2660 lines
79 KiB
C
2660 lines
79 KiB
C
/* ELF executable support for BFD.
|
||
Copyright 1991, 1992 Free Software Foundation, Inc.
|
||
|
||
Written by Fred Fish @ Cygnus Support, from information published
|
||
in "UNIX System V Release 4, Programmers Guide: ANSI C and
|
||
Programming Support Tools". Sufficient support for gdb.
|
||
|
||
Rewritten by Mark Eichin @ Cygnus Support, from information
|
||
published in "System V Application Binary Interface", chapters 4
|
||
and 5, as well as the various "Processor Supplement" documents
|
||
derived from it. Added support for assembler and other object file
|
||
utilities.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
|
||
/****************************************
|
||
|
||
WARNING
|
||
|
||
This is only a partial ELF implementation,
|
||
incorporating only those parts that are
|
||
required to get gdb up and running. It is
|
||
expected that it will be expanded to a full
|
||
ELF implementation at some future date.
|
||
|
||
Unimplemented stubs call abort() to ensure
|
||
that they get proper attention if they are
|
||
ever called. The stubs are here since
|
||
this version was hacked from the COFF
|
||
version, and thus they will probably
|
||
go away or get expanded appropriately in a
|
||
future version.
|
||
|
||
fnf@cygnus.com
|
||
|
||
*****************************************/
|
||
|
||
|
||
/* Problems and other issues to resolve.
|
||
|
||
(1) BFD expects there to be some fixed number of "sections" in
|
||
the object file. I.E. there is a "section_count" variable in the
|
||
bfd structure which contains the number of sections. However, ELF
|
||
supports multiple "views" of a file. In particular, with current
|
||
implementations, executable files typically have two tables, a
|
||
program header table and a section header table, both of which
|
||
partition the executable.
|
||
|
||
In ELF-speak, the "linking view" of the file uses the section header
|
||
table to access "sections" within the file, and the "execution view"
|
||
uses the program header table to access "segments" within the file.
|
||
"Segments" typically may contain all the data from one or more
|
||
"sections".
|
||
|
||
Note that the section header table is optional in ELF executables,
|
||
but it is this information that is most useful to gdb. If the
|
||
section header table is missing, then gdb should probably try
|
||
to make do with the program header table. (FIXME)
|
||
|
||
*/
|
||
|
||
#include "bfd.h"
|
||
#include "sysdep.h"
|
||
#include "libbfd.h"
|
||
#include "obstack.h"
|
||
#include "elf/common.h"
|
||
#include "elf/internal.h"
|
||
#include "elf/external.h"
|
||
|
||
#ifdef HAVE_PROCFS /* Some core file support requires host /proc files */
|
||
#include <sys/procfs.h>
|
||
#else
|
||
#define bfd_prstatus(abfd, descdata, descsz, filepos) /* Define away */
|
||
#define bfd_fpregset(abfd, descdata, descsz, filepos) /* Define away */
|
||
#define bfd_prpsinfo(abfd, descdata, descsz, filepos) /* Define away */
|
||
#endif
|
||
|
||
/* Forward declarations of static functions */
|
||
|
||
static char *
|
||
elf_read PARAMS ((bfd *, long, int));
|
||
|
||
static struct sec *
|
||
section_from_elf_index PARAMS ((bfd *, int));
|
||
|
||
static int
|
||
elf_section_from_bfd_section PARAMS ((bfd *, struct sec *));
|
||
|
||
static boolean
|
||
elf_slurp_symbol_table PARAMS ((bfd *, asymbol **));
|
||
|
||
static void
|
||
elf_info_to_howto PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
|
||
|
||
static char *
|
||
elf_get_str_section PARAMS ((bfd *, unsigned int));
|
||
|
||
/* Forward data declarations */
|
||
|
||
extern bfd_target elf_little_vec, elf_big_vec;
|
||
|
||
/* Currently the elf_symbol_type struct just contains the generic bfd
|
||
symbol structure. */
|
||
|
||
typedef struct
|
||
{
|
||
asymbol symbol;
|
||
} elf_symbol_type;
|
||
|
||
/* Some private data is stashed away for future use using the tdata pointer
|
||
in the bfd structure. */
|
||
|
||
struct elf_obj_tdata
|
||
{
|
||
Elf_Internal_Ehdr elf_header[1]; /* Actual data, but ref like ptr */
|
||
Elf_Internal_Shdr *elf_sect_ptr;
|
||
struct strtab *strtab_ptr;
|
||
int symtab_section;
|
||
void *prstatus; /* The raw /proc prstatus structure */
|
||
void *prpsinfo; /* The raw /proc prpsinfo structure */
|
||
};
|
||
|
||
#define elf_tdata(bfd) ((bfd) -> tdata.elf_obj_data)
|
||
#define elf_elfheader(bfd) (elf_tdata(bfd) -> elf_header)
|
||
#define elf_elfsections(bfd) (elf_tdata(bfd) -> elf_sect_ptr)
|
||
#define elf_shstrtab(bfd) (elf_tdata(bfd) -> strtab_ptr)
|
||
#define elf_onesymtab(bfd) (elf_tdata(bfd) -> symtab_section)
|
||
#define core_prpsinfo(bfd) (elf_tdata(bfd) -> prpsinfo)
|
||
#define core_prstatus(bfd) (elf_tdata(bfd) -> prstatus)
|
||
|
||
/* Translate an ELF symbol in external format into an ELF symbol in internal
|
||
format. */
|
||
|
||
static void
|
||
DEFUN(elf_swap_symbol_in,(abfd, src, dst),
|
||
bfd *abfd AND
|
||
Elf_External_Sym *src AND
|
||
Elf_Internal_Sym *dst)
|
||
{
|
||
dst -> st_name = bfd_h_get_32 (abfd, (bfd_byte *) src -> st_name);
|
||
dst -> st_value = bfd_h_get_32 (abfd, (bfd_byte *) src -> st_value);
|
||
dst -> st_size = bfd_h_get_32 (abfd, (bfd_byte *) src -> st_size);
|
||
dst -> st_info = bfd_h_get_8 (abfd, (bfd_byte *) src -> st_info);
|
||
dst -> st_other = bfd_h_get_8 (abfd, (bfd_byte *) src -> st_other);
|
||
dst -> st_shndx = bfd_h_get_16 (abfd, (bfd_byte *) src -> st_shndx);
|
||
}
|
||
|
||
/* Translate an ELF symbol in internal format into an ELF symbol in external
|
||
format. */
|
||
|
||
static void
|
||
DEFUN(elf_swap_symbol_out,(abfd, src, dst),
|
||
bfd *abfd AND
|
||
Elf_Internal_Sym *src AND
|
||
Elf_External_Sym *dst)
|
||
{
|
||
bfd_h_put_32 (abfd, src->st_name, dst->st_name);
|
||
bfd_h_put_32 (abfd, src->st_value, dst->st_value);
|
||
bfd_h_put_32 (abfd, src->st_size, dst->st_size);
|
||
bfd_h_put_8 (abfd, src->st_info, dst->st_info);
|
||
bfd_h_put_8 (abfd, src->st_other, dst->st_other);
|
||
bfd_h_put_16 (abfd, src->st_shndx, dst->st_shndx);
|
||
}
|
||
|
||
|
||
/* Translate an ELF file header in external format into an ELF file header in
|
||
internal format. */
|
||
|
||
static void
|
||
DEFUN(elf_swap_ehdr_in,(abfd, src, dst),
|
||
bfd *abfd AND
|
||
Elf_External_Ehdr *src AND
|
||
Elf_Internal_Ehdr *dst)
|
||
{
|
||
memcpy (dst -> e_ident, src -> e_ident, EI_NIDENT);
|
||
dst -> e_type = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_type);
|
||
dst -> e_machine = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_machine);
|
||
dst -> e_version = bfd_h_get_32 (abfd, (bfd_byte *) src -> e_version);
|
||
dst -> e_entry = bfd_h_get_32 (abfd, (bfd_byte *) src -> e_entry);
|
||
dst -> e_phoff = bfd_h_get_32 (abfd, (bfd_byte *) src -> e_phoff);
|
||
dst -> e_shoff = bfd_h_get_32 (abfd, (bfd_byte *) src -> e_shoff);
|
||
dst -> e_flags = bfd_h_get_32 (abfd, (bfd_byte *) src -> e_flags);
|
||
dst -> e_ehsize = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_ehsize);
|
||
dst -> e_phentsize = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_phentsize);
|
||
dst -> e_phnum = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_phnum);
|
||
dst -> e_shentsize = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_shentsize);
|
||
dst -> e_shnum = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_shnum);
|
||
dst -> e_shstrndx = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_shstrndx);
|
||
}
|
||
|
||
/* Translate an ELF file header in internal format into an ELF file header in
|
||
external format. */
|
||
|
||
static void
|
||
DEFUN(elf_swap_ehdr_out,(abfd, src, dst),
|
||
bfd *abfd AND
|
||
Elf_Internal_Ehdr *src AND
|
||
Elf_External_Ehdr *dst)
|
||
{
|
||
memcpy (dst -> e_ident, src -> e_ident, EI_NIDENT);
|
||
/* note that all elements of dst are *arrays of unsigned char* already... */
|
||
bfd_h_put_16 (abfd, src->e_type, dst->e_type);
|
||
bfd_h_put_16 (abfd, src->e_machine, dst->e_machine);
|
||
bfd_h_put_32 (abfd, src->e_version, dst->e_version);
|
||
bfd_h_put_32 (abfd, src->e_entry, dst->e_entry);
|
||
bfd_h_put_32 (abfd, src->e_phoff, dst->e_phoff);
|
||
bfd_h_put_32 (abfd, src->e_shoff, dst->e_shoff);
|
||
bfd_h_put_32 (abfd, src->e_flags, dst->e_flags);
|
||
bfd_h_put_16 (abfd, src->e_ehsize, dst->e_ehsize);
|
||
bfd_h_put_16 (abfd, src->e_phentsize, dst->e_phentsize);
|
||
bfd_h_put_16 (abfd, src->e_phnum, dst->e_phnum);
|
||
bfd_h_put_16 (abfd, src->e_shentsize, dst->e_shentsize);
|
||
bfd_h_put_16 (abfd, src->e_shnum, dst->e_shnum);
|
||
bfd_h_put_16 (abfd, src->e_shstrndx, dst->e_shstrndx);
|
||
}
|
||
|
||
|
||
/* Translate an ELF section header table entry in external format into an
|
||
ELF section header table entry in internal format. */
|
||
|
||
static void
|
||
DEFUN(elf_swap_shdr_in,(abfd, src, dst),
|
||
bfd *abfd AND
|
||
Elf_External_Shdr *src AND
|
||
Elf_Internal_Shdr *dst)
|
||
{
|
||
dst->sh_name = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_name);
|
||
dst->sh_type = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_type);
|
||
dst->sh_flags = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_flags);
|
||
dst->sh_addr = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_addr);
|
||
dst->sh_offset = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_offset);
|
||
dst->sh_size = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_size);
|
||
dst->sh_link = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_link);
|
||
dst->sh_info = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_info);
|
||
dst->sh_addralign = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_addralign);
|
||
dst->sh_entsize = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_entsize);
|
||
/* we haven't done any processing on it yet, so... */
|
||
dst->rawdata = (void*)0;
|
||
}
|
||
|
||
/* Translate an ELF section header table entry in internal format into an
|
||
ELF section header table entry in external format. */
|
||
|
||
static void
|
||
DEFUN(elf_swap_shdr_out,(abfd, src, dst),
|
||
bfd *abfd AND
|
||
Elf_Internal_Shdr *src AND
|
||
Elf_External_Shdr *dst)
|
||
{
|
||
/* note that all elements of dst are *arrays of unsigned char* already... */
|
||
bfd_h_put_32 (abfd, src->sh_name, dst->sh_name);
|
||
bfd_h_put_32 (abfd, src->sh_type, dst->sh_type);
|
||
bfd_h_put_32 (abfd, src->sh_flags, dst->sh_flags);
|
||
bfd_h_put_32 (abfd, src->sh_addr, dst->sh_addr);
|
||
bfd_h_put_32 (abfd, src->sh_offset, dst->sh_offset);
|
||
bfd_h_put_32 (abfd, src->sh_size, dst->sh_size);
|
||
bfd_h_put_32 (abfd, src->sh_link, dst->sh_link);
|
||
bfd_h_put_32 (abfd, src->sh_info, dst->sh_info);
|
||
bfd_h_put_32 (abfd, src->sh_addralign, dst->sh_addralign);
|
||
bfd_h_put_32 (abfd, src->sh_entsize, dst->sh_entsize);
|
||
}
|
||
|
||
|
||
/* Translate an ELF program header table entry in external format into an
|
||
ELF program header table entry in internal format. */
|
||
|
||
static void
|
||
DEFUN(elf_swap_phdr_in,(abfd, src, dst),
|
||
bfd *abfd AND
|
||
Elf_External_Phdr *src AND
|
||
Elf_Internal_Phdr *dst)
|
||
{
|
||
dst->p_type = bfd_h_get_32 (abfd, (bfd_byte *) src->p_type);
|
||
dst->p_offset = bfd_h_get_32 (abfd, (bfd_byte *) src->p_offset);
|
||
dst->p_vaddr = bfd_h_get_32 (abfd, (bfd_byte *) src->p_vaddr);
|
||
dst->p_paddr = bfd_h_get_32 (abfd, (bfd_byte *) src->p_paddr);
|
||
dst->p_filesz = bfd_h_get_32 (abfd, (bfd_byte *) src->p_filesz);
|
||
dst->p_memsz = bfd_h_get_32 (abfd, (bfd_byte *) src->p_memsz);
|
||
dst->p_flags = bfd_h_get_32 (abfd, (bfd_byte *) src->p_flags);
|
||
dst->p_align = bfd_h_get_32 (abfd, (bfd_byte *) src->p_align);
|
||
}
|
||
|
||
|
||
/* Translate an ELF reloc from external format to internal format. */
|
||
static void
|
||
DEFUN(elf_swap_reloc_in,(abfd, src, dst),
|
||
bfd *abfd AND
|
||
Elf_External_Rel *src AND
|
||
Elf_Internal_Rel *dst)
|
||
{
|
||
dst->r_offset = bfd_h_get_32 (abfd, (bfd_byte *) src->r_offset);
|
||
dst->r_info = bfd_h_get_32 (abfd, (bfd_byte *) src->r_info);
|
||
}
|
||
|
||
static void
|
||
DEFUN(elf_swap_reloca_in,(abfd, src, dst),
|
||
bfd *abfd AND
|
||
Elf_External_Rela *src AND
|
||
Elf_Internal_Rela *dst)
|
||
{
|
||
dst->r_offset = bfd_h_get_32 (abfd, (bfd_byte *) src->r_offset);
|
||
dst->r_info = bfd_h_get_32 (abfd, (bfd_byte *) src->r_info);
|
||
dst->r_addend = bfd_h_get_32 (abfd, (bfd_byte *) src->r_addend);
|
||
}
|
||
|
||
/* Translate an ELF reloc from internal format to external format. */
|
||
static void
|
||
DEFUN(elf_swap_reloc_out,(abfd, src, dst),
|
||
bfd *abfd AND
|
||
Elf_Internal_Rel *src AND
|
||
Elf_External_Rel *dst)
|
||
{
|
||
bfd_h_put_32 (abfd, src->r_offset, dst->r_offset);
|
||
bfd_h_put_32 (abfd, src->r_info, dst->r_info);
|
||
}
|
||
|
||
static void
|
||
DEFUN(elf_swap_reloca_out,(abfd, src, dst),
|
||
bfd *abfd AND
|
||
Elf_Internal_Rela *src AND
|
||
Elf_External_Rela *dst)
|
||
{
|
||
bfd_h_put_32 (abfd, src->r_offset, dst->r_offset);
|
||
bfd_h_put_32 (abfd, src->r_info, dst->r_info);
|
||
bfd_h_put_32 (abfd, src->r_addend, dst->r_addend);
|
||
}
|
||
|
||
/*
|
||
INTERNAL_FUNCTION
|
||
bfd_elf_find_section
|
||
|
||
SYNOPSIS
|
||
struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
|
||
|
||
DESCRIPTION
|
||
Helper functions for GDB to locate the string tables.
