binutils-gdb/gold/arm.cc

13212 lines
422 KiB
C++

// arm.cc -- arm target support for gold.
// Copyright (C) 2009-2017 Free Software Foundation, Inc.
// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
// by Ian Lance Taylor <iant@google.com>.
// This file also contains borrowed and adapted code from
// bfd/elf32-arm.c.
// This file is part of gold.
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
#include "gold.h"
#include <cstring>
#include <limits>
#include <cstdio>
#include <string>
#include <algorithm>
#include <map>
#include <utility>
#include <set>
#include "elfcpp.h"
#include "parameters.h"
#include "reloc.h"
#include "arm.h"
#include "object.h"
#include "symtab.h"
#include "layout.h"
#include "output.h"
#include "copy-relocs.h"
#include "target.h"
#include "target-reloc.h"
#include "target-select.h"
#include "tls.h"
#include "defstd.h"
#include "gc.h"
#include "attributes.h"
#include "arm-reloc-property.h"
#include "nacl.h"
namespace
{
using namespace gold;
template<bool big_endian>
class Output_data_plt_arm;
template<bool big_endian>
class Output_data_plt_arm_short;
template<bool big_endian>
class Output_data_plt_arm_long;
template<bool big_endian>
class Stub_table;
template<bool big_endian>
class Arm_input_section;
class Arm_exidx_cantunwind;
class Arm_exidx_merged_section;
class Arm_exidx_fixup;
template<bool big_endian>
class Arm_output_section;
class Arm_exidx_input_section;
template<bool big_endian>
class Arm_relobj;
template<bool big_endian>
class Arm_relocate_functions;
template<bool big_endian>
class Arm_output_data_got;
template<bool big_endian>
class Target_arm;
// For convenience.
typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
// Maximum branch offsets for ARM, THUMB and THUMB2.
const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
// Thread Control Block size.
const size_t ARM_TCB_SIZE = 8;
// The arm target class.
//
// This is a very simple port of gold for ARM-EABI. It is intended for
// supporting Android only for the time being.
//
// TODOs:
// - Implement all static relocation types documented in arm-reloc.def.
// - Make PLTs more flexible for different architecture features like
// Thumb-2 and BE8.
// There are probably a lot more.
// Ideally we would like to avoid using global variables but this is used
// very in many places and sometimes in loops. If we use a function
// returning a static instance of Arm_reloc_property_table, it will be very
// slow in an threaded environment since the static instance needs to be
// locked. The pointer is below initialized in the
// Target::do_select_as_default_target() hook so that we do not spend time
// building the table if we are not linking ARM objects.
//
// An alternative is to to process the information in arm-reloc.def in
// compilation time and generate a representation of it in PODs only. That
// way we can avoid initialization when the linker starts.
Arm_reloc_property_table* arm_reloc_property_table = NULL;
// Instruction template class. This class is similar to the insn_sequence
// struct in bfd/elf32-arm.c.
class Insn_template
{
public:
// Types of instruction templates.
enum Type
{
THUMB16_TYPE = 1,
// THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
// templates with class-specific semantics. Currently this is used
// only by the Cortex_a8_stub class for handling condition codes in
// conditional branches.
THUMB16_SPECIAL_TYPE,
THUMB32_TYPE,
ARM_TYPE,
DATA_TYPE
};
// Factory methods to create instruction templates in different formats.
static const Insn_template
thumb16_insn(uint32_t data)
{ return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
// A Thumb conditional branch, in which the proper condition is inserted
// when we build the stub.
static const Insn_template
thumb16_bcond_insn(uint32_t data)
{ return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
static const Insn_template
thumb32_insn(uint32_t data)
{ return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
static const Insn_template
thumb32_b_insn(uint32_t data, int reloc_addend)
{
return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
reloc_addend);
}
static const Insn_template
arm_insn(uint32_t data)
{ return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
static const Insn_template
arm_rel_insn(unsigned data, int reloc_addend)
{ return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
static const Insn_template
data_word(unsigned data, unsigned int r_type, int reloc_addend)
{ return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
// Accessors. This class is used for read-only objects so no modifiers
// are provided.
uint32_t
data() const
{ return this->data_; }
// Return the instruction sequence type of this.
Type
type() const
{ return this->type_; }
// Return the ARM relocation type of this.
unsigned int
r_type() const
{ return this->r_type_; }
int32_t
reloc_addend() const
{ return this->reloc_addend_; }
// Return size of instruction template in bytes.
size_t
size() const;
// Return byte-alignment of instruction template.
unsigned
alignment() const;
private:
// We make the constructor private to ensure that only the factory
// methods are used.
inline
Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
: data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
{ }
// Instruction specific data. This is used to store information like
// some of the instruction bits.
uint32_t data_;
// Instruction template type.
Type type_;
// Relocation type if there is a relocation or R_ARM_NONE otherwise.
unsigned int r_type_;
// Relocation addend.
int32_t reloc_addend_;
};
// Macro for generating code to stub types. One entry per long/short
// branch stub
#define DEF_STUBS \
DEF_STUB(long_branch_any_any) \
DEF_STUB(long_branch_v4t_arm_thumb) \
DEF_STUB(long_branch_thumb_only) \
DEF_STUB(long_branch_v4t_thumb_thumb) \
DEF_STUB(long_branch_v4t_thumb_arm) \
DEF_STUB(short_branch_v4t_thumb_arm) \
DEF_STUB(long_branch_any_arm_pic) \
DEF_STUB(long_branch_any_thumb_pic) \
DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
DEF_STUB(long_branch_v4t_arm_thumb_pic) \
DEF_STUB(long_branch_v4t_thumb_arm_pic) \
DEF_STUB(long_branch_thumb_only_pic) \
DEF_STUB(a8_veneer_b_cond) \
DEF_STUB(a8_veneer_b) \
DEF_STUB(a8_veneer_bl) \
DEF_STUB(a8_veneer_blx) \
DEF_STUB(v4_veneer_bx)
// Stub types.
#define DEF_STUB(x) arm_stub_##x,
typedef enum
{
arm_stub_none,
DEF_STUBS
// First reloc stub type.
arm_stub_reloc_first = arm_stub_long_branch_any_any,
// Last reloc stub type.
arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
// First Cortex-A8 stub type.
arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
// Last Cortex-A8 stub type.
arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
// Last stub type.
arm_stub_type_last = arm_stub_v4_veneer_bx
} Stub_type;
#undef DEF_STUB
// Stub template class. Templates are meant to be read-only objects.
// A stub template for a stub type contains all read-only attributes
// common to all stubs of the same type.
class Stub_template
{
public:
Stub_template(Stub_type, const Insn_template*, size_t);
~Stub_template()
{ }
// Return stub type.
Stub_type
type() const
{ return this->type_; }
// Return an array of instruction templates.
const Insn_template*
insns() const
{ return this->insns_; }
// Return size of template in number of instructions.
size_t
insn_count() const
{ return this->insn_count_; }
// Return size of template in bytes.
size_t
size() const
{ return this->size_; }
// Return alignment of the stub template.
unsigned
alignment() const
{ return this->alignment_; }
// Return whether entry point is in thumb mode.
bool
entry_in_thumb_mode() const
{ return this->entry_in_thumb_mode_; }
// Return number of relocations in this template.
size_t
reloc_count() const
{ return this->relocs_.size(); }
// Return index of the I-th instruction with relocation.
size_t
reloc_insn_index(size_t i) const
{
gold_assert(i < this->relocs_.size());
return this->relocs_[i].first;
}
// Return the offset of the I-th instruction with relocation from the
// beginning of the stub.
section_size_type
reloc_offset(size_t i) const
{
gold_assert(i < this->relocs_.size());
return this->relocs_[i].second;
}
private:
// This contains information about an instruction template with a relocation
// and its offset from start of stub.
typedef std::pair<size_t, section_size_type> Reloc;
// A Stub_template may not be copied. We want to share templates as much
// as possible.
Stub_template(const Stub_template&);
Stub_template& operator=(const Stub_template&);
// Stub type.
Stub_type type_;
// Points to an array of Insn_templates.
const Insn_template* insns_;
// Number of Insn_templates in insns_[].
size_t insn_count_;
// Size of templated instructions in bytes.
size_t size_;
// Alignment of templated instructions.
unsigned alignment_;
// Flag to indicate if entry is in thumb mode.
bool entry_in_thumb_mode_;
// A table of reloc instruction indices and offsets. We can find these by
// looking at the instruction templates but we pre-compute and then stash
// them here for speed.
std::vector<Reloc> relocs_;
};
//
// A class for code stubs. This is a base class for different type of
// stubs used in the ARM target.
//
class Stub
{
private:
static const section_offset_type invalid_offset =
static_cast<section_offset_type>(-1);
public:
Stub(const Stub_template* stub_template)
: stub_template_(stub_template), offset_(invalid_offset)
{ }
virtual
~Stub()
{ }
// Return the stub template.
const Stub_template*
stub_template() const
{ return this->stub_template_; }
// Return offset of code stub from beginning of its containing stub table.
section_offset_type
offset() const
{
gold_assert(this->offset_ != invalid_offset);
return this->offset_;
}
// Set offset of code stub from beginning of its containing stub table.
void
set_offset(section_offset_type offset)
{ this->offset_ = offset; }
// Return the relocation target address of the i-th relocation in the
// stub. This must be defined in a child class.
Arm_address
reloc_target(size_t i)
{ return this->do_reloc_target(i); }
// Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
void
write(unsigned char* view, section_size_type view_size, bool big_endian)
{ this->do_write(view, view_size, big_endian); }
// Return the instruction for THUMB16_SPECIAL_TYPE instruction template
// for the i-th instruction.
uint16_t
thumb16_special(size_t i)
{ return this->do_thumb16_special(i); }
protected:
// This must be defined in the child class.
virtual Arm_address
do_reloc_target(size_t) = 0;
// This may be overridden in the child class.
virtual void
do_write(unsigned char* view, section_size_type view_size, bool big_endian)
{
if (big_endian)
this->do_fixed_endian_write<true>(view, view_size);
else
this->do_fixed_endian_write<false>(view, view_size);
}
// This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
// instruction template.
virtual uint16_t
do_thumb16_special(size_t)
{ gold_unreachable(); }
private:
// A template to implement do_write.
template<bool big_endian>
void inline
do_fixed_endian_write(unsigned char*, section_size_type);
// Its template.
const Stub_template* stub_template_;
// Offset within the section of containing this stub.
section_offset_type offset_;
};
// Reloc stub class. These are stubs we use to fix up relocation because
// of limited branch ranges.
class Reloc_stub : public Stub
{
public:
static const unsigned int invalid_index = static_cast<unsigned int>(-1);
// We assume we never jump to this address.
static const Arm_address invalid_address = static_cast<Arm_address>(-1);
// Return destination address.
Arm_address
destination_address() const
{
gold_assert(this->destination_address_ != this->invalid_address);
return this->destination_address_;
}
// Set destination address.
void
set_destination_address(Arm_address address)
{
gold_assert(address != this->invalid_address);
this->destination_address_ = address;
}
// Reset destination address.
void
reset_destination_address()
{ this->destination_address_ = this->invalid_address; }
// Determine stub type for a branch of a relocation of R_TYPE going
// from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
// the branch target is a thumb instruction. TARGET is used for look
// up ARM-specific linker settings.
static Stub_type
stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
Arm_address branch_target, bool target_is_thumb);
// Reloc_stub key. A key is logically a triplet of a stub type, a symbol
// and an addend. Since we treat global and local symbol differently, we
// use a Symbol object for a global symbol and a object-index pair for
// a local symbol.
class Key
{
public:
// If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
// R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
// and R_SYM must not be invalid_index.
Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
unsigned int r_sym, int32_t addend)
: stub_type_(stub_type), addend_(addend)
{
if (symbol != NULL)
{
this->r_sym_ = Reloc_stub::invalid_index;
this->u_.symbol = symbol;
}
else
{
gold_assert(relobj != NULL && r_sym != invalid_index);
this->r_sym_ = r_sym;
this->u_.relobj = relobj;
}
}
~Key()
{ }
// Accessors: Keys are meant to be read-only object so no modifiers are
// provided.
// Return stub type.
Stub_type
stub_type() const
{ return this->stub_type_; }
// Return the local symbol index or invalid_index.
unsigned int
r_sym() const
{ return this->r_sym_; }
// Return the symbol if there is one.
const Symbol*
symbol() const
{ return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
// Return the relobj if there is one.
const Relobj*
relobj() const
{ return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
// Whether this equals to another key k.
bool
eq(const Key& k) const
{
return ((this->stub_type_ == k.stub_type_)
&& (this->r_sym_ == k.r_sym_)
&& ((this->r_sym_ != Reloc_stub::invalid_index)
? (this->u_.relobj == k.u_.relobj)
: (this->u_.symbol == k.u_.symbol))
&& (this->addend_ == k.addend_));
}
// Return a hash value.
size_t
hash_value() const
{
return (this->stub_type_
^ this->r_sym_
^ gold::string_hash<char>(
(this->r_sym_ != Reloc_stub::invalid_index)
? this->u_.relobj->name().c_str()
: this->u_.symbol->name())
^ this->addend_);
}
// Functors for STL associative containers.
struct hash
{
size_t
operator()(const Key& k) const
{ return k.hash_value(); }
};
struct equal_to
{
bool
operator()(const Key& k1, const Key& k2) const
{ return k1.eq(k2); }
};
// Name of key. This is mainly for debugging.
std::string
name() const ATTRIBUTE_UNUSED;
private:
// Stub type.
Stub_type stub_type_;
// If this is a local symbol, this is the index in the defining object.
// Otherwise, it is invalid_index for a global symbol.
unsigned int r_sym_;
// If r_sym_ is an invalid index, this points to a global symbol.
// Otherwise, it points to a relobj. We used the unsized and target
// independent Symbol and Relobj classes instead of Sized_symbol<32> and
// Arm_relobj, in order to avoid making the stub class a template
// as most of the stub machinery is endianness-neutral. However, it
// may require a bit of casting done by users of this class.
union
{
const Symbol* symbol;
const Relobj* relobj;
} u_;
// Addend associated with a reloc.
int32_t addend_;
};
protected:
// Reloc_stubs are created via a stub factory. So these are protected.
Reloc_stub(const Stub_template* stub_template)
: Stub(stub_template), destination_address_(invalid_address)
{ }
~Reloc_stub()
{ }
friend class Stub_factory;
// Return the relocation target address of the i-th relocation in the
// stub.
Arm_address
do_reloc_target(size_t i)
{
// All reloc stub have only one relocation.
gold_assert(i == 0);
return this->destination_address_;
}
private:
// Address of destination.
Arm_address destination_address_;
};
// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
// THUMB branch that meets the following conditions:
//
// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
// branch address is 0xffe.
// 2. The branch target address is in the same page as the first word of the
// branch.
// 3. The branch follows a 32-bit instruction which is not a branch.
//
// To do the fix up, we need to store the address of the branch instruction
// and its target at least. We also need to store the original branch
// instruction bits for the condition code in a conditional branch. The
// condition code is used in a special instruction template. We also want
// to identify input sections needing Cortex-A8 workaround quickly. We store
// extra information about object and section index of the code section
// containing a branch being fixed up. The information is used to mark
// the code section when we finalize the Cortex-A8 stubs.
//
class Cortex_a8_stub : public Stub
{
public:
~Cortex_a8_stub()
{ }
// Return the object of the code section containing the branch being fixed
// up.
Relobj*
relobj() const
{ return this->relobj_; }
// Return the section index of the code section containing the branch being
// fixed up.
unsigned int
shndx() const
{ return this->shndx_; }
// Return the source address of stub. This is the address of the original
// branch instruction. LSB is 1 always set to indicate that it is a THUMB
// instruction.
Arm_address
source_address() const
{ return this->source_address_; }
// Return the destination address of the stub. This is the branch taken
// address of the original branch instruction. LSB is 1 if it is a THUMB
// instruction address.
Arm_address
destination_address() const
{ return this->destination_address_; }
// Return the instruction being fixed up.
uint32_t
original_insn() const
{ return this->original_insn_; }
protected:
// Cortex_a8_stubs are created via a stub factory. So these are protected.
Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
unsigned int shndx, Arm_address source_address,
Arm_address destination_address, uint32_t original_insn)
: Stub(stub_template), relobj_(relobj), shndx_(shndx),
source_address_(source_address | 1U),
destination_address_(destination_address),
original_insn_(original_insn)
{ }
friend class Stub_factory;
// Return the relocation target address of the i-th relocation in the
// stub.
Arm_address
do_reloc_target(size_t i)
{
if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
{
// The conditional branch veneer has two relocations.
gold_assert(i < 2);
return i == 0 ? this->source_address_ + 4 : this->destination_address_;
}
else
{
// All other Cortex-A8 stubs have only one relocation.
gold_assert(i == 0);
return this->destination_address_;
}
}
// Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
uint16_t
do_thumb16_special(size_t);
private:
// Object of the code section containing the branch being fixed up.
Relobj* relobj_;
// Section index of the code section containing the branch begin fixed up.
unsigned int shndx_;
// Source address of original branch.
Arm_address source_address_;
// Destination address of the original branch.
Arm_address destination_address_;
// Original branch instruction. This is needed for copying the condition
// code from a condition branch to its stub.
uint32_t original_insn_;
};
// ARMv4 BX Rx branch relocation stub class.
class Arm_v4bx_stub : public Stub
{
public:
~Arm_v4bx_stub()
{ }
// Return the associated register.
uint32_t
reg() const
{ return this->reg_; }
protected:
// Arm V4BX stubs are created via a stub factory. So these are protected.
Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
: Stub(stub_template), reg_(reg)
{ }
friend class Stub_factory;
// Return the relocation target address of the i-th relocation in the
// stub.
Arm_address
do_reloc_target(size_t)
{ gold_unreachable(); }
// This may be overridden in the child class.
virtual void
do_write(unsigned char* view, section_size_type view_size, bool big_endian)
{
if (big_endian)
this->do_fixed_endian_v4bx_write<true>(view, view_size);
else
this->do_fixed_endian_v4bx_write<false>(view, view_size);
}
private:
// A template to implement do_write.
template<bool big_endian>
void inline
do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
{
const Insn_template* insns = this->stub_template()->insns();
elfcpp::Swap<32, big_endian>::writeval(view,
(insns[0].data()
+ (this->reg_ << 16)));
view += insns[0].size();
elfcpp::Swap<32, big_endian>::writeval(view,
(insns[1].data() + this->reg_));
view += insns[1].size();
elfcpp::Swap<32, big_endian>::writeval(view,
(insns[2].data() + this->reg_));
}
// A register index (r0-r14), which is associated with the stub.
uint32_t reg_;
};
// Stub factory class.
class Stub_factory
{
public:
// Return the unique instance of this class.
static const Stub_factory&
get_instance()
{
static Stub_factory singleton;
return singleton;
}
// Make a relocation stub.
Reloc_stub*
make_reloc_stub(Stub_type stub_type) const
{
gold_assert(stub_type >= arm_stub_reloc_first
&& stub_type <= arm_stub_reloc_last);
return new Reloc_stub(this->stub_templates_[stub_type]);
}
// Make a Cortex-A8 stub.
Cortex_a8_stub*
make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
Arm_address source, Arm_address destination,
uint32_t original_insn) const
{
gold_assert(stub_type >= arm_stub_cortex_a8_first
&& stub_type <= arm_stub_cortex_a8_last);
return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
source, destination, original_insn);
}
// Make an ARM V4BX relocation stub.
// This method creates a stub from the arm_stub_v4_veneer_bx template only.
Arm_v4bx_stub*
make_arm_v4bx_stub(uint32_t reg) const
{
gold_assert(reg < 0xf);
return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
reg);
}
private:
// Constructor and destructor are protected since we only return a single
// instance created in Stub_factory::get_instance().
Stub_factory();
// A Stub_factory may not be copied since it is a singleton.
Stub_factory(const Stub_factory&);
Stub_factory& operator=(Stub_factory&);
// Stub templates. These are initialized in the constructor.
const Stub_template* stub_templates_[arm_stub_type_last+1];
};
// A class to hold stubs for the ARM target.
template<bool big_endian>
class Stub_table : public Output_data
{
public:
Stub_table(Arm_input_section<big_endian>* owner)
: Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
prev_data_size_(0), prev_addralign_(1)
{ }
~Stub_table()
{ }
// Owner of this stub table.
Arm_input_section<big_endian>*
owner() const
{ return this->owner_; }
// Whether this stub table is empty.
bool
empty() const
{
return (this->reloc_stubs_.empty()
&& this->cortex_a8_stubs_.empty()
&& this->arm_v4bx_stubs_.empty());
}
// Return the current data size.
off_t
current_data_size() const
{ return this->current_data_size_for_child(); }
// Add a STUB using KEY. The caller is responsible for avoiding addition
// if a STUB with the same key has already been added.
void
add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
{
const Stub_template* stub_template = stub->stub_template();
gold_assert(stub_template->type() == key.stub_type());
this->reloc_stubs_[key] = stub;
// Assign stub offset early. We can do this because we never remove
// reloc stubs and they are in the beginning of the stub table.
uint64_t align = stub_template->alignment();
this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
stub->set_offset(this->reloc_stubs_size_);
this->reloc_stubs_size_ += stub_template->size();
this->reloc_stubs_addralign_ =
std::max(this->reloc_stubs_addralign_, align);
}
// Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
// The caller is responsible for avoiding addition if a STUB with the same
// address has already been added.
void
add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
{
std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
this->cortex_a8_stubs_.insert(value);
}
// Add an ARM V4BX relocation stub. A register index will be retrieved
// from the stub.
void
add_arm_v4bx_stub(Arm_v4bx_stub* stub)
{
gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
this->arm_v4bx_stubs_[stub->reg()] = stub;
}
// Remove all Cortex-A8 stubs.
void
remove_all_cortex_a8_stubs();
// Look up a relocation stub using KEY. Return NULL if there is none.
Reloc_stub*
find_reloc_stub(const Reloc_stub::Key& key) const
{
typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
return (p != this->reloc_stubs_.end()) ? p->second : NULL;
}
// Look up an arm v4bx relocation stub using the register index.
// Return NULL if there is none.
Arm_v4bx_stub*
find_arm_v4bx_stub(const uint32_t reg) const
{
gold_assert(reg < 0xf);
return this->arm_v4bx_stubs_[reg];
}
// Relocate stubs in this stub table.
void
relocate_stubs(const Relocate_info<32, big_endian>*,
Target_arm<big_endian>*, Output_section*,
unsigned char*, Arm_address, section_size_type);
// Update data size and alignment at the end of a relaxation pass. Return
// true if either data size or alignment is different from that of the
// previous relaxation pass.
bool
update_data_size_and_addralign();
// Finalize stubs. Set the offsets of all stubs and mark input sections
// needing the Cortex-A8 workaround.
void
finalize_stubs();
// Apply Cortex-A8 workaround to an address range.
void
apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
unsigned char*, Arm_address,
section_size_type);
protected:
// Write out section contents.
void
do_write(Output_file*);
// Return the required alignment.
uint64_t
do_addralign() const
{ return this->prev_addralign_; }
// Reset address and file offset.
void
do_reset_address_and_file_offset()
{ this->set_current_data_size_for_child(this->prev_data_size_); }
// Set final data size.
void
set_final_data_size()
{ this->set_data_size(this->current_data_size()); }
private:
// Relocate one stub.
void
relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
Target_arm<big_endian>*, Output_section*,
unsigned char*, Arm_address, section_size_type);
// Unordered map of relocation stubs.
typedef
Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
Reloc_stub::Key::equal_to>
Reloc_stub_map;
// List of Cortex-A8 stubs ordered by addresses of branches being
// fixed up in output.
typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
// List of Arm V4BX relocation stubs ordered by associated registers.
typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
// Owner of this stub table.
Arm_input_section<big_endian>* owner_;
// The relocation stubs.
Reloc_stub_map reloc_stubs_;
// Size of reloc stubs.
off_t reloc_stubs_size_;
// Maximum address alignment of reloc stubs.
uint64_t reloc_stubs_addralign_;
// The cortex_a8_stubs.
Cortex_a8_stub_list cortex_a8_stubs_;
// The Arm V4BX relocation stubs.
Arm_v4bx_stub_list arm_v4bx_stubs_;
// data size of this in the previous pass.
off_t prev_data_size_;
// address alignment of this in the previous pass.
uint64_t prev_addralign_;
};
// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
// we add to the end of an EXIDX input section that goes into the output.
class Arm_exidx_cantunwind : public Output_section_data
{
public:
Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
: Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
{ }
// Return the object containing the section pointed by this.
Relobj*
relobj() const
{ return this->relobj_; }
// Return the section index of the section pointed by this.
unsigned int
shndx() const
{ return this->shndx_; }
protected:
void
do_write(Output_file* of)
{
if (parameters->target().is_big_endian())
this->do_fixed_endian_write<true>(of);
else
this->do_fixed_endian_write<false>(of);
}
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** ARM cantunwind")); }
private:
// Implement do_write for a given endianness.
template<bool big_endian>
void inline
do_fixed_endian_write(Output_file*);
// The object containing the section pointed by this.
Relobj* relobj_;
// The section index of the section pointed by this.
unsigned int shndx_;
};
// During EXIDX coverage fix-up, we compact an EXIDX section. The
// Offset map is used to map input section offset within the EXIDX section
// to the output offset from the start of this EXIDX section.
typedef std::map<section_offset_type, section_offset_type>
Arm_exidx_section_offset_map;
// Arm_exidx_merged_section class. This represents an EXIDX input section
// with some of its entries merged.
class Arm_exidx_merged_section : public Output_relaxed_input_section
{
public:
// Constructor for Arm_exidx_merged_section.
// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
// SECTION_OFFSET_MAP points to a section offset map describing how
// parts of the input section are mapped to output. DELETED_BYTES is
// the number of bytes deleted from the EXIDX input section.
Arm_exidx_merged_section(
const Arm_exidx_input_section& exidx_input_section,
const Arm_exidx_section_offset_map& section_offset_map,
uint32_t deleted_bytes);
// Build output contents.
void
build_contents(const unsigned char*, section_size_type);
// Return the original EXIDX input section.
const Arm_exidx_input_section&
exidx_input_section() const
{ return this->exidx_input_section_; }
// Return the section offset map.
const Arm_exidx_section_offset_map&
section_offset_map() const
{ return this->section_offset_map_; }
protected:
// Write merged section into file OF.
void
do_write(Output_file* of);
bool
do_output_offset(const Relobj*, unsigned int, section_offset_type,
section_offset_type*) const;
private:
// Original EXIDX input section.
const Arm_exidx_input_section& exidx_input_section_;
// Section offset map.
const Arm_exidx_section_offset_map& section_offset_map_;
// Merged section contents. We need to keep build the merged section
// and save it here to avoid accessing the original EXIDX section when
// we cannot lock the sections' object.
unsigned char* section_contents_;
};
// A class to wrap an ordinary input section containing executable code.
template<bool big_endian>
class Arm_input_section : public Output_relaxed_input_section
{
public:
Arm_input_section(Relobj* relobj, unsigned int shndx)
: Output_relaxed_input_section(relobj, shndx, 1),
original_addralign_(1), original_size_(0), stub_table_(NULL),
original_contents_(NULL)
{ }
~Arm_input_section()
{ delete[] this->original_contents_; }
// Initialize.
void
init();
// Whether this is a stub table owner.
bool
is_stub_table_owner() const
{ return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
// Return the stub table.
Stub_table<big_endian>*
stub_table() const
{ return this->stub_table_; }
// Set the stub_table.
void
set_stub_table(Stub_table<big_endian>* stub_table)
{ this->stub_table_ = stub_table; }
// Downcast a base pointer to an Arm_input_section pointer. This is
// not type-safe but we only use Arm_input_section not the base class.
static Arm_input_section<big_endian>*
as_arm_input_section(Output_relaxed_input_section* poris)
{ return static_cast<Arm_input_section<big_endian>*>(poris); }
// Return the original size of the section.
uint32_t
original_size() const
{ return this->original_size_; }
protected:
// Write data to output file.
void
do_write(Output_file*);
// Return required alignment of this.
uint64_t
do_addralign() const
{
if (this->is_stub_table_owner())
return std::max(this->stub_table_->addralign(),
static_cast<uint64_t>(this->original_addralign_));
else
return this->original_addralign_;
}
// Finalize data size.
void
set_final_data_size();
// Reset address and file offset.
void
do_reset_address_and_file_offset();
// Output offset.
bool
do_output_offset(const Relobj* object, unsigned int shndx,
section_offset_type offset,
section_offset_type* poutput) const
{
if ((object == this->relobj())
&& (shndx == this->shndx())
&& (offset >= 0)
&& (offset <=
convert_types<section_offset_type, uint32_t>(this->original_size_)))
{
*poutput = offset;
return true;
}
else
return false;
}
private:
// Copying is not allowed.
Arm_input_section(const Arm_input_section&);
Arm_input_section& operator=(const Arm_input_section&);
// Address alignment of the original input section.
uint32_t original_addralign_;
// Section size of the original input section.
uint32_t original_size_;
// Stub table.
Stub_table<big_endian>* stub_table_;
// Original section contents. We have to make a copy here since the file
// containing the original section may not be locked when we need to access
// the contents.
unsigned char* original_contents_;
};
// Arm_exidx_fixup class. This is used to define a number of methods
// and keep states for fixing up EXIDX coverage.
class Arm_exidx_fixup
{
public:
Arm_exidx_fixup(Output_section* exidx_output_section,
bool merge_exidx_entries = true)
: exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
last_inlined_entry_(0), last_input_section_(NULL),
section_offset_map_(NULL), first_output_text_section_(NULL),
merge_exidx_entries_(merge_exidx_entries)
{ }
~Arm_exidx_fixup()
{ delete this->section_offset_map_; }
// Process an EXIDX section for entry merging. SECTION_CONTENTS points
// to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
// number of bytes to be deleted in output. If parts of the input EXIDX
// section are merged a heap allocated Arm_exidx_section_offset_map is store
// in the located PSECTION_OFFSET_MAP. The caller owns the map and is
// responsible for releasing it.
template<bool big_endian>
uint32_t
process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
const unsigned char* section_contents,
section_size_type section_size,
Arm_exidx_section_offset_map** psection_offset_map);
// Append an EXIDX_CANTUNWIND entry pointing at the end of the last
// input section, if there is not one already.
void
add_exidx_cantunwind_as_needed();
// Return the output section for the text section which is linked to the
// first exidx input in output.
Output_section*
first_output_text_section() const
{ return this->first_output_text_section_; }
private:
// Copying is not allowed.
Arm_exidx_fixup(const Arm_exidx_fixup&);
Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
// Type of EXIDX unwind entry.
enum Unwind_type
{
// No type.
UT_NONE,
// EXIDX_CANTUNWIND.
UT_EXIDX_CANTUNWIND,
// Inlined entry.
UT_INLINED_ENTRY,
// Normal entry.
