900 lines
24 KiB
C
900 lines
24 KiB
C
/* Sequent Symmetry host interface, for GDB when running under Unix.
|
||
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1999, 2000,
|
||
2001
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
/* FIXME, some 387-specific items of use taken from i387-tdep.c -- ought to be
|
||
merged back in. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "symtab.h"
|
||
#include "target.h"
|
||
#include "regcache.h"
|
||
|
||
/* FIXME: What is the _INKERNEL define for? */
|
||
#define _INKERNEL
|
||
#include <signal.h>
|
||
#undef _INKERNEL
|
||
#include <sys/wait.h>
|
||
#include <sys/param.h>
|
||
#include <sys/user.h>
|
||
#include <sys/proc.h>
|
||
#include <sys/dir.h>
|
||
#include <sys/ioctl.h>
|
||
#include "gdb_stat.h"
|
||
#ifdef _SEQUENT_
|
||
#include <sys/ptrace.h>
|
||
#else
|
||
/* Dynix has only machine/ptrace.h, which is already included by sys/user.h */
|
||
/* Dynix has no mptrace call */
|
||
#define mptrace ptrace
|
||
#endif
|
||
#include "gdbcore.h"
|
||
#include <fcntl.h>
|
||
#include <sgtty.h>
|
||
#define TERMINAL struct sgttyb
|
||
|
||
#include "gdbcore.h"
|
||
|
||
void
|
||
store_inferior_registers (int regno)
|
||
{
|
||
struct pt_regset regs;
|
||
int i;
|
||
|
||
/* FIXME: Fetching the registers is a kludge to initialize all elements
|
||
in the fpu and fpa status. This works for normal debugging, but
|
||
might cause problems when calling functions in the inferior.
|
||
At least fpu_control and fpa_pcr (probably more) should be added
|
||
to the registers array to solve this properly. */
|
||
mptrace (XPT_RREGS, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) & regs, 0);
|
||
|
||
regs.pr_eax = *(int *) ®isters[REGISTER_BYTE (0)];
|
||
regs.pr_ebx = *(int *) ®isters[REGISTER_BYTE (5)];
|
||
regs.pr_ecx = *(int *) ®isters[REGISTER_BYTE (2)];
|
||
regs.pr_edx = *(int *) ®isters[REGISTER_BYTE (1)];
|
||
regs.pr_esi = *(int *) ®isters[REGISTER_BYTE (6)];
|
||
regs.pr_edi = *(int *) ®isters[REGISTER_BYTE (7)];
|
||
regs.pr_esp = *(int *) ®isters[REGISTER_BYTE (14)];
|
||
regs.pr_ebp = *(int *) ®isters[REGISTER_BYTE (15)];
|
||
regs.pr_eip = *(int *) ®isters[REGISTER_BYTE (16)];
|
||
regs.pr_flags = *(int *) ®isters[REGISTER_BYTE (17)];
|
||
for (i = 0; i < 31; i++)
|
||
{
|
||
regs.pr_fpa.fpa_regs[i] =
|
||
*(int *) ®isters[REGISTER_BYTE (FP1_REGNUM + i)];
|
||
}
|
||
memcpy (regs.pr_fpu.fpu_stack[0], ®isters[REGISTER_BYTE (ST0_REGNUM)], 10);
|
||
memcpy (regs.pr_fpu.fpu_stack[1], ®isters[REGISTER_BYTE (ST1_REGNUM)], 10);
|
||
memcpy (regs.pr_fpu.fpu_stack[2], ®isters[REGISTER_BYTE (ST2_REGNUM)], 10);
|
||
memcpy (regs.pr_fpu.fpu_stack[3], ®isters[REGISTER_BYTE (ST3_REGNUM)], 10);
|
||
memcpy (regs.pr_fpu.fpu_stack[4], ®isters[REGISTER_BYTE (ST4_REGNUM)], 10);
|
||
memcpy (regs.pr_fpu.fpu_stack[5], ®isters[REGISTER_BYTE (ST5_REGNUM)], 10);
|
||
memcpy (regs.pr_fpu.fpu_stack[6], ®isters[REGISTER_BYTE (ST6_REGNUM)], 10);
|
||
memcpy (regs.pr_fpu.fpu_stack[7], ®isters[REGISTER_BYTE (ST7_REGNUM)], 10);
|
||
mptrace (XPT_WREGS, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) & regs, 0);
|
||
}
|
||
|
||
