578d3588ee
target_read_memory & friends build on top of target_read (thus on top of the target_xfer machinery), but turn all errors to EIO, an errno value. I think we'd better convert all these to return a target_xfer_error too, like target_xfer_partial in a previous patch. The patch starts by doing that. (The patch does not add a enum target_xfer_error value for '0'/no error, and likewise does not change the return type of several of these functions to enum target_xfer_error, because different functions return '0' with different semantics.) I audited the tree for memory_error calls, EIO checks, places where GDB hardcodes 'errno = EIO', and also for strerror calls. What I found is that nowadays there's really no need to handle random errno values, other than the EIOs gdb itself hardcodes. No doubt errno values would appear in common code back in the day when target_xfer_memory was the main interface to access memory, but nowadays, any errno value that deprecated interface could return is just absorved by default_xfer_partial: else if (xfered == 0 && errno == 0) /* "deprecated_xfer_memory" uses 0, cross checked against ERRNO as one indication of an error. */ return 0; else return -1; There are two places in the code that check for EIO and print "out of bounds", and defer to strerror for other errors. That's c-lang.c:c_get_string, and valprint.c.:val_print_string. AFAICT, the strerror branch can never be reached nowadays, as the only error possible to get at those points is EIO, given that it's GDB itself that set that errno value (in target_read_memory, etc.). breakpoint.c:insert_bp_location always prints the error val as if an errno, returned by target_insert_breakpoint, with strerr. Now the error here is either always EIO for mem-break.c targets (again hardcoded by the target_read_memory/target_write_memory functions), so this always prints "Input/output error" or similar (depending on host), or, for remote targets (and probably others), this gem: Error accessing memory address 0x80200400: Unknown error -1. This patch makes these 3 places print the exact same error memory_error prints. This changes output, but I think this is better, for making memory error output consistent with other commands, and, it means we have a central place to tweak for memory errors. E.g., this changes: Cannot insert breakpoint 1. Error accessing memory address 0x5fc660: Input/output error. to: Cannot insert breakpoint 1. Cannot access memory at address 0x5fc660 Which I find pretty much acceptable. Surprisingly, only py-prettyprint.exp had a regression, for needing an adjustment. I also grepped the testsuite for the old errors, and found no other hits. Now that errno values aren't used anywhere in any of these memory access related routines, I made memory_error itself take a target_xfer_error instead of an errno. The new target_xfer_memory_error function added recently is no longer necessary, and is thus removed. Tested on x86_64 Fedora 17, native and gdbserver. gdb/ 2013-10-09 Pedro Alves <palves@redhat.com> * breakpoint.c (insert_bp_location): Use memory_error_message to build the memory error string. * c-lang.c: Include "gdbcore.h". (c_get_string): Use memory_error to throw error. (target_xfer_memory_error): Delete. (memory_error_message): New, factored out from target_xfer_memory_error. (memory_error): Change parameter type to target_xfer_error. Rewrite. (read_memory): Use memory_error instead of target_xfer_memory_error. * gdbcore.h: Include "target.h". (memory_error): Change parameter type to target_xfer_error. (memory_error_message): Declare function. * target.c (target_read_memory, target_read_stack) (target_write_memory, target_write_raw_memory): Return TARGET_XFER_E_IO on error. Adjust comments. (get_target_memory): Pass TARGET_XFER_E_IO to memory_error, instead of EIO. * target.h (target_read, target_insert_breakpoint) (target_remove_breakpoint): Adjust comments. * valprint.c (partial_memory_read): Rename parameter, and adjust comment. (val_print_string): Use memory_error_message to build the memory error string. gdb/testsuite/ 2013-10-09 Pedro Alves <palves@redhat.com> * gdb.python/py-prettyprint.exp (run_lang_tests): Adjust expected output.