UT_NORMAL_ENTRY,
};
// Process an EXIDX entry. We only care about the second word of the
// entry. Return true if the entry can be deleted.
bool
process_exidx_entry(uint32_t second_word);
// Update the current section offset map during EXIDX section fix-up.
// If there is no map, create one. INPUT_OFFSET is the offset of a
// reference point, DELETED_BYTES is the number of deleted by in the
// section so far. If DELETE_ENTRY is true, the reference point and
// all offsets after the previous reference point are discarded.
void
update_offset_map(section_offset_type input_offset,
section_size_type deleted_bytes, bool delete_entry);
// EXIDX output section.
Output_section* exidx_output_section_;
// Unwind type of the last EXIDX entry processed.
Unwind_type last_unwind_type_;
// Last seen inlined EXIDX entry.
uint32_t last_inlined_entry_;
// Last processed EXIDX input section.
const Arm_exidx_input_section* last_input_section_;
// Section offset map created in process_exidx_section.
Arm_exidx_section_offset_map* section_offset_map_;
// Output section for the text section which is linked to the first exidx
// input in output.
Output_section* first_output_text_section_;
bool merge_exidx_entries_;
};
// Arm output section class. This is defined mainly to add a number of
// stub generation methods.
template<bool big_endian>
class Arm_output_section : public Output_section
{
public:
typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
// We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
Arm_output_section(const char* name, elfcpp::Elf_Word type,
elfcpp::Elf_Xword flags)
: Output_section(name, type,
(type == elfcpp::SHT_ARM_EXIDX
? flags | elfcpp::SHF_LINK_ORDER
: flags))
{
if (type == elfcpp::SHT_ARM_EXIDX)
this->set_always_keeps_input_sections();
}
~Arm_output_section()
{ }
// Group input sections for stub generation.
void
group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
// Downcast a base pointer to an Arm_output_section pointer. This is
// not type-safe but we only use Arm_output_section not the base class.
static Arm_output_section<big_endian>*
as_arm_output_section(Output_section* os)
{ return static_cast<Arm_output_section<big_endian>*>(os); }
// Append all input text sections in this into LIST.
void
append_text_sections_to_list(Text_section_list* list);
// Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
// is a list of text input sections sorted in ascending order of their
// output addresses.
void
fix_exidx_coverage(Layout* layout,
const Text_section_list& sorted_text_section,
Symbol_table* symtab,
bool merge_exidx_entries,
const Task* task);
// Link an EXIDX section into its corresponding text section.
void
set_exidx_section_link();
private:
// For convenience.
typedef Output_section::Input_section Input_section;
typedef Output_section::Input_section_list Input_section_list;
// Create a stub group.
void create_stub_group(Input_section_list::const_iterator,
Input_section_list::const_iterator,
Input_section_list::const_iterator,
Target_arm<big_endian>*,
std::vector<Output_relaxed_input_section*>*,
const Task* task);
};
// Arm_exidx_input_section class. This represents an EXIDX input section.
class Arm_exidx_input_section
{
public:
static const section_offset_type invalid_offset =
static_cast<section_offset_type>(-1);
Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
unsigned int link, uint32_t size,
uint32_t addralign, uint32_t text_size)
: relobj_(relobj), shndx_(shndx), link_(link), size_(size),
addralign_(addralign), text_size_(text_size), has_errors_(false)
{ }
~Arm_exidx_input_section()
{ }
// Accessors: This is a read-only class.
// Return the object containing this EXIDX input section.
Relobj*
relobj() const
{ return this->relobj_; }
// Return the section index of this EXIDX input section.
unsigned int
shndx() const
{ return this->shndx_; }
// Return the section index of linked text section in the same object.
unsigned int
link() const
{ return this->link_; }
// Return size of the EXIDX input section.
uint32_t
size() const
{ return this->size_; }
// Return address alignment of EXIDX input section.
uint32_t
addralign() const
{ return this->addralign_; }
// Return size of the associated text input section.
uint32_t
text_size() const
{ return this->text_size_; }
// Whether there are any errors in the EXIDX input section.
bool
has_errors() const
{ return this->has_errors_; }
// Set has-errors flag.
void
set_has_errors()
{ this->has_errors_ = true; }
private:
// Object containing this.
Relobj* relobj_;
// Section index of this.
unsigned int shndx_;
// text section linked to this in the same object.
unsigned int link_;
// Size of this. For ARM 32-bit is sufficient.
uint32_t size_;
// Address alignment of this. For ARM 32-bit is sufficient.
uint32_t addralign_;
// Size of associated text section.
uint32_t text_size_;
// Whether this has any errors.
bool has_errors_;
};
// Arm_relobj class.
template<bool big_endian>
class Arm_relobj : public Sized_relobj_file<32, big_endian>
{
public:
static const Arm_address invalid_address = static_cast<Arm_address>(-1);
Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
const typename elfcpp::Ehdr<32, big_endian>& ehdr)
: Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
stub_tables_(), local_symbol_is_thumb_function_(),
attributes_section_data_(NULL), mapping_symbols_info_(),
section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
output_local_symbol_count_needs_update_(false),
merge_flags_and_attributes_(true)
{ }
~Arm_relobj()
{ delete this->attributes_section_data_; }
// Return the stub table of the SHNDX-th section if there is one.
Stub_table<big_endian>*
stub_table(unsigned int shndx) const
{
gold_assert(shndx < this->stub_tables_.size());
return this->stub_tables_[shndx];
}
// Set STUB_TABLE to be the stub_table of the SHNDX-th section.
void
set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
{
gold_assert(shndx < this->stub_tables_.size());
this->stub_tables_[shndx] = stub_table;
}
// Whether a local symbol is a THUMB function. R_SYM is the symbol table
// index. This is only valid after do_count_local_symbol is called.
bool
local_symbol_is_thumb_function(unsigned int r_sym) const
{
gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
return this->local_symbol_is_thumb_function_[r_sym];
}
// Scan all relocation sections for stub generation.
void
scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
const Layout*);
// Convert regular input section with index SHNDX to a relaxed section.
void
convert_input_section_to_relaxed_section(unsigned shndx)
{
// The stubs have relocations and we need to process them after writing
// out the stubs. So relocation now must follow section write.
this->set_section_offset(shndx, -1ULL);
this->set_relocs_must_follow_section_writes();
}
// Downcast a base pointer to an Arm_relobj pointer. This is
// not type-safe but we only use Arm_relobj not the base class.
static Arm_relobj<big_endian>*
as_arm_relobj(Relobj* relobj)
{ return static_cast<Arm_relobj<big_endian>*>(relobj); }
// Processor-specific flags in ELF file header. This is valid only after
// reading symbols.
elfcpp::Elf_Word
processor_specific_flags() const
{ return this->processor_specific_flags_; }
// Attribute section data This is the contents of the .ARM.attribute section
// if there is one.
const Attributes_section_data*
attributes_section_data() const
{ return this->attributes_section_data_; }
// Mapping symbol location.
typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
// Functor for STL container.
struct Mapping_symbol_position_less
{
bool
operator()(const Mapping_symbol_position& p1,
const Mapping_symbol_position& p2) const
{
return (p1.first < p2.first
|| (p1.first == p2.first && p1.second < p2.second));
}
};
// We only care about the first character of a mapping symbol, so
// we only store that instead of the whole symbol name.
typedef std::map<Mapping_symbol_position, char,
Mapping_symbol_position_less> Mapping_symbols_info;
// Whether a section contains any Cortex-A8 workaround.
bool
section_has_cortex_a8_workaround(unsigned int shndx) const
{
return (this->section_has_cortex_a8_workaround_ != NULL
&& (*this->section_has_cortex_a8_workaround_)[shndx]);
}
// Mark a section that has Cortex-A8 workaround.
void
mark_section_for_cortex_a8_workaround(unsigned int shndx)
{
if (this->section_has_cortex_a8_workaround_ == NULL)
this->section_has_cortex_a8_workaround_ =
new std::vector<bool>(this->shnum(), false);
(*this->section_has_cortex_a8_workaround_)[shndx] = true;
}
// Return the EXIDX section of an text section with index SHNDX or NULL
// if the text section has no associated EXIDX section.
const Arm_exidx_input_section*
exidx_input_section_by_link(unsigned int shndx) const
{
Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
return ((p != this->exidx_section_map_.end()
&& p->second->link() == shndx)
? p->second
: NULL);
}
// Return the EXIDX section with index SHNDX or NULL if there is none.
const Arm_exidx_input_section*
exidx_input_section_by_shndx(unsigned shndx) const
{
Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
return ((p != this->exidx_section_map_.end()
&& p->second->shndx() == shndx)
? p->second
: NULL);
}
// Whether output local symbol count needs updating.
bool
output_local_symbol_count_needs_update() const
{ return this->output_local_symbol_count_needs_update_; }
// Set output_local_symbol_count_needs_update flag to be true.
void
set_output_local_symbol_count_needs_update()
{ this->output_local_symbol_count_needs_update_ = true; }
// Update output local symbol count at the end of relaxation.
void
update_output_local_symbol_count();
// Whether we want to merge processor-specific flags and attributes.
bool
merge_flags_and_attributes() const
{ return this->merge_flags_and_attributes_; }
// Export list of EXIDX section indices.
void
get_exidx_shndx_list(std::vector<unsigned int>* list) const
{
list->clear();
for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
p != this->exidx_section_map_.end();
++p)
{
if (p->second->shndx() == p->first)
list->push_back(p->first);
}
// Sort list to make result independent of implementation of map.
std::sort(list->begin(), list->end());
}
protected:
// Post constructor setup.
void
do_setup()
{
// Call parent's setup method.
Sized_relobj_file<32, big_endian>::do_setup();
// Initialize look-up tables.
Stub_table_list empty_stub_table_list(this->shnum(), NULL);
this->stub_tables_.swap(empty_stub_table_list);
}
// Count the local symbols.
void
do_count_local_symbols(Stringpool_template<char>*,
Stringpool_template<char>*);
void
do_relocate_sections(
const Symbol_table* symtab, const Layout* layout,
const unsigned char* pshdrs, Output_file* of,
typename Sized_relobj_file<32, big_endian>::Views* pivews);
// Read the symbol information.
void
do_read_symbols(Read_symbols_data* sd);
// Process relocs for garbage collection.
void
do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
private:
// Whether a section needs to be scanned for relocation stubs.
bool
section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
const Relobj::Output_sections&,
const Symbol_table*, const unsigned char*);
// Whether a section is a scannable text section.
bool
section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
const Output_section*, const Symbol_table*);
// Whether a section needs to be scanned for the Cortex-A8 erratum.
bool
section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
unsigned int, Output_section*,
const Symbol_table*);
// Scan a section for the Cortex-A8 erratum.
void
scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
unsigned int, Output_section*,
Target_arm<big_endian>*);
// Find the linked text section of an EXIDX section by looking at the
// first relocation of the EXIDX section. PSHDR points to the section
// headers of a relocation section and PSYMS points to the local symbols.
// PSHNDX points to a location storing the text section index if found.
// Return whether we can find the linked section.
bool
find_linked_text_section(const unsigned char* pshdr,
const unsigned char* psyms, unsigned int* pshndx);
//
// Make a new Arm_exidx_input_section object for EXIDX section with
// index SHNDX and section header SHDR. TEXT_SHNDX is the section
// index of the linked text section.
void
make_exidx_input_section(unsigned int shndx,
const elfcpp::Shdr<32, big_endian>& shdr,
unsigned int text_shndx,
const elfcpp::Shdr<32, big_endian>& text_shdr);
// Return the output address of either a plain input section or a
// relaxed input section. SHNDX is the section index.
Arm_address
simple_input_section_output_address(unsigned int, Output_section*);
typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
Exidx_section_map;
// List of stub tables.
Stub_table_list stub_tables_;
// Bit vector to tell if a local symbol is a thumb function or not.
// This is only valid after do_count_local_symbol is called.
std::vector<bool> local_symbol_is_thumb_function_;
// processor-specific flags in ELF file header.
elfcpp::Elf_Word processor_specific_flags_;
// Object attributes if there is an .ARM.attributes section or NULL.
Attributes_section_data* attributes_section_data_;
// Mapping symbols information.
Mapping_symbols_info mapping_symbols_info_;
// Bitmap to indicate sections with Cortex-A8 workaround or NULL.
std::vector<bool>* section_has_cortex_a8_workaround_;
// Map a text section to its associated .ARM.exidx section, if there is one.
Exidx_section_map exidx_section_map_;
// Whether output local symbol count needs updating.
bool output_local_symbol_count_needs_update_;
// Whether we merge processor flags and attributes of this object to
// output.
bool merge_flags_and_attributes_;
};
// Arm_dynobj class.
template<bool big_endian>
class Arm_dynobj : public Sized_dynobj<32, big_endian>
{
public:
Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
const elfcpp::Ehdr<32, big_endian>& ehdr)
: Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
processor_specific_flags_(0), attributes_section_data_(NULL)
{ }
~Arm_dynobj()
{ delete this->attributes_section_data_; }
// Downcast a base pointer to an Arm_relobj pointer. This is
// not type-safe but we only use Arm_relobj not the base class.
static Arm_dynobj<big_endian>*
as_arm_dynobj(Dynobj* dynobj)
{ return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
// Processor-specific flags in ELF file header. This is valid only after
// reading symbols.
elfcpp::Elf_Word
processor_specific_flags() const
{ return this->processor_specific_flags_; }
// Attributes section data.
const Attributes_section_data*
attributes_section_data() const
{ return this->attributes_section_data_; }
protected:
// Read the symbol information.
void
do_read_symbols(Read_symbols_data* sd);
private:
// processor-specific flags in ELF file header.
elfcpp::Elf_Word processor_specific_flags_;
// Object attributes if there is an .ARM.attributes section or NULL.
Attributes_section_data* attributes_section_data_;
};
// Functor to read reloc addends during stub generation.
template<int sh_type, bool big_endian>
struct Stub_addend_reader
{
// Return the addend for a relocation of a particular type. Depending
// on whether this is a REL or RELA relocation, read the addend from a
// view or from a Reloc object.
elfcpp::Elf_types<32>::Elf_Swxword
operator()(
unsigned int /* r_type */,
const unsigned char* /* view */,
const typename Reloc_types<sh_type,
32, big_endian>::Reloc& /* reloc */) const;
};
// Specialized Stub_addend_reader for SHT_REL type relocation sections.
template<bool big_endian>
struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
{
elfcpp::Elf_types<32>::Elf_Swxword
operator()(
unsigned int,
const unsigned char*,
const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
};
// Specialized Stub_addend_reader for RELA type relocation sections.
// We currently do not handle RELA type relocation sections but it is trivial
// to implement the addend reader. This is provided for completeness and to
// make it easier to add support for RELA relocation sections in the future.
template<bool big_endian>
struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
{
elfcpp::Elf_types<32>::Elf_Swxword
operator()(
unsigned int,
const unsigned char*,
const typename Reloc_types<elfcpp::SHT_RELA, 32,
big_endian>::Reloc& reloc) const
{ return reloc.get_r_addend(); }
};
// Cortex_a8_reloc class. We keep record of relocation that may need
// the Cortex-A8 erratum workaround.
class Cortex_a8_reloc
{
public:
Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
Arm_address destination)
: reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
{ }
~Cortex_a8_reloc()
{ }
// Accessors: This is a read-only class.
// Return the relocation stub associated with this relocation if there is
// one.
const Reloc_stub*
reloc_stub() const
{ return this->reloc_stub_; }
// Return the relocation type.
unsigned int
r_type() const
{ return this->r_type_; }
// Return the destination address of the relocation. LSB stores the THUMB
// bit.
Arm_address
destination() const
{ return this->destination_; }
private:
// Associated relocation stub if there is one, or NULL.
const Reloc_stub* reloc_stub_;
// Relocation type.
unsigned int r_type_;
// Destination address of this relocation. LSB is used to distinguish
// ARM/THUMB mode.
Arm_address destination_;
};
// Arm_output_data_got class. We derive this from Output_data_got to add
// extra methods to handle TLS relocations in a static link.
template<bool big_endian>
class Arm_output_data_got : public Output_data_got<32, big_endian>
{
public:
Arm_output_data_got(Symbol_table* symtab, Layout* layout)
: Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
{ }
// Add a static entry for the GOT entry at OFFSET. GSYM is a global
// symbol and R_TYPE is the code of a dynamic relocation that needs to be
// applied in a static link.
void
add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
{ this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
// Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
// defining a local symbol with INDEX. R_TYPE is the code of a dynamic
// relocation that needs to be applied in a static link.
void
add_static_reloc(unsigned int got_offset, unsigned int r_type,
Sized_relobj_file<32, big_endian>* relobj,
unsigned int index)
{
this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
index));
}
// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
// The first one is initialized to be 1, which is the module index for
// the main executable and the second one 0. A reloc of the type
// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
// be applied by gold. GSYM is a global symbol.
void
add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
// Same as the above but for a local symbol in OBJECT with INDEX.
void
add_tls_gd32_with_static_reloc(unsigned int got_type,
Sized_relobj_file<32, big_endian>* object,
unsigned int index);
protected:
// Write out the GOT table.
void
do_write(Output_file*);
private:
// This class represent dynamic relocations that need to be applied by
// gold because we are using TLS relocations in a static link.
class Static_reloc
{
public:
Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
: got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
{ this->u_.global.symbol = gsym; }
Static_reloc(unsigned int got_offset, unsigned int r_type,
Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
: got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
{
this->u_.local.relobj = relobj;
this->u_.local.index = index;
}
// Return the GOT offset.
unsigned int
got_offset() const
{ return this->got_offset_; }
// Relocation type.
unsigned int
r_type() const
{ return this->r_type_; }
// Whether the symbol is global or not.
bool
symbol_is_global() const
{ return this->symbol_is_global_; }
// For a relocation against a global symbol, the global symbol.
Symbol*
symbol() const
{
gold_assert(this->symbol_is_global_);
return this->u_.global.symbol;
}
// For a relocation against a local symbol, the defining object.
Sized_relobj_file<32, big_endian>*
relobj() const
{
gold_assert(!this->symbol_is_global_);
return this->u_.local.relobj;
}
// For a relocation against a local symbol, the local symbol index.
unsigned int
index() const
{
gold_assert(!this->symbol_is_global_);
return this->u_.local.index;
}
private:
// GOT offset of the entry to which this relocation is applied.
unsigned int got_offset_;
// Type of relocation.
unsigned int r_type_;
// Whether this relocation is against a global symbol.
bool symbol_is_global_;
// A global or local symbol.
union
{
struct
{
// For a global symbol, the symbol itself.
Symbol* symbol;
} global;
struct
{
// For a local symbol, the object defining object.
Sized_relobj_file<32, big_endian>* relobj;
// For a local symbol, the symbol index.
unsigned int index;
} local;
} u_;
};
// Symbol table of the output object.
Symbol_table* symbol_table_;
// Layout of the output object.
Layout* layout_;
// Static relocs to be applied to the GOT.
std::vector<Static_reloc> static_relocs_;
};
// The ARM target has many relocation types with odd-sizes or noncontiguous
// bits. The default handling of relocatable relocation cannot process these
// relocations. So we have to extend the default code.
template<bool big_endian, typename Classify_reloc>
class Arm_scan_relocatable_relocs :
public Default_scan_relocatable_relocs<Classify_reloc>
{
public:
// Return the strategy to use for a local symbol which is a section
// symbol, given the relocation type.
inline Relocatable_relocs::Reloc_strategy
local_section_strategy(unsigned int r_type, Relobj*)
{
if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
else
{
if (r_type == elfcpp::R_ARM_TARGET1
|| r_type == elfcpp::R_ARM_TARGET2)
{
const Target_arm<big_endian>* arm_target =
Target_arm<big_endian>::default_target();
r_type = arm_target->get_real_reloc_type(r_type);
}
switch(r_type)
{
// Relocations that write nothing. These exclude R_ARM_TARGET1
// and R_ARM_TARGET2.
case elfcpp::R_ARM_NONE:
case elfcpp::R_ARM_V4BX:
case elfcpp::R_ARM_TLS_GOTDESC:
case elfcpp::R_ARM_TLS_CALL:
case elfcpp::R_ARM_TLS_DESCSEQ:
case elfcpp::R_ARM_THM_TLS_CALL:
case elfcpp::R_ARM_GOTRELAX:
case elfcpp::R_ARM_GNU_VTENTRY:
case elfcpp::R_ARM_GNU_VTINHERIT:
case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
// These should have been converted to something else above.
case elfcpp::R_ARM_TARGET1:
case elfcpp::R_ARM_TARGET2:
gold_unreachable();
// Relocations that write full 32 bits and
// have alignment of 1.
case elfcpp::R_ARM_ABS32:
case elfcpp::R_ARM_REL32:
case elfcpp::R_ARM_SBREL32:
case elfcpp::R_ARM_GOTOFF32:
case elfcpp::R_ARM_BASE_PREL:
case elfcpp::R_ARM_GOT_BREL:
case elfcpp::R_ARM_BASE_ABS:
case elfcpp::R_ARM_ABS32_NOI:
case elfcpp::R_ARM_REL32_NOI:
case elfcpp::R_ARM_PLT32_ABS:
case elfcpp::R_ARM_GOT_ABS:
case elfcpp::R_ARM_GOT_PREL:
case elfcpp::R_ARM_TLS_GD32:
case elfcpp::R_ARM_TLS_LDM32:
case elfcpp::R_ARM_TLS_LDO32:
case elfcpp::R_ARM_TLS_IE32:
case elfcpp::R_ARM_TLS_LE32:
return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
default:
// For all other static relocations, return RELOC_SPECIAL.
return Relocatable_relocs::RELOC_SPECIAL;
}
}
}
};
template<bool big_endian>
class Target_arm : public Sized_target<32, big_endian>
{
public:
typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
Reloc_section;
// When were are relocating a stub, we pass this as the relocation number.
static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
Target_arm(const Target::Target_info* info = &arm_info)
: Sized_target<32, big_endian>(info),
got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
stub_tables_(), stub_factory_(Stub_factory::get_instance()),
should_force_pic_veneer_(false),
arm_input_section_map_(), attributes_section_data_(NULL),
fix_cortex_a8_(false), cortex_a8_relocs_info_(),
target1_reloc_(elfcpp::R_ARM_ABS32),
// This can be any reloc type but usually is R_ARM_GOT_PREL.
target2_reloc_(elfcpp::R_ARM_GOT_PREL)
{ }
// Whether we force PCI branch veneers.
bool
should_force_pic_veneer() const
{ return this->should_force_pic_veneer_; }
// Set PIC veneer flag.
void
set_should_force_pic_veneer(bool value)
{ this->should_force_pic_veneer_ = value; }
// Whether we use THUMB-2 instructions.
bool
using_thumb2() const
{
Object_attribute* attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
int arch = attr->int_value();
return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
}
// Whether we use THUMB/THUMB-2 instructions only.
bool
using_thumb_only() const
{
Object_attribute* attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
|| attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
return true;
if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
&& attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
return false;
attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
return attr->int_value() == 'M';
}
// Whether we have an NOP instruction. If not, use mov r0, r0 instead.
bool
may_use_arm_nop() const
{
Object_attribute* attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
int arch = attr->int_value();
return (arch == elfcpp::TAG_CPU_ARCH_V6T2
|| arch == elfcpp::TAG_CPU_ARCH_V6K
|| arch == elfcpp::TAG_CPU_ARCH_V7
|| arch == elfcpp::TAG_CPU_ARCH_V7E_M);
}
// Whether we have THUMB-2 NOP.W instruction.
bool
may_use_thumb2_nop() const
{
Object_attribute* attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
int arch = attr->int_value();
return (arch == elfcpp::TAG_CPU_ARCH_V6T2
|| arch == elfcpp::TAG_CPU_ARCH_V7
|| arch == elfcpp::TAG_CPU_ARCH_V7E_M);
}
// Whether we have v4T interworking instructions available.
bool
may_use_v4t_interworking() const
{
Object_attribute* attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
int arch = attr->int_value();
return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
&& arch != elfcpp::TAG_CPU_ARCH_V4);
}
// Whether we have v5T interworking instructions available.
bool
may_use_v5t_interworking() const
{
Object_attribute* attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
int arch = attr->int_value();
if (parameters->options().fix_arm1176())
return (arch == elfcpp::TAG_CPU_ARCH_V6T2
|| arch == elfcpp::TAG_CPU_ARCH_V7
|| arch == elfcpp::TAG_CPU_ARCH_V6_M
|| arch == elfcpp::TAG_CPU_ARCH_V6S_M
|| arch == elfcpp::TAG_CPU_ARCH_V7E_M);
else
return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
&& arch != elfcpp::TAG_CPU_ARCH_V4
&& arch != elfcpp::TAG_CPU_ARCH_V4T);
}
// Process the relocations to determine unreferenced sections for
// garbage collection.
void
gc_process_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols);
// Scan the relocations to look for symbol adjustments.
void
scan_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols);
// Finalize the sections.
void
do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
// Return the value to use for a dynamic symbol which requires special
// treatment.
uint64_t
do_dynsym_value(const Symbol*) const;
// Return the plt address for globals. Since we have irelative plt entries,
// address calculation is not as straightforward as plt_address + plt_offset.
uint64_t
do_plt_address_for_global(const Symbol* gsym) const
{ return this->plt_section()->address_for_global(gsym); }
// Return the plt address for locals. Since we have irelative plt entries,
// address calculation is not as straightforward as plt_address + plt_offset.
uint64_t
do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
{ return this->plt_section()->address_for_local(relobj, symndx); }
// Relocate a section.
void
relocate_section(const Relocate_info<32, big_endian>*,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
unsigned char* view,
Arm_address view_address,
section_size_type view_size,
const Reloc_symbol_changes*);
// Scan the relocs during a relocatable link.
void
scan_relocatable_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols,
Relocatable_relocs*);
// Scan the relocs for --emit-relocs.
void
emit_relocs_scan(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_syms,
Relocatable_relocs* rr);
// Emit relocations for a section.
void
relocate_relocs(const Relocate_info<32, big_endian>*,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
typename elfcpp::Elf_types<32>::Elf_Off
offset_in_output_section,
unsigned char* view,
Arm_address view_address,
section_size_type view_size,
unsigned char* reloc_view,
section_size_type reloc_view_size);
// Perform target-specific processing in a relocatable link. This is
// only used if we use the relocation strategy RELOC_SPECIAL.
void
relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* preloc_in,
size_t relnum,
Output_section* output_section,
typename elfcpp::Elf_types<32>::Elf_Off
offset_in_output_section,
unsigned char* view,
typename elfcpp::Elf_types<32>::Elf_Addr
view_address,
section_size_type view_size,
unsigned char* preloc_out);
// Return whether SYM is defined by the ABI.
bool
do_is_defined_by_abi(const Symbol* sym) const
{ return strcmp(sym->name(), "__tls_get_addr") == 0; }
// Return whether there is a GOT section.
bool
has_got_section() const
{ return this->got_ != NULL; }
// Return the size of the GOT section.
section_size_type
got_size() const
{
gold_assert(this->got_ != NULL);
return this->got_->data_size();
}
// Return the number of entries in the GOT.
unsigned int
got_entry_count() const
{
if (!this->has_got_section())
return 0;
return this->got_size() / 4;
}
// Return the number of entries in the PLT.
unsigned int
plt_entry_count() const;
// Return the offset of the first non-reserved PLT entry.
unsigned int
first_plt_entry_offset() const;
// Return the size of each PLT entry.
unsigned int
plt_entry_size() const;
// Get the section to use for IRELATIVE relocations, create it if necessary.
Reloc_section*
rel_irelative_section(Layout*);
// Map platform-specific reloc types
unsigned int
get_real_reloc_type(unsigned int r_type) const;
//
// Methods to support stub-generations.
//
// Return the stub factory
const Stub_factory&
stub_factory() const
{ return this->stub_factory_; }
// Make a new Arm_input_section object.
Arm_input_section<big_endian>*
new_arm_input_section(Relobj*, unsigned int);
// Find the Arm_input_section object corresponding to the SHNDX-th input
// section of RELOBJ.
Arm_input_section<big_endian>*
find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
// Make a new Stub_table
Stub_table<big_endian>*
new_stub_table(Arm_input_section<big_endian>*);
// Scan a section for stub generation.
void
scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
const unsigned char*, size_t, Output_section*,
bool, const unsigned char*, Arm_address,
section_size_type);
// Relocate a stub.
void
relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
Output_section*, unsigned char*, Arm_address,
section_size_type);
// Get the default ARM target.
static Target_arm<big_endian>*
default_target()
{
gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
&& parameters->target().is_big_endian() == big_endian);
return static_cast<Target_arm<big_endian>*>(
parameters->sized_target<32, big_endian>());
}
// Whether NAME belongs to a mapping symbol.
static bool
is_mapping_symbol_name(const char* name)
{
return (name
&& name[0] == '$'
&& (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
&& (name[2] == '\0' || name[2] == '.'));
}
// Whether we work around the Cortex-A8 erratum.
bool
fix_cortex_a8() const
{ return this->fix_cortex_a8_; }
// Whether we merge exidx entries in debuginfo.
bool
merge_exidx_entries() const
{ return parameters->options().merge_exidx_entries(); }
// Whether we fix R_ARM_V4BX relocation.
// 0 - do not fix
// 1 - replace with MOV instruction (armv4 target)
// 2 - make interworking veneer (>= armv4t targets only)
General_options::Fix_v4bx
fix_v4bx() const
{ return parameters->options().fix_v4bx(); }
// Scan a span of THUMB code section for Cortex-A8 erratum.
void
scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
section_size_type, section_size_type,
const unsigned char*, Arm_address);
// Apply Cortex-A8 workaround to a branch.
void
apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
unsigned char*, Arm_address);
protected:
// Make the PLT-generator object.
Output_data_plt_arm<big_endian>*
make_data_plt(Layout* layout,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative)
{ return this->do_make_data_plt(layout, got, got_plt, got_irelative); }
// Make an ELF object.
Object*
do_make_elf_object(const std::string&, Input_file*, off_t,
const elfcpp::Ehdr<32, big_endian>& ehdr);
Object*
do_make_elf_object(const std::string&, Input_file*, off_t,
const elfcpp::Ehdr<32, !big_endian>&)
{ gold_unreachable(); }
Object*
do_make_elf_object(const std::string&, Input_file*, off_t,
const elfcpp::Ehdr<64, false>&)
{ gold_unreachable(); }
Object*
do_make_elf_object(const std::string&, Input_file*, off_t,
const elfcpp::Ehdr<64, true>&)
{ gold_unreachable(); }
// Make an output section.
