binutils-gdb/gdb/remote-sp64sim.c
Stu Grossman 25286543da Sun Aug 1 22:58:18 1993 Stu Grossman (grossman at cygnus.com)
* Makefile.in (CLIBS):  Reorder to make Lynx ld happy.
	* (HFILES):  New file thread.h.
	* (OBS):  New file thread.c.
	* configure.in:  Host config for Lynx/386.
	* fork-child.c (fork_inferior):  Call init_thread_list().
	* infrun.c (resume):  Add pid to invocation of target_resume().
	* (wait_for_inferior): Pay attention to pid from target_wait().
	Multi-threading code now uses this to determine what to do.
	* inftarg.c (child_wait):  Conditionalize based on CHILD_WAIT macro.
	Use target_pid_to_str() macro throughout when printing pid.
	* inferior.h (child_resume):  Add pid to prototype.
	* hppab-nat.c hppah-nat.c infptrace.c (child_resume):  Pass in pid as
	argument, instead of using inferior_pid.
	* procfs.c (procfs_resume):  Pass in pid as argument.  Ignored for
	now.  Use target_pid_to_str() macro throughout for printing process id.
	* remote-adapt.c (adapt_resume):  Pass in pid as argument.
	* remote-eb.c (eb_resume):  Pass in pid as argument.
	* remote-es.c (es1800_resume):  Pass in pid as argument.
	* remote-hms.c (hms_resume):  Pass in pid as argument.
	* remote-mips.c (mips_resume):  Pass in pid as argument.
	* remote-mm.c (mm_resume):  Pass in pid as argument.
	* remote-monitor.c (monitor_resume):  Pass in pid as argument.
	* remote-nindy.c (nindy_resume):  Pass in pid as argument.
	* remote-sa.sparc.c (remote_resume):  Pass in pid as argument.
	* remote-sim.c (rem_resume):  Pass in pid as argument.
	* remote-sp64sim.c (simif_resume):  Pass in pid as argument.
	* remote-st.c (st2000_resume):  Pass in pid as argument.
	* remote-udi.c (udi_resume):  Pass in pid as argument.
	* remote-vx.c (vx_resume):  Pass in pid as argument.
	* remote-z8k.c (rem_resume):  Pass in pid as argument.
	* remote.c (remote_resume):  Pass in pid as argument.
	* solib.c (solid_create_inferior_hook):  Pass inferior_pid to
	target_resume().
	* target.c (normal_pid_to_str):  New routine to print out process
	ID normally.
	* target.h (struct target_ops):  Add pid to prototype at
	to_resume().  (target_resume):  Add pid argument.
	* (target_pid_to_str):  Default definition for normal type pids.
	* thread.c, thread.c:  New modules for multi thread/process control.
1993-08-02 06:25:36 +00:00

491 lines
12 KiB
C

/* Generic remote debugging interface for simulators.
Copyright 1993 Free Software Foundation, Inc.
Contributed by Cygnus Support.
Steve Chamberlain (sac@cygnus.com) and Doug Evans (dje@cygnus.com).
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "defs.h"
#include "inferior.h"
#include "wait.h"
#include "value.h"
#include <string.h>
#include <ctype.h>
#include <fcntl.h>
#include <signal.h>
#include <setjmp.h>
#include <errno.h>
#include "terminal.h"
#include "target.h"
#include "gdbcore.h"
#include "remote-sim.h"
/* Naming conventions:
simif_xxx are internal objects that describe top level interfaces to the
simulator (simif for SIMulator InterFace, duh...).
sim_xxx are external counterparts to the simif_xxx objects that must be
provided by the simulator.
See simif.h for a description. */
/* Forward data declarations */
extern struct target_ops simif_ops;
int sim_verbose = 0; /* available to the simulator to use */
static int program_loaded = 0;
static void dump_mem ();
static void
simif_fetch_register (regno)
int regno;
{
if (regno == -1)
{
for (regno = 0; regno < NUM_REGS; regno++)
simif_fetch_register (regno);
}
else
{
char buf[MAX_REGISTER_RAW_SIZE];
sim_fetch_register (regno, buf);
supply_register (regno, buf);
if (sim_verbose)
{
printf_filtered ("simif_fetch_register: %d", regno);
/* FIXME: We could print something more intelligible. */
dump_mem (buf, REGISTER_RAW_SIZE (regno));
}
}
}
static void
simif_store_register (regno)
int regno;
{
if (regno == -1)
{
for (regno = 0; regno < NUM_REGS; regno++)
simif_store_register (regno);
}
else
{
/* FIXME: Until read_register() returns LONGEST, we have this. */
char value[MAX_REGISTER_RAW_SIZE];
read_register_gen (regno, value);
SWAP_TARGET_AND_HOST (value, REGISTER_RAW_SIZE (regno));
sim_store_register (regno, value);
if (sim_verbose)
{
printf_filtered ("simif_store_register: %d", regno);
/* FIXME: We could print something more intelligible. */
dump_mem (value, REGISTER_RAW_SIZE (regno));
}
}
}
static void
simif_kill ()
{
if (sim_verbose)
printf_filtered ("simif_kill\n");
sim_kill (); /* close fd's, remove mappings */
inferior_pid = 0;
}
/* Load an executable file into the target process. This is expected to
not only bring new code into the target process, but also to update
GDB's symbol tables to match. */
static void
simif_load (prog, fromtty)
char *prog;
int fromtty;
{
bfd *abfd;
if (sim_verbose)
printf_filtered ("simif_load: prog \"%s\"\n", prog);
inferior_pid = 0;
program_loaded = 0;
abfd = bfd_openr (prog, (char *) 0);
if (!abfd)
error ("Unable to open file %s.", prog);
if (bfd_check_format (abfd, bfd_object) == 0)
error ("File is not an object file.");
if (sim_load (abfd, prog) != 0)
return;
program_loaded = 1;
sim_set_pc (abfd->start_address);
}
/*
* This is a utility routine that sim_load() can call to do the work.
