e17a411335
extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. * findvar.c (extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * gdbcore.h (read_memory_integer, safe_read_memory_integer, read_memory_unsigned_integer, write_memory_signed_integer, write_memory_unsigned_integer): Add BYTE_ORDER parameter. * corefile.c (struct captured_read_memory_integer_arguments): Add BYTE_ORDER member. (safe_read_memory_integer): Add BYTE_ORDER parameter. Store it into struct captured_read_memory_integer_arguments. (do_captured_read_memory_integer): Pass it to read_memory_integer. (read_memory_integer): Add BYTE_ORDER parameter. Pass it to extract_signed_integer. (read_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. (write_memory_signed_integer): Add BYTE_ORDER parameter. Pass it to store_signed_integer. (write_memory_unsigned_integer): Add BYTE_ORDER parameter. Pass it to store_unsigned_integer. * target.h (get_target_memory_unsigned): Add BYTE_ORDER parameter. * target.c (get_target_memory_unsigned): Add BYTE_ORDER parameter. Pass it to extract_unsigned_integer. Update calls to extract_signed_integer, extract_unsigned_integer, extract_long_unsigned_integer, store_signed_integer, store_unsigned_integer, read_memory_integer, read_memory_unsigned_integer, safe_read_memory_integer, write_memory_signed_integer, write_memory_unsigned_integer, and get_target_memory_unsigned to pass byte order: * ada-lang.c (ada_value_binop): Update. * ada-valprint.c (char_at): Update. * alpha-osf1-tdep.c (alpha_osf1_sigcontext_addr): Update. * alpha-tdep.c (alpha_lds, alpha_sts, alpha_push_dummy_call, alpha_extract_return_value, alpha_read_insn, alpha_get_longjmp_target): Update. * amd64-linux-tdep.c (amd64_linux_sigcontext_addr): Update. * amd64obsd-tdep.c (amd64obsd_supply_uthread, amd64obsd_collect_uthread, amd64obsd_trapframe_cache): Update. * amd64-tdep.c (amd64_push_dummy_call, amd64_analyze_prologue, amd64_frame_cache, amd64_sigtramp_frame_cache, fixup_riprel, amd64_displaced_step_fixup): Update. * arm-linux-tdep.c (arm_linux_sigreturn_init, arm_linux_rt_sigreturn_init, arm_linux_supply_gregset): Update. * arm-tdep.c (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, arm_push_dummy_call, thumb_get_next_pc, arm_get_next_pc, arm_extract_return_value, arm_store_return_value, arm_return_value): Update. * arm-wince-tdep.c (arm_pe_skip_trampoline_code): Update. * auxv.c (default_auxv_parse): Update. * avr-tdep.c (avr_address_to_pointer, avr_pointer_to_address, avr_scan_prologue, avr_extract_return_value, avr_frame_prev_register, avr_push_dummy_call): Update. * bsd-uthread.c (bsd_uthread_check_magic, bsd_uthread_lookup_offset, bsd_uthread_wait, bsd_uthread_thread_alive, bsd_uthread_extra_thread_info): Update. * c-lang.c (c_printstr, print_wchar): Update. * cp-valprint.c (cp_print_class_member): Update. * cris-tdep.c (cris_sigcontext_addr, cris_sigtramp_frame_unwind_cache, cris_push_dummy_call, cris_scan_prologue, cris_store_return_value, cris_extract_return_value, find_step_target, dip_prefix, sixteen_bit_offset_branch_op, none_reg_mode_jump_op, move_mem_to_reg_movem_op, get_data_from_address): Update. * dwarf2expr.c (dwarf2_read_address, execute_stack_op): Update. * dwarf2-frame.c (execute_cfa_program): Update. * dwarf2loc.c (find_location_expression): Update. * dwarf2read.c (dwarf2_const_value): Update. * expprint.c (print_subexp_standard): Update. * findvar.c (unsigned_pointer_to_address, signed_pointer_to_address, unsigned_address_to_pointer, address_to_signed_pointer, read_var_value): Update. * frame.c (frame_unwind_register_signed, frame_unwind_register_unsigned, get_frame_memory_signed, get_frame_memory_unsigned): Update. * frame-unwind.c (frame_unwind_got_constant): Update. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp, frv_linux_sigcontext_reg_addr, frv_linux_sigtramp_frame_cache): Update. * frv-tdep.c (frv_analyze_prologue, frv_skip_main_prologue, frv_extract_return_value, find_func_descr, frv_convert_from_func_ptr_addr, frv_push_dummy_call): Update. * f-valprint.c (f_val_print): Update. * gnu-v3-abi.c (gnuv3_decode_method_ptr, gnuv3_make_method_ptr): Update. * h8300-tdep.c (h8300_is_argument_spill, h8300_analyze_prologue, h8300_push_dummy_call, h8300_extract_return_value, h8300h_extract_return_value, h8300_store_return_value, h8300h_store_return_value): Update. * hppabsd-tdep.c (hppabsd_find_global_pointer): Update. * hppa-hpux-nat.c (hppa_hpux_fetch_register, hppa_hpux_store_register): Update. * hppa-hpux-tdep.c (hppa32_hpux_in_solib_call_trampoline, hppa64_hpux_in_solib_call_trampoline, hppa_hpux_in_solib_return_trampoline, hppa_hpux_skip_trampoline_code, hppa_hpux_sigtramp_frame_unwind_cache, hppa_hpux_sigtramp_unwind_sniffer, hppa32_hpux_find_global_pointer, hppa64_hpux_find_global_pointer, hppa_hpux_search_pattern, hppa32_hpux_search_dummy_call_sequence, hppa64_hpux_search_dummy_call_sequence, hppa_hpux_supply_save_state, hppa_hpux_unwind_adjust_stub): Update. * hppa-linux-tdep.c (insns_match_pattern, hppa_linux_find_global_pointer): Update. * hppa-tdep.c (hppa_in_function_epilogue_p, hppa32_push_dummy_call, hppa64_convert_code_addr_to_fptr, hppa64_push_dummy_call, skip_prologue_hard_way, hppa_frame_cache, hppa_fallback_frame_cache, hppa_pseudo_register_read, hppa_frame_prev_register_helper, hppa_match_insns): Update. * hpux-thread.c (hpux_thread_fetch_registers): Update. * i386-tdep.c (i386bsd_sigcontext_addr): Update. * i386-cygwin-tdep.c (core_process_module_section): Update. * i386-darwin-nat.c (i386_darwin_sstep_at_sigreturn, amd64_darwin_sstep_at_sigreturn): Update. * i386-darwin-tdep.c (i386_darwin_sigcontext_addr, amd64_darwin_sigcontext_addr): Likewise. * i386-linux-nat.c (i386_linux_sigcontext_addr): Update. * i386nbsd-tdep.c (i386nbsd_sigtramp_cache_init): Update. * i386-nto-tdep.c (i386nto_sigcontext_addr): Update. * i386obsd-nat.c (i386obsd_supply_pcb): Update. * i386obsd-tdep.c (i386obsd_supply_uthread, i386obsd_collect_uthread, i386obsd_trapframe_cache): Update. * i386-tdep.c (i386_displaced_step_fixup, i386_follow_jump, i386_analyze_frame_setup, i386_analyze_prologue, i386_skip_main_prologue, i386_frame_cache, i386_sigtramp_frame_cache, i386_get_longjmp_target, i386_push_dummy_call, i386_pe_skip_trampoline_code, i386_svr4_sigcontext_addr, i386_fetch_pointer_argument): Update. * i387-tdep.c (i387_supply_fsave): Update. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Update. * ia64-tdep.c (ia64_pseudo_register_read, ia64_pseudo_register_write, examine_prologue, ia64_frame_cache, ia64_frame_prev_register, ia64_sigtramp_frame_cache, ia64_sigtramp_frame_prev_register, ia64_access_reg, ia64_access_rse_reg, ia64_libunwind_frame_this_id, ia64_libunwind_frame_prev_register, ia64_libunwind_sigtramp_frame_this_id, ia64_libunwind_sigtramp_frame_prev_register, ia64_find_global_pointer, find_extant_func_descr, find_func_descr, ia64_convert_from_func_ptr_addr, ia64_push_dummy_call, ia64_dummy_id, ia64_unwind_pc): Update. * iq2000-tdep.c (iq2000_pointer_to_address, iq2000_address_to_pointer, iq2000_scan_prologue, iq2000_extract_return_value, iq2000_push_dummy_call): Update. * irix5nat.c (fill_gregset): Update. * jv-lang.c (evaluate_subexp_java): Update. * jv-valprint.c (java_value_print): Update. * lm32-tdep.c (lm32_analyze_prologue, lm32_push_dummy_call, lm32_extract_return_value, lm32_store_return_value): Update. * m32c-tdep.c (m32c_push_dummy_call, m32c_return_value, m32c_skip_trampoline_code, m32c_m16c_address_to_pointer, m32c_m16c_pointer_to_address): Update. * m32r-tdep.c (m32r_store_return_value, decode_prologue, m32r_skip_prologue, m32r_push_dummy_call, m32r_extract_return_value): Update. * m68hc11-tdep.c (m68hc11_pseudo_register_read, m68hc11_pseudo_register_write, m68hc11_analyze_instruction, m68hc11_push_dummy_call): Update. * m68linux-tdep.c (m68k_linux_pc_in_sigtramp, m68k_linux_get_sigtramp_info, m68k_linux_sigtramp_frame_cache): Update. * m68k-tdep.c (m68k_push_dummy_call, m68k_analyze_frame_setup, m68k_analyze_register_saves, m68k_analyze_prologue, m68k_frame_cache, m68k_get_longjmp_target): Update. * m88k-tdep.c (m88k_fetch_instruction): Update. * mep-tdep.c (mep_pseudo_cr32_read, mep_pseudo_csr_write, mep_pseudo_cr32_write, mep_get_insn, mep_push_dummy_call): Update. * mi/mi-main.c (mi_cmd_data_write_memory): Update. * mips-linux-tdep.c (mips_linux_get_longjmp_target, supply_32bit_reg, mips64_linux_get_longjmp_target, mips64_fill_gregset, mips64_fill_fpregset, mips_linux_in_dynsym_stub): Update. * mipsnbdsd-tdep.c (mipsnbsd_get_longjmp_target): Update. * mips-tdep.c (mips_fetch_instruction, fetch_mips_16, mips_eabi_push_dummy_call, mips_n32n64_push_dummy_call, mips_o32_push_dummy_call, mips_o64_push_dummy_call, mips_single_step_through_delay, mips_skip_pic_trampoline_code, mips_integer_to_address): Update. * mn10300-tdep.c (mn10300_analyze_prologue, mn10300_push_dummy_call): Update. * monitor.c (monitor_supply_register, monitor_write_memory, monitor_read_memory_single): Update. * moxie-tdep.c (moxie_store_return_value, moxie_extract_return_value, moxie_analyze_prologue): Update. * mt-tdep.c (mt_return_value, mt_skip_prologue, mt_select_coprocessor, mt_pseudo_register_read, mt_pseudo_register_write, mt_registers_info, mt_push_dummy_call): Update. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class, find_implementation_from_class): Update. * ppc64-linux-tdep.c (ppc64_desc_entry_point, ppc64_linux_convert_from_func_ptr_addr, ppc_linux_sigtramp_cache): Update. * ppcobsd-tdep.c (ppcobsd_sigtramp_frame_sniffer, ppcobsd_sigtramp_frame_cache): Update. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call, do_ppc_sysv_return_value, ppc64_sysv_abi_push_dummy_call, ppc64_sysv_abi_return_value): Update. * ppc-linux-nat.c (ppc_linux_auxv_parse): Update. * procfs.c (procfs_auxv_parse): Update. * p-valprint.c (pascal_val_print): Update. * regcache.c (regcache_raw_read_signed, regcache_raw_read_unsigned, regcache_raw_write_signed, regcache_raw_write_unsigned, regcache_cooked_read_signed, regcache_cooked_read_unsigned, regcache_cooked_write_signed, regcache_cooked_write_unsigned): Update. * remote-m32r-sdi.c (m32r_fetch_register): Update. * remote-mips.c (mips_wait, mips_fetch_registers, mips_xfer_memory): Update. * rs6000-aix-tdep.c (rs6000_push_dummy_call, rs6000_return_value, rs6000_convert_from_func_ptr_addr, branch_dest, rs6000_software_single_step): Update. * rs6000-tdep.c (rs6000_in_function_epilogue_p, ppc_displaced_step_fixup, ppc_deal_with_atomic_sequence, bl_to_blrl_insn_p, rs6000_fetch_instruction, skip_prologue, rs6000_skip_main_prologue, rs6000_skip_trampoline_code, rs6000_frame_cache): Update. * s390-tdep.c (s390_pseudo_register_read, s390_pseudo_register_write, s390x_pseudo_register_read, s390x_pseudo_register_write, s390_load, s390_backchain_frame_unwind_cache, s390_sigtramp_frame_unwind_cache, extend_simple_arg, s390_push_dummy_call, s390_return_value): Update. * scm-exp.c (scm_lreadr): Update. * scm-lang.c (scm_get_field, scm_unpack): Update. * scm-valprint.c (scm_val_print): Update. * score-tdep.c (score_breakpoint_from_pc, score_push_dummy_call, score_fetch_inst): Update. * sh64-tdep.c (look_for_args_moves, sh64_skip_prologue_hard_way, sh64_analyze_prologue, sh64_push_dummy_call, sh64_extract_return_value, sh64_pseudo_register_read, sh64_pseudo_register_write, sh64_frame_prev_register): Update: * sh-tdep.c (sh_analyze_prologue, sh_push_dummy_call_fpu, sh_push_dummy_call_nofpu, sh_extract_return_value_nofpu, sh_store_return_value_nofpu, sh_in_function_epilogue_p): Update. * solib-darwin.c (darwin_load_image_infos): Update. * solib-frv.c (fetch_loadmap, lm_base, frv_current_sos, enable_break2, find_canonical_descriptor_in_load_object): Update. * solib-irix.c (extract_mips_address, fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Update. * solib-som.c (som_solib_create_inferior_hook, link_map_start, som_current_sos, som_open_symbol_file_object): Update. * solib-sunos.c (SOLIB_EXTRACT_ADDRESS, LM_ADDR, LM_NEXT, LM_NAME): Update. * solib-svr4.c (read_program_header, scan_dyntag_auxv, solib_svr4_r_ldsomap): Update. * sparc64-linux-tdep.c (sparc64_linux_step_trap): Update. * sparc64obsd-tdep.c (sparc64obsd_supply_uthread, sparc64obsd_collect_uthread): Update. * sparc64-tdep.c (sparc64_pseudo_register_read, sparc64_pseudo_register_write, sparc64_supply_gregset, sparc64_collect_gregset): Update. * sparc-linux-tdep.c (sparc32_linux_step_trap): Update. * sparcobsd-tdep.c (sparc32obsd_supply_uthread, sparc32obsd_collect_uthread): Update. * sparc-tdep.c (sparc_fetch_wcookie, sparc32_push_dummy_code, sparc32_store_arguments, sparc32_return_value, sparc_supply_rwindow, sparc_collect_rwindow): Update. * spu-linux-nat.c (parse_spufs_run): Update. * spu-tdep.c (spu_pseudo_register_read_spu, spu_pseudo_register_write_spu, spu_pointer_to_address, spu_analyze_prologue, spu_in_function_epilogue_p, spu_frame_unwind_cache, spu_push_dummy_call, spu_software_single_step, spu_get_longjmp_target, spu_get_overlay_table, spu_overlay_update_osect, info_spu_signal_command, info_spu_mailbox_list, info_spu_dma_cmdlist, info_spu_dma_command, info_spu_proxydma_command): Update. * stack.c (print_frame_nameless_args, frame_info): Update. * symfile.c (read_target_long_array, simple_read_overlay_table, simple_read_overlay_region_table): Update. * target.c (debug_print_register): Update. * tramp-frame.c (tramp_frame_start): Update. * v850-tdep.c (v850_analyze_prologue, v850_push_dummy_call, v850_extract_return_value, v850_store_return_value, * valarith.c (value_binop, value_bit_index): Update. * valops.c (value_cast): Update. * valprint.c (val_print_type_code_int, val_print_string, read_string): Update. * value.c (unpack_long, unpack_double, unpack_field_as_long, modify_field, pack_long): Update. * vax-tdep.c (vax_store_arguments, vax_push_dummy_call, vax_skip_prologue): Update. * xstormy16-tdep.c (xstormy16_push_dummy_call, xstormy16_analyze_prologue, xstormy16_in_function_epilogue_p, xstormy16_resolve_jmp_table_entry, xstormy16_find_jmp_table_entry, xstormy16_pointer_to_address, xstormy16_address_to_pointer): Update. * xtensa-tdep.c (extract_call_winsize, xtensa_pseudo_register_read, xtensa_pseudo_register_write, xtensa_frame_cache, xtensa_push_dummy_call, call0_track_op, call0_frame_cache): Update. * dfp.h (decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. * dfp.c (match_endianness): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. (decimal_to_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero): Add BYTE_ORDER parameter. Pass it to match_endianness. (decimal_binop): Add BYTE_ORDER_X, BYTE_ORDER_Y, and BYTE_ORDER_RESULT parameters. Pass them to match_endianness. (decimal_compare): Add BYTE_ORDER_X and BYTE_ORDER_Y parameters. Pass them to match_endianness. (decimal_convert): Add BYTE_ORDER_FROM and BYTE_ORDER_TO parameters. Pass them to match_endianness. * valarith.c (value_args_as_decimal): Add BYTE_ORDER_X and BYTE_ORDER_Y output parameters. (value_binop): Update call to value_args_as_decimal. Update calls to decimal_to_string, decimal_from_string, decimal_from_integral, decimal_from_floating, decimal_to_doublest, decimal_is_zero, decimal_binop, decimal_compare and decimal_convert to pass/receive byte order: * c-exp.y (parse_number): Update. * printcmd.c (printf_command): Update. * valarith.c (value_args_as_decimal, value_binop, value_logical_not, value_equal, value_less): Update. * valops.c (value_cast, value_one): Update. * valprint.c (print_decimal_floating): Update. * value.c (unpack_long, unpack_double): Update. * python/python-value.c (valpy_nonzero): Update. * ada-valprint.c (char_at): Add BYTE_ORDER parameter. (printstr): Update calls to char_at. (ada_val_print_array): Likewise. * valprint.c (read_string): Add BYTE_ORDER parameter. (val_print_string): Update call to read_string. * c-lang.c (c_get_string): Likewise. * charset.h (target_wide_charset): Add BYTE_ORDER parameter. * charset.c (target_wide_charset): Add BYTE_ORDER parameter. Use it instead of current_gdbarch. * printcmd.c (printf_command): Update calls to target_wide_charset. * c-lang.c (charset_for_string_type): Add BYTE_ORDER parameter. Pass to target_wide_charset. Use it instead of current_gdbarch. (classify_type): Add BYTE_ORDER parameter. Pass to charset_for_string_type. Allow NULL encoding pointer. (print_wchar): Add BYTE_ORDER parameter. (c_emit_char): Update calls to classify_type and print_wchar. (c_printchar, c_printstr): Likewise. * gdbarch.sh (in_solib_return_trampoline): Convert to type "m". * gdbarch.c, gdbarch.h: Regenerate. * arch-utils.h (generic_in_solib_return_trampoline): Add GDBARCH parameter. * arch-utils.c (generic_in_solib_return_trampoline): Likewise. * hppa-hpux-tdep.c (hppa_hpux_in_solib_return_trampoline): Likewise. * rs6000-tdep.c (rs6000_in_solib_return_trampoline): Likewise. (rs6000_skip_trampoline_code): Update call. * alpha-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to dynamic_sigtramp_offset and pc_in_sigtramp callbacks. (alpha_read_insn): Add GDBARCH parameter. * alpha-tdep.c (alpha_lds, alpha_sts): Add GDBARCH parameter. (alpha_register_to_value): Pass architecture to alpha_sts. (alpha_extract_return_value): Likewise. (alpha_value_to_register): Pass architecture to alpha_lds. (alpha_store_return_value): Likewise. (alpha_read_insn): Add GDBARCH parameter. (alpha_skip_prologue): Pass architecture to alpha_read_insn. (alpha_heuristic_proc_start): Likewise. (alpha_heuristic_frame_unwind_cache): Likewise. (alpha_next_pc): Likewise. (alpha_sigtramp_frame_this_id): Pass architecture to tdep->dynamic_sigtramp_offset callback. (alpha_sigtramp_frame_sniffer): Pass architecture to tdep->pc_in_sigtramp callback. * alphafbsd-tdep.c (alphafbsd_pc_in_sigtramp): Add GDBARCH parameter. (alphafbsd_sigtramp_offset): Likewise. * alpha-linux-tdep.c (alpha_linux_sigtramp_offset_1): Add GDBARCH parameter. Pass to alpha_read_insn. (alpha_linux_sigtramp_offset): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset_1. (alpha_linux_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_linux_sigtramp_offset. (alpha_linux_sigcontext_addr): Pass architecture to alpha_read_insn and alpha_linux_sigtramp_offset. * alphanbsd-tdep.c (alphanbsd_sigtramp_offset): Add GDBARCH parameter. (alphanbsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alphanbsd_sigtramp_offset. * alphaobsd-tdep.c (alphaobsd_sigtramp_offset): Add GDBARCH parameter. (alphaobsd_pc_in_sigtramp): Add GDBARCH parameter. Pass to alpha_read_insn. (alphaobsd_sigcontext_addr): Pass architecture to alphaobsd_sigtramp_offset. * alpha-osf1-tdep.c (alpha_osf1_pc_in_sigtramp): Add GDBARCH parameter. * amd64-tdep.c (amd64_analyze_prologue): Add GDBARCH parameter. (amd64_skip_prologue): Pass architecture to amd64_analyze_prologue. (amd64_frame_cache): Likewise. * arm-tdep.c (SWAP_SHORT, SWAP_INT): Remove. (thumb_analyze_prologue, arm_skip_prologue, arm_scan_prologue, thumb_get_next_pc, arm_get_next_pc): Do not use SWAP_ macros. * arm-wince-tdep.c: Include "frame.h". * avr-tdep.c (EXTRACT_INSN): Remove. (avr_scan_prologue): Add GDBARCH argument, inline EXTRACT_INSN. (avr_skip_prologue): Pass architecture to avr_scan_prologue. (avr_frame_unwind_cache): Likewise. * cris-tdep.c (struct instruction_environment): Add BYTE_ORDER member. (find_step_target): Initialize it. (get_data_from_address): Add BYTE_ORDER parameter. (bdap_prefix): Pass byte order to get_data_from_address. (handle_prefix_assign_mode_for_aritm_op): Likewise. (three_operand_add_sub_cmp_and_or_op): Likewise. (handle_inc_and_index_mode_for_aritm_op): Likewise. * frv-linux-tdep.c (frv_linux_pc_in_sigtramp): Add GDBARCH parameter. (frv_linux_sigcontext_reg_addr): Pass architecture to frv_linux_pc_in_sigtramp. (frv_linux_sigtramp_frame_sniffer): Likewise. * h8300-tdep.c (h8300_is_argument_spill): Add GDBARCH parameter. (h8300_analyze_prologue): Add GDBARCH parameter. Pass to h8300_is_argument_spill. (h8300_frame_cache, h8300_skip_prologue): Pass architecture to h8300_analyze_prologue. * hppa-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to in_solib_call_trampoline callback. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. * hppa-tdep.c (hppa64_convert_code_addr_to_fptr): Add GDBARCH parameter. (hppa64_push_dummy_call): Pass architecture to hppa64_convert_code_addr_to_fptr. (hppa_match_insns): Add GDBARCH parameter. (hppa_match_insns_relaxed): Add GDBARCH parameter. Pass to hppa_match_insns. (hppa_skip_trampoline_code): Pass architecture to hppa_match_insns. (hppa_in_solib_call_trampoline): Add GDBARCH parameter. Pass to hppa_match_insns_relaxed. (hppa_stub_unwind_sniffer): Pass architecture to tdep->in_solib_call_trampoline callback. * hppa-hpux-tdep.c (hppa_hpux_search_pattern): Add GDBARCH parameter. (hppa32_hpux_search_dummy_call_sequence): Pass architecture to hppa_hpux_search_pattern. * hppa-linux-tdep.c (insns_match_pattern): Add GDBARCH parameter. (hppa_linux_sigtramp_find_sigcontext): Add GDBARCH parameter. Pass to insns_match_pattern. (hppa_linux_sigtramp_frame_unwind_cache): Pass architecture to hppa_linux_sigtramp_find_sigcontext. (hppa_linux_sigtramp_frame_sniffer): Likewise. (hppa32_hpux_in_solib_call_trampoline): Add GDBARCH parameter. (hppa64_hpux_in_solib_call_trampoline): Likewise. * i386-tdep.c (i386_follow_jump): Add GDBARCH parameter. (i386_analyze_frame_setup): Add GDBARCH parameter. (i386_analyze_prologue): Add GDBARCH parameter. Pass to i386_follow_jump and i386_analyze_frame_setup. (i386_skip_prologue): Pass architecture to i386_analyze_prologue and i386_follow_jump. (i386_frame_cache): Pass architecture to i386_analyze_prologue. (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-tdep.h (i386_pe_skip_trampoline_code): Add FRAME parameter. * i386-cygwin-tdep.c (i386_cygwin_skip_trampoline_code): Pass frame to i386_pe_skip_trampoline_code. * ia64-tdep.h (struct gdbarch_tdep): Add GDBARCH parameter to sigcontext_register_address callback. * ia64-tdep.c (ia64_find_global_pointer): Add GDBARCH parameter. (ia64_find_unwind_table): Pass architecture to ia64_find_global_pointer. (find_extant_func_descr): Add GDBARCH parameter. (find_func_descr): Pass architecture to find_extant_func_descr and ia64_find_global_pointer. (ia64_sigtramp_frame_init_saved_regs): Pass architecture to tdep->sigcontext_register_address callback. * ia64-linux-tdep.c (ia64_linux_sigcontext_register_address): Add GDBARCH parameter. * iq2000-tdep.c (iq2000_scan_prologue): Add GDBARCH parameter. (iq2000_frame_cache): Pass architecture to iq2000_scan_prologue. * lm32-tdep.c (lm32_analyze_prologue): Add GDBARCH parameter. (lm32_skip_prologue, lm32_frame_cache): Pass architecture to lm32_analyze_prologue. * m32r-tdep.c (decode_prologue): Add GDBARCH parameter. (m32r_skip_prologue): Pass architecture to decode_prologue. * m68hc11-tdep.c (m68hc11_analyze_instruction): Add GDBARCH parameter. (m68hc11_scan_prologue): Pass architecture to m68hc11_analyze_instruction. * m68k-tdep.c (m68k_analyze_frame_setup): Add GDBARCH parameter. (m68k_analyze_prologue): Pass architecture to m68k_analyze_frame_setup. * m88k-tdep.c (m88k_fetch_instruction): Add BYTE_ORDER parameter. (m88k_analyze_prologue): Add GDBARCH parameter. Pass byte order to m88k_fetch_instruction. (m88k_skip_prologue): Pass architecture to m88k_analyze_prologue. (m88k_frame_cache): Likewise. * mep-tdep.c (mep_get_insn): Add GDBARCH parameter. (mep_analyze_prologue): Pass architecture to mep_get_insn. * mips-tdep.c (mips_fetch_instruction): Add GDBARCH parameter. (mips32_next_pc): Pass architecture to mips_fetch_instruction. (deal_with_atomic_sequence): Likewise. (unpack_mips16): Add GDBARCH parameter, pass to mips_fetch_instruction. (mips16_scan_prologue): Likewise. (mips32_scan_prologue): Likewise. (mips16_in_function_epilogue_p): Likewise. (mips32_in_function_epilogue_p): Likewise. (mips_about_to_return): Likewise. (mips_insn16_frame_cache): Pass architecture to mips16_scan_prologue. (mips_insn32_frame_cache): Pass architecture to mips32_scan_prologue. (mips_skip_prologue): Pass architecture to mips16_scan_prologue and mips32_scan_prologue. (mips_in_function_epilogue_p): Pass architecture to mips16_in_function_epilogue_p and mips32_in_function_epilogue_p. (heuristic_proc_start): Pass architecture to mips_fetch_instruction and mips_about_to_return. (mips_skip_mips16_trampoline_code): Pass architecture to mips_fetch_instruction. (fetch_mips_16): Add GDBARCH parameter. (mips16_next_pc): Pass architecture to fetch_mips_16. (extended_mips16_next_pc): Pass architecture to unpack_mips16 and fetch_mips_16. * objc-lang.c (read_objc_method, read_objc_methlist_nmethods, read_objc_methlist_method, read_objc_object, read_objc_super, read_objc_class): Add GDBARCH parameter. (find_implementation_from_class): Add GDBARCH parameter, pass to read_objc_class, read_objc_methlist_nmethods, and read_objc_methlist_method. (find_implementation): Add GDBARCH parameter, pass to read_objc_object and find_implementation_from_class. (resolve_msgsend, resolve_msgsend_stret): Pass architecture to find_implementation. (resolve_msgsend_super, resolve_msgsend_super_stret): Pass architecture to read_objc_super and find_implementation_from_class. * ppc64-linux-tdep.c (ppc64_desc_entry_point): Add GDBARCH parameter. (ppc64_standard_linkage1_target, ppc64_standard_linkage2_target, ppc64_standard_linkage3_target): Pass architecture to ppc64_desc_entry_point. * rs6000-tdep.c (bl_to_blrl_insn_p): Add BYTE_ORDER parameter. (skip_prologue): Pass byte order to bl_to_blrl_insn_p. (rs6000_fetch_instruction): Add GDBARCH parameter. (rs6000_skip_stack_check): Add GDBARCH parameter, pass to rs6000_fetch_instruction. (skip_prologue): Pass architecture to rs6000_fetch_instruction. * remote-mips.c (mips_store_word): Return old_contents as host integer value instead of target bytes. * s390-tdep.c (struct s390_prologue_data): Add BYTE_ORDER member. (s390_analyze_prologue): Initialize it. (extend_simple_arg): Add GDBARCH parameter. (s390_push_dummy_call): Pass architecture to extend_simple_arg. * scm-lang.c (scm_get_field): Add BYTE_ORDER parameter. * scm-lang.h (scm_get_field): Add BYTE_ORDER parameter. (SCM_CAR, SCM_CDR): Pass SCM_BYTE_ORDER to scm_get_field. * scm-valprint.c (scm_scmval_print): Likewise. (scm_scmlist_print, scm_ipruk, scm_scmval_print): Define SCM_BYTE_ORDER. * sh64-tdep.c (look_for_args_moves): Add GDBARCH parameter. (sh64_skip_prologue_hard_way): Add GDBARCH parameter, pass to look_for_args_moves. (sh64_skip_prologue): Pass architecture to sh64_skip_prologue_hard_way. * sh-tdep.c (sh_analyze_prologue): Add GDBARCH parameter. (sh_skip_prologue): Pass architecture to sh_analyze_prologue. (sh_frame_cache): Likewise. * solib-irix.c (extract_mips_address): Add GDBARCH parameter. (fetch_lm_info, irix_current_sos, irix_open_symbol_file_object): Pass architecture to extract_mips_address. * sparc-tdep.h (sparc_fetch_wcookie): Add GDBARCH parameter. * sparc-tdep.c (sparc_fetch_wcookie): Add GDBARCH parameter. (sparc_supply_rwindow, sparc_collect_rwindow): Pass architecture to sparc_fetch_wcookie. (sparc32_frame_prev_register): Likewise. * sparc64-tdep.c (sparc64_frame_prev_register): Likewise. * sparc32nbsd-tdep.c (sparc32nbsd_sigcontext_saved_regs): Likewise. * sparc64nbsd-tdep.c (sparc64nbsd_sigcontext_saved_regs): Likewise. * spu-tdep.c (spu_analyze_prologue): Add GDBARCH parameter. (spu_skip_prologue): Pass architecture to spu_analyze_prologue. (spu_virtual_frame_pointer): Likewise. (spu_frame_unwind_cache): Likewise. (info_spu_mailbox_list): Add BYTE_ORER parameter. (info_spu_mailbox_command): Pass byte order to info_spu_mailbox_list. (info_spu_dma_cmdlist): Add BYTE_ORER parameter. (info_spu_dma_command, info_spu_proxydma_command): Pass byte order to info_spu_dma_cmdlist. * symfile.c (read_target_long_array): Add GDBARCH parameter. (simple_read_overlay_table, simple_read_overlay_region_table, simple_overlay_update_1): Pass architecture to read_target_long_array. * v850-tdep.c (v850_analyze_prologue): Add GDBARCH parameter. (v850_frame_cache): Pass architecture to v850_analyze_prologue. * xstormy16-tdep.c (xstormy16_analyze_prologue): Add GDBARCH parameter. (xstormy16_skip_prologue, xstormy16_frame_cache): Pass architecture to xstormy16_analyze_prologue. (xstormy16_resolve_jmp_table_entry): Add GDBARCH parameter. (xstormy16_find_jmp_table_entry): Likewise. (xstormy16_skip_trampoline_code): Pass architecture to xstormy16_resolve_jmp_table_entry. (xstormy16_pointer_to_address): Likewise. (xstormy16_address_to_pointer): Pass architecture to xstormy16_find_jmp_table_entry. * xtensa-tdep.c (call0_track_op): Add GDBARCH parameter. (call0_analyze_prologue): Add GDBARCH parameter, pass to call0_track_op. (call0_frame_cache): Pass architecture to call0_analyze_prologue. (xtensa_skip_prologue): Likewise.