Output_section*
do_make_output_section(const char* name, elfcpp::Elf_Word type,
elfcpp::Elf_Xword flags)
{ return new Arm_output_section<big_endian>(name, type, flags); }
void
do_adjust_elf_header(unsigned char* view, int len);
// We only need to generate stubs, and hence perform relaxation if we are
// not doing relocatable linking.
bool
do_may_relax() const
{ return !parameters->options().relocatable(); }
bool
do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
// Determine whether an object attribute tag takes an integer, a
// string or both.
int
do_attribute_arg_type(int tag) const;
// Reorder tags during output.
int
do_attributes_order(int num) const;
// This is called when the target is selected as the default.
void
do_select_as_default_target()
{
// No locking is required since there should only be one default target.
// We cannot have both the big-endian and little-endian ARM targets
// as the default.
gold_assert(arm_reloc_property_table == NULL);
arm_reloc_property_table = new Arm_reloc_property_table();
if (parameters->options().user_set_target1_rel())
{
// FIXME: This is not strictly compatible with ld, which allows both
// --target1-abs and --target-rel to be given.
if (parameters->options().user_set_target1_abs())
gold_error(_("Cannot use both --target1-abs and --target1-rel."));
else
this->target1_reloc_ = elfcpp::R_ARM_REL32;
}
// We don't need to handle --target1-abs because target1_reloc_ is set
// to elfcpp::R_ARM_ABS32 in the member initializer list.
if (parameters->options().user_set_target2())
{
const char* target2 = parameters->options().target2();
if (strcmp(target2, "rel") == 0)
this->target2_reloc_ = elfcpp::R_ARM_REL32;
else if (strcmp(target2, "abs") == 0)
this->target2_reloc_ = elfcpp::R_ARM_ABS32;
else if (strcmp(target2, "got-rel") == 0)
this->target2_reloc_ = elfcpp::R_ARM_GOT_PREL;
else
gold_unreachable();
}
}
// Virtual function which is set to return true by a target if
// it can use relocation types to determine if a function's
// pointer is taken.
virtual bool
do_can_check_for_function_pointers() const
{ return true; }
// Whether a section called SECTION_NAME may have function pointers to
// sections not eligible for safe ICF folding.
virtual bool
do_section_may_have_icf_unsafe_pointers(const char* section_name) const
{
return (!is_prefix_of(".ARM.exidx", section_name)
&& !is_prefix_of(".ARM.extab", section_name)
&& Target::do_section_may_have_icf_unsafe_pointers(section_name));
}
virtual void
do_define_standard_symbols(Symbol_table*, Layout*);
virtual Output_data_plt_arm<big_endian>*
do_make_data_plt(Layout* layout,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative)
{
gold_assert(got_plt != NULL && got_irelative != NULL);
if (parameters->options().long_plt())
return new Output_data_plt_arm_long<big_endian>(
layout, got, got_plt, got_irelative);
else
return new Output_data_plt_arm_short<big_endian>(
layout, got, got_plt, got_irelative);
}
private:
// The class which scans relocations.
class Scan
{
public:
Scan()
: issued_non_pic_error_(false)
{ }
static inline int
get_reference_flags(unsigned int r_type);
inline void
local(Symbol_table* symtab, Layout* layout, Target_arm* target,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
const elfcpp::Sym<32, big_endian>& lsym,
bool is_discarded);
inline void
global(Symbol_table* symtab, Layout* layout, Target_arm* target,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
Symbol* gsym);
inline bool
local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
Sized_relobj_file<32, big_endian>* ,
unsigned int ,
Output_section* ,
const elfcpp::Rel<32, big_endian>& ,
unsigned int ,
const elfcpp::Sym<32, big_endian>&);
inline bool
global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
Sized_relobj_file<32, big_endian>* ,
unsigned int ,
Output_section* ,
const elfcpp::Rel<32, big_endian>& ,
unsigned int , Symbol*);
private:
static void
unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
unsigned int r_type);
static void
unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
unsigned int r_type, Symbol*);
void
check_non_pic(Relobj*, unsigned int r_type);
// Almost identical to Symbol::needs_plt_entry except that it also
// handles STT_ARM_TFUNC.
static bool
symbol_needs_plt_entry(const Symbol* sym)
{
// An undefined symbol from an executable does not need a PLT entry.
if (sym->is_undefined() && !parameters->options().shared())
return false;
if (sym->type() == elfcpp::STT_GNU_IFUNC)
return true;
return (!parameters->doing_static_link()
&& (sym->type() == elfcpp::STT_FUNC
|| sym->type() == elfcpp::STT_ARM_TFUNC)
&& (sym->is_from_dynobj()
|| sym->is_undefined()
|| sym->is_preemptible()));
}
inline bool
possible_function_pointer_reloc(unsigned int r_type);
// Whether a plt entry is needed for ifunc.
bool
reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
unsigned int r_type);
// Whether we have issued an error about a non-PIC compilation.
bool issued_non_pic_error_;
};
// The class which implements relocation.
class Relocate
{
public:
Relocate()
{ }
~Relocate()
{ }
// Return whether the static relocation needs to be applied.
inline bool
should_apply_static_reloc(const Sized_symbol<32>* gsym,
unsigned int r_type,
bool is_32bit,
Output_section* output_section);
// Do a relocation. Return false if the caller should not issue
// any warnings about this relocation.
inline bool
relocate(const Relocate_info<32, big_endian>*, unsigned int,
Target_arm*, Output_section*, size_t, const unsigned char*,
const Sized_symbol<32>*, const Symbol_value<32>*,
unsigned char*, Arm_address, section_size_type);
// Return whether we want to pass flag NON_PIC_REF for this
// reloc. This means the relocation type accesses a symbol not via
// GOT or PLT.
static inline bool
reloc_is_non_pic(unsigned int r_type)
{
switch (r_type)
{
// These relocation types reference GOT or PLT entries explicitly.
case elfcpp::R_ARM_GOT_BREL:
case elfcpp::R_ARM_GOT_ABS:
case elfcpp::R_ARM_GOT_PREL:
case elfcpp::R_ARM_GOT_BREL12:
case elfcpp::R_ARM_PLT32_ABS:
case elfcpp::R_ARM_TLS_GD32:
case elfcpp::R_ARM_TLS_LDM32:
case elfcpp::R_ARM_TLS_IE32:
case elfcpp::R_ARM_TLS_IE12GP:
// These relocate types may use PLT entries.
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_THM_JUMP24:
case elfcpp::R_ARM_THM_JUMP19:
case elfcpp::R_ARM_PLT32:
case elfcpp::R_ARM_THM_XPC22:
case elfcpp::R_ARM_PREL31:
case elfcpp::R_ARM_SBREL31:
return false;
default:
return true;
}
}
private:
// Do a TLS relocation.
inline typename Arm_relocate_functions<big_endian>::Status
relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
const Sized_symbol<32>*, const Symbol_value<32>*,
unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
section_size_type);
};
// A class for inquiring about properties of a relocation,
// used while scanning relocs during a relocatable link and
// garbage collection.
class Classify_reloc :
public gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
{
public:
typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc
Reltype;
// Return the explicit addend of the relocation (return 0 for SHT_REL).
static typename elfcpp::Elf_types<32>::Elf_Swxword
get_r_addend(const Reltype*)
{ return 0; }
// Return the size of the addend of the relocation (only used for SHT_REL).
static unsigned int
get_size_for_reloc(unsigned int, Relobj*);
};
// Adjust TLS relocation type based on the options and whether this
// is a local symbol.
static tls::Tls_optimization
optimize_tls_reloc(bool is_final, int r_type);
// Get the GOT section, creating it if necessary.
Arm_output_data_got<big_endian>*
got_section(Symbol_table*, Layout*);
// Get the GOT PLT section.
Output_data_space*
got_plt_section() const
{
gold_assert(this->got_plt_ != NULL);
return this->got_plt_;
}
// Create the PLT section.
void
make_plt_section(Symbol_table* symtab, Layout* layout);
// Create a PLT entry for a global symbol.
void
make_plt_entry(Symbol_table*, Layout*, Symbol*);
// Create a PLT entry for a local STT_GNU_IFUNC symbol.
void
make_local_ifunc_plt_entry(Symbol_table*, Layout*,
Sized_relobj_file<32, big_endian>* relobj,
unsigned int local_sym_index);
// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
void
define_tls_base_symbol(Symbol_table*, Layout*);
// Create a GOT entry for the TLS module index.
unsigned int
got_mod_index_entry(Symbol_table* symtab, Layout* layout,
Sized_relobj_file<32, big_endian>* object);
// Get the PLT section.
const Output_data_plt_arm<big_endian>*
plt_section() const
{
gold_assert(this->plt_ != NULL);
return this->plt_;
}
// Get the dynamic reloc section, creating it if necessary.
Reloc_section*
rel_dyn_section(Layout*);
// Get the section to use for TLS_DESC relocations.
Reloc_section*
rel_tls_desc_section(Layout*) const;
// Return true if the symbol may need a COPY relocation.
// References from an executable object to non-function symbols
// defined in a dynamic object may need a COPY relocation.
bool
may_need_copy_reloc(Symbol* gsym)
{
return (gsym->type() != elfcpp::STT_ARM_TFUNC
&& gsym->may_need_copy_reloc());
}
// Add a potential copy relocation.
void
copy_reloc(Symbol_table* symtab, Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int shndx, Output_section* output_section,
Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
{
unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info());
this->copy_relocs_.copy_reloc(symtab, layout,
symtab->get_sized_symbol<32>(sym),
object, shndx, output_section,
r_type, reloc.get_r_offset(), 0,
this->rel_dyn_section(layout));
}
// Whether two EABI versions are compatible.
static bool
are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
// Merge processor-specific flags from input object and those in the ELF
// header of the output.
void
merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
// Get the secondary compatible architecture.
static int
get_secondary_compatible_arch(const Attributes_section_data*);
// Set the secondary compatible architecture.
static void
set_secondary_compatible_arch(Attributes_section_data*, int);
static int
tag_cpu_arch_combine(const char*, int, int*, int, int);
// Helper to print AEABI enum tag value.
static std::string
aeabi_enum_name(unsigned int);
// Return string value for TAG_CPU_name.
static std::string
tag_cpu_name_value(unsigned int);
// Query attributes object to see if integer divide instructions may be
// present in an object.
static bool
attributes_accept_div(int arch, int profile,
const Object_attribute* div_attr);
// Query attributes object to see if integer divide instructions are
// forbidden to be in the object. This is not the inverse of
// attributes_accept_div.
static bool
attributes_forbid_div(const Object_attribute* div_attr);
// Merge object attributes from input object and those in the output.
void
merge_object_attributes(const char*, const Attributes_section_data*);
// Helper to get an AEABI object attribute
Object_attribute*
get_aeabi_object_attribute(int tag) const
{
Attributes_section_data* pasd = this->attributes_section_data_;
gold_assert(pasd != NULL);
Object_attribute* attr =
pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
gold_assert(attr != NULL);
return attr;
}
//
// Methods to support stub-generations.
//
// Group input sections for stub generation.
void
group_sections(Layout*, section_size_type, bool, const Task*);
// Scan a relocation for stub generation.
void
scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
const Sized_symbol<32>*, unsigned int,
const Symbol_value<32>*,
elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
// Scan a relocation section for stub.
template<int sh_type>
void
scan_reloc_section_for_stubs(
const Relocate_info<32, big_endian>* relinfo,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
const unsigned char* view,
elfcpp::Elf_types<32>::Elf_Addr view_address,
section_size_type);
// Fix .ARM.exidx section coverage.
void
fix_exidx_coverage(Layout*, const Input_objects*,
Arm_output_section<big_endian>*, Symbol_table*,
const Task*);
// Functors for STL set.
struct output_section_address_less_than
{
bool
operator()(const Output_section* s1, const Output_section* s2) const
{ return s1->address() < s2->address(); }
};
// Information about this specific target which we pass to the
// general Target structure.
static const Target::Target_info arm_info;
// The types of GOT entries needed for this platform.
// These values are exposed to the ABI in an incremental link.
// Do not renumber existing values without changing the version
// number of the .gnu_incremental_inputs section.
enum Got_type
{
GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
};
typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
// Map input section to Arm_input_section.
typedef Unordered_map<Section_id,
Arm_input_section<big_endian>*,
Section_id_hash>
Arm_input_section_map;
// Map output addresses to relocs for Cortex-A8 erratum.
typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
Cortex_a8_relocs_info;
// The GOT section.
Arm_output_data_got<big_endian>* got_;
// The PLT section.
Output_data_plt_arm<big_endian>* plt_;
// The GOT PLT section.
Output_data_space* got_plt_;
// The GOT section for IRELATIVE relocations.
Output_data_space* got_irelative_;
// The dynamic reloc section.
Reloc_section* rel_dyn_;
// The section to use for IRELATIVE relocs.
Reloc_section* rel_irelative_;
// Relocs saved to avoid a COPY reloc.
Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
// Offset of the GOT entry for the TLS module index.
unsigned int got_mod_index_offset_;
// True if the _TLS_MODULE_BASE_ symbol has been defined.
bool tls_base_symbol_defined_;
// Vector of Stub_tables created.
Stub_table_list stub_tables_;
// Stub factory.
const Stub_factory &stub_factory_;
// Whether we force PIC branch veneers.
bool should_force_pic_veneer_;
// Map for locating Arm_input_sections.
Arm_input_section_map arm_input_section_map_;
// Attributes section data in output.
Attributes_section_data* attributes_section_data_;
// Whether we want to fix code for Cortex-A8 erratum.
bool fix_cortex_a8_;
// Map addresses to relocs for Cortex-A8 erratum.
Cortex_a8_relocs_info cortex_a8_relocs_info_;
// What R_ARM_TARGET1 maps to. It can be R_ARM_REL32 or R_ARM_ABS32.
unsigned int target1_reloc_;
// What R_ARM_TARGET2 maps to. It should be one of R_ARM_REL32, R_ARM_ABS32
// and R_ARM_GOT_PREL.
unsigned int target2_reloc_;
};
template<bool big_endian>
const Target::Target_info Target_arm<big_endian>::arm_info =
{
32, // size
big_endian, // is_big_endian
elfcpp::EM_ARM, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
false, // can_icf_inline_merge_sections
'\0', // wrap_char
"/usr/lib/libc.so.1", // dynamic_linker
0x8000, // default_text_segment_address
0x1000, // abi_pagesize (overridable by -z max-page-size)
0x1000, // common_pagesize (overridable by -z common-page-size)
false, // isolate_execinstr
0, // rosegment_gap
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0, // large_common_section_flags
".ARM.attributes", // attributes_section
"aeabi", // attributes_vendor
"_start", // entry_symbol_name
32, // hash_entry_size
};
// Arm relocate functions class
//
template<bool big_endian>
class Arm_relocate_functions : public Relocate_functions<32, big_endian>
{
public:
typedef enum
{
STATUS_OKAY, // No error during relocation.
STATUS_OVERFLOW, // Relocation overflow.
STATUS_BAD_RELOC // Relocation cannot be applied.
} Status;
private:
typedef Relocate_functions<32, big_endian> Base;
typedef Arm_relocate_functions<big_endian> This;
// Encoding of imm16 argument for movt and movw ARM instructions
// from ARM ARM:
//
// imm16 := imm4 | imm12
//
// f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
// +-------+---------------+-------+-------+-----------------------+
// | | |imm4 | |imm12 |
// +-------+---------------+-------+-------+-----------------------+
// Extract the relocation addend from VAL based on the ARM
// instruction encoding described above.
static inline typename elfcpp::Swap<32, big_endian>::Valtype
extract_arm_movw_movt_addend(
typename elfcpp::Swap<32, big_endian>::Valtype val)
{
// According to the Elf ABI for ARM Architecture the immediate
// field is sign-extended to form the addend.
return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
}
// Insert X into VAL based on the ARM instruction encoding described
// above.
static inline typename elfcpp::Swap<32, big_endian>::Valtype
insert_val_arm_movw_movt(
typename elfcpp::Swap<32, big_endian>::Valtype val,
typename elfcpp::Swap<32, big_endian>::Valtype x)
{
val &= 0xfff0f000;
val |= x & 0x0fff;
val |= (x & 0xf000) << 4;
return val;
}
// Encoding of imm16 argument for movt and movw Thumb2 instructions
// from ARM ARM:
//
// imm16 := imm4 | i | imm3 | imm8
//
// f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
// +---------+-+-----------+-------++-+-----+-------+---------------+
// | |i| |imm4 || |imm3 | |imm8 |
// +---------+-+-----------+-------++-+-----+-------+---------------+
// Extract the relocation addend from VAL based on the Thumb2
// instruction encoding described above.
static inline typename elfcpp::Swap<32, big_endian>::Valtype
extract_thumb_movw_movt_addend(
typename elfcpp::Swap<32, big_endian>::Valtype val)
{
// According to the Elf ABI for ARM Architecture the immediate
// field is sign-extended to form the addend.
return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
| ((val >> 15) & 0x0800)
| ((val >> 4) & 0x0700)
| (val & 0x00ff));
}
// Insert X into VAL based on the Thumb2 instruction encoding
// described above.
static inline typename elfcpp::Swap<32, big_endian>::Valtype
insert_val_thumb_movw_movt(
typename elfcpp::Swap<32, big_endian>::Valtype val,
typename elfcpp::Swap<32, big_endian>::Valtype x)
{
val &= 0xfbf08f00;
val |= (x & 0xf000) << 4;
val |= (x & 0x0800) << 15;
val |= (x & 0x0700) << 4;
val |= (x & 0x00ff);
return val;
}
// Calculate the smallest constant Kn for the specified residual.
// (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
static uint32_t
calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
{
int32_t msb;
if (residual == 0)
return 0;
// Determine the most significant bit in the residual and
// align the resulting value to a 2-bit boundary.
for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
;
// The desired shift is now (msb - 6), or zero, whichever
// is the greater.
return (((msb - 6) < 0) ? 0 : (msb - 6));
}
// Calculate the final residual for the specified group index.
// If the passed group index is less than zero, the method will return
// the value of the specified residual without any change.
// (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
static typename elfcpp::Swap<32, big_endian>::Valtype
calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
const int group)
{
for (int n = 0; n <= group; n++)
{
// Calculate which part of the value to mask.
uint32_t shift = calc_grp_kn(residual);
// Calculate the residual for the next time around.
residual &= ~(residual & (0xff << shift));
}
return residual;
}
// Calculate the value of Gn for the specified group index.
// We return it in the form of an encoded constant-and-rotation.
// (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
static typename elfcpp::Swap<32, big_endian>::Valtype
calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
const int group)
{
typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
uint32_t shift = 0;
for (int n = 0; n <= group; n++)
{
// Calculate which part of the value to mask.
shift = calc_grp_kn(residual);
// Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
gn = residual & (0xff << shift);
// Calculate the residual for the next time around.
residual &= ~gn;
}
// Return Gn in the form of an encoded constant-and-rotation.
return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
}
public:
// Handle ARM long branches.
static typename This::Status
arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
unsigned char*, const Sized_symbol<32>*,
const Arm_relobj<big_endian>*, unsigned int,
const Symbol_value<32>*, Arm_address, Arm_address, bool);
// Handle THUMB long branches.
static typename This::Status
thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
unsigned char*, const Sized_symbol<32>*,
const Arm_relobj<big_endian>*, unsigned int,
const Symbol_value<32>*, Arm_address, Arm_address, bool);
// Return the branch offset of a 32-bit THUMB branch.
static inline int32_t
thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
{
// We use the Thumb-2 encoding (backwards compatible with Thumb-1)
// involving the J1 and J2 bits.
uint32_t s = (upper_insn & (1U << 10)) >> 10;
uint32_t upper = upper_insn & 0x3ffU;
uint32_t lower = lower_insn & 0x7ffU;
uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
uint32_t i1 = j1 ^ s ? 0 : 1;
uint32_t i2 = j2 ^ s ? 0 : 1;
return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
| (upper << 12) | (lower << 1));
}
// Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
// UPPER_INSN is the original upper instruction of the branch. Caller is
// responsible for overflow checking and BLX offset adjustment.
static inline uint16_t
thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
{
uint32_t s = offset < 0 ? 1 : 0;
uint32_t bits = static_cast<uint32_t>(offset);
return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
}
// Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
// LOWER_INSN is the original lower instruction of the branch. Caller is
// responsible for overflow checking and BLX offset adjustment.
static inline uint16_t
thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
{
uint32_t s = offset < 0 ? 1 : 0;
uint32_t bits = static_cast<uint32_t>(offset);
return ((lower_insn & ~0x2fffU)
| ((((bits >> 23) & 1) ^ !s) << 13)
| ((((bits >> 22) & 1) ^ !s) << 11)
| ((bits >> 1) & 0x7ffU));
}
// Return the branch offset of a 32-bit THUMB conditional branch.
static inline int32_t
thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
{
uint32_t s = (upper_insn & 0x0400U) >> 10;
uint32_t j1 = (lower_insn & 0x2000U) >> 13;
uint32_t j2 = (lower_insn & 0x0800U) >> 11;
uint32_t lower = (lower_insn & 0x07ffU);
uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
}
// Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
// instruction. UPPER_INSN is the original upper instruction of the branch.
// Caller is responsible for overflow checking.
static inline uint16_t
thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
{
uint32_t s = offset < 0 ? 1 : 0;
uint32_t bits = static_cast<uint32_t>(offset);
return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
}
// Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
// instruction. LOWER_INSN is the original lower instruction of the branch.
// The caller is responsible for overflow checking.
static inline uint16_t
thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
{
uint32_t bits = static_cast<uint32_t>(offset);
uint32_t j2 = (bits & 0x00080000U) >> 19;
uint32_t j1 = (bits & 0x00040000U) >> 18;
uint32_t lo = (bits & 0x00000ffeU) >> 1;
return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
}
// R_ARM_ABS8: S + A
static inline typename This::Status
abs8(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval)
{
typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
int32_t addend = Bits<8>::sign_extend32(val);
Arm_address x = psymval->value(object, addend);
val = Bits<32>::bit_select32(val, x, 0xffU);
elfcpp::Swap<8, big_endian>::writeval(wv, val);
// R_ARM_ABS8 permits signed or unsigned results.
return (Bits<8>::has_signed_unsigned_overflow32(x)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_THM_ABS5: S + A
static inline typename This::Status
thm_abs5(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
Reltype addend = (val & 0x7e0U) >> 6;
Reltype x = psymval->value(object, addend);
val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
elfcpp::Swap<16, big_endian>::writeval(wv, val);
return (Bits<5>::has_overflow32(x)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_ABS12: S + A
static inline typename This::Status
abs12(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval)
{
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
Reltype addend = val & 0x0fffU;
Reltype x = psymval->value(object, addend);
val = Bits<32>::bit_select32(val, x, 0x0fffU);
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return (Bits<12>::has_overflow32(x)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_ABS16: S + A
static inline typename This::Status
abs16(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval)
{
typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
int32_t addend = Bits<16>::sign_extend32(val);
Arm_address x = psymval->value(object, addend);
val = Bits<32>::bit_select32(val, x, 0xffffU);
elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
// R_ARM_ABS16 permits signed or unsigned results.
return (Bits<16>::has_signed_unsigned_overflow32(x)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_ABS32: (S + A) | T
static inline typename This::Status
abs32(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address thumb_bit)
{
typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
Valtype x = psymval->value(object, addend) | thumb_bit;
elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
return This::STATUS_OKAY;
}
// R_ARM_REL32: (S + A) | T - P
static inline typename This::Status
rel32(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address,
Arm_address thumb_bit)
{
typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
return This::STATUS_OKAY;
}
// R_ARM_THM_JUMP24: (S + A) | T - P
static typename This::Status
thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
const Symbol_value<32>* psymval, Arm_address address,
Arm_address thumb_bit);
// R_ARM_THM_JUMP6: S + A - P
static inline typename This::Status
thm_jump6(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
// bit[9]:bit[7:3]:'0' (mask: 0x02f8)
Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
Reltype x = (psymval->value(object, addend) - address);
val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
elfcpp::Swap<16, big_endian>::writeval(wv, val);
// CZB does only forward jumps.
return ((x > 0x007e)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_THM_JUMP8: S + A - P
static inline typename This::Status
thm_jump8(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
int32_t x = (psymval->value(object, addend) - address);
elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
| ((x & 0x01fe) >> 1)));
// We do a 9-bit overflow check because x is right-shifted by 1 bit.
return (Bits<9>::has_overflow32(x)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_THM_JUMP11: S + A - P
static inline typename This::Status
thm_jump11(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
int32_t x = (psymval->value(object, addend) - address);
elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
| ((x & 0x0ffe) >> 1)));
// We do a 12-bit overflow check because x is right-shifted by 1 bit.
return (Bits<12>::has_overflow32(x)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_BASE_PREL: B(S) + A - P
static inline typename This::Status
base_prel(unsigned char* view,
Arm_address origin,
Arm_address address)
{
Base::rel32(view, origin - address);
return STATUS_OKAY;
}
// R_ARM_BASE_ABS: B(S) + A
static inline typename This::Status
base_abs(unsigned char* view,
Arm_address origin)
{
Base::rel32(view, origin);
return STATUS_OKAY;
}
// R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
static inline typename This::Status
got_brel(unsigned char* view,
typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
{
Base::rel32(view, got_offset);
return This::STATUS_OKAY;
}
// R_ARM_GOT_PREL: GOT(S) + A - P
static inline typename This::Status
got_prel(unsigned char* view,
Arm_address got_entry,
Arm_address address)
{
Base::rel32(view, got_entry - address);
return This::STATUS_OKAY;
}
// R_ARM_PREL: (S + A) | T - P
static inline typename This::Status
prel31(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address,
Arm_address thumb_bit)
{
typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
Valtype addend = Bits<31>::sign_extend32(val);
Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
return (Bits<31>::has_overflow32(x)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
// R_ARM_MOVW_PREL_NC: (S + A) | T - P
// R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
// R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
static inline typename This::Status
movw(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address relative_address_base,
Arm_address thumb_bit,
bool check_overflow)
{
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = This::extract_arm_movw_movt_addend(val);
Valtype x = ((psymval->value(object, addend) | thumb_bit)
- relative_address_base);
val = This::insert_val_arm_movw_movt(val, x);
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return ((check_overflow && Bits<16>::has_overflow32(x))
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_MOVT_ABS: S + A (relative address base is 0)
// R_ARM_MOVT_PREL: S + A - P
// R_ARM_MOVT_BREL: S + A - B(S)
static inline typename This::Status
movt(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address relative_address_base)
{
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = This::extract_arm_movw_movt_addend(val);
Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
val = This::insert_val_arm_movw_movt(val, x);
elfcpp::Swap<32, big_endian>::writeval(wv, val);
// FIXME: IHI0044D says that we should check for overflow.
return This::STATUS_OKAY;
}
// R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
// R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
// R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
// R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
static inline typename This::Status
thm_movw(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address relative_address_base,
Arm_address thumb_bit,
bool check_overflow)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
| elfcpp::Swap<16, big_endian>::readval(wv + 1);
Reltype addend = This::extract_thumb_movw_movt_addend(val);
Reltype x =
(psymval->value(object, addend) | thumb_bit) - relative_address_base;
val = This::insert_val_thumb_movw_movt(val, x);
elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
return ((check_overflow && Bits<16>::has_overflow32(x))
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
// R_ARM_THM_MOVT_PREL: S + A - P
// R_ARM_THM_MOVT_BREL: S + A - B(S)
static inline typename This::Status
thm_movt(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address relative_address_base)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
| elfcpp::Swap<16, big_endian>::readval(wv + 1);
Reltype addend = This::extract_thumb_movw_movt_addend(val);
Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
val = This::insert_val_thumb_movw_movt(val, x);
elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
return This::STATUS_OKAY;
}
// R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
static inline typename This::Status
thm_alu11(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address,
Arm_address thumb_bit)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
| elfcpp::Swap<16, big_endian>::readval(wv + 1);
// f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
// -----------------------------------------------------------------------
// ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
// ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
// ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
// SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
// SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
// ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
// Determine a sign for the addend.
const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
|| (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
// Thumb2 addend encoding:
// imm12 := i | imm3 | imm8
int32_t addend = (insn & 0xff)
| ((insn & 0x00007000) >> 4)
| ((insn & 0x04000000) >> 15);
// Apply a sign to the added.
addend *= sign;
int32_t x = (psymval->value(object, addend) | thumb_bit)
- (address & 0xfffffffc);
Reltype val = abs(x);
// Mask out the value and a distinct part of the ADD/SUB opcode
// (bits 7:5 of opword).
insn = (insn & 0xfb0f8f00)
| (val & 0xff)
| ((val & 0x700) << 4)
| ((val & 0x800) << 15);
// Set the opcode according to whether the value to go in the
// place is negative.
if (x < 0)
insn |= 0x00a00000;
elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
return ((val > 0xfff) ?
This::STATUS_OVERFLOW : This::STATUS_OKAY);
}
// R_ARM_THM_PC8: S + A - Pa (Thumb)
static inline typename This::Status
thm_pc8(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
Reltype addend = ((insn & 0x00ff) << 2);
int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
Reltype val = abs(x);
insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
elfcpp::Swap<16, big_endian>::writeval(wv, insn);
return ((val > 0x03fc)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// R_ARM_THM_PC12: S + A - Pa (Thumb32)
static inline typename This::Status
thm_pc12(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
| elfcpp::Swap<16, big_endian>::readval(wv + 1);
// Determine a sign for the addend (positive if the U bit is 1).
const int sign = (insn & 0x00800000) ? 1 : -1;
int32_t addend = (insn & 0xfff);
// Apply a sign to the added.
addend *= sign;
int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
Reltype val = abs(x);
// Mask out and apply the value and the U bit.
insn = (insn & 0xff7ff000) | (val & 0xfff);
// Set the U bit according to whether the value to go in the
// place is positive.
if (x >= 0)
insn |= 0x00800000;
elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
return ((val > 0xfff) ?
This::STATUS_OVERFLOW : This::STATUS_OKAY);
}
// R_ARM_V4BX
static inline typename This::Status
v4bx(const Relocate_info<32, big_endian>* relinfo,
unsigned char* view,
const Arm_relobj<big_endian>* object,
const Arm_address address,
const bool is_interworking)
{
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
// Ensure that we have a BX instruction.
gold_assert((val & 0x0ffffff0) == 0x012fff10);
const uint32_t reg = (val & 0xf);
if (is_interworking && reg != 0xf)
{
Stub_table<big_endian>* stub_table =
object->stub_table(relinfo->data_shndx);
gold_assert(stub_table != NULL);
Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
gold_assert(stub != NULL);
int32_t veneer_address =
stub_table->address() + stub->offset() - 8 - address;
gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
&& (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
// Replace with a branch to veneer (B <addr>)
val = (val & 0xf0000000) | 0x0a000000
| ((veneer_address >> 2) & 0x00ffffff);
}
else
{
// Preserve Rm (lowest four bits) and the condition code
// (highest four bits). Other bits encode MOV PC,Rm.
val = (val & 0xf000000f) | 0x01a0f000;
}
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return This::STATUS_OKAY;
}
// R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
// R_ARM_ALU_PC_G0: ((S + A) | T) - P
// R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
// R_ARM_ALU_PC_G1: ((S + A) | T) - P
// R_ARM_ALU_PC_G2: ((S + A) | T) - P
// R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
// R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
// R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
// R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
// R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
static inline typename This::Status
arm_grp_alu(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
const int group,
Arm_address address,
Arm_address thumb_bit,
bool check_overflow)
{
gold_assert(group >= 0 && group < 3);
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
// ALU group relocations are allowed only for the ADD/SUB instructions.