void
|
||
fetch_inferior_registers (int regno)
|
||
{
|
||
int i;
|
||
struct pt_regset regs;
|
||
|
||
registers_fetched ();
|
||
|
||
mptrace (XPT_RREGS, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) & regs, 0);
|
||
*(int *) ®isters[REGISTER_BYTE (EAX_REGNUM)] = regs.pr_eax;
|
||
*(int *) ®isters[REGISTER_BYTE (EBX_REGNUM)] = regs.pr_ebx;
|
||
*(int *) ®isters[REGISTER_BYTE (ECX_REGNUM)] = regs.pr_ecx;
|
||
*(int *) ®isters[REGISTER_BYTE (EDX_REGNUM)] = regs.pr_edx;
|
||
*(int *) ®isters[REGISTER_BYTE (ESI_REGNUM)] = regs.pr_esi;
|
||
*(int *) ®isters[REGISTER_BYTE (EDI_REGNUM)] = regs.pr_edi;
|
||
*(int *) ®isters[REGISTER_BYTE (EBP_REGNUM)] = regs.pr_ebp;
|
||
*(int *) ®isters[REGISTER_BYTE (ESP_REGNUM)] = regs.pr_esp;
|
||
*(int *) ®isters[REGISTER_BYTE (EIP_REGNUM)] = regs.pr_eip;
|
||
*(int *) ®isters[REGISTER_BYTE (EFLAGS_REGNUM)] = regs.pr_flags;
|
||
for (i = 0; i < FPA_NREGS; i++)
|
||
{
|
||
*(int *) ®isters[REGISTER_BYTE (FP1_REGNUM + i)] =
|
||
regs.pr_fpa.fpa_regs[i];
|
||
}
|
||
memcpy (®isters[REGISTER_BYTE (ST0_REGNUM)], regs.pr_fpu.fpu_stack[0], 10);
|
||
memcpy (®isters[REGISTER_BYTE (ST1_REGNUM)], regs.pr_fpu.fpu_stack[1], 10);
|
||
memcpy (®isters[REGISTER_BYTE (ST2_REGNUM)], regs.pr_fpu.fpu_stack[2], 10);
|
||
memcpy (®isters[REGISTER_BYTE (ST3_REGNUM)], regs.pr_fpu.fpu_stack[3], 10);
|
||
memcpy (®isters[REGISTER_BYTE (ST4_REGNUM)], regs.pr_fpu.fpu_stack[4], 10);
|
||
memcpy (®isters[REGISTER_BYTE (ST5_REGNUM)], regs.pr_fpu.fpu_stack[5], 10);
|
||
memcpy (®isters[REGISTER_BYTE (ST6_REGNUM)], regs.pr_fpu.fpu_stack[6], 10);
|
||
memcpy (®isters[REGISTER_BYTE (ST7_REGNUM)], regs.pr_fpu.fpu_stack[7], 10);
|
||
}
|
||
|
||
/* FIXME: This should be merged with i387-tdep.c as well. */
|
||
static
|
||
print_fpu_status (struct pt_regset ep)
|
||
{
|
||
int i;
|
||
int bothstatus;
|
||
int top;
|
||
int fpreg;
|
||
unsigned char *p;
|
||
|
||
printf_unfiltered ("80387:");
|
||
if (ep.pr_fpu.fpu_ip == 0)
|
||
{
|
||
printf_unfiltered (" not in use.\n");
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
printf_unfiltered ("\n");
|
||
}
|
||
if (ep.pr_fpu.fpu_status != 0)
|
||
{
|
||
print_387_status_word (ep.pr_fpu.fpu_status);
|
||
}
|
||
print_387_control_word (ep.pr_fpu.fpu_control);
|
||
printf_unfiltered ("last exception: ");
|
||
printf_unfiltered ("opcode 0x%x; ", ep.pr_fpu.fpu_rsvd4);
|
||
printf_unfiltered ("pc 0x%x:0x%x; ", ep.pr_fpu.fpu_cs, ep.pr_fpu.fpu_ip);
|
||
printf_unfiltered ("operand 0x%x:0x%x\n", ep.pr_fpu.fpu_data_offset, ep.pr_fpu.fpu_op_sel);
|
||
|
||
top = (ep.pr_fpu.fpu_status >> 11) & 7;
|
||
|
||
printf_unfiltered ("regno tag msb lsb value\n");
|
||
for (fpreg = 7; fpreg >= 0; fpreg--)
|
||
{
|
||
double val;
|
||
|
||
printf_unfiltered ("%s %d: ", fpreg == top ? "=>" : " ", fpreg);
|
||
|
||
switch ((ep.pr_fpu.fpu_tag >> (fpreg * 2)) & 3)
|
||
{
|
||
case 0:
|
||
printf_unfiltered ("valid ");
|
||
break;
|
||
case 1:
|
||
printf_unfiltered ("zero ");
|
||
break;
|
||
case 2:
|
||
printf_unfiltered ("trap ");
|
||
break;
|
||
case 3:
|
||
printf_unfiltered ("empty ");
|
||
break;
|
||
}
|
||
for (i = 9; i >= 0; i--)
|
||
