_section_alignment (abfd, sec, 2))
|
|
return FALSE;
|
|
|
|
/* Set the gc mark to prevent the section from being removed by garbage
|
|
collection, despite the fact that no relocs refer to this section. */
|
|
sec->gc_mark = 1;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Add the glue sections to ABFD. This function is called from the
|
|
linker scripts in ld/emultempl/{armelf}.em. */
|
|
|
|
bfd_boolean
|
|
bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
|
|
struct bfd_link_info *info)
|
|
{
|
|
/* If we are only performing a partial
|
|
link do not bother adding the glue. */
|
|
if (info->relocatable)
|
|
return TRUE;
|
|
|
|
return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
|
|
&& arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
|
|
&& arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
|
|
&& arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
|
|
}
|
|
|
|
/* Select a BFD to be used to hold the sections used by the glue code.
|
|
This function is called from the linker scripts in ld/emultempl/
|
|
{armelf/pe}.em. */
|
|
|
|
bfd_boolean
|
|
bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
|
|
{
|
|
struct elf32_arm_link_hash_table *globals;
|
|
|
|
/* If we are only performing a partial link
|
|
do not bother getting a bfd to hold the glue. */
|
|
if (info->relocatable)
|
|
return TRUE;
|
|
|
|
/* Make sure we don't attach the glue sections to a dynamic object. */
|
|
BFD_ASSERT (!(abfd->flags & DYNAMIC));
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
BFD_ASSERT (globals != NULL);
|
|
|
|
if (globals->bfd_of_glue_owner != NULL)
|
|
return TRUE;
|
|
|
|
/* Save the bfd for later use. */
|
|
globals->bfd_of_glue_owner = abfd;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static void
|
|
check_use_blx (struct elf32_arm_link_hash_table *globals)
|
|
{
|
|
int cpu_arch;
|
|
|
|
cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
|
|
Tag_CPU_arch);
|
|
|
|
if (globals->fix_arm1176)
|
|
{
|
|
if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
|
|
globals->use_blx = 1;
|
|
}
|
|
else
|
|
{
|
|
if (cpu_arch > TAG_CPU_ARCH_V4T)
|
|
globals->use_blx = 1;
|
|
}
|
|
}
|
|
|
|
bfd_boolean
|
|
bfd_elf32_arm_process_before_allocation (bfd *abfd,
|
|
struct bfd_link_info *link_info)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
Elf_Internal_Rela *internal_relocs = NULL;
|
|
Elf_Internal_Rela *irel, *irelend;
|
|
bfd_byte *contents = NULL;
|
|
|
|
asection *sec;
|
|
struct elf32_arm_link_hash_table *globals;
|
|
|
|
/* If we are only performing a partial link do not bother
|
|
to construct any glue. */
|
|
if (link_info->relocatable)
|
|
return TRUE;
|
|
|
|
/* Here we have a bfd that is to be included on the link. We have a
|
|
hook to do reloc rummaging, before section sizes are nailed down. */
|
|
globals = elf32_arm_hash_table (link_info);
|
|
BFD_ASSERT (globals != NULL);
|
|
|
|
check_use_blx (globals);
|
|
|
|
if (globals->byteswap_code && !bfd_big_endian (abfd))
|
|
{
|
|
_bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
|
|
abfd);
|
|
return FALSE;
|
|
}
|
|
|
|
/* PR 5398: If we have not decided to include any loadable sections in
|
|
the output then we will not have a glue owner bfd. This is OK, it
|
|
just means that there is nothing else for us to do here. */
|
|
if (globals->bfd_of_glue_owner == NULL)
|
|
return TRUE;
|
|
|
|
/* Rummage around all the relocs and map the glue vectors. */
|
|
sec = abfd->sections;
|
|
|
|
if (sec == NULL)
|
|
return TRUE;
|
|
|
|
for (; sec != NULL; sec = sec->next)
|
|
{
|
|
if (sec->reloc_count == 0)
|
|
continue;
|
|
|
|
if ((sec->flags & SEC_EXCLUDE) != 0)
|
|
continue;
|
|
|
|
symtab_hdr = & elf_symtab_hdr (abfd);
|
|
|
|
/* Load the relocs. */
|
|
internal_relocs
|
|
= _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
|
|
|
|
if (internal_relocs == NULL)
|
|
goto error_return;
|
|
|
|
irelend = internal_relocs + sec->reloc_count;
|
|
for (irel = internal_relocs; irel < irelend; irel++)
|
|
{
|
|
long r_type;
|
|
unsigned long r_index;
|
|
|
|
struct elf_link_hash_entry *h;
|
|
|
|
r_type = ELF32_R_TYPE (irel->r_info);
|
|
r_index = ELF32_R_SYM (irel->r_info);
|
|
|
|
/* These are the only relocation types we care about. */
|
|
if ( r_type != R_ARM_PC24
|
|
&& (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
|
|
continue;
|
|
|
|
/* Get the section contents if we haven't done so already. */
|
|
if (contents == NULL)
|
|
{
|
|
/* Get cached copy if it exists. */
|
|
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
|
contents = elf_section_data (sec)->this_hdr.contents;
|
|
else
|
|
{
|
|
/* Go get them off disk. */
|
|
if (! bfd_malloc_and_get_section (abfd, sec, &contents))
|
|
goto error_return;
|
|
}
|
|
}
|
|
|
|
if (r_type == R_ARM_V4BX)
|
|
{
|
|
int reg;
|
|
|
|
reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
|
|
record_arm_bx_glue (link_info, reg);
|
|
continue;
|
|
}
|
|
|
|
/* If the relocation is not against a symbol it cannot concern us. */
|
|
h = NULL;
|
|
|
|
/* We don't care about local symbols. */
|
|
if (r_index < symtab_hdr->sh_info)
|
|
continue;
|
|
|
|
/* This is an external symbol. */
|
|
r_index -= symtab_hdr->sh_info;
|
|
h = (struct elf_link_hash_entry *)
|
|
elf_sym_hashes (abfd)[r_index];
|
|
|
|
/* If the relocation is against a static symbol it must be within
|
|
the current section and so cannot be a cross ARM/Thumb relocation. */
|
|
if (h == NULL)
|
|
continue;
|
|
|
|
/* If the call will go through a PLT entry then we do not need
|
|
glue. */
|
|
if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
|
|
continue;
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_ARM_PC24:
|
|
/* This one is a call from arm code. We need to look up
|
|
the target of the call. If it is a thumb target, we
|
|
insert glue. */
|
|
if (h->target_internal == ST_BRANCH_TO_THUMB)
|
|
record_arm_to_thumb_glue (link_info, h);
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
if (contents != NULL
|
|
&& elf_section_data (sec)->this_hdr.contents != contents)
|
|
free (contents);
|
|
contents = NULL;
|
|
|
|
if (internal_relocs != NULL
|
|
&& elf_section_data (sec)->relocs != internal_relocs)
|
|
free (internal_relocs);
|
|
internal_relocs = NULL;
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
error_return:
|
|
if (contents != NULL
|
|
&& elf_section_data (sec)->this_hdr.contents != contents)
|
|
free (contents);
|
|
if (internal_relocs != NULL
|
|
&& elf_section_data (sec)->relocs != internal_relocs)
|
|
free (internal_relocs);
|
|
|
|
return FALSE;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Initialise maps of ARM/Thumb/data for input BFDs. */
|
|
|
|
void
|
|
bfd_elf32_arm_init_maps (bfd *abfd)
|
|
{
|
|
Elf_Internal_Sym *isymbuf;
|
|
Elf_Internal_Shdr *hdr;
|
|
unsigned int i, localsyms;
|
|
|
|
/* PR 7093: Make sure that we are dealing with an arm elf binary. */
|
|
if (! is_arm_elf (abfd))
|
|
return;
|
|
|
|
if ((abfd->flags & DYNAMIC) != 0)
|
|
return;
|
|
|
|
hdr = & elf_symtab_hdr (abfd);
|
|
localsyms = hdr->sh_info;
|
|
|
|
/* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
|
|
should contain the number of local symbols, which should come before any
|
|
global symbols. Mapping symbols are always local. */
|
|
isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
|
|
NULL);
|
|
|
|
/* No internal symbols read? Skip this BFD. */
|
|
if (isymbuf == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < localsyms; i++)
|
|
{
|
|
Elf_Internal_Sym *isym = &isymbuf[i];
|
|
asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
|
const char *name;
|
|
|
|
if (sec != NULL
|
|
&& ELF_ST_BIND (isym->st_info) == STB_LOCAL)
|
|
{
|
|
name = bfd_elf_string_from_elf_section (abfd,
|
|
hdr->sh_link, isym->st_name);
|
|
|
|
if (bfd_is_arm_special_symbol_name (name,
|
|
BFD_ARM_SPECIAL_SYM_TYPE_MAP))
|
|
elf32_arm_section_map_add (sec, name[1], isym->st_value);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
|
|
say what they wanted. */
|
|
|
|
void
|
|
bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
|
|
{
|
|
struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
|
|
obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
|
|
|
|
if (globals == NULL)
|
|
return;
|
|
|
|
if (globals->fix_cortex_a8 == -1)
|
|
{
|
|
/* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
|
|
if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
|
|
&& (out_attr[Tag_CPU_arch_profile].i == 'A'
|
|
|| out_attr[Tag_CPU_arch_profile].i == 0))
|
|
globals->fix_cortex_a8 = 1;
|
|
else
|
|
globals->fix_cortex_a8 = 0;
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
|
|
{
|
|
struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
|
|
obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
|
|
|
|
if (globals == NULL)
|
|
return;
|
|
/* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
|
|
if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
|
|
{
|
|
switch (globals->vfp11_fix)
|
|
{
|
|
case BFD_ARM_VFP11_FIX_DEFAULT:
|
|
case BFD_ARM_VFP11_FIX_NONE:
|
|
globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
|
|
break;
|
|
|
|
default:
|
|
/* Give a warning, but do as the user requests anyway. */
|
|
(*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
|
|
"workaround is not necessary for target architecture"), obfd);
|
|
}
|
|
}
|
|
else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
|
|
/* For earlier architectures, we might need the workaround, but do not
|
|
enable it by default. If users is running with broken hardware, they
|
|
must enable the erratum fix explicitly. */
|
|
globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
|
|
}
|
|
|
|
|
|
enum bfd_arm_vfp11_pipe
|
|
{
|
|
VFP11_FMAC,
|
|
VFP11_LS,
|
|
VFP11_DS,
|
|
VFP11_BAD
|
|
};
|
|
|
|
/* Return a VFP register number. This is encoded as RX:X for single-precision
|
|
registers, or X:RX for double-precision registers, where RX is the group of
|
|
four bits in the instruction encoding and X is the single extension bit.
|
|
RX and X fields are specified using their lowest (starting) bit. The return
|
|
value is:
|
|
|
|
0...31: single-precision registers s0...s31
|
|
32...63: double-precision registers d0...d31.
|
|
|
|
Although X should be zero for VFP11 (encoding d0...d15 only), we might
|
|
encounter VFP3 instructions, so we allow the full range for DP registers. */
|
|
|
|
static unsigned int
|
|
bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
|
|
unsigned int x)
|
|
{
|
|
if (is_double)
|
|
return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
|
|
else
|
|
return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
|
|
}
|
|
|
|
/* Set bits in *WMASK according to a register number REG as encoded by
|
|
bfd_arm_vfp11_regno(). Ignore d16-d31. */
|
|
|
|
static void
|
|
bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
|
|
{
|
|
if (reg < 32)
|
|
*wmask |= 1 << reg;
|
|
else if (reg < 48)
|
|
*wmask |= 3 << ((reg - 32) * 2);
|
|
}
|
|
|
|
/* Return TRUE if WMASK overwrites anything in REGS. */
|
|
|
|
static bfd_boolean
|
|
bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < numregs; i++)
|
|
{
|
|
unsigned int reg = regs[i];
|
|
|
|
if (reg < 32 && (wmask & (1 << reg)) != 0)
|
|
return TRUE;
|
|
|
|
reg -= 32;
|
|
|
|
if (reg >= 16)
|
|
continue;
|
|
|
|
if ((wmask & (3 << (reg * 2))) != 0)
|
|
return TRUE;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/* In this function, we're interested in two things: finding input registers
|
|
for VFP data-processing instructions, and finding the set of registers which
|
|
arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
|
|
hold the written set, so FLDM etc. are easy to deal with (we're only
|
|
interested in 32 SP registers or 16 dp registers, due to the VFP version
|
|
implemented by the chip in question). DP registers are marked by setting
|
|
both SP registers in the write mask). */
|
|
|
|
static enum bfd_arm_vfp11_pipe
|
|
bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
|
|
int *numregs)
|
|
{
|
|
enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
|
|
bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
|
|
|
|
if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
|
|
{
|
|
unsigned int pqrs;
|
|
unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
|
|
unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
|
|
|
|
pqrs = ((insn & 0x00800000) >> 20)
|
|
| ((insn & 0x00300000) >> 19)
|
|
| ((insn & 0x00000040) >> 6);
|
|
|
|
switch (pqrs)
|
|
{
|
|
case 0: /* fmac[sd]. */
|
|
case 1: /* fnmac[sd]. */
|
|
case 2: /* fmsc[sd]. */
|
|
case 3: /* fnmsc[sd]. */
|
|
vpipe = VFP11_FMAC;
|
|
bfd_arm_vfp11_write_mask (destmask, fd);
|
|
regs[0] = fd;
|
|
regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
|
|
regs[2] = fm;
|
|
*numregs = 3;
|
|
break;
|
|
|
|
case 4: /* fmul[sd]. */
|
|
case 5: /* fnmul[sd]. */
|
|
case 6: /* fadd[sd]. */
|
|
case 7: /* fsub[sd]. */
|
|
vpipe = VFP11_FMAC;
|
|
goto vfp_binop;
|
|
|
|
case 8: /* fdiv[sd]. */
|
|
vpipe = VFP11_DS;
|
|
vfp_binop:
|
|
bfd_arm_vfp11_write_mask (destmask, fd);
|
|
regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
|
|
regs[1] = fm;
|
|
*numregs = 2;
|
|
break;
|
|
|
|
case 15: /* extended opcode. */
|
|
{
|
|
unsigned int extn = ((insn >> 15) & 0x1e)
|
|
| ((insn >> 7) & 1);
|
|
|
|
switch (extn)
|
|
{
|
|
case 0: /* fcpy[sd]. */
|
|
case 1: /* fabs[sd]. */
|
|
case 2: /* fneg[sd]. */
|
|
case 8: /* fcmp[sd]. */
|
|
case 9: /* fcmpe[sd]. */
|
|
case 10: /* fcmpz[sd]. */
|
|
case 11: /* fcmpez[sd]. */
|
|
case 16: /* fuito[sd]. */
|
|
case 17: /* fsito[sd]. */
|
|
case 24: /* ftoui[sd]. */
|
|
case 25: /* ftouiz[sd]. */
|
|
case 26: /* ftosi[sd]. */
|
|
case 27: /* ftosiz[sd]. */
|
|
/* These instructions will not bounce due to underflow. */
|
|
*numregs = 0;
|
|
vpipe = VFP11_FMAC;
|
|
break;
|
|
|
|
case 3: /* fsqrt[sd]. */
|
|
/* fsqrt cannot underflow, but it can (perhaps) overwrite
|
|
registers to cause the erratum in previous instructions. */
|
|
bfd_arm_vfp11_write_mask (destmask, fd);
|
|
vpipe = VFP11_DS;
|
|
break;
|
|
|
|
case 15: /* fcvt{ds,sd}. */
|
|
{
|
|
int rnum = 0;
|
|
|
|
bfd_arm_vfp11_write_mask (destmask, fd);
|
|
|
|
/* Only FCVTSD can underflow. */
|
|
if ((insn & 0x100) != 0)
|
|
regs[rnum++] = fm;
|
|
|
|
*numregs = rnum;
|
|
|
|
vpipe = VFP11_FMAC;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return VFP11_BAD;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return VFP11_BAD;
|
|
}
|
|
}
|
|
/* Two-register transfer. */
|
|
else if ((insn & 0x0fe00ed0) == 0x0c400a10)
|
|
{
|
|
unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
|
|
|
|
if ((insn & 0x100000) == 0)
|
|
{
|
|
if (is_double)
|
|
bfd_arm_vfp11_write_mask (destmask, fm);
|
|
else
|
|
{
|
|
bfd_arm_vfp11_write_mask (destmask, fm);
|
|
bfd_arm_vfp11_write_mask (destmask, fm + 1);
|
|
}
|
|
}
|
|
|
|
vpipe = VFP11_LS;
|
|
}
|
|
else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
|
|
{
|
|
int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
|
|
unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
|
|
|
|
switch (puw)
|
|
{
|
|
case 0: /* Two-reg transfer. We should catch these above. */
|
|
abort ();
|
|
|
|
case 2: /* fldm[sdx]. */
|
|
case 3:
|
|
case 5:
|
|
{
|
|
unsigned int i, offset = insn & 0xff;
|
|
|
|
if (is_double)
|
|
offset >>= 1;
|
|
|
|
for (i = fd; i < fd + offset; i++)
|
|
bfd_arm_vfp11_write_mask (destmask, i);
|
|
}
|
|
break;
|
|
|
|
case 4: /* fld[sd]. */
|
|
case 6:
|
|
bfd_arm_vfp11_write_mask (destmask, fd);
|
|
break;
|
|
|
|
default:
|
|
return VFP11_BAD;
|
|
}
|
|
|
|
vpipe = VFP11_LS;
|
|
}
|
|
/* Single-register transfer. Note L==0. */
|
|
else if ((insn & 0x0f100e10) == 0x0e000a10)
|
|
{
|
|
unsigned int opcode = (insn >> 21) & 7;
|
|
unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
|
|
|
|
switch (opcode)
|
|
{
|
|
case 0: /* fmsr/fmdlr. */
|
|
case 1: /* fmdhr. */
|
|
/* Mark fmdhr and fmdlr as writing to the whole of the DP
|
|
destination register. I don't know if this is exactly right,
|
|
but it is the conservative choice. */
|
|
bfd_arm_vfp11_write_mask (destmask, fn);
|
|
break;
|
|
|
|
case 7: /* fmxr. */
|
|
break;
|
|
}
|
|
|
|
vpipe = VFP11_LS;
|
|
}
|
|
|
|
return vpipe;
|
|
}
|
|
|
|
|
|
static int elf32_arm_compare_mapping (const void * a, const void * b);
|
|
|
|
|
|
/* Look for potentially-troublesome code sequences which might trigger the
|
|
VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
|
|
(available from ARM) for details of the erratum. A short version is
|
|
described in ld.texinfo. */
|
|
|
|
bfd_boolean
|
|
bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
|
|
{
|
|
asection *sec;
|
|
bfd_byte *contents = NULL;
|
|
int state = 0;
|
|
int regs[3], numregs = 0;
|
|
struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
|
|
int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
|
|
|
|
if (globals == NULL)
|
|
return FALSE;
|
|
|
|
/* We use a simple FSM to match troublesome VFP11 instruction sequences.
|
|
The states transition as follows:
|
|
|
|
0 -> 1 (vector) or 0 -> 2 (scalar)
|
|
A VFP FMAC-pipeline instruction has been seen. Fill
|
|
regs[0]..regs[numregs-1] with its input operands. Remember this
|
|
instruction in 'first_fmac'.
|
|
|
|
1 -> 2
|
|
Any instruction, except for a VFP instruction which overwrites
|
|
regs[*].
|
|
|
|
1 -> 3 [ -> 0 ] or
|
|
2 -> 3 [ -> 0 ]
|
|
A VFP instruction has been seen which overwrites any of regs[*].
|
|
We must make a veneer! Reset state to 0 before examining next
|
|
instruction.
|
|
|
|
2 -> 0
|
|
If we fail to match anything in state 2, reset to state 0 and reset
|
|
the instruction pointer to the instruction after 'first_fmac'.
|
|
|
|
If the VFP11 vector mode is in use, there must be at least two unrelated
|
|
instructions between anti-dependent VFP11 instructions to properly avoid
|
|
triggering the erratum, hence the use of the extra state 1. */
|
|
|
|
/* If we are only performing a partial link do not bother
|
|
to construct any glue. */
|
|
if (link_info->relocatable)
|
|
return TRUE;
|
|
|
|
/* Skip if this bfd does not correspond to an ELF image. */
|
|
if (! is_arm_elf (abfd))
|
|
return TRUE;
|
|
|
|
/* We should have chosen a fix type by the time we get here. */
|
|
BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
|
|
|
|
if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
|
|
return TRUE;
|
|
|
|
/* Skip this BFD if it corresponds to an executable or dynamic object. */
|
|
if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
|
|
return TRUE;
|
|
|
|
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
|
{
|
|
unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
|
|
struct _arm_elf_section_data *sec_data;
|
|
|
|
/* If we don't have executable progbits, we're not interested in this
|
|
section. Also skip if section is to be excluded. */
|
|
if (elf_section_type (sec) != SHT_PROGBITS
|
|
|| (elf_section_flags (sec) & SHF_EXECINSTR) == 0
|
|
|| (sec->flags & SEC_EXCLUDE) != 0
|
|
|| sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
|
|
|| sec->output_section == bfd_abs_section_ptr
|
|
|| strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
|
|
continue;
|
|
|
|
sec_data = elf32_arm_section_data (sec);
|
|
|
|
if (sec_data->mapcount == 0)
|
|
continue;
|
|
|
|
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
|
contents = elf_section_data (sec)->this_hdr.contents;
|
|
else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
|
|
goto error_return;
|
|
|
|
qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
|
|
elf32_arm_compare_mapping);
|
|
|
|
for (span = 0; span < sec_data->mapcount; span++)
|
|
{
|
|
unsigned int span_start = sec_data->map[span].vma;
|
|
unsigned int span_end = (span == sec_data->mapcount - 1)
|
|
? sec->size : sec_data->map[span + 1].vma;
|
|
char span_type = sec_data->map[span].type;
|
|
|
|
/* FIXME: Only ARM mode is supported at present. We may need to
|
|
support Thumb-2 mode also at some point. */
|
|
if (span_type != 'a')
|
|
continue;
|
|
|
|
for (i = span_start; i < span_end;)
|
|
{
|
|
unsigned int next_i = i + 4;
|
|
unsigned int insn = bfd_big_endian (abfd)
|
|
? (contents[i] << 24)
|
|
| (contents[i + 1] << 16)
|
|
| (contents[i + 2] << 8)
|
|
| contents[i + 3]
|
|
: (contents[i + 3] << 24)
|
|
| (contents[i + 2] << 16)
|
|
| (contents[i + 1] << 8)
|
|
| contents[i];
|
|
unsigned int writemask = 0;
|
|
enum bfd_arm_vfp11_pipe vpipe;
|
|
|
|
switch (state)
|
|
{
|
|
case 0:
|
|
vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
|
|
&numregs);
|
|
/* I'm assuming the VFP11 erratum can trigger with denorm
|
|
operands on either the FMAC or the DS pipeline. This might
|
|
lead to slightly overenthusiastic veneer insertion. */
|
|
if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
|
|
{
|
|
state = use_vector ? 1 : 2;
|
|
first_fmac = i;
|
|
veneer_of_insn = insn;
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
{
|
|
int other_regs[3], other_numregs;
|
|
vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
|
|
other_regs,
|
|
&other_numregs);
|
|
if (vpipe != VFP11_BAD
|
|
&& bfd_arm_vfp11_antidependency (writemask, regs,
|
|
numregs))
|
|
state = 3;
|
|
else
|
|
state = 2;
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
{
|
|
int other_regs[3], other_numregs;
|
|
vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
|
|
other_regs,
|
|
&other_numregs);
|
|
if (vpipe != VFP11_BAD
|
|
&& bfd_arm_vfp11_antidependency (writemask, regs,
|
|
numregs))
|
|
state = 3;
|
|
else
|
|
{
|
|
state = 0;
|
|
next_i = first_fmac + 4;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 3:
|
|
abort (); /* Should be unreachable. */
|
|
}
|
|
|
|
if (state == 3)
|
|
{
|
|
elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
|
|
bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
|
|
|
|
elf32_arm_section_data (sec)->erratumcount += 1;
|
|
|
|
newerr->u.b.vfp_insn = veneer_of_insn;
|
|
|
|
switch (span_type)
|
|
{
|
|
case 'a':
|
|
newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
|
|
record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
|
|
first_fmac);
|
|
|
|
newerr->vma = -1;
|
|
|
|
newerr->next = sec_data->erratumlist;
|
|
sec_data->erratumlist = newerr;
|
|
|
|
state = 0;
|
|
}
|
|
|
|
i = next_i;
|
|
}
|
|
}
|
|
|
|
if (contents != NULL
|
|
&& elf_section_data (sec)->this_hdr.contents != contents)
|
|
free (contents);
|
|
contents = NULL;
|
|
}
|
|
|
|
return TRUE;
|
|
|
|
error_return:
|
|
if (contents != NULL
|
|
&& elf_section_data (sec)->this_hdr.contents != contents)
|
|
free (contents);
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/* Find virtual-memory addresses for VFP11 erratum veneers and return locations
|
|
after sections have been laid out, using specially-named symbols. */
|
|
|
|
void
|
|
bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
|
|
struct bfd_link_info *link_info)
|
|
{
|
|
asection *sec;
|
|
struct elf32_arm_link_hash_table *globals;
|
|
char *tmp_name;
|
|
|
|
if (link_info->relocatable)
|
|
return;
|
|
|
|
/* Skip if this bfd does not correspond to an ELF image. */
|
|
if (! is_arm_elf (abfd))
|
|
return;
|
|
|
|
globals = elf32_arm_hash_table (link_info);
|
|
if (globals == NULL)
|
|
return;
|
|
|
|
tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
|
|
(VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
|
|
|
|
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
|
{
|
|
struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
|
|
elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
|
|
|
|
for (; errnode != NULL; errnode = errnode->next)
|
|
{
|
|
struct elf_link_hash_entry *myh;
|
|
bfd_vma vma;
|
|
|
|
switch (errnode->type)
|
|
{
|
|
case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
|
|
case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
|
|
/* Find veneer symbol. */
|
|
sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
|
|
errnode->u.b.veneer->u.v.id);
|
|
|
|
myh = elf_link_hash_lookup
|
|
(&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
|
|
|
|
if (myh == NULL)
|
|
(*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
|
|
"`%s'"), abfd, tmp_name);
|
|
|
|
vma = myh->root.u.def.section->output_section->vma
|
|
+ myh->root.u.def.section->output_offset
|
|
+ myh->root.u.def.value;
|
|
|
|
errnode->u.b.veneer->vma = vma;
|
|
break;
|
|
|
|
case VFP11_ERRATUM_ARM_VENEER:
|
|
case VFP11_ERRATUM_THUMB_VENEER:
|
|
/* Find return location. */
|
|
sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
|
|
errnode->u.v.id);
|
|
|
|
myh = elf_link_hash_lookup
|
|
(&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
|
|
|
|
if (myh == NULL)
|
|
(*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
|
|
"`%s'"), abfd, tmp_name);
|
|
|
|
vma = myh->root.u.def.section->output_section->vma
|
|
+ myh->root.u.def.section->output_offset
|
|
+ myh->root.u.def.value;
|
|
|
|
errnode->u.v.branch->vma = vma;
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
}
|
|
|
|
free (tmp_name);
|
|
}
|
|
|
|
|
|
/* Set target relocation values needed during linking. */
|
|
|
|
void
|
|
bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
|
|
struct bfd_link_info *link_info,
|
|
int target1_is_rel,
|
|
char * target2_type,
|
|
int fix_v4bx,
|
|
int use_blx,
|
|
bfd_arm_vfp11_fix vfp11_fix,
|
|
int no_enum_warn, int no_wchar_warn,
|
|
int pic_veneer, int fix_cortex_a8,
|
|
int fix_arm1176)
|
|
{
|
|
struct elf32_arm_link_hash_table *globals;
|
|
|
|
globals = elf32_arm_hash_table (link_info);
|
|
if (globals == NULL)
|
|
return;
|
|
|
|
globals->target1_is_rel = target1_is_rel;
|
|
if (strcmp (target2_type, "rel") == 0)
|
|
globals->target2_reloc = R_ARM_REL32;
|
|
else if (strcmp (target2_type, "abs") == 0)
|
|
globals->target2_reloc = R_ARM_ABS32;
|
|
else if (strcmp (target2_type, "got-rel") == 0)
|
|
globals->target2_reloc = R_ARM_GOT_PREL;
|
|
else
|
|
{
|
|
_bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
|
|
target2_type);
|
|
}
|
|
globals->fix_v4bx = fix_v4bx;
|
|
globals->use_blx |= use_blx;
|
|
globals->vfp11_fix = vfp11_fix;
|
|
globals->pic_veneer = pic_veneer;
|
|
globals->fix_cortex_a8 = fix_cortex_a8;
|
|
globals->fix_arm1176 = fix_arm1176;
|
|
|
|
BFD_ASSERT (is_arm_elf (output_bfd));
|
|
elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
|
|
elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
|
|
}
|
|
|
|
/* Replace the target offset of a Thumb bl or b.w instruction. */
|
|
|
|
static void
|
|
insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
|
|
{
|
|
bfd_vma upper;
|
|
bfd_vma lower;
|
|
int reloc_sign;
|
|
|
|
BFD_ASSERT ((offset & 1) == 0);
|
|
|
|
upper = bfd_get_16 (abfd, insn);
|
|
lower = bfd_get_16 (abfd, insn + 2);
|
|
reloc_sign = (offset < 0) ? 1 : 0;
|
|
upper = (upper & ~(bfd_vma) 0x7ff)
|
|
| ((offset >> 12) & 0x3ff)
|
|
| (reloc_sign << 10);
|
|
lower = (lower & ~(bfd_vma) 0x2fff)
|
|
| (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
|
|
| (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
|
|
| ((offset >> 1) & 0x7ff);
|
|
bfd_put_16 (abfd, upper, insn);
|
|
bfd_put_16 (abfd, lower, insn + 2);
|
|
}
|
|
|
|
/* Thumb code calling an ARM function. */
|
|
|
|
static int
|
|
elf32_thumb_to_arm_stub (struct bfd_link_info * info,
|
|
const char * name,
|
|
bfd * input_bfd,
|
|
bfd * output_bfd,
|
|
asection * input_section,
|
|
bfd_byte * hit_data,
|
|
asection * sym_sec,
|
|
bfd_vma offset,
|
|
bfd_signed_vma addend,
|
|
bfd_vma val,
|
|
char **error_message)
|
|
{
|
|
asection * s = 0;
|
|
bfd_vma my_offset;
|
|
long int ret_offset;
|
|
struct elf_link_hash_entry * myh;
|
|
struct elf32_arm_link_hash_table * globals;
|
|
|
|
myh = find_thumb_glue (info, name, error_message);
|
|
if (myh == NULL)
|
|
return FALSE;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
BFD_ASSERT (globals != NULL);
|
|
BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
|
|
|
|
my_offset = myh->root.u.def.value;
|
|
|
|
s = bfd_get_linker_section (globals->bfd_of_glue_owner,
|
|
THUMB2ARM_GLUE_SECTION_NAME);
|
|
|
|
BFD_ASSERT (s != NULL);
|
|
BFD_ASSERT (s->contents != NULL);
|
|
BFD_ASSERT (s->output_section != NULL);
|
|
|
|
if ((my_offset & 0x01) == 0x01)
|
|
{
|
|
if (sym_sec != NULL
|
|
&& sym_sec->owner != NULL
|
|
&& !INTERWORK_FLAG (sym_sec->owner))
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%s): warning: interworking not enabled.\n"
|
|
" first occurrence: %B: Thumb call to ARM"),
|
|
sym_sec->owner, input_bfd, name);
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
--my_offset;
|
|
myh->root.u.def.value = my_offset;
|
|
|
|
put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
|
|
s->contents + my_offset);
|
|
|
|
put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
|
|
s->contents + my_offset + 2);
|
|
|
|
ret_offset =
|
|
/* Address of destination of the stub. */
|
|
((bfd_signed_vma) val)
|
|
- ((bfd_signed_vma)
|
|
/* Offset from the start of the current section
|
|
to the start of the stubs. */
|
|
(s->output_offset
|
|
/* Offset of the start of this stub from the start of the stubs. */
|
|
+ my_offset
|
|
/* Address of the start of the current section. */
|
|
+ s->output_section->vma)
|
|
/* The branch instruction is 4 bytes into the stub. */
|
|
+ 4
|
|
/* ARM branches work from the pc of the instruction + 8. */
|
|
+ 8);
|
|
|
|
put_arm_insn (globals, output_bfd,
|
|
(bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
|
|
s->contents + my_offset + 4);
|
|
}
|
|
|
|
BFD_ASSERT (my_offset <= globals->thumb_glue_size);
|
|
|
|
/* Now go back and fix up the original BL insn to point to here. */
|
|
ret_offset =
|
|
/* Address of where the stub is located. */
|
|
(s->output_section->vma + s->output_offset + my_offset)
|
|
/* Address of where the BL is located. */
|
|
- (input_section->output_section->vma + input_section->output_offset
|
|
+ offset)
|
|
/* Addend in the relocation. */
|
|
- addend
|
|
/* Biassing for PC-relative addressing. */
|
|
- 8;
|
|
|
|
insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Populate an Arm to Thumb stub. Returns the stub symbol. */
|
|
|
|
static struct elf_link_hash_entry *
|
|
elf32_arm_create_thumb_stub (struct bfd_link_info * info,
|
|
const char * name,
|
|
bfd * input_bfd,
|
|
bfd * output_bfd,
|
|
asection * sym_sec,
|
|
bfd_vma val,
|
|
asection * s,
|
|
char ** error_message)
|
|
{
|
|
bfd_vma my_offset;
|
|
long int ret_offset;
|
|
struct elf_link_hash_entry * myh;
|
|
struct elf32_arm_link_hash_table * globals;
|
|
|
|
myh = find_arm_glue (info, name, error_message);
|
|
if (myh == NULL)
|
|
return NULL;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
BFD_ASSERT (globals != NULL);
|
|
BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
|
|
|
|
my_offset = myh->root.u.def.value;
|
|
|
|
if ((my_offset & 0x01) == 0x01)
|
|
{
|
|
if (sym_sec != NULL
|
|
&& sym_sec->owner != NULL
|
|
&& !INTERWORK_FLAG (sym_sec->owner))
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%s): warning: interworking not enabled.\n"
|
|
" first occurrence: %B: arm call to thumb"),
|
|
sym_sec->owner, input_bfd, name);
|
|
}
|
|
|
|
--my_offset;
|
|
myh->root.u.def.value = my_offset;
|
|
|
|
if (info->shared || globals->root.is_relocatable_executable
|
|
|| globals->pic_veneer)
|
|
{
|
|
/* For relocatable objects we can't use absolute addresses,
|
|
so construct the address from a relative offset. */
|
|
/* TODO: If the offset is small it's probably worth
|
|
constructing the address with adds. */
|
|
put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
|
|
s->contents + my_offset);
|
|
put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
|
|
s->contents + my_offset + 4);
|
|
put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
|
|
s->contents + my_offset + 8);
|
|
/* Adjust the offset by 4 for the position of the add,
|
|
and 8 for the pipeline offset. */
|
|
ret_offset = (val - (s->output_offset
|
|
+ s->output_section->vma
|
|
+ my_offset + 12))
|
|
| 1;
|
|
bfd_put_32 (output_bfd, ret_offset,
|
|
s->contents + my_offset + 12);
|
|
}
|
|
else if (globals->use_blx)
|
|
{
|
|
put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
|
|
s->contents + my_offset);
|
|
|
|
/* It's a thumb address. Add the low order bit. */
|
|
bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
|
|
s->contents + my_offset + 4);
|
|
}
|
|
else
|
|
{
|
|
put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
|
|
s->contents + my_offset);
|
|
|
|
put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
|
|
s->contents + my_offset + 4);
|
|
|
|
/* It's a thumb address. Add the low order bit. */
|
|
bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
|
|
s->contents + my_offset + 8);
|
|
|
|
my_offset += 12;
|
|
}
|
|
}
|
|
|
|
BFD_ASSERT (my_offset <= globals->arm_glue_size);
|
|
|
|
return myh;
|
|
}
|
|
|
|
/* Arm code calling a Thumb function. */
|
|
|
|
static int
|
|
elf32_arm_to_thumb_stub (struct bfd_link_info * info,
|
|
const char * name,
|
|
bfd * input_bfd,
|
|
bfd * output_bfd,
|
|
asection * input_section,
|
|
bfd_byte * hit_data,
|
|
asection * sym_sec,
|
|
bfd_vma offset,
|
|
bfd_signed_vma addend,
|
|
bfd_vma val,
|
|
char **error_message)
|
|
{
|
|
unsigned long int tmp;
|
|
bfd_vma my_offset;
|
|
asection * s;
|
|
long int ret_offset;
|
|
struct elf_link_hash_entry * myh;
|
|
struct elf32_arm_link_hash_table * globals;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
BFD_ASSERT (globals != NULL);
|
|
BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
|
|
|
|
s = bfd_get_linker_section (globals->bfd_of_glue_owner,
|
|
ARM2THUMB_GLUE_SECTION_NAME);
|
|
BFD_ASSERT (s != NULL);
|
|
BFD_ASSERT (s->contents != NULL);
|
|
BFD_ASSERT (s->output_section != NULL);
|
|
|
|
myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
|
|
sym_sec, val, s, error_message);
|
|
if (!myh)
|
|
return FALSE;
|
|
|
|
my_offset = myh->root.u.def.value;
|
|
tmp = bfd_get_32 (input_bfd, hit_data);
|
|
tmp = tmp & 0xFF000000;
|
|
|
|
/* Somehow these are both 4 too far, so subtract 8. */
|
|
ret_offset = (s->output_offset
|
|
+ my_offset
|
|
+ s->output_section->vma
|
|
- (input_section->output_offset
|
|
+ input_section->output_section->vma
|
|
+ offset + addend)
|
|
- 8);
|
|
|
|
tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
|
|
|
|
bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Populate Arm stub for an exported Thumb function. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
|
|
{
|
|
struct bfd_link_info * info = (struct bfd_link_info *) inf;
|
|
asection * s;
|
|
struct elf_link_hash_entry * myh;
|
|
struct elf32_arm_link_hash_entry *eh;
|
|
struct elf32_arm_link_hash_table * globals;
|
|
asection *sec;
|
|
bfd_vma val;
|
|
char *error_message;
|
|
|
|
eh = elf32_arm_hash_entry (h);
|
|
/* Allocate stubs for exported Thumb functions on v4t. */
|
|
if (eh->export_glue == NULL)
|
|
return TRUE;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
BFD_ASSERT (globals != NULL);
|
|
BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
|
|
|
|
s = bfd_get_linker_section (globals->bfd_of_glue_owner,
|
|
ARM2THUMB_GLUE_SECTION_NAME);
|
|
BFD_ASSERT (s != NULL);
|
|
BFD_ASSERT (s->contents != NULL);
|
|
BFD_ASSERT (s->output_section != NULL);
|
|
|
|
sec = eh->export_glue->root.u.def.section;
|
|
|
|
BFD_ASSERT (sec->output_section != NULL);
|
|
|
|
val = eh->export_glue->root.u.def.value + sec->output_offset
|
|
+ sec->output_section->vma;
|
|
|
|
myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
|
|
h->root.u.def.section->owner,
|
|
globals->obfd, sec, val, s,
|
|
&error_message);
|
|
BFD_ASSERT (myh);
|
|
return TRUE;
|
|
}
|
|
|
|
/* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
|
|
|
|
static bfd_vma
|
|
elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
|
|
{
|
|
bfd_byte *p;
|
|
bfd_vma glue_addr;
|
|
asection *s;
|
|
struct elf32_arm_link_hash_table *globals;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
BFD_ASSERT (globals != NULL);
|
|
BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
|
|
|
|
s = bfd_get_linker_section (globals->bfd_of_glue_owner,
|
|
ARM_BX_GLUE_SECTION_NAME);
|
|
BFD_ASSERT (s != NULL);
|
|
BFD_ASSERT (s->contents != NULL);
|
|
BFD_ASSERT (s->output_section != NULL);
|
|
|
|
BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
|
|
|
|
glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
|
|
|
|
if ((globals->bx_glue_offset[reg] & 1) == 0)
|
|
{
|
|
p = s->contents + glue_addr;
|
|
bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
|
|
bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
|
|
bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
|
|
globals->bx_glue_offset[reg] |= 1;
|
|
}
|
|
|
|
return glue_addr + s->output_section->vma + s->output_offset;
|
|
}
|
|
|
|
/* Generate Arm stubs for exported Thumb symbols. */
|
|
static void
|
|
elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
|
|
struct bfd_link_info *link_info)
|
|
{
|
|
struct elf32_arm_link_hash_table * globals;
|
|
|
|
if (link_info == NULL)
|
|
/* Ignore this if we are not called by the ELF backend linker. */
|
|
return;
|
|
|
|
globals = elf32_arm_hash_table (link_info);
|
|
if (globals == NULL)
|
|
return;
|
|
|
|
/* If blx is available then exported Thumb symbols are OK and there is
|
|
nothing to do. */
|
|
if (globals->use_blx)
|
|
return;
|
|
|
|
elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
|
|
link_info);
|
|
}
|
|
|
|
/* Reserve space for COUNT dynamic relocations in relocation selection
|
|
SRELOC. */
|
|
|
|
static void
|
|
elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
|
|
bfd_size_type count)
|
|
{
|
|
struct elf32_arm_link_hash_table *htab;
|
|
|
|
htab = elf32_arm_hash_table (info);
|
|
BFD_ASSERT (htab->root.dynamic_sections_created);
|
|
if (sreloc == NULL)
|
|
abort ();
|
|
sreloc->size += RELOC_SIZE (htab) * count;
|
|
}
|
|
|
|
/* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
|
|
dynamic, the relocations should go in SRELOC, otherwise they should
|
|
go in the special .rel.iplt section. */
|
|
|
|
static void
|
|
elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
|
|
bfd_size_type count)
|
|
{
|
|
struct elf32_arm_link_hash_table *htab;
|
|
|
|
htab = elf32_arm_hash_table (info);
|
|
if (!htab->root.dynamic_sections_created)
|
|
htab->root.irelplt->size += RELOC_SIZE (htab) * count;
|
|
else
|
|
{
|
|
BFD_ASSERT (sreloc != NULL);
|
|
sreloc->size += RELOC_SIZE (htab) * count;
|
|
}
|
|
}
|
|
|
|
/* Add relocation REL to the end of relocation section SRELOC. */
|
|
|
|
static void
|
|
elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
|
|
asection *sreloc, Elf_Internal_Rela *rel)
|
|
{
|
|
bfd_byte *loc;
|
|
struct elf32_arm_link_hash_table *htab;
|
|
|
|
htab = elf32_arm_hash_table (info);
|
|
if (!htab->root.dynamic_sections_created
|
|
&& ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
|
|
sreloc = htab->root.irelplt;
|
|
if (sreloc == NULL)
|
|
abort ();
|
|
loc = sreloc->contents;
|
|
loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
|
|
if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
|
|
abort ();
|
|
SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
|
|
}
|
|
|
|
/* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
|
|
IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
|
|
to .plt. */
|
|
|
|
static void
|
|
elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
|
|
bfd_boolean is_iplt_entry,
|
|
union gotplt_union *root_plt,
|
|
struct arm_plt_info *arm_plt)
|
|
{
|
|
struct elf32_arm_link_hash_table *htab;
|
|
asection *splt;
|
|
asection *sgotplt;
|
|
|
|
htab = elf32_arm_hash_table (info);
|
|
|
|
if (is_iplt_entry)
|
|
{
|
|
splt = htab->root.iplt;
|
|
sgotplt = htab->root.igotplt;
|
|
|
|
/* NaCl uses a special first entry in .iplt too. */
|
|
if (htab->nacl_p && splt->size == 0)
|
|
splt->size += htab->plt_header_size;
|
|
|
|
/* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
|
|
elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
|
|
}
|
|
else
|
|
{
|
|
splt = htab->root.splt;
|
|
sgotplt = htab->root.sgotplt;
|
|
|
|
/* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
|
|
elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
|
|
|
|
/* If this is the first .plt entry, make room for the special
|
|
first entry. */
|
|
if (splt->size == 0)
|
|
splt->size += htab->plt_header_size;
|
|
}
|
|
|
|
/* Allocate the PLT entry itself, including any leading Thumb stub. */
|
|
if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
|
|
splt->size += PLT_THUMB_STUB_SIZE;
|
|
root_plt->offset = splt->size;
|
|
splt->size += htab->plt_entry_size;
|
|
|
|
if (!htab->symbian_p)
|
|
{
|
|
/* We also need to make an entry in the .got.plt section, which
|
|
will be placed in the .got section by the linker script. */
|
|
arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
|
|
sgotplt->size += 4;
|
|
}
|
|
}
|
|
|
|
static bfd_vma
|
|
arm_movw_immediate (bfd_vma value)
|
|
{
|
|
return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
|
|
}
|
|
|
|
static bfd_vma
|
|
arm_movt_immediate (bfd_vma value)
|
|
{
|
|
return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
|
|
}
|
|
|
|
/* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
|
|
the entry lives in .iplt and resolves to (*SYM_VALUE)().