|
||
Since BFD hides string tables from callers, GDB needs to use an
|
||
internal hook to find them. Sun's .stabstr, in particular,
|
||
isn't even pointed to by the .stab section, so ordinary
|
||
mechanisms wouldn't work to find it, even if we had some.
|
||
*/
|
||
|
||
struct elf_internal_shdr *
|
||
DEFUN(bfd_elf_find_section, (abfd, name),
|
||
bfd *abfd AND
|
||
char *name)
|
||
{
|
||
Elf_Internal_Shdr *i_shdrp;
|
||
Elf_Internal_Shdr *gotit = NULL;
|
||
char *shstrtab;
|
||
unsigned int max;
|
||
unsigned int i;
|
||
|
||
i_shdrp = elf_elfsections (abfd);
|
||
if (i_shdrp != NULL)
|
||
{
|
||
shstrtab = elf_get_str_section (abfd, elf_elfheader (abfd)->e_shstrndx);
|
||
if (shstrtab != NULL)
|
||
{
|
||
max = elf_elfheader (abfd)->e_shnum;
|
||
for (i = 1; i < max; i++)
|
||
{
|
||
if (!strcmp (&shstrtab[i_shdrp[i].sh_name], name))
|
||
{
|
||
gotit = &i_shdrp[i];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return (gotit);
|
||
}
|
||
|
||
/* End of GDB support. */
|
||
|
||
static char *
|
||
DEFUN(elf_get_str_section, (abfd, shindex),
|
||
bfd *abfd AND
|
||
unsigned int shindex)
|
||
{
|
||
Elf_Internal_Shdr *i_shdrp;
|
||
char *shstrtab = NULL;
|
||
unsigned int offset;
|
||
unsigned int shstrtabsize;
|
||
|
||
i_shdrp = elf_elfsections (abfd);
|
||
if (i_shdrp != NULL)
|
||
{
|
||
shstrtab = i_shdrp[shindex].rawdata;
|
||
if (shstrtab == NULL)
|
||
{
|
||
/* No cached one, attempt to read, and cache what we read. */
|
||
offset = i_shdrp[shindex].sh_offset;
|
||
shstrtabsize = i_shdrp[shindex].sh_size;
|
||
shstrtab = elf_read (abfd, offset, shstrtabsize);
|
||
i_shdrp[shindex].rawdata = (void*) shstrtab;
|
||
}
|
||
}
|
||
return (shstrtab);
|
||
}
|
||
|
||
static char *
|
||
DEFUN(elf_string_from_elf_section, (abfd, shindex, strindex),
|
||
bfd *abfd AND
|
||
unsigned int shindex AND
|
||
unsigned int strindex)
|
||
{
|
||
Elf_Internal_Shdr *i_shdrp = elf_elfsections (abfd);
|
||
Elf_Internal_Shdr *hdr = i_shdrp + shindex;
|
||
|
||
if (! hdr->rawdata)
|
||
{
|
||
if (elf_get_str_section (abfd, shindex) == NULL)
|
||
{
|
||
return NULL;
|
||
}
|
||
}
|
||
return ((char*)hdr->rawdata)+strindex;
|
||
}
|
||
|
||
#define elf_string_from_elf_strtab(abfd, strindex) \
|
||
elf_string_from_elf_section (abfd, elf_elfheader(abfd)->e_shstrndx, strindex)
|
||
|
||
/* Create a new bfd section from an ELF section header. */
|
||
|
||
static boolean
|
||
DEFUN(bfd_section_from_shdr, (abfd, shindex),
|
||
bfd *abfd AND
|
||
unsigned int shindex)
|
||
{
|
||
Elf_Internal_Shdr *i_shdrp = elf_elfsections (abfd);
|
||
Elf_Internal_Shdr *hdr = i_shdrp + shindex;
|
||
asection *newsect;
|
||
char *name;
|
||
|
||
name = hdr->sh_name ?
|
||
elf_string_from_elf_strtab (abfd, hdr->sh_name) : "unnamed";
|
||
|
||
switch(hdr->sh_type) {
|
||
|
||
case SHT_NULL:
|
||
/* inactive section. Throw it away. */
|
||
return true;
|
||
|
||
case SHT_PROGBITS:
|
||
case SHT_NOBITS:
|
||
/* Bits that get saved. This one is real. */
|
||
if (! hdr->rawdata )
|
||
{
|
||
newsect = bfd_make_section (abfd, name);
|
||
newsect->vma = hdr->sh_addr;
|
||
newsect->_raw_size = hdr->sh_size;
|
||
newsect->filepos = hdr->sh_offset; /* so we can read back the bits */
|
||
newsect->flags |= SEC_HAS_CONTENTS;
|
||
|
||
if (hdr->sh_flags & SHF_ALLOC)
|
||
{
|
||
newsect->flags |= SEC_ALLOC;
|
||
if (hdr->sh_type != SHT_NOBITS)
|
||
newsect->flags |= SEC_LOAD;
|
||
}
|
||
|
||
if (!(hdr->sh_flags & SHF_WRITE))
|
||
newsect->flags |= SEC_READONLY;
|
||
|
||
if (hdr->sh_flags & SHF_EXECINSTR)
|
||
newsect->flags |= SEC_CODE; /* FIXME: may only contain SOME code */
|
||
else
|
||
newsect->flags |= SEC_DATA;
|
||
|
||
hdr->rawdata = (void*)newsect;
|
||
}
|
||
return true;
|
||
break;
|
||
|
||
case SHT_SYMTAB: /* A symbol table */
|
||
BFD_ASSERT (hdr->sh_entsize == sizeof (Elf_External_Sym));
|
||
elf_onesymtab (abfd) = shindex;
|
||
abfd->flags |= HAS_SYMS;
|
||
return true;
|
||
|
||
case SHT_STRTAB: /* A string table */
|
||
return true;
|
||
|
||
case SHT_REL:
|
||
case SHT_RELA:
|
||
/* *these* do a lot of work -- but build no sections! */
|
||
/* the spec says there can be multiple strtabs, but only one symtab */
|
||
/* but there can be lots of REL* sections. */
|
||
/* FIXME: The above statement is wrong! There are typically at least
|
||
two symbol tables in a dynamically linked executable, ".dynsym"
|
||
which is the dynamic linkage symbol table and ".symtab", which is
|
||
the "traditional" symbol table. -fnf */
|
||
|
||
{
|
||
asection *target_sect;
|
||
|
||
bfd_section_from_shdr (abfd, hdr->sh_link); /* symbol table */
|
||
bfd_section_from_shdr (abfd, hdr->sh_info); /* target */
|
||
target_sect = section_from_elf_index (abfd, hdr->sh_info);
|
||
if (target_sect == NULL)
|
||
return false;
|
||
|
||
#if 0
|
||
/* FIXME: We are only prepared to read one symbol table, so
|
||
do NOT read the dynamic symbol table since it is only a
|
||
subset of the full symbol table. Also see comment above. -fnf */
|
||
if (!elf_slurp_symbol_table(abfd, i_shdrp + hdr->sh_link))
|
||
return false;
|
||
#endif
|
||
|
||
target_sect->reloc_count = hdr->sh_size / hdr->sh_entsize;
|
||
target_sect->flags |= SEC_RELOC;
|
||
target_sect->relocation = 0;
|
||
target_sect->rel_filepos = hdr->sh_offset;
|
||
return true;
|
||
}
|
||
break;
|
||
|
||
case SHT_HASH:
|
||
case SHT_DYNAMIC:
|
||
case SHT_DYNSYM: /* could treat this like symtab... */
|
||
#if 0
|
||
fprintf(stderr, "Dynamic Linking sections not yet supported.\n");
|
||
abort ();
|
||
#endif
|
||
break;
|
||
|
||
case SHT_NOTE:
|
||
#if 0
|
||
fprintf(stderr, "Note Sections not yet supported.\n");
|
||
abort ();
|
||
#endif
|
||
break;
|
||
|
||
case SHT_SHLIB:
|
||
#if 0
|
||
fprintf(stderr, "SHLIB Sections not supported (and non conforming.)\n");
|
||
#endif
|
||
return true;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return (true);
|
||
}
|
||
|
||
|
||
|
||
|
||
struct strtab {
|
||
char *tab;
|
||
int nentries;
|
||
int length;
|
||
};
|
||
|
||
|
||
static struct strtab *
|
||
DEFUN(bfd_new_strtab, (abfd),
|
||
bfd *abfd)
|
||
{
|
||
struct strtab *ss;
|
||
|
||
ss = (struct strtab *)malloc(sizeof(struct strtab));
|
||
ss->tab = malloc(1);
|
||
BFD_ASSERT(ss->tab != 0);
|
||
*ss->tab = 0;
|
||
ss->nentries = 0;
|
||
ss->length = 1;
|
||
|
||
return ss;
|
||
}
|
||
|
||
static int
|
||
DEFUN(bfd_add_to_strtab, (abfd, ss, str),
|
||
bfd *abfd AND
|
||
struct strtab *ss AND
|
||
CONST char *str)
|
||
{
|
||
/* should search first, but for now: */
|
||
/* include the trailing NUL */
|
||
int ln = strlen(str)+1;
|
||
|
||
/* should this be using obstacks? */
|
||
ss->tab = realloc(ss->tab, ss->length + ln);
|
||
|
||
BFD_ASSERT(ss->tab != 0);
|
||
strcpy(ss->tab + ss->length, str);
|
||
ss->nentries++;
|
||
ss->length += ln;
|
||
|
||
return ss->length - ln;
|
||
}
|
||
|
||
static int
|
||
DEFUN(bfd_add_2_to_strtab, (abfd, ss, str, str2),
|
||
bfd *abfd AND
|
||
struct strtab *ss AND
|
||
char *str AND
|
||
CONST char *str2)
|
||
{
|
||
/* should search first, but for now: */
|
||
/* include the trailing NUL */
|
||
int ln = strlen(str)+strlen(str2)+1;
|
||
|
||
/* should this be using obstacks? */
|
||
if (ss->length)
|
||
ss->tab = realloc(ss->tab, ss->length + ln);
|
||
else
|
||
ss->tab = malloc(ln);
|
||
|
||
BFD_ASSERT(ss->tab != 0);
|
||
strcpy(ss->tab + ss->length, str);
|
||
strcpy(ss->tab + ss->length + strlen(str), str2);
|
||
ss->nentries++;
|
||
ss->length += ln;
|
||
|
||
return ss->length - ln;
|
||
}
|
||
|
||
/* Create a new ELF section from a bfd section. */
|
||
|
||
static boolean
|
||
DEFUN(bfd_shdr_from_section, (abfd, hdr, shstrtab, indx),
|
||
bfd *abfd AND
|
||
Elf_Internal_Shdr *hdr AND
|
||
struct strtab *shstrtab AND
|
||
int indx)
|
||
{
|
||
asection *sect;
|
||
int ndx;
|
||
|
||
/* figure out out to write the section name from the bfd section name. MWE */
|
||
|
||
sect = abfd->sections;
|
||
for (ndx = indx; --ndx; )
|
||
{
|
||
sect = sect->next;
|
||
}
|
||
hdr[indx].sh_name = bfd_add_to_strtab(abfd, shstrtab,
|
||
bfd_section_name(abfd, sect));
|
||
hdr[indx].sh_addr = sect->vma;
|
||
hdr[indx].sh_size = sect->_raw_size;
|
||
hdr[indx].sh_flags = 0;
|
||
/* these need to be preserved on */
|
||
hdr[indx].sh_link = 0;
|
||
hdr[indx].sh_info = 0;
|
||
hdr[indx].sh_addralign = 0;
|
||
hdr[indx].sh_entsize = 0;
|
||
|
||
hdr[indx].sh_type = 0;
|
||
if (sect->flags & SEC_RELOC) {
|
||
hdr[indx].sh_type = SHT_RELA; /* FIXME -- sparc specific */
|
||
}
|
||
|
||
if (sect->flags & SEC_HAS_CONTENTS)
|
||
{
|
||
hdr[indx].sh_offset = sect->filepos;
|
||
hdr[indx].sh_size = sect->_raw_size;
|
||
}
|
||
if (sect->flags & SEC_ALLOC)
|
||
{
|
||
hdr[indx].sh_flags |= SHF_ALLOC;
|
||
if (sect->flags & SEC_LOAD)
|
||
{
|
||
/* do something with sh_type ? */
|
||
}
|
||
}
|
||
if (!(sect->flags & SEC_READONLY))
|
||
hdr[indx].sh_flags |= SHF_WRITE;
|
||
|
||
if (sect->flags & SEC_CODE)
|
||
hdr[indx].sh_flags |= SHF_EXECINSTR;
|
||
|
||
return (true);
|
||
}
|
||
|
||
/* Create a new bfd section from an ELF program header.