// (0x00800000 - ADD, 0x00400000 - SUB)
const Valtype opcode = insn & 0x01e00000;
if (opcode != 0x00800000 && opcode != 0x00400000)
return This::STATUS_BAD_RELOC;
// Determine a sign for the addend.
const int sign = (opcode == 0x00800000) ? 1 : -1;
// shifter = rotate_imm * 2
const uint32_t shifter = (insn & 0xf00) >> 7;
// Initial addend value.
int32_t addend = insn & 0xff;
// Rotate addend right by shifter.
addend = (addend >> shifter) | (addend << (32 - shifter));
// Apply a sign to the added.
addend *= sign;
int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
// Check for overflow if required
if (check_overflow
&& (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
return This::STATUS_OVERFLOW;
// Mask out the value and the ADD/SUB part of the opcode; take care
// not to destroy the S bit.
insn &= 0xff1ff000;
// Set the opcode according to whether the value to go in the
// place is negative.
insn |= ((x < 0) ? 0x00400000 : 0x00800000);
// Encode the offset (encoded Gn).
insn |= gn;
elfcpp::Swap<32, big_endian>::writeval(wv, insn);
return This::STATUS_OKAY;
}
// R_ARM_LDR_PC_G0: S + A - P
// R_ARM_LDR_PC_G1: S + A - P
// R_ARM_LDR_PC_G2: S + A - P
// R_ARM_LDR_SB_G0: S + A - B(S)
// R_ARM_LDR_SB_G1: S + A - B(S)
// R_ARM_LDR_SB_G2: S + A - B(S)
static inline typename This::Status
arm_grp_ldr(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
const int group,
Arm_address address)
{
gold_assert(group >= 0 && group < 3);
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
const int sign = (insn & 0x00800000) ? 1 : -1;
int32_t addend = (insn & 0xfff) * sign;
int32_t x = (psymval->value(object, addend) - address);
// Calculate the relevant G(n-1) value to obtain this stage residual.
Valtype residual =
Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
if (residual >= 0x1000)
return This::STATUS_OVERFLOW;
// Mask out the value and U bit.
insn &= 0xff7ff000;
// Set the U bit for non-negative values.
if (x >= 0)
insn |= 0x00800000;
insn |= residual;
elfcpp::Swap<32, big_endian>::writeval(wv, insn);
return This::STATUS_OKAY;
}
// R_ARM_LDRS_PC_G0: S + A - P
// R_ARM_LDRS_PC_G1: S + A - P
// R_ARM_LDRS_PC_G2: S + A - P
// R_ARM_LDRS_SB_G0: S + A - B(S)
// R_ARM_LDRS_SB_G1: S + A - B(S)
// R_ARM_LDRS_SB_G2: S + A - B(S)
static inline typename This::Status
arm_grp_ldrs(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
const int group,
Arm_address address)
{
gold_assert(group >= 0 && group < 3);
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
const int sign = (insn & 0x00800000) ? 1 : -1;
int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
int32_t x = (psymval->value(object, addend) - address);
// Calculate the relevant G(n-1) value to obtain this stage residual.
Valtype residual =
Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
if (residual >= 0x100)
return This::STATUS_OVERFLOW;
// Mask out the value and U bit.
insn &= 0xff7ff0f0;
// Set the U bit for non-negative values.
if (x >= 0)
insn |= 0x00800000;
insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
elfcpp::Swap<32, big_endian>::writeval(wv, insn);
return This::STATUS_OKAY;
}
// R_ARM_LDC_PC_G0: S + A - P
// R_ARM_LDC_PC_G1: S + A - P
// R_ARM_LDC_PC_G2: S + A - P
// R_ARM_LDC_SB_G0: S + A - B(S)
// R_ARM_LDC_SB_G1: S + A - B(S)
// R_ARM_LDC_SB_G2: S + A - B(S)
static inline typename This::Status
arm_grp_ldc(unsigned char* view,
const Sized_relobj_file<32, big_endian>* object,
const Symbol_value<32>* psymval,
const int group,
Arm_address address)
{
gold_assert(group >= 0 && group < 3);
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
const int sign = (insn & 0x00800000) ? 1 : -1;
int32_t addend = ((insn & 0xff) << 2) * sign;
int32_t x = (psymval->value(object, addend) - address);
// Calculate the relevant G(n-1) value to obtain this stage residual.
Valtype residual =
Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
if ((residual & 0x3) != 0 || residual >= 0x400)
return This::STATUS_OVERFLOW;
// Mask out the value and U bit.
insn &= 0xff7fff00;
// Set the U bit for non-negative values.
if (x >= 0)
insn |= 0x00800000;
insn |= (residual >> 2);
elfcpp::Swap<32, big_endian>::writeval(wv, insn);
return This::STATUS_OKAY;
}
};
// Relocate ARM long branches. This handles relocation types
// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
// undefined and we do not use PLT in this relocation. In such a case,
// the branch is converted into an NOP.
template<bool big_endian>
typename Arm_relocate_functions<big_endian>::Status
Arm_relocate_functions<big_endian>::arm_branch_common(
unsigned int r_type,
const Relocate_info<32, big_endian>* relinfo,
unsigned char* view,
const Sized_symbol<32>* gsym,
const Arm_relobj<big_endian>* object,
unsigned int r_sym,
const Symbol_value<32>* psymval,
Arm_address address,
Arm_address thumb_bit,
bool is_weakly_undefined_without_plt)
{
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
&& ((val & 0x0f000000UL) == 0x0a000000UL);
bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
&& ((val & 0x0f000000UL) == 0x0b000000UL);
bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
// Check that the instruction is valid.
if (r_type == elfcpp::R_ARM_CALL)
{
if (!insn_is_uncond_bl && !insn_is_blx)
return This::STATUS_BAD_RELOC;
}
else if (r_type == elfcpp::R_ARM_JUMP24)
{
if (!insn_is_b && !insn_is_cond_bl)
return This::STATUS_BAD_RELOC;
}
else if (r_type == elfcpp::R_ARM_PLT32)
{
if (!insn_is_any_branch)
return This::STATUS_BAD_RELOC;
}
else if (r_type == elfcpp::R_ARM_XPC25)
{
// FIXME: AAELF document IH0044C does not say much about it other
// than it being obsolete.
if (!insn_is_any_branch)
return This::STATUS_BAD_RELOC;
}
else
gold_unreachable();
// A branch to an undefined weak symbol is turned into a jump to
// the next instruction unless a PLT entry will be created.
// Do the same for local undefined symbols.
// The jump to the next instruction is optimized as a NOP depending
// on the architecture.
const Target_arm<big_endian>* arm_target =
Target_arm<big_endian>::default_target();
if (is_weakly_undefined_without_plt)
{
gold_assert(!parameters->options().relocatable());
Valtype cond = val & 0xf0000000U;
if (arm_target->may_use_arm_nop())
val = cond | 0x0320f000;
else
val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return This::STATUS_OKAY;
}
Valtype addend = Bits<26>::sign_extend32(val << 2);
Valtype branch_target = psymval->value(object, addend);
int32_t branch_offset = branch_target - address;
// We need a stub if the branch offset is too large or if we need
// to switch mode.
bool may_use_blx = arm_target->may_use_v5t_interworking();
Reloc_stub* stub = NULL;
if (!parameters->options().relocatable()
&& (Bits<26>::has_overflow32(branch_offset)
|| ((thumb_bit != 0)
&& !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
{
Valtype unadjusted_branch_target = psymval->value(object, 0);
Stub_type stub_type =
Reloc_stub::stub_type_for_reloc(r_type, address,
unadjusted_branch_target,
(thumb_bit != 0));
if (stub_type != arm_stub_none)
{
Stub_table<big_endian>* stub_table =
object->stub_table(relinfo->data_shndx);
gold_assert(stub_table != NULL);
Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
stub = stub_table->find_reloc_stub(stub_key);
gold_assert(stub != NULL);
thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
branch_target = stub_table->address() + stub->offset() + addend;
branch_offset = branch_target - address;
gold_assert(!Bits<26>::has_overflow32(branch_offset));
}
}
// At this point, if we still need to switch mode, the instruction
// must either be a BLX or a BL that can be converted to a BLX.
if (thumb_bit != 0)
{
// Turn BL to BLX.
gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
}
val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return (Bits<26>::has_overflow32(branch_offset)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// Relocate THUMB long branches. This handles relocation types
// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
// undefined and we do not use PLT in this relocation. In such a case,
// the branch is converted into an NOP.
template<bool big_endian>
typename Arm_relocate_functions<big_endian>::Status
Arm_relocate_functions<big_endian>::thumb_branch_common(
unsigned int r_type,
const Relocate_info<32, big_endian>* relinfo,
unsigned char* view,
const Sized_symbol<32>* gsym,
const Arm_relobj<big_endian>* object,
unsigned int r_sym,
const Symbol_value<32>* psymval,
Arm_address address,
Arm_address thumb_bit,
bool is_weakly_undefined_without_plt)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
// FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
// into account.
bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
// Check that the instruction is valid.
if (r_type == elfcpp::R_ARM_THM_CALL)
{
if (!is_bl_insn && !is_blx_insn)
return This::STATUS_BAD_RELOC;
}
else if (r_type == elfcpp::R_ARM_THM_JUMP24)
{
// This cannot be a BLX.
if (!is_bl_insn)
return This::STATUS_BAD_RELOC;
}
else if (r_type == elfcpp::R_ARM_THM_XPC22)
{
// Check for Thumb to Thumb call.
if (!is_blx_insn)
return This::STATUS_BAD_RELOC;
if (thumb_bit != 0)
{
gold_warning(_("%s: Thumb BLX instruction targets "
"thumb function '%s'."),
object->name().c_str(),
(gsym ? gsym->name() : "(local)"));
// Convert BLX to BL.
lower_insn |= 0x1000U;
}
}
else
gold_unreachable();
// A branch to an undefined weak symbol is turned into a jump to
// the next instruction unless a PLT entry will be created.
// The jump to the next instruction is optimized as a NOP.W for
// Thumb-2 enabled architectures.
const Target_arm<big_endian>* arm_target =
Target_arm<big_endian>::default_target();
if (is_weakly_undefined_without_plt)
{
gold_assert(!parameters->options().relocatable());
if (arm_target->may_use_thumb2_nop())
{
elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
}
else
{
elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
}
return This::STATUS_OKAY;
}
int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
Arm_address branch_target = psymval->value(object, addend);
// For BLX, bit 1 of target address comes from bit 1 of base address.
bool may_use_blx = arm_target->may_use_v5t_interworking();
if (thumb_bit == 0 && may_use_blx)
branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
int32_t branch_offset = branch_target - address;
// We need a stub if the branch offset is too large or if we need
// to switch mode.
bool thumb2 = arm_target->using_thumb2();
if (!parameters->options().relocatable()
&& ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
|| (thumb2 && Bits<25>::has_overflow32(branch_offset))
|| ((thumb_bit == 0)
&& (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
|| r_type == elfcpp::R_ARM_THM_JUMP24))))
{
Arm_address unadjusted_branch_target = psymval->value(object, 0);
Stub_type stub_type =
Reloc_stub::stub_type_for_reloc(r_type, address,
unadjusted_branch_target,
(thumb_bit != 0));
if (stub_type != arm_stub_none)
{
Stub_table<big_endian>* stub_table =
object->stub_table(relinfo->data_shndx);
gold_assert(stub_table != NULL);
Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
gold_assert(stub != NULL);
thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
branch_target = stub_table->address() + stub->offset() + addend;
if (thumb_bit == 0 && may_use_blx)
branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
branch_offset = branch_target - address;
}
}
// At this point, if we still need to switch mode, the instruction
// must either be a BLX or a BL that can be converted to a BLX.
if (thumb_bit == 0)
{
gold_assert(may_use_blx
&& (r_type == elfcpp::R_ARM_THM_CALL
|| r_type == elfcpp::R_ARM_THM_XPC22));
// Make sure this is a BLX.
lower_insn &= ~0x1000U;
}
else
{
// Make sure this is a BL.
lower_insn |= 0x1000U;
}
// For a BLX instruction, make sure that the relocation is rounded up
// to a word boundary. This follows the semantics of the instruction
// which specifies that bit 1 of the target address will come from bit
// 1 of the base address.
if ((lower_insn & 0x5000U) == 0x4000U)
gold_assert((branch_offset & 3) == 0);
// Put BRANCH_OFFSET back into the insn. Assumes two's complement.
// We use the Thumb-2 encoding, which is safe even if dealing with
// a Thumb-1 instruction by virtue of our overflow check above. */
upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
gold_assert(!Bits<25>::has_overflow32(branch_offset));
return ((thumb2
? Bits<25>::has_overflow32(branch_offset)
: Bits<23>::has_overflow32(branch_offset))
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// Relocate THUMB-2 long conditional branches.
// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
// undefined and we do not use PLT in this relocation. In such a case,
// the branch is converted into an NOP.
template<bool big_endian>
typename Arm_relocate_functions<big_endian>::Status
Arm_relocate_functions<big_endian>::thm_jump19(
unsigned char* view,
const Arm_relobj<big_endian>* object,
const Symbol_value<32>* psymval,
Arm_address address,
Arm_address thumb_bit)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(view);
uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
Arm_address branch_target = psymval->value(object, addend);
int32_t branch_offset = branch_target - address;
// ??? Should handle interworking? GCC might someday try to
// use this for tail calls.
// FIXME: We do support thumb entry to PLT yet.
if (thumb_bit == 0)
{
gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
return This::STATUS_BAD_RELOC;
}
// Put RELOCATION back into the insn.
upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
// Put the relocated value back in the object file:
elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
return (Bits<21>::has_overflow32(branch_offset)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
// Get the GOT section, creating it if necessary.
template<bool big_endian>
Arm_output_data_got<big_endian>*
Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
{
if (this->got_ == NULL)
{
gold_assert(symtab != NULL && layout != NULL);
// When using -z now, we can treat .got as a relro section.
// Without -z now, it is modified after program startup by lazy
// PLT relocations.
bool is_got_relro = parameters->options().now();
Output_section_order got_order = (is_got_relro
? ORDER_RELRO_LAST
: ORDER_DATA);
// Unlike some targets (.e.g x86), ARM does not use separate .got and
// .got.plt sections in output. The output .got section contains both
// PLT and non-PLT GOT entries.
this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
this->got_, got_order, is_got_relro);
// The old GNU linker creates a .got.plt section. We just
// create another set of data in the .got section. Note that we
// always create a PLT if we create a GOT, although the PLT
// might be empty.
this->got_plt_ = new Output_data_space(4, "** GOT PLT");
layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
this->got_plt_, got_order, is_got_relro);
// The first three entries are reserved.
this->got_plt_->set_current_data_size(3 * 4);
// Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
Symbol_table::PREDEFINED,
this->got_plt_,
0, 0, elfcpp::STT_OBJECT,
elfcpp::STB_LOCAL,
elfcpp::STV_HIDDEN, 0,
false, false);
// If there are any IRELATIVE relocations, they get GOT entries
// in .got.plt after the jump slot entries.
this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
this->got_irelative_,
got_order, is_got_relro);
}
return this->got_;
}
// Get the dynamic reloc section, creating it if necessary.
template<bool big_endian>
typename Target_arm<big_endian>::Reloc_section*
Target_arm<big_endian>::rel_dyn_section(Layout* layout)
{
if (this->rel_dyn_ == NULL)
{
gold_assert(layout != NULL);
// Create both relocation sections in the same place, so as to ensure
// their relative order in the output section.
this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
this->rel_irelative_ = new Reloc_section(false);
layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
elfcpp::SHF_ALLOC, this->rel_dyn_,
ORDER_DYNAMIC_RELOCS, false);
layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
elfcpp::SHF_ALLOC, this->rel_irelative_,
ORDER_DYNAMIC_RELOCS, false);
}
return this->rel_dyn_;
}
// Get the section to use for IRELATIVE relocs, creating it if necessary. These
// go in .rela.dyn, but only after all other dynamic relocations. They need to
// follow the other dynamic relocations so that they can refer to global
// variables initialized by those relocs.
template<bool big_endian>
typename Target_arm<big_endian>::Reloc_section*
Target_arm<big_endian>::rel_irelative_section(Layout* layout)
{
if (this->rel_irelative_ == NULL)
{
// Delegate the creation to rel_dyn_section so as to ensure their order in
// the output section.
this->rel_dyn_section(layout);
gold_assert(this->rel_irelative_ != NULL
&& (this->rel_dyn_->output_section()
== this->rel_irelative_->output_section()));
}
return this->rel_irelative_;
}
// Insn_template methods.
// Return byte size of an instruction template.
size_t
Insn_template::size() const
{
switch (this->type())
{
case THUMB16_TYPE:
case THUMB16_SPECIAL_TYPE:
return 2;
case ARM_TYPE:
case THUMB32_TYPE:
case DATA_TYPE:
return 4;
default:
gold_unreachable();
}
}
// Return alignment of an instruction template.
unsigned
Insn_template::alignment() const
{
switch (this->type())
{
case THUMB16_TYPE:
case THUMB16_SPECIAL_TYPE:
case THUMB32_TYPE:
return 2;
case ARM_TYPE:
case DATA_TYPE:
return 4;
default:
gold_unreachable();
}
}
// Stub_template methods.
Stub_template::Stub_template(
Stub_type type, const Insn_template* insns,
size_t insn_count)
: type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
entry_in_thumb_mode_(false), relocs_()
{
off_t offset = 0;
// Compute byte size and alignment of stub template.
for (size_t i = 0; i < insn_count; i++)
{
unsigned insn_alignment = insns[i].alignment();
size_t insn_size = insns[i].size();
gold_assert((offset & (insn_alignment - 1)) == 0);
this->alignment_ = std::max(this->alignment_, insn_alignment);
switch (insns[i].type())
{
case Insn_template::THUMB16_TYPE:
case Insn_template::THUMB16_SPECIAL_TYPE:
if (i == 0)
this->entry_in_thumb_mode_ = true;
break;
case Insn_template::THUMB32_TYPE:
if (insns[i].r_type() != elfcpp::R_ARM_NONE)
this->relocs_.push_back(Reloc(i, offset));
if (i == 0)
this->entry_in_thumb_mode_ = true;
break;
case Insn_template::ARM_TYPE:
// Handle cases where the target is encoded within the
// instruction.
if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
this->relocs_.push_back(Reloc(i, offset));
break;
case Insn_template::DATA_TYPE:
// Entry point cannot be data.
gold_assert(i != 0);
this->relocs_.push_back(Reloc(i, offset));
break;
default:
gold_unreachable();
}
offset += insn_size;
}
this->size_ = offset;
}
// Stub methods.
// Template to implement do_write for a specific target endianness.
template<bool big_endian>
void inline
Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
{
const Stub_template* stub_template = this->stub_template();
const Insn_template* insns = stub_template->insns();
// FIXME: We do not handle BE8 encoding yet.
unsigned char* pov = view;
for (size_t i = 0; i < stub_template->insn_count(); i++)
{
switch (insns[i].type())
{
case Insn_template::THUMB16_TYPE:
elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
break;
case Insn_template::THUMB16_SPECIAL_TYPE:
elfcpp::Swap<16, big_endian>::writeval(
pov,
this->thumb16_special(i));
break;
case Insn_template::THUMB32_TYPE:
{
uint32_t hi = (insns[i].data() >> 16) & 0xffff;
uint32_t lo = insns[i].data() & 0xffff;
elfcpp::Swap<16, big_endian>::writeval(pov, hi);
elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
}
break;
case Insn_template::ARM_TYPE:
case Insn_template::DATA_TYPE:
elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
break;
default:
gold_unreachable();
}
pov += insns[i].size();
}
gold_assert(static_cast<section_size_type>(pov - view) == view_size);
}
// Reloc_stub::Key methods.
// Dump a Key as a string for debugging.
std::string
Reloc_stub::Key::name() const
{
if (this->r_sym_ == invalid_index)
{
// Global symbol key name
// <stub-type>:<symbol name>:<addend>.
const std::string sym_name = this->u_.symbol->name();
// We need to print two hex number and two colons. So just add 100 bytes
// to the symbol name size.
size_t len = sym_name.size() + 100;
char* buffer = new char[len];
int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
sym_name.c_str(), this->addend_);
gold_assert(c > 0 && c < static_cast<int>(len));
delete[] buffer;
return std::string(buffer);
}
else
{
// local symbol key name
// <stub-type>:<object>:<r_sym>:<addend>.
const size_t len = 200;
char buffer[len];
int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
this->u_.relobj, this->r_sym_, this->addend_);
gold_assert(c > 0 && c < static_cast<int>(len));
return std::string(buffer);
}
}
// Reloc_stub methods.
// Determine the type of stub needed, if any, for a relocation of R_TYPE at
// LOCATION to DESTINATION.
// This code is based on the arm_type_of_stub function in
// bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
// class simple.
Stub_type
Reloc_stub::stub_type_for_reloc(
unsigned int r_type,
Arm_address location,
Arm_address destination,
bool target_is_thumb)
{
Stub_type stub_type = arm_stub_none;
// This is a bit ugly but we want to avoid using a templated class for
// big and little endianities.
bool may_use_blx;
bool should_force_pic_veneer = parameters->options().pic_veneer();
bool thumb2;
bool thumb_only;
if (parameters->target().is_big_endian())
{
const Target_arm<true>* big_endian_target =
Target_arm<true>::default_target();
may_use_blx = big_endian_target->may_use_v5t_interworking();
should_force_pic_veneer |= big_endian_target->should_force_pic_veneer();
thumb2 = big_endian_target->using_thumb2();
thumb_only = big_endian_target->using_thumb_only();
}
else
{
const Target_arm<false>* little_endian_target =
Target_arm<false>::default_target();
may_use_blx = little_endian_target->may_use_v5t_interworking();
should_force_pic_veneer |=
little_endian_target->should_force_pic_veneer();
thumb2 = little_endian_target->using_thumb2();
thumb_only = little_endian_target->using_thumb_only();
}
int64_t branch_offset;
bool output_is_position_independent =
parameters->options().output_is_position_independent();
if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
{
// For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
// base address (instruction address + 4).
if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
destination = Bits<32>::bit_select32(destination, location, 0x2);
branch_offset = static_cast<int64_t>(destination) - location;
// Handle cases where:
// - this call goes too far (different Thumb/Thumb2 max
// distance)
// - it's a Thumb->Arm call and blx is not available, or it's a
// Thumb->Arm branch (not bl). A stub is needed in this case.
if ((!thumb2
&& (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
|| (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
|| (thumb2
&& (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
|| (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
|| ((!target_is_thumb)
&& (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
|| (r_type == elfcpp::R_ARM_THM_JUMP24))))
{
if (target_is_thumb)
{
// Thumb to thumb.
if (!thumb_only)
{
stub_type = (output_is_position_independent
|| should_force_pic_veneer)
// PIC stubs.
? ((may_use_blx
&& (r_type == elfcpp::R_ARM_THM_CALL))
// V5T and above. Stub starts with ARM code, so
// we must be able to switch mode before
// reaching it, which is only possible for 'bl'
// (ie R_ARM_THM_CALL relocation).
? arm_stub_long_branch_any_thumb_pic
// On V4T, use Thumb code only.
: arm_stub_long_branch_v4t_thumb_thumb_pic)
// non-PIC stubs.
: ((may_use_blx
&& (r_type == elfcpp::R_ARM_THM_CALL))
? arm_stub_long_branch_any_any // V5T and above.
: arm_stub_long_branch_v4t_thumb_thumb); // V4T.
}
else
{
stub_type = (output_is_position_independent
|| should_force_pic_veneer)
? arm_stub_long_branch_thumb_only_pic // PIC stub.
: arm_stub_long_branch_thumb_only; // non-PIC stub.
}
}
else
{
// Thumb to arm.
// FIXME: We should check that the input section is from an
// object that has interwork enabled.
stub_type = (output_is_position_independent
|| should_force_pic_veneer)
// PIC stubs.
? ((may_use_blx
&& (r_type == elfcpp::R_ARM_THM_CALL))
? arm_stub_long_branch_any_arm_pic // V5T and above.
: arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
// non-PIC stubs.
: ((may_use_blx
&& (r_type == elfcpp::R_ARM_THM_CALL))
? arm_stub_long_branch_any_any // V5T and above.
: arm_stub_long_branch_v4t_thumb_arm); // V4T.
// Handle v4t short branches.
if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
&& (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
&& (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
stub_type = arm_stub_short_branch_v4t_thumb_arm;
}
}
}
else if (r_type == elfcpp::R_ARM_CALL
|| r_type == elfcpp::R_ARM_JUMP24
|| r_type == elfcpp::R_ARM_PLT32)
{
branch_offset = static_cast<int64_t>(destination) - location;
if (target_is_thumb)
{
// Arm to thumb.
// FIXME: We should check that the input section is from an
// object that has interwork enabled.
// We have an extra 2-bytes reach because of
// the mode change (bit 24 (H) of BLX encoding).
if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
|| (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
|| ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
|| (r_type == elfcpp::R_ARM_JUMP24)
|| (r_type == elfcpp::R_ARM_PLT32))
{
stub_type = (output_is_position_independent
|| should_force_pic_veneer)
// PIC stubs.
? (may_use_blx
? arm_stub_long_branch_any_thumb_pic// V5T and above.
: arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
// non-PIC stubs.
: (may_use_blx
? arm_stub_long_branch_any_any // V5T and above.
: arm_stub_long_branch_v4t_arm_thumb); // V4T.
}
}
else
{
// Arm to arm.
if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
|| (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
{
stub_type = (output_is_position_independent
|| should_force_pic_veneer)
? arm_stub_long_branch_any_arm_pic // PIC stubs.
: arm_stub_long_branch_any_any; /// non-PIC.
}
}
}
return stub_type;
}
// Cortex_a8_stub methods.
// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
// I is the position of the instruction template in the stub template.
uint16_t
Cortex_a8_stub::do_thumb16_special(size_t i)
{
// The only use of this is to copy condition code from a conditional
// branch being worked around to the corresponding conditional branch in
// to the stub.
gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
&& i == 0);
uint16_t data = this->stub_template()->insns()[i].data();
gold_assert((data & 0xff00U) == 0xd000U);
data |= ((this->original_insn_ >> 22) & 0xf) << 8;
return data;
}
// Stub_factory methods.
Stub_factory::Stub_factory()
{
// The instruction template sequences are declared as static
// objects and initialized first time the constructor runs.
// Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
// to reach the stub if necessary.
static const Insn_template elf32_arm_stub_long_branch_any_any[] =
{
Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
// dcd R_ARM_ABS32(X)
};
// V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
// available.
static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
{
Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
Insn_template::arm_insn(0xe12fff1c), // bx ip
Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
// dcd R_ARM_ABS32(X)
};
// Thumb -> Thumb long branch stub. Used on M-profile architectures.
static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
{
Insn_template::thumb16_insn(0xb401), // push {r0}
Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
Insn_template::thumb16_insn(0x4684), // mov ip, r0
Insn_template::thumb16_insn(0xbc01), // pop {r0}
Insn_template::thumb16_insn(0x4760), // bx ip
Insn_template::thumb16_insn(0xbf00), // nop
Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
// dcd R_ARM_ABS32(X)
};
// V4T Thumb -> Thumb long branch stub. Using the stack is not
// allowed.
static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
{
Insn_template::thumb16_insn(0x4778), // bx pc
Insn_template::thumb16_insn(0x46c0), // nop
Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
Insn_template::arm_insn(0xe12fff1c), // bx ip
Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
// dcd R_ARM_ABS32(X)
};
// V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
// available.
static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
{
Insn_template::thumb16_insn(0x4778), // bx pc
Insn_template::thumb16_insn(0x46c0), // nop
Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
// dcd R_ARM_ABS32(X)
};
// V4T Thumb -> ARM short branch stub. Shorter variant of the above
// one, when the destination is close enough.
static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
{
Insn_template::thumb16_insn(0x4778), // bx pc
Insn_template::thumb16_insn(0x46c0), // nop
Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
};
// ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
// blx to reach the stub if necessary.
static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
{
Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
// dcd R_ARM_REL32(X-4)
};
// ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
// blx to reach the stub if necessary. We can not add into pc;
// it is not guaranteed to mode switch (different in ARMv6 and
// ARMv7).
static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
{
Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
Insn_template::arm_insn(0xe12fff1c), // bx ip
Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
// dcd R_ARM_REL32(X)
};
// V4T ARM -> ARM long branch stub, PIC.
static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
{
Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
Insn_template::arm_insn(0xe12fff1c), // bx ip
Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
// dcd R_ARM_REL32(X)
};
// V4T Thumb -> ARM long branch stub, PIC.
static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
{
Insn_template::thumb16_insn(0x4778), // bx pc
Insn_template::thumb16_insn(0x46c0), // nop
Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
// dcd R_ARM_REL32(X)
};
// Thumb -> Thumb long branch stub, PIC. Used on M-profile
// architectures.
static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
{
Insn_template::thumb16_insn(0xb401), // push {r0}
Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
Insn_template::thumb16_insn(0x46fc), // mov ip, pc
Insn_template::thumb16_insn(0x4484), // add ip, r0
Insn_template::thumb16_insn(0xbc01), // pop {r0}
Insn_template::thumb16_insn(0x4760), // bx ip
Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
// dcd R_ARM_REL32(X)
};
// V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
// allowed.
static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
{
Insn_template::thumb16_insn(0x4778), // bx pc
Insn_template::thumb16_insn(0x46c0), // nop
Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
Insn_template::arm_insn(0xe12fff1c), // bx ip
Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
// dcd R_ARM_REL32(X)
};
// Cortex-A8 erratum-workaround stubs.
// Stub used for conditional branches (which may be beyond +/-1MB away,
// so we can't use a conditional branch to reach this stub).
// original code:
//
// b<cond> X
// after:
//
static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
{
Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
// b.w X
};
// Stub used for b.w and bl.w instructions.
static const Insn_template elf32_arm_stub_a8_veneer_b[] =
{
Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
};
static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
{
Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
};
// Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
// instruction (which switches to ARM mode) to point to this stub. Jump to
// the real destination using an ARM-mode branch.
static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
{
Insn_template::arm_rel_insn(0xea000000, -8) // b dest
};
// Stub used to provide an interworking for R_ARM_V4BX relocation
// (bx r[n] instruction).
static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
{
Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
Insn_template::arm_insn(0xe12fff10) // bx r<n>
};
// Fill in the stub template look-up table. Stub templates are constructed
// per instance of Stub_factory for fast look-up without locking
// in a thread-enabled environment.
this->stub_templates_[arm_stub_none] =
new Stub_template(arm_stub_none, NULL, 0);
#define DEF_STUB(x) \
do \
{ \
size_t array_size \
= sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
Stub_type type = arm_stub_##x; \
this->stub_templates_[type] = \
new Stub_template(type, elf32_arm_stub_##x, array_size); \
} \
while (0);
DEF_STUBS
#undef DEF_STUB
}
// Stub_table methods.