|
|
Otherwise, DYNINDX is the index of the symbol in the dynamic
|
|
symbol table and SYM_VALUE is undefined.
|
|
|
|
ROOT_PLT points to the offset of the PLT entry from the start of its
|
|
section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
|
|
bookkeeping information.
|
|
|
|
Returns FALSE if there was a problem. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
|
|
union gotplt_union *root_plt,
|
|
struct arm_plt_info *arm_plt,
|
|
int dynindx, bfd_vma sym_value)
|
|
{
|
|
struct elf32_arm_link_hash_table *htab;
|
|
asection *sgot;
|
|
asection *splt;
|
|
asection *srel;
|
|
bfd_byte *loc;
|
|
bfd_vma plt_index;
|
|
Elf_Internal_Rela rel;
|
|
bfd_vma plt_header_size;
|
|
bfd_vma got_header_size;
|
|
|
|
htab = elf32_arm_hash_table (info);
|
|
|
|
/* Pick the appropriate sections and sizes. */
|
|
if (dynindx == -1)
|
|
{
|
|
splt = htab->root.iplt;
|
|
sgot = htab->root.igotplt;
|
|
srel = htab->root.irelplt;
|
|
|
|
/* There are no reserved entries in .igot.plt, and no special
|
|
first entry in .iplt. */
|
|
got_header_size = 0;
|
|
plt_header_size = 0;
|
|
}
|
|
else
|
|
{
|
|
splt = htab->root.splt;
|
|
sgot = htab->root.sgotplt;
|
|
srel = htab->root.srelplt;
|
|
|
|
got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
|
|
plt_header_size = htab->plt_header_size;
|
|
}
|
|
BFD_ASSERT (splt != NULL && srel != NULL);
|
|
|
|
/* Fill in the entry in the procedure linkage table. */
|
|
if (htab->symbian_p)
|
|
{
|
|
BFD_ASSERT (dynindx >= 0);
|
|
put_arm_insn (htab, output_bfd,
|
|
elf32_arm_symbian_plt_entry[0],
|
|
splt->contents + root_plt->offset);
|
|
bfd_put_32 (output_bfd,
|
|
elf32_arm_symbian_plt_entry[1],
|
|
splt->contents + root_plt->offset + 4);
|
|
|
|
/* Fill in the entry in the .rel.plt section. */
|
|
rel.r_offset = (splt->output_section->vma
|
|
+ splt->output_offset
|
|
+ root_plt->offset + 4);
|
|
rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
|
|
|
|
/* Get the index in the procedure linkage table which
|
|
corresponds to this symbol. This is the index of this symbol
|
|
in all the symbols for which we are making plt entries. The
|
|
first entry in the procedure linkage table is reserved. */
|
|
plt_index = ((root_plt->offset - plt_header_size)
|
|
/ htab->plt_entry_size);
|
|
}
|
|
else
|
|
{
|
|
bfd_vma got_offset, got_address, plt_address;
|
|
bfd_vma got_displacement, initial_got_entry;
|
|
bfd_byte * ptr;
|
|
|
|
BFD_ASSERT (sgot != NULL);
|
|
|
|
/* Get the offset into the .(i)got.plt table of the entry that
|
|
corresponds to this function. */
|
|
got_offset = (arm_plt->got_offset & -2);
|
|
|
|
/* Get the index in the procedure linkage table which
|
|
corresponds to this symbol. This is the index of this symbol
|
|
in all the symbols for which we are making plt entries.
|
|
After the reserved .got.plt entries, all symbols appear in
|
|
the same order as in .plt. */
|
|
plt_index = (got_offset - got_header_size) / 4;
|
|
|
|
/* Calculate the address of the GOT entry. */
|
|
got_address = (sgot->output_section->vma
|
|
+ sgot->output_offset
|
|
+ got_offset);
|
|
|
|
/* ...and the address of the PLT entry. */
|
|
plt_address = (splt->output_section->vma
|
|
+ splt->output_offset
|
|
+ root_plt->offset);
|
|
|
|
ptr = splt->contents + root_plt->offset;
|
|
if (htab->vxworks_p && info->shared)
|
|
{
|
|
unsigned int i;
|
|
bfd_vma val;
|
|
|
|
for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
|
|
{
|
|
val = elf32_arm_vxworks_shared_plt_entry[i];
|
|
if (i == 2)
|
|
val |= got_address - sgot->output_section->vma;
|
|
if (i == 5)
|
|
val |= plt_index * RELOC_SIZE (htab);
|
|
if (i == 2 || i == 5)
|
|
bfd_put_32 (output_bfd, val, ptr);
|
|
else
|
|
put_arm_insn (htab, output_bfd, val, ptr);
|
|
}
|
|
}
|
|
else if (htab->vxworks_p)
|
|
{
|
|
unsigned int i;
|
|
bfd_vma val;
|
|
|
|
for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
|
|
{
|
|
val = elf32_arm_vxworks_exec_plt_entry[i];
|
|
if (i == 2)
|
|
val |= got_address;
|
|
if (i == 4)
|
|
val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
|
|
if (i == 5)
|
|
val |= plt_index * RELOC_SIZE (htab);
|
|
if (i == 2 || i == 5)
|
|
bfd_put_32 (output_bfd, val, ptr);
|
|
else
|
|
put_arm_insn (htab, output_bfd, val, ptr);
|
|
}
|
|
|
|
loc = (htab->srelplt2->contents
|
|
+ (plt_index * 2 + 1) * RELOC_SIZE (htab));
|
|
|
|
/* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
|
|
referencing the GOT for this PLT entry. */
|
|
rel.r_offset = plt_address + 8;
|
|
rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
|
|
rel.r_addend = got_offset;
|
|
SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
|
|
loc += RELOC_SIZE (htab);
|
|
|
|
/* Create the R_ARM_ABS32 relocation referencing the
|
|
beginning of the PLT for this GOT entry. */
|
|
rel.r_offset = got_address;
|
|
rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
|
|
rel.r_addend = 0;
|
|
SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
|
|
}
|
|
else if (htab->nacl_p)
|
|
{
|
|
/* Calculate the displacement between the PLT slot and the
|
|
common tail that's part of the special initial PLT slot. */
|
|
int32_t tail_displacement
|
|
= ((splt->output_section->vma + splt->output_offset
|
|
+ ARM_NACL_PLT_TAIL_OFFSET)
|
|
- (plt_address + htab->plt_entry_size + 4));
|
|
BFD_ASSERT ((tail_displacement & 3) == 0);
|
|
tail_displacement >>= 2;
|
|
|
|
BFD_ASSERT ((tail_displacement & 0xff000000) == 0
|
|
|| (-tail_displacement & 0xff000000) == 0);
|
|
|
|
/* Calculate the displacement between the PLT slot and the entry
|
|
in the GOT. The offset accounts for the value produced by
|
|
adding to pc in the penultimate instruction of the PLT stub. */
|
|
got_displacement = (got_address
|
|
- (plt_address + htab->plt_entry_size));
|
|
|
|
/* NaCl does not support interworking at all. */
|
|
BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
|
|
|
|
put_arm_insn (htab, output_bfd,
|
|
elf32_arm_nacl_plt_entry[0]
|
|
| arm_movw_immediate (got_displacement),
|
|
ptr + 0);
|
|
put_arm_insn (htab, output_bfd,
|
|
elf32_arm_nacl_plt_entry[1]
|
|
| arm_movt_immediate (got_displacement),
|
|
ptr + 4);
|
|
put_arm_insn (htab, output_bfd,
|
|
elf32_arm_nacl_plt_entry[2],
|
|
ptr + 8);
|
|
put_arm_insn (htab, output_bfd,
|
|
elf32_arm_nacl_plt_entry[3]
|
|
| (tail_displacement & 0x00ffffff),
|
|
ptr + 12);
|
|
}
|
|
else if (using_thumb_only (htab))
|
|
{
|
|
/* PR ld/16017: Do not generate ARM instructions for
|
|
the PLT if compiling for a thumb-only target.
|
|
|
|
FIXME: We ought to be able to generate thumb PLT instructions... */
|
|
_bfd_error_handler (_("%B: Warning: thumb mode PLT generation not currently supported"),
|
|
output_bfd);
|
|
return FALSE;
|
|
}
|
|
else
|
|
{
|
|
/* Calculate the displacement between the PLT slot and the
|
|
entry in the GOT. The eight-byte offset accounts for the
|
|
value produced by adding to pc in the first instruction
|
|
of the PLT stub. */
|
|
got_displacement = got_address - (plt_address + 8);
|
|
|
|
BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
|
|
|
|
if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
|
|
{
|
|
put_thumb_insn (htab, output_bfd,
|
|
elf32_arm_plt_thumb_stub[0], ptr - 4);
|
|
put_thumb_insn (htab, output_bfd,
|
|
elf32_arm_plt_thumb_stub[1], ptr - 2);
|
|
}
|
|
|
|
put_arm_insn (htab, output_bfd,
|
|
elf32_arm_plt_entry[0]
|
|
| ((got_displacement & 0x0ff00000) >> 20),
|
|
ptr + 0);
|
|
put_arm_insn (htab, output_bfd,
|
|
elf32_arm_plt_entry[1]
|
|
| ((got_displacement & 0x000ff000) >> 12),
|
|
ptr+ 4);
|
|
put_arm_insn (htab, output_bfd,
|
|
elf32_arm_plt_entry[2]
|
|
| (got_displacement & 0x00000fff),
|
|
ptr + 8);
|
|
#ifdef FOUR_WORD_PLT
|
|
bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
|
|
#endif
|
|
}
|
|
|
|
/* Fill in the entry in the .rel(a).(i)plt section. */
|
|
rel.r_offset = got_address;
|
|
rel.r_addend = 0;
|
|
if (dynindx == -1)
|
|
{
|
|
/* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
|
|
The dynamic linker or static executable then calls SYM_VALUE
|
|
to determine the correct run-time value of the .igot.plt entry. */
|
|
rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
|
|
initial_got_entry = sym_value;
|
|
}
|
|
else
|
|
{
|
|
rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
|
|
initial_got_entry = (splt->output_section->vma
|
|
+ splt->output_offset);
|
|
}
|
|
|
|
/* Fill in the entry in the global offset table. */
|
|
bfd_put_32 (output_bfd, initial_got_entry,
|
|
sgot->contents + got_offset);
|
|
}
|
|
|
|
if (dynindx == -1)
|
|
elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
|
|
else
|
|
{
|
|
loc = srel->contents + plt_index * RELOC_SIZE (htab);
|
|
SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Some relocations map to different relocations depending on the
|
|
target. Return the real relocation. */
|
|
|
|
static int
|
|
arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
|
|
int r_type)
|
|
{
|
|
switch (r_type)
|
|
{
|
|
case R_ARM_TARGET1:
|
|
if (globals->target1_is_rel)
|
|
return R_ARM_REL32;
|
|
else
|
|
return R_ARM_ABS32;
|
|
|
|
case R_ARM_TARGET2:
|
|
return globals->target2_reloc;
|
|
|
|
default:
|
|
return r_type;
|
|
}
|
|
}
|
|
|
|
/* Return the base VMA address which should be subtracted from real addresses
|
|
when resolving @dtpoff relocation.
|
|
This is PT_TLS segment p_vaddr. */
|
|
|
|
static bfd_vma
|
|
dtpoff_base (struct bfd_link_info *info)
|
|
{
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
|
if (elf_hash_table (info)->tls_sec == NULL)
|
|
return 0;
|
|
return elf_hash_table (info)->tls_sec->vma;
|
|
}
|
|
|
|
/* Return the relocation value for @tpoff relocation
|
|
if STT_TLS virtual address is ADDRESS. */
|
|
|
|
static bfd_vma
|
|
tpoff (struct bfd_link_info *info, bfd_vma address)
|
|
{
|
|
struct elf_link_hash_table *htab = elf_hash_table (info);
|
|
bfd_vma base;
|
|
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
|
if (htab->tls_sec == NULL)
|
|
return 0;
|
|
base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
|
|
return address - htab->tls_sec->vma + base;
|
|
}
|
|
|
|
/* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
|
|
VALUE is the relocation value. */
|
|
|
|
static bfd_reloc_status_type
|
|
elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
|
|
{
|
|
if (value > 0xfff)
|
|
return bfd_reloc_overflow;
|
|
|
|
value |= bfd_get_32 (abfd, data) & 0xfffff000;
|
|
bfd_put_32 (abfd, value, data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
/* Handle TLS relaxations. Relaxing is possible for symbols that use
|
|
R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
|
|
R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
|
|
|
|
Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
|
|
is to then call final_link_relocate. Return other values in the
|
|
case of error.
|
|
|
|
FIXME:When --emit-relocs is in effect, we'll emit relocs describing
|
|
the pre-relaxed code. It would be nice if the relocs were updated
|
|
to match the optimization. */
|
|
|
|
static bfd_reloc_status_type
|
|
elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
|
|
bfd *input_bfd, asection *input_sec, bfd_byte *contents,
|
|
Elf_Internal_Rela *rel, unsigned long is_local)
|
|
{
|
|
unsigned long insn;
|
|
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
|
{
|
|
default:
|
|
return bfd_reloc_notsupported;
|
|
|
|
case R_ARM_TLS_GOTDESC:
|
|
if (is_local)
|
|
insn = 0;
|
|
else
|
|
{
|
|
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
|
|
if (insn & 1)
|
|
insn -= 5; /* THUMB */
|
|
else
|
|
insn -= 8; /* ARM */
|
|
}
|
|
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
|
|
return bfd_reloc_continue;
|
|
|
|
case R_ARM_THM_TLS_DESCSEQ:
|
|
/* Thumb insn. */
|
|
insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
|
|
if ((insn & 0xff78) == 0x4478) /* add rx, pc */
|
|
{
|
|
if (is_local)
|
|
/* nop */
|
|
bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
|
|
}
|
|
else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
|
|
{
|
|
if (is_local)
|
|
/* nop */
|
|
bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
|
|
else
|
|
/* ldr rx,[ry] */
|
|
bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
|
|
}
|
|
else if ((insn & 0xff87) == 0x4780) /* blx rx */
|
|
{
|
|
if (is_local)
|
|
/* nop */
|
|
bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
|
|
else
|
|
/* mov r0, rx */
|
|
bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
|
|
contents + rel->r_offset);
|
|
}
|
|
else
|
|
{
|
|
if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
|
|
/* It's a 32 bit instruction, fetch the rest of it for
|
|
error generation. */
|
|
insn = (insn << 16)
|
|
| bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
|
|
input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
break;
|
|
|
|
case R_ARM_TLS_DESCSEQ:
|
|
/* arm insn. */
|
|
insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
|
|
if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
|
|
{
|
|
if (is_local)
|
|
/* mov rx, ry */
|
|
bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
|
|
contents + rel->r_offset);
|
|
}
|
|
else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
|
|
{
|
|
if (is_local)
|
|
/* nop */
|
|
bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
|
|
else
|
|
/* ldr rx,[ry] */
|
|
bfd_put_32 (input_bfd, insn & 0xfffff000,
|
|
contents + rel->r_offset);
|
|
}
|
|
else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
|
|
{
|
|
if (is_local)
|
|
/* nop */
|
|
bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
|
|
else
|
|
/* mov r0, rx */
|
|
bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
|
|
contents + rel->r_offset);
|
|
}
|
|
else
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
|
|
input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
break;
|
|
|
|
case R_ARM_TLS_CALL:
|
|
/* GD->IE relaxation, turn the instruction into 'nop' or
|
|
'ldr r0, [pc,r0]' */
|
|
insn = is_local ? 0xe1a00000 : 0xe79f0000;
|
|
bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
|
|
break;
|
|
|
|
case R_ARM_THM_TLS_CALL:
|
|
/* GD->IE relaxation */
|
|
if (!is_local)
|
|
/* add r0,pc; ldr r0, [r0] */
|
|
insn = 0x44786800;
|
|
else if (arch_has_thumb2_nop (globals))
|
|
/* nop.w */
|
|
insn = 0xf3af8000;
|
|
else
|
|
/* nop; nop */
|
|
insn = 0xbf00bf00;
|
|
|
|
bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
|
|
bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
|
|
break;
|
|
}
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
/* For a given value of n, calculate the value of G_n as required to
|
|
deal with group relocations. We return it in the form of an
|
|
encoded constant-and-rotation, together with the final residual. If n is
|
|
specified as less than zero, then final_residual is filled with the
|
|
input value and no further action is performed. */
|
|
|
|
static bfd_vma
|
|
calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
|
|
{
|
|
int current_n;
|
|
bfd_vma g_n;
|
|
bfd_vma encoded_g_n = 0;
|
|
bfd_vma residual = value; /* Also known as Y_n. */
|
|
|
|
for (current_n = 0; current_n <= n; current_n++)
|
|
{
|
|
int shift;
|
|
|
|
/* Calculate which part of the value to mask. */
|
|
if (residual == 0)
|
|
shift = 0;
|
|
else
|
|
{
|
|
int msb;
|
|
|
|
/* Determine the most significant bit in the residual and
|
|
align the resulting value to a 2-bit boundary. */
|
|
for (msb = 30; msb >= 0; msb -= 2)
|
|
if (residual & (3 << msb))
|
|
break;
|
|
|
|
/* The desired shift is now (msb - 6), or zero, whichever
|
|
is the greater. */
|
|
shift = msb - 6;
|
|
if (shift < 0)
|
|
shift = 0;
|
|
}
|
|
|
|
/* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
|
|
g_n = residual & (0xff << shift);
|
|
encoded_g_n = (g_n >> shift)
|
|
| ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
|
|
|
|
/* Calculate the residual for the next time around. */
|
|
residual &= ~g_n;
|
|
}
|
|
|
|
*final_residual = residual;
|
|
|
|
return encoded_g_n;
|
|
}
|
|
|
|
/* Given an ARM instruction, determine whether it is an ADD or a SUB.
|
|
Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
|
|
|
|
static int
|
|
identify_add_or_sub (bfd_vma insn)
|
|
{
|
|
int opcode = insn & 0x1e00000;
|
|
|
|
if (opcode == 1 << 23) /* ADD */
|
|
return 1;
|
|
|
|
if (opcode == 1 << 22) /* SUB */
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Perform a relocation as part of a final link. */
|
|
|
|
static bfd_reloc_status_type
|
|
elf32_arm_final_link_relocate (reloc_howto_type * howto,
|
|
bfd * input_bfd,
|
|
bfd * output_bfd,
|
|
asection * input_section,
|
|
bfd_byte * contents,
|
|
Elf_Internal_Rela * rel,
|
|
bfd_vma value,
|
|
struct bfd_link_info * info,
|
|
asection * sym_sec,
|
|
const char * sym_name,
|
|
unsigned char st_type,
|
|
enum arm_st_branch_type branch_type,
|
|
struct elf_link_hash_entry * h,
|
|
bfd_boolean * unresolved_reloc_p,
|
|
char ** error_message)
|
|
{
|
|
unsigned long r_type = howto->type;
|
|
unsigned long r_symndx;
|
|
bfd_byte * hit_data = contents + rel->r_offset;
|
|
bfd_vma * local_got_offsets;
|
|
bfd_vma * local_tlsdesc_gotents;
|
|
asection * sgot;
|
|
asection * splt;
|
|
asection * sreloc = NULL;
|
|
asection * srelgot;
|
|
bfd_vma addend;
|
|
bfd_signed_vma signed_addend;
|
|
unsigned char dynreloc_st_type;
|
|
bfd_vma dynreloc_value;
|
|
struct elf32_arm_link_hash_table * globals;
|
|
struct elf32_arm_link_hash_entry *eh;
|
|
union gotplt_union *root_plt;
|
|
struct arm_plt_info *arm_plt;
|
|
bfd_vma plt_offset;
|
|
bfd_vma gotplt_offset;
|
|
bfd_boolean has_iplt_entry;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
if (globals == NULL)
|
|
return bfd_reloc_notsupported;
|
|
|
|
BFD_ASSERT (is_arm_elf (input_bfd));
|
|
|
|
/* Some relocation types map to different relocations depending on the
|
|
target. We pick the right one here. */
|
|
r_type = arm_real_reloc_type (globals, r_type);
|
|
|
|
/* It is possible to have linker relaxations on some TLS access
|
|
models. Update our information here. */
|
|
r_type = elf32_arm_tls_transition (info, r_type, h);
|
|
|
|
if (r_type != howto->type)
|
|
howto = elf32_arm_howto_from_type (r_type);
|
|
|
|
/* If the start address has been set, then set the EF_ARM_HASENTRY
|
|
flag. Setting this more than once is redundant, but the cost is
|
|
not too high, and it keeps the code simple.
|
|
|
|
The test is done here, rather than somewhere else, because the
|
|
start address is only set just before the final link commences.
|
|
|
|
Note - if the user deliberately sets a start address of 0, the
|
|
flag will not be set. */
|
|
if (bfd_get_start_address (output_bfd) != 0)
|
|
elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
|
|
|
|
eh = (struct elf32_arm_link_hash_entry *) h;
|
|
sgot = globals->root.sgot;
|
|
local_got_offsets = elf_local_got_offsets (input_bfd);
|
|
local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
|
|
|
|
if (globals->root.dynamic_sections_created)
|
|
srelgot = globals->root.srelgot;
|
|
else
|
|
srelgot = NULL;
|
|
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
|
|
if (globals->use_rel)
|
|
{
|
|
addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
|
|
|
|
if (addend & ((howto->src_mask + 1) >> 1))
|
|
{
|
|
signed_addend = -1;
|
|
signed_addend &= ~ howto->src_mask;
|
|
signed_addend |= addend;
|
|
}
|
|
else
|
|
signed_addend = addend;
|
|
}
|
|
else
|
|
addend = signed_addend = rel->r_addend;
|
|
|
|
/* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
|
|
are resolving a function call relocation. */
|
|
if (using_thumb_only (globals)
|
|
&& (r_type == R_ARM_THM_CALL
|
|
|| r_type == R_ARM_THM_JUMP24)
|
|
&& branch_type == ST_BRANCH_TO_ARM)
|
|
branch_type = ST_BRANCH_TO_THUMB;
|
|
|
|
/* Record the symbol information that should be used in dynamic
|
|
relocations. */
|
|
dynreloc_st_type = st_type;
|
|
dynreloc_value = value;
|
|
if (branch_type == ST_BRANCH_TO_THUMB)
|
|
dynreloc_value |= 1;
|
|
|
|
/* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
|
|
VALUE appropriately for relocations that we resolve at link time. */
|
|
has_iplt_entry = FALSE;
|
|
if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
|
|
&& root_plt->offset != (bfd_vma) -1)
|
|
{
|
|
plt_offset = root_plt->offset;
|
|
gotplt_offset = arm_plt->got_offset;
|
|
|
|
if (h == NULL || eh->is_iplt)
|
|
{
|
|
has_iplt_entry = TRUE;
|
|
splt = globals->root.iplt;
|
|
|
|
/* Populate .iplt entries here, because not all of them will
|
|
be seen by finish_dynamic_symbol. The lower bit is set if
|
|
we have already populated the entry. */
|
|
if (plt_offset & 1)
|
|
plt_offset--;
|
|
else
|
|
{
|
|
if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
|
|
-1, dynreloc_value))
|
|
root_plt->offset |= 1;
|
|
else
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
/* Static relocations always resolve to the .iplt entry. */
|
|
st_type = STT_FUNC;
|
|
value = (splt->output_section->vma
|
|
+ splt->output_offset
|
|
+ plt_offset);
|
|
branch_type = ST_BRANCH_TO_ARM;
|
|
|
|
/* If there are non-call relocations that resolve to the .iplt
|
|
entry, then all dynamic ones must too. */
|
|
if (arm_plt->noncall_refcount != 0)
|
|
{
|
|
dynreloc_st_type = st_type;
|
|
dynreloc_value = value;
|
|
}
|
|
}
|
|
else
|
|
/* We populate the .plt entry in finish_dynamic_symbol. */
|
|
splt = globals->root.splt;
|
|
}
|
|
else
|
|
{
|
|
splt = NULL;
|
|
plt_offset = (bfd_vma) -1;
|
|
gotplt_offset = (bfd_vma) -1;
|
|
}
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_ARM_NONE:
|
|
/* We don't need to find a value for this symbol. It's just a
|
|
marker. */
|
|
*unresolved_reloc_p = FALSE;
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_ABS12:
|
|
if (!globals->vxworks_p)
|
|
return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
|
|
|
|
case R_ARM_PC24:
|
|
case R_ARM_ABS32:
|
|
case R_ARM_ABS32_NOI:
|
|
case R_ARM_REL32:
|
|
case R_ARM_REL32_NOI:
|
|
case R_ARM_CALL:
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_XPC25:
|
|
case R_ARM_PREL31:
|
|
case R_ARM_PLT32:
|
|
/* Handle relocations which should use the PLT entry. ABS32/REL32
|
|
will use the symbol's value, which may point to a PLT entry, but we
|
|
don't need to handle that here. If we created a PLT entry, all
|
|
branches in this object should go to it, except if the PLT is too
|
|
far away, in which case a long branch stub should be inserted. */
|
|
if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
|
|
&& r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
|
|
&& r_type != R_ARM_CALL
|
|
&& r_type != R_ARM_JUMP24
|
|
&& r_type != R_ARM_PLT32)
|
|
&& plt_offset != (bfd_vma) -1)
|
|
{
|
|
/* If we've created a .plt section, and assigned a PLT entry
|
|
to this function, it must either be a STT_GNU_IFUNC reference
|
|
or not be known to bind locally. In other cases, we should
|
|
have cleared the PLT entry by now. */
|
|
BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
|
|
|
|
value = (splt->output_section->vma
|
|
+ splt->output_offset
|
|
+ plt_offset);
|
|
*unresolved_reloc_p = FALSE;
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
rel->r_addend);
|
|
}
|
|
|
|
/* When generating a shared object or relocatable executable, these
|
|
relocations are copied into the output file to be resolved at
|
|
run time. */
|
|
if ((info->shared || globals->root.is_relocatable_executable)
|
|
&& (input_section->flags & SEC_ALLOC)
|
|
&& !(globals->vxworks_p
|
|
&& strcmp (input_section->output_section->name,
|
|
".tls_vars") == 0)
|
|
&& ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
|
|
|| !SYMBOL_CALLS_LOCAL (info, h))
|
|
&& !(input_bfd == globals->stub_bfd
|
|
&& strstr (input_section->name, STUB_SUFFIX))
|
|
&& (h == NULL
|
|
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
|| h->root.type != bfd_link_hash_undefweak)
|
|
&& r_type != R_ARM_PC24
|
|
&& r_type != R_ARM_CALL
|
|
&& r_type != R_ARM_JUMP24
|
|
&& r_type != R_ARM_PREL31
|
|
&& r_type != R_ARM_PLT32)
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
bfd_boolean skip, relocate;
|
|
|
|
*unresolved_reloc_p = FALSE;
|
|
|
|
if (sreloc == NULL && globals->root.dynamic_sections_created)
|
|
{
|
|
sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
|
|
! globals->use_rel);
|
|
|
|
if (sreloc == NULL)
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
skip = FALSE;
|
|
relocate = FALSE;
|
|
|
|
outrel.r_addend = addend;
|
|
outrel.r_offset =
|
|
_bfd_elf_section_offset (output_bfd, info, input_section,
|
|
rel->r_offset);
|
|
if (outrel.r_offset == (bfd_vma) -1)
|
|
skip = TRUE;
|
|
else if (outrel.r_offset == (bfd_vma) -2)
|
|
skip = TRUE, relocate = TRUE;
|
|
outrel.r_offset += (input_section->output_section->vma
|
|
+ input_section->output_offset);
|
|
|
|
if (skip)
|
|
memset (&outrel, 0, sizeof outrel);
|
|
else if (h != NULL
|
|
&& h->dynindx != -1
|
|
&& (!info->shared
|
|
|| !info->symbolic
|
|
|| !h->def_regular))
|
|
outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
|
|
else
|
|
{
|
|
int symbol;
|
|
|
|
/* This symbol is local, or marked to become local. */
|
|
BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
|
|
if (globals->symbian_p)
|
|
{
|
|
asection *osec;
|
|
|
|
/* On Symbian OS, the data segment and text segement
|
|
can be relocated independently. Therefore, we
|
|
must indicate the segment to which this
|
|
relocation is relative. The BPABI allows us to
|
|
use any symbol in the right segment; we just use
|
|
the section symbol as it is convenient. (We
|
|
cannot use the symbol given by "h" directly as it
|
|
will not appear in the dynamic symbol table.)
|
|
|
|
Note that the dynamic linker ignores the section
|
|
symbol value, so we don't subtract osec->vma
|
|
from the emitted reloc addend. */
|
|
if (sym_sec)
|
|
osec = sym_sec->output_section;
|
|
else
|
|
osec = input_section->output_section;
|
|
symbol = elf_section_data (osec)->dynindx;
|
|
if (symbol == 0)
|
|
{
|
|
struct elf_link_hash_table *htab = elf_hash_table (info);
|
|
|
|
if ((osec->flags & SEC_READONLY) == 0
|
|
&& htab->data_index_section != NULL)
|
|
osec = htab->data_index_section;
|
|
else
|
|
osec = htab->text_index_section;
|
|
symbol = elf_section_data (osec)->dynindx;
|
|
}
|
|
BFD_ASSERT (symbol != 0);
|
|
}
|
|
else
|
|
/* On SVR4-ish systems, the dynamic loader cannot
|
|
relocate the text and data segments independently,
|
|
so the symbol does not matter. */
|
|
symbol = 0;
|
|
if (dynreloc_st_type == STT_GNU_IFUNC)
|
|
/* We have an STT_GNU_IFUNC symbol that doesn't resolve
|
|
to the .iplt entry. Instead, every non-call reference
|
|
must use an R_ARM_IRELATIVE relocation to obtain the
|
|
correct run-time address. */
|
|
outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
|
|
else
|
|
outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
|
|
if (globals->use_rel)
|
|
relocate = TRUE;
|
|
else
|
|
outrel.r_addend += dynreloc_value;
|
|
}
|
|
|
|
elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
|
|
|
|
/* If this reloc is against an external symbol, we do not want to
|
|
fiddle with the addend. Otherwise, we need to include the symbol
|
|
value so that it becomes an addend for the dynamic reloc. */
|
|
if (! relocate)
|
|
return bfd_reloc_ok;
|
|
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset,
|
|
dynreloc_value, (bfd_vma) 0);
|
|
}
|
|
else switch (r_type)
|
|
{
|
|
case R_ARM_ABS12:
|
|
return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
|
|
|
|
case R_ARM_XPC25: /* Arm BLX instruction. */
|
|
case R_ARM_CALL:
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_PC24: /* Arm B/BL instruction. */
|
|
case R_ARM_PLT32:
|
|
{
|
|
struct elf32_arm_stub_hash_entry *stub_entry = NULL;
|
|
|
|
if (r_type == R_ARM_XPC25)
|
|
{
|
|
/* Check for Arm calling Arm function. */
|
|
/* FIXME: Should we translate the instruction into a BL
|
|
instruction instead ? */
|
|
if (branch_type != ST_BRANCH_TO_THUMB)
|
|
(*_bfd_error_handler)
|
|
(_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
|
|
input_bfd,
|
|
h ? h->root.root.string : "(local)");
|
|
}
|
|
else if (r_type == R_ARM_PC24)
|
|
{
|
|
/* Check for Arm calling Thumb function. */
|
|
if (branch_type == ST_BRANCH_TO_THUMB)
|
|
{
|
|
if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
|
|
output_bfd, input_section,
|
|
hit_data, sym_sec, rel->r_offset,
|
|
signed_addend, value,
|
|
error_message))
|
|
return bfd_reloc_ok;
|
|
else
|
|
return bfd_reloc_dangerous;
|
|
}
|
|
}
|
|
|
|
/* Check if a stub has to be inserted because the
|
|
destination is too far or we are changing mode. */
|
|
if ( r_type == R_ARM_CALL
|
|
|| r_type == R_ARM_JUMP24
|
|
|| r_type == R_ARM_PLT32)
|
|
{
|
|
enum elf32_arm_stub_type stub_type = arm_stub_none;
|
|
struct elf32_arm_link_hash_entry *hash;
|
|
|
|
hash = (struct elf32_arm_link_hash_entry *) h;
|
|
stub_type = arm_type_of_stub (info, input_section, rel,
|
|
st_type, &branch_type,
|
|
hash, value, sym_sec,
|
|
input_bfd, sym_name);
|
|
|
|
if (stub_type != arm_stub_none)
|
|
{
|
|
/* The target is out of reach, so redirect the
|
|
branch to the local stub for this function. */
|
|
stub_entry = elf32_arm_get_stub_entry (input_section,
|
|
sym_sec, h,
|
|
rel, globals,
|
|
stub_type);
|
|
{
|
|
if (stub_entry != NULL)
|
|
value = (stub_entry->stub_offset
|
|
+ stub_entry->stub_sec->output_offset
|
|
+ stub_entry->stub_sec->output_section->vma);
|
|
|
|
if (plt_offset != (bfd_vma) -1)
|
|
*unresolved_reloc_p = FALSE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If the call goes through a PLT entry, make sure to
|
|
check distance to the right destination address. */
|
|
if (plt_offset != (bfd_vma) -1)
|
|
{
|
|
value = (splt->output_section->vma
|
|
+ splt->output_offset
|
|
+ plt_offset);
|
|
*unresolved_reloc_p = FALSE;
|
|
/* The PLT entry is in ARM mode, regardless of the
|
|
target function. */
|
|
branch_type = ST_BRANCH_TO_ARM;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The ARM ELF ABI says that this reloc is computed as: S - P + A
|
|
where:
|
|
S is the address of the symbol in the relocation.
|
|
P is address of the instruction being relocated.
|
|
A is the addend (extracted from the instruction) in bytes.
|
|
|
|
S is held in 'value'.
|
|
P is the base address of the section containing the
|
|
instruction plus the offset of the reloc into that
|
|
section, ie:
|
|
(input_section->output_section->vma +
|
|
input_section->output_offset +
|
|
rel->r_offset).
|
|
A is the addend, converted into bytes, ie:
|
|
(signed_addend * 4)
|
|
|
|
Note: None of these operations have knowledge of the pipeline
|
|
size of the processor, thus it is up to the assembler to
|
|
encode this information into the addend. */
|
|
value -= (input_section->output_section->vma
|
|
+ input_section->output_offset);
|
|
value -= rel->r_offset;
|
|
if (globals->use_rel)
|
|
value += (signed_addend << howto->size);
|
|
else
|
|
/* RELA addends do not have to be adjusted by howto->size. */
|
|
value += signed_addend;
|
|
|
|
signed_addend = value;
|
|
signed_addend >>= howto->rightshift;
|
|
|
|
/* A branch to an undefined weak symbol is turned into a jump to
|
|
the next instruction unless a PLT entry will be created.
|
|
Do the same for local undefined symbols (but not for STN_UNDEF).
|
|
The jump to the next instruction is optimized as a NOP depending
|
|
on the architecture. */
|
|
if (h ? (h->root.type == bfd_link_hash_undefweak
|
|
&& plt_offset == (bfd_vma) -1)
|
|
: r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
|
|
{
|
|
value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
|
|
|
|
if (arch_has_arm_nop (globals))
|
|
value |= 0x0320f000;
|
|
else
|
|
value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
|
|
}
|
|
else
|
|
{
|
|
/* Perform a signed range check. */
|
|
if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
|
|
|| signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
|
|
return bfd_reloc_overflow;
|
|
|
|
addend = (value & 2);
|
|
|
|
value = (signed_addend & howto->dst_mask)
|
|
| (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
|
|
|
|
if (r_type == R_ARM_CALL)
|
|
{
|
|
/* Set the H bit in the BLX instruction. */
|
|
if (branch_type == ST_BRANCH_TO_THUMB)
|
|
{
|
|
if (addend)
|
|
value |= (1 << 24);
|
|
else
|
|
value &= ~(bfd_vma)(1 << 24);
|
|
}
|
|
|
|
/* Select the correct instruction (BL or BLX). */
|
|
/* Only if we are not handling a BL to a stub. In this
|
|
case, mode switching is performed by the stub. */
|
|
if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
|
|
value |= (1 << 28);
|
|
else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
|
|
{
|
|
value &= ~(bfd_vma)(1 << 28);
|
|
value |= (1 << 24);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case R_ARM_ABS32:
|
|
value += addend;
|
|
if (branch_type == ST_BRANCH_TO_THUMB)
|
|
value |= 1;
|
|
break;
|
|
|
|
case R_ARM_ABS32_NOI:
|
|
value += addend;
|
|
break;
|
|
|
|
case R_ARM_REL32:
|
|
value += addend;
|
|
if (branch_type == ST_BRANCH_TO_THUMB)
|
|
value |= 1;
|
|
value -= (input_section->output_section->vma
|
|
+ input_section->output_offset + rel->r_offset);
|
|
break;
|
|
|
|
case R_ARM_REL32_NOI:
|
|
value += addend;
|
|
value -= (input_section->output_section->vma
|
|
+ input_section->output_offset + rel->r_offset);
|
|
break;
|
|
|
|
case R_ARM_PREL31:
|
|
value -= (input_section->output_section->vma
|
|
+ input_section->output_offset + rel->r_offset);
|
|
value += signed_addend;
|
|
if (! h || h->root.type != bfd_link_hash_undefweak)
|
|
{
|
|
/* Check for overflow. */
|
|
if ((value ^ (value >> 1)) & (1 << 30))
|
|
return bfd_reloc_overflow;
|
|
}
|
|
value &= 0x7fffffff;
|
|
value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
|
|
if (branch_type == ST_BRANCH_TO_THUMB)
|
|
value |= 1;
|
|
break;
|
|
}
|
|
|
|
bfd_put_32 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_ABS8:
|
|
/* PR 16202: Refectch the addend using the correct size. */
|
|
if (globals->use_rel)
|
|
addend = bfd_get_8 (input_bfd, hit_data);
|
|
value += addend;
|
|
|
|
/* There is no way to tell whether the user intended to use a signed or
|
|
unsigned addend. When checking for overflow we accept either,
|
|
as specified by the AAELF. */
|
|
if ((long) value > 0xff || (long) value < -0x80)
|
|
return bfd_reloc_overflow;
|
|
|
|
bfd_put_8 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_ABS16:
|
|
/* PR 16202: Refectch the addend using the correct size. */
|
|
if (globals->use_rel)
|
|
addend = bfd_get_16 (input_bfd, hit_data);
|
|
value += addend;
|
|
|
|
/* See comment for R_ARM_ABS8. */
|
|
if ((long) value > 0xffff || (long) value < -0x8000)
|
|
return bfd_reloc_overflow;
|
|
|
|
bfd_put_16 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_THM_ABS5:
|
|
/* Support ldr and str instructions for the thumb. */
|
|
if (globals->use_rel)
|
|
{
|
|
/* Need to refetch addend. */
|
|
addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
|
|
/* ??? Need to determine shift amount from operand size. */
|
|
addend >>= howto->rightshift;
|
|
}
|
|
value += addend;
|
|
|
|
/* ??? Isn't value unsigned? */
|
|
if ((long) value > 0x1f || (long) value < -0x10)
|
|
return bfd_reloc_overflow;
|
|
|
|
/* ??? Value needs to be properly shifted into place first. */
|
|
value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
|
|
bfd_put_16 (input_bfd, value, hit_data);
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_THM_ALU_PREL_11_0:
|
|
/* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
|
|
{
|
|
bfd_vma insn;
|
|
bfd_signed_vma relocation;
|
|
|
|
insn = (bfd_get_16 (input_bfd, hit_data) << 16)
|
|
| bfd_get_16 (input_bfd, hit_data + 2);
|
|
|
|
if (globals->use_rel)
|
|
{
|
|
signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
|
|
| ((insn & (1 << 26)) >> 15);
|
|
if (insn & 0xf00000)
|
|
signed_addend = -signed_addend;
|
|
}
|
|
|
|
relocation = value + signed_addend;
|
|
relocation -= Pa (input_section->output_section->vma
|
|
+ input_section->output_offset
|
|
+ rel->r_offset);
|
|
|
|
value = abs (relocation);
|
|
|
|
if (value >= 0x1000)
|
|
return bfd_reloc_overflow;
|
|
|
|
insn = (insn & 0xfb0f8f00) | (value & 0xff)
|
|
| ((value & 0x700) << 4)
|
|
| ((value & 0x800) << 15);
|
|
if (relocation < 0)
|
|
insn |= 0xa00000;
|
|
|
|
bfd_put_16 (input_bfd, insn >> 16, hit_data);
|
|
bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
|
|
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
case R_ARM_THM_PC8:
|
|
/* PR 10073: This reloc is not generated by the GNU toolchain,
|
|
but it is supported for compatibility with third party libraries
|
|
generated by other compilers, specifically the ARM/IAR. */
|
|
{
|
|
bfd_vma insn;
|
|
bfd_signed_vma relocation;
|
|
|
|
insn = bfd_get_16 (input_bfd, hit_data);
|
|
|
|
if (globals->use_rel)
|
|
addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
|
|
|
|
relocation = value + addend;
|
|
relocation -= Pa (input_section->output_section->vma
|
|
+ input_section->output_offset
|
|
+ rel->r_offset);
|
|
|
|
value = abs (relocation);
|
|
|
|
/* We do not check for overflow of this reloc. Although strictly
|
|
speaking this is incorrect, it appears to be necessary in order
|
|
to work with IAR generated relocs. Since GCC and GAS do not
|
|
generate R_ARM_THM_PC8 relocs, the lack of a check should not be
|
|
a problem for them. */
|
|
value &= 0x3fc;
|
|
|
|
insn = (insn & 0xff00) | (value >> 2);
|
|
|
|
bfd_put_16 (input_bfd, insn, hit_data);
|
|
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
case R_ARM_THM_PC12:
|
|
/* Corresponds to: ldr.w reg, [pc, #offset]. */
|
|
{
|
|
bfd_vma insn;
|
|
bfd_signed_vma relocation;
|
|
|
|
insn = (bfd_get_16 (input_bfd, hit_data) << 16)
|
|
| bfd_get_16 (input_bfd, hit_data + 2);
|
|
|
|
if (globals->use_rel)
|
|
{
|
|
signed_addend = insn & 0xfff;
|
|
if (!(insn & (1 << 23)))
|
|
signed_addend = -signed_addend;
|
|
}
|
|
|
|
relocation = value + signed_addend;
|
|
relocation -= Pa (input_section->output_section->vma
|
|
+ input_section->output_offset
|
|
+ rel->r_offset);
|
|
|
|
value = abs (relocation);
|
|
|
|
if (value >= 0x1000)
|
|
return bfd_reloc_overflow;
|
|
|
|
insn = (insn & 0xff7ff000) | value;
|
|
if (relocation >= 0)
|
|
insn |= (1 << 23);
|
|
|
|
bfd_put_16 (input_bfd, insn >> 16, hit_data);
|
|
bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
|
|
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
case R_ARM_THM_XPC22:
|
|
case R_ARM_THM_CALL:
|
|
case R_ARM_THM_JUMP24:
|
|
/* Thumb BL (branch long instruction). */
|
|
{
|
|
bfd_vma relocation;
|
|
bfd_vma reloc_sign;
|
|
bfd_boolean overflow = FALSE;
|
|
bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
|
|
bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
|
|
bfd_signed_vma reloc_signed_max;
|
|
bfd_signed_vma reloc_signed_min;
|
|
bfd_vma check;
|
|
bfd_signed_vma signed_check;
|
|
int bitsize;
|
|
const int thumb2 = using_thumb2 (globals);
|
|
|
|
/* A branch to an undefined weak symbol is turned into a jump to
|
|
the next instruction unless a PLT entry will be created.