1736 lines
50 KiB
C
1736 lines
50 KiB
C
/* Print values for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
|
||
1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
||
2009 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "gdb_string.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "value.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "target.h"
|
||
#include "language.h"
|
||
#include "annotate.h"
|
||
#include "valprint.h"
|
||
#include "floatformat.h"
|
||
#include "doublest.h"
|
||
#include "exceptions.h"
|
||
#include "dfp.h"
|
||
#include "python/python.h"
|
||
|
||
#include <errno.h>
|
||
|
||
/* Prototypes for local functions */
|
||
|
||
static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
|
||
int len, int *errnoptr);
|
||
|
||
static void show_print (char *, int);
|
||
|
||
static void set_print (char *, int);
|
||
|
||
static void set_radix (char *, int);
|
||
|
||
static void show_radix (char *, int);
|
||
|
||
static void set_input_radix (char *, int, struct cmd_list_element *);
|
||
|
||
static void set_input_radix_1 (int, unsigned);
|
||
|
||
static void set_output_radix (char *, int, struct cmd_list_element *);
|
||
|
||
static void set_output_radix_1 (int, unsigned);
|
||
|
||
void _initialize_valprint (void);
|
||
|
||
#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
|
||
|
||
struct value_print_options user_print_options =
|
||
{
|
||
Val_pretty_default, /* pretty */
|
||
0, /* prettyprint_arrays */
|
||
0, /* prettyprint_structs */
|
||
0, /* vtblprint */
|
||
1, /* unionprint */
|
||
1, /* addressprint */
|
||
0, /* objectprint */
|
||
PRINT_MAX_DEFAULT, /* print_max */
|
||
10, /* repeat_count_threshold */
|
||
0, /* output_format */
|
||
0, /* format */
|
||
0, /* stop_print_at_null */
|
||
0, /* inspect_it */
|
||
0, /* print_array_indexes */
|
||
0, /* deref_ref */
|
||
1, /* static_field_print */
|
||
1, /* pascal_static_field_print */
|
||
0, /* raw */
|
||
0 /* summary */
|
||
};
|
||
|
||
/* Initialize *OPTS to be a copy of the user print options. */
|
||
void
|
||
get_user_print_options (struct value_print_options *opts)
|
||
{
|
||
*opts = user_print_options;
|
||
}
|
||
|
||
/* Initialize *OPTS to be a copy of the user print options, but with
|
||
pretty-printing disabled. */
|
||
void
|
||
get_raw_print_options (struct value_print_options *opts)
|
||
{
|
||
*opts = user_print_options;
|
||
opts->pretty = Val_no_prettyprint;
|
||
}
|
||
|
||
/* Initialize *OPTS to be a copy of the user print options, but using
|
||
FORMAT as the formatting option. */
|
||
void
|
||
get_formatted_print_options (struct value_print_options *opts,
|
||
char format)
|
||
{
|
||
*opts = user_print_options;
|
||
opts->format = format;
|
||
}
|
||
|
||
static void
|
||
show_print_max (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("\
|
||
Limit on string chars or array elements to print is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
|
||
/* Default input and output radixes, and output format letter. */
|
||
|
||
unsigned input_radix = 10;
|
||
static void
|
||
show_input_radix (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("\
|
||
Default input radix for entering numbers is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
unsigned output_radix = 10;
|
||
static void
|
||
show_output_radix (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("\
|
||
Default output radix for printing of values is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* By default we print arrays without printing the index of each element in
|
||
the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
|
||
|
||
static void
|
||
show_print_array_indexes (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
|
||
}
|
||
|
||
/* Print repeat counts if there are more than this many repetitions of an
|
||
element in an array. Referenced by the low level language dependent
|
||
print routines. */
|
||
|
||
static void
|
||
show_repeat_count_threshold (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* If nonzero, stops printing of char arrays at first null. */
|
||
|
||
static void
|
||
show_stop_print_at_null (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("\
|
||
Printing of char arrays to stop at first null char is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* Controls pretty printing of structures. */
|
||
|
||
static void
|
||
show_prettyprint_structs (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value);
|
||
}
|
||
|
||
/* Controls pretty printing of arrays. */
|
||
|
||
static void
|
||
show_prettyprint_arrays (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value);
|
||
}
|
||
|
||
/* If nonzero, causes unions inside structures or other unions to be
|
||
printed. */
|
||
|
||
static void
|
||
show_unionprint (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("\
|
||
Printing of unions interior to structures is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* If nonzero, causes machine addresses to be printed in certain contexts. */
|
||
|
||
static void
|
||
show_addressprint (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
|
||
}
|
||
|
||
|
||
/* A helper function for val_print. When printing in "summary" mode,
|
||
we want to print scalar arguments, but not aggregate arguments.
|
||
This function distinguishes between the two. */
|
||
|
||
static int
|
||
scalar_type_p (struct type *type)
|
||
{
|
||
CHECK_TYPEDEF (type);
|
||
while (TYPE_CODE (type) == TYPE_CODE_REF)
|
||
{
|
||
type = TYPE_TARGET_TYPE (type);
|
||
CHECK_TYPEDEF (type);
|
||
}
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_ARRAY:
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_SET:
|
||
case TYPE_CODE_STRING:
|
||
case TYPE_CODE_BITSTRING:
|
||
return 0;
|
||
default:
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Print using the given LANGUAGE the data of type TYPE located at VALADDR
|
||
(within GDB), which came from the inferior at address ADDRESS, onto
|
||
stdio stream STREAM according to OPTIONS.
|
||
|
||
If the data are a string pointer, returns the number of string characters
|
||
printed.
|
||
|
||
FIXME: The data at VALADDR is in target byte order. If gdb is ever
|
||
enhanced to be able to debug more than the single target it was compiled
|
||
for (specific CPU type and thus specific target byte ordering), then
|
||
either the print routines are going to have to take this into account,
|
||
or the data is going to have to be passed into here already converted
|
||
to the host byte ordering, whichever is more convenient. */
|
||
|
||
|
||
int
|
||
val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
|
||
CORE_ADDR address, struct ui_file *stream, int recurse,
|
||
const struct value_print_options *options,
|
||
const struct language_defn *language)
|
||
{
|
||
volatile struct gdb_exception except;
|
||
int ret = 0;
|
||
struct value_print_options local_opts = *options;
|
||
struct type *real_type = check_typedef (type);
|
||
|
||
if (local_opts.pretty == Val_pretty_default)
|
||
local_opts.pretty = (local_opts.prettyprint_structs
|
||
? Val_prettyprint : Val_no_prettyprint);
|
||
|
||
QUIT;
|
||
|
||
/* Ensure that the type is complete and not just a stub. If the type is
|
||
only a stub and we can't find and substitute its complete type, then
|
||
print appropriate string and return. */
|
||
|
||
if (TYPE_STUB (real_type))
|
||
{
|
||
fprintf_filtered (stream, "<incomplete type>");
|
||
gdb_flush (stream);
|
||
return (0);
|
||
}
|
||
|
||
if (!options->raw)
|
||
{
|
||
ret = apply_val_pretty_printer (type, valaddr, embedded_offset,
|
||
address, stream, recurse, options,
|
||
language);
|
||
if (ret)
|
||
return ret;
|
||
}
|
||
|
||
/* Handle summary mode. If the value is a scalar, print it;
|
||
otherwise, print an ellipsis. */
|
||
if (options->summary && !scalar_type_p (type))
|
||
{
|
||
fprintf_filtered (stream, "...");
|
||
return 0;
|
||
}
|
||
|
||
TRY_CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
ret = language->la_val_print (type, valaddr, embedded_offset, address,
|
||
stream, recurse, &local_opts);
|
||
}
|
||
if (except.reason < 0)
|
||
fprintf_filtered (stream, _("<error reading variable>"));
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Check whether the value VAL is printable. Return 1 if it is;
|
||
return 0 and print an appropriate error message to STREAM if it
|
||
is not. */
|
||
|
||
static int
|
||
value_check_printable (struct value *val, struct ui_file *stream)
|
||
{
|
||
if (val == 0)
|
||
{
|
||
fprintf_filtered (stream, _("<address of value unknown>"));
|
||
return 0;
|
||
}
|
||
|
||
if (value_optimized_out (val))
|
||
{
|
||
fprintf_filtered (stream, _("<value optimized out>"));
|
||
return 0;
|
||
}
|
||
|
||
if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION)
|
||
{
|
||
fprintf_filtered (stream, _("<internal function %s>"),
|
||
value_internal_function_name (val));
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Print using the given LANGUAGE the value VAL onto stream STREAM according
|
||
to OPTIONS.
|
||
|
||
If the data are a string pointer, returns the number of string characters
|
||
printed.
|
||
|
||
This is a preferable interface to val_print, above, because it uses
|
||
GDB's value mechanism. */
|
||
|
||
int
|
||
common_val_print (struct value *val, struct ui_file *stream, int recurse,
|
||
const struct value_print_options *options,
|
||
const struct language_defn *language)
|
||
{
|
||
if (!value_check_printable (val, stream))
|
||
return 0;
|
||
|
||
return val_print (value_type (val), value_contents_all (val),
|
||
value_embedded_offset (val), value_address (val),
|
||
stream, recurse, options, language);
|
||
}
|
||
|
||
/* Print the value VAL in C-ish syntax on stream STREAM according to
|
||
OPTIONS.
|
||
If the object printed is a string pointer, returns
|
||
the number of string bytes printed. */
|
||
|
||
int
|
||
value_print (struct value *val, struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
if (!value_check_printable (val, stream))
|
||
return 0;
|
||
|
||
if (!options->raw)
|
||
{
|
||
int r = apply_val_pretty_printer (value_type (val),
|
||
value_contents_all (val),
|
||
value_embedded_offset (val),
|
||
value_address (val),
|
||
stream, 0, options,
|
||
current_language);
|
||
if (r)
|
||
return r;
|
||
}
|
||
|
||
return LA_VALUE_PRINT (val, stream, options);
|
||
}
|
||
|
||
/* Called by various <lang>_val_print routines to print
|
||
TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
|
||
value. STREAM is where to print the value. */
|
||
|
||
void
|
||
val_print_type_code_int (struct type *type, const gdb_byte *valaddr,
|
||
struct ui_file *stream)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
|
||
|
||
if (TYPE_LENGTH (type) > sizeof (LONGEST))
|
||
{
|
||
LONGEST val;
|
||
|
||
if (TYPE_UNSIGNED (type)
|
||
&& extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
|
||
byte_order, &val))
|
||
{
|
||
print_longest (stream, 'u', 0, val);
|
||
}
|
||
else
|
||
{
|
||
/* Signed, or we couldn't turn an unsigned value into a
|
||
LONGEST. For signed values, one could assume two's
|
||
complement (a reasonable assumption, I think) and do
|
||
better than this. */
|
||
print_hex_chars (stream, (unsigned char *) valaddr,
|
||
TYPE_LENGTH (type), byte_order);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
|
||
unpack_long (type, valaddr));
|
||
}
|
||
}
|
||
|
||
void
|
||
val_print_type_code_flags (struct type *type, const gdb_byte *valaddr,
|
||
struct ui_file *stream)
|
||
{
|
||
ULONGEST val = unpack_long (type, valaddr);
|
||
int bitpos, nfields = TYPE_NFIELDS (type);
|
||
|
||
fputs_filtered ("[ ", stream);
|
||
for (bitpos = 0; bitpos < nfields; bitpos++)
|
||
{
|
||
if (TYPE_FIELD_BITPOS (type, bitpos) != -1
|
||
&& (val & ((ULONGEST)1 << bitpos)))
|
||
{
|
||
if (TYPE_FIELD_NAME (type, bitpos))
|
||
fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos));
|
||
else
|
||
fprintf_filtered (stream, "#%d ", bitpos);
|
||
}
|
||
}
|
||
fputs_filtered ("]", stream);
|
||
}
|
||
|
||
/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
|
||
The raison d'etre of this function is to consolidate printing of
|
||
LONG_LONG's into this one function. The format chars b,h,w,g are
|
||
from print_scalar_formatted(). Numbers are printed using C
|
||
format.