printf_unfiltered ("%02x", ep.pr_fpu.fpu_stack[fpreg][i]);
|
||
|
||
i387_to_double ((char *) ep.pr_fpu.fpu_stack[fpreg], (char *) &val);
|
||
printf_unfiltered (" %g\n", val);
|
||
}
|
||
if (ep.pr_fpu.fpu_rsvd1)
|
||
warning ("rsvd1 is 0x%x\n", ep.pr_fpu.fpu_rsvd1);
|
||
if (ep.pr_fpu.fpu_rsvd2)
|
||
warning ("rsvd2 is 0x%x\n", ep.pr_fpu.fpu_rsvd2);
|
||
if (ep.pr_fpu.fpu_rsvd3)
|
||
warning ("rsvd3 is 0x%x\n", ep.pr_fpu.fpu_rsvd3);
|
||
if (ep.pr_fpu.fpu_rsvd5)
|
||
warning ("rsvd5 is 0x%x\n", ep.pr_fpu.fpu_rsvd5);
|
||
}
|
||
|
||
|
||
print_1167_control_word (unsigned int pcr)
|
||
{
|
||
int pcr_tmp;
|
||
|
||
pcr_tmp = pcr & FPA_PCR_MODE;
|
||
printf_unfiltered ("\tMODE= %#x; RND= %#x ", pcr_tmp, pcr_tmp & 12);
|
||
switch (pcr_tmp & 12)
|
||
{
|
||
case 0:
|
||
printf_unfiltered ("RN (Nearest Value)");
|
||
break;
|
||
case 1:
|
||
printf_unfiltered ("RZ (Zero)");
|
||
break;
|
||
case 2:
|
||
printf_unfiltered ("RP (Positive Infinity)");
|
||
break;
|
||
case 3:
|
||
printf_unfiltered ("RM (Negative Infinity)");
|
||
break;
|
||
}
|
||
printf_unfiltered ("; IRND= %d ", pcr_tmp & 2);
|
||
if (0 == pcr_tmp & 2)
|
||
{
|
||
printf_unfiltered ("(same as RND)\n");
|
||
}
|
||
else
|
||
{
|
||
printf_unfiltered ("(toward zero)\n");
|
||
}
|
||
pcr_tmp = pcr & FPA_PCR_EM;
|
||
printf_unfiltered ("\tEM= %#x", pcr_tmp);
|
||
if (pcr_tmp & FPA_PCR_EM_DM)
|
||
printf_unfiltered (" DM");
|
||
if (pcr_tmp & FPA_PCR_EM_UOM)
|
||
printf_unfiltered (" UOM");
|
||
if (pcr_tmp & FPA_PCR_EM_PM)
|
||
printf_unfiltered (" PM");
|
||
if (pcr_tmp & FPA_PCR_EM_UM)
|
||
printf_unfiltered (" UM");
|
||
if (pcr_tmp & FPA_PCR_EM_OM)
|
||
printf_unfiltered (" OM");
|
||
if (pcr_tmp & FPA_PCR_EM_ZM)
|
||
printf_unfiltered (" ZM");
|
||
if (pcr_tmp & FPA_PCR_EM_IM)
|
||
printf_unfiltered (" IM");
|
||
printf_unfiltered ("\n");
|
||
pcr_tmp = FPA_PCR_CC;
|
||
printf_unfiltered ("\tCC= %#x", pcr_tmp);
|
||
if (pcr_tmp & FPA_PCR_20MHZ)
|
||
printf_unfiltered (" 20MHZ");
|
||
if (pcr_tmp & FPA_PCR_CC_Z)
|
||
printf_unfiltered (" Z");
|
||
if (pcr_tmp & FPA_PCR_CC_C2)
|
||
printf_unfiltered (" C2");
|
||
|
||
/* Dynix defines FPA_PCR_CC_C0 to 0x100 and ptx defines
|
||
FPA_PCR_CC_C1 to 0x100. Use whichever is defined and assume
|
||
the OS knows what it is doing. */
|
||
#ifdef FPA_PCR_CC_C1
|
||
if (pcr_tmp & FPA_PCR_CC_C1)
|
||
printf_unfiltered (" C1");
|
||
#else
|
||
if (pcr_tmp & FPA_PCR_CC_C0)
|
||
printf_unfiltered (" C0");
|
||
#endif
|
||
|
||
switch (pcr_tmp)
|
||
{
|
||
case FPA_PCR_CC_Z:
|
||
printf_unfiltered (" (Equal)");
|
||
break;
|
||
#ifdef FPA_PCR_CC_C1
|
||
case FPA_PCR_CC_C1:
|
||
#else
|
||
case FPA_PCR_CC_C0:
|
||
#endif
|
||
printf_unfiltered (" (Less than)");
|
||
break;
|
||
case 0:
|
||
printf_unfiltered (" (Greater than)");
|
||
break;
|
||
case FPA_PCR_CC_Z |
|
||
#ifdef FPA_PCR_CC_C1
|
||
FPA_PCR_CC_C1
|
||
#else
|
||
FPA_PCR_CC_C0
|
||
#endif
|
||
| FPA_PCR_CC_C2:
|
||
printf_unfiltered (" (Unordered)");
|
||
break;
|
||
default:
|
||
printf_unfiltered (" (Undefined)");
|
||
break;
|
||
}
|
||
printf_unfiltered ("\n");
|
||
pcr_tmp = pcr & FPA_PCR_AE;
|
||