|
|
The jump to the next instruction is optimized as a NOP.W for
|
|
Thumb-2 enabled architectures. */
|
|
if (h && h->root.type == bfd_link_hash_undefweak
|
|
&& plt_offset == (bfd_vma) -1)
|
|
{
|
|
if (arch_has_thumb2_nop (globals))
|
|
{
|
|
bfd_put_16 (input_bfd, 0xf3af, hit_data);
|
|
bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
|
|
}
|
|
else
|
|
{
|
|
bfd_put_16 (input_bfd, 0xe000, hit_data);
|
|
bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
|
|
}
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
/* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
|
|
with Thumb-1) involving the J1 and J2 bits. */
|
|
if (globals->use_rel)
|
|
{
|
|
bfd_vma s = (upper_insn & (1 << 10)) >> 10;
|
|
bfd_vma upper = upper_insn & 0x3ff;
|
|
bfd_vma lower = lower_insn & 0x7ff;
|
|
bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
|
|
bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
|
|
bfd_vma i1 = j1 ^ s ? 0 : 1;
|
|
bfd_vma i2 = j2 ^ s ? 0 : 1;
|
|
|
|
addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
|
|
/* Sign extend. */
|
|
addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
|
|
|
|
signed_addend = addend;
|
|
}
|
|
|
|
if (r_type == R_ARM_THM_XPC22)
|
|
{
|
|
/* Check for Thumb to Thumb call. */
|
|
/* FIXME: Should we translate the instruction into a BL
|
|
instruction instead ? */
|
|
if (branch_type == ST_BRANCH_TO_THUMB)
|
|
(*_bfd_error_handler)
|
|
(_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
|
|
input_bfd,
|
|
h ? h->root.root.string : "(local)");
|
|
}
|
|
else
|
|
{
|
|
/* If it is not a call to Thumb, assume call to Arm.
|
|
If it is a call relative to a section name, then it is not a
|
|
function call at all, but rather a long jump. Calls through
|
|
the PLT do not require stubs. */
|
|
if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
|
|
{
|
|
if (globals->use_blx && r_type == R_ARM_THM_CALL)
|
|
{
|
|
/* Convert BL to BLX. */
|
|
lower_insn = (lower_insn & ~0x1000) | 0x0800;
|
|
}
|
|
else if (( r_type != R_ARM_THM_CALL)
|
|
&& (r_type != R_ARM_THM_JUMP24))
|
|
{
|
|
if (elf32_thumb_to_arm_stub
|
|
(info, sym_name, input_bfd, output_bfd, input_section,
|
|
hit_data, sym_sec, rel->r_offset, signed_addend, value,
|
|
error_message))
|
|
return bfd_reloc_ok;
|
|
else
|
|
return bfd_reloc_dangerous;
|
|
}
|
|
}
|
|
else if (branch_type == ST_BRANCH_TO_THUMB
|
|
&& globals->use_blx
|
|
&& r_type == R_ARM_THM_CALL)
|
|
{
|
|
/* Make sure this is a BL. */
|
|
lower_insn |= 0x1800;
|
|
}
|
|
}
|
|
|
|
enum elf32_arm_stub_type stub_type = arm_stub_none;
|
|
if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
|
|
{
|
|
/* Check if a stub has to be inserted because the destination
|
|
is too far. */
|
|
struct elf32_arm_stub_hash_entry *stub_entry;
|
|
struct elf32_arm_link_hash_entry *hash;
|
|
|
|
hash = (struct elf32_arm_link_hash_entry *) h;
|
|
|
|
stub_type = arm_type_of_stub (info, input_section, rel,
|
|
st_type, &branch_type,
|
|
hash, value, sym_sec,
|
|
input_bfd, sym_name);
|
|
|
|
if (stub_type != arm_stub_none)
|
|
{
|
|
/* The target is out of reach or we are changing modes, so
|
|
redirect the branch to the local stub for this
|
|
function. */
|
|
stub_entry = elf32_arm_get_stub_entry (input_section,
|
|
sym_sec, h,
|
|
rel, globals,
|
|
stub_type);
|
|
if (stub_entry != NULL)
|
|
{
|
|
value = (stub_entry->stub_offset
|
|
+ stub_entry->stub_sec->output_offset
|
|
+ stub_entry->stub_sec->output_section->vma);
|
|
|
|
if (plt_offset != (bfd_vma) -1)
|
|
*unresolved_reloc_p = FALSE;
|
|
}
|
|
|
|
/* If this call becomes a call to Arm, force BLX. */
|
|
if (globals->use_blx && (r_type == R_ARM_THM_CALL))
|
|
{
|
|
if ((stub_entry
|
|
&& !arm_stub_is_thumb (stub_entry->stub_type))
|
|
|| branch_type != ST_BRANCH_TO_THUMB)
|
|
lower_insn = (lower_insn & ~0x1000) | 0x0800;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Handle calls via the PLT. */
|
|
if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
|
|
{
|
|
value = (splt->output_section->vma
|
|
+ splt->output_offset
|
|
+ plt_offset);
|
|
|
|
if (globals->use_blx && r_type == R_ARM_THM_CALL)
|
|
{
|
|
/* If the Thumb BLX instruction is available, convert
|
|
the BL to a BLX instruction to call the ARM-mode
|
|
PLT entry. */
|
|
lower_insn = (lower_insn & ~0x1000) | 0x0800;
|
|
branch_type = ST_BRANCH_TO_ARM;
|
|
}
|
|
else
|
|
{
|
|
/* Target the Thumb stub before the ARM PLT entry. */
|
|
value -= PLT_THUMB_STUB_SIZE;
|
|
branch_type = ST_BRANCH_TO_THUMB;
|
|
}
|
|
*unresolved_reloc_p = FALSE;
|
|
}
|
|
|
|
relocation = value + signed_addend;
|
|
|
|
relocation -= (input_section->output_section->vma
|
|
+ input_section->output_offset
|
|
+ rel->r_offset);
|
|
|
|
check = relocation >> howto->rightshift;
|
|
|
|
/* If this is a signed value, the rightshift just dropped
|
|
leading 1 bits (assuming twos complement). */
|
|
if ((bfd_signed_vma) relocation >= 0)
|
|
signed_check = check;
|
|
else
|
|
signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
|
|
|
|
/* Calculate the permissable maximum and minimum values for
|
|
this relocation according to whether we're relocating for
|
|
Thumb-2 or not. */
|
|
bitsize = howto->bitsize;
|
|
if (!thumb2)
|
|
bitsize -= 2;
|
|
reloc_signed_max = (1 << (bitsize - 1)) - 1;
|
|
reloc_signed_min = ~reloc_signed_max;
|
|
|
|
/* Assumes two's complement. */
|
|
if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
|
|
overflow = TRUE;
|
|
|
|
if ((lower_insn & 0x5000) == 0x4000)
|
|
/* For a BLX instruction, make sure that the relocation is rounded up
|
|
to a word boundary. This follows the semantics of the instruction
|
|
which specifies that bit 1 of the target address will come from bit
|
|
1 of the base address. */
|
|
relocation = (relocation + 2) & ~ 3;
|
|
|
|
/* Put RELOCATION back into the insn. Assumes two's complement.
|
|
We use the Thumb-2 encoding, which is safe even if dealing with
|
|
a Thumb-1 instruction by virtue of our overflow check above. */
|
|
reloc_sign = (signed_check < 0) ? 1 : 0;
|
|
upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
|
|
| ((relocation >> 12) & 0x3ff)
|
|
| (reloc_sign << 10);
|
|
lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
|
|
| (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
|
|
| (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
|
|
| ((relocation >> 1) & 0x7ff);
|
|
|
|
/* Put the relocated value back in the object file: */
|
|
bfd_put_16 (input_bfd, upper_insn, hit_data);
|
|
bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
|
|
|
|
return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
|
|
}
|
|
break;
|
|
|
|
case R_ARM_THM_JUMP19:
|
|
/* Thumb32 conditional branch instruction. */
|
|
{
|
|
bfd_vma relocation;
|
|
bfd_boolean overflow = FALSE;
|
|
bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
|
|
bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
|
|
bfd_signed_vma reloc_signed_max = 0xffffe;
|
|
bfd_signed_vma reloc_signed_min = -0x100000;
|
|
bfd_signed_vma signed_check;
|
|
|
|
/* Need to refetch the addend, reconstruct the top three bits,
|
|
and squish the two 11 bit pieces together. */
|
|
if (globals->use_rel)
|
|
{
|
|
bfd_vma S = (upper_insn & 0x0400) >> 10;
|
|
bfd_vma upper = (upper_insn & 0x003f);
|
|
bfd_vma J1 = (lower_insn & 0x2000) >> 13;
|
|
bfd_vma J2 = (lower_insn & 0x0800) >> 11;
|
|
bfd_vma lower = (lower_insn & 0x07ff);
|
|
|
|
upper |= J1 << 6;
|
|
upper |= J2 << 7;
|
|
upper |= (!S) << 8;
|
|
upper -= 0x0100; /* Sign extend. */
|
|
|
|
addend = (upper << 12) | (lower << 1);
|
|
signed_addend = addend;
|
|
}
|
|
|
|
/* Handle calls via the PLT. */
|
|
if (plt_offset != (bfd_vma) -1)
|
|
{
|
|
value = (splt->output_section->vma
|
|
+ splt->output_offset
|
|
+ plt_offset);
|
|
/* Target the Thumb stub before the ARM PLT entry. */
|
|
value -= PLT_THUMB_STUB_SIZE;
|
|
*unresolved_reloc_p = FALSE;
|
|
}
|
|
|
|
/* ??? Should handle interworking? GCC might someday try to
|
|
use this for tail calls. */
|
|
|
|
relocation = value + signed_addend;
|
|
relocation -= (input_section->output_section->vma
|
|
+ input_section->output_offset
|
|
+ rel->r_offset);
|
|
signed_check = (bfd_signed_vma) relocation;
|
|
|
|
if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
|
|
overflow = TRUE;
|
|
|
|
/* Put RELOCATION back into the insn. */
|
|
{
|
|
bfd_vma S = (relocation & 0x00100000) >> 20;
|
|
bfd_vma J2 = (relocation & 0x00080000) >> 19;
|
|
bfd_vma J1 = (relocation & 0x00040000) >> 18;
|
|
bfd_vma hi = (relocation & 0x0003f000) >> 12;
|
|
bfd_vma lo = (relocation & 0x00000ffe) >> 1;
|
|
|
|
upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
|
|
lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
|
|
}
|
|
|
|
/* Put the relocated value back in the object file: */
|
|
bfd_put_16 (input_bfd, upper_insn, hit_data);
|
|
bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
|
|
|
|
return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
|
|
}
|
|
|
|
case R_ARM_THM_JUMP11:
|
|
case R_ARM_THM_JUMP8:
|
|
case R_ARM_THM_JUMP6:
|
|
/* Thumb B (branch) instruction). */
|
|
{
|
|
bfd_signed_vma relocation;
|
|
bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
|
|
bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
|
|
bfd_signed_vma signed_check;
|
|
|
|
/* CZB cannot jump backward. */
|
|
if (r_type == R_ARM_THM_JUMP6)
|
|
reloc_signed_min = 0;
|
|
|
|
if (globals->use_rel)
|
|
{
|
|
/* Need to refetch addend. */
|
|
addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
|
|
if (addend & ((howto->src_mask + 1) >> 1))
|
|
{
|
|
signed_addend = -1;
|
|
signed_addend &= ~ howto->src_mask;
|
|
signed_addend |= addend;
|
|
}
|
|
else
|
|
signed_addend = addend;
|
|
/* The value in the insn has been right shifted. We need to
|
|
undo this, so that we can perform the address calculation
|
|
in terms of bytes. */
|
|
signed_addend <<= howto->rightshift;
|
|
}
|
|
relocation = value + signed_addend;
|
|
|
|
relocation -= (input_section->output_section->vma
|
|
+ input_section->output_offset
|
|
+ rel->r_offset);
|
|
|
|
relocation >>= howto->rightshift;
|
|
signed_check = relocation;
|
|
|
|
if (r_type == R_ARM_THM_JUMP6)
|
|
relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
|
|
else
|
|
relocation &= howto->dst_mask;
|
|
relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
|
|
|
|
bfd_put_16 (input_bfd, relocation, hit_data);
|
|
|
|
/* Assumes two's complement. */
|
|
if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
|
|
return bfd_reloc_overflow;
|
|
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
case R_ARM_ALU_PCREL7_0:
|
|
case R_ARM_ALU_PCREL15_8:
|
|
case R_ARM_ALU_PCREL23_15:
|
|
{
|
|
bfd_vma insn;
|
|
bfd_vma relocation;
|
|
|
|
insn = bfd_get_32 (input_bfd, hit_data);
|
|
if (globals->use_rel)
|
|
{
|
|
/* Extract the addend. */
|
|
addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
|
|
signed_addend = addend;
|
|
}
|
|
relocation = value + signed_addend;
|
|
|
|
relocation -= (input_section->output_section->vma
|
|
+ input_section->output_offset
|
|
+ rel->r_offset);
|
|
insn = (insn & ~0xfff)
|
|
| ((howto->bitpos << 7) & 0xf00)
|
|
| ((relocation >> howto->bitpos) & 0xff);
|
|
bfd_put_32 (input_bfd, value, hit_data);
|
|
}
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_GNU_VTINHERIT:
|
|
case R_ARM_GNU_VTENTRY:
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_GOTOFF32:
|
|
/* Relocation is relative to the start of the
|
|
global offset table. */
|
|
|
|
BFD_ASSERT (sgot != NULL);
|
|
if (sgot == NULL)
|
|
return bfd_reloc_notsupported;
|
|
|
|
/* If we are addressing a Thumb function, we need to adjust the
|
|
address by one, so that attempts to call the function pointer will
|
|
correctly interpret it as Thumb code. */
|
|
if (branch_type == ST_BRANCH_TO_THUMB)
|
|
value += 1;
|
|
|
|
/* Note that sgot->output_offset is not involved in this
|
|
calculation. We always want the start of .got. If we
|
|
define _GLOBAL_OFFSET_TABLE in a different way, as is
|
|
permitted by the ABI, we might have to change this
|
|
calculation. */
|
|
value -= sgot->output_section->vma;
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
rel->r_addend);
|
|
|
|
case R_ARM_GOTPC:
|
|
/* Use global offset table as symbol value. */
|
|
BFD_ASSERT (sgot != NULL);
|
|
|
|
if (sgot == NULL)
|
|
return bfd_reloc_notsupported;
|
|
|
|
*unresolved_reloc_p = FALSE;
|
|
value = sgot->output_section->vma;
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
rel->r_addend);
|
|
|
|
case R_ARM_GOT32:
|
|
case R_ARM_GOT_PREL:
|
|
/* Relocation is to the entry for this symbol in the
|
|
global offset table. */
|
|
if (sgot == NULL)
|
|
return bfd_reloc_notsupported;
|
|
|
|
if (dynreloc_st_type == STT_GNU_IFUNC
|
|
&& plt_offset != (bfd_vma) -1
|
|
&& (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
|
|
{
|
|
/* We have a relocation against a locally-binding STT_GNU_IFUNC
|
|
symbol, and the relocation resolves directly to the runtime
|
|
target rather than to the .iplt entry. This means that any
|
|
.got entry would be the same value as the .igot.plt entry,
|
|
so there's no point creating both. */
|
|
sgot = globals->root.igotplt;
|
|
value = sgot->output_offset + gotplt_offset;
|
|
}
|
|
else if (h != NULL)
|
|
{
|
|
bfd_vma off;
|
|
|
|
off = h->got.offset;
|
|
BFD_ASSERT (off != (bfd_vma) -1);
|
|
if ((off & 1) != 0)
|
|
{
|
|
/* We have already processsed one GOT relocation against
|
|
this symbol. */
|
|
off &= ~1;
|
|
if (globals->root.dynamic_sections_created
|
|
&& !SYMBOL_REFERENCES_LOCAL (info, h))
|
|
*unresolved_reloc_p = FALSE;
|
|
}
|
|
else
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
|
|
if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
|
|
{
|
|
/* If the symbol doesn't resolve locally in a static
|
|
object, we have an undefined reference. If the
|
|
symbol doesn't resolve locally in a dynamic object,
|
|
it should be resolved by the dynamic linker. */
|
|
if (globals->root.dynamic_sections_created)
|
|
{
|
|
outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
|
|
*unresolved_reloc_p = FALSE;
|
|
}
|
|
else
|
|
outrel.r_info = 0;
|
|
outrel.r_addend = 0;
|
|
}
|
|
else
|
|
{
|
|
if (dynreloc_st_type == STT_GNU_IFUNC)
|
|
outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
|
|
else if (info->shared &&
|
|
(ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
|| h->root.type != bfd_link_hash_undefweak))
|
|
outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
|
|
else
|
|
outrel.r_info = 0;
|
|
outrel.r_addend = dynreloc_value;
|
|
}
|
|
|
|
/* The GOT entry is initialized to zero by default.
|
|
See if we should install a different value. */
|
|
if (outrel.r_addend != 0
|
|
&& (outrel.r_info == 0 || globals->use_rel))
|
|
{
|
|
bfd_put_32 (output_bfd, outrel.r_addend,
|
|
sgot->contents + off);
|
|
outrel.r_addend = 0;
|
|
}
|
|
|
|
if (outrel.r_info != 0)
|
|
{
|
|
outrel.r_offset = (sgot->output_section->vma
|
|
+ sgot->output_offset
|
|
+ off);
|
|
elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
|
|
}
|
|
h->got.offset |= 1;
|
|
}
|
|
value = sgot->output_offset + off;
|
|
}
|
|
else
|
|
{
|
|
bfd_vma off;
|
|
|
|
BFD_ASSERT (local_got_offsets != NULL &&
|
|
local_got_offsets[r_symndx] != (bfd_vma) -1);
|
|
|
|
off = local_got_offsets[r_symndx];
|
|
|
|
/* The offset must always be a multiple of 4. We use the
|
|
least significant bit to record whether we have already
|
|
generated the necessary reloc. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
if (globals->use_rel)
|
|
bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
|
|
|
|
if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
|
|
outrel.r_addend = addend + dynreloc_value;
|
|
outrel.r_offset = (sgot->output_section->vma
|
|
+ sgot->output_offset
|
|
+ off);
|
|
if (dynreloc_st_type == STT_GNU_IFUNC)
|
|
outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
|
|
else
|
|
outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
|
|
elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
|
|
}
|
|
|
|
local_got_offsets[r_symndx] |= 1;
|
|
}
|
|
|
|
value = sgot->output_offset + off;
|
|
}
|
|
if (r_type != R_ARM_GOT32)
|
|
value += sgot->output_section->vma;
|
|
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
rel->r_addend);
|
|
|
|
case R_ARM_TLS_LDO32:
|
|
value = value - dtpoff_base (info);
|
|
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
rel->r_addend);
|
|
|
|
case R_ARM_TLS_LDM32:
|
|
{
|
|
bfd_vma off;
|
|
|
|
if (sgot == NULL)
|
|
abort ();
|
|
|
|
off = globals->tls_ldm_got.offset;
|
|
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
/* If we don't know the module number, create a relocation
|
|
for it. */
|
|
if (info->shared)
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
|
|
if (srelgot == NULL)
|
|
abort ();
|
|
|
|
outrel.r_addend = 0;
|
|
outrel.r_offset = (sgot->output_section->vma
|
|
+ sgot->output_offset + off);
|
|
outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
|
|
|
|
if (globals->use_rel)
|
|
bfd_put_32 (output_bfd, outrel.r_addend,
|
|
sgot->contents + off);
|
|
|
|
elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
|
|
}
|
|
else
|
|
bfd_put_32 (output_bfd, 1, sgot->contents + off);
|
|
|
|
globals->tls_ldm_got.offset |= 1;
|
|
}
|
|
|
|
value = sgot->output_section->vma + sgot->output_offset + off
|
|
- (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
|
|
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
rel->r_addend);
|
|
}
|
|
|
|
case R_ARM_TLS_CALL:
|
|
case R_ARM_THM_TLS_CALL:
|
|
case R_ARM_TLS_GD32:
|
|
case R_ARM_TLS_IE32:
|
|
case R_ARM_TLS_GOTDESC:
|
|
case R_ARM_TLS_DESCSEQ:
|
|
case R_ARM_THM_TLS_DESCSEQ:
|
|
{
|
|
bfd_vma off, offplt;
|
|
int indx = 0;
|
|
char tls_type;
|
|
|
|
BFD_ASSERT (sgot != NULL);
|
|
|
|
if (h != NULL)
|
|
{
|
|
bfd_boolean dyn;
|
|
dyn = globals->root.dynamic_sections_created;
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
|
|
&& (!info->shared
|
|
|| !SYMBOL_REFERENCES_LOCAL (info, h)))
|
|
{
|
|
*unresolved_reloc_p = FALSE;
|
|
indx = h->dynindx;
|
|
}
|
|
off = h->got.offset;
|
|
offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
|
|
tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
|
|
}
|
|
else
|
|
{
|
|
BFD_ASSERT (local_got_offsets != NULL);
|
|
off = local_got_offsets[r_symndx];
|
|
offplt = local_tlsdesc_gotents[r_symndx];
|
|
tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
|
|
}
|
|
|
|
/* Linker relaxations happens from one of the
|
|
R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
|
|
if (ELF32_R_TYPE(rel->r_info) != r_type)
|
|
tls_type = GOT_TLS_IE;
|
|
|
|
BFD_ASSERT (tls_type != GOT_UNKNOWN);
|
|
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
bfd_boolean need_relocs = FALSE;
|
|
Elf_Internal_Rela outrel;
|
|
int cur_off = off;
|
|
|
|
/* The GOT entries have not been initialized yet. Do it
|
|
now, and emit any relocations. If both an IE GOT and a
|
|
GD GOT are necessary, we emit the GD first. */
|
|
|
|
if ((info->shared || indx != 0)
|
|
&& (h == NULL
|
|
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
|| h->root.type != bfd_link_hash_undefweak))
|
|
{
|
|
need_relocs = TRUE;
|
|
BFD_ASSERT (srelgot != NULL);
|
|
}
|
|
|
|
if (tls_type & GOT_TLS_GDESC)
|
|
{
|
|
bfd_byte *loc;
|
|
|
|
/* We should have relaxed, unless this is an undefined
|
|
weak symbol. */
|
|
BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
|
|
|| info->shared);
|
|
BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
|
|
<= globals->root.sgotplt->size);
|
|
|
|
outrel.r_addend = 0;
|
|
outrel.r_offset = (globals->root.sgotplt->output_section->vma
|
|
+ globals->root.sgotplt->output_offset
|
|
+ offplt
|
|
+ globals->sgotplt_jump_table_size);
|
|
|
|
outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
|
|
sreloc = globals->root.srelplt;
|
|
loc = sreloc->contents;
|
|
loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
|
|
BFD_ASSERT (loc + RELOC_SIZE (globals)
|
|
<= sreloc->contents + sreloc->size);
|
|
|
|
SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
|
|
|
|
/* For globals, the first word in the relocation gets
|
|
the relocation index and the top bit set, or zero,
|
|
if we're binding now. For locals, it gets the
|
|
symbol's offset in the tls section. */
|
|
bfd_put_32 (output_bfd,
|
|
!h ? value - elf_hash_table (info)->tls_sec->vma
|
|
: info->flags & DF_BIND_NOW ? 0
|
|
: 0x80000000 | ELF32_R_SYM (outrel.r_info),
|
|
globals->root.sgotplt->contents + offplt
|
|
+ globals->sgotplt_jump_table_size);
|
|
|
|
/* Second word in the relocation is always zero. */
|
|
bfd_put_32 (output_bfd, 0,
|
|
globals->root.sgotplt->contents + offplt
|
|
+ globals->sgotplt_jump_table_size + 4);
|
|
}
|
|
if (tls_type & GOT_TLS_GD)
|
|
{
|
|
if (need_relocs)
|
|
{
|
|
outrel.r_addend = 0;
|
|
outrel.r_offset = (sgot->output_section->vma
|
|
+ sgot->output_offset
|
|
+ cur_off);
|
|
outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
|
|
|
|
if (globals->use_rel)
|
|
bfd_put_32 (output_bfd, outrel.r_addend,
|
|
sgot->contents + cur_off);
|
|
|
|
elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
|
|
|
|
if (indx == 0)
|
|
bfd_put_32 (output_bfd, value - dtpoff_base (info),
|
|
sgot->contents + cur_off + 4);
|
|
else
|
|
{
|
|
outrel.r_addend = 0;
|
|
outrel.r_info = ELF32_R_INFO (indx,
|
|
R_ARM_TLS_DTPOFF32);
|
|
outrel.r_offset += 4;
|
|
|
|
if (globals->use_rel)
|
|
bfd_put_32 (output_bfd, outrel.r_addend,
|
|
sgot->contents + cur_off + 4);
|
|
|
|
elf32_arm_add_dynreloc (output_bfd, info,
|
|
srelgot, &outrel);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If we are not emitting relocations for a
|
|
general dynamic reference, then we must be in a
|
|
static link or an executable link with the
|
|
symbol binding locally. Mark it as belonging
|
|
to module 1, the executable. */
|
|
bfd_put_32 (output_bfd, 1,
|
|
sgot->contents + cur_off);
|
|
bfd_put_32 (output_bfd, value - dtpoff_base (info),
|
|
sgot->contents + cur_off + 4);
|
|
}
|
|
|
|
cur_off += 8;
|
|
}
|
|
|
|
if (tls_type & GOT_TLS_IE)
|
|
{
|
|
if (need_relocs)
|
|
{
|
|
if (indx == 0)
|
|
outrel.r_addend = value - dtpoff_base (info);
|
|
else
|
|
outrel.r_addend = 0;
|
|
outrel.r_offset = (sgot->output_section->vma
|
|
+ sgot->output_offset
|
|
+ cur_off);
|
|
outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
|
|
|
|
if (globals->use_rel)
|
|
bfd_put_32 (output_bfd, outrel.r_addend,
|
|
sgot->contents + cur_off);
|
|
|
|
elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
|
|
}
|
|
else
|
|
bfd_put_32 (output_bfd, tpoff (info, value),
|
|
sgot->contents + cur_off);
|
|
cur_off += 4;
|
|
}
|
|
|
|
if (h != NULL)
|
|
h->got.offset |= 1;
|
|
else
|
|
local_got_offsets[r_symndx] |= 1;
|
|
}
|
|
|
|
if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
|
|
off += 8;
|
|
else if (tls_type & GOT_TLS_GDESC)
|
|
off = offplt;
|
|
|
|
if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
|
|
|| ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
|
|
{
|
|
bfd_signed_vma offset;
|
|
/* TLS stubs are arm mode. The original symbol is a
|
|
data object, so branch_type is bogus. */
|
|
branch_type = ST_BRANCH_TO_ARM;
|
|
enum elf32_arm_stub_type stub_type
|
|
= arm_type_of_stub (info, input_section, rel,
|
|
st_type, &branch_type,
|
|
(struct elf32_arm_link_hash_entry *)h,
|
|
globals->tls_trampoline, globals->root.splt,
|
|
input_bfd, sym_name);
|
|
|
|
if (stub_type != arm_stub_none)
|
|
{
|
|
struct elf32_arm_stub_hash_entry *stub_entry
|
|
= elf32_arm_get_stub_entry
|
|
(input_section, globals->root.splt, 0, rel,
|
|
globals, stub_type);
|
|
offset = (stub_entry->stub_offset
|
|
+ stub_entry->stub_sec->output_offset
|
|
+ stub_entry->stub_sec->output_section->vma);
|
|
}
|
|
else
|
|
offset = (globals->root.splt->output_section->vma
|
|
+ globals->root.splt->output_offset
|
|
+ globals->tls_trampoline);
|
|
|
|
if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
|
|
{
|
|
unsigned long inst;
|
|
|
|
offset -= (input_section->output_section->vma
|
|
+ input_section->output_offset
|
|
+ rel->r_offset + 8);
|
|
|
|
inst = offset >> 2;
|
|
inst &= 0x00ffffff;
|
|
value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
|
|
}
|
|
else
|
|
{
|
|
/* Thumb blx encodes the offset in a complicated
|
|
fashion. */
|
|
unsigned upper_insn, lower_insn;
|
|
unsigned neg;
|
|
|
|
offset -= (input_section->output_section->vma
|
|
+ input_section->output_offset
|
|
+ rel->r_offset + 4);
|
|
|
|
if (stub_type != arm_stub_none
|
|
&& arm_stub_is_thumb (stub_type))
|
|
{
|
|
lower_insn = 0xd000;
|
|
}
|
|
else
|
|
{
|
|
lower_insn = 0xc000;
|
|
/* Round up the offset to a word boundary */
|
|
offset = (offset + 2) & ~2;
|
|
}
|
|
|
|
neg = offset < 0;
|
|
upper_insn = (0xf000
|
|
| ((offset >> 12) & 0x3ff)
|
|
| (neg << 10));
|
|
lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
|
|
| (((!((offset >> 22) & 1)) ^ neg) << 11)
|
|
| ((offset >> 1) & 0x7ff);
|
|
bfd_put_16 (input_bfd, upper_insn, hit_data);
|
|
bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
|
|
return bfd_reloc_ok;
|
|
}
|
|
}
|
|
/* These relocations needs special care, as besides the fact
|
|
they point somewhere in .gotplt, the addend must be
|
|
adjusted accordingly depending on the type of instruction
|
|
we refer to */
|
|
else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
|
|
{
|
|
unsigned long data, insn;
|
|
unsigned thumb;
|
|
|
|
data = bfd_get_32 (input_bfd, hit_data);
|
|
thumb = data & 1;
|
|
data &= ~1u;
|
|
|
|
if (thumb)
|
|
{
|
|
insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
|
|
if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
|
|
insn = (insn << 16)
|
|
| bfd_get_16 (input_bfd,
|
|
contents + rel->r_offset - data + 2);
|
|
if ((insn & 0xf800c000) == 0xf000c000)
|
|
/* bl/blx */
|
|
value = -6;
|
|
else if ((insn & 0xffffff00) == 0x4400)
|
|
/* add */
|
|
value = -5;
|
|
else
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
|
|
input_bfd, input_section,
|
|
(unsigned long)rel->r_offset, insn);
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
|
|
|
|
switch (insn >> 24)
|
|
{
|
|
case 0xeb: /* bl */
|
|
case 0xfa: /* blx */
|
|
value = -4;
|
|
break;
|
|
|
|
case 0xe0: /* add */
|
|
value = -8;
|
|
break;
|
|
|
|
default:
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
|
|
input_bfd, input_section,
|
|
(unsigned long)rel->r_offset, insn);
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
}
|
|
|
|
value += ((globals->root.sgotplt->output_section->vma
|
|
+ globals->root.sgotplt->output_offset + off)
|
|
- (input_section->output_section->vma
|
|
+ input_section->output_offset
|
|
+ rel->r_offset)
|
|
+ globals->sgotplt_jump_table_size);
|
|
}
|
|
else
|
|
value = ((globals->root.sgot->output_section->vma
|
|
+ globals->root.sgot->output_offset + off)
|
|
- (input_section->output_section->vma
|
|
+ input_section->output_offset + rel->r_offset));
|
|
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
rel->r_addend);
|
|
}
|
|
|
|
case R_ARM_TLS_LE32:
|
|
if (info->shared && !info->pie)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
|
|
input_bfd, input_section,
|
|
(long) rel->r_offset, howto->name);
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
else
|
|
value = tpoff (info, value);
|
|
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
rel->r_addend);
|
|
|
|
case R_ARM_V4BX:
|
|
if (globals->fix_v4bx)
|
|
{
|
|
bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
|
|
|
|
/* Ensure that we have a BX instruction. */
|
|
BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
|
|
|
|
if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
|
|
{
|
|
/* Branch to veneer. */
|
|
bfd_vma glue_addr;
|
|
glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
|
|
glue_addr -= input_section->output_section->vma
|
|
+ input_section->output_offset
|
|
+ rel->r_offset + 8;
|
|
insn = (insn & 0xf0000000) | 0x0a000000
|
|
| ((glue_addr >> 2) & 0x00ffffff);
|
|
}
|
|
else
|
|
{
|
|
/* Preserve Rm (lowest four bits) and the condition code
|
|
(highest four bits). Other bits encode MOV PC,Rm. */
|
|
insn = (insn & 0xf000000f) | 0x01a0f000;
|
|
}
|
|
|
|
bfd_put_32 (input_bfd, insn, hit_data);
|
|
}
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_MOVW_ABS_NC:
|
|
case R_ARM_MOVT_ABS:
|
|
case R_ARM_MOVW_PREL_NC:
|
|
case R_ARM_MOVT_PREL:
|
|
/* Until we properly support segment-base-relative addressing then
|
|
we assume the segment base to be zero, as for the group relocations.
|
|
Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
|
|
and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
|
|
case R_ARM_MOVW_BREL_NC:
|
|
case R_ARM_MOVW_BREL:
|
|
case R_ARM_MOVT_BREL:
|
|
{
|
|
bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
|
|
|
|
if (globals->use_rel)
|
|
{
|
|
addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
|
|
signed_addend = (addend ^ 0x8000) - 0x8000;
|
|
}
|
|
|
|
value += signed_addend;
|
|
|
|
if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
|
|
value -= (input_section->output_section->vma
|
|
+ input_section->output_offset + rel->r_offset);
|
|
|
|
if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
|
|
return bfd_reloc_overflow;
|
|
|
|
if (branch_type == ST_BRANCH_TO_THUMB)
|
|
value |= 1;
|
|
|
|
if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
|
|
|| r_type == R_ARM_MOVT_BREL)
|
|
value >>= 16;
|
|
|
|
insn &= 0xfff0f000;
|
|
insn |= value & 0xfff;
|
|
insn |= (value & 0xf000) << 4;
|
|
bfd_put_32 (input_bfd, insn, hit_data);
|
|
}
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_THM_MOVW_ABS_NC:
|
|
case R_ARM_THM_MOVT_ABS:
|
|
case R_ARM_THM_MOVW_PREL_NC:
|
|
case R_ARM_THM_MOVT_PREL:
|
|
/* Until we properly support segment-base-relative addressing then
|
|
we assume the segment base to be zero, as for the above relocations.
|
|
Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
|
|
R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
|
|
as R_ARM_THM_MOVT_ABS. */
|
|
case R_ARM_THM_MOVW_BREL_NC:
|
|
case R_ARM_THM_MOVW_BREL:
|
|
case R_ARM_THM_MOVT_BREL:
|
|
{
|
|
bfd_vma insn;
|
|
|
|
insn = bfd_get_16 (input_bfd, hit_data) << 16;
|
|
insn |= bfd_get_16 (input_bfd, hit_data + 2);
|
|
|
|
if (globals->use_rel)
|
|
{
|
|
addend = ((insn >> 4) & 0xf000)
|
|
| ((insn >> 15) & 0x0800)
|
|
| ((insn >> 4) & 0x0700)
|
|
| (insn & 0x00ff);
|
|
signed_addend = (addend ^ 0x8000) - 0x8000;
|
|
}
|
|
|
|
value += signed_addend;
|
|
|
|
if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
|
|
value -= (input_section->output_section->vma
|
|
+ input_section->output_offset + rel->r_offset);
|
|
|
|
if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
|
|
return bfd_reloc_overflow;
|
|
|
|
if (branch_type == ST_BRANCH_TO_THUMB)
|
|
value |= 1;
|
|
|
|
if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
|
|
|| r_type == R_ARM_THM_MOVT_BREL)
|
|
value >>= 16;
|
|
|
|
insn &= 0xfbf08f00;
|
|
insn |= (value & 0xf000) << 4;
|
|
insn |= (value & 0x0800) << 15;
|
|
insn |= (value & 0x0700) << 4;
|
|
insn |= (value & 0x00ff);
|
|
|
|
bfd_put_16 (input_bfd, insn >> 16, hit_data);
|
|
bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
|
|
}
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_ALU_PC_G0_NC:
|
|
case R_ARM_ALU_PC_G1_NC:
|
|
case R_ARM_ALU_PC_G0:
|
|
case R_ARM_ALU_PC_G1:
|
|
case R_ARM_ALU_PC_G2:
|
|
case R_ARM_ALU_SB_G0_NC:
|
|
case R_ARM_ALU_SB_G1_NC:
|
|
case R_ARM_ALU_SB_G0:
|
|
case R_ARM_ALU_SB_G1:
|
|
case R_ARM_ALU_SB_G2:
|
|
{
|
|
bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
|
|
bfd_vma pc = input_section->output_section->vma
|
|
+ input_section->output_offset + rel->r_offset;
|
|
/* sb is the origin of the *segment* containing the symbol. */
|
|
bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
|
|
bfd_vma residual;
|
|
bfd_vma g_n;
|
|
bfd_signed_vma signed_value;
|
|
int group = 0;
|
|
|
|
/* Determine which group of bits to select. */
|
|
switch (r_type)
|
|
{
|
|
case R_ARM_ALU_PC_G0_NC:
|
|
case R_ARM_ALU_PC_G0:
|
|
case R_ARM_ALU_SB_G0_NC:
|
|
case R_ARM_ALU_SB_G0:
|
|
group = 0;
|
|
break;
|
|
|
|
case R_ARM_ALU_PC_G1_NC:
|
|
case R_ARM_ALU_PC_G1:
|
|
case R_ARM_ALU_SB_G1_NC:
|
|
case R_ARM_ALU_SB_G1:
|
|
group = 1;
|
|
break;
|
|
|
|
case R_ARM_ALU_PC_G2:
|
|
case R_ARM_ALU_SB_G2:
|
|
group = 2;
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
|
|
/* If REL, extract the addend from the insn. If RELA, it will
|
|
have already been fetched for us. */
|
|
if (globals->use_rel)
|
|
{
|
|
int negative;
|
|
bfd_vma constant = insn & 0xff;
|
|
bfd_vma rotation = (insn & 0xf00) >> 8;
|
|
|
|
if (rotation == 0)
|
|
signed_addend = constant;
|
|
else
|
|
{
|
|
/* Compensate for the fact that in the instruction, the
|
|
rotation is stored in multiples of 2 bits. */
|
|
rotation *= 2;
|
|
|
|
/* Rotate "constant" right by "rotation" bits. */
|
|
signed_addend = (constant >> rotation) |
|
|
(constant << (8 * sizeof (bfd_vma) - rotation));
|
|
}
|
|
|
|
/* Determine if the instruction is an ADD or a SUB.