// Remove all Cortex-A8 stub.
template<bool big_endian>
void
Stub_table<big_endian>::remove_all_cortex_a8_stubs()
{
for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
p != this->cortex_a8_stubs_.end();
++p)
delete p->second;
this->cortex_a8_stubs_.clear();
}
// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
template<bool big_endian>
void
Stub_table<big_endian>::relocate_stub(
Stub* stub,
const Relocate_info<32, big_endian>* relinfo,
Target_arm<big_endian>* arm_target,
Output_section* output_section,
unsigned char* view,
Arm_address address,
section_size_type view_size)
{
const Stub_template* stub_template = stub->stub_template();
if (stub_template->reloc_count() != 0)
{
// Adjust view to cover the stub only.
section_size_type offset = stub->offset();
section_size_type stub_size = stub_template->size();
gold_assert(offset + stub_size <= view_size);
arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
address + offset, stub_size);
}
}
// Relocate all stubs in this stub table.
template<bool big_endian>
void
Stub_table<big_endian>::relocate_stubs(
const Relocate_info<32, big_endian>* relinfo,
Target_arm<big_endian>* arm_target,
Output_section* output_section,
unsigned char* view,
Arm_address address,
section_size_type view_size)
{
// If we are passed a view bigger than the stub table's. we need to
// adjust the view.
gold_assert(address == this->address()
&& (view_size
== static_cast<section_size_type>(this->data_size())));
// Relocate all relocation stubs.
for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
p != this->reloc_stubs_.end();
++p)
this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
address, view_size);
// Relocate all Cortex-A8 stubs.
for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
p != this->cortex_a8_stubs_.end();
++p)
this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
address, view_size);
// Relocate all ARM V4BX stubs.
for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
p != this->arm_v4bx_stubs_.end();
++p)
{
if (*p != NULL)
this->relocate_stub(*p, relinfo, arm_target, output_section, view,
address, view_size);
}
}
// Write out the stubs to file.
template<bool big_endian>
void
Stub_table<big_endian>::do_write(Output_file* of)
{
off_t offset = this->offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(offset, oview_size);
// Write relocation stubs.
for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
p != this->reloc_stubs_.end();
++p)
{
Reloc_stub* stub = p->second;
Arm_address address = this->address() + stub->offset();
gold_assert(address
== align_address(address,
stub->stub_template()->alignment()));
stub->write(oview + stub->offset(), stub->stub_template()->size(),
big_endian);
}
// Write Cortex-A8 stubs.
for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
p != this->cortex_a8_stubs_.end();
++p)
{
Cortex_a8_stub* stub = p->second;
Arm_address address = this->address() + stub->offset();
gold_assert(address
== align_address(address,
stub->stub_template()->alignment()));
stub->write(oview + stub->offset(), stub->stub_template()->size(),
big_endian);
}
// Write ARM V4BX relocation stubs.
for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
p != this->arm_v4bx_stubs_.end();
++p)
{
if (*p == NULL)
continue;
Arm_address address = this->address() + (*p)->offset();
gold_assert(address
== align_address(address,
(*p)->stub_template()->alignment()));
(*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
big_endian);
}
of->write_output_view(this->offset(), oview_size, oview);
}
// Update the data size and address alignment of the stub table at the end
// of a relaxation pass. Return true if either the data size or the
// alignment changed in this relaxation pass.
template<bool big_endian>
bool
Stub_table<big_endian>::update_data_size_and_addralign()
{
// Go over all stubs in table to compute data size and address alignment.
off_t size = this->reloc_stubs_size_;
unsigned addralign = this->reloc_stubs_addralign_;
for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
p != this->cortex_a8_stubs_.end();
++p)
{
const Stub_template* stub_template = p->second->stub_template();
addralign = std::max(addralign, stub_template->alignment());
size = (align_address(size, stub_template->alignment())
+ stub_template->size());
}
for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
p != this->arm_v4bx_stubs_.end();
++p)
{
if (*p == NULL)
continue;
const Stub_template* stub_template = (*p)->stub_template();
addralign = std::max(addralign, stub_template->alignment());
size = (align_address(size, stub_template->alignment())
+ stub_template->size());
}
// Check if either data size or alignment changed in this pass.
// Update prev_data_size_ and prev_addralign_. These will be used
// as the current data size and address alignment for the next pass.
bool changed = size != this->prev_data_size_;
this->prev_data_size_ = size;
if (addralign != this->prev_addralign_)
changed = true;
this->prev_addralign_ = addralign;
return changed;
}
// Finalize the stubs. This sets the offsets of the stubs within the stub
// table. It also marks all input sections needing Cortex-A8 workaround.
template<bool big_endian>
void
Stub_table<big_endian>::finalize_stubs()
{
off_t off = this->reloc_stubs_size_;
for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
p != this->cortex_a8_stubs_.end();
++p)
{
Cortex_a8_stub* stub = p->second;
const Stub_template* stub_template = stub->stub_template();
uint64_t stub_addralign = stub_template->alignment();
off = align_address(off, stub_addralign);
stub->set_offset(off);
off += stub_template->size();
// Mark input section so that we can determine later if a code section
// needs the Cortex-A8 workaround quickly.
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
}
for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
p != this->arm_v4bx_stubs_.end();
++p)
{
if (*p == NULL)
continue;
const Stub_template* stub_template = (*p)->stub_template();
uint64_t stub_addralign = stub_template->alignment();
off = align_address(off, stub_addralign);
(*p)->set_offset(off);
off += stub_template->size();
}
gold_assert(off <= this->prev_data_size_);
}
// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
// of the address range seen by the linker.
template<bool big_endian>
void
Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
Target_arm<big_endian>* arm_target,
unsigned char* view,
Arm_address view_address,
section_size_type view_size)
{
// Cortex-A8 stubs are sorted by addresses of branches being fixed up.
for (Cortex_a8_stub_list::const_iterator p =
this->cortex_a8_stubs_.lower_bound(view_address);
((p != this->cortex_a8_stubs_.end())
&& (p->first < (view_address + view_size)));
++p)
{
// We do not store the THUMB bit in the LSB of either the branch address
// or the stub offset. There is no need to strip the LSB.
Arm_address branch_address = p->first;
const Cortex_a8_stub* stub = p->second;
Arm_address stub_address = this->address() + stub->offset();
// Offset of the branch instruction relative to this view.
section_size_type offset =
convert_to_section_size_type(branch_address - view_address);
gold_assert((offset + 4) <= view_size);
arm_target->apply_cortex_a8_workaround(stub, stub_address,
view + offset, branch_address);
}
}
// Arm_input_section methods.
// Initialize an Arm_input_section.
template<bool big_endian>
void
Arm_input_section<big_endian>::init()
{
Relobj* relobj = this->relobj();
unsigned int shndx = this->shndx();
// We have to cache original size, alignment and contents to avoid locking
// the original file.
this->original_addralign_ =
convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
// This is not efficient but we expect only a small number of relaxed
// input sections for stubs.
section_size_type section_size;
const unsigned char* section_contents =
relobj->section_contents(shndx, &section_size, false);
this->original_size_ =
convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
gold_assert(this->original_contents_ == NULL);
this->original_contents_ = new unsigned char[section_size];
memcpy(this->original_contents_, section_contents, section_size);
// We want to make this look like the original input section after
// output sections are finalized.
Output_section* os = relobj->output_section(shndx);
off_t offset = relobj->output_section_offset(shndx);
gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
this->set_address(os->address() + offset);
this->set_file_offset(os->offset() + offset);
this->set_current_data_size(this->original_size_);
this->finalize_data_size();
}
template<bool big_endian>
void
Arm_input_section<big_endian>::do_write(Output_file* of)
{
// We have to write out the original section content.
gold_assert(this->original_contents_ != NULL);
of->write(this->offset(), this->original_contents_,
this->original_size_);
// If this owns a stub table and it is not empty, write it.
if (this->is_stub_table_owner() && !this->stub_table_->empty())
this->stub_table_->write(of);
}
// Finalize data size.
template<bool big_endian>
void
Arm_input_section<big_endian>::set_final_data_size()
{
off_t off = convert_types<off_t, uint64_t>(this->original_size_);
if (this->is_stub_table_owner())
{
this->stub_table_->finalize_data_size();
off = align_address(off, this->stub_table_->addralign());
off += this->stub_table_->data_size();
}
this->set_data_size(off);
}
// Reset address and file offset.
template<bool big_endian>
void
Arm_input_section<big_endian>::do_reset_address_and_file_offset()
{
// Size of the original input section contents.
off_t off = convert_types<off_t, uint64_t>(this->original_size_);
// If this is a stub table owner, account for the stub table size.
if (this->is_stub_table_owner())
{
Stub_table<big_endian>* stub_table = this->stub_table_;
// Reset the stub table's address and file offset. The
// current data size for child will be updated after that.
stub_table_->reset_address_and_file_offset();
off = align_address(off, stub_table_->addralign());
off += stub_table->current_data_size();
}
this->set_current_data_size(off);
}
// Arm_exidx_cantunwind methods.
// Write this to Output file OF for a fixed endianness.
template<bool big_endian>
void
Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
{
off_t offset = this->offset();
const section_size_type oview_size = 8;
unsigned char* const oview = of->get_output_view(offset, oview_size);
Output_section* os = this->relobj_->output_section(this->shndx_);
gold_assert(os != NULL);
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
Arm_address output_offset =
arm_relobj->get_output_section_offset(this->shndx_);
Arm_address section_start;
section_size_type section_size;
// Find out the end of the text section referred by this.
if (output_offset != Arm_relobj<big_endian>::invalid_address)
{
section_start = os->address() + output_offset;
const Arm_exidx_input_section* exidx_input_section =
arm_relobj->exidx_input_section_by_link(this->shndx_);
gold_assert(exidx_input_section != NULL);
section_size =
convert_to_section_size_type(exidx_input_section->text_size());
}
else
{
// Currently this only happens for a relaxed section.
const Output_relaxed_input_section* poris =
os->find_relaxed_input_section(this->relobj_, this->shndx_);
gold_assert(poris != NULL);
section_start = poris->address();
section_size = convert_to_section_size_type(poris->data_size());
}
// We always append this to the end of an EXIDX section.
Arm_address output_address = section_start + section_size;
// Write out the entry. The first word either points to the beginning
// or after the end of a text section. The second word is the special
// EXIDX_CANTUNWIND value.
uint32_t prel31_offset = output_address - this->address();
if (Bits<31>::has_overflow32(offset))
gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
prel31_offset & 0x7fffffffU);
elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
elfcpp::EXIDX_CANTUNWIND);
of->write_output_view(this->offset(), oview_size, oview);
}
// Arm_exidx_merged_section methods.
// Constructor for Arm_exidx_merged_section.
// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
// SECTION_OFFSET_MAP points to a section offset map describing how
// parts of the input section are mapped to output. DELETED_BYTES is
// the number of bytes deleted from the EXIDX input section.
Arm_exidx_merged_section::Arm_exidx_merged_section(
const Arm_exidx_input_section& exidx_input_section,
const Arm_exidx_section_offset_map& section_offset_map,
uint32_t deleted_bytes)
: Output_relaxed_input_section(exidx_input_section.relobj(),
exidx_input_section.shndx(),
exidx_input_section.addralign()),
exidx_input_section_(exidx_input_section),
section_offset_map_(section_offset_map)
{
// If we retain or discard the whole EXIDX input section, we would
// not be here.
gold_assert(deleted_bytes != 0
&& deleted_bytes != this->exidx_input_section_.size());
// Fix size here so that we do not need to implement set_final_data_size.
uint32_t size = exidx_input_section.size() - deleted_bytes;
this->set_data_size(size);
this->fix_data_size();
// Allocate buffer for section contents and build contents.
this->section_contents_ = new unsigned char[size];
}
// Build the contents of a merged EXIDX output section.
void
Arm_exidx_merged_section::build_contents(
const unsigned char* original_contents,
section_size_type original_size)
{
// Go over spans of input offsets and write only those that are not
// discarded.
section_offset_type in_start = 0;
section_offset_type out_start = 0;
section_offset_type in_max =
convert_types<section_offset_type>(original_size);
section_offset_type out_max =
convert_types<section_offset_type>(this->data_size());
for (Arm_exidx_section_offset_map::const_iterator p =
this->section_offset_map_.begin();
p != this->section_offset_map_.end();
++p)
{
section_offset_type in_end = p->first;
gold_assert(in_end >= in_start);
section_offset_type out_end = p->second;
size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
if (out_end != -1)
{
size_t out_chunk_size =
convert_types<size_t>(out_end - out_start + 1);
gold_assert(out_chunk_size == in_chunk_size
&& in_end < in_max && out_end < out_max);
memcpy(this->section_contents_ + out_start,
original_contents + in_start,
out_chunk_size);
out_start += out_chunk_size;
}
in_start += in_chunk_size;
}
}
// Given an input OBJECT, an input section index SHNDX within that
// object, and an OFFSET relative to the start of that input
// section, return whether or not the corresponding offset within
// the output section is known. If this function returns true, it
// sets *POUTPUT to the output offset. The value -1 indicates that
// this input offset is being discarded.
bool
Arm_exidx_merged_section::do_output_offset(
const Relobj* relobj,
unsigned int shndx,
section_offset_type offset,
section_offset_type* poutput) const
{
// We only handle offsets for the original EXIDX input section.
if (relobj != this->exidx_input_section_.relobj()
|| shndx != this->exidx_input_section_.shndx())
return false;
section_offset_type section_size =
convert_types<section_offset_type>(this->exidx_input_section_.size());
if (offset < 0 || offset >= section_size)
// Input offset is out of valid range.
*poutput = -1;
else
{
// We need to look up the section offset map to determine the output
// offset. Find the reference point in map that is first offset
// bigger than or equal to this offset.
Arm_exidx_section_offset_map::const_iterator p =
this->section_offset_map_.lower_bound(offset);
// The section offset maps are build such that this should not happen if
// input offset is in the valid range.
gold_assert(p != this->section_offset_map_.end());
// We need to check if this is dropped.
section_offset_type ref = p->first;
section_offset_type mapped_ref = p->second;
if (mapped_ref != Arm_exidx_input_section::invalid_offset)
// Offset is present in output.
*poutput = mapped_ref + (offset - ref);
else
// Offset is discarded owing to EXIDX entry merging.
*poutput = -1;
}
return true;
}
// Write this to output file OF.
void
Arm_exidx_merged_section::do_write(Output_file* of)
{
off_t offset = this->offset();
const section_size_type oview_size = this->data_size();
unsigned char* const oview = of->get_output_view(offset, oview_size);
Output_section* os = this->relobj()->output_section(this->shndx());
gold_assert(os != NULL);
memcpy(oview, this->section_contents_, oview_size);
of->write_output_view(this->offset(), oview_size, oview);
}
// Arm_exidx_fixup methods.
// Append an EXIDX_CANTUNWIND in the current output section if the last entry
// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
// points to the end of the last seen EXIDX section.
void
Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
{
if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
&& this->last_input_section_ != NULL)
{
Relobj* relobj = this->last_input_section_->relobj();
unsigned int text_shndx = this->last_input_section_->link();
Arm_exidx_cantunwind* cantunwind =
new Arm_exidx_cantunwind(relobj, text_shndx);
this->exidx_output_section_->add_output_section_data(cantunwind);
this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
}
}
// Process an EXIDX section entry in input. Return whether this entry
// can be deleted in the output. SECOND_WORD in the second word of the
// EXIDX entry.
bool
Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
{
bool delete_entry;
if (second_word == elfcpp::EXIDX_CANTUNWIND)
{
// Merge if previous entry is also an EXIDX_CANTUNWIND.
delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
}
else if ((second_word & 0x80000000) != 0)
{
// Inlined unwinding data. Merge if equal to previous.
delete_entry = (merge_exidx_entries_
&& this->last_unwind_type_ == UT_INLINED_ENTRY
&& this->last_inlined_entry_ == second_word);
this->last_unwind_type_ = UT_INLINED_ENTRY;
this->last_inlined_entry_ = second_word;
}
else
{
// Normal table entry. In theory we could merge these too,
// but duplicate entries are likely to be much less common.
delete_entry = false;
this->last_unwind_type_ = UT_NORMAL_ENTRY;
}
return delete_entry;
}
// Update the current section offset map during EXIDX section fix-up.
// If there is no map, create one. INPUT_OFFSET is the offset of a
// reference point, DELETED_BYTES is the number of deleted by in the
// section so far. If DELETE_ENTRY is true, the reference point and
// all offsets after the previous reference point are discarded.
void
Arm_exidx_fixup::update_offset_map(
section_offset_type input_offset,
section_size_type deleted_bytes,
bool delete_entry)
{
if (this->section_offset_map_ == NULL)
this->section_offset_map_ = new Arm_exidx_section_offset_map();
section_offset_type output_offset;
if (delete_entry)
output_offset = Arm_exidx_input_section::invalid_offset;
else
output_offset = input_offset - deleted_bytes;
(*this->section_offset_map_)[input_offset] = output_offset;
}
// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
// bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
// If some entries are merged, also store a pointer to a newly created
// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
// owns the map and is responsible for releasing it after use.
template<bool big_endian>
uint32_t
Arm_exidx_fixup::process_exidx_section(
const Arm_exidx_input_section* exidx_input_section,
const unsigned char* section_contents,
section_size_type section_size,
Arm_exidx_section_offset_map** psection_offset_map)
{
Relobj* relobj = exidx_input_section->relobj();
unsigned shndx = exidx_input_section->shndx();
if ((section_size % 8) != 0)
{
// Something is wrong with this section. Better not touch it.
gold_error(_("uneven .ARM.exidx section size in %s section %u"),
relobj->name().c_str(), shndx);
this->last_input_section_ = exidx_input_section;
this->last_unwind_type_ = UT_NONE;
return 0;
}
uint32_t deleted_bytes = 0;
bool prev_delete_entry = false;
gold_assert(this->section_offset_map_ == NULL);
for (section_size_type i = 0; i < section_size; i += 8)
{
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
const Valtype* wv =
reinterpret_cast<const Valtype*>(section_contents + i + 4);
uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
bool delete_entry = this->process_exidx_entry(second_word);
// Entry deletion causes changes in output offsets. We use a std::map
// to record these. And entry (x, y) means input offset x
// is mapped to output offset y. If y is invalid_offset, then x is
// dropped in the output. Because of the way std::map::lower_bound
// works, we record the last offset in a region w.r.t to keeping or
// dropping. If there is no entry (x0, y0) for an input offset x0,
// the output offset y0 of it is determined by the output offset y1 of
// the smallest input offset x1 > x0 that there is an (x1, y1) entry
// in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
// y0 is also -1.
if (delete_entry != prev_delete_entry && i != 0)
this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
// Update total deleted bytes for this entry.
if (delete_entry)
deleted_bytes += 8;
prev_delete_entry = delete_entry;
}
// If section offset map is not NULL, make an entry for the end of
// section.
if (this->section_offset_map_ != NULL)
update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
*psection_offset_map = this->section_offset_map_;
this->section_offset_map_ = NULL;
this->last_input_section_ = exidx_input_section;
// Set the first output text section so that we can link the EXIDX output
// section to it. Ignore any EXIDX input section that is completely merged.
if (this->first_output_text_section_ == NULL
&& deleted_bytes != section_size)
{
unsigned int link = exidx_input_section->link();
Output_section* os = relobj->output_section(link);
gold_assert(os != NULL);
this->first_output_text_section_ = os;
}
return deleted_bytes;
}
// Arm_output_section methods.
// Create a stub group for input sections from BEGIN to END. OWNER
// points to the input section to be the owner a new stub table.
template<bool big_endian>
void
Arm_output_section<big_endian>::create_stub_group(
Input_section_list::const_iterator begin,
Input_section_list::const_iterator end,
Input_section_list::const_iterator owner,
Target_arm<big_endian>* target,
std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
const Task* task)
{
// We use a different kind of relaxed section in an EXIDX section.
// The static casting from Output_relaxed_input_section to
// Arm_input_section is invalid in an EXIDX section. We are okay
// because we should not be calling this for an EXIDX section.
gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
// Currently we convert ordinary input sections into relaxed sections only
// at this point but we may want to support creating relaxed input section
// very early. So we check here to see if owner is already a relaxed
// section.
Arm_input_section<big_endian>* arm_input_section;
if (owner->is_relaxed_input_section())
{
arm_input_section =
Arm_input_section<big_endian>::as_arm_input_section(
owner->relaxed_input_section());
}
else
{
gold_assert(owner->is_input_section());
// Create a new relaxed input section. We need to lock the original
// file.
Task_lock_obj<Object> tl(task, owner->relobj());
arm_input_section =
target->new_arm_input_section(owner->relobj(), owner->shndx());
new_relaxed_sections->push_back(arm_input_section);
}
// Create a stub table.
Stub_table<big_endian>* stub_table =
target->new_stub_table(arm_input_section);
arm_input_section->set_stub_table(stub_table);
Input_section_list::const_iterator p = begin;
Input_section_list::const_iterator prev_p;
// Look for input sections or relaxed input sections in [begin ... end].
do
{
if (p->is_input_section() || p->is_relaxed_input_section())
{
// The stub table information for input sections live
// in their objects.
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
arm_relobj->set_stub_table(p->shndx(), stub_table);
}
prev_p = p++;
}
while (prev_p != end);
}
// Group input sections for stub generation. GROUP_SIZE is roughly the limit
// of stub groups. We grow a stub group by adding input section until the
// size is just below GROUP_SIZE. The last input section will be converted
// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
// input section after the stub table, effectively double the group size.
//
// This is similar to the group_sections() function in elf32-arm.c but is
// implemented differently.
template<bool big_endian>
void
Arm_output_section<big_endian>::group_sections(
section_size_type group_size,
bool stubs_always_after_branch,
Target_arm<big_endian>* target,
const Task* task)
{
// States for grouping.
typedef enum
{
// No group is being built.
NO_GROUP,
// A group is being built but the stub table is not found yet.
// We keep group a stub group until the size is just under GROUP_SIZE.
// The last input section in the group will be used as the stub table.
FINDING_STUB_SECTION,
// A group is being built and we have already found a stub table.
// We enter this state to grow a stub group by adding input section
// after the stub table. This effectively doubles the group size.
HAS_STUB_SECTION
} State;
// Any newly created relaxed sections are stored here.
std::vector<Output_relaxed_input_section*> new_relaxed_sections;
State state = NO_GROUP;
section_size_type off = 0;
section_size_type group_begin_offset = 0;
section_size_type group_end_offset = 0;
section_size_type stub_table_end_offset = 0;
Input_section_list::const_iterator group_begin =
this->input_sections().end();
Input_section_list::const_iterator stub_table =
this->input_sections().end();
Input_section_list::const_iterator group_end = this->input_sections().end();
for (Input_section_list::const_iterator p = this->input_sections().begin();
p != this->input_sections().end();
++p)
{
section_size_type section_begin_offset =
align_address(off, p->addralign());
section_size_type section_end_offset =
section_begin_offset + p->data_size();
// Check to see if we should group the previously seen sections.
switch (state)
{
case NO_GROUP:
break;
case FINDING_STUB_SECTION:
// Adding this section makes the group larger than GROUP_SIZE.
if (section_end_offset - group_begin_offset >= group_size)
{
if (stubs_always_after_branch)
{
gold_assert(group_end != this->input_sections().end());
this->create_stub_group(group_begin, group_end, group_end,
target, &new_relaxed_sections,
task);
state = NO_GROUP;
}
else
{
// But wait, there's more! Input sections up to
// stub_group_size bytes after the stub table can be
// handled by it too.
state = HAS_STUB_SECTION;
stub_table = group_end;
stub_table_end_offset = group_end_offset;
}
}
break;
case HAS_STUB_SECTION:
// Adding this section makes the post stub-section group larger
// than GROUP_SIZE.
if (section_end_offset - stub_table_end_offset >= group_size)
{
gold_assert(group_end != this->input_sections().end());
this->create_stub_group(group_begin, group_end, stub_table,
target, &new_relaxed_sections, task);
state = NO_GROUP;
}
break;
default:
gold_unreachable();
}
// If we see an input section and currently there is no group, start
// a new one. Skip any empty sections. We look at the data size
// instead of calling p->relobj()->section_size() to avoid locking.
if ((p->is_input_section() || p->is_relaxed_input_section())
&& (p->data_size() != 0))
{
if (state == NO_GROUP)
{
state = FINDING_STUB_SECTION;
group_begin = p;
group_begin_offset = section_begin_offset;
}
// Keep track of the last input section seen.
group_end = p;
group_end_offset = section_end_offset;
}
off = section_end_offset;
}
// Create a stub group for any ungrouped sections.
if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
{
gold_assert(group_end != this->input_sections().end());
this->create_stub_group(group_begin, group_end,
(state == FINDING_STUB_SECTION
? group_end
: stub_table),
target, &new_relaxed_sections, task);
}
// Convert input section into relaxed input section in a batch.
if (!new_relaxed_sections.empty())
this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
// Update the section offsets
for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
{
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(
new_relaxed_sections[i]->relobj());
unsigned int shndx = new_relaxed_sections[i]->shndx();
// Tell Arm_relobj that this input section is converted.
arm_relobj->convert_input_section_to_relaxed_section(shndx);
}
}
// Append non empty text sections in this to LIST in ascending
// order of their position in this.
template<bool big_endian>
void
Arm_output_section<big_endian>::append_text_sections_to_list(
Text_section_list* list)
{
gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
for (Input_section_list::const_iterator p = this->input_sections().begin();
p != this->input_sections().end();
++p)
{
// We only care about plain or relaxed input sections. We also
// ignore any merged sections.
if (p->is_input_section() || p->is_relaxed_input_section())
list->push_back(Text_section_list::value_type(p->relobj(),
p->shndx()));
}
}
template<bool big_endian>
void
Arm_output_section<big_endian>::fix_exidx_coverage(
Layout* layout,
const Text_section_list& sorted_text_sections,
Symbol_table* symtab,
bool merge_exidx_entries,
const Task* task)
{
// We should only do this for the EXIDX output section.
gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
// We don't want the relaxation loop to undo these changes, so we discard
// the current saved states and take another one after the fix-up.
this->discard_states();
// Remove all input sections.
uint64_t address = this->address();
typedef std::list<Output_section::Input_section> Input_section_list;
Input_section_list input_sections;
this->reset_address_and_file_offset();
this->get_input_sections(address, std::string(""), &input_sections);
if (!this->input_sections().empty())
gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
// Go through all the known input sections and record them.
typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
typedef Unordered_map<Section_id, const Output_section::Input_section*,
Section_id_hash> Text_to_exidx_map;
Text_to_exidx_map text_to_exidx_map;
for (Input_section_list::const_iterator p = input_sections.begin();
p != input_sections.end();
++p)
{
// This should never happen. At this point, we should only see
// plain EXIDX input sections.
gold_assert(!p->is_relaxed_input_section());
text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
}
Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
// Go over the sorted text sections.
typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
Section_id_set processed_input_sections;
for (Text_section_list::const_iterator p = sorted_text_sections.begin();
p != sorted_text_sections.end();
++p)
{
Relobj* relobj = p->first;
unsigned int shndx = p->second;
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(relobj);
const Arm_exidx_input_section* exidx_input_section =
arm_relobj->exidx_input_section_by_link(shndx);
// If this text section has no EXIDX section or if the EXIDX section
// has errors, force an EXIDX_CANTUNWIND entry pointing to the end
// of the last seen EXIDX section.
if (exidx_input_section == NULL || exidx_input_section->has_errors())
{
exidx_fixup.add_exidx_cantunwind_as_needed();
continue;
}
Relobj* exidx_relobj = exidx_input_section->relobj();
unsigned int exidx_shndx = exidx_input_section->shndx();
Section_id sid(exidx_relobj, exidx_shndx);
Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
if (iter == text_to_exidx_map.end())
{
// This is odd. We have not seen this EXIDX input section before.
// We cannot do fix-up. If we saw a SECTIONS clause in a script,
// issue a warning instead. We assume the user knows what he
// or she is doing. Otherwise, this is an error.
if (layout->script_options()->saw_sections_clause())
gold_warning(_("unwinding may not work because EXIDX input section"
" %u of %s is not in EXIDX output section"),
exidx_shndx, exidx_relobj->name().c_str());
else
gold_error(_("unwinding may not work because EXIDX input section"
" %u of %s is not in EXIDX output section"),
exidx_shndx, exidx_relobj->name().c_str());
exidx_fixup.add_exidx_cantunwind_as_needed();
continue;
}
// We need to access the contents of the EXIDX section, lock the
// object here.
Task_lock_obj<Object> tl(task, exidx_relobj);
section_size_type exidx_size;
const unsigned char* exidx_contents =
exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
// Fix up coverage and append input section to output data list.
Arm_exidx_section_offset_map* section_offset_map = NULL;
uint32_t deleted_bytes =
exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
exidx_contents,
exidx_size,
&section_offset_map);
if (deleted_bytes == exidx_input_section->size())
{
// The whole EXIDX section got merged. Remove it from output.
gold_assert(section_offset_map == NULL);
exidx_relobj->set_output_section(exidx_shndx, NULL);
// All local symbols defined in this input section will be dropped.
// We need to adjust output local symbol count.
arm_relobj->set_output_local_symbol_count_needs_update();
}
else if (deleted_bytes > 0)
{
// Some entries are merged. We need to convert this EXIDX input
// section into a relaxed section.
gold_assert(section_offset_map != NULL);
Arm_exidx_merged_section* merged_section =
new Arm_exidx_merged_section(*exidx_input_section,
*section_offset_map, deleted_bytes);
merged_section->build_contents(exidx_contents, exidx_size);
const std::string secname = exidx_relobj->section_name(exidx_shndx);
this->add_relaxed_input_section(layout, merged_section, secname);
arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
// All local symbols defined in discarded portions of this input
// section will be dropped. We need to adjust output local symbol
// count.
arm_relobj->set_output_local_symbol_count_needs_update();
}
else
{
// Just add back the EXIDX input section.
gold_assert(section_offset_map == NULL);
const Output_section::Input_section* pis = iter->second;
gold_assert(pis->is_input_section());
this->add_script_input_section(*pis);
}
processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
}
// Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
exidx_fixup.add_exidx_cantunwind_as_needed();
// Remove any known EXIDX input sections that are not processed.
for (Input_section_list::const_iterator p = input_sections.begin();
p != input_sections.end();
++p)
{
if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
== processed_input_sections.end())
{
// We discard a known EXIDX section because its linked
// text section has been folded by ICF. We also discard an
// EXIDX section with error, the output does not matter in this
// case. We do this to avoid triggering asserts.