|
||
|
||
USE_C_FORMAT means to use C format in all cases. Without it,
|
||
'o' and 'x' format do not include the standard C radix prefix
|
||
(leading 0 or 0x).
|
||
|
||
Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
|
||
and was intended to request formating according to the current
|
||
language and would be used for most integers that GDB prints. The
|
||
exceptional cases were things like protocols where the format of
|
||
the integer is a protocol thing, not a user-visible thing). The
|
||
parameter remains to preserve the information of what things might
|
||
be printed with language-specific format, should we ever resurrect
|
||
that capability. */
|
||
|
||
void
|
||
print_longest (struct ui_file *stream, int format, int use_c_format,
|
||
LONGEST val_long)
|
||
{
|
||
const char *val;
|
||
|
||
switch (format)
|
||
{
|
||
case 'd':
|
||
val = int_string (val_long, 10, 1, 0, 1); break;
|
||
case 'u':
|
||
val = int_string (val_long, 10, 0, 0, 1); break;
|
||
case 'x':
|
||
val = int_string (val_long, 16, 0, 0, use_c_format); break;
|
||
case 'b':
|
||
val = int_string (val_long, 16, 0, 2, 1); break;
|
||
case 'h':
|
||
val = int_string (val_long, 16, 0, 4, 1); break;
|
||
case 'w':
|
||
val = int_string (val_long, 16, 0, 8, 1); break;
|
||
case 'g':
|
||
val = int_string (val_long, 16, 0, 16, 1); break;
|
||
break;
|
||
case 'o':
|
||
val = int_string (val_long, 8, 0, 0, use_c_format); break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
|
||
}
|
||
fputs_filtered (val, stream);
|
||
}
|
||
|
||
/* This used to be a macro, but I don't think it is called often enough
|
||
to merit such treatment. */
|
||
/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
|
||
arguments to a function, number in a value history, register number, etc.)
|
||
where the value must not be larger than can fit in an int. */
|
||
|
||
int
|
||
longest_to_int (LONGEST arg)
|
||
{
|
||
/* Let the compiler do the work */
|
||
int rtnval = (int) arg;
|
||
|
||
/* Check for overflows or underflows */
|
||
if (sizeof (LONGEST) > sizeof (int))
|
||
{
|
||
if (rtnval != arg)
|
||
{
|
||
error (_("Value out of range."));
|
||
}
|
||
}
|
||
return (rtnval);
|
||
}
|
||
|
||
/* Print a floating point value of type TYPE (not always a
|
||
TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */
|
||
|
||
void
|
||
print_floating (const gdb_byte *valaddr, struct type *type,
|
||
struct ui_file *stream)
|
||
{
|
||
DOUBLEST doub;
|
||
int inv;
|
||
const struct floatformat *fmt = NULL;
|
||
unsigned len = TYPE_LENGTH (type);
|
||
enum float_kind kind;
|
||
|
||
/* If it is a floating-point, check for obvious problems. */
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
fmt = floatformat_from_type (type);
|
||
if (fmt != NULL)
|
||
{
|
||
kind = floatformat_classify (fmt, valaddr);
|
||
if (kind == float_nan)
|
||
{
|
||
if (floatformat_is_negative (fmt, valaddr))
|
||
fprintf_filtered (stream, "-");
|
||
fprintf_filtered (stream, "nan(");
|
||
fputs_filtered ("0x", stream);
|
||
fputs_filtered (floatformat_mantissa (fmt, valaddr), stream);
|
||
fprintf_filtered (stream, ")");
|
||
return;
|
||
}
|
||
else if (kind == float_infinite)
|
||
{
|
||
if (floatformat_is_negative (fmt, valaddr))
|
||
fputs_filtered ("-", stream);
|
||
fputs_filtered ("inf", stream);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
|
||
isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double
|
||
needs to be used as that takes care of any necessary type
|
||
conversions. Such conversions are of course direct to DOUBLEST
|
||
and disregard any possible target floating point limitations.
|
||
For instance, a u64 would be converted and displayed exactly on a
|
||
host with 80 bit DOUBLEST but with loss of information on a host
|
||
with 64 bit DOUBLEST. */
|
||
|
||
doub = unpack_double (type, valaddr, &inv);
|
||
if (inv)
|
||
{
|
||
fprintf_filtered (stream, "<invalid float value>");
|
||
return;
|
||
}
|
||
|
||
/* FIXME: kettenis/2001-01-20: The following code makes too much
|
||
assumptions about the host and target floating point format. */
|
||
|
||
/* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
|
||
not necessarily be a TYPE_CODE_FLT, the below ignores that and
|
||
instead uses the type's length to determine the precision of the
|
||
floating-point value being printed. */
|
||
|
||
if (len < sizeof (double))
|
||
fprintf_filtered (stream, "%.9g", (double) doub);
|
||
else if (len == sizeof (double))
|
||
fprintf_filtered (stream, "%.17g", (double) doub);
|
||
else
|
||
#ifdef PRINTF_HAS_LONG_DOUBLE
|
||
fprintf_filtered (stream, "%.35Lg", doub);
|
||
#else
|
||
/* This at least wins with values that are representable as
|
||
doubles. */
|
||
fprintf_filtered (stream, "%.17g", (double) doub);
|
||
#endif
|
||
}
|
||
|
||
void
|
||
print_decimal_floating (const gdb_byte *valaddr, struct type *type,
|
||
struct ui_file *stream)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
|
||
char decstr[MAX_DECIMAL_STRING];
|
||
unsigned len = TYPE_LENGTH (type);
|
||
|
||
decimal_to_string (valaddr, len, byte_order, decstr);
|
||
fputs_filtered (decstr, stream);
|
||
return;
|
||
}
|
||
|
||
void
|
||
print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
|
||
unsigned len, enum bfd_endian byte_order)
|
||
{
|
||
|
||
#define BITS_IN_BYTES 8
|
||
|
||
const gdb_byte *p;
|
||
unsigned int i;
|
||
int b;
|
||
|
||
/* Declared "int" so it will be signed.
|
||
* This ensures that right shift will shift in zeros.
|
||
*/
|
||
const int mask = 0x080;
|
||
|
||
/* FIXME: We should be not printing leading zeroes in most cases. */
|
||
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
{
|
||
for (p = valaddr;
|
||
p < valaddr + len;
|
||
p++)
|
||
{
|
||
/* Every byte has 8 binary characters; peel off
|
||
* and print from the MSB end.
|
||
*/
|
||
for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
|
||
{
|
||
if (*p & (mask >> i))
|
||
b = 1;
|
||
else
|
||
b = 0;
|
||
|
||
fprintf_filtered (stream, "%1d", b);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (p = valaddr + len - 1;
|
||
p >= valaddr;
|
||
p--)
|
||
{
|
||
for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
|
||
{
|
||
if (*p & (mask >> i))
|
||
b = 1;
|
||
else
|
||
b = 0;
|
||
|
||
fprintf_filtered (stream, "%1d", b);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* VALADDR points to an integer of LEN bytes.
|
||
* Print it in octal on stream or format it in buf.
|
||
*/
|
||
void
|
||
print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
|
||
unsigned len, enum bfd_endian byte_order)
|
||
{
|
||
const gdb_byte *p;
|
||
unsigned char octa1, octa2, octa3, carry;
|
||
int cycle;
|
||
|
||
/* FIXME: We should be not printing leading zeroes in most cases. */
|
||
|
||
|
||
/* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
|
||
* the extra bits, which cycle every three bytes:
|
||
*
|
||
* Byte side: 0 1 2 3
|
||
* | | | |
|
||
* bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
|
||
*
|
||
* Octal side: 0 1 carry 3 4 carry ...
|
||
*
|
||
* Cycle number: 0 1 2
|
||
*
|
||
* But of course we are printing from the high side, so we have to
|
||
* figure out where in the cycle we are so that we end up with no
|
||
* left over bits at the end.
|
||
*/
|
||
#define BITS_IN_OCTAL 3
|
||
#define HIGH_ZERO 0340
|
||
#define LOW_ZERO 0016
|
||
#define CARRY_ZERO 0003
|
||
#define HIGH_ONE 0200
|
||
#define MID_ONE 0160
|
||
#define LOW_ONE 0016
|
||
#define CARRY_ONE 0001
|
||
#define HIGH_TWO 0300
|
||
#define MID_TWO 0070
|
||
#define LOW_TWO 0007
|
||
|
||
/* For 32 we start in cycle 2, with two bits and one bit carry;
|
||
* for 64 in cycle in cycle 1, with one bit and a two bit carry.
|
||
*/
|
||
cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
|
||
carry = 0;
|
||
|
||
fputs_filtered ("0", stream);
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
{
|
||
for (p = valaddr;
|
||
p < valaddr + len;
|
||
p++)
|
||
{
|
||
switch (cycle)
|
||
{
|
||
case 0:
|
||
/* No carry in, carry out two bits.
|
||
*/
|
||
octa1 = (HIGH_ZERO & *p) >> 5;
|
||
octa2 = (LOW_ZERO & *p) >> 2;
|
||
carry = (CARRY_ZERO & *p);
|
||
fprintf_filtered (stream, "%o", octa1);
|
||
fprintf_filtered (stream, "%o", octa2);
|
||
break;
|
||
|
||
case 1:
|
||
/* Carry in two bits, carry out one bit.
|
||
*/
|
||
octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
|
||
octa2 = (MID_ONE & *p) >> 4;
|
||
octa3 = (LOW_ONE & *p) >> 1;
|
||
carry = (CARRY_ONE & *p);
|
||
fprintf_filtered (stream, "%o", octa1);
|
||
fprintf_filtered (stream, "%o", octa2);
|
||
fprintf_filtered (stream, "%o", octa3);
|
||
break;
|
||
|
||
case 2:
|
||
/* Carry in one bit, no carry out.