|
|
(For REL, this determines the sign of the addend.) */
|
|
negative = identify_add_or_sub (insn);
|
|
if (negative == 0)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
|
|
input_bfd, input_section,
|
|
(long) rel->r_offset, howto->name);
|
|
return bfd_reloc_overflow;
|
|
}
|
|
|
|
signed_addend *= negative;
|
|
}
|
|
|
|
/* Compute the value (X) to go in the place. */
|
|
if (r_type == R_ARM_ALU_PC_G0_NC
|
|
|| r_type == R_ARM_ALU_PC_G1_NC
|
|
|| r_type == R_ARM_ALU_PC_G0
|
|
|| r_type == R_ARM_ALU_PC_G1
|
|
|| r_type == R_ARM_ALU_PC_G2)
|
|
/* PC relative. */
|
|
signed_value = value - pc + signed_addend;
|
|
else
|
|
/* Section base relative. */
|
|
signed_value = value - sb + signed_addend;
|
|
|
|
/* If the target symbol is a Thumb function, then set the
|
|
Thumb bit in the address. */
|
|
if (branch_type == ST_BRANCH_TO_THUMB)
|
|
signed_value |= 1;
|
|
|
|
/* Calculate the value of the relevant G_n, in encoded
|
|
constant-with-rotation format. */
|
|
g_n = calculate_group_reloc_mask (abs (signed_value), group,
|
|
&residual);
|
|
|
|
/* Check for overflow if required. */
|
|
if ((r_type == R_ARM_ALU_PC_G0
|
|
|| r_type == R_ARM_ALU_PC_G1
|
|
|| r_type == R_ARM_ALU_PC_G2
|
|
|| r_type == R_ARM_ALU_SB_G0
|
|
|| r_type == R_ARM_ALU_SB_G1
|
|
|| r_type == R_ARM_ALU_SB_G2) && residual != 0)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
|
|
input_bfd, input_section,
|
|
(long) rel->r_offset, abs (signed_value), howto->name);
|
|
return bfd_reloc_overflow;
|
|
}
|
|
|
|
/* Mask out the value and the ADD/SUB part of the opcode; take care
|
|
not to destroy the S bit. */
|
|
insn &= 0xff1ff000;
|
|
|
|
/* Set the opcode according to whether the value to go in the
|
|
place is negative. */
|
|
if (signed_value < 0)
|
|
insn |= 1 << 22;
|
|
else
|
|
insn |= 1 << 23;
|
|
|
|
/* Encode the offset. */
|
|
insn |= g_n;
|
|
|
|
bfd_put_32 (input_bfd, insn, hit_data);
|
|
}
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_LDR_PC_G0:
|
|
case R_ARM_LDR_PC_G1:
|
|
case R_ARM_LDR_PC_G2:
|
|
case R_ARM_LDR_SB_G0:
|
|
case R_ARM_LDR_SB_G1:
|
|
case R_ARM_LDR_SB_G2:
|
|
{
|
|
bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
|
|
bfd_vma pc = input_section->output_section->vma
|
|
+ input_section->output_offset + rel->r_offset;
|
|
/* sb is the origin of the *segment* containing the symbol. */
|
|
bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
|
|
bfd_vma residual;
|
|
bfd_signed_vma signed_value;
|
|
int group = 0;
|
|
|
|
/* Determine which groups of bits to calculate. */
|
|
switch (r_type)
|
|
{
|
|
case R_ARM_LDR_PC_G0:
|
|
case R_ARM_LDR_SB_G0:
|
|
group = 0;
|
|
break;
|
|
|
|
case R_ARM_LDR_PC_G1:
|
|
case R_ARM_LDR_SB_G1:
|
|
group = 1;
|
|
break;
|
|
|
|
case R_ARM_LDR_PC_G2:
|
|
case R_ARM_LDR_SB_G2:
|
|
group = 2;
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
|
|
/* If REL, extract the addend from the insn. If RELA, it will
|
|
have already been fetched for us. */
|
|
if (globals->use_rel)
|
|
{
|
|
int negative = (insn & (1 << 23)) ? 1 : -1;
|
|
signed_addend = negative * (insn & 0xfff);
|
|
}
|
|
|
|
/* Compute the value (X) to go in the place. */
|
|
if (r_type == R_ARM_LDR_PC_G0
|
|
|| r_type == R_ARM_LDR_PC_G1
|
|
|| r_type == R_ARM_LDR_PC_G2)
|
|
/* PC relative. */
|
|
signed_value = value - pc + signed_addend;
|
|
else
|
|
/* Section base relative. */
|
|
signed_value = value - sb + signed_addend;
|
|
|
|
/* Calculate the value of the relevant G_{n-1} to obtain
|
|
the residual at that stage. */
|
|
calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
|
|
|
|
/* Check for overflow. */
|
|
if (residual >= 0x1000)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
|
|
input_bfd, input_section,
|
|
(long) rel->r_offset, abs (signed_value), howto->name);
|
|
return bfd_reloc_overflow;
|
|
}
|
|
|
|
/* Mask out the value and U bit. */
|
|
insn &= 0xff7ff000;
|
|
|
|
/* Set the U bit if the value to go in the place is non-negative. */
|
|
if (signed_value >= 0)
|
|
insn |= 1 << 23;
|
|
|
|
/* Encode the offset. */
|
|
insn |= residual;
|
|
|
|
bfd_put_32 (input_bfd, insn, hit_data);
|
|
}
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_LDRS_PC_G0:
|
|
case R_ARM_LDRS_PC_G1:
|
|
case R_ARM_LDRS_PC_G2:
|
|
case R_ARM_LDRS_SB_G0:
|
|
case R_ARM_LDRS_SB_G1:
|
|
case R_ARM_LDRS_SB_G2:
|
|
{
|
|
bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
|
|
bfd_vma pc = input_section->output_section->vma
|
|
+ input_section->output_offset + rel->r_offset;
|
|
/* sb is the origin of the *segment* containing the symbol. */
|
|
bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
|
|
bfd_vma residual;
|
|
bfd_signed_vma signed_value;
|
|
int group = 0;
|
|
|
|
/* Determine which groups of bits to calculate. */
|
|
switch (r_type)
|
|
{
|
|
case R_ARM_LDRS_PC_G0:
|
|
case R_ARM_LDRS_SB_G0:
|
|
group = 0;
|
|
break;
|
|
|
|
case R_ARM_LDRS_PC_G1:
|
|
case R_ARM_LDRS_SB_G1:
|
|
group = 1;
|
|
break;
|
|
|
|
case R_ARM_LDRS_PC_G2:
|
|
case R_ARM_LDRS_SB_G2:
|
|
group = 2;
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
|
|
/* If REL, extract the addend from the insn. If RELA, it will
|
|
have already been fetched for us. */
|
|
if (globals->use_rel)
|
|
{
|
|
int negative = (insn & (1 << 23)) ? 1 : -1;
|
|
signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
|
|
}
|
|
|
|
/* Compute the value (X) to go in the place. */
|
|
if (r_type == R_ARM_LDRS_PC_G0
|
|
|| r_type == R_ARM_LDRS_PC_G1
|
|
|| r_type == R_ARM_LDRS_PC_G2)
|
|
/* PC relative. */
|
|
signed_value = value - pc + signed_addend;
|
|
else
|
|
/* Section base relative. */
|
|
signed_value = value - sb + signed_addend;
|
|
|
|
/* Calculate the value of the relevant G_{n-1} to obtain
|
|
the residual at that stage. */
|
|
calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
|
|
|
|
/* Check for overflow. */
|
|
if (residual >= 0x100)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
|
|
input_bfd, input_section,
|
|
(long) rel->r_offset, abs (signed_value), howto->name);
|
|
return bfd_reloc_overflow;
|
|
}
|
|
|
|
/* Mask out the value and U bit. */
|
|
insn &= 0xff7ff0f0;
|
|
|
|
/* Set the U bit if the value to go in the place is non-negative. */
|
|
if (signed_value >= 0)
|
|
insn |= 1 << 23;
|
|
|
|
/* Encode the offset. */
|
|
insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
|
|
|
|
bfd_put_32 (input_bfd, insn, hit_data);
|
|
}
|
|
return bfd_reloc_ok;
|
|
|
|
case R_ARM_LDC_PC_G0:
|
|
case R_ARM_LDC_PC_G1:
|
|
case R_ARM_LDC_PC_G2:
|
|
case R_ARM_LDC_SB_G0:
|
|
case R_ARM_LDC_SB_G1:
|
|
case R_ARM_LDC_SB_G2:
|
|
{
|
|
bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
|
|
bfd_vma pc = input_section->output_section->vma
|
|
+ input_section->output_offset + rel->r_offset;
|
|
/* sb is the origin of the *segment* containing the symbol. */
|
|
bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
|
|
bfd_vma residual;
|
|
bfd_signed_vma signed_value;
|
|
int group = 0;
|
|
|
|
/* Determine which groups of bits to calculate. */
|
|
switch (r_type)
|
|
{
|
|
case R_ARM_LDC_PC_G0:
|
|
case R_ARM_LDC_SB_G0:
|
|
group = 0;
|
|
break;
|
|
|
|
case R_ARM_LDC_PC_G1:
|
|
case R_ARM_LDC_SB_G1:
|
|
group = 1;
|
|
break;
|
|
|
|
case R_ARM_LDC_PC_G2:
|
|
case R_ARM_LDC_SB_G2:
|
|
group = 2;
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
|
|
/* If REL, extract the addend from the insn. If RELA, it will
|
|
have already been fetched for us. */
|
|
if (globals->use_rel)
|
|
{
|
|
int negative = (insn & (1 << 23)) ? 1 : -1;
|
|
signed_addend = negative * ((insn & 0xff) << 2);
|
|
}
|
|
|
|
/* Compute the value (X) to go in the place. */
|
|
if (r_type == R_ARM_LDC_PC_G0
|
|
|| r_type == R_ARM_LDC_PC_G1
|
|
|| r_type == R_ARM_LDC_PC_G2)
|
|
/* PC relative. */
|
|
signed_value = value - pc + signed_addend;
|
|
else
|
|
/* Section base relative. */
|
|
signed_value = value - sb + signed_addend;
|
|
|
|
/* Calculate the value of the relevant G_{n-1} to obtain
|
|
the residual at that stage. */
|
|
calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
|
|
|
|
/* Check for overflow. (The absolute value to go in the place must be
|
|
divisible by four and, after having been divided by four, must
|
|
fit in eight bits.) */
|
|
if ((residual & 0x3) != 0 || residual >= 0x400)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
|
|
input_bfd, input_section,
|
|
(long) rel->r_offset, abs (signed_value), howto->name);
|
|
return bfd_reloc_overflow;
|
|
}
|
|
|
|
/* Mask out the value and U bit. */
|
|
insn &= 0xff7fff00;
|
|
|
|
/* Set the U bit if the value to go in the place is non-negative. */
|
|
if (signed_value >= 0)
|
|
insn |= 1 << 23;
|
|
|
|
/* Encode the offset. */
|
|
insn |= residual >> 2;
|
|
|
|
bfd_put_32 (input_bfd, insn, hit_data);
|
|
}
|
|
return bfd_reloc_ok;
|
|
|
|
default:
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
}
|
|
|
|
/* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
|
|
static void
|
|
arm_add_to_rel (bfd * abfd,
|
|
bfd_byte * address,
|
|
reloc_howto_type * howto,
|
|
bfd_signed_vma increment)
|
|
{
|
|
bfd_signed_vma addend;
|
|
|
|
if (howto->type == R_ARM_THM_CALL
|
|
|| howto->type == R_ARM_THM_JUMP24)
|
|
{
|
|
int upper_insn, lower_insn;
|
|
int upper, lower;
|
|
|
|
upper_insn = bfd_get_16 (abfd, address);
|
|
lower_insn = bfd_get_16 (abfd, address + 2);
|
|
upper = upper_insn & 0x7ff;
|
|
lower = lower_insn & 0x7ff;
|
|
|
|
addend = (upper << 12) | (lower << 1);
|
|
addend += increment;
|
|
addend >>= 1;
|
|
|
|
upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
|
|
lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
|
|
|
|
bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
|
|
bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
|
|
}
|
|
else
|
|
{
|
|
bfd_vma contents;
|
|
|
|
contents = bfd_get_32 (abfd, address);
|
|
|
|
/* Get the (signed) value from the instruction. */
|
|
addend = contents & howto->src_mask;
|
|
if (addend & ((howto->src_mask + 1) >> 1))
|
|
{
|
|
bfd_signed_vma mask;
|
|
|
|
mask = -1;
|
|
mask &= ~ howto->src_mask;
|
|
addend |= mask;
|
|
}
|
|
|
|
/* Add in the increment, (which is a byte value). */
|
|
switch (howto->type)
|
|
{
|
|
default:
|
|
addend += increment;
|
|
break;
|
|
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
case R_ARM_CALL:
|
|
case R_ARM_JUMP24:
|
|
addend <<= howto->size;
|
|
addend += increment;
|
|
|
|
/* Should we check for overflow here ? */
|
|
|
|
/* Drop any undesired bits. */
|
|
addend >>= howto->rightshift;
|
|
break;
|
|
}
|
|
|
|
contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
|
|
|
|
bfd_put_32 (abfd, contents, address);
|
|
}
|
|
}
|
|
|
|
#define IS_ARM_TLS_RELOC(R_TYPE) \
|
|
((R_TYPE) == R_ARM_TLS_GD32 \
|
|
|| (R_TYPE) == R_ARM_TLS_LDO32 \
|
|
|| (R_TYPE) == R_ARM_TLS_LDM32 \
|
|
|| (R_TYPE) == R_ARM_TLS_DTPOFF32 \
|
|
|| (R_TYPE) == R_ARM_TLS_DTPMOD32 \
|
|
|| (R_TYPE) == R_ARM_TLS_TPOFF32 \
|
|
|| (R_TYPE) == R_ARM_TLS_LE32 \
|
|
|| (R_TYPE) == R_ARM_TLS_IE32 \
|
|
|| IS_ARM_TLS_GNU_RELOC (R_TYPE))
|
|
|
|
/* Specific set of relocations for the gnu tls dialect. */
|
|
#define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
|
|
((R_TYPE) == R_ARM_TLS_GOTDESC \
|
|
|| (R_TYPE) == R_ARM_TLS_CALL \
|
|
|| (R_TYPE) == R_ARM_THM_TLS_CALL \
|
|
|| (R_TYPE) == R_ARM_TLS_DESCSEQ \
|
|
|| (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
|
|
|
|
/* Relocate an ARM ELF section. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_relocate_section (bfd * output_bfd,
|
|
struct bfd_link_info * info,
|
|
bfd * input_bfd,
|
|
asection * input_section,
|
|
bfd_byte * contents,
|
|
Elf_Internal_Rela * relocs,
|
|
Elf_Internal_Sym * local_syms,
|
|
asection ** local_sections)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **sym_hashes;
|
|
Elf_Internal_Rela *rel;
|
|
Elf_Internal_Rela *relend;
|
|
const char *name;
|
|
struct elf32_arm_link_hash_table * globals;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
if (globals == NULL)
|
|
return FALSE;
|
|
|
|
symtab_hdr = & elf_symtab_hdr (input_bfd);
|
|
sym_hashes = elf_sym_hashes (input_bfd);
|
|
|
|
rel = relocs;
|
|
relend = relocs + input_section->reloc_count;
|
|
for (; rel < relend; rel++)
|
|
{
|
|
int r_type;
|
|
reloc_howto_type * howto;
|
|
unsigned long r_symndx;
|
|
Elf_Internal_Sym * sym;
|
|
asection * sec;
|
|
struct elf_link_hash_entry * h;
|
|
bfd_vma relocation;
|
|
bfd_reloc_status_type r;
|
|
arelent bfd_reloc;
|
|
char sym_type;
|
|
bfd_boolean unresolved_reloc = FALSE;
|
|
char *error_message = NULL;
|
|
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
r_type = arm_real_reloc_type (globals, r_type);
|
|
|
|
if ( r_type == R_ARM_GNU_VTENTRY
|
|
|| r_type == R_ARM_GNU_VTINHERIT)
|
|
continue;
|
|
|
|
bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
|
|
howto = bfd_reloc.howto;
|
|
|
|
h = NULL;
|
|
sym = NULL;
|
|
sec = NULL;
|
|
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
sym = local_syms + r_symndx;
|
|
sym_type = ELF32_ST_TYPE (sym->st_info);
|
|
sec = local_sections[r_symndx];
|
|
|
|
/* An object file might have a reference to a local
|
|
undefined symbol. This is a daft object file, but we
|
|
should at least do something about it. V4BX & NONE
|
|
relocations do not use the symbol and are explicitly
|
|
allowed to use the undefined symbol, so allow those.
|
|
Likewise for relocations against STN_UNDEF. */
|
|
if (r_type != R_ARM_V4BX
|
|
&& r_type != R_ARM_NONE
|
|
&& r_symndx != STN_UNDEF
|
|
&& bfd_is_und_section (sec)
|
|
&& ELF_ST_BIND (sym->st_info) != STB_WEAK)
|
|
{
|
|
if (!info->callbacks->undefined_symbol
|
|
(info, bfd_elf_string_from_elf_section
|
|
(input_bfd, symtab_hdr->sh_link, sym->st_name),
|
|
input_bfd, input_section,
|
|
rel->r_offset, TRUE))
|
|
return FALSE;
|
|
}
|
|
|
|
if (globals->use_rel)
|
|
{
|
|
relocation = (sec->output_section->vma
|
|
+ sec->output_offset
|
|
+ sym->st_value);
|
|
if (!info->relocatable
|
|
&& (sec->flags & SEC_MERGE)
|
|
&& ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
|
{
|
|
asection *msec;
|
|
bfd_vma addend, value;
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_ARM_MOVW_ABS_NC:
|
|
case R_ARM_MOVT_ABS:
|
|
value = bfd_get_32 (input_bfd, contents + rel->r_offset);
|
|
addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
|
|
addend = (addend ^ 0x8000) - 0x8000;
|
|
break;
|
|
|
|
case R_ARM_THM_MOVW_ABS_NC:
|
|
case R_ARM_THM_MOVT_ABS:
|
|
value = bfd_get_16 (input_bfd, contents + rel->r_offset)
|
|
<< 16;
|
|
value |= bfd_get_16 (input_bfd,
|
|
contents + rel->r_offset + 2);
|
|
addend = ((value & 0xf7000) >> 4) | (value & 0xff)
|
|
| ((value & 0x04000000) >> 15);
|
|
addend = (addend ^ 0x8000) - 0x8000;
|
|
break;
|
|
|
|
default:
|
|
if (howto->rightshift
|
|
|| (howto->src_mask & (howto->src_mask + 1)))
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
|
|
input_bfd, input_section,
|
|
(long) rel->r_offset, howto->name);
|
|
return FALSE;
|
|
}
|
|
|
|
value = bfd_get_32 (input_bfd, contents + rel->r_offset);
|
|
|
|
/* Get the (signed) value from the instruction. */
|
|
addend = value & howto->src_mask;
|
|
if (addend & ((howto->src_mask + 1) >> 1))
|
|
{
|
|
bfd_signed_vma mask;
|
|
|
|
mask = -1;
|
|
mask &= ~ howto->src_mask;
|
|
addend |= mask;
|
|
}
|
|
break;
|
|
}
|
|
|
|
msec = sec;
|
|
addend =
|
|
_bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
|
|
- relocation;
|
|
addend += msec->output_section->vma + msec->output_offset;
|
|
|
|
/* Cases here must match those in the preceding
|
|
switch statement. */
|
|
switch (r_type)
|
|
{
|
|
case R_ARM_MOVW_ABS_NC:
|
|
case R_ARM_MOVT_ABS:
|
|
value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
|
|
| (addend & 0xfff);
|
|
bfd_put_32 (input_bfd, value, contents + rel->r_offset);
|
|
break;
|
|
|
|
case R_ARM_THM_MOVW_ABS_NC:
|
|
case R_ARM_THM_MOVT_ABS:
|
|
value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
|
|
| (addend & 0xff) | ((addend & 0x0800) << 15);
|
|
bfd_put_16 (input_bfd, value >> 16,
|
|
contents + rel->r_offset);
|
|
bfd_put_16 (input_bfd, value,
|
|
contents + rel->r_offset + 2);
|
|
break;
|
|
|
|
default:
|
|
value = (value & ~ howto->dst_mask)
|
|
| (addend & howto->dst_mask);
|
|
bfd_put_32 (input_bfd, value, contents + rel->r_offset);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
|
|
}
|
|
else
|
|
{
|
|
bfd_boolean warned, ignored;
|
|
|
|
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
|
r_symndx, symtab_hdr, sym_hashes,
|
|
h, sec, relocation,
|
|
unresolved_reloc, warned, ignored);
|
|
|
|
sym_type = h->type;
|
|
}
|
|
|
|
if (sec != NULL && discarded_section (sec))
|
|
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
|
rel, 1, relend, howto, 0, contents);
|
|
|
|
if (info->relocatable)
|
|
{
|
|
/* This is a relocatable link. We don't have to change
|
|
anything, unless the reloc is against a section symbol,
|
|
in which case we have to adjust according to where the
|
|
section symbol winds up in the output section. */
|
|
if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
|
{
|
|
if (globals->use_rel)
|
|
arm_add_to_rel (input_bfd, contents + rel->r_offset,
|
|
howto, (bfd_signed_vma) sec->output_offset);
|
|
else
|
|
rel->r_addend += sec->output_offset;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (h != NULL)
|
|
name = h->root.root.string;
|
|
else
|
|
{
|
|
name = (bfd_elf_string_from_elf_section
|
|
(input_bfd, symtab_hdr->sh_link, sym->st_name));
|
|
if (name == NULL || *name == '\0')
|
|
name = bfd_section_name (input_bfd, sec);
|
|
}
|
|
|
|
if (r_symndx != STN_UNDEF
|
|
&& r_type != R_ARM_NONE
|
|
&& (h == NULL
|
|
|| h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
&& IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
|
|
{
|
|
(*_bfd_error_handler)
|
|
((sym_type == STT_TLS
|
|
? _("%B(%A+0x%lx): %s used with TLS symbol %s")
|
|
: _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
|
|
input_bfd,
|
|
input_section,
|
|
(long) rel->r_offset,
|
|
howto->name,
|
|
name);
|
|
}
|
|
|
|
/* We call elf32_arm_final_link_relocate unless we're completely
|
|
done, i.e., the relaxation produced the final output we want,
|
|
and we won't let anybody mess with it. Also, we have to do
|
|
addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
|
|
both in relaxed and non-relaxed cases */
|
|
if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
|
|
|| (IS_ARM_TLS_GNU_RELOC (r_type)
|
|
&& !((h ? elf32_arm_hash_entry (h)->tls_type :
|
|
elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
|
|
& GOT_TLS_GDESC)))
|
|
{
|
|
r = elf32_arm_tls_relax (globals, input_bfd, input_section,
|
|
contents, rel, h == NULL);
|
|
/* This may have been marked unresolved because it came from
|
|
a shared library. But we've just dealt with that. */
|
|
unresolved_reloc = 0;
|
|
}
|
|
else
|
|
r = bfd_reloc_continue;
|
|
|
|
if (r == bfd_reloc_continue)
|
|
r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
|
|
input_section, contents, rel,
|
|
relocation, info, sec, name, sym_type,
|
|
(h ? h->target_internal
|
|
: ARM_SYM_BRANCH_TYPE (sym)), h,
|
|
&unresolved_reloc, &error_message);
|
|
|
|
/* Dynamic relocs are not propagated for SEC_DEBUGGING sections
|
|
because such sections are not SEC_ALLOC and thus ld.so will
|
|
not process them. */
|
|
if (unresolved_reloc
|
|
&& !((input_section->flags & SEC_DEBUGGING) != 0
|
|
&& h->def_dynamic)
|
|
&& _bfd_elf_section_offset (output_bfd, info, input_section,
|
|
rel->r_offset) != (bfd_vma) -1)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
|
|
input_bfd,
|
|
input_section,
|
|
(long) rel->r_offset,
|
|
howto->name,
|
|
h->root.root.string);
|
|
return FALSE;
|
|
}
|
|
|
|
if (r != bfd_reloc_ok)
|
|
{
|
|
switch (r)
|
|
{
|
|
case bfd_reloc_overflow:
|
|
/* If the overflowing reloc was to an undefined symbol,
|
|
we have already printed one error message and there
|
|
is no point complaining again. */
|
|
if ((! h ||
|
|
h->root.type != bfd_link_hash_undefined)
|
|
&& (!((*info->callbacks->reloc_overflow)
|
|
(info, (h ? &h->root : NULL), name, howto->name,
|
|
(bfd_vma) 0, input_bfd, input_section,
|
|
rel->r_offset))))
|
|
return FALSE;
|
|
break;
|
|
|
|
case bfd_reloc_undefined:
|
|
if (!((*info->callbacks->undefined_symbol)
|
|
(info, name, input_bfd, input_section,
|
|
rel->r_offset, TRUE)))
|
|
return FALSE;
|
|
break;
|
|
|
|
case bfd_reloc_outofrange:
|
|
error_message = _("out of range");
|
|
goto common_error;
|
|
|
|
case bfd_reloc_notsupported:
|
|
error_message = _("unsupported relocation");
|
|
goto common_error;
|
|
|
|
case bfd_reloc_dangerous:
|
|
/* error_message should already be set. */
|
|
goto common_error;
|
|
|
|
default:
|
|
error_message = _("unknown error");
|
|
/* Fall through. */
|
|
|
|
common_error:
|
|
BFD_ASSERT (error_message != NULL);
|
|
if (!((*info->callbacks->reloc_dangerous)
|
|
(info, error_message, input_bfd, input_section,
|
|
rel->r_offset)))
|
|
return FALSE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
|
|
adds the edit to the start of the list. (The list must be built in order of
|
|
ascending TINDEX: the function's callers are primarily responsible for
|
|
maintaining that condition). */
|
|
|
|
static void
|
|
add_unwind_table_edit (arm_unwind_table_edit **head,
|
|
arm_unwind_table_edit **tail,
|
|
arm_unwind_edit_type type,
|
|
asection *linked_section,
|
|
unsigned int tindex)
|
|
{
|
|
arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
|
|
xmalloc (sizeof (arm_unwind_table_edit));
|
|
|
|
new_edit->type = type;
|
|
new_edit->linked_section = linked_section;
|
|
new_edit->index = tindex;
|
|
|
|
if (tindex > 0)
|
|
{
|
|
new_edit->next = NULL;
|
|
|
|
if (*tail)
|
|
(*tail)->next = new_edit;
|
|
|
|
(*tail) = new_edit;
|
|
|
|
if (!*head)
|
|
(*head) = new_edit;
|
|
}
|
|
else
|
|
{
|
|
new_edit->next = *head;
|
|
|
|
if (!*tail)
|
|
*tail = new_edit;
|
|
|
|
*head = new_edit;
|
|
}
|
|
}
|
|
|
|
static _arm_elf_section_data *get_arm_elf_section_data (asection *);
|
|
|
|
/* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
|
|
static void
|
|
adjust_exidx_size(asection *exidx_sec, int adjust)
|
|
{
|
|
asection *out_sec;
|
|
|
|
if (!exidx_sec->rawsize)
|
|
exidx_sec->rawsize = exidx_sec->size;
|
|
|
|
bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
|
|
out_sec = exidx_sec->output_section;
|
|
/* Adjust size of output section. */
|
|
bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
|
|
}
|
|
|
|
/* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
|
|
static void
|
|
insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
|
|
{
|
|
struct _arm_elf_section_data *exidx_arm_data;
|
|
|
|
exidx_arm_data = get_arm_elf_section_data (exidx_sec);
|
|
add_unwind_table_edit (
|
|
&exidx_arm_data->u.exidx.unwind_edit_list,
|
|
&exidx_arm_data->u.exidx.unwind_edit_tail,
|
|
INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
|
|
|
|
adjust_exidx_size(exidx_sec, 8);
|
|
}
|
|
|
|
/* Scan .ARM.exidx tables, and create a list describing edits which should be
|
|
made to those tables, such that:
|
|
|
|
1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
|
|
2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
|
|
codes which have been inlined into the index).
|
|
|
|
If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
|
|
|
|
The edits are applied when the tables are written
|
|
(in elf32_arm_write_section). */
|
|
|
|
bfd_boolean
|
|
elf32_arm_fix_exidx_coverage (asection **text_section_order,
|
|
unsigned int num_text_sections,
|
|
struct bfd_link_info *info,
|
|
bfd_boolean merge_exidx_entries)
|
|
{
|
|
bfd *inp;
|
|
unsigned int last_second_word = 0, i;
|
|
asection *last_exidx_sec = NULL;
|
|
asection *last_text_sec = NULL;
|
|
int last_unwind_type = -1;
|
|
|
|
/* Walk over all EXIDX sections, and create backlinks from the corrsponding
|
|
text sections. */
|
|
for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
|
|
{
|
|
asection *sec;
|
|
|
|
for (sec = inp->sections; sec != NULL; sec = sec->next)
|
|
{
|
|
struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
|
|
Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
|
|
|
|
if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
|
|
continue;
|
|
|
|
if (elf_sec->linked_to)
|
|
{
|
|
Elf_Internal_Shdr *linked_hdr
|
|
= &elf_section_data (elf_sec->linked_to)->this_hdr;
|
|
struct _arm_elf_section_data *linked_sec_arm_data
|
|
= get_arm_elf_section_data (linked_hdr->bfd_section);
|
|
|
|
if (linked_sec_arm_data == NULL)
|
|
continue;
|
|
|
|
/* Link this .ARM.exidx section back from the text section it
|
|
describes. */
|
|
linked_sec_arm_data->u.text.arm_exidx_sec = sec;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Walk all text sections in order of increasing VMA. Eilminate duplicate
|
|
index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
|
|
and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
|
|
|
|
for (i = 0; i < num_text_sections; i++)
|
|
{
|
|
asection *sec = text_section_order[i];
|
|
asection *exidx_sec;
|
|
struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
|
|
struct _arm_elf_section_data *exidx_arm_data;
|
|
bfd_byte *contents = NULL;
|
|
int deleted_exidx_bytes = 0;
|
|
bfd_vma j;
|
|
arm_unwind_table_edit *unwind_edit_head = NULL;
|
|
arm_unwind_table_edit *unwind_edit_tail = NULL;
|
|
Elf_Internal_Shdr *hdr;
|
|
bfd *ibfd;
|
|
|
|
if (arm_data == NULL)
|
|
continue;
|
|
|
|
exidx_sec = arm_data->u.text.arm_exidx_sec;
|
|
if (exidx_sec == NULL)
|
|
{
|
|
/* Section has no unwind data. */
|
|
if (last_unwind_type == 0 || !last_exidx_sec)
|
|
continue;
|
|
|
|
/* Ignore zero sized sections. */
|
|
if (sec->size == 0)
|
|
continue;
|
|
|
|
insert_cantunwind_after(last_text_sec, last_exidx_sec);
|
|
last_unwind_type = 0;
|
|
continue;
|
|
}
|
|
|
|
/* Skip /DISCARD/ sections. */
|
|
if (bfd_is_abs_section (exidx_sec->output_section))
|
|
continue;
|
|
|
|
hdr = &elf_section_data (exidx_sec)->this_hdr;
|
|
if (hdr->sh_type != SHT_ARM_EXIDX)
|
|
continue;
|
|
|
|
exidx_arm_data = get_arm_elf_section_data (exidx_sec);
|
|
if (exidx_arm_data == NULL)
|
|
continue;
|
|
|
|
ibfd = exidx_sec->owner;
|
|
|
|
if (hdr->contents != NULL)
|
|
contents = hdr->contents;
|
|
else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
|
|
/* An error? */
|
|
continue;
|
|
|
|
for (j = 0; j < hdr->sh_size; j += 8)
|
|
{
|
|
unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
|
|
int unwind_type;
|
|
int elide = 0;
|
|
|
|
/* An EXIDX_CANTUNWIND entry. */
|
|
if (second_word == 1)
|
|
{
|
|
if (last_unwind_type == 0)
|
|
elide = 1;
|
|
unwind_type = 0;
|
|
}
|
|
/* Inlined unwinding data. Merge if equal to previous. */
|
|
else if ((second_word & 0x80000000) != 0)
|
|
{
|
|
if (merge_exidx_entries
|
|
&& last_second_word == second_word && last_unwind_type == 1)
|
|
elide = 1;
|
|
unwind_type = 1;
|
|
last_second_word = second_word;
|
|
}
|
|
/* Normal table entry. In theory we could merge these too,
|
|
but duplicate entries are likely to be much less common. */
|
|
else
|
|
unwind_type = 2;
|
|
|
|
if (elide)
|
|
{
|
|
add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
|
|
DELETE_EXIDX_ENTRY, NULL, j / 8);
|
|
|
|
deleted_exidx_bytes += 8;
|
|
}
|
|
|
|
last_unwind_type = unwind_type;
|
|
}
|
|
|
|
/* Free contents if we allocated it ourselves. */
|
|
if (contents != hdr->contents)
|
|
free (contents);
|
|
|
|
/* Record edits to be applied later (in elf32_arm_write_section). */
|
|
exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
|
|
exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
|
|
|
|
if (deleted_exidx_bytes > 0)
|
|
adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
|
|
|
|
last_exidx_sec = exidx_sec;
|
|
last_text_sec = sec;
|
|
}
|
|
|
|
/* Add terminating CANTUNWIND entry. */
|
|
if (last_exidx_sec && last_unwind_type != 0)
|
|
insert_cantunwind_after(last_text_sec, last_exidx_sec);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static bfd_boolean
|
|
elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
|
|
bfd *ibfd, const char *name)
|
|
{
|
|
asection *sec, *osec;
|
|
|
|
sec = bfd_get_linker_section (ibfd, name);
|
|
if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
|
|
return TRUE;
|
|
|
|
osec = sec->output_section;
|
|
if (elf32_arm_write_section (obfd, info, sec, sec->contents))
|
|
return TRUE;
|
|
|
|
if (! bfd_set_section_contents (obfd, osec, sec->contents,
|
|
sec->output_offset, sec->size))
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static bfd_boolean
|
|
elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
|
|
{
|
|
struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
|
|
asection *sec, *osec;
|
|
|
|
if (globals == NULL)
|
|
return FALSE;
|
|
|
|
/* Invoke the regular ELF backend linker to do all the work. */
|
|
if (!bfd_elf_final_link (abfd, info))
|
|
return FALSE;
|
|
|
|
/* Process stub sections (eg BE8 encoding, ...). */
|
|
struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
|
|
int i;
|
|
for (i=0; i<htab->top_id; i++)
|
|
{
|
|
sec = htab->stub_group[i].stub_sec;
|
|
/* Only process it once, in its link_sec slot. */
|
|
if (sec && i == htab->stub_group[i].link_sec->id)
|
|
{
|
|
osec = sec->output_section;
|
|
elf32_arm_write_section (abfd, info, sec, sec->contents);
|
|
if (! bfd_set_section_contents (abfd, osec, sec->contents,
|
|
sec->output_offset, sec->size))
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/* Write out any glue sections now that we have created all the
|
|
stubs. */
|
|
if (globals->bfd_of_glue_owner != NULL)
|
|
{
|
|
if (! elf32_arm_output_glue_section (info, abfd,
|
|
globals->bfd_of_glue_owner,
|
|
ARM2THUMB_GLUE_SECTION_NAME))
|
|
return FALSE;
|
|
|
|
if (! elf32_arm_output_glue_section (info, abfd,
|
|
globals->bfd_of_glue_owner,
|
|
THUMB2ARM_GLUE_SECTION_NAME))
|
|
return FALSE;
|
|
|
|
if (! elf32_arm_output_glue_section (info, abfd,
|
|
globals->bfd_of_glue_owner,
|
|
VFP11_ERRATUM_VENEER_SECTION_NAME))
|
|
return FALSE;
|
|
|
|
if (! elf32_arm_output_glue_section (info, abfd,
|
|
globals->bfd_of_glue_owner,
|
|
ARM_BX_GLUE_SECTION_NAME))
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Return a best guess for the machine number based on the attributes. */
|
|
|
|
static unsigned int
|
|
bfd_arm_get_mach_from_attributes (bfd * abfd)
|
|
{
|
|
int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
|
|
|
|
switch (arch)
|
|
{
|
|
case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
|
|
case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
|
|
case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
|
|
|
|
case TAG_CPU_ARCH_V5TE:
|
|
{
|
|
char * name;
|
|
|
|
BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
|
|
name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
|
|
|
|
if (name)
|
|
{
|
|
if (strcmp (name, "IWMMXT2") == 0)
|
|
return bfd_mach_arm_iWMMXt2;
|
|
|
|
if (strcmp (name, "IWMMXT") == 0)
|
|
return bfd_mach_arm_iWMMXt;
|
|
|
|
if (strcmp (name, "XSCALE") == 0)
|
|
{
|
|
int wmmx;
|
|
|
|
BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
|
|
wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
|
|
switch (wmmx)
|
|
{
|
|
case 1: return bfd_mach_arm_iWMMXt;
|
|
case 2: return bfd_mach_arm_iWMMXt2;
|
|
default: return bfd_mach_arm_XScale;
|
|
}
|
|
}
|
|
}
|
|
|
|
return bfd_mach_arm_5TE;
|
|
}
|
|
|
|
default:
|
|
return bfd_mach_arm_unknown;
|
|
}
|
|
}
|
|
|
|
/* Set the right machine number. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_object_p (bfd *abfd)
|
|
{
|
|
unsigned int mach;
|
|
|
|
mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
|
|
|
|
if (mach == bfd_mach_arm_unknown)
|
|
{
|
|
if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
|
|
mach = bfd_mach_arm_ep9312;
|
|
else
|
|
mach = bfd_arm_get_mach_from_attributes (abfd);
|
|
}
|
|
|
|
bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
|
|
return TRUE;
|
|
}
|
|
|
|
/* Function to keep ARM specific flags in the ELF header. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_set_private_flags (bfd *abfd, flagword flags)
|
|
{
|
|
if (elf_flags_init (abfd)
|
|
&& elf_elfheader (abfd)->e_flags != flags)
|
|
{
|
|
if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
|
|
{
|
|
if (flags & EF_ARM_INTERWORK)
|
|
(*_bfd_error_handler)
|
|
(_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
|
|
abfd);
|
|
else
|
|
_bfd_error_handler
|
|
(_("Warning: Clearing the interworking flag of %B due to outside request"),
|
|
abfd);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
elf_elfheader (abfd)->e_flags = flags;
|
|
elf_flags_init (abfd) = TRUE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Copy backend specific data from one object module to another. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
|
|
{
|
|
flagword in_flags;
|
|
flagword out_flags;
|
|
|
|
if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
|
|
return TRUE;
|
|
|
|
in_flags = elf_elfheader (ibfd)->e_flags;
|
|
out_flags = elf_elfheader (obfd)->e_flags;
|
|
|
|
if (elf_flags_init (obfd)
|
|
&& EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
|
|
&& in_flags != out_flags)
|
|
{
|
|
/* Cannot mix APCS26 and APCS32 code. */
|
|
if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
|
|
return FALSE;
|
|
|
|
/* Cannot mix float APCS and non-float APCS code. */
|
|
if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
|
|
return FALSE;
|
|
|
|
/* If the src and dest have different interworking flags
|
|
then turn off the interworking bit. */
|
|
if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
|
|
{
|
|
if (out_flags & EF_ARM_INTERWORK)
|
|
_bfd_error_handler
|
|
(_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
|
|
obfd, ibfd);
|
|
|
|
in_flags &= ~EF_ARM_INTERWORK;
|
|
}
|
|
|
|
/* Likewise for PIC, though don't warn for this case. */
|
|
if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
|
|
in_flags &= ~EF_ARM_PIC;
|
|
}
|
|
|
|
elf_elfheader (obfd)->e_flags = in_flags;
|
|
elf_flags_init (obfd) = TRUE;
|
|
|
|
return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
|
|
}
|
|
|
|
/* Values for Tag_ABI_PCS_R9_use. */
|
|
enum
|
|
{
|
|
AEABI_R9_V6,
|
|
AEABI_R9_SB,
|
|
AEABI_R9_TLS,
|
|
AEABI_R9_unused
|
|
};
|
|
|
|
/* Values for Tag_ABI_PCS_RW_data. */
|
|
enum
|
|
{
|
|
AEABI_PCS_RW_data_absolute,
|
|
AEABI_PCS_RW_data_PCrel,
|
|
AEABI_PCS_RW_data_SBrel,
|
|
AEABI_PCS_RW_data_unused
|
|
};
|
|
|
|
/* Values for Tag_ABI_enum_size. */
|
|
enum
|
|
{
|
|
AEABI_enum_unused,
|
|
AEABI_enum_short,
|
|
AEABI_enum_wide,
|
|
AEABI_enum_forced_wide
|
|
};
|
|
|
|
/* Determine whether an object attribute tag takes an integer, a
|
|
string or both. */
|
|
|
|
static int
|
|
elf32_arm_obj_attrs_arg_type (int tag)
|
|
{
|
|
if (tag == Tag_compatibility)
|
|
return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
|
|
else if (tag == Tag_nodefaults)
|
|
return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
|
|
else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
|
|
return ATTR_TYPE_FLAG_STR_VAL;
|
|
else if (tag < 32)
|
|
return ATTR_TYPE_FLAG_INT_VAL;
|
|
else
|
|
return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
|
|
}
|
|
|
|
/* The ABI defines that Tag_conformance should be emitted first, and that
|
|
Tag_nodefaults should be second (if either is defined). This sets those
|
|
two positions, and bumps up the position of all the remaining tags to
|
|
compensate. */
|
|
static int
|
|
elf32_arm_obj_attrs_order (int num)
|
|
{
|
|
if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
|
|
return Tag_conformance;
|
|
if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
|
|
return Tag_nodefaults;
|
|
if ((num - 2) < Tag_nodefaults)
|
|
return num - 2;
|
|
if ((num - 1) < Tag_conformance)
|
|
return num - 1;
|
|
return num;
|
|
}
|
|
|
|
/* Attribute numbers >=64 (mod 128) can be safely ignored. */
|
|
static bfd_boolean
|
|
elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
|
|
{
|
|
if ((tag & 127) < 64)
|
|
{
|
|
_bfd_error_handler
|
|
(_("%B: Unknown mandatory EABI object attribute %d"),
|
|
abfd, tag);
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return FALSE;
|
|
}
|
|
else
|
|
{
|
|
_bfd_error_handler
|
|
(_("Warning: %B: Unknown EABI object attribute %d"),
|
|
abfd, tag);
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
/* Read the architecture from the Tag_also_compatible_with attribute, if any.
