binutils-gdb/sim/d10v/interp.c
Mike Frysinger 27b97b40bc sim: arm/cr16/d10v/h8300/microblaze/sh: fill out sim-cpu pc fetch/store helpers
This makes the common sim-cpu logic work.
2015-04-17 02:22:16 -04:00

1417 lines
36 KiB
C

#include "config.h"
#include <inttypes.h>
#include <signal.h>
#include "bfd.h"
#include "gdb/callback.h"
#include "gdb/remote-sim.h"
#include "sim-main.h"
#include "sim-options.h"
#include "gdb/sim-d10v.h"
#include "gdb/signals.h"
#ifdef HAVE_STRING_H
#include <string.h>
#else
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif /* HAVE_STRING_H */
#endif /* HAVE_STRINGS_H */
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
enum _leftright { LEFT_FIRST, RIGHT_FIRST };
int d10v_debug;
/* Set this to true to get the previous segment layout. */
int old_segment_mapping;
host_callback *d10v_callback;
unsigned long ins_type_counters[ (int)INS_MAX ];
uint16 OP[4];
static long hash (long insn, int format);
static struct hash_entry *lookup_hash (uint32 ins, int size);
static void get_operands (struct simops *s, uint32 ins);
static void do_long (uint32 ins);
static void do_2_short (uint16 ins1, uint16 ins2, enum _leftright leftright);
static void do_parallel (uint16 ins1, uint16 ins2);
static char *add_commas (char *buf, int sizeof_buf, unsigned long value);
static INLINE uint8 *map_memory (unsigned phys_addr);
#define MAX_HASH 63
struct hash_entry
{
struct hash_entry *next;
uint32 opcode;
uint32 mask;
int size;
struct simops *ops;
};
struct hash_entry hash_table[MAX_HASH+1];
INLINE static long
hash (long insn, int format)
{
if (format & LONG_OPCODE)
return ((insn & 0x3F000000) >> 24);
else
return((insn & 0x7E00) >> 9);
}
INLINE static struct hash_entry *
lookup_hash (uint32 ins, int size)
{
struct hash_entry *h;
if (size)
h = &hash_table[(ins & 0x3F000000) >> 24];
else
h = &hash_table[(ins & 0x7E00) >> 9];
while ((ins & h->mask) != h->opcode || h->size != size)
{
if (h->next == NULL)
{
State.exception = GDB_SIGNAL_ILL;
State.pc_changed = 1; /* Don't increment the PC. */
return NULL;
}
h = h->next;
}
return (h);
}
INLINE static void
get_operands (struct simops *s, uint32 ins)
{
int i, shift, bits, flags;
uint32 mask;
for (i=0; i < s->numops; i++)
{
shift = s->operands[3*i];
bits = s->operands[3*i+1];
flags = s->operands[3*i+2];
mask = 0x7FFFFFFF >> (31 - bits);
OP[i] = (ins >> shift) & mask;
}
/* FIXME: for tracing, update values that need to be updated each
instruction decode cycle */
State.trace.psw = PSW;
}
static void
do_long (uint32 ins)
{
struct hash_entry *h;
#ifdef DEBUG
if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
(*d10v_callback->printf_filtered) (d10v_callback, "do_long 0x%x\n", ins);
#endif
h = lookup_hash (ins, 1);
if (h == NULL)
return;
get_operands (h->ops, ins);
State.ins_type = INS_LONG;
ins_type_counters[ (int)State.ins_type ]++;
(h->ops->func)();
}
static void
do_2_short (uint16 ins1, uint16 ins2, enum _leftright leftright)
{
struct hash_entry *h;
enum _ins_type first, second;
#ifdef DEBUG
if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
(*d10v_callback->printf_filtered) (d10v_callback, "do_2_short 0x%x (%s) -> 0x%x\n",
ins1, (leftright) ? "left" : "right", ins2);
#endif
if (leftright == LEFT_FIRST)
{
first = INS_LEFT;
second = INS_RIGHT;
ins_type_counters[ (int)INS_LEFTRIGHT ]++;
}
else
{
first = INS_RIGHT;
second = INS_LEFT;
ins_type_counters[ (int)INS_RIGHTLEFT ]++;
}
/* Issue the first instruction */
h = lookup_hash (ins1, 0);
if (h == NULL)
return;
get_operands (h->ops, ins1);
State.ins_type = first;
ins_type_counters[ (int)State.ins_type ]++;
(h->ops->func)();
/* Issue the second instruction (if the PC hasn't changed) */
if (!State.pc_changed && !State.exception)
{
/* finish any existing instructions */
SLOT_FLUSH ();
h = lookup_hash (ins2, 0);
if (h == NULL)
return;
get_operands (h->ops, ins2);
State.ins_type = second;
ins_type_counters[ (int)State.ins_type ]++;
ins_type_counters[ (int)INS_CYCLES ]++;
(h->ops->func)();
}
else if (!State.exception)
ins_type_counters[ (int)INS_COND_JUMP ]++;
}
static void
do_parallel (uint16 ins1, uint16 ins2)