|
||
|
||
Since program segments have no names, we generate a synthetic name
|
||
of the form segment<NUM>, where NUM is generally the index in the
|
||
program header table. For segments that are split (see below) we
|
||
generate the names segment<NUM>a and segment<NUM>b.
|
||
|
||
Note that some program segments may have a file size that is different than
|
||
(less than) the memory size. All this means is that at execution the
|
||
system must allocate the amount of memory specified by the memory size,
|
||
but only initialize it with the first "file size" bytes read from the
|
||
file. This would occur for example, with program segments consisting
|
||
of combined data+bss.
|
||
|
||
To handle the above situation, this routine generates TWO bfd sections
|
||
for the single program segment. The first has the length specified by
|
||
the file size of the segment, and the second has the length specified
|
||
by the difference between the two sizes. In effect, the segment is split
|
||
into it's initialized and uninitialized parts.
|
||
|
||
*/
|
||
|
||
static boolean
|
||
DEFUN(bfd_section_from_phdr, (abfd, hdr, index),
|
||
bfd *abfd AND
|
||
Elf_Internal_Phdr *hdr AND
|
||
int index)
|
||
{
|
||
asection *newsect;
|
||
char *name;
|
||
char namebuf[64];
|
||
int split;
|
||
|
||
split = ((hdr -> p_memsz > 0) &&
|
||
(hdr -> p_filesz > 0) &&
|
||
(hdr -> p_memsz > hdr -> p_filesz));
|
||
sprintf (namebuf, split ? "segment%da" : "segment%d", index);
|
||
name = bfd_alloc (abfd, strlen (namebuf) + 1);
|
||
strcpy (name, namebuf);
|
||
newsect = bfd_make_section (abfd, name);
|
||
newsect -> vma = hdr -> p_vaddr;
|
||
newsect -> _raw_size = hdr -> p_filesz;
|
||
newsect -> filepos = hdr -> p_offset;
|
||
newsect -> flags |= SEC_HAS_CONTENTS;
|
||
if (hdr -> p_type == PT_LOAD)
|
||
{
|
||
newsect -> flags |= SEC_ALLOC;
|
||
newsect -> flags |= SEC_LOAD;
|
||
if (hdr -> p_flags & PF_X)
|
||
{
|
||
/* FIXME: all we known is that it has execute PERMISSION,
|
||
may be data. */
|
||
newsect -> flags |= SEC_CODE;
|
||
}
|
||
}
|
||
if (!(hdr -> p_flags & PF_W))
|
||
{
|
||
newsect -> flags |= SEC_READONLY;
|
||
}
|
||
|
||
if (split)
|
||
{
|
||
sprintf (namebuf, "segment%db", index);
|
||
name = bfd_alloc (abfd, strlen (namebuf) + 1);
|
||
strcpy (name, namebuf);
|
||
newsect = bfd_make_section (abfd, name);
|
||
newsect -> vma = hdr -> p_vaddr + hdr -> p_filesz;
|
||
newsect -> _raw_size = hdr -> p_memsz - hdr -> p_filesz;
|
||
if (hdr -> p_type == PT_LOAD)
|
||
{
|
||
newsect -> flags |= SEC_ALLOC;
|
||
if (hdr -> p_flags & PF_X)
|
||
newsect -> flags |= SEC_CODE;
|
||
}
|
||
if (!(hdr -> p_flags & PF_W))
|
||
newsect -> flags |= SEC_READONLY;
|
||
}
|
||
|
||
return (true);
|
||
}
|
||
|
||
#ifdef HAVE_PROCFS
|
||
|
||
static void
|
||
DEFUN(bfd_prstatus,(abfd, descdata, descsz, filepos),
|
||
bfd *abfd AND
|
||
char *descdata AND
|
||
int descsz AND
|
||
long filepos)
|
||
{
|
||
asection *newsect;
|
||
prstatus_t *status = (prstatus_t *)0;
|
||
|
||
if (descsz == sizeof (prstatus_t))
|
||
{
|
||
newsect = bfd_make_section (abfd, ".reg");
|
||
newsect -> _raw_size = sizeof (status->pr_reg);
|
||
newsect -> filepos = filepos + (long) &status->pr_reg;
|
||
newsect -> flags = SEC_ALLOC | SEC_HAS_CONTENTS;
|
||
newsect -> alignment_power = 2;
|
||
if ((core_prstatus (abfd) = bfd_alloc (abfd, descsz)) != NULL)
|
||
{
|
||
memcpy (core_prstatus (abfd), descdata, descsz);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Stash a copy of the prpsinfo structure away for future use. */
|
||
|
||
static void
|
||
DEFUN(bfd_prpsinfo,(abfd, descdata, descsz, filepos),
|
||
bfd *abfd AND
|
||
char *descdata AND
|
||
int descsz AND
|
||
long filepos)
|
||
{
|
||
asection *newsect;
|
||
|
||
if (descsz == sizeof (prpsinfo_t))
|
||
{
|
||
if ((core_prpsinfo (abfd) = bfd_alloc (abfd, descsz)) != NULL)
|
||
{
|
||
memcpy (core_prpsinfo (abfd), descdata, descsz);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
DEFUN(bfd_fpregset,(abfd, descdata, descsz, filepos),
|
||
bfd *abfd AND
|
||
char *descdata AND
|
||
int descsz AND
|
||
long filepos)
|
||
{
|
||
asection *newsect;
|
||
|
||
newsect = bfd_make_section (abfd, ".reg2");
|
||
newsect -> _raw_size = descsz;
|
||
newsect -> filepos = filepos;
|
||
newsect -> flags = SEC_ALLOC | SEC_HAS_CONTENTS;
|
||
newsect -> alignment_power = 2;
|
||
}
|
||
|
||
#endif /* HAVE_PROCFS */
|
||
|
||
/* Return a pointer to the args (including the command name) that were
|
||
seen by the program that generated the core dump. Note that for
|
||
some reason, a spurious space is tacked onto the end of the args
|
||
in some (at least one anyway) implementations, so strip it off if
|
||
it exists. */
|
||
|
||
char *
|
||
DEFUN(elf_core_file_failing_command, (abfd),
|
||
bfd *abfd)
|
||
{
|
||
#ifdef HAVE_PROCFS
|
||
if (core_prpsinfo (abfd))
|
||
{
|
||
prpsinfo_t *p = core_prpsinfo (abfd);
|
||
char *scan = p -> pr_psargs;
|
||
while (*scan++) {;}
|
||
scan -= 2;
|
||
if ((scan > p -> pr_psargs) && (*scan == ' '))
|
||
{
|
||
*scan = '\000';
|
||
}
|
||
return (p -> pr_psargs);
|
||
}
|
||
#endif
|
||
return (NULL);
|
||
}
|
||
|
||
/* Return the number of the signal that caused the core dump. Presumably,
|
||
since we have a core file, we got a signal of some kind, so don't bother
|
||
checking the other process status fields, just return the signal number.
|
||
*/
|
||
|
||
static int
|
||
DEFUN(elf_core_file_failing_signal, (abfd),
|
||
bfd *abfd)
|
||
{
|
||
#ifdef HAVE_PROCFS
|
||
if (core_prstatus (abfd))
|
||
{
|
||
return (((prstatus_t *)(core_prstatus (abfd))) -> pr_cursig);
|
||
}
|
||
#endif
|
||
return (-1);
|
||
}
|
||
|
||
/* Check to see if the core file could reasonably be expected to have
|
||
come for the current executable file. Note that by default we return
|
||
true unless we find something that indicates that there might be a
|
||
problem.
|
||
*/
|
||
|
||
static boolean
|
||
DEFUN(elf_core_file_matches_executable_p, (core_bfd, exec_bfd),
|
||
bfd *core_bfd AND
|
||
bfd *exec_bfd)
|
||
{
|
||
#ifdef HAVE_PROCFS
|
||
char *corename;
|
||
char *execname;
|
||
#endif
|
||
|
||
/* First, xvecs must match since both are ELF files for the same target. */
|
||
|
||
if (core_bfd->xvec != exec_bfd->xvec)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return (false);
|
||
}
|
||
|
||
#ifdef HAVE_PROCFS
|
||
|
||
/* If no prpsinfo, just return true. Otherwise, grab the last component
|
||
of the exec'd pathname from the prpsinfo. */
|
||
|
||
if (core_prpsinfo (core_bfd))
|
||
{
|
||
corename = (((struct prpsinfo *) core_prpsinfo (core_bfd)) -> pr_fname);
|
||
}
|
||
else
|
||
{
|
||
return (true);
|
||
}
|
||
|
||
/* Find the last component of the executable pathname. */
|
||
|
||
if ((execname = strrchr (exec_bfd -> filename, '/')) != NULL)
|
||
{
|
||
execname++;
|
||
}
|
||
else
|
||
{
|
||
execname = (char *) exec_bfd -> filename;
|
||
}
|
||
|
||
/* See if they match */
|
||
|
||
return (strcmp (execname, corename) ? false : true);
|
||
|
||
#else
|
||
|
||
return (true);
|
||
|
||
#endif /* HAVE_PROCFS */
|
||
}
|
||
|
||
/* ELF core files contain a segment of type PT_NOTE, that holds much of
|
||
the information that would normally be available from the /proc interface
|
||
for the process, at the time the process dumped core. Currently this
|
||
includes copies of the prstatus, prpsinfo, and fpregset structures.
|
||
|
||
Since these structures are potentially machine dependent in size and
|
||
ordering, bfd provides two levels of support for them. The first level,
|
||
available on all machines since it does not require that the host
|
||
have /proc support or the relevant include files, is to create a bfd
|
||
section for each of the prstatus, prpsinfo, and fpregset structures,
|
||
without any interpretation of their contents. With just this support,
|
||
the bfd client will have to interpret the structures itself. Even with
|
||
/proc support, it might want these full structures for it's own reasons.
|
||
|
||
In the second level of support, where HAVE_PROCFS is defined, bfd will
|
||
pick apart the structures to gather some additional information that
|
||
clients may want, such as the general register set, the name of the
|
||
exec'ed file and its arguments, the signal (if any) that caused the
|
||
core dump, etc.
|
||
|
||
*/
|
||
|
||
static boolean
|
||
DEFUN(elf_corefile_note, (abfd, hdr),
|
||
bfd *abfd AND
|
||
Elf_Internal_Phdr *hdr)
|
||
{
|
||
Elf_External_Note *x_note_p; /* Elf note, external form */
|
||
Elf_Internal_Note i_note; /* Elf note, internal form */
|
||
char *buf = NULL; /* Entire note segment contents */
|
||
char *namedata; /* Name portion of the note */
|
||
char *descdata; /* Descriptor portion of the note */
|
||
char *sectname; /* Name to use for new section */
|
||
long filepos; /* File offset to descriptor data */
|
||
asection *newsect;
|
||
|
||
if (hdr -> p_filesz > 0
|
||
&& (buf = (char *) bfd_xmalloc (hdr -> p_filesz)) != NULL
|
||
&& bfd_seek (abfd, hdr -> p_offset, SEEK_SET) != -1
|
||
&& bfd_read ((PTR) buf, hdr -> p_filesz, 1, abfd) == hdr -> p_filesz)
|
||
{
|
||
x_note_p = (Elf_External_Note *) buf;
|
||
while ((char *) x_note_p < (buf + hdr -> p_filesz))
|
||
{
|
||
i_note.namesz = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p -> namesz);
|
||
i_note.descsz = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p -> descsz);
|
||
i_note.type = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p -> type);
|
||
namedata = x_note_p -> name;
|
||
descdata = namedata + BFD_ALIGN (i_note.namesz, 4);
|
||
filepos = hdr -> p_offset + (descdata - buf);
|
||
switch (i_note.type) {
|
||
case NT_PRSTATUS:
|
||
/* process descdata as prstatus info */
|
||
bfd_prstatus (abfd, descdata, i_note.descsz, filepos);
|
||
sectname = ".prstatus";
|
||
break;
|
||
case NT_FPREGSET:
|
||
/* process descdata as fpregset info */
|
||
bfd_fpregset (abfd, descdata, i_note.descsz, filepos);
|
||
sectname = ".fpregset";
|
||
break;
|
||
case NT_PRPSINFO:
|
||
/* process descdata as prpsinfo */
|
||
bfd_prpsinfo (abfd, descdata, i_note.descsz, filepos);
|
||
sectname = ".prpsinfo";
|
||
break;
|
||
default:
|
||
/* Unknown descriptor, just ignore it. */
|
||
sectname = NULL;
|
||
break;
|
||
}
|
||
if (sectname != NULL)
|
||
{
|
||
newsect = bfd_make_section (abfd, sectname);
|
||
newsect -> _raw_size = i_note.descsz;
|
||
newsect -> filepos = filepos;
|
||
newsect -> flags = SEC_ALLOC | SEC_HAS_CONTENTS;
|
||
newsect -> alignment_power = 2;
|
||
}
|
||
x_note_p = (Elf_External_Note *)
|
||
(descdata + BFD_ALIGN (i_note.descsz, 4));
|
||
}
|
||
}
|
||
if (buf != NULL)
|
||
{
|
||
free (buf);
|
||
}
|
||
return true;
|
||
|
||
}
|
||
|
||
|
||
/* Read a specified number of bytes at a specified offset in an ELF
|
||
file, into a newly allocated buffer, and return a pointer to the
|
||
buffer. */
|
||
|
||
static char *
|
||
DEFUN(elf_read, (abfd, offset, size),
|
||
bfd *abfd AND
|
||
long offset AND
|
||
int size)
|
||
{
|
||
char *buf;
|
||
|
||
if ((buf = bfd_alloc (abfd, size)) == NULL)
|
||
{
|
||
bfd_error = no_memory;
|
||
return (NULL);
|
||
}
|
||
if (bfd_seek (abfd, offset, SEEK_SET) == -1)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return (NULL);
|
||
}
|
||
if (bfd_read ((PTR) buf, size, 1, abfd) != size)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return (NULL);
|
||
}
|
||
return (buf);
|
||
}
|
||
|
||
/* Begin processing a given object.