* The result is 0 for success, non-zero for failure.
*
* Eg: int sim_load (bfd *bfd, char *prog) { return sim_load_standard (bfd); }
*/
sim_load_standard (abfd)
bfd *abfd;
{
asection *s;
s = abfd->sections;
while (s != (asection *)NULL)
{
if (s->flags & SEC_LOAD)
{
int i;
int delta = 4096;
char *buffer = xmalloc (delta);
printf_filtered ("%s\t: 0x%4x .. 0x%4x ",
s->name, s->vma, s->vma + s->_raw_size);
for (i = 0; i < s->_raw_size; i+= delta)
{
int sub_delta = delta;
if (sub_delta > s->_raw_size - i)
sub_delta = s->_raw_size - i ;
bfd_get_section_contents (abfd, s, buffer, i, sub_delta);
sim_write (s->vma + i, buffer, sub_delta);
printf_filtered ("*");
fflush (stdout);
}
printf_filtered ("\n");
free (buffer);
}
s = s->next;
}
return 0;
}
/* Start an inferior process and set inferior_pid to its pid.
EXEC_FILE is the file to run.
ALLARGS is a string containing the arguments to the program.
ENV is the environment vector to pass. Errors reported with error().
On VxWorks and various standalone systems, we ignore exec_file. */
/* This is called not only when we first attach, but also when the
user types "run" after having attached. */
static void
simif_create_inferior (exec_file, args, env)
char *exec_file;
char *args;
char **env;
{
int len,entry_pt;
char *arg_buf,**argv;
if (! program_loaded)
error ("No program loaded.");
if (sim_verbose)
printf_filtered ("simif_create_inferior: exec_file \"%s\", args \"%s\"\n",
exec_file, args);
if (exec_file == 0 || exec_bfd == 0)
error ("No exec file specified.");
entry_pt = (int) bfd_get_start_address (exec_bfd);
simif_kill (NULL, NULL);
remove_breakpoints ();
init_wait_for_inferior ();
len = 5 + strlen (exec_file) + 1 + strlen (args) + 1 + /*slop*/ 10;
arg_buf = (char *) alloca (len);
arg_buf[0] = '\0';
strcat (arg_buf, exec_file);
strcat (arg_buf, " ");
strcat (arg_buf, args);
argv = buildargv (arg_buf);
make_cleanup (freeargv, (char *) argv);
if (sim_set_args (argv, env) != 0)
return;
inferior_pid = 42;
insert_breakpoints (); /* Needed to get correct instruction in cache */
proceed (entry_pt, -1, 0);
}
/* The open routine takes the rest of the parameters from the command,
and (if successful) pushes a new target onto the stack.
Targets should supply this routine, if only to provide an error message. */
/* Called when selecting the simulator. EG: (gdb) target sim name. */
static void
simif_open (args, from_tty)
char *args;
int from_tty;
{
if (sim_verbose)
printf_filtered ("simif_open: args \"%s\"\n", args);
if (sim_open (args) != 0)
{
error ("Unable to initialize simulator (insufficient memory?).");
return;
}
push_target (&simif_ops);
target_fetch_registers (-1);
/* FIXME: check from_tty here? */
printf_filtered ("Connected to the simulator.\n");
}
/* Does whatever cleanup is required for a target that we are no longer
going to be calling. Argument says whether we are quitting gdb and
should not get hung in case of errors, or whether we want a clean
termination even if it takes a while. This routine is automatically
always called just before a routine is popped off the target stack.
Closing file descriptors and freeing memory are typical things it should
do. */
/* Close out all files and local state before this target loses control. */
static void
simif_close (quitting)
int quitting;
{
if (sim_verbose)
printf_filtered ("simif_close: quitting %d\n", quitting);
program_loaded = 0;
/* FIXME: Need to call sim_close() to close all files and
delete all mappings. */
}
/* Takes a program previously attached to and detaches it.