{
struct hash_entry *h1, *h2;
#ifdef DEBUG
if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
(*d10v_callback->printf_filtered) (d10v_callback, "do_parallel 0x%x || 0x%x\n", ins1, ins2);
#endif
ins_type_counters[ (int)INS_PARALLEL ]++;
h1 = lookup_hash (ins1, 0);
if (h1 == NULL)
return;
h2 = lookup_hash (ins2, 0);
if (h2 == NULL)
return;
if (h1->ops->exec_type == PARONLY)
{
get_operands (h1->ops, ins1);
State.ins_type = INS_LEFT_COND_TEST;
ins_type_counters[ (int)State.ins_type ]++;
(h1->ops->func)();
if (State.exe)
{
ins_type_counters[ (int)INS_COND_TRUE ]++;
get_operands (h2->ops, ins2);
State.ins_type = INS_RIGHT_COND_EXE;
ins_type_counters[ (int)State.ins_type ]++;
(h2->ops->func)();
}
else
ins_type_counters[ (int)INS_COND_FALSE ]++;
}
else if (h2->ops->exec_type == PARONLY)
{
get_operands (h2->ops, ins2);
State.ins_type = INS_RIGHT_COND_TEST;
ins_type_counters[ (int)State.ins_type ]++;
(h2->ops->func)();
if (State.exe)
{
ins_type_counters[ (int)INS_COND_TRUE ]++;
get_operands (h1->ops, ins1);
State.ins_type = INS_LEFT_COND_EXE;
ins_type_counters[ (int)State.ins_type ]++;
(h1->ops->func)();
}
else
ins_type_counters[ (int)INS_COND_FALSE ]++;
}
else
{
get_operands (h1->ops, ins1);
State.ins_type = INS_LEFT_PARALLEL;
ins_type_counters[ (int)State.ins_type ]++;
(h1->ops->func)();
if (!State.exception)
{
get_operands (h2->ops, ins2);
State.ins_type = INS_RIGHT_PARALLEL;
ins_type_counters[ (int)State.ins_type ]++;
(h2->ops->func)();
}
}
}
static char *
add_commas (char *buf, int sizeof_buf, unsigned long value)
{
int comma = 3;
char *endbuf = buf + sizeof_buf - 1;
*--endbuf = '\0';
do {
if (comma-- == 0)
{
*--endbuf = ',';
comma = 2;
}
*--endbuf = (value % 10) + '0';
} while ((value /= 10) != 0);
return endbuf;
}
void
sim_size (int power)
{
int i;
for (i = 0; i < IMEM_SEGMENTS; i++)
{
if (State.mem.insn[i])
free (State.mem.insn[i]);
}
for (i = 0; i < DMEM_SEGMENTS; i++)
{
if (State.mem.data[i])
free (State.mem.data[i]);
}
for (i = 0; i < UMEM_SEGMENTS; i++)
{
if (State.mem.unif[i])
free (State.mem.unif[i]);
}
/* Always allocate dmem segment 0. This contains the IMAP and DMAP
registers. */
State.mem.data[0] = calloc (1, SEGMENT_SIZE);
}
/* For tracing - leave info on last access around. */
static char *last_segname = "invalid";
static char *last_from = "invalid";
static char *last_to = "invalid";
enum
{
IMAP0_OFFSET = 0xff00,
DMAP0_OFFSET = 0xff08,
DMAP2_SHADDOW = 0xff04,
DMAP2_OFFSET = 0xff0c
};
static void
set_dmap_register (int reg_nr, unsigned long value)
{
uint8 *raw = map_memory (SIM_D10V_MEMORY_DATA
+ DMAP0_OFFSET + 2 * reg_nr);
WRITE_16 (raw, value);
#ifdef DEBUG
if ((d10v_debug & DEBUG_MEMORY))
{
(*d10v_callback->printf_filtered)
(d10v_callback, "mem: dmap%d=0x%04lx\n", reg_nr, value);
}
#endif
}
static unsigned long
dmap_register (void *regcache, int reg_nr)
{
uint8 *raw = map_memory (SIM_D10V_MEMORY_DATA
+ DMAP0_OFFSET + 2 * reg_nr);
return READ_16 (raw);
}
static void
set_imap_register (int reg_nr, unsigned long value)
{
uint8 *raw = map_memory (SIM_D10V_MEMORY_DATA
+ IMAP0_OFFSET + 2 * reg_nr);
WRITE_16 (raw, value);
#ifdef DEBUG
if ((d10v_debug & DEBUG_MEMORY))
{
(*d10v_callback->printf_filtered)
(d10v_callback, "mem: imap%d=0x%04lx\n", reg_nr, value);
}
#endif
}
static unsigned long
imap_register (void *regcache, int reg_nr)
{
uint8 *raw = map_memory (SIM_D10V_MEMORY_DATA
+ IMAP0_OFFSET + 2 * reg_nr);
return READ_16 (raw);
}
enum
{
HELD_SPI_IDX = 0,
HELD_SPU_IDX = 1
};
static unsigned long
spu_register (void)
{
if (PSW_SM)
return GPR (SP_IDX);
else
return HELD_SP (HELD_SPU_IDX);
}
static unsigned long
spi_register (void)
{
if (!PSW_SM)
return GPR (SP_IDX);
else
return HELD_SP (HELD_SPI_IDX);
}
static void
set_spi_register (unsigned long value)
{
if (!PSW_SM)
SET_GPR (SP_IDX, value);
SET_HELD_SP (HELD_SPI_IDX, value);
}
static void
set_spu_register (unsigned long value)
{
if (PSW_SM)
SET_GPR (SP_IDX, value);
SET_HELD_SP (HELD_SPU_IDX, value);
}
/* Given a virtual address in the DMAP address space, translate it
into a physical address. */
unsigned long
