214 lines
7.2 KiB
C++
214 lines
7.2 KiB
C++
// dwarf_reader.h -- parse dwarf2/3 debug information for gold -*- C++ -*-
|
|
|
|
// Copyright 2007, 2008, 2009 Free Software Foundation, Inc.
|
|
// Written by Ian Lance Taylor <iant@google.com>.
|
|
|
|
// This file is part of gold.
|
|
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
|
// MA 02110-1301, USA.
|
|
|
|
#ifndef GOLD_DWARF_READER_H
|
|
#define GOLD_DWARF_READER_H
|
|
|
|
#include <vector>
|
|
#include <map>
|
|
|
|
#include "elfcpp.h"
|
|
#include "elfcpp_swap.h"
|
|
#include "dwarf.h"
|
|
#include "reloc.h"
|
|
|
|
namespace gold
|
|
{
|
|
|
|
template<int size, bool big_endian>
|
|
class Track_relocs;
|
|
struct LineStateMachine;
|
|
|
|
// We can't do better than to keep the offsets in a sorted vector.
|
|
// Here, offset is the key, and file_num/line_num is the value.
|
|
struct Offset_to_lineno_entry
|
|
{
|
|
off_t offset;
|
|
int header_num; // which file-list to use (i.e. which .o file are we in)
|
|
int file_num; // a pointer into files_
|
|
int line_num; // the line number in the source file
|
|
// Offsets are unique within a section, so that's a sufficient sort key.
|
|
bool operator<(const Offset_to_lineno_entry& that) const
|
|
{ return this->offset < that.offset; }
|
|
};
|
|
|
|
// This class is used to read the line information from the debugging
|
|
// section of an object file.
|
|
|
|
class Dwarf_line_info
|
|
{
|
|
public:
|
|
Dwarf_line_info()
|
|
{ }
|
|
|
|
virtual
|
|
~Dwarf_line_info()
|
|
{ }
|
|
|
|
// Given a section number and an offset, returns the associated
|
|
// file and line-number, as a string: "file:lineno". If unable
|
|
// to do the mapping, returns the empty string. You must call
|
|
// read_line_mappings() before calling this function.
|
|
std::string
|
|
addr2line(unsigned int shndx, off_t offset)
|
|
{ return do_addr2line(shndx, offset); }
|
|
|
|
// A helper function for a single addr2line lookup. It also keeps a
|
|
// cache of the last CACHE_SIZE Dwarf_line_info objects it created;
|
|
// set to 0 not to cache at all. The larger CACHE_SIZE is, the more
|
|
// chance this routine won't have to re-create a Dwarf_line_info
|
|
// object for its addr2line computation; such creations are slow.
|
|
// NOTE: Not thread-safe, so only call from one thread at a time.
|
|
static std::string
|
|
one_addr2line(Object* object, unsigned int shndx, off_t offset,
|
|
size_t cache_size);
|
|
|
|
// This reclaims all the memory that one_addr2line may have cached.
|
|
// Use this when you know you will not be calling one_addr2line again.
|
|
static void
|
|
clear_addr2line_cache();
|
|
|
|
private:
|
|
virtual std::string
|
|
do_addr2line(unsigned int shndx, off_t offset) = 0;
|
|
};
|
|
|
|
template<int size, bool big_endian>
|
|
class Sized_dwarf_line_info : public Dwarf_line_info
|
|
{
|
|
public:
|
|
// Initializes a .debug_line reader for a given object file.
|
|
// If SHNDX is specified and non-negative, only read the debug
|
|
// information that pertains to the specified section.
|
|
Sized_dwarf_line_info(Object* object, unsigned int read_shndx = -1U);
|
|
|
|
private:
|
|
std::string
|
|
do_addr2line(unsigned int shndx, off_t offset);
|
|
|
|
// Start processing line info, and populates the offset_map_.
|
|
// If SHNDX is non-negative, only store debug information that
|
|
// pertains to the specified section.
|
|
void
|
|
read_line_mappings(Object*, unsigned int shndx);
|
|
|
|
// Reads the relocation section associated with .debug_line and
|
|
// stores relocation information in reloc_map_.