printf_unfiltered ("\tAE= %#x", pcr_tmp);
|
||
if (pcr_tmp & FPA_PCR_AE_DE)
|
||
printf_unfiltered (" DE");
|
||
if (pcr_tmp & FPA_PCR_AE_UOE)
|
||
printf_unfiltered (" UOE");
|
||
if (pcr_tmp & FPA_PCR_AE_PE)
|
||
printf_unfiltered (" PE");
|
||
if (pcr_tmp & FPA_PCR_AE_UE)
|
||
printf_unfiltered (" UE");
|
||
if (pcr_tmp & FPA_PCR_AE_OE)
|
||
printf_unfiltered (" OE");
|
||
if (pcr_tmp & FPA_PCR_AE_ZE)
|
||
printf_unfiltered (" ZE");
|
||
if (pcr_tmp & FPA_PCR_AE_EE)
|
||
printf_unfiltered (" EE");
|
||
if (pcr_tmp & FPA_PCR_AE_IE)
|
||
printf_unfiltered (" IE");
|
||
printf_unfiltered ("\n");
|
||
}
|
||
|
||
print_1167_regs (long regs[FPA_NREGS])
|
||
{
|
||
int i;
|
||
|
||
union
|
||
{
|
||
double d;
|
||
long l[2];
|
||
}
|
||
xd;
|
||
union
|
||
{
|
||
float f;
|
||
long l;
|
||
}
|
||
xf;
|
||
|
||
|
||
for (i = 0; i < FPA_NREGS; i++)
|
||
{
|
||
xf.l = regs[i];
|
||
printf_unfiltered ("%%fp%d: raw= %#x, single= %f", i + 1, regs[i], xf.f);
|
||
if (!(i & 1))
|
||
{
|
||
printf_unfiltered ("\n");
|
||
}
|
||
else
|
||
{
|
||
xd.l[1] = regs[i];
|
||
xd.l[0] = regs[i + 1];
|
||
printf_unfiltered (", double= %f\n", xd.d);
|
||
}
|
||
}
|
||
}
|
||
|
||
print_fpa_status (struct pt_regset ep)
|
||
{
|
||
|
||
printf_unfiltered ("WTL 1167:");
|
||
if (ep.pr_fpa.fpa_pcr != 0)
|
||
{
|
||
printf_unfiltered ("\n");
|
||
print_1167_control_word (ep.pr_fpa.fpa_pcr);
|
||
print_1167_regs (ep.pr_fpa.fpa_regs);
|
||
}
|
||
else
|
||
{
|
||
printf_unfiltered (" not in use.\n");
|
||
}
|
||
}
|
||
|
||
#if 0 /* disabled because it doesn't go through the target vector. */
|
||
i386_float_info (void)
|
||
{
|
||
char ubuf[UPAGES * NBPG];
|
||
struct pt_regset regset;
|
||
|
||
if (have_inferior_p ())
|
||
{
|
||
PTRACE_READ_REGS (PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) & regset);
|
||
}
|
||
else
|
||
{
|
||
int corechan = bfd_cache_lookup (core_bfd);
|
||
if (lseek (corechan, 0, 0) < 0)
|
||
{
|
||
perror ("seek on core file");
|
||
}
|
||
if (myread (corechan, ubuf, UPAGES * NBPG) < 0)
|
||
{
|
||
perror ("read on core file");
|
||
}
|
||
/* only interested in the floating point registers */
|
||
regset.pr_fpu = ((struct user *) ubuf)->u_fpusave;
|
||
regset.pr_fpa = ((struct user *) ubuf)->u_fpasave;
|
||
}
|
||
print_fpu_status (regset);
|
||
print_fpa_status (regset);
|
||
}
|
||
#endif
|
||
|
||
static volatile int got_sigchld;
|
||
|
||
/*ARGSUSED */
|
||
/* This will eventually be more interesting. */
|
||
void
|
||
sigchld_handler (int signo)
|
||
{
|
||
got_sigchld++;
|
||
}
|
||
|
||
/*
|
||
* Signals for which the default action does not cause the process
|
||
* to die. See <sys/signal.h> for where this came from (alas, we
|
||
* can't use those macros directly)
|
||
*/
|
||
#ifndef sigmask
|
||
#define sigmask(s) (1 << ((s) - 1))
|
||
#endif
|
||
#define SIGNALS_DFL_SAFE sigmask(SIGSTOP) | sigmask(SIGTSTP) | \
|
||
sigmask(SIGTTIN) | sigmask(SIGTTOU) | sigmask(SIGCHLD) | \
|
||
sigmask(SIGCONT) | sigmask(SIGWINCH) | sigmask(SIGPWR) | \
|
||
sigmask(SIGURG) | sigmask(SIGPOLL)
|
||
|
||
#ifdef ATTACH_DETACH
|
||
/*
|
||
* Thanks to XPT_MPDEBUGGER, we have to mange child_wait().