|
||
|
||
First we validate the file by reading in the ELF header and checking
|
||
the magic number.
|
||
|
||
*/
|
||
|
||
static bfd_target *
|
||
DEFUN (elf_object_p, (abfd), bfd *abfd)
|
||
{
|
||
Elf_External_Ehdr x_ehdr; /* Elf file header, external form */
|
||
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
|
||
Elf_External_Shdr x_shdr; /* Section header table entry, external form */
|
||
Elf_Internal_Shdr *i_shdrp; /* Section header table, internal form */
|
||
int shindex;
|
||
char *shstrtab; /* Internal copy of section header stringtab */
|
||
|
||
/* Read in the ELF header in external format. */
|
||
|
||
if (bfd_read ((PTR) &x_ehdr, sizeof (x_ehdr), 1, abfd) != sizeof (x_ehdr))
|
||
{
|
||
bfd_error = system_call_error;
|
||
return (NULL);
|
||
}
|
||
|
||
/* Now check to see if we have a valid ELF file, and one that BFD can
|
||
make use of. The magic number must match, the address size ('class')
|
||
and byte-swapping must match our XVEC entry, and it must have a
|
||
section header table (FIXME: See comments re sections at top of this
|
||
file). */
|
||
|
||
if (x_ehdr.e_ident[EI_MAG0] != ELFMAG0 ||
|
||
x_ehdr.e_ident[EI_MAG1] != ELFMAG1 ||
|
||
x_ehdr.e_ident[EI_MAG2] != ELFMAG2 ||
|
||
x_ehdr.e_ident[EI_MAG3] != ELFMAG3)
|
||
{
|
||
wrong:
|
||
bfd_error = wrong_format;
|
||
return (NULL);
|
||
}
|
||
|
||
/* FIXME, Check EI_VERSION here ! */
|
||
|
||
switch (x_ehdr.e_ident[EI_CLASS])
|
||
{
|
||
case ELFCLASSNONE: /* address size not specified */
|
||
goto wrong; /* No support if can't tell address size */
|
||
case ELFCLASS32: /* 32-bit addresses */
|
||
break;
|
||
case ELFCLASS64: /* 64-bit addresses */
|
||
goto wrong; /* FIXME: 64 bits not yet supported */
|
||
default:
|
||
goto wrong; /* No support if unknown address class */
|
||
}
|
||
|
||
/* Switch xvec to match the specified byte order. */
|
||
switch (x_ehdr.e_ident[EI_DATA])
|
||
{
|
||
case ELFDATA2MSB: /* Big-endian */
|
||
if (!abfd->xvec->header_byteorder_big_p)
|
||
goto wrong;
|
||
break;
|
||
case ELFDATA2LSB: /* Little-endian */
|
||
if (abfd->xvec->header_byteorder_big_p)
|
||
goto wrong;
|
||
break;
|
||
case ELFDATANONE: /* No data encoding specified */
|
||
default: /* Unknown data encoding specified */
|
||
goto wrong;
|
||
}
|
||
|
||
/* Allocate an instance of the elf_obj_tdata structure and hook it up to
|
||
the tdata pointer in the bfd. */
|
||
|
||
if (NULL == (elf_tdata (abfd) = (struct elf_obj_tdata *)
|
||
bfd_zalloc (abfd, sizeof (struct elf_obj_tdata))))
|
||
{
|
||
bfd_error = no_memory;
|
||
return (NULL);
|
||
}
|
||
|
||
/* FIXME: Any `wrong' exits below here will leak memory (tdata). */
|
||
|
||
/* Now that we know the byte order, swap in the rest of the header */
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
elf_swap_ehdr_in (abfd, &x_ehdr, i_ehdrp);
|
||
|
||
/* If there is no section header table, we're hosed. */
|
||
if (i_ehdrp->e_shoff == 0)
|
||
goto wrong;
|
||
|
||
if (i_ehdrp->e_type == ET_EXEC || i_ehdrp->e_type == ET_DYN)
|
||
abfd -> flags |= EXEC_P;
|
||
|
||
switch (i_ehdrp->e_machine)
|
||
{
|
||
case EM_NONE:
|
||
case EM_M32: /* or should this be bfd_arch_obscure? */
|
||
bfd_default_set_arch_mach(abfd, bfd_arch_unknown, 0);
|
||
break;
|
||
case EM_SPARC:
|
||
bfd_default_set_arch_mach(abfd, bfd_arch_sparc, 0);
|
||
break;
|
||
case EM_386:
|
||
bfd_default_set_arch_mach(abfd, bfd_arch_i386, 0);
|
||
break;
|
||
case EM_68K:
|
||
bfd_default_set_arch_mach(abfd, bfd_arch_m68k, 0);
|
||
break;
|
||
case EM_88K:
|
||
bfd_default_set_arch_mach(abfd, bfd_arch_m88k, 0);
|
||
break;
|
||
case EM_860:
|
||
bfd_default_set_arch_mach(abfd, bfd_arch_i860, 0);
|
||
break;
|
||
case EM_MIPS:
|
||
bfd_default_set_arch_mach(abfd, bfd_arch_mips, 0);
|
||
break;
|
||
default:
|
||
goto wrong;
|
||
}
|
||
|
||
/* Allocate space for a copy of the section header table in
|
||
internal form, seek to the section header table in the file,
|
||
read it in, and convert it to internal form. As a simple sanity
|
||
check, verify that the what BFD thinks is the size of each section
|
||
header table entry actually matches the size recorded in the file. */
|
||
|
||
if (i_ehdrp->e_shentsize != sizeof (x_shdr))
|
||
goto wrong;
|
||
i_shdrp = (Elf_Internal_Shdr *)
|
||
bfd_alloc (abfd, sizeof (*i_shdrp) * i_ehdrp->e_shnum);
|
||
if (! i_shdrp)
|
||
{
|
||
bfd_error = no_memory;
|
||
return (NULL);
|
||
}
|
||
if (bfd_seek (abfd, i_ehdrp->e_shoff, SEEK_SET) == -1)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return (NULL);
|
||
}
|
||
for (shindex = 0; shindex < i_ehdrp->e_shnum; shindex++)
|
||
{
|
||
if (bfd_read ((PTR) &x_shdr, sizeof x_shdr, 1, abfd)
|
||
!= sizeof (x_shdr))
|
||
{
|
||
bfd_error = system_call_error;
|
||
return (NULL);
|
||
}
|
||
elf_swap_shdr_in (abfd, &x_shdr, i_shdrp + shindex);
|
||
}
|
||
|
||
elf_elfsections (abfd) = i_shdrp;
|
||
|
||
/* Read in the string table containing the names of the sections. We
|
||
will need the base pointer to this table later. */
|
||
/* We read this inline now, so that we don't have to go through
|
||
bfd_section_from_shdr with it (since this particular strtab is
|
||
used to find all of the ELF section names.) */
|
||
|
||
shstrtab = elf_get_str_section (abfd, i_ehdrp->e_shstrndx);
|
||
if (! shstrtab)
|
||
return (NULL);
|
||
|
||
/* Once all of the section headers have been read and converted, we
|
||
can start processing them. Note that the first section header is
|
||
a dummy placeholder entry, so we ignore it.
|
||
|
||
We also watch for the symbol table section and remember the file
|
||
offset and section size for both the symbol table section and the
|
||
associated string table section. */
|
||
|
||
for (shindex = 1; shindex < i_ehdrp->e_shnum; shindex++)
|
||
{
|
||
bfd_section_from_shdr (abfd, shindex);
|
||
}
|
||
|
||
/* Remember the entry point specified in the ELF file header. */
|
||
|
||
bfd_get_start_address (abfd) = i_ehdrp->e_entry;
|
||
|
||
return (abfd->xvec);
|
||
}
|
||
|
||
/* Core files are simply standard ELF formatted files that partition
|
||
the file using the execution view of the file (program header table)
|
||
rather than the linking view. In fact, there is no section header
|
||
table in a core file.
|
||
|
||
The process status information (including the contents of the general
|
||
register set) and the floating point register set are stored in a
|
||
segment of type PT_NOTE. We handcraft a couple of extra bfd sections
|
||
that allow standard bfd access to the general registers (.reg) and the
|
||
floating point registers (.reg2).
|
||
|
||
*/
|
||
|
||
static bfd_target *
|
||
DEFUN (elf_core_file_p, (abfd), bfd *abfd)
|
||
{
|
||
Elf_External_Ehdr x_ehdr; /* Elf file header, external form */
|
||
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
|
||
Elf_External_Phdr x_phdr; /* Program header table entry, external form */
|
||
Elf_Internal_Phdr *i_phdrp; /* Program header table, internal form */
|
||
unsigned int phindex;
|
||
|
||
/* Read in the ELF header in external format. */
|
||
|
||
if (bfd_read ((PTR) &x_ehdr, sizeof (x_ehdr), 1, abfd) != sizeof (x_ehdr))
|
||
{
|
||
bfd_error = system_call_error;
|
||
return (NULL);
|
||
}
|
||
|
||
/* Now check to see if we have a valid ELF file, and one that BFD can
|
||
make use of. The magic number must match, the address size ('class')
|
||
and byte-swapping must match our XVEC entry, and it must have a
|
||
program header table (FIXME: See comments re segments at top of this
|
||
file). */
|
||
|
||
if (x_ehdr.e_ident[EI_MAG0] != ELFMAG0 ||
|
||
x_ehdr.e_ident[EI_MAG1] != ELFMAG1 ||
|
||
x_ehdr.e_ident[EI_MAG2] != ELFMAG2 ||
|
||
x_ehdr.e_ident[EI_MAG3] != ELFMAG3)
|
||
{
|
||
wrong:
|
||
bfd_error = wrong_format;
|
||
return (NULL);
|
||
}
|
||
|
||
/* FIXME, Check EI_VERSION here ! */
|
||
|
||
switch (x_ehdr.e_ident[EI_CLASS])
|
||
{
|
||
case ELFCLASSNONE: /* address size not specified */
|
||
goto wrong; /* No support if can't tell address size */
|
||
case ELFCLASS32: /* 32-bit addresses */
|
||
break;
|
||
case ELFCLASS64: /* 64-bit addresses */
|
||
goto wrong; /* FIXME: 64 bits not yet supported */
|
||
default:
|
||
goto wrong; /* No support if unknown address class */
|
||
}
|
||
|
||
/* Switch xvec to match the specified byte order. */
|
||
switch (x_ehdr.e_ident[EI_DATA])
|
||
{
|
||
case ELFDATA2MSB: /* Big-endian */
|
||
abfd->xvec = &elf_big_vec;
|
||
break;
|
||
case ELFDATA2LSB: /* Little-endian */
|
||
abfd->xvec = &elf_little_vec;
|
||
break;
|
||
case ELFDATANONE: /* No data encoding specified */
|
||
default: /* Unknown data encoding specified */
|
||
goto wrong;
|
||
}
|
||
|
||
/* Allocate an instance of the elf_obj_tdata structure and hook it up to
|
||
the tdata pointer in the bfd. */
|
||
|
||
elf_tdata (abfd) =
|
||
(struct elf_obj_tdata *) bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
|
||
if (elf_tdata (abfd) == NULL)
|
||
{
|
||
bfd_error = no_memory;
|
||
return (NULL);
|
||
}
|
||
|
||
/* FIXME, `wrong' returns from this point onward, leak memory. */
|
||
|
||
/* Now that we know the byte order, swap in the rest of the header */
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
elf_swap_ehdr_in (abfd, &x_ehdr, i_ehdrp);
|
||
|
||
/* If there is no program header, or the type is not a core file, then
|
||
we are hosed. */
|
||
if (i_ehdrp->e_phoff == 0 || i_ehdrp->e_type != ET_CORE)
|
||
goto wrong;
|
||
|
||
/* Allocate space for a copy of the program header table in
|
||
internal form, seek to the program header table in the file,
|
||
read it in, and convert it to internal form. As a simple sanity
|
||
check, verify that the what BFD thinks is the size of each program
|
||
header table entry actually matches the size recorded in the file. */
|
||
|
||
if (i_ehdrp->e_phentsize != sizeof (x_phdr))
|
||
goto wrong;
|
||
i_phdrp = (Elf_Internal_Phdr *)
|
||
bfd_alloc (abfd, sizeof (*i_phdrp) * i_ehdrp->e_phnum);
|
||
if (! i_phdrp)
|
||
{
|
||
bfd_error = no_memory;
|
||
return (NULL);
|
||
}
|
||
if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) == -1)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return (NULL);
|
||
}
|
||
for (phindex = 0; phindex < i_ehdrp->e_phnum; phindex++)
|
||
{
|
||
if (bfd_read ((PTR) &x_phdr, sizeof (x_phdr), 1, abfd)
|
||
!= sizeof (x_phdr))
|
||
{
|
||
bfd_error = system_call_error;
|
||
return (NULL);
|
||
}
|
||
elf_swap_phdr_in (abfd, &x_phdr, i_phdrp + phindex);
|
||
}
|
||
|
||
/* Once all of the program headers have been read and converted, we
|
||
can start processing them. */
|
||
|
||
for (phindex = 0; phindex < i_ehdrp->e_phnum; phindex++)
|
||
{
|
||
bfd_section_from_phdr (abfd, i_phdrp + phindex, phindex);
|
||
if ((i_phdrp + phindex) -> p_type == PT_NOTE)
|
||
{
|
||
elf_corefile_note (abfd, i_phdrp + phindex);
|
||
}
|
||
}
|
||
|
||
/* Remember the entry point specified in the ELF file header. */
|
||
|
||
bfd_get_start_address (abfd) = i_ehdrp->e_entry;
|
||
|
||
return (abfd->xvec);
|
||
}
|
||
|
||
static boolean
|
||
DEFUN (elf_mkobject, (abfd), bfd *abfd)
|
||
{
|
||
/* this just does initialization */
|
||
/* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
|
||
elf_tdata(abfd) = (struct elf_obj_tdata *)
|
||
bfd_zalloc (abfd, sizeof(struct elf_obj_tdata));
|
||
if (elf_tdata(abfd) == 0) {
|
||
bfd_error = no_memory;
|
||
return false;
|
||
}
|
||
/* since everything is done at close time, do we need any
|
||
initialization? */
|
||
|
||
return (true);
|
||
}
|
||
|
||
/*
|
||
Create ELF output from BFD sections.