The program may resume execution (some targets do, some don't) and will
no longer stop on signals, etc. We better not have left any breakpoints
in the program or it'll die when it hits one. ARGS is arguments
typed by the user (e.g. a signal to send the process). FROM_TTY
says whether to be verbose or not. */
/* Terminate the open connection to the remote debugger.
Use this when you want to detach and do something else with your gdb. */
static void
simif_detach (args,from_tty)
char *args;
int from_tty;
{
if (sim_verbose)
printf_filtered ("simif_detach: args \"%s\"\n", args);
pop_target (); /* calls simif_close to do the real work */
if (from_tty)
printf_filtered ("Ending simulator %s debugging\n", target_shortname);
}
/* Resume execution of the target process. STEP says whether to single-step
or to run free; SIGGNAL is the signal value (e.g. SIGINT) to be given
to the target, or zero for no signal. */
static void
simif_resume (pid, step, siggnal)
int pid, step, siggnal;
{
if (sim_verbose)
printf_filtered ("simif_resume: step %d, signal %d\n", step, siggnal);
sim_resume (step, siggnal);
}
/* Wait for inferior process to do something. Return pid of child,
or -1 in case of error; store status through argument pointer STATUS,
just as `wait' would. */
static int
simif_wait (status)
WAITTYPE *status;
{
if (sim_verbose)
printf_filtered ("simif_wait: ");
#if 1
*status = sim_stop_signal ();
#else
WSETSTOP (*status, sim_stop_signal ());
#endif
if (sim_verbose)
printf_filtered ("status %d\n", *status);
return 0;
}
/* Get ready to modify the registers array. On machines which store
individual registers, this doesn't need to do anything. On machines
which store all the registers in one fell swoop, this makes sure
that registers contains all the registers from the program being
debugged. */
static void
simif_prepare_to_store ()
{
/* Do nothing, since we can store individual regs */
}
static int
simif_xfer_inferior_memory (memaddr, myaddr, len, write, target)
CORE_ADDR memaddr;
char *myaddr;
int len;
int write;
struct target_ops *target; /* ignored */
{
if (! program_loaded)
error ("No program loaded.");
if (sim_verbose)
{
printf_filtered ("simif_xfer_inferior_memory: myaddr 0x%x, memaddr 0x%x, len %d, write %d\n",
myaddr, memaddr, len, write);
if (sim_verbose && write)
dump_mem(myaddr, len);
}
if (write)
{
len = sim_write (memaddr, myaddr, len);
}
else
{
len = sim_read (memaddr, myaddr, len);
if (sim_verbose && len > 0)
dump_mem(myaddr, len);
}
return len;
}
static void
simif_files_info (target)
struct target_ops *target;
{
char *file = "nothing";
if (exec_bfd)
file = bfd_get_filename (exec_bfd);
if (sim_verbose)
printf_filtered ("simif_files_info: file \"%s\"\n", file);
if (exec_bfd)
{
printf_filtered ("\tAttached to %s running program %s\n",
target_shortname, file);
sim_info ();
}
}
/* Clear the sims notion of what the break points are. */
static void
simif_mourn_inferior ()
{
if (sim_verbose)
printf_filtered ("simif_mourn_inferior:\n");
remove_breakpoints ();
generic_mourn_inferior ();
}
/* Define the target subroutine names */
struct target_ops simif_ops =
{
"sim", "simulator",
"Use the simulator",
simif_open, simif_close,
0, simif_detach, simif_resume, simif_wait, /* attach */
simif_fetch_register, simif_store_register,
simif_prepare_to_store,
simif_xfer_inferior_memory,
simif_files_info,
0, 0, /* Breakpoints */
0, 0, 0, 0, 0, /* Terminal handling */
simif_kill, /* FIXME, kill */
simif_load,
0, /* lookup_symbol */
simif_create_inferior, /* create_inferior */
simif_mourn_inferior, /* mourn_inferior FIXME */
0, /* can_run */
0, /* notice_signals */
process_stratum, 0, /* next */
1, 1, 1, 1, 1, /* all mem, mem, stack, regs, exec */
0, 0, /* Section pointers */
OPS_MAGIC, /* Always the last thing */
};
static void
simif_snoop ()
{
sim_verbose = ! sim_verbose;
if (sim_verbose)
printf_filtered ("Snoop enabled\n");
else
printf_filtered ("Snoop disabled\n");
}
/***********************************************************************/
void
_initialize_remote_sim ()
{
add_target (&simif_ops);
add_com ("snoop", class_obscure, simif_snoop,
"Show what commands are going to the simulator");
}
static void
dump_mem (buf, len)
char *buf;
int len;
{
if (len <= 8)
{
if (len == 8 || len == 4)
{
long l[2];
memcpy (l, buf, len);
printf_filtered ("\t0x%x", l[0]);
printf_filtered (len == 8 ? " 0x%x\n" : "\n", l[1]);
}
else
{
int i;
printf_filtered ("\t");
for (i = 0; i < len; i++)
printf_filtered ("0x%x ", buf[i]);
printf_filtered ("\n");
}
}
}