|
||
*/
|
||
ptid_t
|
||
child_wait (ptid_t ptid, struct target_waitstatus *status)
|
||
{
|
||
int save_errno, rv, xvaloff, saoff, sa_hand;
|
||
struct pt_stop pt;
|
||
struct user u;
|
||
sigset_t set;
|
||
/* Host signal number for a signal which the inferior terminates with, or
|
||
0 if it hasn't terminated due to a signal. */
|
||
static int death_by_signal = 0;
|
||
#ifdef SVR4_SHARED_LIBS /* use this to distinguish ptx 2 vs ptx 4 */
|
||
prstatus_t pstatus;
|
||
#endif
|
||
int pid = PIDGET (ptid);
|
||
|
||
do
|
||
{
|
||
set_sigint_trap (); /* Causes SIGINT to be passed on to the
|
||
attached process. */
|
||
save_errno = errno;
|
||
|
||
got_sigchld = 0;
|
||
|
||
sigemptyset (&set);
|
||
|
||
while (got_sigchld == 0)
|
||
{
|
||
sigsuspend (&set);
|
||
}
|
||
|
||
clear_sigint_trap ();
|
||
|
||
rv = mptrace (XPT_STOPSTAT, 0, (char *) &pt, 0);
|
||
if (-1 == rv)
|
||
{
|
||
printf ("XPT_STOPSTAT: errno %d\n", errno); /* DEBUG */
|
||
continue;
|
||
}
|
||
|
||
pid = pt.ps_pid;
|
||
|
||
if (pid != PIDGET (inferior_ptid))
|
||
{
|
||
/* NOTE: the mystery fork in csh/tcsh needs to be ignored.
|
||
* We should not return new children for the initial run
|
||
* of a process until it has done the exec.
|
||
*/
|
||
/* inferior probably forked; send it on its way */
|
||
rv = mptrace (XPT_UNDEBUG, pid, 0, 0);
|
||
if (-1 == rv)
|
||
{
|
||
printf ("child_wait: XPT_UNDEBUG: pid %d: %s\n", pid,
|
||
safe_strerror (errno));
|
||
}
|
||
continue;
|
||
}
|
||
/* FIXME: Do we deal with fork notification correctly? */
|
||
switch (pt.ps_reason)
|
||
{
|
||
case PTS_FORK:
|
||
/* multi proc: treat like PTS_EXEC */
|
||
/*
|
||
* Pretend this didn't happen, since gdb isn't set up
|
||
* to deal with stops on fork.
|
||
*/
|
||
rv = ptrace (PT_CONTSIG, pid, 1, 0);
|
||
if (-1 == rv)
|
||
{
|
||
printf ("PTS_FORK: PT_CONTSIG: error %d\n", errno);
|
||
}
|
||
continue;
|
||
case PTS_EXEC:
|
||
/*
|
||
* Pretend this is a SIGTRAP.
|
||
*/
|
||
status->kind = TARGET_WAITKIND_STOPPED;
|
||
status->value.sig = TARGET_SIGNAL_TRAP;
|
||
break;
|
||
case PTS_EXIT:
|
||
/*
|
||
* Note: we stop before the exit actually occurs. Extract
|
||
* the exit code from the uarea. If we're stopped in the
|
||
* exit() system call, the exit code will be in
|
||
* u.u_ap[0]. An exit due to an uncaught signal will have
|
||
* something else in here, see the comment in the default:
|
||
* case, below. Finally,let the process exit.