|
||
*/
|
||
octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
|
||
octa2 = (MID_TWO & *p) >> 3;
|
||
octa3 = (LOW_TWO & *p);
|
||
carry = 0;
|
||
fprintf_filtered (stream, "%o", octa1);
|
||
fprintf_filtered (stream, "%o", octa2);
|
||
fprintf_filtered (stream, "%o", octa3);
|
||
break;
|
||
|
||
default:
|
||
error (_("Internal error in octal conversion;"));
|
||
}
|
||
|
||
cycle++;
|
||
cycle = cycle % BITS_IN_OCTAL;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (p = valaddr + len - 1;
|
||
p >= valaddr;
|
||
p--)
|
||
{
|
||
switch (cycle)
|
||
{
|
||
case 0:
|
||
/* Carry out, no carry in */
|
||
octa1 = (HIGH_ZERO & *p) >> 5;
|
||
octa2 = (LOW_ZERO & *p) >> 2;
|
||
carry = (CARRY_ZERO & *p);
|
||
fprintf_filtered (stream, "%o", octa1);
|
||
fprintf_filtered (stream, "%o", octa2);
|
||
break;
|
||
|
||
case 1:
|
||
/* Carry in, carry out */
|
||
octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
|
||
octa2 = (MID_ONE & *p) >> 4;
|
||
octa3 = (LOW_ONE & *p) >> 1;
|
||
carry = (CARRY_ONE & *p);
|
||
fprintf_filtered (stream, "%o", octa1);
|
||
fprintf_filtered (stream, "%o", octa2);
|
||
fprintf_filtered (stream, "%o", octa3);
|
||
break;
|
||
|
||
case 2:
|
||
/* Carry in, no carry out */
|
||
octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
|
||
octa2 = (MID_TWO & *p) >> 3;
|
||
octa3 = (LOW_TWO & *p);
|
||
carry = 0;
|
||
fprintf_filtered (stream, "%o", octa1);
|
||
fprintf_filtered (stream, "%o", octa2);
|
||
fprintf_filtered (stream, "%o", octa3);
|
||
break;
|
||
|
||
default:
|
||
error (_("Internal error in octal conversion;"));
|
||
}
|
||
|
||
cycle++;
|
||
cycle = cycle % BITS_IN_OCTAL;
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
/* VALADDR points to an integer of LEN bytes.
|
||
* Print it in decimal on stream or format it in buf.
|
||
*/
|
||
void
|
||
print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
|
||
unsigned len, enum bfd_endian byte_order)
|
||
{
|
||
#define TEN 10
|
||
#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
|
||
#define CARRY_LEFT( x ) ((x) % TEN)
|
||
#define SHIFT( x ) ((x) << 4)
|
||
#define LOW_NIBBLE( x ) ( (x) & 0x00F)
|
||
#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
|
||
|
||
const gdb_byte *p;
|
||
unsigned char *digits;
|
||
int carry;
|
||
int decimal_len;
|
||
int i, j, decimal_digits;
|
||
int dummy;
|
||
int flip;
|
||
|
||
/* Base-ten number is less than twice as many digits
|
||
* as the base 16 number, which is 2 digits per byte.
|
||
*/
|
||
decimal_len = len * 2 * 2;
|
||
digits = xmalloc (decimal_len);
|
||
|
||
for (i = 0; i < decimal_len; i++)
|
||
{
|
||
digits[i] = 0;
|
||
}
|
||
|
||
/* Ok, we have an unknown number of bytes of data to be printed in
|
||
* decimal.
|
||
*
|
||
* Given a hex number (in nibbles) as XYZ, we start by taking X and
|
||
* decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
|
||
* the nibbles by 16, add Y and re-decimalize. Repeat with Z.
|
||
*
|
||
* The trick is that "digits" holds a base-10 number, but sometimes
|
||
* the individual digits are > 10.
|
||
*
|
||
* Outer loop is per nibble (hex digit) of input, from MSD end to
|
||
* LSD end.
|
||
*/
|
||
decimal_digits = 0; /* Number of decimal digits so far */
|
||
p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
|
||
flip = 0;
|
||
while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
|
||
{
|
||
/*
|
||
* Multiply current base-ten number by 16 in place.
|
||
* Each digit was between 0 and 9, now is between
|
||
* 0 and 144.
|
||
*/
|
||
for (j = 0; j < decimal_digits; j++)
|
||
{
|
||
digits[j] = SHIFT (digits[j]);
|
||
}
|
||
|
||
/* Take the next nibble off the input and add it to what
|
||
* we've got in the LSB position. Bottom 'digit' is now
|
||
* between 0 and 159.
|
||
*
|
||
* "flip" is used to run this loop twice for each byte.
|
||
*/
|
||
if (flip == 0)
|
||
{
|
||
/* Take top nibble.
|
||
*/
|
||
digits[0] += HIGH_NIBBLE (*p);
|
||
flip = 1;
|
||
}
|
||
else
|
||
{
|
||
/* Take low nibble and bump our pointer "p".
|
||
*/
|
||
digits[0] += LOW_NIBBLE (*p);
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
p++;
|
||
else
|
||
p--;
|
||
flip = 0;
|
||
}
|
||
|
||
/* Re-decimalize. We have to do this often enough
|
||
* that we don't overflow, but once per nibble is
|
||
* overkill. Easier this way, though. Note that the
|
||
* carry is often larger than 10 (e.g. max initial
|
||
* carry out of lowest nibble is 15, could bubble all
|
||
* the way up greater than 10). So we have to do
|
||
* the carrying beyond the last current digit.
|
||
*/
|
||
carry = 0;
|
||
for (j = 0; j < decimal_len - 1; j++)
|
||
{
|
||
digits[j] += carry;
|
||
|
||
/* "/" won't handle an unsigned char with
|
||
* a value that if signed would be negative.
|
||
* So extend to longword int via "dummy".
|
||
*/
|
||
dummy = digits[j];
|
||
carry = CARRY_OUT (dummy);
|
||
digits[j] = CARRY_LEFT (dummy);
|
||
|
||
if (j >= decimal_digits && carry == 0)
|
||
{
|
||
/*
|
||
* All higher digits are 0 and we
|
||
* no longer have a carry.
|
||
*
|
||
* Note: "j" is 0-based, "decimal_digits" is
|
||
* 1-based.
|
||
*/
|
||
decimal_digits = j + 1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Ok, now "digits" is the decimal representation, with
|
||
* the "decimal_digits" actual digits. Print!
|
||
*/
|
||
for (i = decimal_digits - 1; i >= 0; i--)
|
||
{
|
||
fprintf_filtered (stream, "%1d", digits[i]);
|
||
}
|
||
xfree (digits);
|
||
}
|
||
|
||
/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
|
||
|
||
void
|
||
print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
|
||
unsigned len, enum bfd_endian byte_order)
|
||
{
|
||
const gdb_byte *p;
|
||
|
||
/* FIXME: We should be not printing leading zeroes in most cases. */
|
||
|
||
fputs_filtered ("0x", stream);
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
{
|
||
for (p = valaddr;
|
||
p < valaddr + len;
|
||
p++)
|
||
{
|
||
fprintf_filtered (stream, "%02x", *p);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (p = valaddr + len - 1;
|
||
p >= valaddr;
|
||
p--)
|
||
{
|
||
fprintf_filtered (stream, "%02x", *p);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* VALADDR points to a char integer of LEN bytes. Print it out in appropriate language form on stream.
|
||
Omit any leading zero chars. */
|
||
|
||
void
|
||
print_char_chars (struct ui_file *stream, struct type *type,
|
||
const gdb_byte *valaddr,
|
||
unsigned len, enum bfd_endian byte_order)
|
||
{
|
||
const gdb_byte *p;
|
||
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
{
|
||
p = valaddr;
|
||
while (p < valaddr + len - 1 && *p == 0)
|
||
++p;
|
||
|
||
while (p < valaddr + len)
|
||
{
|
||
LA_EMIT_CHAR (*p, type, stream, '\'');
|
||
++p;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
p = valaddr + len - 1;
|
||
while (p > valaddr && *p == 0)
|
||
--p;
|
||
|
||
while (p >= valaddr)
|
||
{
|
||
LA_EMIT_CHAR (*p, type, stream, '\'');
|
||
--p;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Assuming TYPE is a simple, non-empty array type, compute its upper
|
||
and lower bound. Save the low bound into LOW_BOUND if not NULL.
|
||
Save the high bound into HIGH_BOUND if not NULL.
|
||
|
||
Return 1 if the operation was successful. Return zero otherwise,
|
||
in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
|
||
|
||
Computing the array upper and lower bounds is pretty easy, but this
|
||
function does some additional verifications before returning them.
|
||
If something incorrect is detected, it is better to return a status
|
||
rather than throwing an error, making it easier for the caller to
|
||
implement an error-recovery plan. For instance, it may decide to
|
||
warn the user that the bounds were not found and then use some
|
||
default values instead. */
|
||
|
||
int
|
||
get_array_bounds (struct type *type, long *low_bound, long *high_bound)
|
||
{
|
||
struct type *index = TYPE_INDEX_TYPE (type);
|
||
long low = 0;
|
||
long high = 0;
|
||
|
||
if (index == NULL)
|
||
return 0;
|
||
|
||
if (TYPE_CODE (index) == TYPE_CODE_RANGE)
|
||
{
|
||
low = TYPE_LOW_BOUND (index);
|
||
high = TYPE_HIGH_BOUND (index);
|
||
}
|
||
else if (TYPE_CODE (index) == TYPE_CODE_ENUM)
|
||
{
|
||
const int n_enums = TYPE_NFIELDS (index);
|
||
|
||
low = TYPE_FIELD_BITPOS (index, 0);
|
||
high = TYPE_FIELD_BITPOS (index, n_enums - 1);
|
||
}
|
||
else
|
||
return 0;
|
||
|
||
/* Abort if the lower bound is greater than the higher bound, except
|
||
when low = high + 1. This is a very common idiom used in Ada when
|
||
defining empty ranges (for instance "range 1 .. 0"). */
|
||
if (low > high + 1)
|
||
return 0;
|
||
|
||
if (low_bound)
|
||
*low_bound = low;
|
||
|
||
if (high_bound)
|
||
*high_bound = high;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Print on STREAM using the given OPTIONS the index for the element
|
||
at INDEX of an array whose index type is INDEX_TYPE. */
|
||
|
||
void
|
||
maybe_print_array_index (struct type *index_type, LONGEST index,
|
||
struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
struct value *index_value;
|
||
|
||
if (!options->print_array_indexes)
|
||
return;
|
||
|
||
index_value = value_from_longest (index_type, index);
|
||
|
||
LA_PRINT_ARRAY_INDEX (index_value, stream, options);
|
||
}
|
||
|
||
/* Called by various <lang>_val_print routines to print elements of an
|
||
array in the form "<elem1>, <elem2>, <elem3>, ...".
|
||
|
||
(FIXME?) Assumes array element separator is a comma, which is correct
|
||
for all languages currently handled.
|
||
(FIXME?) Some languages have a notation for repeated array elements,
|
||
perhaps we should try to use that notation when appropriate.