|
|
Returns -1 if no architecture could be read. */
|
|
|
|
static int
|
|
get_secondary_compatible_arch (bfd *abfd)
|
|
{
|
|
obj_attribute *attr =
|
|
&elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
|
|
|
|
/* Note: the tag and its argument below are uleb128 values, though
|
|
currently-defined values fit in one byte for each. */
|
|
if (attr->s
|
|
&& attr->s[0] == Tag_CPU_arch
|
|
&& (attr->s[1] & 128) != 128
|
|
&& attr->s[2] == 0)
|
|
return attr->s[1];
|
|
|
|
/* This tag is "safely ignorable", so don't complain if it looks funny. */
|
|
return -1;
|
|
}
|
|
|
|
/* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
|
|
The tag is removed if ARCH is -1. */
|
|
|
|
static void
|
|
set_secondary_compatible_arch (bfd *abfd, int arch)
|
|
{
|
|
obj_attribute *attr =
|
|
&elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
|
|
|
|
if (arch == -1)
|
|
{
|
|
attr->s = NULL;
|
|
return;
|
|
}
|
|
|
|
/* Note: the tag and its argument below are uleb128 values, though
|
|
currently-defined values fit in one byte for each. */
|
|
if (!attr->s)
|
|
attr->s = (char *) bfd_alloc (abfd, 3);
|
|
attr->s[0] = Tag_CPU_arch;
|
|
attr->s[1] = arch;
|
|
attr->s[2] = '\0';
|
|
}
|
|
|
|
/* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
|
|
into account. */
|
|
|
|
static int
|
|
tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
|
|
int newtag, int secondary_compat)
|
|
{
|
|
#define T(X) TAG_CPU_ARCH_##X
|
|
int tagl, tagh, result;
|
|
const int v6t2[] =
|
|
{
|
|
T(V6T2), /* PRE_V4. */
|
|
T(V6T2), /* V4. */
|
|
T(V6T2), /* V4T. */
|
|
T(V6T2), /* V5T. */
|
|
T(V6T2), /* V5TE. */
|
|
T(V6T2), /* V5TEJ. */
|
|
T(V6T2), /* V6. */
|
|
T(V7), /* V6KZ. */
|
|
T(V6T2) /* V6T2. */
|
|
};
|
|
const int v6k[] =
|
|
{
|
|
T(V6K), /* PRE_V4. */
|
|
T(V6K), /* V4. */
|
|
T(V6K), /* V4T. */
|
|
T(V6K), /* V5T. */
|
|
T(V6K), /* V5TE. */
|
|
T(V6K), /* V5TEJ. */
|
|
T(V6K), /* V6. */
|
|
T(V6KZ), /* V6KZ. */
|
|
T(V7), /* V6T2. */
|
|
T(V6K) /* V6K. */
|
|
};
|
|
const int v7[] =
|
|
{
|
|
T(V7), /* PRE_V4. */
|
|
T(V7), /* V4. */
|
|
T(V7), /* V4T. */
|
|
T(V7), /* V5T. */
|
|
T(V7), /* V5TE. */
|
|
T(V7), /* V5TEJ. */
|
|
T(V7), /* V6. */
|
|
T(V7), /* V6KZ. */
|
|
T(V7), /* V6T2. */
|
|
T(V7), /* V6K. */
|
|
T(V7) /* V7. */
|
|
};
|
|
const int v6_m[] =
|
|
{
|
|
-1, /* PRE_V4. */
|
|
-1, /* V4. */
|
|
T(V6K), /* V4T. */
|
|
T(V6K), /* V5T. */
|
|
T(V6K), /* V5TE. */
|
|
T(V6K), /* V5TEJ. */
|
|
T(V6K), /* V6. */
|
|
T(V6KZ), /* V6KZ. */
|
|
T(V7), /* V6T2. */
|
|
T(V6K), /* V6K. */
|
|
T(V7), /* V7. */
|
|
T(V6_M) /* V6_M. */
|
|
};
|
|
const int v6s_m[] =
|
|
{
|
|
-1, /* PRE_V4. */
|
|
-1, /* V4. */
|
|
T(V6K), /* V4T. */
|
|
T(V6K), /* V5T. */
|
|
T(V6K), /* V5TE. */
|
|
T(V6K), /* V5TEJ. */
|
|
T(V6K), /* V6. */
|
|
T(V6KZ), /* V6KZ. */
|
|
T(V7), /* V6T2. */
|
|
T(V6K), /* V6K. */
|
|
T(V7), /* V7. */
|
|
T(V6S_M), /* V6_M. */
|
|
T(V6S_M) /* V6S_M. */
|
|
};
|
|
const int v7e_m[] =
|
|
{
|
|
-1, /* PRE_V4. */
|
|
-1, /* V4. */
|
|
T(V7E_M), /* V4T. */
|
|
T(V7E_M), /* V5T. */
|
|
T(V7E_M), /* V5TE. */
|
|
T(V7E_M), /* V5TEJ. */
|
|
T(V7E_M), /* V6. */
|
|
T(V7E_M), /* V6KZ. */
|
|
T(V7E_M), /* V6T2. */
|
|
T(V7E_M), /* V6K. */
|
|
T(V7E_M), /* V7. */
|
|
T(V7E_M), /* V6_M. */
|
|
T(V7E_M), /* V6S_M. */
|
|
T(V7E_M) /* V7E_M. */
|
|
};
|
|
const int v8[] =
|
|
{
|
|
T(V8), /* PRE_V4. */
|
|
T(V8), /* V4. */
|
|
T(V8), /* V4T. */
|
|
T(V8), /* V5T. */
|
|
T(V8), /* V5TE. */
|
|
T(V8), /* V5TEJ. */
|
|
T(V8), /* V6. */
|
|
T(V8), /* V6KZ. */
|
|
T(V8), /* V6T2. */
|
|
T(V8), /* V6K. */
|
|
T(V8), /* V7. */
|
|
T(V8), /* V6_M. */
|
|
T(V8), /* V6S_M. */
|
|
T(V8), /* V7E_M. */
|
|
T(V8) /* V8. */
|
|
};
|
|
const int v4t_plus_v6_m[] =
|
|
{
|
|
-1, /* PRE_V4. */
|
|
-1, /* V4. */
|
|
T(V4T), /* V4T. */
|
|
T(V5T), /* V5T. */
|
|
T(V5TE), /* V5TE. */
|
|
T(V5TEJ), /* V5TEJ. */
|
|
T(V6), /* V6. */
|
|
T(V6KZ), /* V6KZ. */
|
|
T(V6T2), /* V6T2. */
|
|
T(V6K), /* V6K. */
|
|
T(V7), /* V7. */
|
|
T(V6_M), /* V6_M. */
|
|
T(V6S_M), /* V6S_M. */
|
|
T(V7E_M), /* V7E_M. */
|
|
T(V8), /* V8. */
|
|
T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
|
|
};
|
|
const int *comb[] =
|
|
{
|
|
v6t2,
|
|
v6k,
|
|
v7,
|
|
v6_m,
|
|
v6s_m,
|
|
v7e_m,
|
|
v8,
|
|
/* Pseudo-architecture. */
|
|
v4t_plus_v6_m
|
|
};
|
|
|
|
/* Check we've not got a higher architecture than we know about. */
|
|
|
|
if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
|
|
{
|
|
_bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
|
|
return -1;
|
|
}
|
|
|
|
/* Override old tag if we have a Tag_also_compatible_with on the output. */
|
|
|
|
if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
|
|
|| (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
|
|
oldtag = T(V4T_PLUS_V6_M);
|
|
|
|
/* And override the new tag if we have a Tag_also_compatible_with on the
|
|
input. */
|
|
|
|
if ((newtag == T(V6_M) && secondary_compat == T(V4T))
|
|
|| (newtag == T(V4T) && secondary_compat == T(V6_M)))
|
|
newtag = T(V4T_PLUS_V6_M);
|
|
|
|
tagl = (oldtag < newtag) ? oldtag : newtag;
|
|
result = tagh = (oldtag > newtag) ? oldtag : newtag;
|
|
|
|
/* Architectures before V6KZ add features monotonically. */
|
|
if (tagh <= TAG_CPU_ARCH_V6KZ)
|
|
return result;
|
|
|
|
result = comb[tagh - T(V6T2)][tagl];
|
|
|
|
/* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
|
|
as the canonical version. */
|
|
if (result == T(V4T_PLUS_V6_M))
|
|
{
|
|
result = T(V4T);
|
|
*secondary_compat_out = T(V6_M);
|
|
}
|
|
else
|
|
*secondary_compat_out = -1;
|
|
|
|
if (result == -1)
|
|
{
|
|
_bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
|
|
ibfd, oldtag, newtag);
|
|
return -1;
|
|
}
|
|
|
|
return result;
|
|
#undef T
|
|
}
|
|
|
|
/* Query attributes object to see if integer divide instructions may be
|
|
present in an object. */
|
|
static bfd_boolean
|
|
elf32_arm_attributes_accept_div (const obj_attribute *attr)
|
|
{
|
|
int arch = attr[Tag_CPU_arch].i;
|
|
int profile = attr[Tag_CPU_arch_profile].i;
|
|
|
|
switch (attr[Tag_DIV_use].i)
|
|
{
|
|
case 0:
|
|
/* Integer divide allowed if instruction contained in archetecture. */
|
|
if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
|
|
return TRUE;
|
|
else if (arch >= TAG_CPU_ARCH_V7E_M)
|
|
return TRUE;
|
|
else
|
|
return FALSE;
|
|
|
|
case 1:
|
|
/* Integer divide explicitly prohibited. */
|
|
return FALSE;
|
|
|
|
default:
|
|
/* Unrecognised case - treat as allowing divide everywhere. */
|
|
case 2:
|
|
/* Integer divide allowed in ARM state. */
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
/* Query attributes object to see if integer divide instructions are
|
|
forbidden to be in the object. This is not the inverse of
|
|
elf32_arm_attributes_accept_div. */
|
|
static bfd_boolean
|
|
elf32_arm_attributes_forbid_div (const obj_attribute *attr)
|
|
{
|
|
return attr[Tag_DIV_use].i == 1;
|
|
}
|
|
|
|
/* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
|
|
are conflicting attributes. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
|
|
{
|
|
obj_attribute *in_attr;
|
|
obj_attribute *out_attr;
|
|
/* Some tags have 0 = don't care, 1 = strong requirement,
|
|
2 = weak requirement. */
|
|
static const int order_021[3] = {0, 2, 1};
|
|
int i;
|
|
bfd_boolean result = TRUE;
|
|
|
|
/* Skip the linker stubs file. This preserves previous behavior
|
|
of accepting unknown attributes in the first input file - but
|
|
is that a bug? */
|
|
if (ibfd->flags & BFD_LINKER_CREATED)
|
|
return TRUE;
|
|
|
|
if (!elf_known_obj_attributes_proc (obfd)[0].i)
|
|
{
|
|
/* This is the first object. Copy the attributes. */
|
|
_bfd_elf_copy_obj_attributes (ibfd, obfd);
|
|
|
|
out_attr = elf_known_obj_attributes_proc (obfd);
|
|
|
|
/* Use the Tag_null value to indicate the attributes have been
|
|
initialized. */
|
|
out_attr[0].i = 1;
|
|
|
|
/* We do not output objects with Tag_MPextension_use_legacy - we move
|
|
the attribute's value to Tag_MPextension_use. */
|
|
if (out_attr[Tag_MPextension_use_legacy].i != 0)
|
|
{
|
|
if (out_attr[Tag_MPextension_use].i != 0
|
|
&& out_attr[Tag_MPextension_use_legacy].i
|
|
!= out_attr[Tag_MPextension_use].i)
|
|
{
|
|
_bfd_error_handler
|
|
(_("Error: %B has both the current and legacy "
|
|
"Tag_MPextension_use attributes"), ibfd);
|
|
result = FALSE;
|
|
}
|
|
|
|
out_attr[Tag_MPextension_use] =
|
|
out_attr[Tag_MPextension_use_legacy];
|
|
out_attr[Tag_MPextension_use_legacy].type = 0;
|
|
out_attr[Tag_MPextension_use_legacy].i = 0;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
in_attr = elf_known_obj_attributes_proc (ibfd);
|
|
out_attr = elf_known_obj_attributes_proc (obfd);
|
|
/* This needs to happen before Tag_ABI_FP_number_model is merged. */
|
|
if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
|
|
{
|
|
/* Ignore mismatches if the object doesn't use floating point. */
|
|
if (out_attr[Tag_ABI_FP_number_model].i == 0)
|
|
out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
|
|
else if (in_attr[Tag_ABI_FP_number_model].i != 0)
|
|
{
|
|
_bfd_error_handler
|
|
(_("error: %B uses VFP register arguments, %B does not"),
|
|
in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
|
|
in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
|
|
result = FALSE;
|
|
}
|
|
}
|
|
|
|
for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
|
|
{
|
|
/* Merge this attribute with existing attributes. */
|
|
switch (i)
|
|
{
|
|
case Tag_CPU_raw_name:
|
|
case Tag_CPU_name:
|
|
/* These are merged after Tag_CPU_arch. */
|
|
break;
|
|
|
|
case Tag_ABI_optimization_goals:
|
|
case Tag_ABI_FP_optimization_goals:
|
|
/* Use the first value seen. */
|
|
break;
|
|
|
|
case Tag_CPU_arch:
|
|
{
|
|
int secondary_compat = -1, secondary_compat_out = -1;
|
|
unsigned int saved_out_attr = out_attr[i].i;
|
|
static const char *name_table[] = {
|
|
/* These aren't real CPU names, but we can't guess
|
|
that from the architecture version alone. */
|
|
"Pre v4",
|
|
"ARM v4",
|
|
"ARM v4T",
|
|
"ARM v5T",
|
|
"ARM v5TE",
|
|
"ARM v5TEJ",
|
|
"ARM v6",
|
|
"ARM v6KZ",
|
|
"ARM v6T2",
|
|
"ARM v6K",
|
|
"ARM v7",
|
|
"ARM v6-M",
|
|
"ARM v6S-M",
|
|
"ARM v8"
|
|
};
|
|
|
|
/* Merge Tag_CPU_arch and Tag_also_compatible_with. */
|
|
secondary_compat = get_secondary_compatible_arch (ibfd);
|
|
secondary_compat_out = get_secondary_compatible_arch (obfd);
|
|
out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
|
|
&secondary_compat_out,
|
|
in_attr[i].i,
|
|
secondary_compat);
|
|
set_secondary_compatible_arch (obfd, secondary_compat_out);
|
|
|
|
/* Merge Tag_CPU_name and Tag_CPU_raw_name. */
|
|
if (out_attr[i].i == saved_out_attr)
|
|
; /* Leave the names alone. */
|
|
else if (out_attr[i].i == in_attr[i].i)
|
|
{
|
|
/* The output architecture has been changed to match the
|
|
input architecture. Use the input names. */
|
|
out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
|
|
? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
|
|
: NULL;
|
|
out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
|
|
? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
|
|
: NULL;
|
|
}
|
|
else
|
|
{
|
|
out_attr[Tag_CPU_name].s = NULL;
|
|
out_attr[Tag_CPU_raw_name].s = NULL;
|
|
}
|
|
|
|
/* If we still don't have a value for Tag_CPU_name,
|
|
make one up now. Tag_CPU_raw_name remains blank. */
|
|
if (out_attr[Tag_CPU_name].s == NULL
|
|
&& out_attr[i].i < ARRAY_SIZE (name_table))
|
|
out_attr[Tag_CPU_name].s =
|
|
_bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
|
|
}
|
|
break;
|
|
|
|
case Tag_ARM_ISA_use:
|
|
case Tag_THUMB_ISA_use:
|
|
case Tag_WMMX_arch:
|
|
case Tag_Advanced_SIMD_arch:
|
|
/* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
|
|
case Tag_ABI_FP_rounding:
|
|
case Tag_ABI_FP_exceptions:
|
|
case Tag_ABI_FP_user_exceptions:
|
|
case Tag_ABI_FP_number_model:
|
|
case Tag_FP_HP_extension:
|
|
case Tag_CPU_unaligned_access:
|
|
case Tag_T2EE_use:
|
|
case Tag_MPextension_use:
|
|
/* Use the largest value specified. */
|
|
if (in_attr[i].i > out_attr[i].i)
|
|
out_attr[i].i = in_attr[i].i;
|
|
break;
|
|
|
|
case Tag_ABI_align_preserved:
|
|
case Tag_ABI_PCS_RO_data:
|
|
/* Use the smallest value specified. */
|
|
if (in_attr[i].i < out_attr[i].i)
|
|
out_attr[i].i = in_attr[i].i;
|
|
break;
|
|
|
|
case Tag_ABI_align_needed:
|
|
if ((in_attr[i].i > 0 || out_attr[i].i > 0)
|
|
&& (in_attr[Tag_ABI_align_preserved].i == 0
|
|
|| out_attr[Tag_ABI_align_preserved].i == 0))
|
|
{
|
|
/* This error message should be enabled once all non-conformant
|
|
binaries in the toolchain have had the attributes set
|
|
properly.
|
|
_bfd_error_handler
|
|
(_("error: %B: 8-byte data alignment conflicts with %B"),
|
|
obfd, ibfd);
|
|
result = FALSE; */
|
|
}
|
|
/* Fall through. */
|
|
case Tag_ABI_FP_denormal:
|
|
case Tag_ABI_PCS_GOT_use:
|
|
/* Use the "greatest" from the sequence 0, 2, 1, or the largest
|
|
value if greater than 2 (for future-proofing). */
|
|
if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
|
|
|| (in_attr[i].i <= 2 && out_attr[i].i <= 2
|
|
&& order_021[in_attr[i].i] > order_021[out_attr[i].i]))
|
|
out_attr[i].i = in_attr[i].i;
|
|
break;
|
|
|
|
case Tag_Virtualization_use:
|
|
/* The virtualization tag effectively stores two bits of
|
|
information: the intended use of TrustZone (in bit 0), and the
|
|
intended use of Virtualization (in bit 1). */
|
|
if (out_attr[i].i == 0)
|
|
out_attr[i].i = in_attr[i].i;
|
|
else if (in_attr[i].i != 0
|
|
&& in_attr[i].i != out_attr[i].i)
|
|
{
|
|
if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
|
|
out_attr[i].i = 3;
|
|
else
|
|
{
|
|
_bfd_error_handler
|
|
(_("error: %B: unable to merge virtualization attributes "
|
|
"with %B"),
|
|
obfd, ibfd);
|
|
result = FALSE;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Tag_CPU_arch_profile:
|
|
if (out_attr[i].i != in_attr[i].i)
|
|
{
|
|
/* 0 will merge with anything.
|
|
'A' and 'S' merge to 'A'.
|
|
'R' and 'S' merge to 'R'.
|
|
'M' and 'A|R|S' is an error. */
|
|
if (out_attr[i].i == 0
|
|
|| (out_attr[i].i == 'S'
|
|
&& (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
|
|
out_attr[i].i = in_attr[i].i;
|
|
else if (in_attr[i].i == 0
|
|
|| (in_attr[i].i == 'S'
|
|
&& (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
|
|
; /* Do nothing. */
|
|
else
|
|
{
|
|
_bfd_error_handler
|
|
(_("error: %B: Conflicting architecture profiles %c/%c"),
|
|
ibfd,
|
|
in_attr[i].i ? in_attr[i].i : '0',
|
|
out_attr[i].i ? out_attr[i].i : '0');
|
|
result = FALSE;
|
|
}
|
|
}
|
|
break;
|
|
case Tag_FP_arch:
|
|
{
|
|
/* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
|
|
the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
|
|
when it's 0. It might mean absence of FP hardware if
|
|
Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
|
|
|
|
#define VFP_VERSION_COUNT 8
|
|
static const struct
|
|
{
|
|
int ver;
|
|
int regs;
|
|
} vfp_versions[VFP_VERSION_COUNT] =
|
|
{
|
|
{0, 0},
|
|
{1, 16},
|
|
{2, 16},
|
|
{3, 32},
|
|
{3, 16},
|
|
{4, 32},
|
|
{4, 16},
|
|
{8, 32}
|
|
};
|
|
int ver;
|
|
int regs;
|
|
int newval;
|
|
|
|
/* If the output has no requirement about FP hardware,
|
|
follow the requirement of the input. */
|
|
if (out_attr[i].i == 0)
|
|
{
|
|
BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
|
|
out_attr[i].i = in_attr[i].i;
|
|
out_attr[Tag_ABI_HardFP_use].i
|
|
= in_attr[Tag_ABI_HardFP_use].i;
|
|
break;
|
|
}
|
|
/* If the input has no requirement about FP hardware, do
|
|
nothing. */
|
|
else if (in_attr[i].i == 0)
|
|
{
|
|
BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
|
|
break;
|
|
}
|
|
|
|
/* Both the input and the output have nonzero Tag_FP_arch.
|
|
So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
|
|
|
|
/* If both the input and the output have zero Tag_ABI_HardFP_use,
|
|
do nothing. */
|
|
if (in_attr[Tag_ABI_HardFP_use].i == 0
|
|
&& out_attr[Tag_ABI_HardFP_use].i == 0)
|
|
;
|
|
/* If the input and the output have different Tag_ABI_HardFP_use,
|
|
the combination of them is 3 (SP & DP). */
|
|
else if (in_attr[Tag_ABI_HardFP_use].i
|
|
!= out_attr[Tag_ABI_HardFP_use].i)
|
|
out_attr[Tag_ABI_HardFP_use].i = 3;
|
|
|
|
/* Now we can handle Tag_FP_arch. */
|
|
|
|
/* Values of VFP_VERSION_COUNT or more aren't defined, so just
|
|
pick the biggest. */
|
|
if (in_attr[i].i >= VFP_VERSION_COUNT
|
|
&& in_attr[i].i > out_attr[i].i)
|
|
{
|
|
out_attr[i] = in_attr[i];
|
|
break;
|
|
}
|
|
/* The output uses the superset of input features
|
|
(ISA version) and registers. */
|
|
ver = vfp_versions[in_attr[i].i].ver;
|
|
if (ver < vfp_versions[out_attr[i].i].ver)
|
|
ver = vfp_versions[out_attr[i].i].ver;
|
|
regs = vfp_versions[in_attr[i].i].regs;
|
|
if (regs < vfp_versions[out_attr[i].i].regs)
|
|
regs = vfp_versions[out_attr[i].i].regs;
|
|
/* This assumes all possible supersets are also a valid
|
|
options. */
|
|
for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
|
|
{
|
|
if (regs == vfp_versions[newval].regs
|
|
&& ver == vfp_versions[newval].ver)
|
|
break;
|
|
}
|
|
out_attr[i].i = newval;
|
|
}
|
|
break;
|
|
case Tag_PCS_config:
|
|
if (out_attr[i].i == 0)
|
|
out_attr[i].i = in_attr[i].i;
|
|
else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
|
|
{
|
|
/* It's sometimes ok to mix different configs, so this is only
|
|
a warning. */
|
|
_bfd_error_handler
|
|
(_("Warning: %B: Conflicting platform configuration"), ibfd);
|
|
}
|
|
break;
|
|
case Tag_ABI_PCS_R9_use:
|
|
if (in_attr[i].i != out_attr[i].i
|
|
&& out_attr[i].i != AEABI_R9_unused
|
|
&& in_attr[i].i != AEABI_R9_unused)
|
|
{
|
|
_bfd_error_handler
|
|
(_("error: %B: Conflicting use of R9"), ibfd);
|
|
result = FALSE;
|
|
}
|
|
if (out_attr[i].i == AEABI_R9_unused)
|
|
out_attr[i].i = in_attr[i].i;
|
|
break;
|
|
case Tag_ABI_PCS_RW_data:
|
|
if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
|
|
&& out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
|
|
&& out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
|
|
{
|
|
_bfd_error_handler
|
|
(_("error: %B: SB relative addressing conflicts with use of R9"),
|
|
ibfd);
|
|
result = FALSE;
|
|
}
|
|
/* Use the smallest value specified. */
|
|
if (in_attr[i].i < out_attr[i].i)
|
|
out_attr[i].i = in_attr[i].i;
|
|
break;
|
|
case Tag_ABI_PCS_wchar_t:
|
|
if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
|
|
&& !elf_arm_tdata (obfd)->no_wchar_size_warning)
|
|
{
|
|
_bfd_error_handler
|
|
(_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
|
|
ibfd, in_attr[i].i, out_attr[i].i);
|
|
}
|
|
else if (in_attr[i].i && !out_attr[i].i)
|
|
out_attr[i].i = in_attr[i].i;
|
|
break;
|
|
case Tag_ABI_enum_size:
|
|
if (in_attr[i].i != AEABI_enum_unused)
|
|
{
|
|
if (out_attr[i].i == AEABI_enum_unused
|
|
|| out_attr[i].i == AEABI_enum_forced_wide)
|
|
{
|
|
/* The existing object is compatible with anything.
|
|
Use whatever requirements the new object has. */
|
|
out_attr[i].i = in_attr[i].i;
|
|
}
|
|
else if (in_attr[i].i != AEABI_enum_forced_wide
|
|
&& out_attr[i].i != in_attr[i].i
|
|
&& !elf_arm_tdata (obfd)->no_enum_size_warning)
|
|
{
|
|
static const char *aeabi_enum_names[] =
|
|
{ "", "variable-size", "32-bit", "" };
|
|
const char *in_name =
|
|
in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
|
|
? aeabi_enum_names[in_attr[i].i]
|
|
: "<unknown>";
|
|
const char *out_name =
|
|
out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
|
|
? aeabi_enum_names[out_attr[i].i]
|
|
: "<unknown>";
|
|
_bfd_error_handler
|
|
(_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
|
|
ibfd, in_name, out_name);
|
|
}
|
|
}
|
|
break;
|
|
case Tag_ABI_VFP_args:
|
|
/* Aready done. */
|
|
break;
|
|
case Tag_ABI_WMMX_args:
|
|
if (in_attr[i].i != out_attr[i].i)
|
|
{
|
|
_bfd_error_handler
|
|
(_("error: %B uses iWMMXt register arguments, %B does not"),
|
|
ibfd, obfd);
|
|
result = FALSE;
|
|
}
|
|
break;
|
|
case Tag_compatibility:
|
|
/* Merged in target-independent code. */
|
|
break;
|
|
case Tag_ABI_HardFP_use:
|
|
/* This is handled along with Tag_FP_arch. */
|
|
break;
|
|
case Tag_ABI_FP_16bit_format:
|
|
if (in_attr[i].i != 0 && out_attr[i].i != 0)
|
|
{
|
|
if (in_attr[i].i != out_attr[i].i)
|
|
{
|
|
_bfd_error_handler
|
|
(_("error: fp16 format mismatch between %B and %B"),
|
|
ibfd, obfd);
|
|
result = FALSE;
|
|
}
|
|
}
|
|
if (in_attr[i].i != 0)
|
|
out_attr[i].i = in_attr[i].i;
|
|
break;
|
|
|
|
case Tag_DIV_use:
|
|
/* A value of zero on input means that the divide instruction may
|
|
be used if available in the base architecture as specified via
|
|
Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
|
|
the user did not want divide instructions. A value of 2
|
|
explicitly means that divide instructions were allowed in ARM
|
|
and Thumb state. */
|
|
if (in_attr[i].i == out_attr[i].i)
|
|
/* Do nothing. */ ;
|
|
else if (elf32_arm_attributes_forbid_div (in_attr)
|
|
&& !elf32_arm_attributes_accept_div (out_attr))
|
|
out_attr[i].i = 1;
|
|
else if (elf32_arm_attributes_forbid_div (out_attr)
|
|
&& elf32_arm_attributes_accept_div (in_attr))
|
|
out_attr[i].i = in_attr[i].i;
|
|
else if (in_attr[i].i == 2)
|
|
out_attr[i].i = in_attr[i].i;
|
|
break;
|
|
|
|
case Tag_MPextension_use_legacy:
|
|
/* We don't output objects with Tag_MPextension_use_legacy - we
|
|
move the value to Tag_MPextension_use. */
|
|
if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
|
|
{
|
|
if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
|
|
{
|
|
_bfd_error_handler
|
|
(_("%B has has both the current and legacy "
|
|
"Tag_MPextension_use attributes"),
|
|
ibfd);
|
|
result = FALSE;
|
|
}
|
|
}
|
|
|
|
if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
|
|
out_attr[Tag_MPextension_use] = in_attr[i];
|
|
|
|
break;
|
|
|
|
case Tag_nodefaults:
|
|
/* This tag is set if it exists, but the value is unused (and is
|
|
typically zero). We don't actually need to do anything here -
|
|
the merge happens automatically when the type flags are merged
|
|
below. */
|
|
break;
|
|
case Tag_also_compatible_with:
|
|
/* Already done in Tag_CPU_arch. */
|
|
break;
|
|
case Tag_conformance:
|
|
/* Keep the attribute if it matches. Throw it away otherwise.
|
|
No attribute means no claim to conform. */
|
|
if (!in_attr[i].s || !out_attr[i].s
|
|
|| strcmp (in_attr[i].s, out_attr[i].s) != 0)
|
|
out_attr[i].s = NULL;
|
|
break;
|
|
|
|
default:
|
|
result
|
|
= result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
|
|
}
|
|
|
|
/* If out_attr was copied from in_attr then it won't have a type yet. */
|
|
if (in_attr[i].type && !out_attr[i].type)
|
|
out_attr[i].type = in_attr[i].type;
|
|
}
|
|
|
|
/* Merge Tag_compatibility attributes and any common GNU ones. */
|
|
if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
|
|
return FALSE;
|
|
|
|
/* Check for any attributes not known on ARM. */
|
|
result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Return TRUE if the two EABI versions are incompatible. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_versions_compatible (unsigned iver, unsigned over)
|
|
{
|
|
/* v4 and v5 are the same spec before and after it was released,
|
|
so allow mixing them. */
|
|
if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
|
|
|| (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
|
|
return TRUE;
|
|
|
|
return (iver == over);
|
|
}
|
|
|
|
/* Merge backend specific data from an object file to the output
|
|
object file when linking. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
|
|
|
|
/* Display the flags field. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
|
|
{
|
|
FILE * file = (FILE *) ptr;
|
|
unsigned long flags;
|
|
|
|
BFD_ASSERT (abfd != NULL && ptr != NULL);
|
|
|
|
/* Print normal ELF private data. */
|
|
_bfd_elf_print_private_bfd_data (abfd, ptr);
|
|
|
|
flags = elf_elfheader (abfd)->e_flags;
|
|
/* Ignore init flag - it may not be set, despite the flags field
|
|
containing valid data. */
|
|
|
|
/* xgettext:c-format */
|
|
fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
|
|
|
|
switch (EF_ARM_EABI_VERSION (flags))
|
|
{
|
|
case EF_ARM_EABI_UNKNOWN:
|
|
/* The following flag bits are GNU extensions and not part of the
|
|
official ARM ELF extended ABI. Hence they are only decoded if
|
|
the EABI version is not set. */
|
|
if (flags & EF_ARM_INTERWORK)
|
|
fprintf (file, _(" [interworking enabled]"));
|
|
|
|
if (flags & EF_ARM_APCS_26)
|
|
fprintf (file, " [APCS-26]");
|
|
else
|
|
fprintf (file, " [APCS-32]");
|
|
|
|
if (flags & EF_ARM_VFP_FLOAT)
|
|
fprintf (file, _(" [VFP float format]"));
|
|
else if (flags & EF_ARM_MAVERICK_FLOAT)
|
|
fprintf (file, _(" [Maverick float format]"));
|
|
else
|
|
fprintf (file, _(" [FPA float format]"));
|
|
|
|
if (flags & EF_ARM_APCS_FLOAT)
|
|
fprintf (file, _(" [floats passed in float registers]"));
|
|
|
|
if (flags & EF_ARM_PIC)
|
|
fprintf (file, _(" [position independent]"));
|
|
|
|
if (flags & EF_ARM_NEW_ABI)
|
|
fprintf (file, _(" [new ABI]"));
|
|
|
|
if (flags & EF_ARM_OLD_ABI)
|
|
fprintf (file, _(" [old ABI]"));
|
|
|
|
if (flags & EF_ARM_SOFT_FLOAT)
|
|
fprintf (file, _(" [software FP]"));
|
|
|
|
flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
|
|
| EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
|
|
| EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
|
|
| EF_ARM_MAVERICK_FLOAT);
|
|
break;
|
|
|
|
case EF_ARM_EABI_VER1:
|
|
fprintf (file, _(" [Version1 EABI]"));
|
|
|
|
if (flags & EF_ARM_SYMSARESORTED)
|
|
fprintf (file, _(" [sorted symbol table]"));
|
|
else
|
|
fprintf (file, _(" [unsorted symbol table]"));
|
|
|
|
flags &= ~ EF_ARM_SYMSARESORTED;
|
|
break;
|
|
|
|
case EF_ARM_EABI_VER2:
|
|
fprintf (file, _(" [Version2 EABI]"));
|
|
|
|
if (flags & EF_ARM_SYMSARESORTED)
|
|
fprintf (file, _(" [sorted symbol table]"));
|
|
else
|
|
fprintf (file, _(" [unsorted symbol table]"));
|
|
|
|
if (flags & EF_ARM_DYNSYMSUSESEGIDX)
|
|
fprintf (file, _(" [dynamic symbols use segment index]"));
|
|
|
|
if (flags & EF_ARM_MAPSYMSFIRST)
|
|
fprintf (file, _(" [mapping symbols precede others]"));
|
|
|
|
flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
|
|
| EF_ARM_MAPSYMSFIRST);
|
|
break;
|
|
|
|
case EF_ARM_EABI_VER3:
|
|
fprintf (file, _(" [Version3 EABI]"));
|
|
break;
|
|
|
|
case EF_ARM_EABI_VER4:
|
|
fprintf (file, _(" [Version4 EABI]"));
|
|
goto eabi;
|
|
|
|
case EF_ARM_EABI_VER5:
|
|
fprintf (file, _(" [Version5 EABI]"));
|
|
|
|
if (flags & EF_ARM_ABI_FLOAT_SOFT)
|
|
fprintf (file, _(" [soft-float ABI]"));
|
|
|
|
if (flags & EF_ARM_ABI_FLOAT_HARD)
|
|
fprintf (file, _(" [hard-float ABI]"));
|
|
|
|
flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
|
|
|
|
eabi:
|
|
if (flags & EF_ARM_BE8)
|
|
fprintf (file, _(" [BE8]"));
|
|
|
|
if (flags & EF_ARM_LE8)
|
|
fprintf (file, _(" [LE8]"));
|
|
|
|
flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
|
|
break;
|
|
|
|
default:
|
|
fprintf (file, _(" <EABI version unrecognised>"));
|
|
break;
|
|
}
|
|
|
|
flags &= ~ EF_ARM_EABIMASK;
|
|
|
|
if (flags & EF_ARM_RELEXEC)
|
|
fprintf (file, _(" [relocatable executable]"));
|
|
|
|
if (flags & EF_ARM_HASENTRY)
|
|
fprintf (file, _(" [has entry point]"));
|
|
|
|
flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
|
|
|
|
if (flags)
|
|
fprintf (file, _("<Unrecognised flag bits set>"));
|
|
|
|
fputc ('\n', file);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static int
|
|
elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
|
|
{
|
|
switch (ELF_ST_TYPE (elf_sym->st_info))
|
|
{
|
|
case STT_ARM_TFUNC:
|
|
return ELF_ST_TYPE (elf_sym->st_info);
|
|
|
|
case STT_ARM_16BIT:
|
|
/* If the symbol is not an object, return the STT_ARM_16BIT flag.