sim_d10v_translate_dmap_addr (unsigned long offset,
int nr_bytes,
unsigned long *phys,
void *regcache,
unsigned long (*dmap_register) (void *regcache,
int reg_nr))
{
short map;
int regno;
last_from = "logical-data";
if (offset >= DMAP_BLOCK_SIZE * SIM_D10V_NR_DMAP_REGS)
{
/* Logical address out side of data segments, not supported */
return 0;
}
regno = (offset / DMAP_BLOCK_SIZE);
offset = (offset % DMAP_BLOCK_SIZE);
if ((offset % DMAP_BLOCK_SIZE) + nr_bytes > DMAP_BLOCK_SIZE)
{
/* Don't cross a BLOCK boundary */
nr_bytes = DMAP_BLOCK_SIZE - (offset % DMAP_BLOCK_SIZE);
}
map = dmap_register (regcache, regno);
if (regno == 3)
{
/* Always maps to data memory */
int iospi = (offset / 0x1000) % 4;
int iosp = (map >> (4 * (3 - iospi))) % 0x10;
last_to = "io-space";
*phys = (SIM_D10V_MEMORY_DATA + (iosp * 0x10000) + 0xc000 + offset);
}
else
{
int sp = ((map & 0x3000) >> 12);
int segno = (map & 0x3ff);
switch (sp)
{
case 0: /* 00: Unified memory */
*phys = SIM_D10V_MEMORY_UNIFIED + (segno * DMAP_BLOCK_SIZE) + offset;
last_to = "unified";
break;
case 1: /* 01: Instruction Memory */
*phys = SIM_D10V_MEMORY_INSN + (segno * DMAP_BLOCK_SIZE) + offset;
last_to = "chip-insn";
break;
case 2: /* 10: Internal data memory */
*phys = SIM_D10V_MEMORY_DATA + (segno << 16) + (regno * DMAP_BLOCK_SIZE) + offset;
last_to = "chip-data";
break;
case 3: /* 11: Reserved */
return 0;
}
}
return nr_bytes;
}
/* Given a virtual address in the IMAP address space, translate it
into a physical address. */
unsigned long
sim_d10v_translate_imap_addr (unsigned long offset,
int nr_bytes,
unsigned long *phys,
void *regcache,
unsigned long (*imap_register) (void *regcache,
int reg_nr))
{
short map;
int regno;
int sp;
int segno;
last_from = "logical-insn";
if (offset >= (IMAP_BLOCK_SIZE * SIM_D10V_NR_IMAP_REGS))
{
/* Logical address outside of IMAP segments, not supported */
return 0;
}
regno = (offset / IMAP_BLOCK_SIZE);
offset = (offset % IMAP_BLOCK_SIZE);
if (offset + nr_bytes > IMAP_BLOCK_SIZE)
{
/* Don't cross a BLOCK boundary */
nr_bytes = IMAP_BLOCK_SIZE - offset;
}
map = imap_register (regcache, regno);
sp = (map & 0x3000) >> 12;
segno = (map & 0x007f);
switch (sp)
{
case 0: /* 00: unified memory */
*phys = SIM_D10V_MEMORY_UNIFIED + (segno << 17) + offset;
last_to = "unified";
break;
case 1: /* 01: instruction memory */
*phys = SIM_D10V_MEMORY_INSN + (IMAP_BLOCK_SIZE * regno) + offset;
last_to = "chip-insn";
break;
case 2: /*10*/
/* Reserved. */
return 0;
case 3: /* 11: for testing - instruction memory */
offset = (offset % 0x800);
*phys = SIM_D10V_MEMORY_INSN + offset;
if (offset + nr_bytes > 0x800)
/* don't cross VM boundary */
nr_bytes = 0x800 - offset;
last_to = "test-insn";
break;
}
return nr_bytes;
}
unsigned long
sim_d10v_translate_addr (unsigned long memaddr,
int nr_bytes,
unsigned long *targ_addr,
void *regcache,
unsigned long (*dmap_register) (void *regcache,
int reg_nr),
unsigned long (*imap_register) (void *regcache,
int reg_nr))
{
unsigned long phys;
unsigned long seg;
unsigned long off;
last_from = "unknown";
last_to = "unknown";
seg = (memaddr >> 24);
off = (memaddr & 0xffffffL);
/* However, if we've asked to use the previous generation of segment
mapping, rearrange the segments as follows. */
if (old_segment_mapping)
{
switch (seg)
{
case 0x00: /* DMAP translated memory */
seg = 0x10;
break;
case 0x01: /* IMAP translated memory */
seg = 0x11;
break;
case 0x10: /* On-chip data memory */
seg = 0x02;
break;
case 0x11: /* On-chip insn memory */
seg = 0x01;
break;
case 0x12: /* Unified memory */
seg = 0x00;
break;
}
}
switch (seg)
{
case 0x00: /* Physical unified memory */
last_from = "phys-unified";
last_to = "unified";
phys = SIM_D10V_MEMORY_UNIFIED + off;
if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE)
nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE);
break;
case 0x01: /* Physical instruction memory */
last_from = "phys-insn";
last_to = "chip-insn";
phys = SIM_D10V_MEMORY_INSN + off;
if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE)
nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE);
break;