|
||
|
||
Essentially, just create the section header and forget about the program
|
||
header for now.
|
||
|
||
*/
|
||
|
||
/* lacking nested functions and nested types, set up for mapping over
|
||
BFD sections to produce ELF sections */
|
||
|
||
typedef struct {
|
||
Elf_Internal_Ehdr *i_ehdr;
|
||
Elf_Internal_Shdr *i_shdrp;
|
||
struct strtab *shstrtab;
|
||
int symtab_section;
|
||
} elf_sect_thunk;
|
||
|
||
|
||
|
||
static void
|
||
DEFUN (elf_make_sections, (abfd, asect, obj),
|
||
bfd *abfd AND
|
||
asection *asect AND
|
||
PTR obj)
|
||
{
|
||
elf_sect_thunk *thunk = (elf_sect_thunk*)obj;
|
||
/* most of what is in bfd_shdr_from_section goes in here... */
|
||
/* and all of these sections generate at *least* one ELF section. */
|
||
int this_section;
|
||
int idx;
|
||
|
||
/* check if we're making a PROGBITS section... */
|
||
/* if ((asect->flags & SEC_ALLOC) && (asect->flags & SEC_LOAD)) */
|
||
/* this was too strict... what *do* we want to check here? */
|
||
if(1)
|
||
{
|
||
Elf_Internal_Shdr *this_hdr;
|
||
this_section = elf_section_from_bfd_section (abfd, asect);
|
||
this_hdr = &thunk->i_shdrp[this_section];
|
||
|
||
this_hdr->sh_addr = asect->vma;
|
||
this_hdr->sh_size = asect->_raw_size;
|
||
/* contents already set by elf_set_section_contents */
|
||
|
||
if (asect->flags & SEC_RELOC)
|
||
{
|
||
/* emit a reloc section, and thus strtab and symtab... */
|
||
Elf_Internal_Shdr *rela_hdr;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Shdr *symstrtab_hdr;
|
||
Elf_External_Rela *outbound_relocs;
|
||
Elf_External_Sym *outbound_syms;
|
||
int rela_section;
|
||
int symstrtab_section;
|
||
|
||
symtab_hdr = &thunk->i_shdrp[thunk->symtab_section];
|
||
|
||
if (thunk->symtab_section == this_section + 1)
|
||
rela_section = thunk->symtab_section + 2; /* symtab + symstrtab */
|
||
else
|
||
rela_section = this_section + 1;
|
||
rela_hdr = &thunk->i_shdrp[rela_section];
|
||
rela_hdr->sh_type = SHT_RELA;
|
||
rela_hdr->sh_link = thunk->symtab_section;
|
||
rela_hdr->sh_info = this_section;
|
||
rela_hdr->sh_entsize = sizeof (Elf_External_Rela);
|
||
/* orelocation has the data, reloc_count has the count... */
|
||
rela_hdr->sh_size = rela_hdr->sh_entsize * asect->reloc_count;
|
||
outbound_relocs = (Elf_External_Rela *)
|
||
bfd_alloc(abfd, asect->reloc_count * sizeof(Elf_External_Rela));
|
||
for (idx = 0; idx < asect->reloc_count; idx++)
|
||
{
|
||
Elf_Internal_Rela dst;
|
||
arelent *ptr;
|
||
Elf_External_Rela *src;
|
||
|
||
ptr = asect->orelocation[idx];
|
||
src = outbound_relocs + idx;
|
||
if (asect->flags & SEC_RELOC)
|
||
dst.r_offset = ptr->address - asect->vma;
|
||
else
|
||
dst.r_offset = ptr->address;
|
||
|
||
dst.r_info = ELF_R_INFO(1 /*ptr->sym_ptr_ptr*/, /* needs index into symtab (FIXME) */
|
||
ptr->howto->type);
|
||
|
||
dst.r_addend = ptr->addend;
|
||
elf_swap_reloca_out(abfd, &dst, src);
|
||
}
|
||
rela_hdr->contents = (void*)outbound_relocs;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
DEFUN (elf_fake_sections, (abfd, asect, obj),
|
||
bfd *abfd AND
|
||
asection *asect AND
|
||
PTR obj)
|
||
{
|
||
elf_sect_thunk *thunk = (elf_sect_thunk*)obj;
|
||
/* most of what is in bfd_shdr_from_section goes in here... */
|
||
/* and all of these sections generate at *least* one ELF section. */
|
||
int this_section;
|
||
int idx;
|
||
|
||
/* check if we're making a PROGBITS section... */
|
||
/* if ((asect->flags & SEC_ALLOC) && (asect->flags & SEC_LOAD)) */
|
||
/* this was too strict... what *do* we want to check here? */
|
||
if(1)
|
||
{
|
||
Elf_Internal_Shdr *this_hdr;
|
||
this_section = thunk->i_ehdr->e_shnum++;
|
||
this_hdr = &thunk->i_shdrp[this_section];
|
||
this_hdr->sh_name =
|
||
bfd_add_to_strtab (abfd, thunk->shstrtab, asect->name);
|
||
/* we need to log the type *now* so that elf_section_from_bfd_section
|
||
can find us... have to set rawdata too. */
|
||
this_hdr->rawdata = (void*)asect;
|
||
if ((asect->flags & SEC_ALLOC) && (asect->flags & SEC_LOAD))
|
||
this_hdr->sh_type = SHT_PROGBITS;
|
||
else
|
||
/* what *do* we put here? */
|
||
this_hdr->sh_type = SHT_PROGBITS;
|
||
|
||
|
||
if (asect->flags & SEC_RELOC)
|
||
{
|
||
/* emit a reloc section, and thus strtab and symtab... */
|
||
Elf_Internal_Shdr *rela_hdr;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Shdr *symstrtab_hdr;
|
||
Elf_External_Rela *outbound_relocs;
|
||
Elf_External_Sym *outbound_syms;
|
||
int rela_section;
|
||
int symstrtab_section;
|
||
|
||
/* note that only one symtab is used, so just remember it
|
||
for now */
|
||
if (! thunk->symtab_section)
|
||
{
|
||
thunk->symtab_section = thunk->i_ehdr->e_shnum++;
|
||
symtab_hdr = &thunk->i_shdrp[thunk->symtab_section];
|
||
symtab_hdr->sh_name =
|
||
bfd_add_to_strtab (abfd, thunk->shstrtab, ".symtab");
|
||
symtab_hdr->sh_type = SHT_SYMTAB;
|
||
symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
|
||
|
||
symstrtab_section = thunk->i_ehdr->e_shnum++;
|
||
BFD_ASSERT(symstrtab_section == thunk->symtab_section+1);
|
||
symstrtab_hdr = &thunk->i_shdrp[symstrtab_section];
|
||
symtab_hdr->sh_link = symstrtab_section;
|
||
symstrtab_hdr->sh_name =
|
||
bfd_add_to_strtab (abfd, thunk->shstrtab, ".strtab");
|
||
symstrtab_hdr->sh_type = SHT_STRTAB;
|
||
|
||
symtab_hdr->contents = 0;
|
||
symstrtab_hdr->contents = 0;
|
||
symstrtab_hdr->sh_size = 0;
|
||
}
|
||
else
|
||
symtab_hdr = &thunk->i_shdrp[thunk->symtab_section];
|
||
|
||
rela_section = thunk->i_ehdr->e_shnum++;
|
||
rela_hdr = &thunk->i_shdrp[rela_section];
|
||
rela_hdr->sh_name =
|
||
bfd_add_2_to_strtab (abfd, thunk->shstrtab, ".rela", asect->name);
|
||
rela_hdr->sh_type = SHT_RELA;
|
||
rela_hdr->sh_link = thunk->symtab_section;
|
||
rela_hdr->sh_info = this_section;
|
||
rela_hdr->sh_entsize = sizeof (Elf_External_Rela);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static boolean
|
||
DEFUN (elf_compute_section_file_positions, (abfd), bfd *abfd)
|
||
{
|
||
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
|
||
Elf_Internal_Shdr *i_shdrp; /* Section header table, internal form */
|
||
struct strtab *shstrtab;
|
||
int count, maxsections;
|
||
int outbase;
|
||
elf_sect_thunk est;
|
||
|
||
if (! elf_shstrtab (abfd)) {
|
||
i_ehdrp = elf_elfheader (abfd); /* build new header in tdata memory */
|
||
shstrtab = bfd_new_strtab(abfd);
|
||
|
||
i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
|
||
i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
|
||
i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
|
||
i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
|
||
|
||
i_ehdrp->e_ident[EI_CLASS] = ELFCLASS32; /* FIXME: find out from bfd */
|
||
i_ehdrp->e_ident[EI_DATA] =
|
||
abfd->xvec->byteorder_big_p ? ELFDATA2MSB : ELFDATA2LSB;
|
||
i_ehdrp->e_ident[EI_VERSION] = EV_CURRENT;
|
||
|
||
for(count = EI_PAD; count < EI_NIDENT; count ++)
|
||
i_ehdrp->e_ident[count] = 0;
|
||
|
||
i_ehdrp->e_type = (abfd->flags & EXEC_P)? ET_EXEC : ET_REL;
|
||
switch(bfd_get_arch(abfd))
|
||
{
|
||
case bfd_arch_unknown:
|
||
i_ehdrp->e_machine = EM_NONE;
|
||
break;
|
||
case bfd_arch_sparc:
|
||
i_ehdrp->e_machine = EM_SPARC;
|
||
break;
|
||
case bfd_arch_i386:
|
||
i_ehdrp->e_machine = EM_386;
|
||
break;
|
||
case bfd_arch_m68k:
|
||
i_ehdrp->e_machine = EM_68K;
|
||
break;
|
||
case bfd_arch_m88k:
|
||
i_ehdrp->e_machine = EM_88K;
|
||
break;
|
||
case bfd_arch_i860:
|
||
i_ehdrp->e_machine = EM_860;
|
||
break;
|
||
case bfd_arch_mips: /* MIPS Rxxxx */
|
||
i_ehdrp->e_machine = EM_MIPS; /* only MIPS R3000 */
|
||
break;
|
||
/* also note that EM_M32, AT&T WE32100 is unknown to bfd */
|
||
default:
|
||
i_ehdrp->e_machine = EM_NONE;
|
||
}
|
||
i_ehdrp->e_version = EV_CURRENT;
|
||
i_ehdrp->e_ehsize = sizeof(Elf_External_Ehdr);
|
||
|
||
/* no program header, for now. */
|
||
i_ehdrp->e_phoff = 0;
|
||
i_ehdrp->e_phentsize = 0;
|
||
i_ehdrp->e_phnum = 0;
|
||
|
||
/* each bfd section is section header entry */
|
||
i_ehdrp->e_entry = bfd_get_start_address (abfd);
|
||
i_ehdrp->e_shentsize = sizeof (Elf_External_Shdr);
|
||
|
||
/* figure at most each section can have a rel, strtab, symtab */
|
||
maxsections = 4*bfd_count_sections(abfd)+2;
|
||
|
||
i_ehdrp->e_shoff = i_ehdrp->e_ehsize;
|
||
|
||
/* and we'll just have to fix up the offsets later. */
|
||
/* outbase += i_ehdr.e_shentsize * i_ehdr.e_shnum; */
|
||
|
||
i_shdrp = (Elf_Internal_Shdr *)
|
||
bfd_alloc (abfd, sizeof (*i_shdrp) * maxsections);
|
||
if (! i_shdrp)
|
||
{
|
||
bfd_error = no_memory;
|
||
return (false);
|
||
}
|
||
for (count=0; count < maxsections; count++)
|
||
{
|
||
i_shdrp[count].rawdata = 0;
|
||
i_shdrp[count].contents = 0;
|
||
}
|
||
|
||
|
||
i_shdrp[0].sh_name = 0;
|
||
i_shdrp[0].sh_type = SHT_NULL;
|
||
i_shdrp[0].sh_flags = 0;
|
||
i_shdrp[0].sh_addr = 0;
|
||
i_shdrp[0].sh_offset = 0;
|
||
i_shdrp[0].sh_size = 0;
|
||
i_shdrp[0].sh_link = SHN_UNDEF;
|
||
i_shdrp[0].sh_info = 0;
|
||