|
|
This allows us to distinguish between data used by Thumb instructions
|
|
and non-data (which is probably code) inside Thumb regions of an
|
|
executable. */
|
|
if (type != STT_OBJECT && type != STT_TLS)
|
|
return ELF_ST_TYPE (elf_sym->st_info);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
static asection *
|
|
elf32_arm_gc_mark_hook (asection *sec,
|
|
struct bfd_link_info *info,
|
|
Elf_Internal_Rela *rel,
|
|
struct elf_link_hash_entry *h,
|
|
Elf_Internal_Sym *sym)
|
|
{
|
|
if (h != NULL)
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
|
{
|
|
case R_ARM_GNU_VTINHERIT:
|
|
case R_ARM_GNU_VTENTRY:
|
|
return NULL;
|
|
}
|
|
|
|
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
|
|
}
|
|
|
|
/* Update the got entry reference counts for the section being removed. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_gc_sweep_hook (bfd * abfd,
|
|
struct bfd_link_info * info,
|
|
asection * sec,
|
|
const Elf_Internal_Rela * relocs)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **sym_hashes;
|
|
bfd_signed_vma *local_got_refcounts;
|
|
const Elf_Internal_Rela *rel, *relend;
|
|
struct elf32_arm_link_hash_table * globals;
|
|
|
|
if (info->relocatable)
|
|
return TRUE;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
if (globals == NULL)
|
|
return FALSE;
|
|
|
|
elf_section_data (sec)->local_dynrel = NULL;
|
|
|
|
symtab_hdr = & elf_symtab_hdr (abfd);
|
|
sym_hashes = elf_sym_hashes (abfd);
|
|
local_got_refcounts = elf_local_got_refcounts (abfd);
|
|
|
|
check_use_blx (globals);
|
|
|
|
relend = relocs + sec->reloc_count;
|
|
for (rel = relocs; rel < relend; rel++)
|
|
{
|
|
unsigned long r_symndx;
|
|
struct elf_link_hash_entry *h = NULL;
|
|
struct elf32_arm_link_hash_entry *eh;
|
|
int r_type;
|
|
bfd_boolean call_reloc_p;
|
|
bfd_boolean may_become_dynamic_p;
|
|
bfd_boolean may_need_local_target_p;
|
|
union gotplt_union *root_plt;
|
|
struct arm_plt_info *arm_plt;
|
|
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
if (r_symndx >= symtab_hdr->sh_info)
|
|
{
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
|
while (h->root.type == bfd_link_hash_indirect
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
}
|
|
eh = (struct elf32_arm_link_hash_entry *) h;
|
|
|
|
call_reloc_p = FALSE;
|
|
may_become_dynamic_p = FALSE;
|
|
may_need_local_target_p = FALSE;
|
|
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
r_type = arm_real_reloc_type (globals, r_type);
|
|
switch (r_type)
|
|
{
|
|
case R_ARM_GOT32:
|
|
case R_ARM_GOT_PREL:
|
|
case R_ARM_TLS_GD32:
|
|
case R_ARM_TLS_IE32:
|
|
if (h != NULL)
|
|
{
|
|
if (h->got.refcount > 0)
|
|
h->got.refcount -= 1;
|
|
}
|
|
else if (local_got_refcounts != NULL)
|
|
{
|
|
if (local_got_refcounts[r_symndx] > 0)
|
|
local_got_refcounts[r_symndx] -= 1;
|
|
}
|
|
break;
|
|
|
|
case R_ARM_TLS_LDM32:
|
|
globals->tls_ldm_got.refcount -= 1;
|
|
break;
|
|
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
case R_ARM_CALL:
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_PREL31:
|
|
case R_ARM_THM_CALL:
|
|
case R_ARM_THM_JUMP24:
|
|
case R_ARM_THM_JUMP19:
|
|
call_reloc_p = TRUE;
|
|
may_need_local_target_p = TRUE;
|
|
break;
|
|
|
|
case R_ARM_ABS12:
|
|
if (!globals->vxworks_p)
|
|
{
|
|
may_need_local_target_p = TRUE;
|
|
break;
|
|
}
|
|
/* Fall through. */
|
|
case R_ARM_ABS32:
|
|
case R_ARM_ABS32_NOI:
|
|
case R_ARM_REL32:
|
|
case R_ARM_REL32_NOI:
|
|
case R_ARM_MOVW_ABS_NC:
|
|
case R_ARM_MOVT_ABS:
|
|
case R_ARM_MOVW_PREL_NC:
|
|
case R_ARM_MOVT_PREL:
|
|
case R_ARM_THM_MOVW_ABS_NC:
|
|
case R_ARM_THM_MOVT_ABS:
|
|
case R_ARM_THM_MOVW_PREL_NC:
|
|
case R_ARM_THM_MOVT_PREL:
|
|
/* Should the interworking branches be here also? */
|
|
if ((info->shared || globals->root.is_relocatable_executable)
|
|
&& (sec->flags & SEC_ALLOC) != 0)
|
|
{
|
|
if (h == NULL
|
|
&& (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
|
|
{
|
|
call_reloc_p = TRUE;
|
|
may_need_local_target_p = TRUE;
|
|
}
|
|
else
|
|
may_become_dynamic_p = TRUE;
|
|
}
|
|
else
|
|
may_need_local_target_p = TRUE;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (may_need_local_target_p
|
|
&& elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
|
|
{
|
|
/* If PLT refcount book-keeping is wrong and too low, we'll
|
|
see a zero value (going to -1) for the root PLT reference
|
|
count. */
|
|
if (root_plt->refcount >= 0)
|
|
{
|
|
BFD_ASSERT (root_plt->refcount != 0);
|
|
root_plt->refcount -= 1;
|
|
}
|
|
else
|
|
/* A value of -1 means the symbol has become local, forced
|
|
or seeing a hidden definition. Any other negative value
|
|
is an error. */
|
|
BFD_ASSERT (root_plt->refcount == -1);
|
|
|
|
if (!call_reloc_p)
|
|
arm_plt->noncall_refcount--;
|
|
|
|
if (r_type == R_ARM_THM_CALL)
|
|
arm_plt->maybe_thumb_refcount--;
|
|
|
|
if (r_type == R_ARM_THM_JUMP24
|
|
|| r_type == R_ARM_THM_JUMP19)
|
|
arm_plt->thumb_refcount--;
|
|
}
|
|
|
|
if (may_become_dynamic_p)
|
|
{
|
|
struct elf_dyn_relocs **pp;
|
|
struct elf_dyn_relocs *p;
|
|
|
|
if (h != NULL)
|
|
pp = &(eh->dyn_relocs);
|
|
else
|
|
{
|
|
Elf_Internal_Sym *isym;
|
|
|
|
isym = bfd_sym_from_r_symndx (&globals->sym_cache,
|
|
abfd, r_symndx);
|
|
if (isym == NULL)
|
|
return FALSE;
|
|
pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
|
|
if (pp == NULL)
|
|
return FALSE;
|
|
}
|
|
for (; (p = *pp) != NULL; pp = &p->next)
|
|
if (p->sec == sec)
|
|
{
|
|
/* Everything must go for SEC. */
|
|
*pp = p->next;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Look through the relocs for a section during the first phase. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
|
|
asection *sec, const Elf_Internal_Rela *relocs)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **sym_hashes;
|
|
const Elf_Internal_Rela *rel;
|
|
const Elf_Internal_Rela *rel_end;
|
|
bfd *dynobj;
|
|
asection *sreloc;
|
|
struct elf32_arm_link_hash_table *htab;
|
|
bfd_boolean call_reloc_p;
|
|
bfd_boolean may_become_dynamic_p;
|
|
bfd_boolean may_need_local_target_p;
|
|
unsigned long nsyms;
|
|
|
|
if (info->relocatable)
|
|
return TRUE;
|
|
|
|
BFD_ASSERT (is_arm_elf (abfd));
|
|
|
|
htab = elf32_arm_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
sreloc = NULL;
|
|
|
|
/* Create dynamic sections for relocatable executables so that we can
|
|
copy relocations. */
|
|
if (htab->root.is_relocatable_executable
|
|
&& ! htab->root.dynamic_sections_created)
|
|
{
|
|
if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
|
|
return FALSE;
|
|
}
|
|
|
|
if (htab->root.dynobj == NULL)
|
|
htab->root.dynobj = abfd;
|
|
if (!create_ifunc_sections (info))
|
|
return FALSE;
|
|
|
|
dynobj = htab->root.dynobj;
|
|
|
|
symtab_hdr = & elf_symtab_hdr (abfd);
|
|
sym_hashes = elf_sym_hashes (abfd);
|
|
nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
|
|
|
|
rel_end = relocs + sec->reloc_count;
|
|
for (rel = relocs; rel < rel_end; rel++)
|
|
{
|
|
Elf_Internal_Sym *isym;
|
|
struct elf_link_hash_entry *h;
|
|
struct elf32_arm_link_hash_entry *eh;
|
|
unsigned long r_symndx;
|
|
int r_type;
|
|
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
r_type = arm_real_reloc_type (htab, r_type);
|
|
|
|
if (r_symndx >= nsyms
|
|
/* PR 9934: It is possible to have relocations that do not
|
|
refer to symbols, thus it is also possible to have an
|
|
object file containing relocations but no symbol table. */
|
|
&& (r_symndx > STN_UNDEF || nsyms > 0))
|
|
{
|
|
(*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
|
|
r_symndx);
|
|
return FALSE;
|
|
}
|
|
|
|
h = NULL;
|
|
isym = NULL;
|
|
if (nsyms > 0)
|
|
{
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
/* A local symbol. */
|
|
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
|
|
abfd, r_symndx);
|
|
if (isym == NULL)
|
|
return FALSE;
|
|
}
|
|
else
|
|
{
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
|
while (h->root.type == bfd_link_hash_indirect
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
/* PR15323, ref flags aren't set for references in the
|
|
same object. */
|
|
h->root.non_ir_ref = 1;
|
|
}
|
|
}
|
|
|
|
eh = (struct elf32_arm_link_hash_entry *) h;
|
|
|
|
call_reloc_p = FALSE;
|
|
may_become_dynamic_p = FALSE;
|
|
may_need_local_target_p = FALSE;
|
|
|
|
/* Could be done earlier, if h were already available. */
|
|
r_type = elf32_arm_tls_transition (info, r_type, h);
|
|
switch (r_type)
|
|
{
|
|
case R_ARM_GOT32:
|
|
case R_ARM_GOT_PREL:
|
|
case R_ARM_TLS_GD32:
|
|
case R_ARM_TLS_IE32:
|
|
case R_ARM_TLS_GOTDESC:
|
|
case R_ARM_TLS_DESCSEQ:
|
|
case R_ARM_THM_TLS_DESCSEQ:
|
|
case R_ARM_TLS_CALL:
|
|
case R_ARM_THM_TLS_CALL:
|
|
/* This symbol requires a global offset table entry. */
|
|
{
|
|
int tls_type, old_tls_type;
|
|
|
|
switch (r_type)
|
|
{
|
|
case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
|
|
|
|
case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
|
|
|
|
case R_ARM_TLS_GOTDESC:
|
|
case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
|
|
case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
|
|
tls_type = GOT_TLS_GDESC; break;
|
|
|
|
default: tls_type = GOT_NORMAL; break;
|
|
}
|
|
|
|
if (h != NULL)
|
|
{
|
|
h->got.refcount++;
|
|
old_tls_type = elf32_arm_hash_entry (h)->tls_type;
|
|
}
|
|
else
|
|
{
|
|
/* This is a global offset table entry for a local symbol. */
|
|
if (!elf32_arm_allocate_local_sym_info (abfd))
|
|
return FALSE;
|
|
elf_local_got_refcounts (abfd)[r_symndx] += 1;
|
|
old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
|
|
}
|
|
|
|
/* If a variable is accessed with both tls methods, two
|
|
slots may be created. */
|
|
if (GOT_TLS_GD_ANY_P (old_tls_type)
|
|
&& GOT_TLS_GD_ANY_P (tls_type))
|
|
tls_type |= old_tls_type;
|
|
|
|
/* We will already have issued an error message if there
|
|
is a TLS/non-TLS mismatch, based on the symbol
|
|
type. So just combine any TLS types needed. */
|
|
if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
|
|
&& tls_type != GOT_NORMAL)
|
|
tls_type |= old_tls_type;
|
|
|
|
/* If the symbol is accessed in both IE and GDESC
|
|
method, we're able to relax. Turn off the GDESC flag,
|
|
without messing up with any other kind of tls types
|
|
that may be involved */
|
|
if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
|
|
tls_type &= ~GOT_TLS_GDESC;
|
|
|
|
if (old_tls_type != tls_type)
|
|
{
|
|
if (h != NULL)
|
|
elf32_arm_hash_entry (h)->tls_type = tls_type;
|
|
else
|
|
elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
|
|
}
|
|
}
|
|
/* Fall through. */
|
|
|
|
case R_ARM_TLS_LDM32:
|
|
if (r_type == R_ARM_TLS_LDM32)
|
|
htab->tls_ldm_got.refcount++;
|
|
/* Fall through. */
|
|
|
|
case R_ARM_GOTOFF32:
|
|
case R_ARM_GOTPC:
|
|
if (htab->root.sgot == NULL
|
|
&& !create_got_section (htab->root.dynobj, info))
|
|
return FALSE;
|
|
break;
|
|
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
case R_ARM_CALL:
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_PREL31:
|
|
case R_ARM_THM_CALL:
|
|
case R_ARM_THM_JUMP24:
|
|
case R_ARM_THM_JUMP19:
|
|
call_reloc_p = TRUE;
|
|
may_need_local_target_p = TRUE;
|
|
break;
|
|
|
|
case R_ARM_ABS12:
|
|
/* VxWorks uses dynamic R_ARM_ABS12 relocations for
|
|
ldr __GOTT_INDEX__ offsets. */
|
|
if (!htab->vxworks_p)
|
|
{
|
|
may_need_local_target_p = TRUE;
|
|
break;
|
|
}
|
|
/* Fall through. */
|
|
|
|
case R_ARM_MOVW_ABS_NC:
|
|
case R_ARM_MOVT_ABS:
|
|
case R_ARM_THM_MOVW_ABS_NC:
|
|
case R_ARM_THM_MOVT_ABS:
|
|
if (info->shared)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
|
|
abfd, elf32_arm_howto_table_1[r_type].name,
|
|
(h) ? h->root.root.string : "a local symbol");
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Fall through. */
|
|
case R_ARM_ABS32:
|
|
case R_ARM_ABS32_NOI:
|
|
case R_ARM_REL32:
|
|
case R_ARM_REL32_NOI:
|
|
case R_ARM_MOVW_PREL_NC:
|
|
case R_ARM_MOVT_PREL:
|
|
case R_ARM_THM_MOVW_PREL_NC:
|
|
case R_ARM_THM_MOVT_PREL:
|
|
|
|
/* Should the interworking branches be listed here? */
|
|
if ((info->shared || htab->root.is_relocatable_executable)
|
|
&& (sec->flags & SEC_ALLOC) != 0)
|
|
{
|
|
if (h == NULL
|
|
&& (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
|
|
{
|
|
/* In shared libraries and relocatable executables,
|
|
we treat local relative references as calls;
|
|
see the related SYMBOL_CALLS_LOCAL code in
|
|
allocate_dynrelocs. */
|
|
call_reloc_p = TRUE;
|
|
may_need_local_target_p = TRUE;
|
|
}
|
|
else
|
|
/* We are creating a shared library or relocatable
|
|
executable, and this is a reloc against a global symbol,
|
|
or a non-PC-relative reloc against a local symbol.
|
|
We may need to copy the reloc into the output. */
|
|
may_become_dynamic_p = TRUE;
|
|
}
|
|
else
|
|
may_need_local_target_p = TRUE;
|
|
break;
|
|
|
|
/* This relocation describes the C++ object vtable hierarchy.
|
|
Reconstruct it for later use during GC. */
|
|
case R_ARM_GNU_VTINHERIT:
|
|
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
|
return FALSE;
|
|
break;
|
|
|
|
/* This relocation describes which C++ vtable entries are actually
|
|
used. Record for later use during GC. */
|
|
case R_ARM_GNU_VTENTRY:
|
|
BFD_ASSERT (h != NULL);
|
|
if (h != NULL
|
|
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
|
|
return FALSE;
|
|
break;
|
|
}
|
|
|
|
if (h != NULL)
|
|
{
|
|
if (call_reloc_p)
|
|
/* We may need a .plt entry if the function this reloc
|
|
refers to is in a different object, regardless of the
|
|
symbol's type. We can't tell for sure yet, because
|
|
something later might force the symbol local. */
|
|
h->needs_plt = 1;
|
|
else if (may_need_local_target_p)
|
|
/* If this reloc is in a read-only section, we might
|
|
need a copy reloc. We can't check reliably at this
|
|
stage whether the section is read-only, as input
|
|
sections have not yet been mapped to output sections.
|
|
Tentatively set the flag for now, and correct in
|
|
adjust_dynamic_symbol. */
|
|
h->non_got_ref = 1;
|
|
}
|
|
|
|
if (may_need_local_target_p
|
|
&& (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
|
|
{
|
|
union gotplt_union *root_plt;
|
|
struct arm_plt_info *arm_plt;
|
|
struct arm_local_iplt_info *local_iplt;
|
|
|
|
if (h != NULL)
|
|
{
|
|
root_plt = &h->plt;
|
|
arm_plt = &eh->plt;
|
|
}
|
|
else
|
|
{
|
|
local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
|
|
if (local_iplt == NULL)
|
|
return FALSE;
|
|
root_plt = &local_iplt->root;
|
|
arm_plt = &local_iplt->arm;
|
|
}
|
|
|
|
/* If the symbol is a function that doesn't bind locally,
|
|
this relocation will need a PLT entry. */
|
|
if (root_plt->refcount != -1)
|
|
root_plt->refcount += 1;
|
|
|
|
if (!call_reloc_p)
|
|
arm_plt->noncall_refcount++;
|
|
|
|
/* It's too early to use htab->use_blx here, so we have to
|
|
record possible blx references separately from
|
|
relocs that definitely need a thumb stub. */
|
|
|
|
if (r_type == R_ARM_THM_CALL)
|
|
arm_plt->maybe_thumb_refcount += 1;
|
|
|
|
if (r_type == R_ARM_THM_JUMP24
|
|
|| r_type == R_ARM_THM_JUMP19)
|
|
arm_plt->thumb_refcount += 1;
|
|
}
|
|
|
|
if (may_become_dynamic_p)
|
|
{
|
|
struct elf_dyn_relocs *p, **head;
|
|
|
|
/* Create a reloc section in dynobj. */
|
|
if (sreloc == NULL)
|
|
{
|
|
sreloc = _bfd_elf_make_dynamic_reloc_section
|
|
(sec, dynobj, 2, abfd, ! htab->use_rel);
|
|
|
|
if (sreloc == NULL)
|
|
return FALSE;
|
|
|
|
/* BPABI objects never have dynamic relocations mapped. */
|
|
if (htab->symbian_p)
|
|
{
|
|
flagword flags;
|
|
|
|
flags = bfd_get_section_flags (dynobj, sreloc);
|
|
flags &= ~(SEC_LOAD | SEC_ALLOC);
|
|
bfd_set_section_flags (dynobj, sreloc, flags);
|
|
}
|
|
}
|
|
|
|
/* If this is a global symbol, count the number of
|
|
relocations we need for this symbol. */
|
|
if (h != NULL)
|
|
head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
|
|
else
|
|
{
|
|
head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
|
|
if (head == NULL)
|
|
return FALSE;
|
|
}
|
|
|
|
p = *head;
|
|
if (p == NULL || p->sec != sec)
|
|
{
|
|
bfd_size_type amt = sizeof *p;
|
|
|
|
p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
|
|
if (p == NULL)
|
|
return FALSE;
|
|
p->next = *head;
|
|
*head = p;
|
|
p->sec = sec;
|
|
p->count = 0;
|
|
p->pc_count = 0;
|
|
}
|
|
|
|
if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
|
|
p->pc_count += 1;
|
|
p->count += 1;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Unwinding tables are not referenced directly. This pass marks them as
|
|
required if the corresponding code section is marked. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
|
|
elf_gc_mark_hook_fn gc_mark_hook)
|
|
{
|
|
bfd *sub;
|
|
Elf_Internal_Shdr **elf_shdrp;
|
|
bfd_boolean again;
|
|
|
|
_bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
|
|
|
|
/* Marking EH data may cause additional code sections to be marked,
|
|
requiring multiple passes. */
|
|
again = TRUE;
|
|
while (again)
|
|
{
|
|
again = FALSE;
|
|
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
|
|
{
|
|
asection *o;
|
|
|
|
if (! is_arm_elf (sub))
|
|
continue;
|
|
|
|
elf_shdrp = elf_elfsections (sub);
|
|
for (o = sub->sections; o != NULL; o = o->next)
|
|
{
|
|
Elf_Internal_Shdr *hdr;
|
|
|
|
hdr = &elf_section_data (o)->this_hdr;
|
|
if (hdr->sh_type == SHT_ARM_EXIDX
|
|
&& hdr->sh_link
|
|
&& hdr->sh_link < elf_numsections (sub)
|
|
&& !o->gc_mark
|
|
&& elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
|
|
{
|
|
again = TRUE;
|
|
if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Treat mapping symbols as special target symbols. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
|
|
{
|
|
return bfd_is_arm_special_symbol_name (sym->name,
|
|
BFD_ARM_SPECIAL_SYM_TYPE_ANY);
|
|
}
|
|
|
|
/* This is a copy of elf_find_function() from elf.c except that
|
|
ARM mapping symbols are ignored when looking for function names
|
|
and STT_ARM_TFUNC is considered to a function type. */
|
|
|
|
static bfd_boolean
|
|
arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
|
|
asection * section,
|
|
asymbol ** symbols,
|
|
bfd_vma offset,
|
|
const char ** filename_ptr,
|
|
const char ** functionname_ptr)
|
|
{
|
|
const char * filename = NULL;
|
|
asymbol * func = NULL;
|
|
bfd_vma low_func = 0;
|
|
asymbol ** p;
|
|
|
|
for (p = symbols; *p != NULL; p++)
|
|
{
|
|
elf_symbol_type *q;
|
|
|
|
q = (elf_symbol_type *) *p;
|
|
|
|
switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
|
|
{
|
|
default:
|
|
break;
|
|
case STT_FILE:
|
|
filename = bfd_asymbol_name (&q->symbol);
|
|
break;
|
|
case STT_FUNC:
|
|
case STT_ARM_TFUNC:
|
|
case STT_NOTYPE:
|
|
/* Skip mapping symbols. */
|
|
if ((q->symbol.flags & BSF_LOCAL)
|
|
&& bfd_is_arm_special_symbol_name (q->symbol.name,
|
|
BFD_ARM_SPECIAL_SYM_TYPE_ANY))
|
|
continue;
|
|
/* Fall through. */
|
|
if (bfd_get_section (&q->symbol) == section
|
|
&& q->symbol.value >= low_func
|
|
&& q->symbol.value <= offset)
|
|
{
|
|
func = (asymbol *) q;
|
|
low_func = q->symbol.value;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (func == NULL)
|
|
return FALSE;
|
|
|
|
if (filename_ptr)
|
|
*filename_ptr = filename;
|
|
if (functionname_ptr)
|
|
*functionname_ptr = bfd_asymbol_name (func);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* Find the nearest line to a particular section and offset, for error
|
|
reporting. This code is a duplicate of the code in elf.c, except
|
|
that it uses arm_elf_find_function. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_find_nearest_line (bfd * abfd,
|
|
asection * section,
|
|
asymbol ** symbols,
|
|
bfd_vma offset,
|
|
const char ** filename_ptr,
|
|
const char ** functionname_ptr,
|
|
unsigned int * line_ptr)
|
|
{
|
|
bfd_boolean found = FALSE;
|
|
|
|
/* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
|
|
|
|
if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
|
|
section, symbols, offset,
|
|
filename_ptr, functionname_ptr,
|
|
line_ptr, NULL, 0,
|
|
& elf_tdata (abfd)->dwarf2_find_line_info))
|
|
{
|
|
if (!*functionname_ptr)
|
|
arm_elf_find_function (abfd, section, symbols, offset,
|
|
*filename_ptr ? NULL : filename_ptr,
|
|
functionname_ptr);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
|
|
& found, filename_ptr,
|
|
functionname_ptr, line_ptr,
|
|
& elf_tdata (abfd)->line_info))
|
|
return FALSE;
|
|
|
|
if (found && (*functionname_ptr || *line_ptr))
|
|
return TRUE;
|
|
|
|
if (symbols == NULL)
|
|
return FALSE;
|
|
|
|
if (! arm_elf_find_function (abfd, section, symbols, offset,
|
|
filename_ptr, functionname_ptr))
|
|
return FALSE;
|
|
|
|
*line_ptr = 0;
|
|
return TRUE;
|
|
}
|
|
|
|
static bfd_boolean
|
|
elf32_arm_find_inliner_info (bfd * abfd,
|
|
const char ** filename_ptr,
|
|
const char ** functionname_ptr,
|
|
unsigned int * line_ptr)
|
|
{
|
|
bfd_boolean found;
|
|
found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
|
|
functionname_ptr, line_ptr,
|
|
& elf_tdata (abfd)->dwarf2_find_line_info);
|
|
return found;
|
|
}
|
|
|
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
|
regular object. The current definition is in some section of the
|
|
dynamic object, but we're not including those sections. We have to
|
|
change the definition to something the rest of the link can
|
|
understand. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
|
|
struct elf_link_hash_entry * h)
|
|
{
|
|
bfd * dynobj;
|
|
asection * s;
|
|
struct elf32_arm_link_hash_entry * eh;
|
|
struct elf32_arm_link_hash_table *globals;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
if (globals == NULL)
|
|
return FALSE;
|
|
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
|
|
/* Make sure we know what is going on here. */
|
|
BFD_ASSERT (dynobj != NULL
|
|
&& (h->needs_plt
|
|
|| h->type == STT_GNU_IFUNC
|
|
|| h->u.weakdef != NULL
|
|
|| (h->def_dynamic
|
|
&& h->ref_regular
|
|
&& !h->def_regular)));
|
|
|
|
eh = (struct elf32_arm_link_hash_entry *) h;
|
|
|
|
/* If this is a function, put it in the procedure linkage table. We
|
|
will fill in the contents of the procedure linkage table later,
|
|
when we know the address of the .got section. */
|
|
if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
|
|
{
|
|
/* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
|
|
symbol binds locally. */
|
|
if (h->plt.refcount <= 0
|
|
|| (h->type != STT_GNU_IFUNC
|
|
&& (SYMBOL_CALLS_LOCAL (info, h)
|
|
|| (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
|
&& h->root.type == bfd_link_hash_undefweak))))
|
|
{
|
|
/* This case can occur if we saw a PLT32 reloc in an input
|
|
file, but the symbol was never referred to by a dynamic
|
|
object, or if all references were garbage collected. In
|
|
such a case, we don't actually need to build a procedure
|
|
linkage table, and we can just do a PC24 reloc instead. */
|
|
h->plt.offset = (bfd_vma) -1;
|
|
eh->plt.thumb_refcount = 0;
|
|
eh->plt.maybe_thumb_refcount = 0;
|
|
eh->plt.noncall_refcount = 0;
|
|
h->needs_plt = 0;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
else
|
|
{
|
|
/* It's possible that we incorrectly decided a .plt reloc was
|
|
needed for an R_ARM_PC24 or similar reloc to a non-function sym
|
|
in check_relocs. We can't decide accurately between function
|
|
and non-function syms in check-relocs; Objects loaded later in
|
|
the link may change h->type. So fix it now. */
|
|
h->plt.offset = (bfd_vma) -1;
|
|
eh->plt.thumb_refcount = 0;
|
|
eh->plt.maybe_thumb_refcount = 0;
|
|
eh->plt.noncall_refcount = 0;
|
|
}
|
|
|
|
/* If this is a weak symbol, and there is a real definition, the
|
|
processor independent code will have arranged for us to see the
|
|
real definition first, and we can just use the same value. */
|
|
if (h->u.weakdef != NULL)
|
|
{
|
|
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
|
|
|| h->u.weakdef->root.type == bfd_link_hash_defweak);
|
|
h->root.u.def.section = h->u.weakdef->root.u.def.section;
|
|
h->root.u.def.value = h->u.weakdef->root.u.def.value;
|
|
return TRUE;
|
|
}
|
|
|
|
/* If there are no non-GOT references, we do not need a copy
|
|
relocation. */
|
|
if (!h->non_got_ref)
|
|
return TRUE;
|
|
|
|
/* This is a reference to a symbol defined by a dynamic object which
|
|
is not a function. */
|
|
|
|
/* If we are creating a shared library, we must presume that the
|
|
only references to the symbol are via the global offset table.
|
|
For such cases we need not do anything here; the relocations will
|
|
be handled correctly by relocate_section. Relocatable executables
|
|
can reference data in shared objects directly, so we don't need to
|
|
do anything here. */
|
|
if (info->shared || globals->root.is_relocatable_executable)
|
|
return TRUE;
|
|
|
|
/* We must allocate the symbol in our .dynbss section, which will
|
|
become part of the .bss section of the executable. There will be
|
|
an entry for this symbol in the .dynsym section. The dynamic
|
|
object will contain position independent code, so all references
|
|
from the dynamic object to this symbol will go through the global
|
|
offset table. The dynamic linker will use the .dynsym entry to
|
|
determine the address it must put in the global offset table, so
|
|
both the dynamic object and the regular object will refer to the
|
|
same memory location for the variable. */
|
|
s = bfd_get_linker_section (dynobj, ".dynbss");
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
/* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
|
|
copy the initial value out of the dynamic object and into the
|
|
runtime process image. We need to remember the offset into the
|
|
.rel(a).bss section we are going to use. */
|
|
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
|
|
{
|
|
asection *srel;
|
|
|
|
srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
|
|
elf32_arm_allocate_dynrelocs (info, srel, 1);
|
|
h->needs_copy = 1;
|
|
}
|
|
|
|
return _bfd_elf_adjust_dynamic_copy (h, s);
|
|
}
|
|
|
|
/* Allocate space in .plt, .got and associated reloc sections for
|
|
dynamic relocs. */
|
|
|
|
static bfd_boolean
|
|
allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
|
|
{
|
|
struct bfd_link_info *info;
|
|
struct elf32_arm_link_hash_table *htab;
|
|
struct elf32_arm_link_hash_entry *eh;
|
|
struct elf_dyn_relocs *p;
|
|
|
|
if (h->root.type == bfd_link_hash_indirect)
|
|
return TRUE;
|
|
|
|
eh = (struct elf32_arm_link_hash_entry *) h;
|
|
|
|
info = (struct bfd_link_info *) inf;
|
|
htab = elf32_arm_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
|
|
&& h->plt.refcount > 0)
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1
|
|
&& !h->forced_local)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return FALSE;
|
|
}
|
|
|
|
/* If the call in the PLT entry binds locally, the associated
|
|
GOT entry should use an R_ARM_IRELATIVE relocation instead of
|
|
the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
|
|
than the .plt section. */
|
|
if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
|
|
{
|
|
eh->is_iplt = 1;
|
|
if (eh->plt.noncall_refcount == 0
|
|
&& SYMBOL_REFERENCES_LOCAL (info, h))
|
|
/* All non-call references can be resolved directly.
|
|
This means that they can (and in some cases, must)
|
|
resolve directly to the run-time target, rather than
|
|
to the PLT. That in turns means that any .got entry
|
|
would be equal to the .igot.plt entry, so there's
|
|
no point having both. */
|
|
h->got.refcount = 0;
|
|
}
|
|
|
|
if (info->shared
|
|
|| eh->is_iplt
|
|
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
|
|
{
|
|
elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
|
|
|
|
/* If this symbol is not defined in a regular file, and we are
|
|
not generating a shared library, then set the symbol to this
|
|
location in the .plt. This is required to make function
|
|
pointers compare as equal between the normal executable and
|
|
the shared library. */
|
|
if (! info->shared
|
|
&& !h->def_regular)
|
|
{
|
|
h->root.u.def.section = htab->root.splt;
|
|
h->root.u.def.value = h->plt.offset;
|
|
|
|
/* Make sure the function is not marked as Thumb, in case
|
|
it is the target of an ABS32 relocation, which will
|
|
point to the PLT entry. */
|
|
h->target_internal = ST_BRANCH_TO_ARM;
|
|
}
|
|
|
|
htab->next_tls_desc_index++;
|
|
|
|
/* VxWorks executables have a second set of relocations for
|
|
each PLT entry. They go in a separate relocation section,
|
|
which is processed by the kernel loader. */
|
|
if (htab->vxworks_p && !info->shared)
|
|
{
|
|
/* There is a relocation for the initial PLT entry:
|
|
an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
|
|
if (h->plt.offset == htab->plt_header_size)
|
|
elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
|
|
|
|
/* There are two extra relocations for each subsequent
|
|
PLT entry: an R_ARM_32 relocation for the GOT entry,
|
|
and an R_ARM_32 relocation for the PLT entry. */
|
|
elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->needs_plt = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
h->plt.offset = (bfd_vma) -1;
|
|
h->needs_plt = 0;
|
|
}
|
|
|
|
eh = (struct elf32_arm_link_hash_entry *) h;
|
|
eh->tlsdesc_got = (bfd_vma) -1;
|
|
|
|
if (h->got.refcount > 0)
|
|
{
|
|
asection *s;
|
|
bfd_boolean dyn;
|
|
int tls_type = elf32_arm_hash_entry (h)->tls_type;
|
|
int indx;
|
|
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1
|
|
&& !h->forced_local)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return FALSE;
|
|
}
|
|
|
|
if (!htab->symbian_p)
|
|
{
|
|
s = htab->root.sgot;
|
|
h->got.offset = s->size;
|
|
|
|
if (tls_type == GOT_UNKNOWN)
|
|
abort ();
|
|
|
|
if (tls_type == GOT_NORMAL)
|
|
/* Non-TLS symbols need one GOT slot. */
|
|
s->size += 4;
|
|
else
|
|
{
|
|
if (tls_type & GOT_TLS_GDESC)
|
|
{
|
|
/* R_ARM_TLS_DESC needs 2 GOT slots. */
|
|
eh->tlsdesc_got
|
|
= (htab->root.sgotplt->size
|
|
- elf32_arm_compute_jump_table_size (htab));
|
|
htab->root.sgotplt->size += 8;
|
|
h->got.offset = (bfd_vma) -2;
|
|
/* plt.got_offset needs to know there's a TLS_DESC
|
|
reloc in the middle of .got.plt. */
|
|
htab->num_tls_desc++;
|
|
}
|
|
|
|
if (tls_type & GOT_TLS_GD)
|
|
{
|
|
/* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
|
|
the symbol is both GD and GDESC, got.offset may
|
|
have been overwritten. */
|
|
h->got.offset = s->size;
|
|
s->size += 8;
|
|
}
|
|
|
|
if (tls_type & GOT_TLS_IE)
|
|
/* R_ARM_TLS_IE32 needs one GOT slot. */
|
|
s->size += 4;
|
|
}
|
|
|
|
dyn = htab->root.dynamic_sections_created;
|
|
|
|
indx = 0;
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
|
|
&& (!info->shared
|
|
|| !SYMBOL_REFERENCES_LOCAL (info, h)))
|
|
indx = h->dynindx;
|
|
|
|
if (tls_type != GOT_NORMAL
|
|
&& (info->shared || indx != 0)
|
|
&& (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
|| h->root.type != bfd_link_hash_undefweak))
|
|
{
|
|
if (tls_type & GOT_TLS_IE)
|
|
elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
|
|
|
|
if (tls_type & GOT_TLS_GD)
|
|
elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
|
|
|
|
if (tls_type & GOT_TLS_GDESC)
|
|
{
|
|
elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
|
|
/* GDESC needs a trampoline to jump to. */
|
|
htab->tls_trampoline = -1;
|
|
}
|
|
|
|
/* Only GD needs it. GDESC just emits one relocation per
|
|
2 entries. */
|
|
if ((tls_type & GOT_TLS_GD) && indx != 0)
|
|
elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
|
|
}
|
|
else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
|
|
{
|
|
if (htab->root.dynamic_sections_created)
|
|
/* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
|
|
elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
|
|
}
|
|
else if (h->type == STT_GNU_IFUNC
|
|
&& eh->plt.noncall_refcount == 0)
|
|
/* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
|
|
they all resolve dynamically instead. Reserve room for the
|
|
GOT entry's R_ARM_IRELATIVE relocation. */
|
|
elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
|
|
else if (info->shared && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
|| h->root.type != bfd_link_hash_undefweak))
|
|
/* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
|
|
elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
|
|
}
|
|
}
|
|
else
|
|
h->got.offset = (bfd_vma) -1;
|
|
|
|
/* Allocate stubs for exported Thumb functions on v4t. */
|
|
if (!htab->use_blx && h->dynindx != -1
|
|
&& h->def_regular
|
|
&& h->target_internal == ST_BRANCH_TO_THUMB
|
|
&& ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
|
|
{
|
|
struct elf_link_hash_entry * th;
|
|
struct bfd_link_hash_entry * bh;
|
|
struct elf_link_hash_entry * myh;
|
|
char name[1024];
|
|
asection *s;
|
|
bh = NULL;
|
|
/* Create a new symbol to regist the real location of the function. */
|
|
s = h->root.u.def.section;
|
|
sprintf (name, "__real_%s", h->root.root.string);
|
|
_bfd_generic_link_add_one_symbol (info, s->owner,
|
|
name, BSF_GLOBAL, s,
|
|
h->root.u.def.value,
|
|
NULL, TRUE, FALSE, &bh);
|
|
|
|
myh = (struct elf_link_hash_entry *) bh;
|
|
myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
|
|
myh->forced_local = 1;
|
|
myh->target_internal = ST_BRANCH_TO_THUMB;
|
|
eh->export_glue = myh;
|
|
th = record_arm_to_thumb_glue (info, h);
|
|
/* Point the symbol at the stub. */
|
|
h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
|
|
h->target_internal = ST_BRANCH_TO_ARM;
|
|
h->root.u.def.section = th->root.u.def.section;
|
|
h->root.u.def.value = th->root.u.def.value & ~1;
|
|
}
|
|
|
|
if (eh->dyn_relocs == NULL)
|
|
return TRUE;
|
|
|
|
/* In the shared -Bsymbolic case, discard space allocated for
|
|
dynamic pc-relative relocs against symbols which turn out to be
|
|
defined in regular objects. For the normal shared case, discard
|
|
space for pc-relative relocs that have become local due to symbol
|
|
visibility changes. */
|
|
|
|
if (info->shared || htab->root.is_relocatable_executable)
|
|
{
|
|
/* The only relocs that use pc_count are R_ARM_REL32 and
|
|
R_ARM_REL32_NOI, which will appear on something like
|
|
".long foo - .". We want calls to protected symbols to resolve
|
|
directly to the function rather than going via the plt. If people
|
|
want function pointer comparisons to work as expected then they
|
|
should avoid writing assembly like ".long foo - .". */
|
|
if (SYMBOL_CALLS_LOCAL (info, h))
|
|
{
|
|
struct elf_dyn_relocs **pp;
|
|
|
|
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
|
|
{
|
|
p->count -= p->pc_count;
|
|
p->pc_count = 0;
|
|
if (p->count == 0)
|
|
*pp = p->next;
|
|
else
|
|
pp = &p->next;
|
|
}
|
|
}
|
|
|
|
if (htab->vxworks_p)
|
|
{
|
|
struct elf_dyn_relocs **pp;
|
|
|
|
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
|
|
{
|
|
if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
|
|
*pp = p->next;
|
|
else
|
|
pp = &p->next;
|
|
}
|
|
}
|
|
|
|
/* Also discard relocs on undefined weak syms with non-default
|
|
visibility. */
|
|
if (eh->dyn_relocs != NULL
|
|
&& h->root.type == bfd_link_hash_undefweak)
|
|
{
|
|
if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
|
|
eh->dyn_relocs = NULL;
|
|
|
|
/* Make sure undefined weak symbols are output as a dynamic
|
|
symbol in PIEs. */
|
|
else if (h->dynindx == -1
|
|
&& !h->forced_local)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
else if (htab->root.is_relocatable_executable && h->dynindx == -1
|
|
&& h->root.type == bfd_link_hash_new)
|
|
{
|
|
/* Output absolute symbols so that we can create relocations
|
|
against them. For normal symbols we output a relocation
|
|
against the section that contains them. */
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return FALSE;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
/* For the non-shared case, discard space for relocs against
|
|
symbols which turn out to need copy relocs or are not
|
|
dynamic. */
|
|
|
|
if (!h->non_got_ref
|
|
&& ((h->def_dynamic
|
|
&& !h->def_regular)
|
|
|| (htab->root.dynamic_sections_created
|
|
&& (h->root.type == bfd_link_hash_undefweak
|
|
|| h->root.type == bfd_link_hash_undefined))))
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1
|
|
&& !h->forced_local)
|
|
{
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return FALSE;
|
|
}
|
|
|
|
/* If that succeeded, we know we'll be keeping all the
|
|
relocs. */
|
|
if (h->dynindx != -1)
|
|
goto keep;
|
|
}
|
|
|
|
eh->dyn_relocs = NULL;
|
|
|
|
keep: ;
|
|
}
|
|
|
|
/* Finally, allocate space. */
|
|
for (p = eh->dyn_relocs; p != NULL; p = p->next)
|
|
{
|
|
asection *sreloc = elf_section_data (p->sec)->sreloc;
|
|
if (h->type == STT_GNU_IFUNC
|
|
&& eh->plt.noncall_refcount == 0
|
|
&& SYMBOL_REFERENCES_LOCAL (info, h))
|
|
elf32_arm_allocate_irelocs (info, sreloc, p->count);
|
|
else
|
|
elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Find any dynamic relocs that apply to read-only sections. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
|
|
{
|
|
struct elf32_arm_link_hash_entry * eh;
|
|
struct elf_dyn_relocs * p;
|
|
|
|
eh = (struct elf32_arm_link_hash_entry *) h;
|
|
for (p = eh->dyn_relocs; p != NULL; p = p->next)
|
|
{
|
|
asection *s = p->sec;
|
|
|
|
if (s != NULL && (s->flags & SEC_READONLY) != 0)
|
|
{
|
|
struct bfd_link_info *info = (struct bfd_link_info *) inf;
|
|
|
|
info->flags |= DF_TEXTREL;
|
|
|
|
/* Not an error, just cut short the traversal. */
|
|
return FALSE;
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
void
|
|
bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
|
|
int byteswap_code)
|
|
{
|
|
struct elf32_arm_link_hash_table *globals;
|
|
|
|
globals = elf32_arm_hash_table (info);
|
|
if (globals == NULL)
|
|
return;
|
|
|
|
globals->byteswap_code = byteswap_code;
|
|
}
|
|
|
|
/* Set the sizes of the dynamic sections. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
|
|
struct bfd_link_info * info)
|
|
{
|
|
bfd * dynobj;
|
|
asection * s;
|
|
bfd_boolean plt;
|
|
bfd_boolean relocs;
|
|
bfd *ibfd;
|
|
struct elf32_arm_link_hash_table *htab;
|
|
|
|
htab = elf32_arm_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
BFD_ASSERT (dynobj != NULL);
|
|
check_use_blx (htab);
|
|
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
|
{
|
|
/* Set the contents of the .interp section to the interpreter. */
|
|
if (info->executable)
|
|
{
|
|
s = bfd_get_linker_section (dynobj, ".interp");
|
|
BFD_ASSERT (s != NULL);
|
|
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
|
|
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
|
}
|
|
}
|
|
|
|
/* Set up .got offsets for local syms, and space for local dynamic
|
|
relocs. */
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
|
{
|
|
bfd_signed_vma *local_got;
|
|
bfd_signed_vma *end_local_got;
|
|
struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
|
|
char *local_tls_type;
|
|
bfd_vma *local_tlsdesc_gotent;
|
|
bfd_size_type locsymcount;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *srel;
|
|
bfd_boolean is_vxworks = htab->vxworks_p;
|
|
unsigned int symndx;
|
|
|
|
if (! is_arm_elf (ibfd))
|
|
continue;
|
|
|
|
for (s = ibfd->sections; s != NULL; s = s->next)
|
|
{
|
|
struct elf_dyn_relocs *p;
|
|
|
|
for (p = (struct elf_dyn_relocs *)
|
|
elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
|
|
{
|
|
if (!bfd_is_abs_section (p->sec)
|
|
&& bfd_is_abs_section (p->sec->output_section))
|
|
{
|
|
/* Input section has been discarded, either because
|
|
it is a copy of a linkonce section or due to
|
|
linker script /DISCARD/, so we'll be discarding
|
|
the relocs too. */
|
|
}
|
|
else if (is_vxworks
|
|
&& strcmp (p->sec->output_section->name,
|
|
".tls_vars") == 0)
|
|
{
|
|
/* Relocations in vxworks .tls_vars sections are
|
|
handled specially by the loader. */
|
|
}
|
|
else if (p->count != 0)
|
|
{
|
|
srel = elf_section_data (p->sec)->sreloc;
|
|
elf32_arm_allocate_dynrelocs (info, srel, p->count);
|
|
if ((p->sec->output_section->flags & SEC_READONLY) != 0)
|
|
info->flags |= DF_TEXTREL;
|
|
}
|
|
}
|
|
}
|
|
|
|
local_got = elf_local_got_refcounts (ibfd);
|
|
if (!local_got)
|
|
continue;
|
|
|
|
symtab_hdr = & elf_symtab_hdr (ibfd);
|
|
locsymcount = symtab_hdr->sh_info;
|
|
end_local_got = local_got + locsymcount;
|
|
local_iplt_ptr = elf32_arm_local_iplt (ibfd);
|
|
local_tls_type = elf32_arm_local_got_tls_type (ibfd);
|
|
local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
|
|
symndx = 0;
|
|
s = htab->root.sgot;
|
|
srel = htab->root.srelgot;
|
|
for (; local_got < end_local_got;
|
|
++local_got, ++local_iplt_ptr, ++local_tls_type,
|
|
++local_tlsdesc_gotent, ++symndx)
|
|
{
|
|
*local_tlsdesc_gotent = (bfd_vma) -1;
|
|
local_iplt = *local_iplt_ptr;
|
|
if (local_iplt != NULL)
|
|
{
|
|
struct elf_dyn_relocs *p;
|
|
|
|
if (local_iplt->root.refcount > 0)
|
|
{
|
|
elf32_arm_allocate_plt_entry (info, TRUE,
|
|
&local_iplt->root,
|
|
&local_iplt->arm);
|
|
if (local_iplt->arm.noncall_refcount == 0)
|
|
/* All references to the PLT are calls, so all
|
|
non-call references can resolve directly to the
|
|
run-time target. This means that the .got entry
|
|
would be the same as the .igot.plt entry, so there's
|
|
no point creating both. */
|
|
*local_got = 0;
|
|
}
|
|
else
|
|
{
|
|
BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
|
|
local_iplt->root.offset = (bfd_vma) -1;
|
|
}
|
|
|
|
for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
|
|
{
|
|
asection *psrel;
|
|
|
|
psrel = elf_section_data (p->sec)->sreloc;
|
|
if (local_iplt->arm.noncall_refcount == 0)
|
|
elf32_arm_allocate_irelocs (info, psrel, p->count);
|
|
else
|
|
elf32_arm_allocate_dynrelocs (info, psrel, p->count);
|
|
}
|
|
}
|
|
if (*local_got > 0)
|
|
{
|
|
Elf_Internal_Sym *isym;
|
|
|
|
*local_got = s->size;
|
|
if (*local_tls_type & GOT_TLS_GD)
|
|
/* TLS_GD relocs need an 8-byte structure in the GOT. */
|
|
s->size += 8;
|
|
if (*local_tls_type & GOT_TLS_GDESC)
|
|
{
|
|
*local_tlsdesc_gotent = htab->root.sgotplt->size
|
|
- elf32_arm_compute_jump_table_size (htab);
|
|
htab->root.sgotplt->size += 8;
|
|
*local_got = (bfd_vma) -2;
|
|
/* plt.got_offset needs to know there's a TLS_DESC
|
|
reloc in the middle of .got.plt. */
|
|
htab->num_tls_desc++;
|
|
}
|
|
if (*local_tls_type & GOT_TLS_IE)
|
|
s->size += 4;
|
|
|
|
if (*local_tls_type & GOT_NORMAL)
|
|
{
|
|
/* If the symbol is both GD and GDESC, *local_got
|
|
may have been overwritten. */
|
|
*local_got = s->size;
|
|
s->size += 4;
|
|
}
|
|
|
|
isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
|
|
if (isym == NULL)
|
|
return FALSE;
|
|
|
|
/* If all references to an STT_GNU_IFUNC PLT are calls,
|
|
then all non-call references, including this GOT entry,
|
|
resolve directly to the run-time target. */
|
|
if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
|
|
&& (local_iplt == NULL
|
|
|| local_iplt->arm.noncall_refcount == 0))
|
|
elf32_arm_allocate_irelocs (info, srel, 1);
|
|
else if (info->shared || output_bfd->flags & DYNAMIC)
|
|
{
|
|
if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
|
|
|| *local_tls_type & GOT_TLS_GD)
|
|
elf32_arm_allocate_dynrelocs (info, srel, 1);
|
|
|
|
if (info->shared && *local_tls_type & GOT_TLS_GDESC)
|
|
{
|
|
elf32_arm_allocate_dynrelocs (info,
|
|
htab->root.srelplt, 1);
|
|
htab->tls_trampoline = -1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
*local_got = (bfd_vma) -1;
|
|
}
|
|
}
|
|
|
|
if (htab->tls_ldm_got.refcount > 0)
|
|
{
|
|
/* Allocate two GOT entries and one dynamic relocation (if necessary)
|
|
for R_ARM_TLS_LDM32 relocations. */
|
|
htab->tls_ldm_got.offset = htab->root.sgot->size;
|
|
htab->root.sgot->size += 8;
|
|
if (info->shared)
|
|
elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
|
|
}
|
|
else
|
|
htab->tls_ldm_got.offset = -1;
|
|
|
|
/* Allocate global sym .plt and .got entries, and space for global
|
|
sym dynamic relocs. */
|
|
elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
|
|
|
|
/* Here we rummage through the found bfds to collect glue information. */
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
|
{
|
|
if (! is_arm_elf (ibfd))
|
|
continue;
|
|
|
|
/* Initialise mapping tables for code/data. */
|
|
bfd_elf32_arm_init_maps (ibfd);
|
|
|
|
if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
|
|
|| !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
|
|
/* xgettext:c-format */
|
|
_bfd_error_handler (_("Errors encountered processing file %s"),
|
|
ibfd->filename);
|
|
}
|
|
|
|
/* Allocate space for the glue sections now that we've sized them. */
|
|
bfd_elf32_arm_allocate_interworking_sections (info);
|
|
|
|
/* For every jump slot reserved in the sgotplt, reloc_count is
|
|
incremented. However, when we reserve space for TLS descriptors,
|
|
it's not incremented, so in order to compute the space reserved
|
|
for them, it suffices to multiply the reloc count by the jump
|
|
slot size. */
|
|
if (htab->root.srelplt)
|
|
htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
|
|
|
|
if (htab->tls_trampoline)
|
|
{
|
|
if (htab->root.splt->size == 0)
|
|
htab->root.splt->size += htab->plt_header_size;
|
|
|
|
htab->tls_trampoline = htab->root.splt->size;
|
|
htab->root.splt->size += htab->plt_entry_size;
|
|
|
|
/* If we're not using lazy TLS relocations, don't generate the
|
|
PLT and GOT entries they require. */
|
|
if (!(info->flags & DF_BIND_NOW))
|
|
{
|
|
htab->dt_tlsdesc_got = htab->root.sgot->size;
|
|
htab->root.sgot->size += 4;
|
|
|
|
htab->dt_tlsdesc_plt = htab->root.splt->size;
|
|
htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
|
|
}
|
|
}
|
|
|
|
/* The check_relocs and adjust_dynamic_symbol entry points have
|
|
determined the sizes of the various dynamic sections. Allocate
|
|
memory for them. */
|
|
plt = FALSE;
|
|
relocs = FALSE;
|
|
for (s = dynobj->sections; s != NULL; s = s->next)
|
|
{
|
|
const char * name;
|
|
|
|
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
|
continue;
|
|
|
|
/* It's OK to base decisions on the section name, because none
|
|
of the dynobj section names depend upon the input files. */
|
|
name = bfd_get_section_name (dynobj, s);
|
|
|
|
if (s == htab->root.splt)
|
|
{
|
|
/* Remember whether there is a PLT. */
|
|
plt = s->size != 0;
|
|
}
|
|
else if (CONST_STRNEQ (name, ".rel"))
|
|
{
|
|
if (s->size != 0)
|
|
{
|
|
/* Remember whether there are any reloc sections other
|
|
than .rel(a).plt and .rela.plt.unloaded. */
|
|
if (s != htab->root.srelplt && s != htab->srelplt2)
|
|
relocs = TRUE;
|
|
|
|
/* We use the reloc_count field as a counter if we need
|
|
to copy relocs into the output file. */
|
|
s->reloc_count = 0;
|
|
}
|
|
}
|
|
else if (s != htab->root.sgot
|
|
&& s != htab->root.sgotplt
|
|
&& s != htab->root.iplt
|
|
&& s != htab->root.igotplt
|
|
&& s != htab->sdynbss)
|
|
{
|
|
/* It's not one of our sections, so don't allocate space. */
|
|
continue;
|
|
}
|
|
|
|
if (s->size == 0)
|
|
{
|
|
/* If we don't need this section, strip it from the
|
|
output file. This is mostly to handle .rel(a).bss and
|
|
.rel(a).plt. We must create both sections in
|
|
create_dynamic_sections, because they must be created
|
|
before the linker maps input sections to output
|
|
sections. The linker does that before
|
|
adjust_dynamic_symbol is called, and it is that
|
|
function which decides whether anything needs to go
|
|
into these sections. */
|
|
s->flags |= SEC_EXCLUDE;
|
|
continue;
|
|
}
|
|
|
|
if ((s->flags & SEC_HAS_CONTENTS) == 0)
|
|
continue;
|
|
|
|
/* Allocate memory for the section contents. */
|
|
s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
|
|
if (s->contents == NULL)
|
|
return FALSE;
|
|
}
|
|
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
|
{
|
|
/* Add some entries to the .dynamic section. We fill in the
|
|
values later, in elf32_arm_finish_dynamic_sections, but we
|
|
must add the entries now so that we get the correct size for
|
|
the .dynamic section. The DT_DEBUG entry is filled in by the
|
|
dynamic linker and used by the debugger. */
|
|
#define add_dynamic_entry(TAG, VAL) \
|
|
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
|
|
|
|
if (info->executable)
|
|
{
|
|
if (!add_dynamic_entry (DT_DEBUG, 0))
|
|
return FALSE;
|
|
}
|
|
|
|
if (plt)
|
|
{
|
|
if ( !add_dynamic_entry (DT_PLTGOT, 0)
|
|
|| !add_dynamic_entry (DT_PLTRELSZ, 0)
|
|
|| !add_dynamic_entry (DT_PLTREL,
|
|
htab->use_rel ? DT_REL : DT_RELA)
|
|
|| !add_dynamic_entry (DT_JMPREL, 0))
|
|
return FALSE;
|
|
|
|
if (htab->dt_tlsdesc_plt &&
|
|
(!add_dynamic_entry (DT_TLSDESC_PLT,0)
|
|
|| !add_dynamic_entry (DT_TLSDESC_GOT,0)))
|
|
return FALSE;
|
|
}
|
|
|
|
if (relocs)
|
|
{
|
|
if (htab->use_rel)
|
|
{
|
|
if (!add_dynamic_entry (DT_REL, 0)
|
|
|| !add_dynamic_entry (DT_RELSZ, 0)
|
|
|| !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
|
|
return FALSE;
|
|
}
|
|
else
|
|
{
|
|
if (!add_dynamic_entry (DT_RELA, 0)
|
|
|| !add_dynamic_entry (DT_RELASZ, 0)
|
|
|| !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
/* If any dynamic relocs apply to a read-only section,
|
|
then we need a DT_TEXTREL entry. */
|
|
if ((info->flags & DF_TEXTREL) == 0)
|
|
elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
|
|
info);
|
|
|
|
if ((info->flags & DF_TEXTREL) != 0)
|
|
{
|
|
if (!add_dynamic_entry (DT_TEXTREL, 0))
|
|
return FALSE;
|
|
}
|
|
if (htab->vxworks_p
|
|
&& !elf_vxworks_add_dynamic_entries (output_bfd, info))
|
|
return FALSE;
|
|
}
|
|
#undef add_dynamic_entry
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Size sections even though they're not dynamic. We use it to setup
|
|
_TLS_MODULE_BASE_, if needed. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_always_size_sections (bfd *output_bfd,
|
|
struct bfd_link_info *info)
|
|
{
|
|
asection *tls_sec;
|
|
|
|
if (info->relocatable)
|
|
return TRUE;
|
|
|
|
tls_sec = elf_hash_table (info)->tls_sec;
|
|
|
|
if (tls_sec)
|
|
{
|
|
struct elf_link_hash_entry *tlsbase;
|
|
|
|
tlsbase = elf_link_hash_lookup
|
|
(elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
|
|
|
|
if (tlsbase)
|
|
{
|
|
struct bfd_link_hash_entry *bh = NULL;
|
|
const struct elf_backend_data *bed
|
|
= get_elf_backend_data (output_bfd);
|
|
|
|
if (!(_bfd_generic_link_add_one_symbol
|
|
(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
|
|
tls_sec, 0, NULL, FALSE,
|
|
bed->collect, &bh)))
|
|
return FALSE;
|
|
|
|
tlsbase->type = STT_TLS;
|
|
tlsbase = (struct elf_link_hash_entry *)bh;
|
|
tlsbase->def_regular = 1;
|
|
tlsbase->other = STV_HIDDEN;
|
|
(*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* Finish up dynamic symbol handling. We set the contents of various
|
|
dynamic sections here. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
|
|
struct bfd_link_info * info,
|
|
struct elf_link_hash_entry * h,
|
|
Elf_Internal_Sym * sym)
|
|
{
|
|
struct elf32_arm_link_hash_table *htab;
|
|
struct elf32_arm_link_hash_entry *eh;
|
|
|
|
htab = elf32_arm_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
eh = (struct elf32_arm_link_hash_entry *) h;
|
|
|
|
if (h->plt.offset != (bfd_vma) -1)
|
|
{
|
|
if (!eh->is_iplt)
|
|
{
|
|
BFD_ASSERT (h->dynindx != -1);
|
|
if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
|
|
h->dynindx, 0))
|
|
return FALSE;
|
|
}
|
|
|
|
if (!h->def_regular)
|
|
{
|
|
/* Mark the symbol as undefined, rather than as defined in
|
|
the .plt section. Leave the value alone. */
|
|
sym->st_shndx = SHN_UNDEF;
|
|
/* If the symbol is weak, we do need to clear the value.