case 0x02: /* Physical data memory segment */
last_from = "phys-data";
last_to = "chip-data";
phys = SIM_D10V_MEMORY_DATA + off;
if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE)
nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE);
break;
case 0x10: /* in logical data address segment */
nr_bytes = sim_d10v_translate_dmap_addr (off, nr_bytes, &phys, regcache,
dmap_register);
break;
case 0x11: /* in logical instruction address segment */
nr_bytes = sim_d10v_translate_imap_addr (off, nr_bytes, &phys, regcache,
imap_register);
break;
default:
return 0;
}
*targ_addr = phys;
return nr_bytes;
}
/* Return a pointer into the raw buffer designated by phys_addr. It
is assumed that the client has already ensured that the access
isn't going to cross a segment boundary. */
uint8 *
map_memory (unsigned phys_addr)
{
uint8 **memory;
uint8 *raw;
unsigned offset;
int segment = ((phys_addr >> 24) & 0xff);
switch (segment)
{
case 0x00: /* Unified memory */
{
memory = &State.mem.unif[(phys_addr / SEGMENT_SIZE) % UMEM_SEGMENTS];
last_segname = "umem";
break;
}
case 0x01: /* On-chip insn memory */
{
memory = &State.mem.insn[(phys_addr / SEGMENT_SIZE) % IMEM_SEGMENTS];
last_segname = "imem";
break;
}
case 0x02: /* On-chip data memory */
{
if ((phys_addr & 0xff00) == 0xff00)
{
phys_addr = (phys_addr & 0xffff);
if (phys_addr == DMAP2_SHADDOW)
{
phys_addr = DMAP2_OFFSET;
last_segname = "dmap";
}
else
last_segname = "reg";
}
else
last_segname = "dmem";
memory = &State.mem.data[(phys_addr / SEGMENT_SIZE) % DMEM_SEGMENTS];
break;
}
default:
/* OOPS! */
last_segname = "scrap";
return State.mem.fault;
}
if (*memory == NULL)
{
*memory = calloc (1, SEGMENT_SIZE);
if (*memory == NULL)
{
(*d10v_callback->printf_filtered) (d10v_callback, "Malloc failed.\n");
return State.mem.fault;
}
}
offset = (phys_addr % SEGMENT_SIZE);
raw = *memory + offset;
return raw;
}
/* Transfer data to/from simulated memory. Since a bug in either the
simulated program or in gdb or the simulator itself may cause a
bogus address to be passed in, we need to do some sanity checking
on addresses to make sure they are within bounds. When an address
fails the bounds check, treat it as a zero length read/write rather
than aborting the entire run. */
static int
xfer_mem (SIM_ADDR virt,
unsigned char *buffer,
int size,
int write_p)
{
uint8 *memory;
unsigned long phys;
int phys_size;
phys_size = sim_d10v_translate_addr (virt, size, &phys, NULL,
dmap_register, imap_register);
if (phys_size == 0)
return 0;
memory = map_memory (phys);
#ifdef DEBUG
if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
{
(*d10v_callback->printf_filtered)
(d10v_callback,
"sim_%s %d bytes: 0x%08lx (%s) -> 0x%08lx (%s) -> 0x%08lx (%s)\n",
(write_p ? "write" : "read"),
phys_size, virt, last_from,
phys, last_to,
(long) memory, last_segname);
}
#endif
if (write_p)
{
memcpy (memory, buffer, phys_size);
}
else
{
memcpy (buffer, memory, phys_size);
}
return phys_size;
}
int
sim_write (SIM_DESC sd, SIM_ADDR addr, const unsigned char *buffer, int size)
{
/* FIXME: this should be performing a virtual transfer */
return xfer_mem( addr, buffer, size, 1);
}
int
sim_read (SIM_DESC sd, SIM_ADDR addr, unsigned char *buffer, int size)
{
/* FIXME: this should be performing a virtual transfer */
return xfer_mem( addr, buffer, size, 0);
}
static sim_cia
d10v_pc_get (sim_cpu *cpu)
{
return PC;
}
static void
d10v_pc_set (sim_cpu *cpu, sim_cia pc)
{
SET_PC (pc);
}
static void
free_state (SIM_DESC sd)
{
if (STATE_MODULES (sd) != NULL)
sim_module_uninstall (sd);
sim_cpu_free_all (sd);
sim_state_free (sd);
}
SIM_DESC trace_sd = NULL;
SIM_DESC
sim_open (SIM_OPEN_KIND kind, host_callback *cb, struct bfd *abfd, char **argv)
{
struct simops *s;
struct hash_entry *h;
static int init_p = 0;
char **p;
int i;
SIM_DESC sd = sim_state_alloc (kind, cb);
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
/* The cpu data is kept in a separately allocated chunk of memory. */
if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* getopt will print the error message so we just have to exit if this fails.