|
||
*/
|
||
if (death_by_signal)
|
||
{
|
||
status->kind = TARGET_WAITKIND_SIGNALED;
|
||
status->value.sig = target_signal_from_host (death_by_signal);
|
||
death_by_signal = 0;
|
||
break;
|
||
}
|
||
xvaloff = (unsigned long) &u.u_ap[0] - (unsigned long) &u;
|
||
errno = 0;
|
||
rv = ptrace (PT_RUSER, pid, (char *) xvaloff, 0);
|
||
status->kind = TARGET_WAITKIND_EXITED;
|
||
status->value.integer = rv;
|
||
/*
|
||
* addr & data to mptrace() don't matter here, since
|
||
* the process is already dead.
|
||
*/
|
||
rv = mptrace (XPT_UNDEBUG, pid, 0, 0);
|
||
if (-1 == rv)
|
||
{
|
||
printf ("child_wait: PTS_EXIT: XPT_UNDEBUG: pid %d error %d\n", pid,
|
||
errno);
|
||
}
|
||
break;
|
||
case PTS_WATCHPT_HIT:
|
||
internal_error (__FILE__, __LINE__,
|
||
"PTS_WATCHPT_HIT\n");
|
||
break;
|
||
default:
|
||
/* stopped by signal */
|
||
status->kind = TARGET_WAITKIND_STOPPED;
|
||
status->value.sig = target_signal_from_host (pt.ps_reason);
|
||
death_by_signal = 0;
|
||
|
||
if (0 == (SIGNALS_DFL_SAFE & sigmask (pt.ps_reason)))
|
||
{
|
||
break;
|
||
}
|
||
/* else default action of signal is to die */
|
||
#ifdef SVR4_SHARED_LIBS
|
||
rv = ptrace (PT_GET_PRSTATUS, pid, (char *) &pstatus, 0);
|
||
if (-1 == rv)
|
||
error ("child_wait: signal %d PT_GET_PRSTATUS: %s\n",
|
||
pt.ps_reason, safe_strerror (errno));
|
||
if (pstatus.pr_cursig != pt.ps_reason)
|
||
{
|
||
printf ("pstatus signal %d, pt signal %d\n",
|
||
pstatus.pr_cursig, pt.ps_reason);
|
||
}
|
||
sa_hand = (int) pstatus.pr_action.sa_handler;
|
||
#else
|
||
saoff = (unsigned long) &u.u_sa[0] - (unsigned long) &u;
|
||
saoff += sizeof (struct sigaction) * (pt.ps_reason - 1);
|
||
errno = 0;
|
||
sa_hand = ptrace (PT_RUSER, pid, (char *) saoff, 0);
|
||
if (errno)
|
||
error ("child_wait: signal %d: RUSER: %s\n",
|
||
pt.ps_reason, safe_strerror (errno));
|
||
#endif
|
||
if ((int) SIG_DFL == sa_hand)
|
||
{
|
||
/* we will be dying */
|
||
death_by_signal = pt.ps_reason;
|
||
}
|
||
break;
|
||
}
|
||
|
||
}
|
||
while (pid != PIDGET (inferior_ptid)); /* Some other child died or stopped */
|
||
|
||
return pid_to_ptid (pid);
|
||
}
|
||
#else /* !ATTACH_DETACH */
|
||
/*
|
||
* Simple child_wait() based on inftarg.c child_wait() for use until
|
||
* the MPDEBUGGER child_wait() works properly. This will go away when
|
||
* that is fixed.
|
||
*/
|
||
ptid_t
|
||
child_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
|
||
{
|
||
int save_errno;
|
||
int status;
|
||
int pid = PIDGET (ptid);
|
||
|
||
do
|
||
{
|
||
pid = wait (&status);
|
||
save_errno = errno;
|
||
|
||
if (pid == -1)
|
||
{
|
||
if (save_errno == EINTR)
|
||
continue;
|
||
fprintf (stderr, "Child process unexpectedly missing: %s.\n",
|
||
safe_strerror (save_errno));
|
||
ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
|
||
ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
|
||
return pid_to_ptid (-1);
|
||
}
|
||
}
|
||
while (pid != PIDGET (inferior_ptid)); /* Some other child died or stopped */
|
||
store_waitstatus (ourstatus, status);
|
||
return pid_to_ptid (pid);
|
||
}
|
||
#endif /* ATTACH_DETACH */
|
||
|
||
|
||
|
||
/* This function simply calls ptrace with the given arguments.