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
const Arm_exidx_input_section* exidx_input_section =
arm_relobj->exidx_input_section_by_shndx(p->shndx());
gold_assert(exidx_input_section != NULL);
if (!exidx_input_section->has_errors())
{
unsigned int text_shndx = exidx_input_section->link();
gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
}
// Remove this from link. We also need to recount the
// local symbols.
p->relobj()->set_output_section(p->shndx(), NULL);
arm_relobj->set_output_local_symbol_count_needs_update();
}
}
// Link exidx output section to the first seen output section and
// set correct entry size.
this->set_link_section(exidx_fixup.first_output_text_section());
this->set_entsize(8);
// Make changes permanent.
this->save_states();
this->set_section_offsets_need_adjustment();
}
// Link EXIDX output sections to text output sections.
template<bool big_endian>
void
Arm_output_section<big_endian>::set_exidx_section_link()
{
gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
if (!this->input_sections().empty())
{
Input_section_list::const_iterator p = this->input_sections().begin();
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
unsigned exidx_shndx = p->shndx();
const Arm_exidx_input_section* exidx_input_section =
arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
gold_assert(exidx_input_section != NULL);
unsigned int text_shndx = exidx_input_section->link();
Output_section* os = arm_relobj->output_section(text_shndx);
this->set_link_section(os);
}
}
// Arm_relobj methods.
// Determine if an input section is scannable for stub processing. SHDR is
// the header of the section and SHNDX is the section index. OS is the output
// section for the input section and SYMTAB is the global symbol table used to
// look up ICF information.
template<bool big_endian>
bool
Arm_relobj<big_endian>::section_is_scannable(
const elfcpp::Shdr<32, big_endian>& shdr,
unsigned int shndx,
const Output_section* os,
const Symbol_table* symtab)
{
// Skip any empty sections, unallocated sections or sections whose
// type are not SHT_PROGBITS.
if (shdr.get_sh_size() == 0
|| (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
|| shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
return false;
// Skip any discarded or ICF'ed sections.
if (os == NULL || symtab->is_section_folded(this, shndx))
return false;
// If this requires special offset handling, check to see if it is
// a relaxed section. If this is not, then it is a merged section that
// we cannot handle.
if (this->is_output_section_offset_invalid(shndx))
{
const Output_relaxed_input_section* poris =
os->find_relaxed_input_section(this, shndx);
if (poris == NULL)
return false;
}
return true;
}
// Determine if we want to scan the SHNDX-th section for relocation stubs.
// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
template<bool big_endian>
bool
Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
const elfcpp::Shdr<32, big_endian>& shdr,
const Relobj::Output_sections& out_sections,
const Symbol_table* symtab,
const unsigned char* pshdrs)
{
unsigned int sh_type = shdr.get_sh_type();
if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
return false;
// Ignore empty section.
off_t sh_size = shdr.get_sh_size();
if (sh_size == 0)
return false;
// Ignore reloc section with unexpected symbol table. The
// error will be reported in the final link.
if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
return false;
unsigned int reloc_size;
if (sh_type == elfcpp::SHT_REL)
reloc_size = elfcpp::Elf_sizes<32>::rel_size;
else
reloc_size = elfcpp::Elf_sizes<32>::rela_size;
// Ignore reloc section with unexpected entsize or uneven size.
// The error will be reported in the final link.
if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
return false;
// Ignore reloc section with bad info. This error will be
// reported in the final link.
unsigned int index = this->adjust_shndx(shdr.get_sh_info());
if (index >= this->shnum())
return false;
const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
return this->section_is_scannable(text_shdr, index,
out_sections[index], symtab);
}
// Return the output address of either a plain input section or a relaxed
// input section. SHNDX is the section index. We define and use this
// instead of calling Output_section::output_address because that is slow
// for large output.
template<bool big_endian>
Arm_address
Arm_relobj<big_endian>::simple_input_section_output_address(
unsigned int shndx,
Output_section* os)
{
if (this->is_output_section_offset_invalid(shndx))
{
const Output_relaxed_input_section* poris =
os->find_relaxed_input_section(this, shndx);
// We do not handle merged sections here.
gold_assert(poris != NULL);
return poris->address();
}
else
return os->address() + this->get_output_section_offset(shndx);
}
// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
template<bool big_endian>
bool
Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
const elfcpp::Shdr<32, big_endian>& shdr,
unsigned int shndx,
Output_section* os,
const Symbol_table* symtab)
{
if (!this->section_is_scannable(shdr, shndx, os, symtab))
return false;
// If the section does not cross any 4K-boundaries, it does not need to
// be scanned.
Arm_address address = this->simple_input_section_output_address(shndx, os);
if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
return false;
return true;
}
// Scan a section for Cortex-A8 workaround.
template<bool big_endian>
void
Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
const elfcpp::Shdr<32, big_endian>& shdr,
unsigned int shndx,
Output_section* os,
Target_arm<big_endian>* arm_target)
{
// Look for the first mapping symbol in this section. It should be
// at (shndx, 0).
Mapping_symbol_position section_start(shndx, 0);
typename Mapping_symbols_info::const_iterator p =
this->mapping_symbols_info_.lower_bound(section_start);
// There are no mapping symbols for this section. Treat it as a data-only
// section.
if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
return;
Arm_address output_address =
this->simple_input_section_output_address(shndx, os);
// Get the section contents.
section_size_type input_view_size = 0;
const unsigned char* input_view =
this->section_contents(shndx, &input_view_size, false);
// We need to go through the mapping symbols to determine what to
// scan. There are two reasons. First, we should look at THUMB code and
// THUMB code only. Second, we only want to look at the 4K-page boundary
// to speed up the scanning.
while (p != this->mapping_symbols_info_.end()
&& p->first.first == shndx)
{
typename Mapping_symbols_info::const_iterator next =
this->mapping_symbols_info_.upper_bound(p->first);
// Only scan part of a section with THUMB code.
if (p->second == 't')
{
// Determine the end of this range.
section_size_type span_start =
convert_to_section_size_type(p->first.second);
section_size_type span_end;
if (next != this->mapping_symbols_info_.end()
&& next->first.first == shndx)
span_end = convert_to_section_size_type(next->first.second);
else
span_end = convert_to_section_size_type(shdr.get_sh_size());
if (((span_start + output_address) & ~0xfffUL)
!= ((span_end + output_address - 1) & ~0xfffUL))
{
arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
span_start, span_end,
input_view,
output_address);
}
}
p = next;
}
}
// Scan relocations for stub generation.
template<bool big_endian>
void
Arm_relobj<big_endian>::scan_sections_for_stubs(
Target_arm<big_endian>* arm_target,
const Symbol_table* symtab,
const Layout* layout)
{
unsigned int shnum = this->shnum();
const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
// Read the section headers.
const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
shnum * shdr_size,
true, true);
// To speed up processing, we set up hash tables for fast lookup of
// input offsets to output addresses.
this->initialize_input_to_output_maps();
const Relobj::Output_sections& out_sections(this->output_sections());
Relocate_info<32, big_endian> relinfo;
relinfo.symtab = symtab;
relinfo.layout = layout;
relinfo.object = this;
// Do relocation stubs scanning.
const unsigned char* p = pshdrs + shdr_size;
for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
{
const elfcpp::Shdr<32, big_endian> shdr(p);
if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
pshdrs))
{
unsigned int index = this->adjust_shndx(shdr.get_sh_info());
Arm_address output_offset = this->get_output_section_offset(index);
Arm_address output_address;
if (output_offset != invalid_address)
output_address = out_sections[index]->address() + output_offset;
else
{
// Currently this only happens for a relaxed section.
const Output_relaxed_input_section* poris =
out_sections[index]->find_relaxed_input_section(this, index);
gold_assert(poris != NULL);
output_address = poris->address();
}
// Get the relocations.
const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
shdr.get_sh_size(),
true, false);
// Get the section contents. This does work for the case in which
// we modify the contents of an input section. We need to pass the
// output view under such circumstances.
section_size_type input_view_size = 0;
const unsigned char* input_view =
this->section_contents(index, &input_view_size, false);
relinfo.reloc_shndx = i;
relinfo.data_shndx = index;
unsigned int sh_type = shdr.get_sh_type();
unsigned int reloc_size;
if (sh_type == elfcpp::SHT_REL)
reloc_size = elfcpp::Elf_sizes<32>::rel_size;
else
reloc_size = elfcpp::Elf_sizes<32>::rela_size;
Output_section* os = out_sections[index];
arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
shdr.get_sh_size() / reloc_size,
os,
output_offset == invalid_address,
input_view, output_address,
input_view_size);
}
}
// Do Cortex-A8 erratum stubs scanning. This has to be done for a section
// after its relocation section, if there is one, is processed for
// relocation stubs. Merging this loop with the one above would have been
// complicated since we would have had to make sure that relocation stub
// scanning is done first.
if (arm_target->fix_cortex_a8())
{
const unsigned char* p = pshdrs + shdr_size;
for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
{
const elfcpp::Shdr<32, big_endian> shdr(p);
if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
out_sections[i],
symtab))
this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
arm_target);
}
}
// After we've done the relocations, we release the hash tables,
// since we no longer need them.
this->free_input_to_output_maps();
}
// Count the local symbols. The ARM backend needs to know if a symbol
// is a THUMB function or not. For global symbols, it is easy because
// the Symbol object keeps the ELF symbol type. For local symbol it is
// harder because we cannot access this information. So we override the
// do_count_local_symbol in parent and scan local symbols to mark
// THUMB functions. This is not the most efficient way but I do not want to
// slow down other ports by calling a per symbol target hook inside
// Sized_relobj_file<size, big_endian>::do_count_local_symbols.
template<bool big_endian>
void
Arm_relobj<big_endian>::do_count_local_symbols(
Stringpool_template<char>* pool,
Stringpool_template<char>* dynpool)
{
// We need to fix-up the values of any local symbols whose type are
// STT_ARM_TFUNC.
// Ask parent to count the local symbols.
Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
const unsigned int loccount = this->local_symbol_count();
if (loccount == 0)
return;
// Initialize the thumb function bit-vector.
std::vector<bool> empty_vector(loccount, false);
this->local_symbol_is_thumb_function_.swap(empty_vector);
// Read the symbol table section header.
const unsigned int symtab_shndx = this->symtab_shndx();
elfcpp::Shdr<32, big_endian>
symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
// Read the local symbols.
const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
gold_assert(loccount == symtabshdr.get_sh_info());
off_t locsize = loccount * sym_size;
const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
locsize, true, true);
// For mapping symbol processing, we need to read the symbol names.
unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
if (strtab_shndx >= this->shnum())
{
this->error(_("invalid symbol table name index: %u"), strtab_shndx);
return;
}
elfcpp::Shdr<32, big_endian>
strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
{
this->error(_("symbol table name section has wrong type: %u"),
static_cast<unsigned int>(strtabshdr.get_sh_type()));
return;
}
const char* pnames =
reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
strtabshdr.get_sh_size(),
false, false));
// Loop over the local symbols and mark any local symbols pointing
// to THUMB functions.
// Skip the first dummy symbol.
psyms += sym_size;
typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
this->local_values();
for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
{
elfcpp::Sym<32, big_endian> sym(psyms);
elfcpp::STT st_type = sym.get_st_type();
Symbol_value<32>& lv((*plocal_values)[i]);
Arm_address input_value = lv.input_value();
// Check to see if this is a mapping symbol.
const char* sym_name = pnames + sym.get_st_name();
if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
{
bool is_ordinary;
unsigned int input_shndx =
this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
gold_assert(is_ordinary);
// Strip of LSB in case this is a THUMB symbol.
Mapping_symbol_position msp(input_shndx, input_value & ~1U);
this->mapping_symbols_info_[msp] = sym_name[1];
}
if (st_type == elfcpp::STT_ARM_TFUNC
|| (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
{
// This is a THUMB function. Mark this and canonicalize the
// symbol value by setting LSB.
this->local_symbol_is_thumb_function_[i] = true;
if ((input_value & 1) == 0)
lv.set_input_value(input_value | 1);
}
}
}
// Relocate sections.
template<bool big_endian>
void
Arm_relobj<big_endian>::do_relocate_sections(
const Symbol_table* symtab,
const Layout* layout,
const unsigned char* pshdrs,
Output_file* of,
typename Sized_relobj_file<32, big_endian>::Views* pviews)
{
// Relocate the section data.
this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
1, this->shnum() - 1);
// We do not generate stubs if doing a relocatable link.
if (parameters->options().relocatable())
return;
// Relocate stub tables.
unsigned int shnum = this->shnum();
Target_arm<big_endian>* arm_target =
Target_arm<big_endian>::default_target();
Relocate_info<32, big_endian> relinfo;
relinfo.symtab = symtab;
relinfo.layout = layout;
relinfo.object = this;
for (unsigned int i = 1; i < shnum; ++i)
{
Arm_input_section<big_endian>* arm_input_section =
arm_target->find_arm_input_section(this, i);
if (arm_input_section != NULL
&& arm_input_section->is_stub_table_owner()
&& !arm_input_section->stub_table()->empty())
{
// We cannot discard a section if it owns a stub table.
Output_section* os = this->output_section(i);
gold_assert(os != NULL);
relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
relinfo.reloc_shdr = NULL;
relinfo.data_shndx = i;
relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
gold_assert((*pviews)[i].view != NULL);
// We are passed the output section view. Adjust it to cover the
// stub table only.
Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
gold_assert((stub_table->address() >= (*pviews)[i].address)
&& ((stub_table->address() + stub_table->data_size())
<= (*pviews)[i].address + (*pviews)[i].view_size));
off_t offset = stub_table->address() - (*pviews)[i].address;
unsigned char* view = (*pviews)[i].view + offset;
Arm_address address = stub_table->address();
section_size_type view_size = stub_table->data_size();
stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
view_size);
}
// Apply Cortex A8 workaround if applicable.
if (this->section_has_cortex_a8_workaround(i))
{
unsigned char* view = (*pviews)[i].view;
Arm_address view_address = (*pviews)[i].address;
section_size_type view_size = (*pviews)[i].view_size;
Stub_table<big_endian>* stub_table = this->stub_tables_[i];
// Adjust view to cover section.
Output_section* os = this->output_section(i);
gold_assert(os != NULL);
Arm_address section_address =
this->simple_input_section_output_address(i, os);
uint64_t section_size = this->section_size(i);
gold_assert(section_address >= view_address
&& ((section_address + section_size)
<= (view_address + view_size)));
unsigned char* section_view = view + (section_address - view_address);
// Apply the Cortex-A8 workaround to the output address range
// corresponding to this input section.
stub_table->apply_cortex_a8_workaround_to_address_range(
arm_target,
section_view,
section_address,
section_size);
}
// BE8 swapping
if (parameters->options().be8())
{
section_size_type span_start, span_end;
elfcpp::Shdr<32, big_endian>
shdr(pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size);
Mapping_symbol_position section_start(i, 0);
typename Mapping_symbols_info::const_iterator p =
this->mapping_symbols_info_.lower_bound(section_start);
unsigned char* view = (*pviews)[i].view;
Arm_address view_address = (*pviews)[i].address;
section_size_type view_size = (*pviews)[i].view_size;
while (p != this->mapping_symbols_info_.end()
&& p->first.first == i)
{
typename Mapping_symbols_info::const_iterator next =
this->mapping_symbols_info_.upper_bound(p->first);
// Only swap arm or thumb code.
if ((p->second == 'a') || (p->second == 't'))
{
Output_section* os = this->output_section(i);
gold_assert(os != NULL);
Arm_address section_address =
this->simple_input_section_output_address(i, os);
span_start = convert_to_section_size_type(p->first.second);
if (next != this->mapping_symbols_info_.end()
&& next->first.first == i)
span_end =
convert_to_section_size_type(next->first.second);
else
span_end =
convert_to_section_size_type(shdr.get_sh_size());
unsigned char* section_view =
view + (section_address - view_address);
uint64_t section_size = this->section_size(i);
gold_assert(section_address >= view_address
&& ((section_address + section_size)
<= (view_address + view_size)));
// Set Output view for swapping
unsigned char *oview = section_view + span_start;
unsigned int index = 0;
if (p->second == 'a')
{
while (index + 3 < (span_end - span_start))
{
typedef typename elfcpp::Swap<32, big_endian>
::Valtype Valtype;
Valtype* wv =
reinterpret_cast<Valtype*>(oview+index);
uint32_t val = elfcpp::Swap<32, false>::readval(wv);
elfcpp::Swap<32, true>::writeval(wv, val);
index += 4;
}
}
else if (p->second == 't')
{
while (index + 1 < (span_end - span_start))
{
typedef typename elfcpp::Swap<16, big_endian>
::Valtype Valtype;
Valtype* wv =
reinterpret_cast<Valtype*>(oview+index);
uint16_t val = elfcpp::Swap<16, false>::readval(wv);
elfcpp::Swap<16, true>::writeval(wv, val);
index += 2;
}
}
}
p = next;
}
}
}
}
// Find the linked text section of an EXIDX section by looking at the first
// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
// must be linked to its associated code section via the sh_link field of
// its section header. However, some tools are broken and the link is not
// always set. LD just drops such an EXIDX section silently, causing the
// associated code not unwindabled. Here we try a little bit harder to
// discover the linked code section.
//
// PSHDR points to the section header of a relocation section of an EXIDX
// section. If we can find a linked text section, return true and
// store the text section index in the location PSHNDX. Otherwise
// return false.
template<bool big_endian>
bool
Arm_relobj<big_endian>::find_linked_text_section(
const unsigned char* pshdr,
const unsigned char* psyms,
unsigned int* pshndx)
{
elfcpp::Shdr<32, big_endian> shdr(pshdr);
// If there is no relocation, we cannot find the linked text section.
size_t reloc_size;
if (shdr.get_sh_type() == elfcpp::SHT_REL)
reloc_size = elfcpp::Elf_sizes<32>::rel_size;
else
reloc_size = elfcpp::Elf_sizes<32>::rela_size;
size_t reloc_count = shdr.get_sh_size() / reloc_size;
// Get the relocations.
const unsigned char* prelocs =
this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
// Find the REL31 relocation for the first word of the first EXIDX entry.
for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
{
Arm_address r_offset;
typename elfcpp::Elf_types<32>::Elf_WXword r_info;
if (shdr.get_sh_type() == elfcpp::SHT_REL)
{
typename elfcpp::Rel<32, big_endian> reloc(prelocs);
r_info = reloc.get_r_info();
r_offset = reloc.get_r_offset();
}
else
{
typename elfcpp::Rela<32, big_endian> reloc(prelocs);
r_info = reloc.get_r_info();
r_offset = reloc.get_r_offset();
}
unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
continue;
unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
if (r_sym == 0
|| r_sym >= this->local_symbol_count()
|| r_offset != 0)
continue;
// This is the relocation for the first word of the first EXIDX entry.
// We expect to see a local section symbol.
const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
if (sym.get_st_type() == elfcpp::STT_SECTION)
{
bool is_ordinary;
*pshndx =
this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
gold_assert(is_ordinary);
return true;
}
else
return false;
}
return false;
}
// Make an EXIDX input section object for an EXIDX section whose index is
// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
// is the section index of the linked text section.
template<bool big_endian>
void
Arm_relobj<big_endian>::make_exidx_input_section(
unsigned int shndx,
const elfcpp::Shdr<32, big_endian>& shdr,
unsigned int text_shndx,
const elfcpp::Shdr<32, big_endian>& text_shdr)
{
// Create an Arm_exidx_input_section object for this EXIDX section.
Arm_exidx_input_section* exidx_input_section =
new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
shdr.get_sh_addralign(),
text_shdr.get_sh_size());
gold_assert(this->exidx_section_map_[shndx] == NULL);
this->exidx_section_map_[shndx] = exidx_input_section;
if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
{
gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
this->section_name(shndx).c_str(), shndx, text_shndx,
this->name().c_str());
exidx_input_section->set_has_errors();
}
else if (this->exidx_section_map_[text_shndx] != NULL)
{
unsigned other_exidx_shndx =
this->exidx_section_map_[text_shndx]->shndx();
gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
"%s(%u) in %s"),
this->section_name(shndx).c_str(), shndx,
this->section_name(other_exidx_shndx).c_str(),
other_exidx_shndx, this->section_name(text_shndx).c_str(),
text_shndx, this->name().c_str());
exidx_input_section->set_has_errors();
}
else
this->exidx_section_map_[text_shndx] = exidx_input_section;
// Check section flags of text section.
if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
{
gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
" in %s"),
this->section_name(shndx).c_str(), shndx,
this->section_name(text_shndx).c_str(), text_shndx,
this->name().c_str());
exidx_input_section->set_has_errors();
}
else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
// I would like to make this an error but currently ld just ignores
// this.
gold_warning(_("EXIDX section %s(%u) links to non-executable section "
"%s(%u) in %s"),
this->section_name(shndx).c_str(), shndx,
this->section_name(text_shndx).c_str(), text_shndx,
this->name().c_str());
}
// Read the symbol information.
template<bool big_endian>
void
Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
{
// Call parent class to read symbol information.
this->base_read_symbols(sd);
// If this input file is a binary file, it has no processor
// specific flags and attributes section.
Input_file::Format format = this->input_file()->format();
if (format != Input_file::FORMAT_ELF)
{
gold_assert(format == Input_file::FORMAT_BINARY);
this->merge_flags_and_attributes_ = false;
return;
}
// Read processor-specific flags in ELF file header.
const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
elfcpp::Elf_sizes<32>::ehdr_size,
true, false);
elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
this->processor_specific_flags_ = ehdr.get_e_flags();
// Go over the section headers and look for .ARM.attributes and .ARM.exidx
// sections.
std::vector<unsigned int> deferred_exidx_sections;
const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
const unsigned char* pshdrs = sd->section_headers->data();
const unsigned char* ps = pshdrs + shdr_size;
bool must_merge_flags_and_attributes = false;
for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
{
elfcpp::Shdr<32, big_endian> shdr(ps);
// Sometimes an object has no contents except the section name string
// table and an empty symbol table with the undefined symbol. We
// don't want to merge processor-specific flags from such an object.
if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
{
// Symbol table is not empty.
const elfcpp::Elf_types<32>::Elf_WXword sym_size =
elfcpp::Elf_sizes<32>::sym_size;
if (shdr.get_sh_size() > sym_size)
must_merge_flags_and_attributes = true;
}
else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
// If this is neither an empty symbol table nor a string table,
// be conservative.
must_merge_flags_and_attributes = true;
if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
{
gold_assert(this->attributes_section_data_ == NULL);
section_offset_type section_offset = shdr.get_sh_offset();
section_size_type section_size =
convert_to_section_size_type(shdr.get_sh_size());
const unsigned char* view =
this->get_view(section_offset, section_size, true, false);
this->attributes_section_data_ =
new Attributes_section_data(view, section_size);
}
else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
{
unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
if (text_shndx == elfcpp::SHN_UNDEF)
deferred_exidx_sections.push_back(i);
else
{
elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
+ text_shndx * shdr_size);
this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
}
// EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
this->section_name(i).c_str(), this->name().c_str());
}
}
// This is rare.
if (!must_merge_flags_and_attributes)
{
gold_assert(deferred_exidx_sections.empty());
this->merge_flags_and_attributes_ = false;
return;
}
// Some tools are broken and they do not set the link of EXIDX sections.
// We look at the first relocation to figure out the linked sections.
if (!deferred_exidx_sections.empty())
{
// We need to go over the section headers again to find the mapping
// from sections being relocated to their relocation sections. This is
// a bit inefficient as we could do that in the loop above. However,
// we do not expect any deferred EXIDX sections normally. So we do not
// want to slow down the most common path.
typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
Reloc_map reloc_map;
ps = pshdrs + shdr_size;
for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
{
elfcpp::Shdr<32, big_endian> shdr(ps);
elfcpp::Elf_Word sh_type = shdr.get_sh_type();
if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
{
unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
if (info_shndx >= this->shnum())
gold_error(_("relocation section %u has invalid info %u"),
i, info_shndx);
Reloc_map::value_type value(info_shndx, i);
std::pair<Reloc_map::iterator, bool> result =
reloc_map.insert(value);
if (!result.second)
gold_error(_("section %u has multiple relocation sections "
"%u and %u"),
info_shndx, i, reloc_map[info_shndx]);
}
}
// Read the symbol table section header.
const unsigned int symtab_shndx = this->symtab_shndx();
elfcpp::Shdr<32, big_endian>
symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
// Read the local symbols.
const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
const unsigned int loccount = this->local_symbol_count();
gold_assert(loccount == symtabshdr.get_sh_info());
off_t locsize = loccount * sym_size;
const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
locsize, true, true);
// Process the deferred EXIDX sections.
for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
{
unsigned int shndx = deferred_exidx_sections[i];
elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
unsigned int text_shndx = elfcpp::SHN_UNDEF;
Reloc_map::const_iterator it = reloc_map.find(shndx);
if (it != reloc_map.end())
find_linked_text_section(pshdrs + it->second * shdr_size,
psyms, &text_shndx);
elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
+ text_shndx * shdr_size);
this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
}
}
}
// Process relocations for garbage collection. The ARM target uses .ARM.exidx
// sections for unwinding. These sections are referenced implicitly by
// text sections linked in the section headers. If we ignore these implicit
// references, the .ARM.exidx sections and any .ARM.extab sections they use
// will be garbage-collected incorrectly. Hence we override the same function
// in the base class to handle these implicit references.
template<bool big_endian>
void
Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
Layout* layout,
Read_relocs_data* rd)
{
// First, call base class method to process relocations in this object.
Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
// If --gc-sections is not specified, there is nothing more to do.
// This happens when --icf is used but --gc-sections is not.
if (!parameters->options().gc_sections())
return;
unsigned int shnum = this->shnum();
const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
shnum * shdr_size,
true, true);
// Scan section headers for sections of type SHT_ARM_EXIDX. Add references
// to these from the linked text sections.
const unsigned char* ps = pshdrs + shdr_size;
for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
{
elfcpp::Shdr<32, big_endian> shdr(ps);
if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
{
// Found an .ARM.exidx section, add it to the set of reachable
// sections from its linked text section.
unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
symtab->gc()->add_reference(this, text_shndx, this, i);
}
}
}
// Update output local symbol count. Owing to EXIDX entry merging, some local
// symbols will be removed in output. Adjust output local symbol count
// accordingly. We can only changed the static output local symbol count. It
// is too late to change the dynamic symbols.
template<bool big_endian>
void
Arm_relobj<big_endian>::update_output_local_symbol_count()
{
// Caller should check that this needs updating. We want caller checking
// because output_local_symbol_count_needs_update() is most likely inlined.
gold_assert(this->output_local_symbol_count_needs_update_);
gold_assert(this->symtab_shndx() != -1U);
if (this->symtab_shndx() == 0)
{
// This object has no symbols. Weird but legal.
return;
}
// Read the symbol table section header.
const unsigned int symtab_shndx = this->symtab_shndx();
elfcpp::Shdr<32, big_endian>
symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
// Read the local symbols.
const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
const unsigned int loccount = this->local_symbol_count();
gold_assert(loccount == symtabshdr.get_sh_info());
off_t locsize = loccount * sym_size;
const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
locsize, true, true);
// Loop over the local symbols.
typedef typename Sized_relobj_file<32, big_endian>::Output_sections
Output_sections;
const Output_sections& out_sections(this->output_sections());
unsigned int shnum = this->shnum();
unsigned int count = 0;
// Skip the first, dummy, symbol.
psyms += sym_size;
for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
{
elfcpp::Sym<32, big_endian> sym(psyms);
Symbol_value<32>& lv((*this->local_values())[i]);
// This local symbol was already discarded by do_count_local_symbols.
if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
continue;
bool is_ordinary;
unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
&is_ordinary);
if (shndx < shnum)
{
Output_section* os = out_sections[shndx];
// This local symbol no longer has an output section. Discard it.
if (os == NULL)
{
lv.set_no_output_symtab_entry();
continue;
}
// Currently we only discard parts of EXIDX input sections.
// We explicitly check for a merged EXIDX input section to avoid
// calling Output_section_data::output_offset unless necessary.
if ((this->get_output_section_offset(shndx) == invalid_address)
&& (this->exidx_input_section_by_shndx(shndx) != NULL))
{
section_offset_type output_offset =
os->output_offset(this, shndx, lv.input_value());
if (output_offset == -1)
{
// This symbol is defined in a part of an EXIDX input section
// that is discarded due to entry merging.
lv.set_no_output_symtab_entry();
continue;
}
}
}
++count;
}
this->set_output_local_symbol_count(count);
this->output_local_symbol_count_needs_update_ = false;
}
// Arm_dynobj methods.
// Read the symbol information.
template<bool big_endian>
void
Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
{
// Call parent class to read symbol information.
this->base_read_symbols(sd);
// Read processor-specific flags in ELF file header.
const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
elfcpp::Elf_sizes<32>::ehdr_size,
true, false);
elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
this->processor_specific_flags_ = ehdr.get_e_flags();
// Read the attributes section if there is one.
// We read from the end because gas seems to put it near the end of
// the section headers.
const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
const unsigned char* ps =
sd->section_headers->data() + shdr_size * (this->shnum() - 1);
for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
{
elfcpp::Shdr<32, big_endian> shdr(ps);
if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
{
section_offset_type section_offset = shdr.get_sh_offset();
section_size_type section_size =
convert_to_section_size_type(shdr.get_sh_size());
const unsigned char* view =
this->get_view(section_offset, section_size, true, false);
this->attributes_section_data_ =
new Attributes_section_data(view, section_size);
break;
}
}
}
// Stub_addend_reader methods.
// Read the addend of a REL relocation of type R_TYPE at VIEW.
template<bool big_endian>
elfcpp::Elf_types<32>::Elf_Swxword
Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
unsigned int r_type,
const unsigned char* view,
const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
{
typedef class Arm_relocate_functions<big_endian> RelocFuncs;
switch (r_type)
{
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_PLT32:
{
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
const Valtype* wv = reinterpret_cast<const Valtype*>(view);
Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
return Bits<26>::sign_extend32(val << 2);
}
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_THM_JUMP24:
case elfcpp::R_ARM_THM_XPC22:
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
const Valtype* wv = reinterpret_cast<const Valtype*>(view);
Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
}
case elfcpp::R_ARM_THM_JUMP19:
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
const Valtype* wv = reinterpret_cast<const Valtype*>(view);
Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
}
default:
gold_unreachable();
}
}
// Arm_output_data_got methods.
// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
// The first one is initialized to be 1, which is the module index for
// the main executable and the second one 0. A reloc of the type
// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
// be applied by gold. GSYM is a global symbol.