FIXME: Hmmm... in the case of gdb we need getopt to call
print_filtered. */
if (sim_parse_args (sd, argv) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* Check for/establish the a reference program image. */
if (sim_analyze_program (sd,
(STATE_PROG_ARGV (sd) != NULL
? *STATE_PROG_ARGV (sd)
: NULL), abfd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* Configure/verify the target byte order and other runtime
configuration options. */
if (sim_config (sd) != SIM_RC_OK)
{
sim_module_uninstall (sd);
return 0;
}
if (sim_post_argv_init (sd) != SIM_RC_OK)
{
/* Uninstall the modules to avoid memory leaks,
file descriptor leaks, etc. */
sim_module_uninstall (sd);
return 0;
}
/* CPU specific initialization. */
for (i = 0; i < MAX_NR_PROCESSORS; ++i)
{
SIM_CPU *cpu = STATE_CPU (sd, i);
CPU_PC_FETCH (cpu) = d10v_pc_get;
CPU_PC_STORE (cpu) = d10v_pc_set;
}
trace_sd = sd;
d10v_callback = cb;
old_segment_mapping = 0;
/* NOTE: This argument parsing is only effective when this function
is called by GDB. Standalone argument parsing is handled by
sim/common/run.c. */
for (p = argv + 1; *p; ++p)
{
if (strcmp (*p, "-oldseg") == 0)
old_segment_mapping = 1;
#ifdef DEBUG
else if (strcmp (*p, "-t") == 0)
d10v_debug = DEBUG;
else if (strncmp (*p, "-t", 2) == 0)
d10v_debug = atoi (*p + 2);
#endif
}
/* put all the opcodes in the hash table */
if (!init_p++)
{
for (s = Simops; s->func; s++)
{
h = &hash_table[hash(s->opcode,s->format)];
/* go to the last entry in the chain */
while (h->next)
h = h->next;
if (h->ops)
{
h->next = (struct hash_entry *) calloc(1,sizeof(struct hash_entry));
if (!h->next)
perror ("malloc failure");
h = h->next;
}
h->ops = s;
h->mask = s->mask;
h->opcode = s->opcode;
h->size = s->is_long;
}
}
/* reset the processor state */
if (!State.mem.data[0])
sim_size (1);
sim_create_inferior ((SIM_DESC) 1, NULL, NULL, NULL);
return sd;
}
void
sim_close (SIM_DESC sd, int quitting)
{
/* Nothing to do. */
}
uint8 *
dmem_addr (uint16 offset)
{
unsigned long phys;
uint8 *mem;
int phys_size;
/* Note: DMEM address range is 0..0x10000. Calling code can compute
things like ``0xfffe + 0x0e60 == 0x10e5d''. Since offset's type
is uint16 this is modulo'ed onto 0x0e5d. */
phys_size = sim_d10v_translate_dmap_addr (offset, 1, &phys, NULL,
dmap_register);
if (phys_size == 0)
{
mem = State.mem.fault;
}
else
mem = map_memory (phys);
#ifdef DEBUG
if ((d10v_debug & DEBUG_MEMORY))
{
(*d10v_callback->printf_filtered)
(d10v_callback,
"mem: 0x%08x (%s) -> 0x%08lx %d (%s) -> 0x%08lx (%s)\n",
offset, last_from,
phys, phys_size, last_to,
(long) mem, last_segname);
}
#endif
return mem;
}
uint8 *
imem_addr (uint32 offset)
{
unsigned long phys;
uint8 *mem;
int phys_size = sim_d10v_translate_imap_addr (offset, 1, &phys, NULL,
imap_register);
if (phys_size == 0)
{
return State.mem.fault;
}
mem = map_memory (phys);
#ifdef DEBUG
if ((d10v_debug & DEBUG_MEMORY))
{
(*d10v_callback->printf_filtered)
(d10v_callback,
"mem: 0x%08x (%s) -> 0x%08lx %d (%s) -> 0x%08lx (%s)\n",
offset, last_from,
phys, phys_size, last_to,
(long) mem, last_segname);
}
#endif
return mem;
}
static int stop_simulator = 0;
int
sim_stop (SIM_DESC sd)
{
stop_simulator = 1;
return 1;
}
/* Run (or resume) the program. */
void
sim_resume (SIM_DESC sd, int step, int siggnal)
{
uint32 inst;
uint8 *iaddr;
/* (*d10v_callback->printf_filtered) (d10v_callback, "sim_resume (%d,%d) PC=0x%x\n",step,siggnal,PC); */
State.exception = 0;
if (step)
sim_stop (sd);
switch (siggnal)
{
case 0:
break;
case GDB_SIGNAL_BUS:
SET_BPC (PC);
SET_BPSW (PSW);
SET_HW_PSW ((PSW & (PSW_F0_BIT | PSW_F1_BIT | PSW_C_BIT)));
JMP (AE_VECTOR_START);
SLOT_FLUSH ();
break;
case GDB_SIGNAL_ILL:
SET_BPC (PC);
SET_BPSW (PSW);
SET_HW_PSW ((PSW & (PSW_F0_BIT | PSW_F1_BIT | PSW_C_BIT)));
JMP (RIE_VECTOR_START);
SLOT_FLUSH ();
break;
default:
/* just ignore it */
break;
}
do
{
iaddr = imem_addr ((uint32)PC << 2);
if (iaddr == State.mem.fault)
{
State.exception = GDB_SIGNAL_BUS;
break;
}
inst = get_longword( iaddr );
State.pc_changed = 0;