|
||
It exists so that all calls to ptrace are isolated in this
|
||
machine-dependent file. */
|
||
int
|
||
call_ptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
|
||
{
|
||
return ptrace (request, pid, addr, data);
|
||
}
|
||
|
||
int
|
||
call_mptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
|
||
{
|
||
return mptrace (request, pid, addr, data);
|
||
}
|
||
|
||
#if defined (DEBUG_PTRACE)
|
||
/* For the rest of the file, use an extra level of indirection */
|
||
/* This lets us breakpoint usefully on call_ptrace. */
|
||
#define ptrace call_ptrace
|
||
#define mptrace call_mptrace
|
||
#endif
|
||
|
||
void
|
||
kill_inferior (void)
|
||
{
|
||
if (ptid_equal (inferior_ptid, null_ptid))
|
||
return;
|
||
|
||
/* For MPDEBUGGER, don't use PT_KILL, since the child will stop
|
||
again with a PTS_EXIT. Just hit him with SIGKILL (so he stops)
|
||
and detach. */
|
||
|
||
kill (PIDGET (inferior_ptid), SIGKILL);
|
||
#ifdef ATTACH_DETACH
|
||
detach (SIGKILL);
|
||
#else /* ATTACH_DETACH */
|
||
ptrace (PT_KILL, PIDGET (inferior_ptid), 0, 0);
|
||
wait ((int *) NULL);
|
||
#endif /* ATTACH_DETACH */
|
||
target_mourn_inferior ();
|
||
}
|
||
|
||
/* Resume execution of the inferior process.
|
||
If STEP is nonzero, single-step it.
|
||
If SIGNAL is nonzero, give it that signal. */
|
||
|
||
void
|
||
child_resume (ptid_t ptid, int step, enum target_signal signal)
|
||
{
|
||
int pid = PIDGET (ptid);
|
||
|
||
errno = 0;
|
||
|
||
if (pid == -1)
|
||
pid = PIDGET (inferior_ptid);
|
||
|
||
/* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
|
||
it was. (If GDB wanted it to start some other way, we have already
|
||
written a new PC value to the child.)
|
||
|
||
If this system does not support PT_SSTEP, a higher level function will
|
||
have called single_step() to transmute the step request into a
|
||
continue request (by setting breakpoints on all possible successor
|
||
instructions), so we don't have to worry about that here. */
|
||
|
||
if (step)
|
||
ptrace (PT_SSTEP, pid, (PTRACE_ARG3_TYPE) 1, signal);
|
||
else
|
||
ptrace (PT_CONTSIG, pid, (PTRACE_ARG3_TYPE) 1, signal);
|
||
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
}
|
||
|
||
#ifdef ATTACH_DETACH
|
||
/* Start debugging the process whose number is PID. */
|
||
int
|
||
attach (int pid)
|
||
{
|
||
sigset_t set;
|
||
int rv;
|
||
|
||
rv = mptrace (XPT_DEBUG, pid, 0, 0);
|
||
if (-1 == rv)
|
||
{
|
||
error ("mptrace(XPT_DEBUG): %s", safe_strerror (errno));
|
||
}
|
||
rv = mptrace (XPT_SIGNAL, pid, 0, SIGSTOP);
|
||
if (-1 == rv)
|
||
{
|
||
error ("mptrace(XPT_SIGNAL): %s", safe_strerror (errno));
|
||
}
|
||
attach_flag = 1;
|
||
return pid;
|
||
}
|
||
|
||
void
|
||
detach (int signo)
|
||
{
|
||
int rv;
|
||
|
||
rv = mptrace (XPT_UNDEBUG, PIDGET (inferior_ptid), 1, signo);
|
||
if (-1 == rv)
|
||
{
|
||
error ("mptrace(XPT_UNDEBUG): %s", safe_strerror (errno));
|
||
}
|
||
attach_flag = 0;
|
||
}
|
||
|
||
#endif /* ATTACH_DETACH */
|
||
|
||
/* Default the type of the ptrace transfer to int. */
|
||
#ifndef PTRACE_XFER_TYPE
|
||
#define PTRACE_XFER_TYPE int
|
||
#endif
|
||
|
||
|
||
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
|
||
in the NEW_SUN_PTRACE case.
|
||
It ought to be straightforward. But it appears that writing did
|
||
not write the data that I specified. I cannot understand where
|
||
it got the data that it actually did write. */
|
||
|
||
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
|
||
to debugger memory starting at MYADDR. Copy to inferior if
|
||
WRITE is nonzero. TARGET is ignored.
|
||
|
||
Returns the length copied, which is either the LEN argument or zero.