218 lines
7.3 KiB
C
218 lines
7.3 KiB
C
/* Machine independent variables that describe the core file under GDB.
|
||
|
||
Copyright (C) 1986-2013 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* Interface routines for core, executable, etc. */
|
||
|
||
#if !defined (GDBCORE_H)
|
||
#define GDBCORE_H 1
|
||
|
||
struct type;
|
||
struct regcache;
|
||
|
||
#include "bfd.h"
|
||
#include "exec.h"
|
||
#include "target.h"
|
||
|
||
/* Return the name of the executable file as a string.
|
||
ERR nonzero means get error if there is none specified;
|
||
otherwise return 0 in that case. */
|
||
|
||
extern char *get_exec_file (int err);
|
||
|
||
/* Nonzero if there is a core file. */
|
||
|
||
extern int have_core_file_p (void);
|
||
|
||
/* Report a memory error with error(). */
|
||
|
||
extern void memory_error (enum target_xfer_error status, CORE_ADDR memaddr);
|
||
|
||
/* The string 'memory_error' would use as exception message. Space
|
||
for the result is malloc'd, caller must free. */
|
||
|
||
extern char *memory_error_message (enum target_xfer_error err,
|
||
struct gdbarch *gdbarch, CORE_ADDR memaddr);
|
||
|
||
/* Like target_read_memory, but report an error if can't read. */
|
||
|
||
extern void read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
|
||
|
||
/* Like target_read_stack, but report an error if can't read. */
|
||
|
||
extern void read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
|
||
|
||
/* Read an integer from debugged memory, given address and number of
|
||
bytes. */
|
||
|
||
extern LONGEST read_memory_integer (CORE_ADDR memaddr,
|
||
int len, enum bfd_endian byte_order);
|
||
extern int safe_read_memory_integer (CORE_ADDR memaddr, int len,
|
||
enum bfd_endian byte_order,
|
||
LONGEST *return_value);
|
||
|
||
/* Read an unsigned integer from debugged memory, given address and
|
||
number of bytes. */
|
||
|
||
extern ULONGEST read_memory_unsigned_integer (CORE_ADDR memaddr,
|
||
int len,
|
||
enum bfd_endian byte_order);
|
||
|
||
/* Read a null-terminated string from the debuggee's memory, given
|
||
address, a buffer into which to place the string, and the maximum
|
||
available space. */
|
||
|
||
extern void read_memory_string (CORE_ADDR, char *, int);
|
||
|
||
/* Read the pointer of type TYPE at ADDR, and return the address it
|
||
represents. */
|
||
|
||
CORE_ADDR read_memory_typed_address (CORE_ADDR addr, struct type *type);
|
||
|
||
/* This takes a char *, not void *. This is probably right, because
|
||
passing in an int * or whatever is wrong with respect to
|
||
byteswapping, alignment, different sizes for host vs. target types,
|
||
etc. */
|
||
|
||
extern void write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
|
||
ssize_t len);
|
||
|
||
/* Same as write_memory, but notify 'memory_changed' observers. */
|
||
|
||
extern void write_memory_with_notification (CORE_ADDR memaddr,
|
||
const bfd_byte *myaddr,
|
||
ssize_t len);
|
||
|
||
/* Store VALUE at ADDR in the inferior as a LEN-byte unsigned integer. */
|
||
extern void write_memory_unsigned_integer (CORE_ADDR addr, int len,
|
||
enum bfd_endian byte_order,
|
||
ULONGEST value);
|
||
|
||
/* Store VALUE at ADDR in the inferior as a LEN-byte unsigned integer. */
|
||
extern void write_memory_signed_integer (CORE_ADDR addr, int len,
|
||
enum bfd_endian byte_order,
|
||
LONGEST value);
|
||
|
||
/* Hook for `exec_file_command' command to call. */
|
||
|
||
extern void (*deprecated_exec_file_display_hook) (char *filename);
|
||
|
||
/* Hook for "file_command", which is more useful than above
|
||