ins_type_counters[ (int)INS_CYCLES ]++;
switch (inst & 0xC0000000)
{
case 0xC0000000:
/* long instruction */
do_long (inst & 0x3FFFFFFF);
break;
case 0x80000000:
/* R -> L */
do_2_short ( inst & 0x7FFF, (inst & 0x3FFF8000) >> 15, RIGHT_FIRST);
break;
case 0x40000000:
/* L -> R */
do_2_short ((inst & 0x3FFF8000) >> 15, inst & 0x7FFF, LEFT_FIRST);
break;
case 0:
do_parallel ((inst & 0x3FFF8000) >> 15, inst & 0x7FFF);
break;
}
/* If the PC of the current instruction matches RPT_E then
schedule a branch to the loop start. If one of those
instructions happens to be a branch, than that instruction
will be ignored */
if (!State.pc_changed)
{
if (PSW_RP && PC == RPT_E)
{
/* Note: The behavour of a branch instruction at RPT_E
is implementation dependant, this simulator takes the
branch. Branching to RPT_E is valid, the instruction
must be executed before the loop is taken. */
if (RPT_C == 1)
{
SET_PSW_RP (0);
SET_RPT_C (0);
SET_PC (PC + 1);
}
else
{
SET_RPT_C (RPT_C - 1);
SET_PC (RPT_S);
}
}
else
SET_PC (PC + 1);
}
/* Check for a breakpoint trap on this instruction. This
overrides any pending branches or loops */
if (PSW_DB && PC == IBA)
{
SET_BPC (PC);
SET_BPSW (PSW);
SET_PSW (PSW & PSW_SM_BIT);
SET_PC (SDBT_VECTOR_START);
}
/* Writeback all the DATA / PC changes */
SLOT_FLUSH ();
}
while ( !State.exception && !stop_simulator);
if (step && !State.exception)
State.exception = GDB_SIGNAL_TRAP;
}
void
sim_info (SIM_DESC sd, int verbose)
{
char buf1[40];
char buf2[40];
char buf3[40];
char buf4[40];
char buf5[40];
unsigned long left = ins_type_counters[ (int)INS_LEFT ] + ins_type_counters[ (int)INS_LEFT_COND_EXE ];
unsigned long left_nops = ins_type_counters[ (int)INS_LEFT_NOPS ];
unsigned long left_parallel = ins_type_counters[ (int)INS_LEFT_PARALLEL ];
unsigned long left_cond = ins_type_counters[ (int)INS_LEFT_COND_TEST ];
unsigned long left_total = left + left_parallel + left_cond + left_nops;
unsigned long right = ins_type_counters[ (int)INS_RIGHT ] + ins_type_counters[ (int)INS_RIGHT_COND_EXE ];
unsigned long right_nops = ins_type_counters[ (int)INS_RIGHT_NOPS ];
unsigned long right_parallel = ins_type_counters[ (int)INS_RIGHT_PARALLEL ];
unsigned long right_cond = ins_type_counters[ (int)INS_RIGHT_COND_TEST ];
unsigned long right_total = right + right_parallel + right_cond + right_nops;
unsigned long unknown = ins_type_counters[ (int)INS_UNKNOWN ];
unsigned long ins_long = ins_type_counters[ (int)INS_LONG ];
unsigned long parallel = ins_type_counters[ (int)INS_PARALLEL ];
unsigned long leftright = ins_type_counters[ (int)INS_LEFTRIGHT ];
unsigned long rightleft = ins_type_counters[ (int)INS_RIGHTLEFT ];
unsigned long cond_true = ins_type_counters[ (int)INS_COND_TRUE ];
unsigned long cond_false = ins_type_counters[ (int)INS_COND_FALSE ];
unsigned long cond_jump = ins_type_counters[ (int)INS_COND_JUMP ];
unsigned long cycles = ins_type_counters[ (int)INS_CYCLES ];
unsigned long total = (unknown + left_total + right_total + ins_long);
int size = strlen (add_commas (buf1, sizeof (buf1), total));
int parallel_size = strlen (add_commas (buf1, sizeof (buf1),
(left_parallel > right_parallel) ? left_parallel : right_parallel));
int cond_size = strlen (add_commas (buf1, sizeof (buf1), (left_cond > right_cond) ? left_cond : right_cond));
int nop_size = strlen (add_commas (buf1, sizeof (buf1), (left_nops > right_nops) ? left_nops : right_nops));
int normal_size = strlen (add_commas (buf1, sizeof (buf1), (left > right) ? left : right));
(*d10v_callback->printf_filtered) (d10v_callback,
"executed %*s left instruction(s), %*s normal, %*s parallel, %*s EXExxx, %*s nops\n",
size, add_commas (buf1, sizeof (buf1), left_total),
normal_size, add_commas (buf2, sizeof (buf2), left),
parallel_size, add_commas (buf3, sizeof (buf3), left_parallel),
cond_size, add_commas (buf4, sizeof (buf4), left_cond),
nop_size, add_commas (buf5, sizeof (buf5), left_nops));
(*d10v_callback->printf_filtered) (d10v_callback,
"executed %*s right instruction(s), %*s normal, %*s parallel, %*s EXExxx, %*s nops\n",