|
|
void
|
|
read_relocs(Object*);
|
|
|
|
// Looks in the symtab to see what section a symbol is in.
|
|
unsigned int
|
|
symbol_section(Object*, unsigned int sym,
|
|
typename elfcpp::Elf_types<size>::Elf_Addr* value,
|
|
bool* is_ordinary);
|
|
|
|
// Reads the DWARF2/3 header for this line info. Each takes as input
|
|
// a starting buffer position, and returns the ending position.
|
|
const unsigned char*
|
|
read_header_prolog(const unsigned char* lineptr);
|
|
|
|
const unsigned char*
|
|
read_header_tables(const unsigned char* lineptr);
|
|
|
|
// Reads the DWARF2/3 line information. If shndx is non-negative,
|
|
// discard all line information that doesn't pertain to the given
|
|
// section.
|
|
const unsigned char*
|
|
read_lines(const unsigned char* lineptr, unsigned int shndx);
|
|
|
|
// Process a single line info opcode at START using the state
|
|
// machine at LSM. Return true if we should define a line using the
|
|
// current state of the line state machine. Place the length of the
|
|
// opcode in LEN.
|
|
bool
|
|
process_one_opcode(const unsigned char* start,
|
|
struct LineStateMachine* lsm, size_t* len);
|
|
|
|
// Some parts of processing differ depending on whether the input
|
|
// was a .o file or not.
|
|
bool input_is_relobj();
|
|
|
|
// If we saw anything amiss while parsing, we set this to false.
|
|
// Then addr2line will always fail (rather than return possibly-
|
|
// corrupt data).
|
|
bool data_valid_;
|
|
|
|
// A DWARF2/3 line info header. This is not the same size as in the
|
|
// actual file, as the one in the file may have a 32 bit or 64 bit
|
|
// lengths.
|
|
|
|
struct Dwarf_line_infoHeader
|
|
{
|
|
off_t total_length;
|
|
int version;
|
|
off_t prologue_length;
|
|
int min_insn_length; // insn stands for instructin
|
|
bool default_is_stmt; // stmt stands for statement
|
|
signed char line_base;
|
|
int line_range;
|
|
unsigned char opcode_base;
|
|
std::vector<unsigned char> std_opcode_lengths;
|
|
int offset_size;
|
|
} header_;
|
|
|
|
// buffer is the buffer for our line info, starting at exactly where
|
|
// the line info to read is.
|
|
const unsigned char* buffer_;
|
|
const unsigned char* buffer_end_;
|
|
|
|
// This has relocations that point into buffer.
|
|
Track_relocs<size, big_endian> track_relocs_;
|
|
|
|
// This is used to figure out what section to apply a relocation to.
|
|
const unsigned char* symtab_buffer_;
|
|
section_size_type symtab_buffer_size_;
|
|
|
|
// Holds the directories and files as we see them. We have an array
|
|
// of directory-lists, one for each .o file we're reading (usually
|
|
// there will just be one, but there may be more if input is a .so).
|
|
std::vector<std::vector<std::string> > directories_;
|
|
// The first part is an index into directories_, the second the filename.
|
|
std::vector<std::vector< std::pair<int, std::string> > > files_;
|
|
|
|
// An index into the current directories_ and files_ vectors.
|
|
int current_header_index_;
|
|
|
|
// A sorted map from offset of the relocation target to the shndx
|
|
// and addend for the relocation.
|
|
typedef std::map<typename elfcpp::Elf_types<size>::Elf_Addr,
|
|
std::pair<unsigned int,
|
|
typename elfcpp::Elf_types<size>::Elf_Swxword> >
|
|
Reloc_map;
|
|
Reloc_map reloc_map_;
|
|
|
|
// We have a vector of offset->lineno entries for every input section.
|
|
typedef Unordered_map<unsigned int, std::vector<Offset_to_lineno_entry> >
|
|
Lineno_map;
|
|
|
|
Lineno_map line_number_map_;
|
|
};
|
|
|
|
} // End namespace gold.
|
|
|
|
#endif // !defined(GOLD_DWARF_READER_H)
|