(because it is invoked AFTER symbols are read, not before). */
|
||
|
||
extern void (*deprecated_file_changed_hook) (char *filename);
|
||
|
||
extern void specify_exec_file_hook (void (*hook) (char *filename));
|
||
|
||
/* Binary File Diddler for the core file. */
|
||
|
||
extern bfd *core_bfd;
|
||
|
||
extern struct target_ops *core_target;
|
||
|
||
/* Whether to open exec and core files read-only or read-write. */
|
||
|
||
extern int write_files;
|
||
|
||
extern void core_file_command (char *filename, int from_tty);
|
||
|
||
extern void exec_file_attach (char *filename, int from_tty);
|
||
|
||
extern void exec_file_clear (int from_tty);
|
||
|
||
extern void validate_files (void);
|
||
|
||
/* The current default bfd target. */
|
||
|
||
extern char *gnutarget;
|
||
|
||
extern void set_gnutarget (char *);
|
||
|
||
/* Structure to keep track of core register reading functions for
|
||
various core file types. */
|
||
|
||
struct core_fns
|
||
{
|
||
|
||
/* BFD flavour that a core file handler is prepared to read. This
|
||
can be used by the handler's core tasting function as a first
|
||
level filter to reject BFD's that don't have the right
|
||
flavour. */
|
||
|
||
enum bfd_flavour core_flavour;
|
||
|
||
/* Core file handler function to call to recognize corefile
|
||
formats that BFD rejects. Some core file format just don't fit
|
||
into the BFD model, or may require other resources to identify
|
||
them, that simply aren't available to BFD (such as symbols from
|
||
another file). Returns nonzero if the handler recognizes the
|
||
format, zero otherwise. */
|
||
|
||
int (*check_format) (bfd *);
|
||
|
||
/* Core file handler function to call to ask if it can handle a
|
||
given core file format or not. Returns zero if it can't,
|
||
nonzero otherwise. */
|
||
|
||
int (*core_sniffer) (struct core_fns *, bfd *);
|
||
|
||
/* Extract the register values out of the core file and supply them
|
||
into REGCACHE.
|
||
|
||
CORE_REG_SECT points to the register values themselves, read into
|
||
memory.
|
||
|
||
CORE_REG_SIZE is the size of that area.
|
||
|
||
WHICH says which set of registers we are handling:
|
||
0 --- integer registers
|
||
2 --- floating-point registers, on machines where they are
|
||
discontiguous
|
||
3 --- extended floating-point registers, on machines where
|
||
these are present in yet a third area. (GNU/Linux uses
|
||
this to get at the SSE registers.)
|
||
|
||
REG_ADDR is the offset from u.u_ar0 to the register values relative to
|
||
core_reg_sect. This is used with old-fashioned core files to locate the
|
||
registers in a large upage-plus-stack ".reg" section. Original upage
|
||
address X is at location core_reg_sect+x+reg_addr. */
|
||
|
||
void (*core_read_registers) (struct regcache *regcache,
|
||
char *core_reg_sect,
|
||
unsigned core_reg_size,
|
||
int which, CORE_ADDR reg_addr);
|
||
|
||
/* Finds the next struct core_fns. They are allocated and
|
||
initialized in whatever module implements the functions pointed
|
||
to; an initializer calls deprecated_add_core_fns to add them to
|
||
the global chain. */
|
||
|
||
struct core_fns *next;
|
||
|
||
};
|
||
|
||
/* NOTE: cagney/2004-04-05: Replaced by "regset.h" and
|
||
regset_from_core_section(). */
|
||
extern void deprecated_add_core_fns (struct core_fns *cf);
|
||
extern int default_core_sniffer (struct core_fns *cf, bfd * abfd);
|
||
extern int default_check_format (bfd * abfd);
|
||
|
||
struct target_section *deprecated_core_resize_section_table (int num_added);
|
||
|
||
#endif /* !defined (GDBCORE_H) */
|