|
||
This xfer function does not do partial moves, since child_ops
|
||
doesn't allow memory operations to cross below us in the target stack
|
||
anyway. */
|
||
|
||
int
|
||
child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
|
||
struct mem_attrib *attrib,
|
||
struct target_ops *target)
|
||
{
|
||
register int i;
|
||
/* Round starting address down to longword boundary. */
|
||
register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
|
||
/* Round ending address up; get number of longwords that makes. */
|
||
register int count
|
||
= (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
|
||
/ sizeof (PTRACE_XFER_TYPE);
|
||
/* Allocate buffer of that many longwords. */
|
||
register PTRACE_XFER_TYPE *buffer
|
||
= (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
|
||
|
||
if (write)
|
||
{
|
||
/* Fill start and end extra bytes of buffer with existing memory data. */
|
||
|
||
if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE))
|
||
{
|
||
/* Need part of initial word -- fetch it. */
|
||
buffer[0] = ptrace (PT_RTEXT, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) addr,
|
||
0);
|
||
}
|
||
|
||
if (count > 1) /* FIXME, avoid if even boundary */
|
||
{
|
||
buffer[count - 1]
|
||
= ptrace (PT_RTEXT, PIDGET (inferior_ptid),
|
||
((PTRACE_ARG3_TYPE)
|
||
(addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
|
||
0);
|
||
}
|
||
|
||
/* Copy data to be written over corresponding part of buffer */
|
||
|
||
memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
|
||
myaddr,
|
||
len);
|
||
|
||
/* Write the entire buffer. */
|
||
|
||
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_WDATA, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) addr,
|
||
buffer[i]);
|
||
if (errno)
|
||
{
|
||
/* Using the appropriate one (I or D) is necessary for
|
||
Gould NP1, at least. */
|
||
errno = 0;
|
||
ptrace (PT_WTEXT, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) addr,
|
||
buffer[i]);
|
||
}
|
||
if (errno)
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Read all the longwords */
|
||
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
||
{
|
||
errno = 0;
|
||
buffer[i] = ptrace (PT_RTEXT, PIDGET (inferior_ptid),
|
||
(PTRACE_ARG3_TYPE) addr, 0);
|
||
if (errno)
|
||
return 0;
|
||
QUIT;
|
||
}
|
||
|
||
/* Copy appropriate bytes out of the buffer. */
|
||
memcpy (myaddr,
|
||
(char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
|
||
len);
|
||
}
|
||
return len;
|
||
}
|
||
|
||
|
||
void
|
||
_initialize_symm_nat (void)
|
||
{
|
||
#ifdef ATTACH_DETACH
|
||
/*
|
||
* the MPDEBUGGER is necessary for process tree debugging and attach
|
||
* to work, but it alters the behavior of debugged processes, so other
|
||
* things (at least child_wait()) will have to change to accomodate
|
||
* that.
|
||
*
|
||
* Note that attach is not implemented in dynix 3, and not in ptx
|
||
* until version 2.1 of the OS.
|
||
*/
|
||
int rv;
|
||
sigset_t set;
|
||
struct sigaction sact;
|
||
|
||
rv = mptrace (XPT_MPDEBUGGER, 0, 0, 0);
|
||
if (-1 == rv)
|
||
{
|
||
internal_error (__FILE__, __LINE__,
|
||
"_initialize_symm_nat(): mptrace(XPT_MPDEBUGGER): %s",
|
||
safe_strerror (errno));
|
||
}
|
||
|
||
/*
|
||
* Under MPDEBUGGER, we get SIGCLHD when a traced process does
|
||
* anything of interest.
|
||
*/
|
||
|
||
/*
|
||
* Block SIGCHLD. We leave it blocked all the time, and then
|
||
* call sigsuspend() in child_wait() to wait for the child
|
||
* to do something. None of these ought to fail, but check anyway.
|
||
*/
|
||
sigemptyset (&set);
|
||
rv = sigaddset (&set, SIGCHLD);
|
||
if (-1 == rv)
|
||
{
|
||
internal_error (__FILE__, __LINE__,
|
||
"_initialize_symm_nat(): sigaddset(SIGCHLD): %s",
|
||
safe_strerror (errno));
|
||
}
|
||
rv = sigprocmask (SIG_BLOCK, &set, (sigset_t *) NULL);
|
||
if (-1 == rv)
|
||
{
|
||
internal_error (__FILE__, __LINE__,
|
||
"_initialize_symm_nat(): sigprocmask(SIG_BLOCK): %s",
|
||
safe_strerror (errno));
|
||
}
|
||
|
||
sact.sa_handler = sigchld_handler;
|
||
sigemptyset (&sact.sa_mask);
|
||
sact.sa_flags = SA_NOCLDWAIT; /* keep the zombies away */
|
||
rv = sigaction (SIGCHLD, &sact, (struct sigaction *) NULL);
|
||
if (-1 == rv)
|
||
{
|
||
internal_error (__FILE__, __LINE__,
|
||
"_initialize_symm_nat(): sigaction(SIGCHLD): %s",
|
||
safe_strerror (errno));
|
||
}
|
||
#endif
|
||
}
|