size, add_commas (buf1, sizeof (buf1), right_total),
normal_size, add_commas (buf2, sizeof (buf2), right),
parallel_size, add_commas (buf3, sizeof (buf3), right_parallel),
cond_size, add_commas (buf4, sizeof (buf4), right_cond),
nop_size, add_commas (buf5, sizeof (buf5), right_nops));
if (ins_long)
(*d10v_callback->printf_filtered) (d10v_callback,
"executed %*s long instruction(s)\n",
size, add_commas (buf1, sizeof (buf1), ins_long));
if (parallel)
(*d10v_callback->printf_filtered) (d10v_callback,
"executed %*s parallel instruction(s)\n",
size, add_commas (buf1, sizeof (buf1), parallel));
if (leftright)
(*d10v_callback->printf_filtered) (d10v_callback,
"executed %*s instruction(s) encoded L->R\n",
size, add_commas (buf1, sizeof (buf1), leftright));
if (rightleft)
(*d10v_callback->printf_filtered) (d10v_callback,
"executed %*s instruction(s) encoded R->L\n",
size, add_commas (buf1, sizeof (buf1), rightleft));
if (unknown)
(*d10v_callback->printf_filtered) (d10v_callback,
"executed %*s unknown instruction(s)\n",
size, add_commas (buf1, sizeof (buf1), unknown));
if (cond_true)
(*d10v_callback->printf_filtered) (d10v_callback,
"executed %*s instruction(s) due to EXExxx condition being true\n",
size, add_commas (buf1, sizeof (buf1), cond_true));
if (cond_false)
(*d10v_callback->printf_filtered) (d10v_callback,
"skipped %*s instruction(s) due to EXExxx condition being false\n",
size, add_commas (buf1, sizeof (buf1), cond_false));
if (cond_jump)
(*d10v_callback->printf_filtered) (d10v_callback,
"skipped %*s instruction(s) due to conditional branch succeeding\n",
size, add_commas (buf1, sizeof (buf1), cond_jump));
(*d10v_callback->printf_filtered) (d10v_callback,
"executed %*s cycle(s)\n",
size, add_commas (buf1, sizeof (buf1), cycles));
(*d10v_callback->printf_filtered) (d10v_callback,
"executed %*s total instructions\n",
size, add_commas (buf1, sizeof (buf1), total));
}
SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *abfd, char **argv, char **env)
{
bfd_vma start_address;
/* reset all state information */
memset (&State.regs, 0, (uintptr_t)&State.mem - (uintptr_t)&State.regs);
/* There was a hack here to copy the values of argc and argv into r0
and r1. The values were also saved into some high memory that
won't be overwritten by the stack (0x7C00). The reason for doing
this was to allow the 'run' program to accept arguments. Without
the hack, this is not possible anymore. If the simulator is run
from the debugger, arguments cannot be passed in, so this makes
no difference. */
/* set PC */
if (abfd != NULL)
start_address = bfd_get_start_address (abfd);
else
start_address = 0xffc0 << 2;
#ifdef DEBUG
if (d10v_debug)
(*d10v_callback->printf_filtered) (d10v_callback, "sim_create_inferior: PC=0x%lx\n", (long) start_address);
#endif
SET_CREG (PC_CR, start_address >> 2);
/* cpu resets imap0 to 0 and imap1 to 0x7f, but D10V-EVA board
initializes imap0 and imap1 to 0x1000 as part of its ROM
initialization. */
if (old_segment_mapping)
{
/* External memory startup. This is the HARD reset state. */
set_imap_register (0, 0x0000);
set_imap_register (1, 0x007f);
set_dmap_register (0, 0x2000);
set_dmap_register (1, 0x2000);
set_dmap_register (2, 0x0000); /* Old DMAP */
set_dmap_register (3, 0x0000);
}
else
{
/* Internal memory startup. This is the ROM intialized state. */
set_imap_register (0, 0x1000);
set_imap_register (1, 0x1000);
set_dmap_register (0, 0x2000);
set_dmap_register (1, 0x2000);
set_dmap_register (2, 0x2000); /* DMAP2 initial internal value is
0x2000 on the new board. */
set_dmap_register (3, 0x0000);
}
SLOT_FLUSH ();
return SIM_RC_OK;
}
void
sim_stop_reason (SIM_DESC sd, enum sim_stop *reason, int *sigrc)
{
/* (*d10v_callback->printf_filtered) (d10v_callback, "sim_stop_reason: PC=0x%x\n",PC<<2); */
switch (State.exception)
{
case SIG_D10V_STOP: /* stop instruction */
*reason = sim_exited;
*sigrc = 0;
break;
case SIG_D10V_EXIT: /* exit trap */
*reason = sim_exited;
*sigrc = GPR (0);
break;
case SIG_D10V_BUS:
*reason = sim_stopped;