//
template<bool big_endian>
void
Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
unsigned int got_type,
Symbol* gsym)
{
if (gsym->has_got_offset(got_type))
return;
// We are doing a static link. Just mark it as belong to module 1,
// the executable.
unsigned int got_offset = this->add_constant(1);
gsym->set_got_offset(got_type, got_offset);
got_offset = this->add_constant(0);
this->static_relocs_.push_back(Static_reloc(got_offset,
elfcpp::R_ARM_TLS_DTPOFF32,
gsym));
}
// Same as the above but for a local symbol.
template<bool big_endian>
void
Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
unsigned int got_type,
Sized_relobj_file<32, big_endian>* object,
unsigned int index)
{
if (object->local_has_got_offset(index, got_type))
return;
// We are doing a static link. Just mark it as belong to module 1,
// the executable.
unsigned int got_offset = this->add_constant(1);
object->set_local_got_offset(index, got_type, got_offset);
got_offset = this->add_constant(0);
this->static_relocs_.push_back(Static_reloc(got_offset,
elfcpp::R_ARM_TLS_DTPOFF32,
object, index));
}
template<bool big_endian>
void
Arm_output_data_got<big_endian>::do_write(Output_file* of)
{
// Call parent to write out GOT.
Output_data_got<32, big_endian>::do_write(of);
// We are done if there is no fix up.
if (this->static_relocs_.empty())
return;
gold_assert(parameters->doing_static_link());
const off_t offset = this->offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(offset, oview_size);
Output_segment* tls_segment = this->layout_->tls_segment();
gold_assert(tls_segment != NULL);
// The thread pointer $tp points to the TCB, which is followed by the
// TLS. So we need to adjust $tp relative addressing by this amount.
Arm_address aligned_tcb_size =
align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
for (size_t i = 0; i < this->static_relocs_.size(); ++i)
{
Static_reloc& reloc(this->static_relocs_[i]);
Arm_address value;
if (!reloc.symbol_is_global())
{
Sized_relobj_file<32, big_endian>* object = reloc.relobj();
const Symbol_value<32>* psymval =
reloc.relobj()->local_symbol(reloc.index());
// We are doing static linking. Issue an error and skip this
// relocation if the symbol is undefined or in a discarded_section.
bool is_ordinary;
unsigned int shndx = psymval->input_shndx(&is_ordinary);
if ((shndx == elfcpp::SHN_UNDEF)
|| (is_ordinary
&& shndx != elfcpp::SHN_UNDEF
&& !object->is_section_included(shndx)
&& !this->symbol_table_->is_section_folded(object, shndx)))
{
gold_error(_("undefined or discarded local symbol %u from "
" object %s in GOT"),
reloc.index(), reloc.relobj()->name().c_str());
continue;
}
value = psymval->value(object, 0);
}
else
{
const Symbol* gsym = reloc.symbol();
gold_assert(gsym != NULL);
if (gsym->is_forwarder())
gsym = this->symbol_table_->resolve_forwards(gsym);
// We are doing static linking. Issue an error and skip this
// relocation if the symbol is undefined or in a discarded_section
// unless it is a weakly_undefined symbol.
if ((gsym->is_defined_in_discarded_section()
|| gsym->is_undefined())
&& !gsym->is_weak_undefined())
{
gold_error(_("undefined or discarded symbol %s in GOT"),
gsym->name());
continue;
}
if (!gsym->is_weak_undefined())
{
const Sized_symbol<32>* sym =
static_cast<const Sized_symbol<32>*>(gsym);
value = sym->value();
}
else
value = 0;
}
unsigned got_offset = reloc.got_offset();
gold_assert(got_offset < oview_size);
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
Valtype x;
switch (reloc.r_type())
{
case elfcpp::R_ARM_TLS_DTPOFF32:
x = value;
break;
case elfcpp::R_ARM_TLS_TPOFF32:
x = value + aligned_tcb_size;
break;
default:
gold_unreachable();
}
elfcpp::Swap<32, big_endian>::writeval(wv, x);
}
of->write_output_view(offset, oview_size, oview);
}
// A class to handle the PLT data.
// This is an abstract base class that handles most of the linker details
// but does not know the actual contents of PLT entries. The derived
// classes below fill in those details.
template<bool big_endian>
class Output_data_plt_arm : public Output_section_data
{
public:
// Unlike aarch64, which records symbol value in "addend" field of relocations
// and could be done at the same time an IRelative reloc is created for the
// symbol, arm puts the symbol value into "GOT" table, which, however, is
// issued later in Output_data_plt_arm::do_write(). So we have a struct here
// to keep necessary symbol information for later use in do_write. We usually
// have only a very limited number of ifuncs, so the extra data required here
// is also limited.
struct IRelative_data
{
IRelative_data(Sized_symbol<32>* sized_symbol)
: symbol_is_global_(true)
{
u_.global = sized_symbol;
}
IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
unsigned int index)
: symbol_is_global_(false)
{
u_.local.relobj = relobj;
u_.local.index = index;
}
union
{
Sized_symbol<32>* global;
struct
{
Sized_relobj_file<32, big_endian>* relobj;
unsigned int index;
} local;
} u_;
bool symbol_is_global_;
};
typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
Reloc_section;
Output_data_plt_arm(Layout* layout, uint64_t addralign,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative);
// Add an entry to the PLT.
void
add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
// Add the relocation for a plt entry.
void
add_relocation(Symbol_table* symtab, Layout* layout,
Symbol* gsym, unsigned int got_offset);
// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
unsigned int
add_local_ifunc_entry(Symbol_table* symtab, Layout*,
Sized_relobj_file<32, big_endian>* relobj,
unsigned int local_sym_index);
// Return the .rel.plt section data.
const Reloc_section*
rel_plt() const
{ return this->rel_; }
// Return the PLT relocation container for IRELATIVE.
Reloc_section*
rel_irelative(Symbol_table*, Layout*);
// Return the number of PLT entries.
unsigned int
entry_count() const
{ return this->count_ + this->irelative_count_; }
// Return the offset of the first non-reserved PLT entry.
unsigned int
first_plt_entry_offset() const
{ return this->do_first_plt_entry_offset(); }
// Return the size of a PLT entry.
unsigned int
get_plt_entry_size() const
{ return this->do_get_plt_entry_size(); }
// Return the PLT address for globals.
uint32_t
address_for_global(const Symbol*) const;
// Return the PLT address for locals.
uint32_t
address_for_local(const Relobj*, unsigned int symndx) const;
protected:
// Fill in the first PLT entry.
void
fill_first_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address)
{ this->do_fill_first_plt_entry(pov, got_address, plt_address); }
void
fill_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address,
unsigned int got_offset,
unsigned int plt_offset)
{ do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
virtual unsigned int
do_first_plt_entry_offset() const = 0;
virtual unsigned int
do_get_plt_entry_size() const = 0;
virtual void
do_fill_first_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address) = 0;
virtual void
do_fill_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address,
unsigned int got_offset,
unsigned int plt_offset) = 0;
void
do_adjust_output_section(Output_section* os);
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _("** PLT")); }
private:
// Set the final size.
void
set_final_data_size()
{
this->set_data_size(this->first_plt_entry_offset()
+ ((this->count_ + this->irelative_count_)
* this->get_plt_entry_size()));
}
// Write out the PLT data.
void
do_write(Output_file*);
// Record irelative symbol data.
void insert_irelative_data(const IRelative_data& idata)
{ irelative_data_vec_.push_back(idata); }
// The reloc section.
Reloc_section* rel_;
// The IRELATIVE relocs, if necessary. These must follow the
// regular PLT relocations.
Reloc_section* irelative_rel_;
// The .got section.
Arm_output_data_got<big_endian>* got_;
// The .got.plt section.
Output_data_space* got_plt_;
// The part of the .got.plt section used for IRELATIVE relocs.
Output_data_space* got_irelative_;
// The number of PLT entries.
unsigned int count_;
// Number of PLT entries with R_ARM_IRELATIVE relocs. These
// follow the regular PLT entries.
unsigned int irelative_count_;
// Vector for irelative data.
typedef std::vector<IRelative_data> IRelative_data_vec;
IRelative_data_vec irelative_data_vec_;
};
// Create the PLT section. The ordinary .got section is an argument,
// since we need to refer to the start. We also create our own .got
// section just for PLT entries.
template<bool big_endian>
Output_data_plt_arm<big_endian>::Output_data_plt_arm(
Layout* layout, uint64_t addralign,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative)
: Output_section_data(addralign), irelative_rel_(NULL),
got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
count_(0), irelative_count_(0)
{
this->rel_ = new Reloc_section(false);
layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
elfcpp::SHF_ALLOC, this->rel_,
ORDER_DYNAMIC_PLT_RELOCS, false);
}
template<bool big_endian>
void
Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
{
os->set_entsize(0);
}
// Add an entry to the PLT.
template<bool big_endian>
void
Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
Layout* layout,
Symbol* gsym)
{
gold_assert(!gsym->has_plt_offset());
unsigned int* entry_count;
Output_section_data_build* got;
// We have 2 different types of plt entry here, normal and ifunc.
// For normal plt, the offset begins with first_plt_entry_offset(20), and the
// 1st entry offset would be 20, the second 32, third 44 ... etc.
// For ifunc plt, the offset begins with 0. So the first offset would 0,
// second 12, third 24 ... etc.
// IFunc plt entries *always* come after *normal* plt entries.
// Notice, when computing the plt address of a certain symbol, "plt_address +
// plt_offset" is no longer correct. Use target->plt_address_for_global() or
// target->plt_address_for_local() instead.
int begin_offset = 0;
if (gsym->type() == elfcpp::STT_GNU_IFUNC
&& gsym->can_use_relative_reloc(false))
{
entry_count = &this->irelative_count_;
got = this->got_irelative_;
// For irelative plt entries, offset is relative to the end of normal plt
// entries, so it starts from 0.
begin_offset = 0;
// Record symbol information.
this->insert_irelative_data(
IRelative_data(symtab->get_sized_symbol<32>(gsym)));
}
else
{
entry_count = &this->count_;
got = this->got_plt_;
// Note that for normal plt entries, when setting the PLT offset we skip
// the initial reserved PLT entry.
begin_offset = this->first_plt_entry_offset();
}
gsym->set_plt_offset(begin_offset
+ (*entry_count) * this->get_plt_entry_size());
++(*entry_count);
section_offset_type got_offset = got->current_data_size();
// Every PLT entry needs a GOT entry which points back to the PLT
// entry (this will be changed by the dynamic linker, normally
// lazily when the function is called).
got->set_current_data_size(got_offset + 4);
// Every PLT entry needs a reloc.
this->add_relocation(symtab, layout, gsym, got_offset);
// Note that we don't need to save the symbol. The contents of the
// PLT are independent of which symbols are used. The symbols only
// appear in the relocations.
}
// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
// the PLT offset.
template<bool big_endian>
unsigned int
Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* relobj,
unsigned int local_sym_index)
{
this->insert_irelative_data(IRelative_data(relobj, local_sym_index));
// Notice, when computingthe plt entry address, "plt_address + plt_offset" is
// no longer correct. Use target->plt_address_for_local() instead.
unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
++this->irelative_count_;
section_offset_type got_offset = this->got_irelative_->current_data_size();
// Every PLT entry needs a GOT entry which points back to the PLT
// entry.
this->got_irelative_->set_current_data_size(got_offset + 4);
// Every PLT entry needs a reloc.
Reloc_section* rel = this->rel_irelative(symtab, layout);
rel->add_symbolless_local_addend(relobj, local_sym_index,
elfcpp::R_ARM_IRELATIVE,
this->got_irelative_, got_offset);
return plt_offset;
}
// Add the relocation for a PLT entry.
template<bool big_endian>
void
Output_data_plt_arm<big_endian>::add_relocation(
Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
{
if (gsym->type() == elfcpp::STT_GNU_IFUNC
&& gsym->can_use_relative_reloc(false))
{
Reloc_section* rel = this->rel_irelative(symtab, layout);
rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
this->got_irelative_, got_offset);
}
else
{
gsym->set_needs_dynsym_entry();
this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
got_offset);
}
}
// Create the irelative relocation data.
template<bool big_endian>
typename Output_data_plt_arm<big_endian>::Reloc_section*
Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
Layout* layout)
{
if (this->irelative_rel_ == NULL)
{
// Since irelative relocations goes into 'rel.dyn', we delegate the
// creation of irelative_rel_ to where rel_dyn section gets created.
Target_arm<big_endian>* arm_target =
Target_arm<big_endian>::default_target();
this->irelative_rel_ = arm_target->rel_irelative_section(layout);
// Make sure we have a place for the TLSDESC relocations, in
// case we see any later on.
// this->rel_tlsdesc(layout);
if (parameters->doing_static_link())
{
// A statically linked executable will only have a .rel.plt section to
// hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library
// will use these symbols to locate the IRELATIVE relocs at program
// startup time.
symtab->define_in_output_data("__rel_iplt_start", NULL,
Symbol_table::PREDEFINED,
this->irelative_rel_, 0, 0,
elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN, 0, false, true);
symtab->define_in_output_data("__rel_iplt_end", NULL,
Symbol_table::PREDEFINED,
this->irelative_rel_, 0, 0,
elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN, 0, true, true);
}
}
return this->irelative_rel_;
}
// Return the PLT address for a global symbol.
template<bool big_endian>
uint32_t
Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
{
uint64_t begin_offset = 0;
if (gsym->type() == elfcpp::STT_GNU_IFUNC
&& gsym->can_use_relative_reloc(false))
{
begin_offset = (this->first_plt_entry_offset() +
this->count_ * this->get_plt_entry_size());
}
return this->address() + begin_offset + gsym->plt_offset();
}
// Return the PLT address for a local symbol. These are always
// IRELATIVE relocs.
template<bool big_endian>
uint32_t
Output_data_plt_arm<big_endian>::address_for_local(
const Relobj* object,
unsigned int r_sym) const
{
return (this->address()
+ this->first_plt_entry_offset()
+ this->count_ * this->get_plt_entry_size()
+ object->local_plt_offset(r_sym));
}
template<bool big_endian>
class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
{
public:
Output_data_plt_arm_standard(Layout* layout,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative)
: Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
{ }
protected:
// Return the offset of the first non-reserved PLT entry.
virtual unsigned int
do_first_plt_entry_offset() const
{ return sizeof(first_plt_entry); }
virtual void
do_fill_first_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address);
private:
// Template for the first PLT entry.
static const uint32_t first_plt_entry[5];
};
// ARM PLTs.
// FIXME: This is not very flexible. Right now this has only been tested
// on armv5te. If we are to support additional architecture features like
// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
// The first entry in the PLT.
template<bool big_endian>
const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
{
0xe52de004, // str lr, [sp, #-4]!
0xe59fe004, // ldr lr, [pc, #4]
0xe08fe00e, // add lr, pc, lr
0xe5bef008, // ldr pc, [lr, #8]!
0x00000000, // &GOT[0] - .
};
template<bool big_endian>
void
Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
unsigned char* pov,
Arm_address got_address,
Arm_address plt_address)
{
// Write first PLT entry. All but the last word are constants.
const size_t num_first_plt_words = (sizeof(first_plt_entry)
/ sizeof(first_plt_entry[0]));
for (size_t i = 0; i < num_first_plt_words - 1; i++)
{
if (parameters->options().be8())
{
elfcpp::Swap<32, false>::writeval(pov + i * 4,
first_plt_entry[i]);
}
else
{
elfcpp::Swap<32, big_endian>::writeval(pov + i * 4,
first_plt_entry[i]);
}
}
// Last word in first PLT entry is &GOT[0] - .
elfcpp::Swap<32, big_endian>::writeval(pov + 16,
got_address - (plt_address + 16));
}
// Subsequent entries in the PLT.
// This class generates short (12-byte) entries, for displacements up to 2^28.
template<bool big_endian>
class Output_data_plt_arm_short : public Output_data_plt_arm_standard<big_endian>
{
public:
Output_data_plt_arm_short(Layout* layout,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative)
: Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
{ }
protected:
// Return the size of a PLT entry.
virtual unsigned int
do_get_plt_entry_size() const
{ return sizeof(plt_entry); }
virtual void
do_fill_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address,
unsigned int got_offset,
unsigned int plt_offset);
private:
// Template for subsequent PLT entries.
static const uint32_t plt_entry[3];
};
template<bool big_endian>
const uint32_t Output_data_plt_arm_short<big_endian>::plt_entry[3] =
{
0xe28fc600, // add ip, pc, #0xNN00000
0xe28cca00, // add ip, ip, #0xNN000
0xe5bcf000, // ldr pc, [ip, #0xNNN]!
};
template<bool big_endian>
void
Output_data_plt_arm_short<big_endian>::do_fill_plt_entry(
unsigned char* pov,
Arm_address got_address,
Arm_address plt_address,
unsigned int got_offset,
unsigned int plt_offset)
{
int32_t offset = ((got_address + got_offset)
- (plt_address + plt_offset + 8));
if (offset < 0 || offset > 0x0fffffff)
gold_error(_("PLT offset too large, try linking with --long-plt"));
uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
if (parameters->options().be8())
{
elfcpp::Swap<32, false>::writeval(pov, plt_insn0);
elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1);
elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2);
}
else
{
elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
}
}
// This class generates long (16-byte) entries, for arbitrary displacements.
template<bool big_endian>
class Output_data_plt_arm_long : public Output_data_plt_arm_standard<big_endian>
{
public:
Output_data_plt_arm_long(Layout* layout,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative)
: Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
{ }
protected:
// Return the size of a PLT entry.
virtual unsigned int
do_get_plt_entry_size() const
{ return sizeof(plt_entry); }
virtual void
do_fill_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address,
unsigned int got_offset,
unsigned int plt_offset);
private:
// Template for subsequent PLT entries.
static const uint32_t plt_entry[4];
};
template<bool big_endian>
const uint32_t Output_data_plt_arm_long<big_endian>::plt_entry[4] =
{
0xe28fc200, // add ip, pc, #0xN0000000
0xe28cc600, // add ip, ip, #0xNN00000
0xe28cca00, // add ip, ip, #0xNN000
0xe5bcf000, // ldr pc, [ip, #0xNNN]!
};
template<bool big_endian>
void
Output_data_plt_arm_long<big_endian>::do_fill_plt_entry(
unsigned char* pov,
Arm_address got_address,
Arm_address plt_address,
unsigned int got_offset,
unsigned int plt_offset)
{
int32_t offset = ((got_address + got_offset)
- (plt_address + plt_offset + 8));
uint32_t plt_insn0 = plt_entry[0] | (offset >> 28);
uint32_t plt_insn1 = plt_entry[1] | ((offset >> 20) & 0xff);
uint32_t plt_insn2 = plt_entry[2] | ((offset >> 12) & 0xff);
uint32_t plt_insn3 = plt_entry[3] | (offset & 0xfff);
if (parameters->options().be8())
{
elfcpp::Swap<32, false>::writeval(pov, plt_insn0);
elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1);
elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2);
elfcpp::Swap<32, false>::writeval(pov + 12, plt_insn3);
}
else
{
elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
elfcpp::Swap<32, big_endian>::writeval(pov + 12, plt_insn3);
}
}
// Write out the PLT. This uses the hand-coded instructions above,
// and adjusts them as needed. This is all specified by the arm ELF
// Processor Supplement.
template<bool big_endian>
void
Output_data_plt_arm<big_endian>::do_write(Output_file* of)
{
const off_t offset = this->offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(offset, oview_size);
const off_t got_file_offset = this->got_plt_->offset();
gold_assert(got_file_offset + this->got_plt_->data_size()
== this->got_irelative_->offset());
const section_size_type got_size =
convert_to_section_size_type(this->got_plt_->data_size()
+ this->got_irelative_->data_size());
unsigned char* const got_view = of->get_output_view(got_file_offset,
got_size);
unsigned char* pov = oview;
Arm_address plt_address = this->address();
Arm_address got_address = this->got_plt_->address();
// Write first PLT entry.
this->fill_first_plt_entry(pov, got_address, plt_address);
pov += this->first_plt_entry_offset();
unsigned char* got_pov = got_view;
memset(got_pov, 0, 12);
got_pov += 12;
unsigned int plt_offset = this->first_plt_entry_offset();
unsigned int got_offset = 12;
const unsigned int count = this->count_ + this->irelative_count_;
gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
for (unsigned int i = 0;
i < count;
++i,
pov += this->get_plt_entry_size(),
got_pov += 4,
plt_offset += this->get_plt_entry_size(),
got_offset += 4)
{
// Set and adjust the PLT entry itself.
this->fill_plt_entry(pov, got_address, plt_address,
got_offset, plt_offset);
Arm_address value;
if (i < this->count_)
{
// For non-irelative got entries, the value is the beginning of plt.
value = plt_address;
}
else
{
// For irelative got entries, the value is the (global/local) symbol
// address.
const IRelative_data& idata =
this->irelative_data_vec_[i - this->count_];
if (idata.symbol_is_global_)
{
// Set the entry in the GOT for irelative symbols. The content is
// the address of the ifunc, not the address of plt start.
const Sized_symbol<32>* sized_symbol = idata.u_.global;
gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
value = sized_symbol->value();
}
else
{
value = idata.u_.local.relobj->local_symbol_value(
idata.u_.local.index, 0);
}
}
elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
}
gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
of->write_output_view(offset, oview_size, oview);
of->write_output_view(got_file_offset, got_size, got_view);
}
// Create a PLT entry for a global symbol.
template<bool big_endian>
void
Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
Symbol* gsym)
{
if (gsym->has_plt_offset())
return;
if (this->plt_ == NULL)
this->make_plt_section(symtab, layout);
this->plt_->add_entry(symtab, layout, gsym);
}
// Create the PLT section.
template<bool big_endian>
void
Target_arm<big_endian>::make_plt_section(
Symbol_table* symtab, Layout* layout)
{
if (this->plt_ == NULL)
{
// Create the GOT section first.
this->got_section(symtab, layout);
// GOT for irelatives is create along with got.plt.
gold_assert(this->got_ != NULL
&& this->got_plt_ != NULL
&& this->got_irelative_ != NULL);
this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
this->got_irelative_);
layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC
| elfcpp::SHF_EXECINSTR),
this->plt_, ORDER_PLT, false);
symtab->define_in_output_data("$a", NULL,
Symbol_table::PREDEFINED,
this->plt_,
0, 0, elfcpp::STT_NOTYPE,
elfcpp::STB_LOCAL,
elfcpp::STV_DEFAULT, 0,
false, false);
}
}
// Make a PLT entry for a local STT_GNU_IFUNC symbol.
template<bool big_endian>
void
Target_arm<big_endian>::make_local_ifunc_plt_entry(
Symbol_table* symtab, Layout* layout,
Sized_relobj_file<32, big_endian>* relobj,
unsigned int local_sym_index)
{
if (relobj->local_has_plt_offset(local_sym_index))
return;
if (this->plt_ == NULL)
this->make_plt_section(symtab, layout);
unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
relobj,
local_sym_index);
relobj->set_local_plt_offset(local_sym_index, plt_offset);
}
// Return the number of entries in the PLT.
template<bool big_endian>
unsigned int
Target_arm<big_endian>::plt_entry_count() const
{
if (this->plt_ == NULL)
return 0;
return this->plt_->entry_count();
}
// Return the offset of the first non-reserved PLT entry.
template<bool big_endian>
unsigned int
Target_arm<big_endian>::first_plt_entry_offset() const
{
return this->plt_->first_plt_entry_offset();
}
// Return the size of each PLT entry.
template<bool big_endian>
unsigned int
Target_arm<big_endian>::plt_entry_size() const
{
return this->plt_->get_plt_entry_size();
}
// Get the section to use for TLS_DESC relocations.
template<bool big_endian>
typename Target_arm<big_endian>::Reloc_section*
Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
{
return this->plt_section()->rel_tls_desc(layout);
}
// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
template<bool big_endian>
void
Target_arm<big_endian>::define_tls_base_symbol(
Symbol_table* symtab,
Layout* layout)
{
if (this->tls_base_symbol_defined_)
return;
Output_segment* tls_segment = layout->tls_segment();
if (tls_segment != NULL)
{
bool is_exec = parameters->options().output_is_executable();
symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
Symbol_table::PREDEFINED,
tls_segment, 0, 0,
elfcpp::STT_TLS,
elfcpp::STB_LOCAL,
elfcpp::STV_HIDDEN, 0,
(is_exec
? Symbol::SEGMENT_END
: Symbol::SEGMENT_START),
true);
}
this->tls_base_symbol_defined_ = true;
}
// Create a GOT entry for the TLS module index.
template<bool big_endian>
unsigned int
Target_arm<big_endian>::got_mod_index_entry(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object)
{
if (this->got_mod_index_offset_ == -1U)
{
gold_assert(symtab != NULL && layout != NULL && object != NULL);
Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
unsigned int got_offset;
if (!parameters->doing_static_link())
{
got_offset = got->add_constant(0);
Reloc_section* rel_dyn = this->rel_dyn_section(layout);
rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
got_offset);
}
else
{
// We are doing a static link. Just mark it as belong to module 1,
// the executable.
got_offset = got->add_constant(1);
}
got->add_constant(0);
this->got_mod_index_offset_ = got_offset;
}
return this->got_mod_index_offset_;
}
// Optimize the TLS relocation type based on what we know about the
// symbol. IS_FINAL is true if the final address of this symbol is
// known at link time.
template<bool big_endian>
tls::Tls_optimization
Target_arm<big_endian>::optimize_tls_reloc(bool, int)
{
// FIXME: Currently we do not do any TLS optimization.
return tls::TLSOPT_NONE;
}
// Get the Reference_flags for a particular relocation.
template<bool big_endian>
int
Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
{
switch (r_type)
{
case elfcpp::R_ARM_NONE:
case elfcpp::R_ARM_V4BX:
case elfcpp::R_ARM_GNU_VTENTRY:
case elfcpp::R_ARM_GNU_VTINHERIT:
// No symbol reference.
return 0;
case elfcpp::R_ARM_ABS32:
case elfcpp::R_ARM_ABS16:
case elfcpp::R_ARM_ABS12:
case elfcpp::R_ARM_THM_ABS5:
case elfcpp::R_ARM_ABS8:
case elfcpp::R_ARM_BASE_ABS:
case elfcpp::R_ARM_MOVW_ABS_NC:
case elfcpp::R_ARM_MOVT_ABS:
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
case elfcpp::R_ARM_THM_MOVT_ABS:
case elfcpp::R_ARM_ABS32_NOI:
return Symbol::ABSOLUTE_REF;
case elfcpp::R_ARM_REL32:
case elfcpp::R_ARM_LDR_PC_G0:
case elfcpp::R_ARM_SBREL32:
case elfcpp::R_ARM_THM_PC8:
case elfcpp::R_ARM_BASE_PREL:
case elfcpp::R_ARM_MOVW_PREL_NC:
case elfcpp::R_ARM_MOVT_PREL:
case elfcpp::R_ARM_THM_MOVW_PREL_NC:
case elfcpp::R_ARM_THM_MOVT_PREL:
case elfcpp::R_ARM_THM_ALU_PREL_11_0:
case elfcpp::R_ARM_THM_PC12:
case elfcpp::R_ARM_REL32_NOI:
case elfcpp::R_ARM_ALU_PC_G0_NC:
case elfcpp::R_ARM_ALU_PC_G0:
case elfcpp::R_ARM_ALU_PC_G1_NC:
case elfcpp::R_ARM_ALU_PC_G1:
case elfcpp::R_ARM_ALU_PC_G2:
case elfcpp::R_ARM_LDR_PC_G1:
case elfcpp::R_ARM_LDR_PC_G2:
case elfcpp::R_ARM_LDRS_PC_G0:
case elfcpp::R_ARM_LDRS_PC_G1:
case elfcpp::R_ARM_LDRS_PC_G2:
case elfcpp::R_ARM_LDC_PC_G0:
case elfcpp::R_ARM_LDC_PC_G1:
case elfcpp::R_ARM_LDC_PC_G2:
case elfcpp::R_ARM_ALU_SB_G0_NC:
case elfcpp::R_ARM_ALU_SB_G0:
case elfcpp::R_ARM_ALU_SB_G1_NC:
case elfcpp::R_ARM_ALU_SB_G1:
case elfcpp::R_ARM_ALU_SB_G2:
case elfcpp::R_ARM_LDR_SB_G0:
case elfcpp::R_ARM_LDR_SB_G1:
case elfcpp::R_ARM_LDR_SB_G2:
case elfcpp::R_ARM_LDRS_SB_G0:
case elfcpp::R_ARM_LDRS_SB_G1:
case elfcpp::R_ARM_LDRS_SB_G2:
case elfcpp::R_ARM_LDC_SB_G0:
case elfcpp::R_ARM_LDC_SB_G1:
case elfcpp::R_ARM_LDC_SB_G2:
case elfcpp::R_ARM_MOVW_BREL_NC:
case elfcpp::R_ARM_MOVT_BREL:
case elfcpp::R_ARM_MOVW_BREL:
case elfcpp::R_ARM_THM_MOVW_BREL_NC:
case elfcpp::R_ARM_THM_MOVT_BREL:
case elfcpp::R_ARM_THM_MOVW_BREL:
case elfcpp::R_ARM_GOTOFF32:
case elfcpp::R_ARM_GOTOFF12:
case elfcpp::R_ARM_SBREL31:
return Symbol::RELATIVE_REF;
case elfcpp::R_ARM_PLT32:
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_THM_JUMP24:
case elfcpp::R_ARM_THM_JUMP19:
case elfcpp::R_ARM_THM_JUMP6:
case elfcpp::R_ARM_THM_JUMP11:
case elfcpp::R_ARM_THM_JUMP8:
// R_ARM_PREL31 is not used to relocate call/jump instructions but
// in unwind tables. It may point to functions via PLTs.
// So we treat it like call/jump relocations above.
case elfcpp::R_ARM_PREL31:
return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
case elfcpp::R_ARM_GOT_BREL:
case elfcpp::R_ARM_GOT_ABS:
case elfcpp::R_ARM_GOT_PREL:
// Absolute in GOT.
return Symbol::ABSOLUTE_REF;
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
case elfcpp::R_ARM_TLS_LE32: // Local-exec
return Symbol::TLS_REF;
case elfcpp::R_ARM_TARGET1:
case elfcpp::R_ARM_TARGET2:
case elfcpp::R_ARM_COPY:
case elfcpp::R_ARM_GLOB_DAT:
case elfcpp::R_ARM_JUMP_SLOT:
case elfcpp::R_ARM_RELATIVE:
case elfcpp::R_ARM_PC24:
case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
default:
// Not expected. We will give an error later.
return 0;
}
}
// Report an unsupported relocation against a local symbol.
template<bool big_endian>
void
Target_arm<big_endian>::Scan::unsupported_reloc_local(
Sized_relobj_file<32, big_endian>* object,
unsigned int r_type)
{
gold_error(_("%s: unsupported reloc %u against local symbol"),
object->name().c_str(), r_type);
}
// We are about to emit a dynamic relocation of type R_TYPE. If the
// dynamic linker does not support it, issue an error. The GNU linker
// only issues a non-PIC error for an allocated read-only section.