i_shdrp[0].sh_addralign = 0;
|
||
i_shdrp[0].sh_entsize = 0;
|
||
|
||
i_ehdrp->e_shnum = 1;
|
||
|
||
elf_elfsections (abfd) = i_shdrp;
|
||
elf_shstrtab (abfd) = shstrtab;
|
||
}
|
||
est.i_ehdr = elf_elfheader(abfd);
|
||
est.i_shdrp = elf_elfsections(abfd);
|
||
est.shstrtab = elf_shstrtab(abfd);
|
||
est.symtab_section = 0; /* elf_fake_sections fils it in */
|
||
|
||
bfd_map_over_sections(abfd, elf_fake_sections, &est);
|
||
elf_onesymtab (abfd) = est.symtab_section;
|
||
return (true);
|
||
}
|
||
|
||
static boolean
|
||
DEFUN (elf_write_object_contents, (abfd), bfd *abfd)
|
||
{
|
||
Elf_External_Ehdr x_ehdr; /* Elf file header, external form */
|
||
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
|
||
Elf_External_Phdr *x_phdrp; /* Program header table, external form */
|
||
Elf_Internal_Phdr *i_phdrp; /* Program header table, internal form */
|
||
Elf_External_Shdr *x_shdrp; /* Section header table, external form */
|
||
Elf_Internal_Shdr *i_shdrp; /* Section header table, internal form */
|
||
asection *nsect;
|
||
int maxsections;
|
||
elf_sect_thunk est;
|
||
|
||
int outbase = 0;
|
||
int count;
|
||
struct strtab *shstrtab;
|
||
|
||
if(abfd->output_has_begun == false)
|
||
elf_compute_section_file_positions(abfd);
|
||
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
i_shdrp = elf_elfsections (abfd);
|
||
shstrtab = elf_shstrtab (abfd);
|
||
|
||
est.i_ehdr = i_ehdrp;
|
||
est.i_shdrp = i_shdrp;
|
||
est.shstrtab = shstrtab;
|
||
est.symtab_section = elf_onesymtab (abfd); /* filled in by elf_fake */
|
||
|
||
bfd_map_over_sections(abfd, elf_make_sections, &est);
|
||
|
||
/* dump out the one symtab */
|
||
{
|
||
int symcount = bfd_get_symcount (abfd);
|
||
asymbol ** syms = bfd_get_outsymbols (abfd);
|
||
struct strtab * stt = bfd_new_strtab (abfd);
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Shdr *symstrtab_hdr;
|
||
int symstrtab_section;
|
||
Elf_External_Sym *outbound_syms;
|
||
int idx;
|
||
|
||
symtab_hdr = &i_shdrp[est.symtab_section];
|
||
symtab_hdr->sh_type = SHT_SYMTAB;
|
||
symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
|
||
symtab_hdr->sh_size = symtab_hdr->sh_entsize * symcount;
|
||
|
||
/* see assert in elf_fake_sections that supports this: */
|
||
symstrtab_section = est.symtab_section+1;
|
||
symstrtab_hdr = &i_shdrp[symstrtab_section];
|
||
symtab_hdr->sh_link = symstrtab_section;
|
||
symstrtab_hdr->sh_type = SHT_STRTAB;
|
||
|
||
outbound_syms = (Elf_External_Sym*)
|
||
bfd_alloc(abfd, (1+symcount) * sizeof(Elf_External_Sym));
|
||
/* now generate the data (for "contents") */
|
||
for (idx = 0; idx < symcount; idx++)
|
||
{
|
||
Elf_Internal_Sym sym;
|
||
sym.st_name = bfd_add_to_strtab (abfd, stt, syms[idx]->name);
|
||
sym.st_value = syms[idx]->value;
|
||
sym.st_size = 0; /* we should recover this (FIXME) */
|
||
if (syms[idx]->flags & BSF_WEAK)
|
||
sym.st_info = ELF_ST_INFO(STB_WEAK, STT_OBJECT);
|
||
else if (syms[idx]->flags & BSF_LOCAL)
|
||
sym.st_info = ELF_ST_INFO(STB_LOCAL, STT_OBJECT);
|
||
else if (syms[idx]->flags & BSF_GLOBAL)
|
||
sym.st_info = ELF_ST_INFO(STB_GLOBAL, STT_OBJECT);
|
||
else if (syms[idx]->flags & BSF_SECTION_SYM)
|
||
sym.st_info = ELF_ST_INFO(STB_LOCAL, STT_SECTION);
|
||
else if (syms[idx]->flags & BSF_FILE)
|
||
sym.st_info = ELF_ST_INFO(STB_LOCAL, STT_FILE);
|
||
|
||
sym.st_other = 0;
|
||
if (syms[idx]->section)
|
||
sym.st_shndx =
|
||
elf_section_from_bfd_section(abfd,
|
||
syms[idx]->section->output_section);
|
||
else
|
||
sym.st_shndx = SHN_UNDEF;
|
||
|
||
elf_swap_symbol_out (abfd, &sym, outbound_syms+idx+1);
|
||
}
|
||
{
|
||
/* fill in 0th symbol */
|
||
Elf_Internal_Sym sym;
|
||
sym.st_name = 0;
|
||
sym.st_value = 0;
|
||
sym.st_size = 0;
|
||
sym.st_info = 0;
|
||
sym.st_other = 0;
|
||
sym.st_shndx = SHN_UNDEF;
|
||
elf_swap_symbol_out (abfd, &sym, outbound_syms);
|
||
}
|
||
symtab_hdr->contents = (void*)outbound_syms;
|
||
symstrtab_hdr->contents = (void*)stt->tab;
|
||
symstrtab_hdr->sh_size = stt->length;
|
||
}
|
||
|
||
/* put the strtab out too... */
|
||
{
|
||
Elf_Internal_Shdr *this_hdr;
|
||
int this_section;
|
||
|
||
this_section = i_ehdrp->e_shnum++;
|
||
i_ehdrp->e_shstrndx = this_section;
|
||
this_hdr = &i_shdrp[this_section];
|
||
this_hdr->sh_name = bfd_add_to_strtab (abfd, shstrtab, ".shstrtab");
|
||
this_hdr->sh_size = shstrtab->length;
|
||
this_hdr->contents = (void*)shstrtab->tab;
|
||
}
|
||
|
||
outbase = i_ehdrp->e_ehsize;
|
||
|
||
/* swap the header before spitting it out... */
|
||
elf_swap_ehdr_out (abfd, i_ehdrp, &x_ehdr);
|
||
bfd_seek (abfd, (file_ptr) 0, SEEK_SET);
|
||
bfd_write ((PTR) &x_ehdr, sizeof(x_ehdr), 1, abfd);
|
||
|
||
outbase += i_ehdrp->e_shentsize * i_ehdrp->e_shnum;
|
||
|
||
/* now we fix up the offsets... */
|
||
for (count = 0; count < i_ehdrp->e_shnum; count ++)
|
||
{
|
||
i_shdrp[count].sh_offset = outbase;
|
||
outbase += i_shdrp[count].sh_size;
|
||
}
|
||
|
||
/* at this point we've concocted all the ELF sections... */
|
||
x_shdrp = (Elf_External_Shdr *)
|
||
bfd_alloc (abfd, sizeof (*x_shdrp) * (i_ehdrp->e_shnum));
|
||
if (! x_shdrp)
|
||
{
|
||
bfd_error = no_memory;
|
||
return (false);
|
||
}
|
||
|
||
for (count = 0; count < i_ehdrp->e_shnum; count ++)
|
||
{
|
||
elf_swap_shdr_out (abfd, i_shdrp+count, x_shdrp+count);
|
||
}
|
||
bfd_write ((PTR) x_shdrp, sizeof(*x_shdrp), i_ehdrp->e_shnum, abfd);
|
||
/* need to dump the string table too... */
|
||
|
||
/* after writing the headers, we need to write the sections too... */
|
||
nsect = abfd->sections;
|
||
for (count = 0; count < i_ehdrp->e_shnum; count ++)
|
||
{
|
||
if(i_shdrp[count].contents)
|
||
{
|
||
bfd_seek (abfd, i_shdrp[count].sh_offset, SEEK_SET);
|
||
bfd_write (i_shdrp[count].contents, i_shdrp[count].sh_size, 1, abfd);
|
||
}
|
||
}
|
||
|
||
/* sample use of bfd:
|
||
* bfd_seek (abfd, (file_ptr) 0, SEEK_SET);
|
||
* bfd_write ((PTR) &exec_bytes, 1, EXEC_BYTES_SIZE, abfd);
|
||
* if (bfd_seek(abfd, scn_base, SEEK_SET) != 0)
|
||
* return false;
|
||
* old = bfd_tell(abfd);
|
||
*/
|
||
|
||
return true;
|
||
|
||
}
|
||
|
||
/* Given an index of a section, retrieve a pointer to it. Note
|
||
that for our purposes, sections are indexed by {1, 2, ...} with
|
||
0 being an illegal index. */
|
||
|
||
/* In the original, each ELF section went into exactly one BFD
|
||
section. This doesn't really make sense, so we need a real mapping.
|
||
The mapping has to hide in the Elf_Internal_Shdr since asection
|
||
doesn't have anything like a tdata field... */
|
||
|
||
static struct sec *
|
||
DEFUN (section_from_elf_index, (abfd, index),
|
||
bfd *abfd AND
|
||
int index)
|
||
{
|
||
Elf_Internal_Shdr *i_shdrp = elf_elfsections (abfd);
|
||
Elf_Internal_Shdr *hdr = i_shdrp + index;
|
||
|
||
switch (hdr->sh_type)
|
||
{
|
||
/* ELF sections that map to BFD sections */
|
||
case SHT_PROGBITS:
|
||
case SHT_NOBITS:
|
||
if (! hdr->rawdata)
|
||
bfd_section_from_shdr (abfd, index);
|
||
return (struct sec *)hdr->rawdata;
|
||
break;
|
||
default:
|
||
return (struct sec *)&bfd_abs_section;
|
||
}
|
||
}
|
||
|
||
/* given a section, search the header to find them... */
|
||
static int
|
||
DEFUN (elf_section_from_bfd_section, (abfd, asect),
|
||
bfd *abfd AND
|
||
struct sec *asect)
|
||
{
|
||
Elf_Internal_Shdr *i_shdrp = elf_elfsections (abfd);
|
||
int index;
|
||
Elf_Internal_Shdr *hdr;
|
||
int maxindex = elf_elfheader (abfd)->e_shnum;
|
||
|
||
for(index = 0; index < maxindex; index++) {
|
||
hdr = &i_shdrp[index];
|
||
switch (hdr->sh_type)
|
||
{
|
||
/* ELF sections that map to BFD sections */
|
||
case SHT_PROGBITS:
|
||
case SHT_NOBITS:
|
||
if (hdr->rawdata)
|
||
{
|
||
if (((struct sec *)(hdr->rawdata)) == asect)
|
||
return index;
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static boolean
|
||
DEFUN (elf_slurp_symbol_table, (abfd, symptrs),
|
||
bfd *abfd AND
|
||
asymbol **symptrs) /* Buffer for generated bfd symbols */
|
||
{
|
||
Elf_Internal_Shdr *i_shdrp = elf_elfsections (abfd);
|
||
Elf_Internal_Shdr *hdr = i_shdrp + elf_onesymtab (abfd);
|
||
int symcount; /* Number of external ELF symbols */
|
||
int i;
|
||
asymbol *sym; /* Pointer to current bfd symbol */
|
||
asymbol *symbase; /* Buffer for generated bfd symbols */
|
||
Elf_Internal_Sym i_sym;
|
||
Elf_External_Sym *x_symp;
|
||
|
||
/* this is only valid because there is only one symtab... */
|
||
/* FIXME: This is incorrect, there may also be a dynamic symbol
|
||
table which is a subset of the full symbol table. We either need
|
||
to be prepared to read both (and merge them) or ensure that we
|
||
only read the full symbol table. Currently we only get called to
|
||
read the full symbol table. -fnf */
|
||
if (bfd_get_outsymbols (abfd) != NULL)
|
||
{
|
||
return (true);
|
||
}
|
||
|
||
/* Read each raw ELF symbol, converting from external ELF form to
|
||
internal ELF form, and then using the information to create a
|
||
canonical bfd symbol table entry.