*sigrc = GDB_SIGNAL_BUS;
break;
default: /* some signal */
*reason = sim_stopped;
if (stop_simulator && !State.exception)
*sigrc = GDB_SIGNAL_INT;
else
*sigrc = State.exception;
break;
}
stop_simulator = 0;
}
int
sim_fetch_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
{
int size;
switch ((enum sim_d10v_regs) rn)
{
case SIM_D10V_R0_REGNUM:
case SIM_D10V_R1_REGNUM:
case SIM_D10V_R2_REGNUM:
case SIM_D10V_R3_REGNUM:
case SIM_D10V_R4_REGNUM:
case SIM_D10V_R5_REGNUM:
case SIM_D10V_R6_REGNUM:
case SIM_D10V_R7_REGNUM:
case SIM_D10V_R8_REGNUM:
case SIM_D10V_R9_REGNUM:
case SIM_D10V_R10_REGNUM:
case SIM_D10V_R11_REGNUM:
case SIM_D10V_R12_REGNUM:
case SIM_D10V_R13_REGNUM:
case SIM_D10V_R14_REGNUM:
case SIM_D10V_R15_REGNUM:
WRITE_16 (memory, GPR (rn - SIM_D10V_R0_REGNUM));
size = 2;
break;
case SIM_D10V_CR0_REGNUM:
case SIM_D10V_CR1_REGNUM:
case SIM_D10V_CR2_REGNUM:
case SIM_D10V_CR3_REGNUM:
case SIM_D10V_CR4_REGNUM:
case SIM_D10V_CR5_REGNUM:
case SIM_D10V_CR6_REGNUM:
case SIM_D10V_CR7_REGNUM:
case SIM_D10V_CR8_REGNUM:
case SIM_D10V_CR9_REGNUM:
case SIM_D10V_CR10_REGNUM:
case SIM_D10V_CR11_REGNUM:
case SIM_D10V_CR12_REGNUM:
case SIM_D10V_CR13_REGNUM:
case SIM_D10V_CR14_REGNUM:
case SIM_D10V_CR15_REGNUM:
WRITE_16 (memory, CREG (rn - SIM_D10V_CR0_REGNUM));
size = 2;
break;
case SIM_D10V_A0_REGNUM:
case SIM_D10V_A1_REGNUM:
WRITE_64 (memory, ACC (rn - SIM_D10V_A0_REGNUM));
size = 8;
break;
case SIM_D10V_SPI_REGNUM:
/* PSW_SM indicates that the current SP is the USER
stack-pointer. */
WRITE_16 (memory, spi_register ());
size = 2;
break;
case SIM_D10V_SPU_REGNUM:
/* PSW_SM indicates that the current SP is the USER
stack-pointer. */
WRITE_16 (memory, spu_register ());
size = 2;
break;
case SIM_D10V_IMAP0_REGNUM:
case SIM_D10V_IMAP1_REGNUM:
WRITE_16 (memory, imap_register (NULL, rn - SIM_D10V_IMAP0_REGNUM));
size = 2;
break;
case SIM_D10V_DMAP0_REGNUM:
case SIM_D10V_DMAP1_REGNUM:
case SIM_D10V_DMAP2_REGNUM:
case SIM_D10V_DMAP3_REGNUM:
WRITE_16 (memory, dmap_register (NULL, rn - SIM_D10V_DMAP0_REGNUM));
size = 2;
break;
case SIM_D10V_TS2_DMAP_REGNUM:
size = 0;
break;
default:
size = 0;
break;
}
return size;
}
int
sim_store_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
{
int size;
switch ((enum sim_d10v_regs) rn)
{
case SIM_D10V_R0_REGNUM:
case SIM_D10V_R1_REGNUM:
case SIM_D10V_R2_REGNUM:
case SIM_D10V_R3_REGNUM:
case SIM_D10V_R4_REGNUM:
case SIM_D10V_R5_REGNUM:
case SIM_D10V_R6_REGNUM:
case SIM_D10V_R7_REGNUM:
case SIM_D10V_R8_REGNUM:
case SIM_D10V_R9_REGNUM:
case SIM_D10V_R10_REGNUM:
case SIM_D10V_R11_REGNUM:
case SIM_D10V_R12_REGNUM:
case SIM_D10V_R13_REGNUM:
case SIM_D10V_R14_REGNUM:
case SIM_D10V_R15_REGNUM:
SET_GPR (rn - SIM_D10V_R0_REGNUM, READ_16 (memory));
size = 2;
break;
case SIM_D10V_CR0_REGNUM:
case SIM_D10V_CR1_REGNUM:
case SIM_D10V_CR2_REGNUM:
case SIM_D10V_CR3_REGNUM:
case SIM_D10V_CR4_REGNUM:
case SIM_D10V_CR5_REGNUM:
case SIM_D10V_CR6_REGNUM:
case SIM_D10V_CR7_REGNUM:
case SIM_D10V_CR8_REGNUM:
case SIM_D10V_CR9_REGNUM:
case SIM_D10V_CR10_REGNUM:
case SIM_D10V_CR11_REGNUM:
case SIM_D10V_CR12_REGNUM:
case SIM_D10V_CR13_REGNUM:
case SIM_D10V_CR14_REGNUM:
case SIM_D10V_CR15_REGNUM:
SET_CREG (rn - SIM_D10V_CR0_REGNUM, READ_16 (memory));
size = 2;
break;
case SIM_D10V_A0_REGNUM:
case SIM_D10V_A1_REGNUM:
SET_ACC (rn - SIM_D10V_A0_REGNUM, READ_64 (memory) & MASK40);
size = 8;
break;
case SIM_D10V_SPI_REGNUM:
/* PSW_SM indicates that the current SP is the USER
stack-pointer. */
set_spi_register (READ_16 (memory));
size = 2;
break;
case SIM_D10V_SPU_REGNUM:
set_spu_register (READ_16 (memory));
size = 2;
break;
case SIM_D10V_IMAP0_REGNUM:
case SIM_D10V_IMAP1_REGNUM:
set_imap_register (rn - SIM_D10V_IMAP0_REGNUM, READ_16(memory));
size = 2;
break;
case SIM_D10V_DMAP0_REGNUM:
case SIM_D10V_DMAP1_REGNUM:
case SIM_D10V_DMAP2_REGNUM:
case SIM_D10V_DMAP3_REGNUM:
set_dmap_register (rn - SIM_D10V_DMAP0_REGNUM, READ_16(memory));
size = 2;
break;
case SIM_D10V_TS2_DMAP_REGNUM:
size = 0;
break;
default:
size = 0;
break;
}
SLOT_FLUSH ();
return size;
}