|
||
*/
|
||
|
||
void
|
||
val_print_array_elements (struct type *type, const gdb_byte *valaddr,
|
||
CORE_ADDR address, struct ui_file *stream,
|
||
int recurse,
|
||
const struct value_print_options *options,
|
||
unsigned int i)
|
||
{
|
||
unsigned int things_printed = 0;
|
||
unsigned len;
|
||
struct type *elttype, *index_type;
|
||
unsigned eltlen;
|
||
/* Position of the array element we are examining to see
|
||
whether it is repeated. */
|
||
unsigned int rep1;
|
||
/* Number of repetitions we have detected so far. */
|
||
unsigned int reps;
|
||
long low_bound_index = 0;
|
||
|
||
elttype = TYPE_TARGET_TYPE (type);
|
||
eltlen = TYPE_LENGTH (check_typedef (elttype));
|
||
index_type = TYPE_INDEX_TYPE (type);
|
||
|
||
/* Compute the number of elements in the array. On most arrays,
|
||
the size of its elements is not zero, and so the number of elements
|
||
is simply the size of the array divided by the size of the elements.
|
||
But for arrays of elements whose size is zero, we need to look at
|
||
the bounds. */
|
||
if (eltlen != 0)
|
||
len = TYPE_LENGTH (type) / eltlen;
|
||
else
|
||
{
|
||
long low, hi;
|
||
if (get_array_bounds (type, &low, &hi))
|
||
len = hi - low + 1;
|
||
else
|
||
{
|
||
warning (_("unable to get bounds of array, assuming null array"));
|
||
len = 0;
|
||
}
|
||
}
|
||
|
||
/* Get the array low bound. This only makes sense if the array
|
||
has one or more element in it. */
|
||
if (len > 0 && !get_array_bounds (type, &low_bound_index, NULL))
|
||
{
|
||
warning (_("unable to get low bound of array, using zero as default"));
|
||
low_bound_index = 0;
|
||
}
|
||
|
||
annotate_array_section_begin (i, elttype);
|
||
|
||
for (; i < len && things_printed < options->print_max; i++)
|
||
{
|
||
if (i != 0)
|
||
{
|
||
if (options->prettyprint_arrays)
|
||
{
|
||
fprintf_filtered (stream, ",\n");
|
||
print_spaces_filtered (2 + 2 * recurse, stream);
|
||
}
|
||
else
|
||
{
|
||
fprintf_filtered (stream, ", ");
|
||
}
|
||
}
|
||
wrap_here (n_spaces (2 + 2 * recurse));
|
||
maybe_print_array_index (index_type, i + low_bound_index,
|
||
stream, options);
|
||
|
||
rep1 = i + 1;
|
||
reps = 1;
|
||
while ((rep1 < len) &&
|
||
!memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
|
||
{
|
||
++reps;
|
||
++rep1;
|
||
}
|
||
|
||
if (reps > options->repeat_count_threshold)
|
||
{
|
||
val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
|
||
stream, recurse + 1, options, current_language);
|
||
annotate_elt_rep (reps);
|
||
fprintf_filtered (stream, " <repeats %u times>", reps);
|
||
annotate_elt_rep_end ();
|
||
|
||
i = rep1 - 1;
|
||
things_printed += options->repeat_count_threshold;
|
||
}
|
||
else
|
||
{
|
||
val_print (elttype, valaddr + i * eltlen, 0, address + i * eltlen,
|
||
stream, recurse + 1, options, current_language);
|
||
annotate_elt ();
|
||
things_printed++;
|
||
}
|
||
}
|
||
annotate_array_section_end ();
|
||
if (i < len)
|
||
{
|
||
fprintf_filtered (stream, "...");
|
||
}
|
||
}
|
||
|
||
/* Read LEN bytes of target memory at address MEMADDR, placing the
|
||
results in GDB's memory at MYADDR. Returns a count of the bytes
|
||
actually read, and optionally an errno value in the location
|
||
pointed to by ERRNOPTR if ERRNOPTR is non-null. */
|
||
|
||
/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
|
||
function be eliminated. */
|
||
|
||
static int
|
||
partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int *errnoptr)
|
||
{
|
||
int nread; /* Number of bytes actually read. */
|
||
int errcode; /* Error from last read. */
|
||
|
||
/* First try a complete read. */
|
||
errcode = target_read_memory (memaddr, myaddr, len);
|
||
if (errcode == 0)
|
||
{
|
||
/* Got it all. */
|
||
nread = len;
|
||
}
|
||
else
|
||
{
|
||
/* Loop, reading one byte at a time until we get as much as we can. */
|
||
for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
|
||
{
|
||
errcode = target_read_memory (memaddr++, myaddr++, 1);
|
||
}
|
||
/* If an error, the last read was unsuccessful, so adjust count. */
|
||
if (errcode != 0)
|
||
{
|
||
nread--;
|
||
}
|
||
}
|
||
if (errnoptr != NULL)
|
||
{
|
||
*errnoptr = errcode;
|
||
}
|
||
return (nread);
|
||
}
|
||
|
||
/* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes
|
||
each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly
|
||
allocated buffer containing the string, which the caller is responsible to
|
||
free, and BYTES_READ will be set to the number of bytes read. Returns 0 on
|
||
success, or errno on failure.
|
||
|
||
If LEN > 0, reads exactly LEN characters (including eventual NULs in
|
||
the middle or end of the string). If LEN is -1, stops at the first
|
||
null character (not necessarily the first null byte) up to a maximum
|
||
of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many
|
||
characters as possible from the string.
|
||
|
||
Unless an exception is thrown, BUFFER will always be allocated, even on
|
||
failure. In this case, some characters might have been read before the
|
||
failure happened. Check BYTES_READ to recognize this situation.
|
||
|
||
Note: There was a FIXME asking to make this code use target_read_string,
|
||
but this function is more general (can read past null characters, up to
|
||
given LEN). Besides, it is used much more often than target_read_string
|
||
so it is more tested. Perhaps callers of target_read_string should use
|
||
this function instead? */
|
||
|
||
int
|
||
read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
|
||
enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read)
|
||
{
|
||
int found_nul; /* Non-zero if we found the nul char. */
|
||
int errcode; /* Errno returned from bad reads. */
|
||
unsigned int nfetch; /* Chars to fetch / chars fetched. */
|
||
unsigned int chunksize; /* Size of each fetch, in chars. */
|
||
gdb_byte *bufptr; /* Pointer to next available byte in buffer. */
|
||
gdb_byte *limit; /* First location past end of fetch buffer. */
|
||
struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
|
||
|
||
/* Decide how large of chunks to try to read in one operation. This
|
||
is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
|
||
so we might as well read them all in one operation. If LEN is -1, we
|
||
are looking for a NUL terminator to end the fetching, so we might as
|
||
well read in blocks that are large enough to be efficient, but not so
|
||
large as to be slow if fetchlimit happens to be large. So we choose the
|
||
minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
|
||
200 is way too big for remote debugging over a serial line. */
|
||
|
||
chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
|
||
|
||
/* Loop until we either have all the characters, or we encounter
|
||
some error, such as bumping into the end of the address space. */
|
||
|
||
found_nul = 0;
|
||
*buffer = NULL;
|
||
|
||
old_chain = make_cleanup (free_current_contents, buffer);
|
||
|
||
if (len > 0)
|
||
{
|
||
*buffer = (gdb_byte *) xmalloc (len * width);
|
||
bufptr = *buffer;
|
||
|
||
nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
|
||
/ width;
|
||
addr += nfetch * width;
|
||
bufptr += nfetch * width;
|
||
}
|
||
else if (len == -1)
|
||
{
|
||
unsigned long bufsize = 0;
|
||
|
||
do
|
||
{
|
||
QUIT;
|
||
nfetch = min (chunksize, fetchlimit - bufsize);
|
||
|
||
if (*buffer == NULL)
|
||
*buffer = (gdb_byte *) xmalloc (nfetch * width);
|
||
else
|
||
*buffer = (gdb_byte *) xrealloc (*buffer,
|
||
(nfetch + bufsize) * width);
|
||
|
||
bufptr = *buffer + bufsize * width;
|
||
bufsize += nfetch;
|
||
|
||
/* Read as much as we can. */
|
||
nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
|
||
/ width;
|
||
|
||
/* Scan this chunk for the null character that terminates the string
|
||
to print. If found, we don't need to fetch any more. Note
|
||
that bufptr is explicitly left pointing at the next character
|
||
after the null character, or at the next character after the end
|
||
of the buffer. */
|
||
|
||
limit = bufptr + nfetch * width;
|
||
while (bufptr < limit)
|
||
{
|
||
unsigned long c;
|
||
|
||
c = extract_unsigned_integer (bufptr, width, byte_order);
|
||
addr += width;
|
||
bufptr += width;
|
||
if (c == 0)
|
||
{
|
||
/* We don't care about any error which happened after
|
||
the NUL terminator. */
|
||
errcode = 0;
|
||
found_nul = 1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
while (errcode == 0 /* no error */
|
||
&& bufptr - *buffer < fetchlimit * width /* no overrun */
|
||
&& !found_nul); /* haven't found NUL yet */
|
||
}
|
||
else
|
||
{ /* Length of string is really 0! */
|
||
/* We always allocate *buffer. */
|
||
*buffer = bufptr = xmalloc (1);
|
||
errcode = 0;
|
||
}
|
||
|
||
/* bufptr and addr now point immediately beyond the last byte which we
|
||
consider part of the string (including a '\0' which ends the string). */
|
||
*bytes_read = bufptr - *buffer;
|
||
|
||
QUIT;
|
||
|
||
discard_cleanups (old_chain);
|
||
|
||
return errcode;
|
||
}
|
||
|
||
/* Print a string from the inferior, starting at ADDR and printing up to LEN
|
||
characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
|
||
stops at the first null byte, otherwise printing proceeds (including null
|
||
bytes) until either print_max or LEN characters have been printed,
|
||
whichever is smaller. */
|
||
|
||
int
|
||
val_print_string (struct type *elttype, CORE_ADDR addr, int len,
|
||
struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
|
||
int errcode; /* Errno returned from bad reads. */
|
||
int found_nul; /* Non-zero if we found the nul char */
|
||
unsigned int fetchlimit; /* Maximum number of chars to print. */
|
||
int bytes_read;
|
||
gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */
|
||
struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
|
||
struct gdbarch *gdbarch = get_type_arch (elttype);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
int width = TYPE_LENGTH (elttype);
|
||
|
||
/* First we need to figure out the limit on the number of characters we are
|
||
going to attempt to fetch and print. This is actually pretty simple. If
|
||
LEN >= zero, then the limit is the minimum of LEN and print_max. If
|
||
LEN is -1, then the limit is print_max. This is true regardless of
|
||
whether print_max is zero, UINT_MAX (unlimited), or something in between,
|
||
because finding the null byte (or available memory) is what actually
|
||
limits the fetch. */
|
||
|
||
fetchlimit = (len == -1 ? options->print_max : min (len, options->print_max));
|
||
|
||
errcode = read_string (addr, len, width, fetchlimit, byte_order,
|
||
&buffer, &bytes_read);
|
||
old_chain = make_cleanup (xfree, buffer);
|
||
|
||
addr += bytes_read;
|
||
|
||
/* We now have either successfully filled the buffer to fetchlimit, or
|
||
terminated early due to an error or finding a null char when LEN is -1. */
|
||
|
||
/* Determine found_nul by looking at the last character read. */
|
||
found_nul = extract_unsigned_integer (buffer + bytes_read - width, width,
|
||
byte_order) == 0;
|
||
if (len == -1 && !found_nul)
|
||
{
|
||
gdb_byte *peekbuf;
|
||
|
||
/* We didn't find a NUL terminator we were looking for. Attempt
|
||
to peek at the next character. If not successful, or it is not
|
||
a null byte, then force ellipsis to be printed. */
|
||
|
||
peekbuf = (gdb_byte *) alloca (width);
|
||
|
||
if (target_read_memory (addr, peekbuf, width) == 0
|
||
&& extract_unsigned_integer (peekbuf, width, byte_order) != 0)
|
||
force_ellipsis = 1;
|
||
}
|
||
else if ((len >= 0 && errcode != 0) || (len > bytes_read / width))
|
||
{
|
||
/* Getting an error when we have a requested length, or fetching less
|
||
than the number of characters actually requested, always make us
|
||
print ellipsis. */
|
||
force_ellipsis = 1;
|
||
}
|
||
|
||
/* If we get an error before fetching anything, don't print a string.