|
|
Otherwise, the PLT entry would provide a definition for
|
|
the symbol even if the symbol wasn't defined anywhere,
|
|
and so the symbol would never be NULL. */
|
|
if (!h->ref_regular_nonweak)
|
|
sym->st_value = 0;
|
|
}
|
|
else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
|
|
{
|
|
/* At least one non-call relocation references this .iplt entry,
|
|
so the .iplt entry is the function's canonical address. */
|
|
sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
|
|
sym->st_target_internal = ST_BRANCH_TO_ARM;
|
|
sym->st_shndx = (_bfd_elf_section_from_bfd_section
|
|
(output_bfd, htab->root.iplt->output_section));
|
|
sym->st_value = (h->plt.offset
|
|
+ htab->root.iplt->output_section->vma
|
|
+ htab->root.iplt->output_offset);
|
|
}
|
|
}
|
|
|
|
if (h->needs_copy)
|
|
{
|
|
asection * s;
|
|
Elf_Internal_Rela rel;
|
|
|
|
/* This symbol needs a copy reloc. Set it up. */
|
|
BFD_ASSERT (h->dynindx != -1
|
|
&& (h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak));
|
|
|
|
s = htab->srelbss;
|
|
BFD_ASSERT (s != NULL);
|
|
|
|
rel.r_addend = 0;
|
|
rel.r_offset = (h->root.u.def.value
|
|
+ h->root.u.def.section->output_section->vma
|
|
+ h->root.u.def.section->output_offset);
|
|
rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
|
|
elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
|
|
}
|
|
|
|
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
|
|
the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
|
|
to the ".got" section. */
|
|
if (h == htab->root.hdynamic
|
|
|| (!htab->vxworks_p && h == htab->root.hgot))
|
|
sym->st_shndx = SHN_ABS;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static void
|
|
arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
|
|
void *contents,
|
|
const unsigned long *template, unsigned count)
|
|
{
|
|
unsigned ix;
|
|
|
|
for (ix = 0; ix != count; ix++)
|
|
{
|
|
unsigned long insn = template[ix];
|
|
|
|
/* Emit mov pc,rx if bx is not permitted. */
|
|
if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
|
|
insn = (insn & 0xf000000f) | 0x01a0f000;
|
|
put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
|
|
}
|
|
}
|
|
|
|
/* Install the special first PLT entry for elf32-arm-nacl. Unlike
|
|
other variants, NaCl needs this entry in a static executable's
|
|
.iplt too. When we're handling that case, GOT_DISPLACEMENT is
|
|
zero. For .iplt really only the last bundle is useful, and .iplt
|
|
could have a shorter first entry, with each individual PLT entry's
|
|
relative branch calculated differently so it targets the last
|
|
bundle instead of the instruction before it (labelled .Lplt_tail
|
|
above). But it's simpler to keep the size and layout of PLT0
|
|
consistent with the dynamic case, at the cost of some dead code at
|
|
the start of .iplt and the one dead store to the stack at the start
|
|
of .Lplt_tail. */
|
|
static void
|
|
arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
|
|
asection *plt, bfd_vma got_displacement)
|
|
{
|
|
unsigned int i;
|
|
|
|
put_arm_insn (htab, output_bfd,
|
|
elf32_arm_nacl_plt0_entry[0]
|
|
| arm_movw_immediate (got_displacement),
|
|
plt->contents + 0);
|
|
put_arm_insn (htab, output_bfd,
|
|
elf32_arm_nacl_plt0_entry[1]
|
|
| arm_movt_immediate (got_displacement),
|
|
plt->contents + 4);
|
|
|
|
for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
|
|
put_arm_insn (htab, output_bfd,
|
|
elf32_arm_nacl_plt0_entry[i],
|
|
plt->contents + (i * 4));
|
|
}
|
|
|
|
/* Finish up the dynamic sections. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
|
|
{
|
|
bfd * dynobj;
|
|
asection * sgot;
|
|
asection * sdyn;
|
|
struct elf32_arm_link_hash_table *htab;
|
|
|
|
htab = elf32_arm_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
dynobj = elf_hash_table (info)->dynobj;
|
|
|
|
sgot = htab->root.sgotplt;
|
|
/* A broken linker script might have discarded the dynamic sections.
|
|
Catch this here so that we do not seg-fault later on. */
|
|
if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
|
|
return FALSE;
|
|
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
|
|
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
|
{
|
|
asection *splt;
|
|
Elf32_External_Dyn *dyncon, *dynconend;
|
|
|
|
splt = htab->root.splt;
|
|
BFD_ASSERT (splt != NULL && sdyn != NULL);
|
|
BFD_ASSERT (htab->symbian_p || sgot != NULL);
|
|
|
|
dyncon = (Elf32_External_Dyn *) sdyn->contents;
|
|
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
|
|
|
|
for (; dyncon < dynconend; dyncon++)
|
|
{
|
|
Elf_Internal_Dyn dyn;
|
|
const char * name;
|
|
asection * s;
|
|
|
|
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
|
|
|
|
switch (dyn.d_tag)
|
|
{
|
|
unsigned int type;
|
|
|
|
default:
|
|
if (htab->vxworks_p
|
|
&& elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
break;
|
|
|
|
case DT_HASH:
|
|
name = ".hash";
|
|
goto get_vma_if_bpabi;
|
|
case DT_STRTAB:
|
|
name = ".dynstr";
|
|
goto get_vma_if_bpabi;
|
|
case DT_SYMTAB:
|
|
name = ".dynsym";
|
|
goto get_vma_if_bpabi;
|
|
case DT_VERSYM:
|
|
name = ".gnu.version";
|
|
goto get_vma_if_bpabi;
|
|
case DT_VERDEF:
|
|
name = ".gnu.version_d";
|
|
goto get_vma_if_bpabi;
|
|
case DT_VERNEED:
|
|
name = ".gnu.version_r";
|
|
goto get_vma_if_bpabi;
|
|
|
|
case DT_PLTGOT:
|
|
name = ".got";
|
|
goto get_vma;
|
|
case DT_JMPREL:
|
|
name = RELOC_SECTION (htab, ".plt");
|
|
get_vma:
|
|
s = bfd_get_section_by_name (output_bfd, name);
|
|
if (s == NULL)
|
|
{
|
|
/* PR ld/14397: Issue an error message if a required section is missing. */
|
|
(*_bfd_error_handler)
|
|
(_("error: required section '%s' not found in the linker script"), name);
|
|
bfd_set_error (bfd_error_invalid_operation);
|
|
return FALSE;
|
|
}
|
|
if (!htab->symbian_p)
|
|
dyn.d_un.d_ptr = s->vma;
|
|
else
|
|
/* In the BPABI, tags in the PT_DYNAMIC section point
|
|
at the file offset, not the memory address, for the
|
|
convenience of the post linker. */
|
|
dyn.d_un.d_ptr = s->filepos;
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
break;
|
|
|
|
get_vma_if_bpabi:
|
|
if (htab->symbian_p)
|
|
goto get_vma;
|
|
break;
|
|
|
|
case DT_PLTRELSZ:
|
|
s = htab->root.srelplt;
|
|
BFD_ASSERT (s != NULL);
|
|
dyn.d_un.d_val = s->size;
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
break;
|
|
|
|
case DT_RELSZ:
|
|
case DT_RELASZ:
|
|
if (!htab->symbian_p)
|
|
{
|
|
/* My reading of the SVR4 ABI indicates that the
|
|
procedure linkage table relocs (DT_JMPREL) should be
|
|
included in the overall relocs (DT_REL). This is
|
|
what Solaris does. However, UnixWare can not handle
|
|
that case. Therefore, we override the DT_RELSZ entry
|
|
here to make it not include the JMPREL relocs. Since
|
|
the linker script arranges for .rel(a).plt to follow all
|
|
other relocation sections, we don't have to worry
|
|
about changing the DT_REL entry. */
|
|
s = htab->root.srelplt;
|
|
if (s != NULL)
|
|
dyn.d_un.d_val -= s->size;
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
break;
|
|
}
|
|
/* Fall through. */
|
|
|
|
case DT_REL:
|
|
case DT_RELA:
|
|
/* In the BPABI, the DT_REL tag must point at the file
|
|
offset, not the VMA, of the first relocation
|
|
section. So, we use code similar to that in
|
|
elflink.c, but do not check for SHF_ALLOC on the
|
|
relcoation section, since relocations sections are
|
|
never allocated under the BPABI. The comments above
|
|
about Unixware notwithstanding, we include all of the
|
|
relocations here. */
|
|
if (htab->symbian_p)
|
|
{
|
|
unsigned int i;
|
|
type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
|
|
? SHT_REL : SHT_RELA);
|
|
dyn.d_un.d_val = 0;
|
|
for (i = 1; i < elf_numsections (output_bfd); i++)
|
|
{
|
|
Elf_Internal_Shdr *hdr
|
|
= elf_elfsections (output_bfd)[i];
|
|
if (hdr->sh_type == type)
|
|
{
|
|
if (dyn.d_tag == DT_RELSZ
|
|
|| dyn.d_tag == DT_RELASZ)
|
|
dyn.d_un.d_val += hdr->sh_size;
|
|
else if ((ufile_ptr) hdr->sh_offset
|
|
<= dyn.d_un.d_val - 1)
|
|
dyn.d_un.d_val = hdr->sh_offset;
|
|
}
|
|
}
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
}
|
|
break;
|
|
|
|
case DT_TLSDESC_PLT:
|
|
s = htab->root.splt;
|
|
dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
|
|
+ htab->dt_tlsdesc_plt);
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
break;
|
|
|
|
case DT_TLSDESC_GOT:
|
|
s = htab->root.sgot;
|
|
dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
|
|
+ htab->dt_tlsdesc_got);
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
break;
|
|
|
|
/* Set the bottom bit of DT_INIT/FINI if the
|
|
corresponding function is Thumb. */
|
|
case DT_INIT:
|
|
name = info->init_function;
|
|
goto get_sym;
|
|
case DT_FINI:
|
|
name = info->fini_function;
|
|
get_sym:
|
|
/* If it wasn't set by elf_bfd_final_link
|
|
then there is nothing to adjust. */
|
|
if (dyn.d_un.d_val != 0)
|
|
{
|
|
struct elf_link_hash_entry * eh;
|
|
|
|
eh = elf_link_hash_lookup (elf_hash_table (info), name,
|
|
FALSE, FALSE, TRUE);
|
|
if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
|
|
{
|
|
dyn.d_un.d_val |= 1;
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Fill in the first entry in the procedure linkage table. */
|
|
if (splt->size > 0 && htab->plt_header_size)
|
|
{
|
|
const bfd_vma *plt0_entry;
|
|
bfd_vma got_address, plt_address, got_displacement;
|
|
|
|
/* Calculate the addresses of the GOT and PLT. */
|
|
got_address = sgot->output_section->vma + sgot->output_offset;
|
|
plt_address = splt->output_section->vma + splt->output_offset;
|
|
|
|
if (htab->vxworks_p)
|
|
{
|
|
/* The VxWorks GOT is relocated by the dynamic linker.
|
|
Therefore, we must emit relocations rather than simply
|
|
computing the values now. */
|
|
Elf_Internal_Rela rel;
|
|
|
|
plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
|
|
put_arm_insn (htab, output_bfd, plt0_entry[0],
|
|
splt->contents + 0);
|
|
put_arm_insn (htab, output_bfd, plt0_entry[1],
|
|
splt->contents + 4);
|
|
put_arm_insn (htab, output_bfd, plt0_entry[2],
|
|
splt->contents + 8);
|
|
bfd_put_32 (output_bfd, got_address, splt->contents + 12);
|
|
|
|
/* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
|
|
rel.r_offset = plt_address + 12;
|
|
rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
|
|
rel.r_addend = 0;
|
|
SWAP_RELOC_OUT (htab) (output_bfd, &rel,
|
|
htab->srelplt2->contents);
|
|
}
|
|
else if (htab->nacl_p)
|
|
arm_nacl_put_plt0 (htab, output_bfd, splt,
|
|
got_address + 8 - (plt_address + 16));
|
|
else
|
|
{
|
|
got_displacement = got_address - (plt_address + 16);
|
|
|
|
plt0_entry = elf32_arm_plt0_entry;
|
|
put_arm_insn (htab, output_bfd, plt0_entry[0],
|
|
splt->contents + 0);
|
|
put_arm_insn (htab, output_bfd, plt0_entry[1],
|
|
splt->contents + 4);
|
|
put_arm_insn (htab, output_bfd, plt0_entry[2],
|
|
splt->contents + 8);
|
|
put_arm_insn (htab, output_bfd, plt0_entry[3],
|
|
splt->contents + 12);
|
|
|
|
#ifdef FOUR_WORD_PLT
|
|
/* The displacement value goes in the otherwise-unused
|
|
last word of the second entry. */
|
|
bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
|
|
#else
|
|
bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* UnixWare sets the entsize of .plt to 4, although that doesn't
|
|
really seem like the right value. */
|
|
if (splt->output_section->owner == output_bfd)
|
|
elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
|
|
|
|
if (htab->dt_tlsdesc_plt)
|
|
{
|
|
bfd_vma got_address
|
|
= sgot->output_section->vma + sgot->output_offset;
|
|
bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
|
|
+ htab->root.sgot->output_offset);
|
|
bfd_vma plt_address
|
|
= splt->output_section->vma + splt->output_offset;
|
|
|
|
arm_put_trampoline (htab, output_bfd,
|
|
splt->contents + htab->dt_tlsdesc_plt,
|
|
dl_tlsdesc_lazy_trampoline, 6);
|
|
|
|
bfd_put_32 (output_bfd,
|
|
gotplt_address + htab->dt_tlsdesc_got
|
|
- (plt_address + htab->dt_tlsdesc_plt)
|
|
- dl_tlsdesc_lazy_trampoline[6],
|
|
splt->contents + htab->dt_tlsdesc_plt + 24);
|
|
bfd_put_32 (output_bfd,
|
|
got_address - (plt_address + htab->dt_tlsdesc_plt)
|
|
- dl_tlsdesc_lazy_trampoline[7],
|
|
splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
|
|
}
|
|
|
|
if (htab->tls_trampoline)
|
|
{
|
|
arm_put_trampoline (htab, output_bfd,
|
|
splt->contents + htab->tls_trampoline,
|
|
tls_trampoline, 3);
|
|
#ifdef FOUR_WORD_PLT
|
|
bfd_put_32 (output_bfd, 0x00000000,
|
|
splt->contents + htab->tls_trampoline + 12);
|
|
#endif
|
|
}
|
|
|
|
if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
|
|
{
|
|
/* Correct the .rel(a).plt.unloaded relocations. They will have
|
|
incorrect symbol indexes. */
|
|
int num_plts;
|
|
unsigned char *p;
|
|
|
|
num_plts = ((htab->root.splt->size - htab->plt_header_size)
|
|
/ htab->plt_entry_size);
|
|
p = htab->srelplt2->contents + RELOC_SIZE (htab);
|
|
|
|
for (; num_plts; num_plts--)
|
|
{
|
|
Elf_Internal_Rela rel;
|
|
|
|
SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
|
|
rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
|
|
SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
|
|
p += RELOC_SIZE (htab);
|
|
|
|
SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
|
|
rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
|
|
SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
|
|
p += RELOC_SIZE (htab);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
|
|
/* NaCl uses a special first entry in .iplt too. */
|
|
arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
|
|
|
|
/* Fill in the first three entries in the global offset table. */
|
|
if (sgot)
|
|
{
|
|
if (sgot->size > 0)
|
|
{
|
|
if (sdyn == NULL)
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
|
|
else
|
|
bfd_put_32 (output_bfd,
|
|
sdyn->output_section->vma + sdyn->output_offset,
|
|
sgot->contents);
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
|
|
}
|
|
|
|
elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static void
|
|
elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
|
|
{
|
|
Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
|
|
struct elf32_arm_link_hash_table *globals;
|
|
|
|
i_ehdrp = elf_elfheader (abfd);
|
|
|
|
if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
|
|
i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
|
|
else
|
|
_bfd_elf_post_process_headers (abfd, link_info);
|
|
i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
|
|
|
|
if (link_info)
|
|
{
|
|
globals = elf32_arm_hash_table (link_info);
|
|
if (globals != NULL && globals->byteswap_code)
|
|
i_ehdrp->e_flags |= EF_ARM_BE8;
|
|
}
|
|
|
|
if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
|
|
&& ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
|
|
{
|
|
int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
|
|
if (abi)
|
|
i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
|
|
else
|
|
i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
|
|
}
|
|
}
|
|
|
|
static enum elf_reloc_type_class
|
|
elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
|
const asection *rel_sec ATTRIBUTE_UNUSED,
|
|
const Elf_Internal_Rela *rela)
|
|
{
|
|
switch ((int) ELF32_R_TYPE (rela->r_info))
|
|
{
|
|
case R_ARM_RELATIVE:
|
|
return reloc_class_relative;
|
|
case R_ARM_JUMP_SLOT:
|
|
return reloc_class_plt;
|
|
case R_ARM_COPY:
|
|
return reloc_class_copy;
|
|
default:
|
|
return reloc_class_normal;
|
|
}
|
|
}
|
|
|
|
static void
|
|
elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
|
|
{
|
|
bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
|
|
}
|
|
|
|
/* Return TRUE if this is an unwinding table entry. */
|
|
|
|
static bfd_boolean
|
|
is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
|
|
{
|
|
return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
|
|
|| CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
|
|
}
|
|
|
|
|
|
/* Set the type and flags for an ARM section. We do this by
|
|
the section name, which is a hack, but ought to work. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
|
|
{
|
|
const char * name;
|
|
|
|
name = bfd_get_section_name (abfd, sec);
|
|
|
|
if (is_arm_elf_unwind_section_name (abfd, name))
|
|
{
|
|
hdr->sh_type = SHT_ARM_EXIDX;
|
|
hdr->sh_flags |= SHF_LINK_ORDER;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* Handle an ARM specific section when reading an object file. This is
|
|
called when bfd_section_from_shdr finds a section with an unknown
|
|
type. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_section_from_shdr (bfd *abfd,
|
|
Elf_Internal_Shdr * hdr,
|
|
const char *name,
|
|
int shindex)
|
|
{
|
|
/* There ought to be a place to keep ELF backend specific flags, but
|
|
at the moment there isn't one. We just keep track of the
|
|
sections by their name, instead. Fortunately, the ABI gives
|
|
names for all the ARM specific sections, so we will probably get
|
|
away with this. */
|
|
switch (hdr->sh_type)
|
|
{
|
|
case SHT_ARM_EXIDX:
|
|
case SHT_ARM_PREEMPTMAP:
|
|
case SHT_ARM_ATTRIBUTES:
|
|
break;
|
|
|
|
default:
|
|
return FALSE;
|
|
}
|
|
|
|
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static _arm_elf_section_data *
|
|
get_arm_elf_section_data (asection * sec)
|
|
{
|
|
if (sec && sec->owner && is_arm_elf (sec->owner))
|
|
return elf32_arm_section_data (sec);
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
typedef struct
|
|
{
|
|
void *flaginfo;
|
|
struct bfd_link_info *info;
|
|
asection *sec;
|
|
int sec_shndx;
|
|
int (*func) (void *, const char *, Elf_Internal_Sym *,
|
|
asection *, struct elf_link_hash_entry *);
|
|
} output_arch_syminfo;
|
|
|
|
enum map_symbol_type
|
|
{
|
|
ARM_MAP_ARM,
|
|
ARM_MAP_THUMB,
|
|
ARM_MAP_DATA
|
|
};
|
|
|
|
|
|
/* Output a single mapping symbol. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_output_map_sym (output_arch_syminfo *osi,
|
|
enum map_symbol_type type,
|
|
bfd_vma offset)
|
|
{
|
|
static const char *names[3] = {"$a", "$t", "$d"};
|
|
Elf_Internal_Sym sym;
|
|
|
|
sym.st_value = osi->sec->output_section->vma
|
|
+ osi->sec->output_offset
|
|
+ offset;
|
|
sym.st_size = 0;
|
|
sym.st_other = 0;
|
|
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
|
|
sym.st_shndx = osi->sec_shndx;
|
|
sym.st_target_internal = 0;
|
|
elf32_arm_section_map_add (osi->sec, names[type][1], offset);
|
|
return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
|
|
}
|
|
|
|
/* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
|
|
IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
|
|
bfd_boolean is_iplt_entry_p,
|
|
union gotplt_union *root_plt,
|
|
struct arm_plt_info *arm_plt)
|
|
{
|
|
struct elf32_arm_link_hash_table *htab;
|
|
bfd_vma addr, plt_header_size;
|
|
|
|
if (root_plt->offset == (bfd_vma) -1)
|
|
return TRUE;
|
|
|
|
htab = elf32_arm_hash_table (osi->info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
if (is_iplt_entry_p)
|
|
{
|
|
osi->sec = htab->root.iplt;
|
|
plt_header_size = 0;
|
|
}
|
|
else
|
|
{
|
|
osi->sec = htab->root.splt;
|
|
plt_header_size = htab->plt_header_size;
|
|
}
|
|
osi->sec_shndx = (_bfd_elf_section_from_bfd_section
|
|
(osi->info->output_bfd, osi->sec->output_section));
|
|
|
|
addr = root_plt->offset & -2;
|
|
if (htab->symbian_p)
|
|
{
|
|
if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
|
|
return FALSE;
|
|
if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
|
|
return FALSE;
|
|
}
|
|
else if (htab->vxworks_p)
|
|
{
|
|
if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
|
|
return FALSE;
|
|
if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
|
|
return FALSE;
|
|
if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
|
|
return FALSE;
|
|
if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
|
|
return FALSE;
|
|
}
|
|
else if (htab->nacl_p)
|
|
{
|
|
if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
|
|
return FALSE;
|
|
}
|
|
else
|
|
{
|
|
bfd_boolean thumb_stub_p;
|
|
|
|
thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
|
|
if (thumb_stub_p)
|
|
{
|
|
if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
|
|
return FALSE;
|
|
}
|
|
#ifdef FOUR_WORD_PLT
|
|
if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
|
|
return FALSE;
|
|
if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
|
|
return FALSE;
|
|
#else
|
|
/* A three-word PLT with no Thumb thunk contains only Arm code,
|
|
so only need to output a mapping symbol for the first PLT entry and
|
|
entries with thumb thunks. */
|
|
if (thumb_stub_p || addr == plt_header_size)
|
|
{
|
|
if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
|
|
return FALSE;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Output mapping symbols for PLT entries associated with H. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
|
|
{
|
|
output_arch_syminfo *osi = (output_arch_syminfo *) inf;
|
|
struct elf32_arm_link_hash_entry *eh;
|
|
|
|
if (h->root.type == bfd_link_hash_indirect)
|
|
return TRUE;
|
|
|
|
if (h->root.type == bfd_link_hash_warning)
|
|
/* When warning symbols are created, they **replace** the "real"
|
|
entry in the hash table, thus we never get to see the real
|
|
symbol in a hash traversal. So look at it now. */
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
eh = (struct elf32_arm_link_hash_entry *) h;
|
|
return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
|
|
&h->plt, &eh->plt);
|
|
}
|
|
|
|
/* Output a single local symbol for a generated stub. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
|
|
bfd_vma offset, bfd_vma size)
|
|
{
|
|
Elf_Internal_Sym sym;
|
|
|
|
sym.st_value = osi->sec->output_section->vma
|
|
+ osi->sec->output_offset
|
|
+ offset;
|
|
sym.st_size = size;
|
|
sym.st_other = 0;
|
|
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
|
|
sym.st_shndx = osi->sec_shndx;
|
|
sym.st_target_internal = 0;
|
|
return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
|
|
}
|
|
|
|
static bfd_boolean
|
|
arm_map_one_stub (struct bfd_hash_entry * gen_entry,
|
|
void * in_arg)
|
|
{
|
|
struct elf32_arm_stub_hash_entry *stub_entry;
|
|
asection *stub_sec;
|
|
bfd_vma addr;
|
|
char *stub_name;
|
|
output_arch_syminfo *osi;
|
|
const insn_sequence *template_sequence;
|
|
enum stub_insn_type prev_type;
|
|
int size;
|
|
int i;
|
|
enum map_symbol_type sym_type;
|
|
|
|
/* Massage our args to the form they really have. */
|
|
stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
|
|
osi = (output_arch_syminfo *) in_arg;
|
|
|
|
stub_sec = stub_entry->stub_sec;
|
|
|
|
/* Ensure this stub is attached to the current section being
|
|
processed. */
|
|
if (stub_sec != osi->sec)
|
|
return TRUE;
|
|
|
|
addr = (bfd_vma) stub_entry->stub_offset;
|
|
stub_name = stub_entry->output_name;
|
|
|
|
template_sequence = stub_entry->stub_template;
|
|
switch (template_sequence[0].type)
|
|
{
|
|
case ARM_TYPE:
|
|
if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
|
|
return FALSE;
|
|
break;
|
|
case THUMB16_TYPE:
|
|
case THUMB32_TYPE:
|
|
if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
|
|
stub_entry->stub_size))
|
|
return FALSE;
|
|
break;
|
|
default:
|
|
BFD_FAIL ();
|
|
return 0;
|
|
}
|
|
|
|
prev_type = DATA_TYPE;
|
|
size = 0;
|
|
for (i = 0; i < stub_entry->stub_template_size; i++)
|
|
{
|
|
switch (template_sequence[i].type)
|
|
{
|
|
case ARM_TYPE:
|
|
sym_type = ARM_MAP_ARM;
|
|
break;
|
|
|
|
case THUMB16_TYPE:
|
|
case THUMB32_TYPE:
|
|
sym_type = ARM_MAP_THUMB;
|
|
break;
|
|
|
|
case DATA_TYPE:
|
|
sym_type = ARM_MAP_DATA;
|
|
break;
|
|
|
|
default:
|
|
BFD_FAIL ();
|
|
return FALSE;
|
|
}
|
|
|
|
if (template_sequence[i].type != prev_type)
|
|
{
|
|
prev_type = template_sequence[i].type;
|
|
if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
|
|
return FALSE;
|
|
}
|
|
|
|
switch (template_sequence[i].type)
|
|
{
|
|
case ARM_TYPE:
|
|
case THUMB32_TYPE:
|
|
size += 4;
|
|
break;
|
|
|
|
case THUMB16_TYPE:
|
|
size += 2;
|
|
break;
|
|
|
|
case DATA_TYPE:
|
|
size += 4;
|
|
break;
|
|
|
|
default:
|
|
BFD_FAIL ();
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Output mapping symbols for linker generated sections,
|
|
and for those data-only sections that do not have a
|
|
$d. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_output_arch_local_syms (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
void *flaginfo,
|
|
int (*func) (void *, const char *,
|
|
Elf_Internal_Sym *,
|
|
asection *,
|
|
struct elf_link_hash_entry *))
|
|
{
|
|
output_arch_syminfo osi;
|
|
struct elf32_arm_link_hash_table *htab;
|
|
bfd_vma offset;
|
|
bfd_size_type size;
|
|
bfd *input_bfd;
|
|
|
|
htab = elf32_arm_hash_table (info);
|
|
if (htab == NULL)
|
|
return FALSE;
|
|
|
|
check_use_blx (htab);
|
|
|
|
osi.flaginfo = flaginfo;
|
|
osi.info = info;
|
|
osi.func = func;
|
|
|
|
/* Add a $d mapping symbol to data-only sections that
|
|
don't have any mapping symbol. This may result in (harmless) redundant
|
|
mapping symbols. */
|
|
for (input_bfd = info->input_bfds;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link_next)
|
|
{
|
|
if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
|
|
for (osi.sec = input_bfd->sections;
|
|
osi.sec != NULL;
|
|
osi.sec = osi.sec->next)
|
|
{
|
|
if (osi.sec->output_section != NULL
|
|
&& ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
|
|
!= 0)
|
|
&& (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
|
|
== SEC_HAS_CONTENTS
|
|
&& get_arm_elf_section_data (osi.sec) != NULL
|
|
&& get_arm_elf_section_data (osi.sec)->mapcount == 0
|
|
&& osi.sec->size > 0
|
|
&& (osi.sec->flags & SEC_EXCLUDE) == 0)
|
|
{
|
|
osi.sec_shndx = _bfd_elf_section_from_bfd_section
|
|
(output_bfd, osi.sec->output_section);
|
|
if (osi.sec_shndx != (int)SHN_BAD)
|
|
elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ARM->Thumb glue. */
|
|
if (htab->arm_glue_size > 0)
|
|
{
|
|
osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
|
|
ARM2THUMB_GLUE_SECTION_NAME);
|
|
|
|
osi.sec_shndx = _bfd_elf_section_from_bfd_section
|
|
(output_bfd, osi.sec->output_section);
|
|
if (info->shared || htab->root.is_relocatable_executable
|
|
|| htab->pic_veneer)
|
|
size = ARM2THUMB_PIC_GLUE_SIZE;
|
|
else if (htab->use_blx)
|
|
size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
|
|
else
|
|
size = ARM2THUMB_STATIC_GLUE_SIZE;
|
|
|
|
for (offset = 0; offset < htab->arm_glue_size; offset += size)
|
|
{
|
|
elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
|
|
elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
|
|
}
|
|
}
|
|
|
|
/* Thumb->ARM glue. */
|
|
if (htab->thumb_glue_size > 0)
|
|
{
|
|
osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
|
|
THUMB2ARM_GLUE_SECTION_NAME);
|
|
|
|
osi.sec_shndx = _bfd_elf_section_from_bfd_section
|
|
(output_bfd, osi.sec->output_section);
|
|
size = THUMB2ARM_GLUE_SIZE;
|
|
|
|
for (offset = 0; offset < htab->thumb_glue_size; offset += size)
|
|
{
|
|
elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
|
|
elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
|
|
}
|
|
}
|
|
|
|
/* ARMv4 BX veneers. */
|
|
if (htab->bx_glue_size > 0)
|
|
{
|
|
osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
|
|
ARM_BX_GLUE_SECTION_NAME);
|
|
|
|
osi.sec_shndx = _bfd_elf_section_from_bfd_section
|
|
(output_bfd, osi.sec->output_section);
|
|
|
|
elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
|
|
}
|
|
|
|
/* Long calls stubs. */
|
|
if (htab->stub_bfd && htab->stub_bfd->sections)
|
|
{
|
|
asection* stub_sec;
|
|
|
|
for (stub_sec = htab->stub_bfd->sections;
|
|
stub_sec != NULL;
|
|
stub_sec = stub_sec->next)
|
|
{
|
|
/* Ignore non-stub sections. */
|
|
if (!strstr (stub_sec->name, STUB_SUFFIX))
|
|
continue;
|
|
|
|
osi.sec = stub_sec;
|
|
|
|
osi.sec_shndx = _bfd_elf_section_from_bfd_section
|
|
(output_bfd, osi.sec->output_section);
|
|
|
|
bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
|
|
}
|
|
}
|
|
|
|
/* Finally, output mapping symbols for the PLT. */
|
|
if (htab->root.splt && htab->root.splt->size > 0)
|
|
{
|
|
osi.sec = htab->root.splt;
|
|
osi.sec_shndx = (_bfd_elf_section_from_bfd_section
|
|
(output_bfd, osi.sec->output_section));
|
|
|
|
/* Output mapping symbols for the plt header. SymbianOS does not have a
|
|
plt header. */
|
|
if (htab->vxworks_p)
|
|
{
|
|
/* VxWorks shared libraries have no PLT header. */
|
|
if (!info->shared)
|
|
{
|
|
if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
|
|
return FALSE;
|
|
if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
|
|
return FALSE;
|
|
}
|
|
}
|
|
else if (htab->nacl_p)
|
|
{
|
|
if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
|
|
return FALSE;
|
|
}
|
|
else if (!htab->symbian_p)
|
|
{
|
|
if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
|
|
return FALSE;
|
|
#ifndef FOUR_WORD_PLT
|
|
if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
|
|
return FALSE;
|
|
#endif
|
|
}
|
|
}
|
|
if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
|
|
{
|
|
/* NaCl uses a special first entry in .iplt too. */
|
|
osi.sec = htab->root.iplt;
|
|
osi.sec_shndx = (_bfd_elf_section_from_bfd_section
|
|
(output_bfd, osi.sec->output_section));
|
|
if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
|
|
return FALSE;
|
|
}
|
|
if ((htab->root.splt && htab->root.splt->size > 0)
|
|
|| (htab->root.iplt && htab->root.iplt->size > 0))
|
|
{
|
|
elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
|
|
for (input_bfd = info->input_bfds;
|
|
input_bfd != NULL;
|
|
input_bfd = input_bfd->link_next)
|
|
{
|
|
struct arm_local_iplt_info **local_iplt;
|
|
unsigned int i, num_syms;
|
|
|
|
local_iplt = elf32_arm_local_iplt (input_bfd);
|
|
if (local_iplt != NULL)
|
|
{
|
|
num_syms = elf_symtab_hdr (input_bfd).sh_info;
|
|
for (i = 0; i < num_syms; i++)
|
|
if (local_iplt[i] != NULL
|
|
&& !elf32_arm_output_plt_map_1 (&osi, TRUE,
|
|
&local_iplt[i]->root,
|
|
&local_iplt[i]->arm))
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
if (htab->dt_tlsdesc_plt != 0)
|
|
{
|
|
/* Mapping symbols for the lazy tls trampoline. */
|
|
if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
|
|
return FALSE;
|
|
|
|
if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
|
|
htab->dt_tlsdesc_plt + 24))
|
|
return FALSE;
|
|
}
|
|
if (htab->tls_trampoline != 0)
|
|
{
|
|
/* Mapping symbols for the tls trampoline. */
|
|
if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
|
|
return FALSE;
|
|
#ifdef FOUR_WORD_PLT
|
|
if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
|
|
htab->tls_trampoline + 12))
|
|
return FALSE;
|
|
#endif
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Allocate target specific section data. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_new_section_hook (bfd *abfd, asection *sec)
|
|
{
|
|
if (!sec->used_by_bfd)
|
|
{
|
|
_arm_elf_section_data *sdata;
|
|
bfd_size_type amt = sizeof (*sdata);
|
|
|
|
sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
|
|
if (sdata == NULL)
|
|
return FALSE;
|
|
sec->used_by_bfd = sdata;
|
|
}
|
|
|
|
return _bfd_elf_new_section_hook (abfd, sec);
|
|
}
|
|
|
|
|
|
/* Used to order a list of mapping symbols by address. */
|
|
|
|
static int
|
|
elf32_arm_compare_mapping (const void * a, const void * b)
|
|
{
|
|
const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
|
|
const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
|
|
|
|
if (amap->vma > bmap->vma)
|
|
return 1;
|
|
else if (amap->vma < bmap->vma)
|
|
return -1;
|
|
else if (amap->type > bmap->type)
|
|
/* Ensure results do not depend on the host qsort for objects with
|
|
multiple mapping symbols at the same address by sorting on type
|
|
after vma. */
|
|
return 1;
|
|
else if (amap->type < bmap->type)
|
|
return -1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
|
|
|
|
static unsigned long
|
|
offset_prel31 (unsigned long addr, bfd_vma offset)
|
|
{
|
|
return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
|
|
}
|
|
|
|
/* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
|
|
relocations. */
|
|
|
|
static void
|
|
copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
|
|
{
|
|
unsigned long first_word = bfd_get_32 (output_bfd, from);
|
|
unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
|
|
|
|
/* High bit of first word is supposed to be zero. */
|
|
if ((first_word & 0x80000000ul) == 0)
|
|
first_word = offset_prel31 (first_word, offset);
|
|
|
|
/* If the high bit of the first word is clear, and the bit pattern is not 0x1
|
|
(EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
|
|
if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
|
|
second_word = offset_prel31 (second_word, offset);
|
|
|
|
bfd_put_32 (output_bfd, first_word, to);
|
|
bfd_put_32 (output_bfd, second_word, to + 4);
|
|
}
|
|
|
|
/* Data for make_branch_to_a8_stub(). */
|
|
|
|
struct a8_branch_to_stub_data
|
|
{
|
|
asection *writing_section;
|
|
bfd_byte *contents;
|
|
};
|
|
|
|
|
|
/* Helper to insert branches to Cortex-A8 erratum stubs in the right
|
|
places for a particular section. */
|
|
|
|
static bfd_boolean
|
|
make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
|
|
void *in_arg)
|
|
{
|
|
struct elf32_arm_stub_hash_entry *stub_entry;
|
|
struct a8_branch_to_stub_data *data;
|
|
bfd_byte *contents;
|
|
unsigned long branch_insn;
|
|
bfd_vma veneered_insn_loc, veneer_entry_loc;
|
|
bfd_signed_vma branch_offset;
|
|
bfd *abfd;
|
|
unsigned int target;
|
|
|
|
stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
|
|
data = (struct a8_branch_to_stub_data *) in_arg;
|
|
|
|
if (stub_entry->target_section != data->writing_section
|
|
|| stub_entry->stub_type < arm_stub_a8_veneer_lwm)
|
|
return TRUE;
|
|
|
|
contents = data->contents;
|
|
|
|
veneered_insn_loc = stub_entry->target_section->output_section->vma
|
|
+ stub_entry->target_section->output_offset
|
|
+ stub_entry->target_value;
|
|
|
|
veneer_entry_loc = stub_entry->stub_sec->output_section->vma
|
|
+ stub_entry->stub_sec->output_offset
|
|
+ stub_entry->stub_offset;
|
|
|
|
if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
|
|
veneered_insn_loc &= ~3u;
|
|
|
|
branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
|
|
|
|
abfd = stub_entry->target_section->owner;
|
|
target = stub_entry->target_value;
|
|
|
|
/* We attempt to avoid this condition by setting stubs_always_after_branch
|
|
in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
|
|
This check is just to be on the safe side... */
|
|
if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
|
|
{
|
|
(*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
|
|
"allocated in unsafe location"), abfd);
|
|
return FALSE;
|
|
}
|
|
|
|
switch (stub_entry->stub_type)
|
|
{
|
|
case arm_stub_a8_veneer_b:
|
|
case arm_stub_a8_veneer_b_cond:
|
|
branch_insn = 0xf0009000;
|
|
goto jump24;
|
|
|
|
case arm_stub_a8_veneer_blx:
|
|
branch_insn = 0xf000e800;
|
|
goto jump24;
|
|
|
|
case arm_stub_a8_veneer_bl:
|
|
{
|
|
unsigned int i1, j1, i2, j2, s;
|
|
|
|