|
||
|
||
Note that we allocate the initial bfd canonical symbol buffer
|
||
based on a one-to-one mapping of the ELF symbols to canonical
|
||
symbols. We actually use all the ELF symbols, so there will be no
|
||
space left over at the end. When we have all the symbols, we
|
||
build the caller's pointer vector. */
|
||
|
||
if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) == -1)
|
||
{
|
||
bfd_error = system_call_error;
|
||
return (false);
|
||
}
|
||
|
||
symcount = hdr->sh_size / sizeof (Elf_External_Sym);
|
||
symbase = (asymbol *) bfd_zalloc (abfd, symcount * sizeof (asymbol));
|
||
sym = symbase;
|
||
|
||
/* Temporarily allocate room for the raw ELF symbols. */
|
||
x_symp = (Elf_External_Sym *) malloc (symcount * sizeof (Elf_External_Sym));
|
||
|
||
if (bfd_read ((PTR) x_symp, sizeof (Elf_External_Sym), symcount, abfd)
|
||
!= symcount * sizeof (Elf_External_Sym))
|
||
{
|
||
free ((PTR)x_symp);
|
||
bfd_error = system_call_error;
|
||
return (false);
|
||
}
|
||
/* Skip first symbol, which is a null dummy. */
|
||
for (i = 1; i < symcount; i++)
|
||
{
|
||
elf_swap_symbol_in (abfd, x_symp + i, &i_sym);
|
||
sym -> the_bfd = abfd;
|
||
if (i_sym.st_name > 0)
|
||
sym -> name = elf_string_from_elf_section(abfd, hdr->sh_link,
|
||
i_sym.st_name);
|
||
else
|
||
sym -> name = "unnamed"; /* perhaps should include the number? */
|
||
sym -> value = i_sym.st_value;
|
||
/* FIXME -- this is almost certainly bogus. It's from Pace Willisson's
|
||
hasty Solaris support, to pass the sizes of object files or functions
|
||
down into GDB via the back door, to circumvent some other kludge in
|
||
how Sun hacked stabs. -- gnu@cygnus.com */
|
||
sym -> udata = (PTR)i_sym.st_size;
|
||
/* FIXME -- end of bogosity. */
|
||
if (i_sym.st_shndx > 0 && i_sym.st_shndx < SHN_LORESERV)
|
||
{
|
||
sym -> section = section_from_elf_index (abfd, i_sym.st_shndx);
|
||
}
|
||
else if (i_sym.st_shndx == SHN_ABS)
|
||
{
|
||
sym -> section = &bfd_abs_section;
|
||
}
|
||
else if (i_sym.st_shndx == SHN_COMMON)
|
||
{
|
||
sym -> section = &bfd_com_section;
|
||
}
|
||
else if (i_sym.st_shndx == SHN_UNDEF)
|
||
{
|
||
sym -> section = &bfd_und_section;
|
||
}
|
||
else
|
||
sym -> section = &bfd_abs_section;
|
||
|
||
switch (ELF_ST_BIND (i_sym.st_info))
|
||
{
|
||
case STB_LOCAL:
|
||
sym -> flags |= BSF_LOCAL;
|
||
break;
|
||
case STB_GLOBAL:
|
||
sym -> flags |= (BSF_GLOBAL | BSF_EXPORT);
|
||
break;
|
||
case STB_WEAK:
|
||
sym -> flags |= BSF_WEAK;
|
||
break;
|
||
}
|
||
|
||
switch (ELF_ST_TYPE (i_sym.st_info))
|
||
{
|
||
case STT_SECTION:
|
||
sym->flags |= BSF_SECTION_SYM | BSF_DEBUGGING;
|
||
break;
|
||
case STT_FILE:
|
||
sym->flags |= BSF_FILE | BSF_DEBUGGING;
|
||
break;
|
||
}
|
||
sym++;
|
||
}
|
||
|
||
/* We rely on the zalloc to clear out the final symbol entry. */
|
||
|
||
/* We're now done with the raw symbols. */
|
||
free ((PTR)x_symp);
|
||
|
||
bfd_get_symcount(abfd) = symcount = sym - symbase;
|
||
|
||
/* Fill in the user's symbol pointer vector if needed. */
|
||
if (symptrs)
|
||
{
|
||
sym = symbase;
|
||
while (symcount-- > 0)
|
||
{
|
||
*symptrs++ = sym++;
|
||
}
|
||
*symptrs = 0; /* Final null pointer */
|
||
}
|
||
|
||
return (true);
|
||
}
|
||
|
||
/* Return the number of bytes required to hold the symtab vector.
|
||
|
||
Note that we base it on the count plus 1, since we will null terminate
|
||
the vector allocated based on this size. However, the ELF symbol table
|
||
always has a dummy entry as symbol #0, so it ends up even. */
|
||
|
||
static unsigned int
|
||
DEFUN (elf_get_symtab_upper_bound, (abfd), bfd *abfd)
|
||
{
|
||
unsigned int symcount;
|
||
unsigned int symtab_size = 0;
|
||
Elf_Internal_Shdr *i_shdrp;
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
i_shdrp = elf_elfsections (abfd);
|
||
if (i_shdrp != NULL)
|
||
{
|
||
hdr = i_shdrp + elf_onesymtab (abfd);
|
||
symcount = hdr->sh_size / sizeof (Elf_External_Sym);
|
||
symtab_size = (symcount - 1 + 1) * (sizeof (asymbol));
|
||
}
|
||
return (symtab_size);
|
||
}
|
||
|
||
/*
|
||
This function return the number of bytes required to store the
|
||
relocation information associated with section <<sect>>
|
||
attached to bfd <<abfd>>
|
||
|
||
*/
|
||
static unsigned int
|
||
elf_get_reloc_upper_bound (abfd, asect)
|
||
bfd *abfd;
|
||
sec_ptr asect;
|
||
{
|
||
if (asect->flags & SEC_RELOC)
|
||
{
|
||
/* either rel or rela */
|
||
return asect->_raw_size;
|
||
}
|
||
else
|
||
return (0);
|
||
}
|
||
|
||
/* FIXME!!! sparc howto should go into elf-32-sparc.c */
|
||
#ifdef sparc
|
||
enum reloc_type
|
||
{
|
||
R_SPARC_NONE = 0,
|
||
R_SPARC_8, R_SPARC_16, R_SPARC_32,
|
||
R_SPARC_DISP8, R_SPARC_DISP16, R_SPARC_DISP32,
|
||
R_SPARC_WDISP30, R_SPARC_WDISP22,
|
||
R_SPARC_HI22, R_SPARC_22,
|
||
R_SPARC_13, R_SPARC_LO10,
|
||
R_SPARC_GOT10, R_SPARC_GOT13, R_SPARC_GOT22,
|
||
R_SPARC_PC10, R_SPARC_PC22,
|
||
R_SPARC_WPLT30,
|
||
R_SPARC_COPY,
|
||
R_SPARC_GLOB_DAT, R_SPARC_JMP_SLOT,
|
||
R_SPARC_RELATIVE,
|
||
R_SPARC_UA32,
|
||
};
|
||
|
||
#define RELOC_TYPE_NAMES \
|
||
"R_SPARC_NONE", \
|
||
"R_SPARC_8", "R_SPARC_16", "R_SPARC_32", \
|
||
"R_SPARC_DISP8", "R_SPARC_DISP16", "R_SPARC_DISP32", \
|
||
"R_SPARC_WDISP30", "R_SPARC_WDISP22", \
|
||
"R_SPARC_HI22", "R_SPARC_22", \
|
||
"R_SPARC_13", "R_SPARC_LO10", \
|
||
"R_SPARC_GOT10", "R_SPARC_GOT13", "R_SPARC_GOT22", \
|
||
"R_SPARC_PC10", "R_SPARC_PC22", \
|
||
"R_SPARC_WPLT30", \
|
||
"R_SPARC_COPY", \
|
||
"R_SPARC_GLOB_DAT", "R_SPARC_JMP_SLOT", \
|
||
"R_SPARC_RELATIVE", \
|
||
"R_SPARC_UA32"
|
||
|
||
static reloc_howto_type elf_howto_table[] =
|
||
{
|
||
HOWTO(R_SPARC_NONE, 0,0, 0,false,0,false,false, 0,"R_SPARC_NONE", false,0,0x00000000,false),
|
||
HOWTO(R_SPARC_8, 0,0, 8,false,0,true, true, 0,"R_SPARC_8", false,0,0x000000ff,false),
|
||
HOWTO(R_SPARC_16, 0,1,16,false,0,true, true, 0,"R_SPARC_16", false,0,0x0000ffff,false),
|
||
HOWTO(R_SPARC_32, 0,2,32,false,0,true, true, 0,"R_SPARC_32", false,0,0xffffffff,false),
|
||
HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,false, true, 0,"R_SPARC_DISP8", false,0,0x000000ff,false),
|
||
HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,false, true, 0,"R_SPARC_DISP16", false,0,0x0000ffff,false),
|
||
HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,false, true, 0,"R_SPARC_DISP32", false,0,0x00ffffff,false),
|
||
HOWTO(R_SPARC_WDISP30,2,2,30,true, 0,false, true, 0,"R_SPARC_WDISP30",false,0,0x3fffffff,false),
|
||
HOWTO(R_SPARC_WDISP22,2,2,22,true, 0,false, true, 0,"R_SPARC_WDISP22",false,0,0x003fffff,false),
|
||
HOWTO(R_SPARC_HI22, 10,2,22,false,0,true, false, 0,"R_SPARC_HI22", false,0,0x003fffff,false),
|
||
HOWTO(R_SPARC_22, 0,2,22,false,0,true, true, 0,"R_SPARC_22", false,0,0x003fffff,false),
|
||
HOWTO(R_SPARC_13, 0,1,13,false,0,true, true, 0,"R_SPARC_13", false,0,0x00001fff,false),
|
||
HOWTO(R_SPARC_LO10, 0,1,10,false,0,true, false, 0,"R_SPARC_LO10", false,0,0x000003ff,false),
|
||
HOWTO(R_SPARC_GOT10, 0,1,10,false,0,false, true, 0,"R_SPARC_GOT10", false,0,0x000003ff,false),
|
||
HOWTO(R_SPARC_GOT13, 0,1,13,false,0,false, true, 0,"R_SPARC_GOT13", false,0,0x00001fff,false),
|
||
HOWTO(R_SPARC_GOT22, 10,2,22,false,0,false, true, 0,"R_SPARC_GOT22", false,0,0x003fffff,false),
|
||
HOWTO(R_SPARC_PC10, 0,1,10,false,0,true, true, 0,"R_SPARC_PC10", false,0,0x000003ff,false),
|
||
HOWTO(R_SPARC_PC22, 0,2,22,false,0,true, true, 0,"R_SPARC_PC22", false,0,0x003fffff,false),
|
||
HOWTO(R_SPARC_WPLT30, 0,0,00,false,0,false,false, 0,"R_SPARC_WPLT30", false,0,0x00000000,false),
|
||
HOWTO(R_SPARC_COPY, 0,0,00,false,0,false,false, 0,"R_SPARC_COPY", false,0,0x00000000,false),
|
||
HOWTO(R_SPARC_GLOB_DAT,0,0,00,false,0,false,false,0,"R_SPARC_GLOB_DAT",false,0,0x00000000,false),
|
||
HOWTO(R_SPARC_JMP_SLOT,0,0,00,false,0,false,false,0,"R_SPARC_JMP_SLOT",false,0,0x00000000,false),
|
||
HOWTO(R_SPARC_RELATIVE,0,0,00,false,0,false,false,0,"R_SPARC_RELATIVE",false,0,0x00000000,false),
|
||
HOWTO(R_SPARC_UA32, 0,0,00,false,0,false,false,0,"R_SPARC_UA32", false,0,0x00000000,false),
|
||
};
|
||
#endif
|
||
|
||
static void
|
||
DEFUN(elf_info_to_howto, (abfd, cache_ptr, dst),
|
||
bfd *abfd AND
|
||
arelent *cache_ptr AND
|
||
Elf_Internal_Rela *dst)
|
||
{
|
||
/* FIXME!!! just doing sparc for now... */
|
||
#ifdef sparc
|
||
BFD_ASSERT (ELF_R_TYPE(dst->r_info) < 24);
|
||
|
||
cache_ptr->howto = &elf_howto_table[ELF_R_TYPE(dst->r_info)];
|
||
#else
|
||
fprintf (stderr, "elf_info_to_howto not implemented\n");
|
||
abort ();
|
||
#endif
|
||
}
|
||
|
||
static boolean
|
||
DEFUN(elf_slurp_reloca_table,(abfd, asect, symbols),
|
||
bfd *abfd AND
|
||
sec_ptr asect AND
|
||
asymbol **symbols)
|
||
{
|
||
Elf_External_Rela *native_relocs;
|
||
arelent *reloc_cache;
|
||
arelent *cache_ptr;
|
||
|
||
unsigned int idx;
|
||
|
||
if (asect->relocation)
|
||
return true;
|
||
if (asect->reloc_count == 0)
|
||
return true;
|
||
if (asect->flags & SEC_CONSTRUCTOR)
|
||
return true;
|
||
|
||
bfd_seek (abfd, asect->rel_filepos, SEEK_SET);
|
||
native_relocs = (Elf_External_Rela *)
|
||
bfd_alloc(abfd, asect->reloc_count * sizeof(Elf_External_Rela));
|
||
bfd_read ((PTR) native_relocs,
|
||
sizeof(Elf_External_Rela), asect->reloc_count, abfd);
|
||
|
||
reloc_cache = (arelent *)
|
||
bfd_alloc(abfd, (size_t) (asect->reloc_count * sizeof(arelent)));
|
||
|
||
if (! reloc_cache) {
|
||
bfd_error = no_memory;
|
||
return false;
|
||
}
|
||
|
||
for (idx = 0; idx < asect->reloc_count; idx ++)
|
||
{
|
||
#ifdef RELOC_PROCESSING
|
||
/* sparc, 68k, 88k, 860 use rela only. */
|
||
/* 386 and we32000 use rel only... fix it for them later. */
|
||
Elf_Internal_Rela dst;
|
||
Elf_External_Rela *src;
|
||
|
||
cache_ptr = reloc_cache + idx;
|
||
src = native_relocs + idx;
|
||
elf_swap_reloca_in(abfd, src, &dst);
|
||
|
||
RELOC_PROCESSING(cache_ptr, &dst, symbols, abfd, asect);
|
||
#else
|
||
Elf_Internal_Rela dst;
|
||
Elf_External_Rela *src;
|
||
|
||
cache_ptr = reloc_cache + idx;
|
||
src = native_relocs + idx;
|
||
|
||
elf_swap_reloca_in(abfd, src, &dst);
|
||
|
||
if(asect->flags & SEC_RELOC)
|
||
{
|
||
/* relocatable, so the offset is off of the section */
|
||
cache_ptr->address = dst.r_offset + asect->vma;
|
||
}
|
||
else
|
||
{
|
||
/* non-relocatable, so the offset a virtual address */
|
||
cache_ptr->address = dst.r_offset;
|
||
}
|
||
/* ELF_R_SYM(dst.r_info) is the symbol table offset... */
|
||
cache_ptr->sym_ptr_ptr = symbols + ELF_R_SYM(dst.r_info);
|
||
cache_ptr->addend = dst.r_addend;
|
||
|
||
/* Fill in the cache_ptr->howto field from dst.r_type */
|
||
elf_info_to_howto(abfd, cache_ptr, &dst);
|
||
#endif
|
||
}
|
||
|
||
asect->relocation = reloc_cache;
|
||
return true;
|
||
}
|
||
|
||
|
||
static unsigned int
|
||
elf_canonicalize_reloc (abfd, section, relptr, symbols)
|
||
bfd *abfd;
|
||
sec_ptr section;
|
||
arelent **relptr;
|
||
asymbol **symbols;
|
||
{
|
||
arelent *tblptr = section->relocation;
|
||
unsigned int count = 0;
|
||
|
||
/* snarfed from coffcode.h */
|
||
/* FIXME: this could be reloc... */
|
||
elf_slurp_reloca_table(abfd, section, symbols);
|
||
|
||
tblptr = section->relocation;
|
||
if (!tblptr)
|
||
return 0;
|
||
|
||
for (; count++ < section->reloc_count;)
|
||
*relptr++ = tblptr++;
|
||
|
||
*relptr = 0;
|
||
return section->reloc_count;
|
||
}
|
||
|
||
static unsigned int
|