|
||
But if we fetch something and then get an error, print the string
|
||
and then the error message. */
|
||
if (errcode == 0 || bytes_read > 0)
|
||
{
|
||
if (options->addressprint)
|
||
{
|
||
fputs_filtered (" ", stream);
|
||
}
|
||
LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width, force_ellipsis, options);
|
||
}
|
||
|
||
if (errcode != 0)
|
||
{
|
||
if (errcode == EIO)
|
||
{
|
||
fprintf_filtered (stream, " <Address ");
|
||
fputs_filtered (paddress (gdbarch, addr), stream);
|
||
fprintf_filtered (stream, " out of bounds>");
|
||
}
|
||
else
|
||
{
|
||
fprintf_filtered (stream, " <Error reading address ");
|
||
fputs_filtered (paddress (gdbarch, addr), stream);
|
||
fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
|
||
}
|
||
}
|
||
|
||
gdb_flush (stream);
|
||
do_cleanups (old_chain);
|
||
|
||
return (bytes_read / width);
|
||
}
|
||
|
||
|
||
/* The 'set input-radix' command writes to this auxiliary variable.
|
||
If the requested radix is valid, INPUT_RADIX is updated; otherwise,
|
||
it is left unchanged. */
|
||
|
||
static unsigned input_radix_1 = 10;
|
||
|
||
/* Validate an input or output radix setting, and make sure the user
|
||
knows what they really did here. Radix setting is confusing, e.g.
|
||
setting the input radix to "10" never changes it! */
|
||
|
||
static void
|
||
set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
|
||
{
|
||
set_input_radix_1 (from_tty, input_radix_1);
|
||
}
|
||
|
||
static void
|
||
set_input_radix_1 (int from_tty, unsigned radix)
|
||
{
|
||
/* We don't currently disallow any input radix except 0 or 1, which don't
|
||
make any mathematical sense. In theory, we can deal with any input
|
||
radix greater than 1, even if we don't have unique digits for every
|
||
value from 0 to radix-1, but in practice we lose on large radix values.
|
||
We should either fix the lossage or restrict the radix range more.
|
||
(FIXME). */
|
||
|
||
if (radix < 2)
|
||
{
|
||
input_radix_1 = input_radix;
|
||
error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
|
||
radix);
|
||
}
|
||
input_radix_1 = input_radix = radix;
|
||
if (from_tty)
|
||
{
|
||
printf_filtered (_("Input radix now set to decimal %u, hex %x, octal %o.\n"),
|
||
radix, radix, radix);
|
||
}
|
||
}
|
||
|
||
/* The 'set output-radix' command writes to this auxiliary variable.
|
||
If the requested radix is valid, OUTPUT_RADIX is updated,
|
||
otherwise, it is left unchanged. */
|
||
|
||
static unsigned output_radix_1 = 10;
|
||
|
||
static void
|
||
set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
|
||
{
|
||
set_output_radix_1 (from_tty, output_radix_1);
|
||
}
|
||
|
||
static void
|
||
set_output_radix_1 (int from_tty, unsigned radix)
|
||
{
|
||
/* Validate the radix and disallow ones that we aren't prepared to
|
||
handle correctly, leaving the radix unchanged. */
|
||
switch (radix)
|
||
{
|
||
case 16:
|
||
user_print_options.output_format = 'x'; /* hex */
|
||
break;
|
||
case 10:
|
||
user_print_options.output_format = 0; /* decimal */
|
||
break;
|
||
case 8:
|
||
user_print_options.output_format = 'o'; /* octal */
|
||
break;
|
||
default:
|
||
output_radix_1 = output_radix;
|
||
error (_("Unsupported output radix ``decimal %u''; output radix unchanged."),
|
||
radix);
|
||
}
|
||
output_radix_1 = output_radix = radix;
|
||
if (from_tty)
|
||
{
|
||
printf_filtered (_("Output radix now set to decimal %u, hex %x, octal %o.\n"),
|
||
radix, radix, radix);
|
||
}
|
||
}
|
||
|
||
/* Set both the input and output radix at once. Try to set the output radix
|
||
first, since it has the most restrictive range. An radix that is valid as
|
||
an output radix is also valid as an input radix.
|
||
|
||
It may be useful to have an unusual input radix. If the user wishes to
|
||
set an input radix that is not valid as an output radix, he needs to use
|
||
the 'set input-radix' command. */
|
||
|
||
static void
|
||
set_radix (char *arg, int from_tty)
|
||
{
|
||
unsigned radix;
|
||
|
||
radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
|
||
set_output_radix_1 (0, radix);
|
||
set_input_radix_1 (0, radix);
|
||
if (from_tty)
|
||
{
|
||
printf_filtered (_("Input and output radices now set to decimal %u, hex %x, octal %o.\n"),
|
||
radix, radix, radix);
|
||
}
|
||
}
|
||
|
||
/* Show both the input and output radices. */
|
||
|
||
static void
|
||
show_radix (char *arg, int from_tty)
|
||
{
|
||
if (from_tty)
|
||
{
|
||
if (input_radix == output_radix)
|
||
{
|
||
printf_filtered (_("Input and output radices set to decimal %u, hex %x, octal %o.\n"),
|
||
input_radix, input_radix, input_radix);
|
||
}
|
||
else
|
||
{
|
||
printf_filtered (_("Input radix set to decimal %u, hex %x, octal %o.\n"),
|
||
input_radix, input_radix, input_radix);
|
||
printf_filtered (_("Output radix set to decimal %u, hex %x, octal %o.\n"),
|
||
output_radix, output_radix, output_radix);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static void
|
||
set_print (char *arg, int from_tty)
|
||
{
|
||
printf_unfiltered (
|
||
"\"set print\" must be followed by the name of a print subcommand.\n");
|
||
help_list (setprintlist, "set print ", -1, gdb_stdout);
|
||
}
|
||
|
||
static void
|
||
show_print (char *args, int from_tty)
|
||
{
|
||
cmd_show_list (showprintlist, from_tty, "");
|
||
}
|
||
|
||
void
|
||
_initialize_valprint (void)
|
||
{
|
||
struct cmd_list_element *c;
|
||
|
||
add_prefix_cmd ("print", no_class, set_print,
|
||
_("Generic command for setting how things print."),
|
||
&setprintlist, "set print ", 0, &setlist);
|
||
add_alias_cmd ("p", "print", no_class, 1, &setlist);
|
||
/* prefer set print to set prompt */
|
||
add_alias_cmd ("pr", "print", no_class, 1, &setlist);
|
||
|
||
add_prefix_cmd ("print", no_class, show_print,
|
||
_("Generic command for showing print settings."),
|
||
&showprintlist, "show print ", 0, &showlist);
|
||
add_alias_cmd ("p", "print", no_class, 1, &showlist);
|
||
add_alias_cmd ("pr", "print", no_class, 1, &showlist);
|
||
|
||
add_setshow_uinteger_cmd ("elements", no_class,
|
||
&user_print_options.print_max, _("\
|
||
Set limit on string chars or array elements to print."), _("\
|
||
Show limit on string chars or array elements to print."), _("\
|
||
\"set print elements 0\" causes there to be no limit."),
|
||
NULL,
|
||
show_print_max,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_setshow_boolean_cmd ("null-stop", no_class,
|
||
&user_print_options.stop_print_at_null, _("\
|
||
Set printing of char arrays to stop at first null char."), _("\
|
||
Show printing of char arrays to stop at first null char."), NULL,
|
||
NULL,
|
||
show_stop_print_at_null,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_setshow_uinteger_cmd ("repeats", no_class,
|
||
&user_print_options.repeat_count_threshold, _("\
|
||
Set threshold for repeated print elements."), _("\
|
||
Show threshold for repeated print elements."), _("\
|
||
\"set print repeats 0\" causes all elements to be individually printed."),
|
||
NULL,
|
||
show_repeat_count_threshold,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_setshow_boolean_cmd ("pretty", class_support,
|
||
&user_print_options.prettyprint_structs, _("\
|
||
Set prettyprinting of structures."), _("\
|
||
Show prettyprinting of structures."), NULL,
|
||
NULL,
|
||
show_prettyprint_structs,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_setshow_boolean_cmd ("union", class_support,
|
||
&user_print_options.unionprint, _("\
|
||
Set printing of unions interior to structures."), _("\
|
||
Show printing of unions interior to structures."), NULL,
|
||
NULL,
|
||
show_unionprint,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_setshow_boolean_cmd ("array", class_support,
|
||
&user_print_options.prettyprint_arrays, _("\
|
||
Set prettyprinting of arrays."), _("\
|
||
Show prettyprinting of arrays."), NULL,
|
||
NULL,
|
||
show_prettyprint_arrays,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_setshow_boolean_cmd ("address", class_support,
|
||
&user_print_options.addressprint, _("\
|
||
Set printing of addresses."), _("\
|
||
Show printing of addresses."), NULL,
|
||
NULL,
|
||
show_addressprint,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
|
||
_("\
|
||
Set default input radix for entering numbers."), _("\
|
||
Show default input radix for entering numbers."), NULL,
|
||
set_input_radix,
|
||
show_input_radix,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
|
||
_("\
|
||
Set default output radix for printing of values."), _("\
|
||
Show default output radix for printing of values."), NULL,
|
||
set_output_radix,
|
||
show_output_radix,
|
||
&setlist, &showlist);
|
||
|
||
/* The "set radix" and "show radix" commands are special in that
|
||
they are like normal set and show commands but allow two normally
|
||
independent variables to be either set or shown with a single
|
||
command. So the usual deprecated_add_set_cmd() and [deleted]
|
||
add_show_from_set() commands aren't really appropriate. */
|
||
/* FIXME: i18n: With the new add_setshow_integer command, that is no
|
||
longer true - show can display anything. */
|
||
add_cmd ("radix", class_support, set_radix, _("\
|
||
Set default input and output number radices.\n\
|
||
Use 'set input-radix' or 'set output-radix' to independently set each.\n\
|
||
Without an argument, sets both radices back to the default value of 10."),
|
||
&setlist);
|
||
add_cmd ("radix", class_support, show_radix, _("\
|
||
Show the default input and output number radices.\n\
|
||
Use 'show input-radix' or 'show output-radix' to independently show each."),
|
||
&showlist);
|
||
|
||
add_setshow_boolean_cmd ("array-indexes", class_support,
|
||
&user_print_options.print_array_indexes, _("\
|
||
Set printing of array indexes."), _("\
|
||
Show printing of array indexes"), NULL, NULL, show_print_array_indexes,
|
||
&setprintlist, &showprintlist);
|
||
}
|