branch_insn = 0xf000d000;
|
|
|
|
jump24:
|
|
if (branch_offset < -16777216 || branch_offset > 16777214)
|
|
{
|
|
/* There's not much we can do apart from complain if this
|
|
happens. */
|
|
(*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
|
|
"of range (input file too large)"), abfd);
|
|
return FALSE;
|
|
}
|
|
|
|
/* i1 = not(j1 eor s), so:
|
|
not i1 = j1 eor s
|
|
j1 = (not i1) eor s. */
|
|
|
|
branch_insn |= (branch_offset >> 1) & 0x7ff;
|
|
branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
|
|
i2 = (branch_offset >> 22) & 1;
|
|
i1 = (branch_offset >> 23) & 1;
|
|
s = (branch_offset >> 24) & 1;
|
|
j1 = (!i1) ^ s;
|
|
j2 = (!i2) ^ s;
|
|
branch_insn |= j2 << 11;
|
|
branch_insn |= j1 << 13;
|
|
branch_insn |= s << 26;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
BFD_FAIL ();
|
|
return FALSE;
|
|
}
|
|
|
|
bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
|
|
bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Do code byteswapping. Return FALSE afterwards so that the section is
|
|
written out as normal. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_write_section (bfd *output_bfd,
|
|
struct bfd_link_info *link_info,
|
|
asection *sec,
|
|
bfd_byte *contents)
|
|
{
|
|
unsigned int mapcount, errcount;
|
|
_arm_elf_section_data *arm_data;
|
|
struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
|
|
elf32_arm_section_map *map;
|
|
elf32_vfp11_erratum_list *errnode;
|
|
bfd_vma ptr;
|
|
bfd_vma end;
|
|
bfd_vma offset = sec->output_section->vma + sec->output_offset;
|
|
bfd_byte tmp;
|
|
unsigned int i;
|
|
|
|
if (globals == NULL)
|
|
return FALSE;
|
|
|
|
/* If this section has not been allocated an _arm_elf_section_data
|
|
structure then we cannot record anything. */
|
|
arm_data = get_arm_elf_section_data (sec);
|
|
if (arm_data == NULL)
|
|
return FALSE;
|
|
|
|
mapcount = arm_data->mapcount;
|
|
map = arm_data->map;
|
|
errcount = arm_data->erratumcount;
|
|
|
|
if (errcount != 0)
|
|
{
|
|
unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
|
|
|
|
for (errnode = arm_data->erratumlist; errnode != 0;
|
|
errnode = errnode->next)
|
|
{
|
|
bfd_vma target = errnode->vma - offset;
|
|
|
|
switch (errnode->type)
|
|
{
|
|
case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
|
|
{
|
|
bfd_vma branch_to_veneer;
|
|
/* Original condition code of instruction, plus bit mask for
|
|
ARM B instruction. */
|
|
unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
|
|
| 0x0a000000;
|
|
|
|
/* The instruction is before the label. */
|
|
target -= 4;
|
|
|
|
/* Above offset included in -4 below. */
|
|
branch_to_veneer = errnode->u.b.veneer->vma
|
|
- errnode->vma - 4;
|
|
|
|
if ((signed) branch_to_veneer < -(1 << 25)
|
|
|| (signed) branch_to_veneer >= (1 << 25))
|
|
(*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
|
|
"range"), output_bfd);
|
|
|
|
insn |= (branch_to_veneer >> 2) & 0xffffff;
|
|
contents[endianflip ^ target] = insn & 0xff;
|
|
contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
|
|
contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
|
|
contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
|
|
}
|
|
break;
|
|
|
|
case VFP11_ERRATUM_ARM_VENEER:
|
|
{
|
|
bfd_vma branch_from_veneer;
|
|
unsigned int insn;
|
|
|
|
/* Take size of veneer into account. */
|
|
branch_from_veneer = errnode->u.v.branch->vma
|
|
- errnode->vma - 12;
|
|
|
|
if ((signed) branch_from_veneer < -(1 << 25)
|
|
|| (signed) branch_from_veneer >= (1 << 25))
|
|
(*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
|
|
"range"), output_bfd);
|
|
|
|
/* Original instruction. */
|
|
insn = errnode->u.v.branch->u.b.vfp_insn;
|
|
contents[endianflip ^ target] = insn & 0xff;
|
|
contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
|
|
contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
|
|
contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
|
|
|
|
/* Branch back to insn after original insn. */
|
|
insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
|
|
contents[endianflip ^ (target + 4)] = insn & 0xff;
|
|
contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
|
|
contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
|
|
contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
|
|
{
|
|
arm_unwind_table_edit *edit_node
|
|
= arm_data->u.exidx.unwind_edit_list;
|
|
/* Now, sec->size is the size of the section we will write. The original
|
|
size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
|
|
markers) was sec->rawsize. (This isn't the case if we perform no
|
|
edits, then rawsize will be zero and we should use size). */
|
|
bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
|
|
unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
|
|
unsigned int in_index, out_index;
|
|
bfd_vma add_to_offsets = 0;
|
|
|
|
for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
|
|
{
|
|
if (edit_node)
|
|
{
|
|
unsigned int edit_index = edit_node->index;
|
|
|
|
if (in_index < edit_index && in_index * 8 < input_size)
|
|
{
|
|
copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
|
|
contents + in_index * 8, add_to_offsets);
|
|
out_index++;
|
|
in_index++;
|
|
}
|
|
else if (in_index == edit_index
|
|
|| (in_index * 8 >= input_size
|
|
&& edit_index == UINT_MAX))
|
|
{
|
|
switch (edit_node->type)
|
|
{
|
|
case DELETE_EXIDX_ENTRY:
|
|
in_index++;
|
|
add_to_offsets += 8;
|
|
break;
|
|
|
|
case INSERT_EXIDX_CANTUNWIND_AT_END:
|
|
{
|
|
asection *text_sec = edit_node->linked_section;
|
|
bfd_vma text_offset = text_sec->output_section->vma
|
|
+ text_sec->output_offset
|
|
+ text_sec->size;
|
|
bfd_vma exidx_offset = offset + out_index * 8;
|
|
unsigned long prel31_offset;
|
|
|
|
/* Note: this is meant to be equivalent to an
|
|
R_ARM_PREL31 relocation. These synthetic
|
|
EXIDX_CANTUNWIND markers are not relocated by the
|
|
usual BFD method. */
|
|
prel31_offset = (text_offset - exidx_offset)
|
|
& 0x7ffffffful;
|
|
|
|
/* First address we can't unwind. */
|
|
bfd_put_32 (output_bfd, prel31_offset,
|
|
&edited_contents[out_index * 8]);
|
|
|
|
/* Code for EXIDX_CANTUNWIND. */
|
|
bfd_put_32 (output_bfd, 0x1,
|
|
&edited_contents[out_index * 8 + 4]);
|
|
|
|
out_index++;
|
|
add_to_offsets -= 8;
|
|
}
|
|
break;
|
|
}
|
|
|
|
edit_node = edit_node->next;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* No more edits, copy remaining entries verbatim. */
|
|
copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
|
|
contents + in_index * 8, add_to_offsets);
|
|
out_index++;
|
|
in_index++;
|
|
}
|
|
}
|
|
|
|
if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
|
|
bfd_set_section_contents (output_bfd, sec->output_section,
|
|
edited_contents,
|
|
(file_ptr) sec->output_offset, sec->size);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Fix code to point to Cortex-A8 erratum stubs. */
|
|
if (globals->fix_cortex_a8)
|
|
{
|
|
struct a8_branch_to_stub_data data;
|
|
|
|
data.writing_section = sec;
|
|
data.contents = contents;
|
|
|
|
bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
|
|
&data);
|
|
}
|
|
|
|
if (mapcount == 0)
|
|
return FALSE;
|
|
|
|
if (globals->byteswap_code)
|
|
{
|
|
qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
|
|
|
|
ptr = map[0].vma;
|
|
for (i = 0; i < mapcount; i++)
|
|
{
|
|
if (i == mapcount - 1)
|
|
end = sec->size;
|
|
else
|
|
end = map[i + 1].vma;
|
|
|
|
switch (map[i].type)
|
|
{
|
|
case 'a':
|
|
/* Byte swap code words. */
|
|
while (ptr + 3 < end)
|
|
{
|
|
tmp = contents[ptr];
|
|
contents[ptr] = contents[ptr + 3];
|
|
contents[ptr + 3] = tmp;
|
|
tmp = contents[ptr + 1];
|
|
contents[ptr + 1] = contents[ptr + 2];
|
|
contents[ptr + 2] = tmp;
|
|
ptr += 4;
|
|
}
|
|
break;
|
|
|
|
case 't':
|
|
/* Byte swap code halfwords. */
|
|
while (ptr + 1 < end)
|
|
{
|
|
tmp = contents[ptr];
|
|
contents[ptr] = contents[ptr + 1];
|
|
contents[ptr + 1] = tmp;
|
|
ptr += 2;
|
|
}
|
|
break;
|
|
|
|
case 'd':
|
|
/* Leave data alone. */
|
|
break;
|
|
}
|
|
ptr = end;
|
|
}
|
|
}
|
|
|
|
free (map);
|
|
arm_data->mapcount = -1;
|
|
arm_data->mapsize = 0;
|
|
arm_data->map = NULL;
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/* Mangle thumb function symbols as we read them in. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_swap_symbol_in (bfd * abfd,
|
|
const void *psrc,
|
|
const void *pshn,
|
|
Elf_Internal_Sym *dst)
|
|
{
|
|
if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
|
|
return FALSE;
|
|
|
|
/* New EABI objects mark thumb function symbols by setting the low bit of
|
|
the address. */
|
|
if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
|
|
|| ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
|
|
{
|
|
if (dst->st_value & 1)
|
|
{
|
|
dst->st_value &= ~(bfd_vma) 1;
|
|
dst->st_target_internal = ST_BRANCH_TO_THUMB;
|
|
}
|
|
else
|
|
dst->st_target_internal = ST_BRANCH_TO_ARM;
|
|
}
|
|
else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
|
|
{
|
|
dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
|
|
dst->st_target_internal = ST_BRANCH_TO_THUMB;
|
|
}
|
|
else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
|
|
dst->st_target_internal = ST_BRANCH_LONG;
|
|
else
|
|
dst->st_target_internal = ST_BRANCH_UNKNOWN;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* Mangle thumb function symbols as we write them out. */
|
|
|
|
static void
|
|
elf32_arm_swap_symbol_out (bfd *abfd,
|
|
const Elf_Internal_Sym *src,
|
|
void *cdst,
|
|
void *shndx)
|
|
{
|
|
Elf_Internal_Sym newsym;
|
|
|
|
/* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
|
|
of the address set, as per the new EABI. We do this unconditionally
|
|
because objcopy does not set the elf header flags until after
|
|
it writes out the symbol table. */
|
|
if (src->st_target_internal == ST_BRANCH_TO_THUMB)
|
|
{
|
|
newsym = *src;
|
|
if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
|
|
newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
|
|
if (newsym.st_shndx != SHN_UNDEF)
|
|
{
|
|
/* Do this only for defined symbols. At link type, the static
|
|
linker will simulate the work of dynamic linker of resolving
|
|
symbols and will carry over the thumbness of found symbols to
|
|
the output symbol table. It's not clear how it happens, but
|
|
the thumbness of undefined symbols can well be different at
|
|
runtime, and writing '1' for them will be confusing for users
|
|
and possibly for dynamic linker itself.
|
|
*/
|
|
newsym.st_value |= 1;
|
|
}
|
|
|
|
src = &newsym;
|
|
}
|
|
bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
|
|
}
|
|
|
|
/* Add the PT_ARM_EXIDX program header. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_modify_segment_map (bfd *abfd,
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
|
{
|
|
struct elf_segment_map *m;
|
|
asection *sec;
|
|
|
|
sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
|
|
if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
|
|
{
|
|
/* If there is already a PT_ARM_EXIDX header, then we do not
|
|
want to add another one. This situation arises when running
|
|
"strip"; the input binary already has the header. */
|
|
m = elf_seg_map (abfd);
|
|
while (m && m->p_type != PT_ARM_EXIDX)
|
|
m = m->next;
|
|
if (!m)
|
|
{
|
|
m = (struct elf_segment_map *)
|
|
bfd_zalloc (abfd, sizeof (struct elf_segment_map));
|
|
if (m == NULL)
|
|
return FALSE;
|
|
m->p_type = PT_ARM_EXIDX;
|
|
m->count = 1;
|
|
m->sections[0] = sec;
|
|
|
|
m->next = elf_seg_map (abfd);
|
|
elf_seg_map (abfd) = m;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* We may add a PT_ARM_EXIDX program header. */
|
|
|
|
static int
|
|
elf32_arm_additional_program_headers (bfd *abfd,
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
|
{
|
|
asection *sec;
|
|
|
|
sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
|
|
if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Hook called by the linker routine which adds symbols from an object
|
|
file. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
|
|
Elf_Internal_Sym *sym, const char **namep,
|
|
flagword *flagsp, asection **secp, bfd_vma *valp)
|
|
{
|
|
if ((abfd->flags & DYNAMIC) == 0
|
|
&& (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
|
|
|| ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
|
|
elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
|
|
|
|
if (elf32_arm_hash_table (info)->vxworks_p
|
|
&& !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
|
|
flagsp, secp, valp))
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* We use this to override swap_symbol_in and swap_symbol_out. */
|
|
const struct elf_size_info elf32_arm_size_info =
|
|
{
|
|
sizeof (Elf32_External_Ehdr),
|
|
sizeof (Elf32_External_Phdr),
|
|
sizeof (Elf32_External_Shdr),
|
|
sizeof (Elf32_External_Rel),
|
|
sizeof (Elf32_External_Rela),
|
|
sizeof (Elf32_External_Sym),
|
|
sizeof (Elf32_External_Dyn),
|
|
sizeof (Elf_External_Note),
|
|
4,
|
|
1,
|
|
32, 2,
|
|
ELFCLASS32, EV_CURRENT,
|
|
bfd_elf32_write_out_phdrs,
|
|
bfd_elf32_write_shdrs_and_ehdr,
|
|
bfd_elf32_checksum_contents,
|
|
bfd_elf32_write_relocs,
|
|
elf32_arm_swap_symbol_in,
|
|
elf32_arm_swap_symbol_out,
|
|
bfd_elf32_slurp_reloc_table,
|
|
bfd_elf32_slurp_symbol_table,
|
|
bfd_elf32_swap_dyn_in,
|
|
bfd_elf32_swap_dyn_out,
|
|
bfd_elf32_swap_reloc_in,
|
|
bfd_elf32_swap_reloc_out,
|
|
bfd_elf32_swap_reloca_in,
|
|
bfd_elf32_swap_reloca_out
|
|
};
|
|
|
|
#define ELF_ARCH bfd_arch_arm
|
|
#define ELF_TARGET_ID ARM_ELF_DATA
|
|
#define ELF_MACHINE_CODE EM_ARM
|
|
#ifdef __QNXTARGET__
|
|
#define ELF_MAXPAGESIZE 0x1000
|
|
#else
|
|
#define ELF_MAXPAGESIZE 0x8000
|
|
#endif
|
|
#define ELF_MINPAGESIZE 0x1000
|
|
#define ELF_COMMONPAGESIZE 0x1000
|
|
|
|
#define bfd_elf32_mkobject elf32_arm_mkobject
|
|
|
|
#define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
|
|
#define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
|
|
#define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
|
|
#define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
|
|
#define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
|
|
#define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
|
|
#define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
|
|
#define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
|
|
#define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
|
|
#define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
|
|
#define bfd_elf32_new_section_hook elf32_arm_new_section_hook
|
|
#define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
|
|
#define bfd_elf32_bfd_final_link elf32_arm_final_link
|
|
|
|
#define elf_backend_get_symbol_type elf32_arm_get_symbol_type
|
|
#define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
|
|
#define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
|
|
#define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
|
|
#define elf_backend_check_relocs elf32_arm_check_relocs
|
|
#define elf_backend_relocate_section elf32_arm_relocate_section
|
|
#define elf_backend_write_section elf32_arm_write_section
|
|
#define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
|
|
#define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
|
|
#define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
|
|
#define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
|
|
#define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
|
|
#define elf_backend_always_size_sections elf32_arm_always_size_sections
|
|
#define elf_backend_init_index_section _bfd_elf_init_2_index_sections
|
|
#define elf_backend_post_process_headers elf32_arm_post_process_headers
|
|
#define elf_backend_reloc_type_class elf32_arm_reloc_type_class
|
|
#define elf_backend_object_p elf32_arm_object_p
|
|
#define elf_backend_fake_sections elf32_arm_fake_sections
|
|
#define elf_backend_section_from_shdr elf32_arm_section_from_shdr
|
|
#define elf_backend_final_write_processing elf32_arm_final_write_processing
|
|
#define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
|
|
#define elf_backend_size_info elf32_arm_size_info
|
|
#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
|
|
#define elf_backend_additional_program_headers elf32_arm_additional_program_headers
|
|
#define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
|
|
#define elf_backend_begin_write_processing elf32_arm_begin_write_processing
|
|
#define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
|
|
|
|
#define elf_backend_can_refcount 1
|
|
#define elf_backend_can_gc_sections 1
|
|
#define elf_backend_plt_readonly 1
|
|
#define elf_backend_want_got_plt 1
|
|
#define elf_backend_want_plt_sym 0
|
|
#define elf_backend_may_use_rel_p 1
|
|
#define elf_backend_may_use_rela_p 0
|
|
#define elf_backend_default_use_rela_p 0
|
|
|
|
#define elf_backend_got_header_size 12
|
|
|
|
#undef elf_backend_obj_attrs_vendor
|
|
#define elf_backend_obj_attrs_vendor "aeabi"
|
|
#undef elf_backend_obj_attrs_section
|
|
#define elf_backend_obj_attrs_section ".ARM.attributes"
|
|
#undef elf_backend_obj_attrs_arg_type
|
|
#define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
|
|
#undef elf_backend_obj_attrs_section_type
|
|
#define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
|
|
#define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
|
|
#define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
|
|
|
|
#include "elf32-target.h"
|
|
|
|
/* Native Client targets. */
|
|
|
|
#undef TARGET_LITTLE_SYM
|
|
#define TARGET_LITTLE_SYM bfd_elf32_littlearm_nacl_vec
|
|
#undef TARGET_LITTLE_NAME
|
|
#define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
|
|
#undef TARGET_BIG_SYM
|
|
#define TARGET_BIG_SYM bfd_elf32_bigarm_nacl_vec
|
|
#undef TARGET_BIG_NAME
|
|
#define TARGET_BIG_NAME "elf32-bigarm-nacl"
|
|
|
|
/* Like elf32_arm_link_hash_table_create -- but overrides
|
|
appropriately for NaCl. */
|
|
|
|
static struct bfd_link_hash_table *
|
|
elf32_arm_nacl_link_hash_table_create (bfd *abfd)
|
|
{
|
|
struct bfd_link_hash_table *ret;
|
|
|
|
ret = elf32_arm_link_hash_table_create (abfd);
|
|
if (ret)
|
|
{
|
|
struct elf32_arm_link_hash_table *htab
|
|
= (struct elf32_arm_link_hash_table *) ret;
|
|
|
|
htab->nacl_p = 1;
|
|
|
|
htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
|
|
htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Since NaCl doesn't use the ARM-specific unwind format, we don't
|
|
really need to use elf32_arm_modify_segment_map. But we do it
|
|
anyway just to reduce gratuitous differences with the stock ARM backend. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
|
|
{
|
|
return (elf32_arm_modify_segment_map (abfd, info)
|
|
&& nacl_modify_segment_map (abfd, info));
|
|
}
|
|
|
|
static void
|
|
elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
|
|
{
|
|
elf32_arm_final_write_processing (abfd, linker);
|
|
nacl_final_write_processing (abfd, linker);
|
|
}
|
|
|
|
|
|
#undef elf32_bed
|
|
#define elf32_bed elf32_arm_nacl_bed
|
|
#undef bfd_elf32_bfd_link_hash_table_create
|
|
#define bfd_elf32_bfd_link_hash_table_create \
|
|
elf32_arm_nacl_link_hash_table_create
|
|
#undef elf_backend_plt_alignment
|
|
#define elf_backend_plt_alignment 4
|
|
#undef elf_backend_modify_segment_map
|
|
#define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
|
|
#undef elf_backend_modify_program_headers
|
|
#define elf_backend_modify_program_headers nacl_modify_program_headers
|
|
#undef elf_backend_final_write_processing
|
|
#define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
|
|
|
|
#undef ELF_MAXPAGESIZE
|
|
#define ELF_MAXPAGESIZE 0x10000
|
|
#undef ELF_MINPAGESIZE
|
|
#undef ELF_COMMONPAGESIZE
|
|
|
|
|
|
#include "elf32-target.h"
|
|
|
|
/* Reset to defaults. */
|
|
#undef elf_backend_plt_alignment
|
|
#undef elf_backend_modify_segment_map
|
|
#define elf_backend_modify_segment_map elf32_arm_modify_segment_map
|
|
#undef elf_backend_modify_program_headers
|
|
#undef elf_backend_final_write_processing
|
|
#define elf_backend_final_write_processing elf32_arm_final_write_processing
|
|
#undef ELF_MINPAGESIZE
|
|
#define ELF_MINPAGESIZE 0x1000
|
|
#undef ELF_COMMONPAGESIZE
|
|
#define ELF_COMMONPAGESIZE 0x1000
|
|
|
|
|
|
/* VxWorks Targets. */
|
|
|
|
#undef TARGET_LITTLE_SYM
|
|
#define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
|
|
#undef TARGET_LITTLE_NAME
|
|
#define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
|
|
#undef TARGET_BIG_SYM
|
|
#define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
|
|
#undef TARGET_BIG_NAME
|
|
#define TARGET_BIG_NAME "elf32-bigarm-vxworks"
|
|
|
|
/* Like elf32_arm_link_hash_table_create -- but overrides
|
|
appropriately for VxWorks. */
|
|
|
|
static struct bfd_link_hash_table *
|
|
elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
|
|
{
|
|
struct bfd_link_hash_table *ret;
|
|
|
|
ret = elf32_arm_link_hash_table_create (abfd);
|
|
if (ret)
|
|
{
|
|
struct elf32_arm_link_hash_table *htab
|
|
= (struct elf32_arm_link_hash_table *) ret;
|
|
htab->use_rel = 0;
|
|
htab->vxworks_p = 1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
|
|
{
|
|
elf32_arm_final_write_processing (abfd, linker);
|
|
elf_vxworks_final_write_processing (abfd, linker);
|
|
}
|
|
|
|
#undef elf32_bed
|
|
#define elf32_bed elf32_arm_vxworks_bed
|
|
|
|
#undef bfd_elf32_bfd_link_hash_table_create
|
|
#define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
|
|
#undef elf_backend_final_write_processing
|
|
#define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
|
|
#undef elf_backend_emit_relocs
|
|
#define elf_backend_emit_relocs elf_vxworks_emit_relocs
|
|
|
|
#undef elf_backend_may_use_rel_p
|
|
#define elf_backend_may_use_rel_p 0
|
|
#undef elf_backend_may_use_rela_p
|
|
#define elf_backend_may_use_rela_p 1
|
|
#undef elf_backend_default_use_rela_p
|
|
#define elf_backend_default_use_rela_p 1
|
|
#undef elf_backend_want_plt_sym
|
|
#define elf_backend_want_plt_sym 1
|
|
#undef ELF_MAXPAGESIZE
|
|
#define ELF_MAXPAGESIZE 0x1000
|
|
|
|
#include "elf32-target.h"
|
|
|
|
|
|
/* Merge backend specific data from an object file to the output
|
|
object file when linking. */
|
|
|
|
static bfd_boolean
|
|
elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
|
|
{
|
|
flagword out_flags;
|
|
flagword in_flags;
|
|
bfd_boolean flags_compatible = TRUE;
|
|
asection *sec;
|
|
|
|
/* Check if we have the same endianness. */
|
|
if (! _bfd_generic_verify_endian_match (ibfd, obfd))
|
|
return FALSE;
|
|
|
|
if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
|
|
return TRUE;
|
|
|
|
if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
|
|
return FALSE;
|
|
|
|
/* The input BFD must have had its flags initialised. */
|
|
/* The following seems bogus to me -- The flags are initialized in
|
|
the assembler but I don't think an elf_flags_init field is
|
|
written into the object. */
|
|
/* BFD_ASSERT (elf_flags_init (ibfd)); */
|
|
|
|
in_flags = elf_elfheader (ibfd)->e_flags;
|
|
out_flags = elf_elfheader (obfd)->e_flags;
|
|
|
|
/* In theory there is no reason why we couldn't handle this. However
|
|
in practice it isn't even close to working and there is no real
|
|
reason to want it. */
|
|
if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
|
|
&& !(ibfd->flags & DYNAMIC)
|
|
&& (in_flags & EF_ARM_BE8))
|
|
{
|
|
_bfd_error_handler (_("error: %B is already in final BE8 format"),
|
|
ibfd);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!elf_flags_init (obfd))
|
|
{
|
|
/* If the input is the default architecture and had the default
|
|
flags then do not bother setting the flags for the output
|
|
architecture, instead allow future merges to do this. If no
|
|
future merges ever set these flags then they will retain their
|
|
uninitialised values, which surprise surprise, correspond
|
|
to the default values. */
|
|
if (bfd_get_arch_info (ibfd)->the_default
|
|
&& elf_elfheader (ibfd)->e_flags == 0)
|
|
return TRUE;
|
|
|
|
elf_flags_init (obfd) = TRUE;
|
|
elf_elfheader (obfd)->e_flags = in_flags;
|
|
|
|
if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
|
|
&& bfd_get_arch_info (obfd)->the_default)
|
|
return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Determine what should happen if the input ARM architecture
|
|
does not match the output ARM architecture. */
|
|
if (! bfd_arm_merge_machines (ibfd, obfd))
|
|
return FALSE;
|
|
|
|
/* Identical flags must be compatible. */
|
|
if (in_flags == out_flags)
|
|
return TRUE;
|
|
|
|
/* Check to see if the input BFD actually contains any sections. If
|
|
not, its flags may not have been initialised either, but it
|
|
cannot actually cause any incompatiblity. Do not short-circuit
|
|
dynamic objects; their section list may be emptied by
|
|
elf_link_add_object_symbols.
|
|
|
|
Also check to see if there are no code sections in the input.
|
|
In this case there is no need to check for code specific flags.
|
|
XXX - do we need to worry about floating-point format compatability
|
|
in data sections ? */
|
|
if (!(ibfd->flags & DYNAMIC))
|
|
{
|
|
bfd_boolean null_input_bfd = TRUE;
|
|
bfd_boolean only_data_sections = TRUE;
|
|
|
|
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
|
{
|
|
/* Ignore synthetic glue sections. */
|
|
if (strcmp (sec->name, ".glue_7")
|
|
&& strcmp (sec->name, ".glue_7t"))
|
|
{
|
|
if ((bfd_get_section_flags (ibfd, sec)
|
|
& (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
|
|
== (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
|
|
only_data_sections = FALSE;
|
|
|
|
null_input_bfd = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (null_input_bfd || only_data_sections)
|
|
return TRUE;
|
|
}
|
|
|
|
/* Complain about various flag mismatches. */
|
|
if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
|
|
EF_ARM_EABI_VERSION (out_flags)))
|
|
{
|
|
_bfd_error_handler
|
|
(_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
|
|
ibfd, obfd,
|
|
(in_flags & EF_ARM_EABIMASK) >> 24,
|
|
(out_flags & EF_ARM_EABIMASK) >> 24);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Not sure what needs to be checked for EABI versions >= 1. */
|
|
/* VxWorks libraries do not use these flags. */
|
|
if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
|
|
&& get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
|
|
&& EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
|
|
{
|
|
if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
|
|
{
|
|
_bfd_error_handler
|
|
(_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
|
|
ibfd, obfd,
|
|
in_flags & EF_ARM_APCS_26 ? 26 : 32,
|
|
out_flags & EF_ARM_APCS_26 ? 26 : 32);
|
|
flags_compatible = FALSE;
|
|
}
|
|
|
|
if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
|
|
{
|
|
if (in_flags & EF_ARM_APCS_FLOAT)
|
|
_bfd_error_handler
|
|
(_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
|
|
ibfd, obfd);
|
|
else
|
|
_bfd_error_handler
|
|
(_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
|
|
ibfd, obfd);
|
|
|
|
flags_compatible = FALSE;
|
|
}
|
|
|
|
if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
|
|
{
|
|
if (in_flags & EF_ARM_VFP_FLOAT)
|
|
_bfd_error_handler
|
|
(_("error: %B uses VFP instructions, whereas %B does not"),
|
|
ibfd, obfd);
|
|
else
|
|
_bfd_error_handler
|
|
(_("error: %B uses FPA instructions, whereas %B does not"),
|
|
ibfd, obfd);
|
|
|
|
flags_compatible = FALSE;
|
|
}
|
|
|
|
if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
|
|
{
|
|
if (in_flags & EF_ARM_MAVERICK_FLOAT)
|
|
_bfd_error_handler
|
|
(_("error: %B uses Maverick instructions, whereas %B does not"),
|
|
ibfd, obfd);
|
|
else
|
|
_bfd_error_handler
|
|
(_("error: %B does not use Maverick instructions, whereas %B does"),
|
|
ibfd, obfd);
|
|
|
|
flags_compatible = FALSE;
|
|
}
|
|
|
|
#ifdef EF_ARM_SOFT_FLOAT
|
|
if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
|
|
{
|
|
/* We can allow interworking between code that is VFP format
|
|
layout, and uses either soft float or integer regs for
|
|
passing floating point arguments and results. We already
|
|
know that the APCS_FLOAT flags match; similarly for VFP
|
|
flags. */
|
|
if ((in_flags & EF_ARM_APCS_FLOAT) != 0
|
|
|| (in_flags & EF_ARM_VFP_FLOAT) == 0)
|
|
{
|
|
if (in_flags & EF_ARM_SOFT_FLOAT)
|
|
_bfd_error_handler
|
|
(_("error: %B uses software FP, whereas %B uses hardware FP"),
|
|
ibfd, obfd);
|
|
else
|
|
_bfd_error_handler
|
|
(_("error: %B uses hardware FP, whereas %B uses software FP"),
|
|
ibfd, obfd);
|
|
|
|
flags_compatible = FALSE;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Interworking mismatch is only a warning. */
|
|
if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
|
|
{
|
|
if (in_flags & EF_ARM_INTERWORK)
|
|
{
|
|
_bfd_error_handler
|
|
(_("Warning: %B supports interworking, whereas %B does not"),
|
|
ibfd, obfd);
|
|
}
|
|
else
|
|
{
|
|
_bfd_error_handler
|
|
(_("Warning: %B does not support interworking, whereas %B does"),
|
|
ibfd, obfd);
|
|
}
|
|
}
|
|
}
|
|
|
|
return flags_compatible;
|
|
}
|
|
|
|
|
|
/* Symbian OS Targets. */
|
|
|
|
#undef TARGET_LITTLE_SYM
|
|
#define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
|
|
#undef TARGET_LITTLE_NAME
|
|
#define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
|
|
#undef TARGET_BIG_SYM
|
|
#define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
|
|
#undef TARGET_BIG_NAME
|
|
#define TARGET_BIG_NAME "elf32-bigarm-symbian"
|
|
|
|
/* Like elf32_arm_link_hash_table_create -- but overrides
|
|
appropriately for Symbian OS. */
|
|
|
|
static struct bfd_link_hash_table *
|
|
elf32_arm_symbian_link_hash_table_create (bfd *abfd)
|
|
{
|
|
struct bfd_link_hash_table *ret;
|
|
|
|
ret = elf32_arm_link_hash_table_create (abfd);
|
|
if (ret)
|
|
{
|
|
struct elf32_arm_link_hash_table *htab
|
|
= (struct elf32_arm_link_hash_table *)ret;
|
|
/* There is no PLT header for Symbian OS. */
|
|
htab->plt_header_size = 0;
|
|
/* The PLT entries are each one instruction and one word. */
|
|
htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
|
|
htab->symbian_p = 1;
|
|
/* Symbian uses armv5t or above, so use_blx is always true. */
|
|
htab->use_blx = 1;
|
|
htab->root.is_relocatable_executable = 1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static const struct bfd_elf_special_section
|
|
elf32_arm_symbian_special_sections[] =
|
|
{
|
|
/* In a BPABI executable, the dynamic linking sections do not go in
|
|
the loadable read-only segment. The post-linker may wish to
|
|
refer to these sections, but they are not part of the final
|
|
program image. */
|
|
{ STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
|
|
{ STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
|
|
{ STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
|
|
{ STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
|
|
{ STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
|
|
/* These sections do not need to be writable as the SymbianOS
|
|
postlinker will arrange things so that no dynamic relocation is
|
|
required. */
|
|
{ STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
|
|
{ STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
|
|
{ STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
|
|
{ NULL, 0, 0, 0, 0 }
|
|
};
|
|
|
|
static void
|
|
elf32_arm_symbian_begin_write_processing (bfd *abfd,
|
|
struct bfd_link_info *link_info)
|
|
{
|
|
/* BPABI objects are never loaded directly by an OS kernel; they are
|
|
processed by a postlinker first, into an OS-specific format. If
|
|
the D_PAGED bit is set on the file, BFD will align segments on
|
|
page boundaries, so that an OS can directly map the file. With
|
|
BPABI objects, that just results in wasted space. In addition,
|
|
because we clear the D_PAGED bit, map_sections_to_segments will
|
|
recognize that the program headers should not be mapped into any
|
|
loadable segment. */
|
|
abfd->flags &= ~D_PAGED;
|
|
elf32_arm_begin_write_processing (abfd, link_info);
|
|
}
|
|
|
|
static bfd_boolean
|
|
elf32_arm_symbian_modify_segment_map (bfd *abfd,
|
|
struct bfd_link_info *info)
|
|
{
|
|
struct elf_segment_map *m;
|
|
asection *dynsec;
|
|
|
|
/* BPABI shared libraries and executables should have a PT_DYNAMIC
|
|
segment. However, because the .dynamic section is not marked
|
|
with SEC_LOAD, the generic ELF code will not create such a
|
|
segment. */
|
|
dynsec = bfd_get_section_by_name (abfd, ".dynamic");
|
|
if (dynsec)
|
|
{
|
|
for (m = elf_seg_map (abfd); m != NULL; m = m->next)
|
|
if (m->p_type == PT_DYNAMIC)
|
|
break;
|
|
|
|
if (m == NULL)
|
|
{
|
|
m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
|
|
m->next = elf_seg_map (abfd);
|
|
elf_seg_map (abfd) = m;
|
|
}
|
|
}
|
|
|
|
/* Also call the generic arm routine. */
|
|
return elf32_arm_modify_segment_map (abfd, info);
|
|
}
|
|
|
|
/* Return address for Ith PLT stub in section PLT, for relocation REL
|
|
or (bfd_vma) -1 if it should not be included. */
|
|
|
|
static bfd_vma
|
|
elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
|
|
const arelent *rel ATTRIBUTE_UNUSED)
|
|
{
|
|
return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
|
|
}
|
|
|
|
|
|
#undef elf32_bed
|
|
#define elf32_bed elf32_arm_symbian_bed
|
|
|
|
/* The dynamic sections are not allocated on SymbianOS; the postlinker
|
|
will process them and then discard them. */
|
|
#undef ELF_DYNAMIC_SEC_FLAGS
|
|
#define ELF_DYNAMIC_SEC_FLAGS \
|
|
(SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
|
|
|
|
#undef elf_backend_emit_relocs
|
|
|
|
#undef bfd_elf32_bfd_link_hash_table_create
|
|
#define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
|
|
#undef elf_backend_special_sections
|
|
#define elf_backend_special_sections elf32_arm_symbian_special_sections
|
|
#undef elf_backend_begin_write_processing
|
|
#define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
|
|
#undef elf_backend_final_write_processing
|
|
#define elf_backend_final_write_processing elf32_arm_final_write_processing
|
|
|
|
#undef elf_backend_modify_segment_map
|
|
#define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
|
|
|
|
/* There is no .got section for BPABI objects, and hence no header. */
|
|
#undef elf_backend_got_header_size
|
|
#define elf_backend_got_header_size 0
|
|
|
|
/* Similarly, there is no .got.plt section. */
|
|
#undef elf_backend_want_got_plt
|
|
#define elf_backend_want_got_plt 0
|
|
|
|
#undef elf_backend_plt_sym_val
|
|
#define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
|
|
|
|
#undef elf_backend_may_use_rel_p
|
|
#define elf_backend_may_use_rel_p 1
|
|
#undef elf_backend_may_use_rela_p
|
|
#define elf_backend_may_use_rela_p 0
|
|
#undef elf_backend_default_use_rela_p
|
|
#define elf_backend_default_use_rela_p 0
|
|
#undef elf_backend_want_plt_sym
|
|
#define elf_backend_want_plt_sym 0
|
|
#undef ELF_MAXPAGESIZE
|
|
#define ELF_MAXPAGESIZE 0x8000
|
|
|
|
#include "elf32-target.h"
|