||
DEFUN (elf_get_symtab, (abfd, alocation),
|
||
bfd *abfd AND
|
||
asymbol **alocation)
|
||
{
|
||
|
||
if (!elf_slurp_symbol_table (abfd, alocation))
|
||
return (0);
|
||
else
|
||
return (bfd_get_symcount (abfd));
|
||
}
|
||
|
||
static asymbol *
|
||
DEFUN (elf_make_empty_symbol, (abfd),
|
||
bfd *abfd)
|
||
{
|
||
elf_symbol_type *newsym;
|
||
|
||
newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (elf_symbol_type));
|
||
if (! newsym)
|
||
{
|
||
bfd_error = no_memory;
|
||
return (NULL);
|
||
}
|
||
else
|
||
{
|
||
newsym -> symbol.the_bfd = abfd;
|
||
return (&newsym -> symbol);
|
||
}
|
||
}
|
||
|
||
static void
|
||
DEFUN (elf_print_symbol,(ignore_abfd, filep, symbol, how),
|
||
bfd *ignore_abfd AND
|
||
PTR filep AND
|
||
asymbol *symbol AND
|
||
bfd_print_symbol_type how)
|
||
{
|
||
FILE *file = (FILE *)filep;
|
||
switch (how)
|
||
{
|
||
case bfd_print_symbol_name:
|
||
fprintf(file, "%s", symbol->name);
|
||
break;
|
||
case bfd_print_symbol_more:
|
||
fprintf(file, "elf %lx %lx",
|
||
symbol->value,
|
||
symbol->flags);
|
||
break;
|
||
case bfd_print_symbol_nm:
|
||
case bfd_print_symbol_all:
|
||
{
|
||
CONST char *section_name;
|
||
section_name = symbol->section? symbol->section->name : "(*none*)";
|
||
bfd_print_symbol_vandf((PTR) file, symbol);
|
||
fprintf(file, " %s\t%s",
|
||
section_name,
|
||
symbol->name);
|
||
}
|
||
break;
|
||
}
|
||
|
||
}
|
||
|
||
static alent *
|
||
DEFUN (elf_get_lineno,(ignore_abfd, symbol),
|
||
bfd *ignore_abfd AND
|
||
asymbol *symbol)
|
||
{
|
||
fprintf (stderr, "elf_get_lineno unimplemented\n");
|
||
fflush (stderr);
|
||
abort ();
|
||
return (NULL);
|
||
}
|
||
|
||
static boolean
|
||
DEFUN (elf_set_arch_mach,(abfd, arch, machine),
|
||
bfd *abfd AND
|
||
enum bfd_architecture arch AND
|
||
unsigned long machine)
|
||
{
|
||
/* Allow any architecture to be supported by the elf backend */
|
||
switch(arch)
|
||
{
|
||
case bfd_arch_unknown: /* EM_NONE */
|
||
case bfd_arch_sparc: /* EM_SPARC */
|
||
case bfd_arch_i386: /* EM_386 */
|
||
case bfd_arch_m68k: /* EM_68K */
|
||
case bfd_arch_m88k: /* EM_88K */
|
||
case bfd_arch_i860: /* EM_860 */
|
||
case bfd_arch_mips: /* EM_MIPS (MIPS R3000) */
|
||
return bfd_default_set_arch_mach(abfd, arch, machine);
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
static boolean
|
||
DEFUN (elf_find_nearest_line,(abfd,
|
||
section,
|
||
symbols,
|
||
offset,
|
||
filename_ptr,
|
||
functionname_ptr,
|
||
line_ptr),
|
||
bfd *abfd AND
|
||
asection *section AND
|
||
asymbol **symbols AND
|
||
bfd_vma offset AND
|
||
CONST char **filename_ptr AND
|
||
CONST char **functionname_ptr AND
|
||
unsigned int *line_ptr)
|
||
{
|
||
fprintf (stderr, "elf_find_nearest_line unimplemented\n");
|
||
fflush (stderr);
|
||
abort ();
|
||
return (false);
|
||
}
|
||
|
||
static int
|
||
DEFUN (elf_sizeof_headers, (abfd, reloc),
|
||
bfd *abfd AND
|
||
boolean reloc)
|
||
{
|
||
fprintf (stderr, "elf_sizeof_headers unimplemented\n");
|
||
fflush (stderr);
|
||
abort ();
|
||
return (0);
|
||
}
|
||
|
||
boolean
|
||
DEFUN(elf_set_section_contents, (abfd, section, location, offset, count),
|
||
bfd *abfd AND
|
||
sec_ptr section AND
|
||
PTR location AND
|
||
file_ptr offset AND
|
||
bfd_size_type count)
|
||
{
|
||
int dest_sect;
|
||
void *contents;
|
||
if (abfd->output_has_begun == false) /* set by bfd.c handler? */
|
||
{
|
||
/* do setup calculations (FIXME) */
|
||
elf_compute_section_file_positions(abfd);
|
||
}
|
||
#if 0
|
||
if(bfd_seek (abfd, (file_ptr)section->filepos + offset, SEEK_SET) == -1)
|
||
return false;
|
||
if(bfd_write (location, (bfd_size_type)1, count, abfd) != count)
|
||
return false;
|
||
#endif
|
||
/* we really just need to save the contents away... */
|
||
dest_sect = elf_section_from_bfd_section(abfd, section);
|
||
if(!dest_sect)
|
||
return false;
|
||
|
||
/* FIXME: allocate in set_section_size, then copy in here... */
|
||
contents = (void*)bfd_alloc(abfd, count);
|
||
BFD_ASSERT(contents);
|
||
memcpy(contents, location, count);
|
||
elf_elfsections (abfd)[dest_sect].contents = contents;
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* This structure contains everything that BFD knows about a target.
|
||
It includes things like its byte order, name, what routines to call
|
||
to do various operations, etc. Every BFD points to a target structure
|
||
with its "xvec" member.
|
||
|
||
There are two such structures here: one for big-endian machines and
|
||
one for little-endian machines. */
|
||
|
||
/* Archives are generic or unimplemented. */
|
||
#define elf_slurp_armap bfd_slurp_coff_armap
|
||
#define elf_slurp_extended_name_table _bfd_slurp_extended_name_table
|
||
#define elf_truncate_arname bfd_dont_truncate_arname
|
||
#define elf_openr_next_archived_file bfd_generic_openr_next_archived_file
|
||
#define elf_generic_stat_arch_elt bfd_generic_stat_arch_elt
|
||
#define elf_write_armap coff_write_armap
|
||
|
||
/* Ordinary section reading and writing */
|
||
#define elf_new_section_hook _bfd_dummy_new_section_hook
|
||
#define elf_get_section_contents bfd_generic_get_section_contents
|
||
/* #define elf_set_section_contents bfd_generic_set_section_contents */
|
||
#define elf_close_and_cleanup bfd_generic_close_and_cleanup
|
||
|
||
#define elf_bfd_debug_info_start bfd_void
|
||
#define elf_bfd_debug_info_end bfd_void
|
||
#define elf_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
|
||
#define elf_bfd_get_relocated_section_contents \
|
||
bfd_generic_get_relocated_section_contents
|
||
#define elf_bfd_relax_section bfd_generic_relax_section
|
||
bfd_target elf_big_vec =
|
||
{
|
||
/* name: identify kind of target */
|
||
"elf-big",
|
||
|
||
/* flavour: general indication about file */
|
||
bfd_target_elf_flavour,
|
||
|
||
/* byteorder_big_p: data is big endian */
|
||
true,
|
||
|
||
/* header_byteorder_big_p: header is also big endian */
|
||
true,
|
||
|
||
/* object_flags: mask of all file flags */
|
||
(HAS_RELOC | EXEC_P | HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS |
|
||
DYNAMIC | WP_TEXT),
|
||
|
||
/* section_flags: mask of all section flags */
|
||
(SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_READONLY |
|
||
SEC_CODE | SEC_DATA),
|
||
|
||
/* leading_symbol_char: is the first char of a user symbol
|
||
predictable, and if so what is it */
|
||
0,
|
||
|
||
/* ar_pad_char: pad character for filenames within an archive header
|
||
FIXME: this really has nothing to do with ELF, this is a characteristic
|
||
of the archiver and/or os and should be independently tunable */
|
||
'/',
|
||
|
||
/* ar_max_namelen: maximum number of characters in an archive header
|
||
FIXME: this really has nothing to do with ELF, this is a characteristic
|
||
of the archiver and should be independently tunable. This value is
|
||
a WAG (wild a** guess) */
|
||
15,
|
||
|
||
/* align_power_min: minimum alignment restriction for any section
|
||
FIXME: this value may be target machine dependent */
|
||
3,
|
||
|
||
/* Routines to byte-swap various sized integers from the data sections */
|
||
_do_getb64, _do_putb64, _do_getb32, _do_putb32, _do_getb16, _do_putb16,
|
||
|
||
/* Routines to byte-swap various sized integers from the file headers */
|
||
_do_getb64, _do_putb64, _do_getb32, _do_putb32, _do_getb16, _do_putb16,
|
||
|
||
/* bfd_check_format: check the format of a file being read */
|
||
{ _bfd_dummy_target, /* unknown format */
|
||
elf_object_p, /* assembler/linker output (object file) */
|
||
bfd_generic_archive_p, /* an archive */
|
||
elf_core_file_p /* a core file */
|
||
},
|
||
|
||
/* bfd_set_format: set the format of a file being written */
|
||
{ bfd_false,
|
||
elf_mkobject,
|
||
_bfd_generic_mkarchive,
|
||
bfd_false
|
||
},
|
||
|
||
/* bfd_write_contents: write cached information into a file being written */
|
||
{ bfd_false,
|
||
elf_write_object_contents,
|
||
_bfd_write_archive_contents,
|
||
bfd_false
|
||
},
|
||
|
||
/* Initialize a jump table with the standard macro. All names start with
|
||
"elf" */
|
||
JUMP_TABLE(elf),
|
||
|
||
/* reloc_type_lookup: How applications can find out about amiga relocation
|
||
types (see documentation on reloc types). */
|
||
NULL,
|
||
|
||
/* _bfd_make_debug_symbol: Back-door to allow format aware applications to
|
||
create debug symbols while using BFD for everything else. */
|
||
NULL,
|
||
|
||
/* backend_data: */
|
||
NULL
|
||
};
|
||
|
||
bfd_target elf_little_vec =
|
||
{
|
||
/* name: identify kind of target */
|
||
"elf-little",
|
||
|
||
/* flavour: general indication about file */
|
||
bfd_target_elf_flavour,
|
||
|
||
/* byteorder_big_p: data is big endian */
|
||
false, /* Nope -- this one's little endian */
|
||
|
||
/* header_byteorder_big_p: header is also big endian */
|
||
false, /* Nope -- this one's little endian */
|
||
|
||
/* object_flags: mask of all file flags */
|
||
(HAS_RELOC | EXEC_P | HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS |
|
||
DYNAMIC | WP_TEXT),
|
||
|
||
/* section_flags: mask of all section flags */
|
||
(SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_READONLY |
|
||
SEC_DATA),
|
||
|
||
/* leading_symbol_char: is the first char of a user symbol
|
||
predictable, and if so what is it */
|
||
0,
|
||
|
||
/* ar_pad_char: pad character for filenames within an archive header
|
||
FIXME: this really has nothing to do with ELF, this is a characteristic
|
||
of the archiver and/or os and should be independently tunable */
|
||
'/',
|
||
|
||
/* ar_max_namelen: maximum number of characters in an archive header
|
||
FIXME: this really has nothing to do with ELF, this is a characteristic
|
||
of the archiver and should be independently tunable. This value is
|
||
a WAG (wild a** guess) */
|
||
15,
|
||
|
||
/* align_power_min: minimum alignment restriction for any section
|
||
FIXME: this value may be target machine dependent */
|
||
3,
|
||
|
||
/* Routines to byte-swap various sized integers from the data sections */
|
||
_do_getl64, _do_putl64, _do_getl32, _do_putl32, _do_getl16, _do_putl16,
|
||
|
||
/* Routines to byte-swap various sized integers from the file headers */
|
||
_do_getl64, _do_putl64, _do_getl32, _do_putl32, _do_getl16, _do_putl16,
|
||
|
||
/* bfd_check_format: check the format of a file being read */
|
||
{ _bfd_dummy_target, /* unknown format */
|
||
elf_object_p, /* assembler/linker output (object file) */
|
||
bfd_generic_archive_p, /* an archive */
|
||
elf_core_file_p /* a core file */
|
||
},
|
||
|
||
/* bfd_set_format: set the format of a file being written */
|
||
{ bfd_false,
|
||
elf_mkobject,
|
||
_bfd_generic_mkarchive,
|
||
bfd_false
|
||
},
|
||
|
||
/* bfd_write_contents: write cached information into a file being written */
|
||
{ bfd_false,
|
||
elf_write_object_contents,
|
||
_bfd_write_archive_contents,
|
||
bfd_false
|
||
},
|
||
|
||
/* Initialize a jump table with the standard macro. All names start with
|
||
"elf" */
|
||
JUMP_TABLE(elf),
|
||
|
||
/* reloc_type_lookup: How applications can find out about amiga relocation
|
||
types (see documentation on reloc types). */
|
||
NULL,
|
||
|
||
/* _bfd_make_debug_symbol: Back-door to allow format aware applications to
|
||
create debug symbols while using BFD for everything else. */
|
||
NULL,
|
||
|
||
/* backend_data: */
|
||
NULL
|
||
};
|