// Here we know the section is allocated, but we don't know that it is
// read-only. But we check for all the relocation types which the
// glibc dynamic linker supports, so it seems appropriate to issue an
// error even if the section is not read-only.
template<bool big_endian>
void
Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
unsigned int r_type)
{
switch (r_type)
{
// These are the relocation types supported by glibc for ARM.
case elfcpp::R_ARM_RELATIVE:
case elfcpp::R_ARM_COPY:
case elfcpp::R_ARM_GLOB_DAT:
case elfcpp::R_ARM_JUMP_SLOT:
case elfcpp::R_ARM_ABS32:
case elfcpp::R_ARM_ABS32_NOI:
case elfcpp::R_ARM_IRELATIVE:
case elfcpp::R_ARM_PC24:
// FIXME: The following 3 types are not supported by Android's dynamic
// linker.
case elfcpp::R_ARM_TLS_DTPMOD32:
case elfcpp::R_ARM_TLS_DTPOFF32:
case elfcpp::R_ARM_TLS_TPOFF32:
return;
default:
{
// This prevents us from issuing more than one error per reloc
// section. But we can still wind up issuing more than one
// error per object file.
if (this->issued_non_pic_error_)
return;
const Arm_reloc_property* reloc_property =
arm_reloc_property_table->get_reloc_property(r_type);
gold_assert(reloc_property != NULL);
object->error(_("requires unsupported dynamic reloc %s; "
"recompile with -fPIC"),
reloc_property->name().c_str());
this->issued_non_pic_error_ = true;
return;
}
case elfcpp::R_ARM_NONE:
gold_unreachable();
}
}
// Return whether we need to make a PLT entry for a relocation of the
// given type against a STT_GNU_IFUNC symbol.
template<bool big_endian>
bool
Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
Sized_relobj_file<32, big_endian>* object,
unsigned int r_type)
{
int flags = Scan::get_reference_flags(r_type);
if (flags & Symbol::TLS_REF)
{
gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
object->name().c_str(), r_type);
return false;
}
return flags != 0;
}
// Scan a relocation for a local symbol.
// FIXME: This only handles a subset of relocation types used by Android
// on ARM v5te devices.
template<bool big_endian>
inline void
Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
Layout* layout,
Target_arm* target,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rel<32, big_endian>& reloc,
unsigned int r_type,
const elfcpp::Sym<32, big_endian>& lsym,
bool is_discarded)
{
if (is_discarded)
return;
r_type = target->get_real_reloc_type(r_type);
// A local STT_GNU_IFUNC symbol may require a PLT entry.
bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
{
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
}
switch (r_type)
{
case elfcpp::R_ARM_NONE:
case elfcpp::R_ARM_V4BX:
case elfcpp::R_ARM_GNU_VTENTRY:
case elfcpp::R_ARM_GNU_VTINHERIT:
break;
case elfcpp::R_ARM_ABS32:
case elfcpp::R_ARM_ABS32_NOI:
// If building a shared library (or a position-independent
// executable), we need to create a dynamic relocation for
// this location. The relocation applied at link time will
// apply the link-time value, so we flag the location with
// an R_ARM_RELATIVE relocation so the dynamic loader can
// relocate it easily.
if (parameters->options().output_is_position_independent())
{
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
// If we are to add more other reloc types than R_ARM_ABS32,
// we need to add check_non_pic(object, r_type) here.
rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
output_section, data_shndx,
reloc.get_r_offset(), is_ifunc);
}
break;
case elfcpp::R_ARM_ABS16:
case elfcpp::R_ARM_ABS12:
case elfcpp::R_ARM_THM_ABS5:
case elfcpp::R_ARM_ABS8:
case elfcpp::R_ARM_BASE_ABS:
case elfcpp::R_ARM_MOVW_ABS_NC:
case elfcpp::R_ARM_MOVT_ABS:
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
case elfcpp::R_ARM_THM_MOVT_ABS:
// If building a shared library (or a position-independent
// executable), we need to create a dynamic relocation for
// this location. Because the addend needs to remain in the
// data section, we need to be careful not to apply this
// relocation statically.
if (parameters->options().output_is_position_independent())
{
check_non_pic(object, r_type);
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
if (lsym.get_st_type() != elfcpp::STT_SECTION)
rel_dyn->add_local(object, r_sym, r_type, output_section,
data_shndx, reloc.get_r_offset());
else
{
gold_assert(lsym.get_st_value() == 0);
unsigned int shndx = lsym.get_st_shndx();
bool is_ordinary;
shndx = object->adjust_sym_shndx(r_sym, shndx,
&is_ordinary);
if (!is_ordinary)
object->error(_("section symbol %u has bad shndx %u"),
r_sym, shndx);
else
rel_dyn->add_local_section(object, shndx,
r_type, output_section,
data_shndx, reloc.get_r_offset());
}
}
break;
case elfcpp::R_ARM_REL32:
case elfcpp::R_ARM_LDR_PC_G0:
case elfcpp::R_ARM_SBREL32:
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_THM_PC8:
case elfcpp::R_ARM_BASE_PREL:
case elfcpp::R_ARM_PLT32:
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_THM_JUMP24:
case elfcpp::R_ARM_SBREL31:
case elfcpp::R_ARM_PREL31:
case elfcpp::R_ARM_MOVW_PREL_NC:
case elfcpp::R_ARM_MOVT_PREL:
case elfcpp::R_ARM_THM_MOVW_PREL_NC:
case elfcpp::R_ARM_THM_MOVT_PREL:
case elfcpp::R_ARM_THM_JUMP19:
case elfcpp::R_ARM_THM_JUMP6:
case elfcpp::R_ARM_THM_ALU_PREL_11_0:
case elfcpp::R_ARM_THM_PC12:
case elfcpp::R_ARM_REL32_NOI:
case elfcpp::R_ARM_ALU_PC_G0_NC:
case elfcpp::R_ARM_ALU_PC_G0:
case elfcpp::R_ARM_ALU_PC_G1_NC:
case elfcpp::R_ARM_ALU_PC_G1:
case elfcpp::R_ARM_ALU_PC_G2:
case elfcpp::R_ARM_LDR_PC_G1:
case elfcpp::R_ARM_LDR_PC_G2:
case elfcpp::R_ARM_LDRS_PC_G0:
case elfcpp::R_ARM_LDRS_PC_G1:
case elfcpp::R_ARM_LDRS_PC_G2:
case elfcpp::R_ARM_LDC_PC_G0:
case elfcpp::R_ARM_LDC_PC_G1:
case elfcpp::R_ARM_LDC_PC_G2:
case elfcpp::R_ARM_ALU_SB_G0_NC:
case elfcpp::R_ARM_ALU_SB_G0:
case elfcpp::R_ARM_ALU_SB_G1_NC:
case elfcpp::R_ARM_ALU_SB_G1:
case elfcpp::R_ARM_ALU_SB_G2:
case elfcpp::R_ARM_LDR_SB_G0:
case elfcpp::R_ARM_LDR_SB_G1:
case elfcpp::R_ARM_LDR_SB_G2:
case elfcpp::R_ARM_LDRS_SB_G0:
case elfcpp::R_ARM_LDRS_SB_G1:
case elfcpp::R_ARM_LDRS_SB_G2:
case elfcpp::R_ARM_LDC_SB_G0:
case elfcpp::R_ARM_LDC_SB_G1:
case elfcpp::R_ARM_LDC_SB_G2:
case elfcpp::R_ARM_MOVW_BREL_NC:
case elfcpp::R_ARM_MOVT_BREL:
case elfcpp::R_ARM_MOVW_BREL:
case elfcpp::R_ARM_THM_MOVW_BREL_NC:
case elfcpp::R_ARM_THM_MOVT_BREL:
case elfcpp::R_ARM_THM_MOVW_BREL:
case elfcpp::R_ARM_THM_JUMP11:
case elfcpp::R_ARM_THM_JUMP8:
// We don't need to do anything for a relative addressing relocation
// against a local symbol if it does not reference the GOT.
break;
case elfcpp::R_ARM_GOTOFF32:
case elfcpp::R_ARM_GOTOFF12:
// We need a GOT section:
target->got_section(symtab, layout);
break;
case elfcpp::R_ARM_GOT_BREL:
case elfcpp::R_ARM_GOT_PREL:
{
// The symbol requires a GOT entry.
Arm_output_data_got<big_endian>* got =
target->got_section(symtab, layout);
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
{
// If we are generating a shared object, we need to add a
// dynamic RELATIVE relocation for this symbol's GOT entry.
if (parameters->options().output_is_position_independent())
{
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
rel_dyn->add_local_relative(
object, r_sym, elfcpp::R_ARM_RELATIVE, got,
object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
}
}
}
break;
case elfcpp::R_ARM_TARGET1:
case elfcpp::R_ARM_TARGET2:
// This should have been mapped to another type already.
// Fall through.
case elfcpp::R_ARM_COPY:
case elfcpp::R_ARM_GLOB_DAT:
case elfcpp::R_ARM_JUMP_SLOT:
case elfcpp::R_ARM_RELATIVE:
// These are relocations which should only be seen by the
// dynamic linker, and should never be seen here.
gold_error(_("%s: unexpected reloc %u in object file"),
object->name().c_str(), r_type);
break;
// These are initial TLS relocs, which are expected when
// linking.
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
case elfcpp::R_ARM_TLS_LE32: // Local-exec
{
bool output_is_shared = parameters->options().shared();
const tls::Tls_optimization optimized_type
= Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
r_type);
switch (r_type)
{
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a pair of GOT entries for the module index and
// dtv-relative offset.
Arm_output_data_got<big_endian>* got
= target->got_section(symtab, layout);
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
unsigned int shndx = lsym.get_st_shndx();
bool is_ordinary;
shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
if (!is_ordinary)
{
object->error(_("local symbol %u has bad shndx %u"),
r_sym, shndx);
break;
}
if (!parameters->doing_static_link())
got->add_local_pair_with_rel(object, r_sym, shndx,
GOT_TYPE_TLS_PAIR,
target->rel_dyn_section(layout),
elfcpp::R_ARM_TLS_DTPMOD32);
else
got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
object, r_sym);
}
else
// FIXME: TLS optimization not supported yet.
gold_unreachable();
break;
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the module index.
target->got_mod_index_entry(symtab, layout, object);
}
else
// FIXME: TLS optimization not supported yet.
gold_unreachable();
break;
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
break;
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
layout->set_has_static_tls();
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the tp-relative offset.
Arm_output_data_got<big_endian>* got
= target->got_section(symtab, layout);
unsigned int r_sym =
elfcpp::elf_r_sym<32>(reloc.get_r_info());
if (!parameters->doing_static_link())
got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
target->rel_dyn_section(layout),
elfcpp::R_ARM_TLS_TPOFF32);
else if (!object->local_has_got_offset(r_sym,
GOT_TYPE_TLS_OFFSET))
{
got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
unsigned int got_offset =
object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
got->add_static_reloc(got_offset,
elfcpp::R_ARM_TLS_TPOFF32, object,
r_sym);
}
}
else
// FIXME: TLS optimization not supported yet.
gold_unreachable();
break;
case elfcpp::R_ARM_TLS_LE32: // Local-exec
layout->set_has_static_tls();
if (output_is_shared)
{
// We need to create a dynamic relocation.
gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
output_section, data_shndx,
reloc.get_r_offset());
}
break;
default:
gold_unreachable();
}
}
break;
case elfcpp::R_ARM_PC24:
case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
default:
unsupported_reloc_local(object, r_type);
break;
}
}
// Report an unsupported relocation against a global symbol.
template<bool big_endian>
void
Target_arm<big_endian>::Scan::unsupported_reloc_global(
Sized_relobj_file<32, big_endian>* object,
unsigned int r_type,
Symbol* gsym)
{
gold_error(_("%s: unsupported reloc %u against global symbol %s"),
object->name().c_str(), r_type, gsym->demangled_name().c_str());
}
template<bool big_endian>
inline bool
Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
unsigned int r_type)
{
switch (r_type)
{
case elfcpp::R_ARM_PC24:
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_PLT32:
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_THM_JUMP24:
case elfcpp::R_ARM_SBREL31:
case elfcpp::R_ARM_PREL31:
case elfcpp::R_ARM_THM_JUMP19:
case elfcpp::R_ARM_THM_JUMP6:
case elfcpp::R_ARM_THM_JUMP11:
case elfcpp::R_ARM_THM_JUMP8:
// All the relocations above are branches except SBREL31 and PREL31.
return false;
default:
// Be conservative and assume this is a function pointer.
return true;
}
}
template<bool big_endian>
inline bool
Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
Symbol_table*,
Layout*,
Target_arm<big_endian>* target,
Sized_relobj_file<32, big_endian>*,
unsigned int,
Output_section*,
const elfcpp::Rel<32, big_endian>&,
unsigned int r_type,
const elfcpp::Sym<32, big_endian>&)
{
r_type = target->get_real_reloc_type(r_type);
return possible_function_pointer_reloc(r_type);
}
template<bool big_endian>
inline bool
Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
Symbol_table*,
Layout*,
Target_arm<big_endian>* target,
Sized_relobj_file<32, big_endian>*,
unsigned int,
Output_section*,
const elfcpp::Rel<32, big_endian>&,
unsigned int r_type,
Symbol* gsym)
{
// GOT is not a function.
if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
return false;
r_type = target->get_real_reloc_type(r_type);
return possible_function_pointer_reloc(r_type);
}
// Scan a relocation for a global symbol.
template<bool big_endian>
inline void
Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
Layout* layout,
Target_arm* target,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const elfcpp::Rel<32, big_endian>& reloc,
unsigned int r_type,
Symbol* gsym)
{
// A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
// section. We check here to avoid creating a dynamic reloc against
// _GLOBAL_OFFSET_TABLE_.
if (!target->has_got_section()
&& strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
target->got_section(symtab, layout);
// A STT_GNU_IFUNC symbol may require a PLT entry.
if (gsym->type() == elfcpp::STT_GNU_IFUNC
&& this->reloc_needs_plt_for_ifunc(object, r_type))
target->make_plt_entry(symtab, layout, gsym);
r_type = target->get_real_reloc_type(r_type);
switch (r_type)
{
case elfcpp::R_ARM_NONE:
case elfcpp::R_ARM_V4BX:
case elfcpp::R_ARM_GNU_VTENTRY:
case elfcpp::R_ARM_GNU_VTINHERIT:
break;
case elfcpp::R_ARM_ABS32:
case elfcpp::R_ARM_ABS16:
case elfcpp::R_ARM_ABS12:
case elfcpp::R_ARM_THM_ABS5:
case elfcpp::R_ARM_ABS8:
case elfcpp::R_ARM_BASE_ABS:
case elfcpp::R_ARM_MOVW_ABS_NC:
case elfcpp::R_ARM_MOVT_ABS:
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
case elfcpp::R_ARM_THM_MOVT_ABS:
case elfcpp::R_ARM_ABS32_NOI:
// Absolute addressing relocations.
{
// Make a PLT entry if necessary.
if (this->symbol_needs_plt_entry(gsym))
{
target->make_plt_entry(symtab, layout, gsym);
// Since this is not a PC-relative relocation, we may be
// taking the address of a function. In that case we need to
// set the entry in the dynamic symbol table to the address of
// the PLT entry.
if (gsym->is_from_dynobj() && !parameters->options().shared())
gsym->set_needs_dynsym_value();
}
// Make a dynamic relocation if necessary.
if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
{
if (!parameters->options().output_is_position_independent()
&& gsym->may_need_copy_reloc())
{
target->copy_reloc(symtab, layout, object,
data_shndx, output_section, gsym, reloc);
}
else if ((r_type == elfcpp::R_ARM_ABS32
|| r_type == elfcpp::R_ARM_ABS32_NOI)
&& gsym->type() == elfcpp::STT_GNU_IFUNC
&& gsym->can_use_relative_reloc(false)
&& !gsym->is_from_dynobj()
&& !gsym->is_undefined()
&& !gsym->is_preemptible())
{
// Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
// symbol. This makes a function address in a PIE executable
// match the address in a shared library that it links against.
Reloc_section* rel_irelative =
target->rel_irelative_section(layout);
unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
rel_irelative->add_symbolless_global_addend(
gsym, r_type, output_section, object,
data_shndx, reloc.get_r_offset());
}
else if ((r_type == elfcpp::R_ARM_ABS32
|| r_type == elfcpp::R_ARM_ABS32_NOI)
&& gsym->can_use_relative_reloc(false))
{
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
output_section, object,
data_shndx, reloc.get_r_offset());
}
else
{
check_non_pic(object, r_type);
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
rel_dyn->add_global(gsym, r_type, output_section, object,
data_shndx, reloc.get_r_offset());
}
}
}
break;
case elfcpp::R_ARM_GOTOFF32:
case elfcpp::R_ARM_GOTOFF12:
// We need a GOT section.
target->got_section(symtab, layout);
break;
case elfcpp::R_ARM_REL32:
case elfcpp::R_ARM_LDR_PC_G0:
case elfcpp::R_ARM_SBREL32:
case elfcpp::R_ARM_THM_PC8:
case elfcpp::R_ARM_BASE_PREL:
case elfcpp::R_ARM_MOVW_PREL_NC:
case elfcpp::R_ARM_MOVT_PREL:
case elfcpp::R_ARM_THM_MOVW_PREL_NC:
case elfcpp::R_ARM_THM_MOVT_PREL:
case elfcpp::R_ARM_THM_ALU_PREL_11_0:
case elfcpp::R_ARM_THM_PC12:
case elfcpp::R_ARM_REL32_NOI:
case elfcpp::R_ARM_ALU_PC_G0_NC:
case elfcpp::R_ARM_ALU_PC_G0:
case elfcpp::R_ARM_ALU_PC_G1_NC:
case elfcpp::R_ARM_ALU_PC_G1:
case elfcpp::R_ARM_ALU_PC_G2:
case elfcpp::R_ARM_LDR_PC_G1:
case elfcpp::R_ARM_LDR_PC_G2:
case elfcpp::R_ARM_LDRS_PC_G0:
case elfcpp::R_ARM_LDRS_PC_G1:
case elfcpp::R_ARM_LDRS_PC_G2:
case elfcpp::R_ARM_LDC_PC_G0:
case elfcpp::R_ARM_LDC_PC_G1:
case elfcpp::R_ARM_LDC_PC_G2:
case elfcpp::R_ARM_ALU_SB_G0_NC:
case elfcpp::R_ARM_ALU_SB_G0:
case elfcpp::R_ARM_ALU_SB_G1_NC:
case elfcpp::R_ARM_ALU_SB_G1:
case elfcpp::R_ARM_ALU_SB_G2:
case elfcpp::R_ARM_LDR_SB_G0:
case elfcpp::R_ARM_LDR_SB_G1:
case elfcpp::R_ARM_LDR_SB_G2:
case elfcpp::R_ARM_LDRS_SB_G0:
case elfcpp::R_ARM_LDRS_SB_G1:
case elfcpp::R_ARM_LDRS_SB_G2:
case elfcpp::R_ARM_LDC_SB_G0:
case elfcpp::R_ARM_LDC_SB_G1:
case elfcpp::R_ARM_LDC_SB_G2:
case elfcpp::R_ARM_MOVW_BREL_NC:
case elfcpp::R_ARM_MOVT_BREL:
case elfcpp::R_ARM_MOVW_BREL:
case elfcpp::R_ARM_THM_MOVW_BREL_NC:
case elfcpp::R_ARM_THM_MOVT_BREL:
case elfcpp::R_ARM_THM_MOVW_BREL:
// Relative addressing relocations.
{
// Make a dynamic relocation if necessary.
if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
{
if (parameters->options().output_is_executable()
&& target->may_need_copy_reloc(gsym))
{
target->copy_reloc(symtab, layout, object,
data_shndx, output_section, gsym, reloc);
}
else
{
check_non_pic(object, r_type);
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
rel_dyn->add_global(gsym, r_type, output_section, object,
data_shndx, reloc.get_r_offset());
}
}
}
break;
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_PLT32:
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_THM_JUMP24:
case elfcpp::R_ARM_SBREL31:
case elfcpp::R_ARM_PREL31:
case elfcpp::R_ARM_THM_JUMP19:
case elfcpp::R_ARM_THM_JUMP6:
case elfcpp::R_ARM_THM_JUMP11:
case elfcpp::R_ARM_THM_JUMP8:
// All the relocation above are branches except for the PREL31 ones.
// A PREL31 relocation can point to a personality function in a shared
// library. In that case we want to use a PLT because we want to
// call the personality routine and the dynamic linkers we care about
// do not support dynamic PREL31 relocations. An REL31 relocation may
// point to a function whose unwinding behaviour is being described but
// we will not mistakenly generate a PLT for that because we should use
// a local section symbol.
// If the symbol is fully resolved, this is just a relative
// local reloc. Otherwise we need a PLT entry.
if (gsym->final_value_is_known())
break;
// If building a shared library, we can also skip the PLT entry
// if the symbol is defined in the output file and is protected
// or hidden.
if (gsym->is_defined()
&& !gsym->is_from_dynobj()
&& !gsym->is_preemptible())
break;
target->make_plt_entry(symtab, layout, gsym);
break;
case elfcpp::R_ARM_GOT_BREL:
case elfcpp::R_ARM_GOT_ABS:
case elfcpp::R_ARM_GOT_PREL:
{
// The symbol requires a GOT entry.
Arm_output_data_got<big_endian>* got =
target->got_section(symtab, layout);
if (gsym->final_value_is_known())
{
// For a STT_GNU_IFUNC symbol we want the PLT address.
if (gsym->type() == elfcpp::STT_GNU_IFUNC)
got->add_global_plt(gsym, GOT_TYPE_STANDARD);
else
got->add_global(gsym, GOT_TYPE_STANDARD);
}
else
{
// If this symbol is not fully resolved, we need to add a
// GOT entry with a dynamic relocation.
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
if (gsym->is_from_dynobj()
|| gsym->is_undefined()
|| gsym->is_preemptible()
|| (gsym->visibility() == elfcpp::STV_PROTECTED
&& parameters->options().shared())
|| (gsym->type() == elfcpp::STT_GNU_IFUNC
&& parameters->options().output_is_position_independent()))
got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
rel_dyn, elfcpp::R_ARM_GLOB_DAT);
else
{
// For a STT_GNU_IFUNC symbol we want to write the PLT
// offset into the GOT, so that function pointer
// comparisons work correctly.
bool is_new;
if (gsym->type() != elfcpp::STT_GNU_IFUNC)
is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
else
{
is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
// Tell the dynamic linker to use the PLT address
// when resolving relocations.
if (gsym->is_from_dynobj()
&& !parameters->options().shared())
gsym->set_needs_dynsym_value();
}
if (is_new)
rel_dyn->add_global_relative(
gsym, elfcpp::R_ARM_RELATIVE, got,
gsym->got_offset(GOT_TYPE_STANDARD));
}
}
}
break;
case elfcpp::R_ARM_TARGET1:
case elfcpp::R_ARM_TARGET2:
// These should have been mapped to other types already.
// Fall through.
case elfcpp::R_ARM_COPY:
case elfcpp::R_ARM_GLOB_DAT:
case elfcpp::R_ARM_JUMP_SLOT:
case elfcpp::R_ARM_RELATIVE:
// These are relocations which should only be seen by the
// dynamic linker, and should never be seen here.
gold_error(_("%s: unexpected reloc %u in object file"),
object->name().c_str(), r_type);
break;
// These are initial tls relocs, which are expected when
// linking.
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
case elfcpp::R_ARM_TLS_LE32: // Local-exec
{
const bool is_final = gsym->final_value_is_known();
const tls::Tls_optimization optimized_type
= Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
switch (r_type)
{
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a pair of GOT entries for the module index and
// dtv-relative offset.
Arm_output_data_got<big_endian>* got
= target->got_section(symtab, layout);
if (!parameters->doing_static_link())
got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
target->rel_dyn_section(layout),
elfcpp::R_ARM_TLS_DTPMOD32,
elfcpp::R_ARM_TLS_DTPOFF32);
else
got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
}
else
// FIXME: TLS optimization not supported yet.
gold_unreachable();
break;
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the module index.
target->got_mod_index_entry(symtab, layout, object);
}
else
// FIXME: TLS optimization not supported yet.
gold_unreachable();
break;
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
break;
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
layout->set_has_static_tls();
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the tp-relative offset.
Arm_output_data_got<big_endian>* got
= target->got_section(symtab, layout);
if (!parameters->doing_static_link())
got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
target->rel_dyn_section(layout),
elfcpp::R_ARM_TLS_TPOFF32);
else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
{
got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
unsigned int got_offset =
gsym->got_offset(GOT_TYPE_TLS_OFFSET);
got->add_static_reloc(got_offset,
elfcpp::R_ARM_TLS_TPOFF32, gsym);
}
}
else
// FIXME: TLS optimization not supported yet.
gold_unreachable();
break;
case elfcpp::R_ARM_TLS_LE32: // Local-exec
layout->set_has_static_tls();
if (parameters->options().shared())
{
// We need to create a dynamic relocation.
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
output_section, object,
data_shndx, reloc.get_r_offset());
}
break;
default:
gold_unreachable();
}
}
break;
case elfcpp::R_ARM_PC24:
case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
default:
unsupported_reloc_global(object, r_type, gsym);
break;
}
}
// Process relocations for gc.
template<bool big_endian>
void
Target_arm<big_endian>::gc_process_relocs(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
unsigned int,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols)
{
typedef Target_arm<big_endian> Arm;
typedef typename Target_arm<big_endian>::Scan Scan;
gold::gc_process_relocs<32, big_endian, Arm, Scan, Classify_reloc>(
symtab,
layout,
this,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols);
}
// Scan relocations for a section.
template<bool big_endian>
void
Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols)
{
if (sh_type == elfcpp::SHT_RELA)
{
gold_error(_("%s: unsupported RELA reloc section"),
object->name().c_str());
return;
}
gold::scan_relocs<32, big_endian, Target_arm, Scan, Classify_reloc>(
symtab,
layout,
this,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols);
}
// Finalize the sections.
template<bool big_endian>
void
Target_arm<big_endian>::do_finalize_sections(
Layout* layout,
const Input_objects* input_objects,
Symbol_table*)
{
bool merged_any_attributes = false;
// Merge processor-specific flags.
for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
p != input_objects->relobj_end();
++p)
{
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(*p);
if (arm_relobj->merge_flags_and_attributes())
{
this->merge_processor_specific_flags(
arm_relobj->name(),
arm_relobj->processor_specific_flags());
this->merge_object_attributes(arm_relobj->name().c_str(),
arm_relobj->attributes_section_data());
merged_any_attributes = true;
}
}
for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
p != input_objects->dynobj_end();
++p)
{
Arm_dynobj<big_endian>* arm_dynobj =
Arm_dynobj<big_endian>::as_arm_dynobj(*p);
this->merge_processor_specific_flags(
arm_dynobj->name(),
arm_dynobj->processor_specific_flags());
this->merge_object_attributes(arm_dynobj->name().c_str(),
arm_dynobj->attributes_section_data());
merged_any_attributes = true;
}
// Create an empty uninitialized attribute section if we still don't have it
// at this moment. This happens if there is no attributes sections in all
// inputs.
if (this->attributes_section_data_ == NULL)
this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
const Object_attribute* cpu_arch_attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
// Check if we need to use Cortex-A8 workaround.
if (parameters->options().user_set_fix_cortex_a8())
this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
else
{
// If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
// Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
// profile.
const Object_attribute* cpu_arch_profile_attr =
this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
this->fix_cortex_a8_ =
(cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
&& (cpu_arch_profile_attr->int_value() == 'A'
|| cpu_arch_profile_attr->int_value() == 0));
}
// Check if we can use V4BX interworking.
// The V4BX interworking stub contains BX instruction,
// which is not specified for some profiles.
if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
&& !this->may_use_v4t_interworking())
gold_error(_("unable to provide V4BX reloc interworking fix up; "
"the target profile does not support BX instruction"));
// Fill in some more dynamic tags.
const Reloc_section* rel_plt = (this->plt_ == NULL
? NULL
: this->plt_->rel_plt());
layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
this->rel_dyn_, true, false);
// Emit any relocs we saved in an attempt to avoid generating COPY
// relocs.
if (this->copy_relocs_.any_saved_relocs())
this->copy_relocs_.emit(this->rel_dyn_section(layout));
// Handle the .ARM.exidx section.
Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
if (!parameters->options().relocatable())
{
if (exidx_section != NULL
&& exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
{
// For the ARM target, we need to add a PT_ARM_EXIDX segment for
// the .ARM.exidx section.
if (!layout->script_options()->saw_phdrs_clause())
{
gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
0)
== NULL);
Output_segment* exidx_segment =
layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
exidx_segment->add_output_section_to_nonload(exidx_section,
elfcpp::PF_R);
}
}
}
// Create an .ARM.attributes section if we have merged any attributes
// from inputs.
if (merged_any_attributes)
{
Output_attributes_section_data* attributes_section =
new Output_attributes_section_data(*this->attributes_section_data_);
layout->add_output_section_data(".ARM.attributes",
elfcpp::SHT_ARM_ATTRIBUTES, 0,
attributes_section, ORDER_INVALID,
false);
}
// Fix up links in section EXIDX headers.
for (Layout::Section_list::const_iterator p = layout->section_list().begin();
p != layout->section_list().end();
++p)
if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
{
Arm_output_section<big_endian>* os =
Arm_output_section<big_endian>::as_arm_output_section(*p);
os->set_exidx_section_link();
}
}
// Return whether a direct absolute static relocation needs to be applied.
// In cases where Scan::local() or Scan::global() has created
// a dynamic relocation other than R_ARM_RELATIVE, the addend
// of the relocation is carried in the data, and we must not
// apply the static relocation.
template<bool big_endian>
inline bool
Target_arm<big_endian>::Relocate::should_apply_static_reloc(
const Sized_symbol<32>* gsym,
unsigned int r_type,
bool is_32bit,
Output_section* output_section)
{
// If the output section is not allocated, then we didn't call
// scan_relocs, we didn't create a dynamic reloc, and we must apply
// the reloc here.
if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
return true;
int ref_flags = Scan::get_reference_flags(r_type);
// For local symbols, we will have created a non-RELATIVE dynamic
// relocation only if (a) the output is position independent,
// (b) the relocation is absolute (not pc- or segment-relative), and
// (c) the relocation is not 32 bits wide.
if (gsym == NULL)
return !(parameters->options().output_is_position_independent()
&& (ref_flags & Symbol::ABSOLUTE_REF)
&& !is_32bit);
// For global symbols, we use the same helper routines used in the
// scan pass. If we did not create a dynamic relocation, or if we
// created a RELATIVE dynamic relocation, we should apply the static
// relocation.
bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
&& gsym->can_use_relative_reloc(ref_flags
& Symbol::FUNCTION_CALL);
return !has_dyn || is_rel;
}
// Perform a relocation.
template<bool big_endian>
inline bool
Target_arm<big_endian>::Relocate::relocate(
const Relocate_info<32, big_endian>* relinfo,
unsigned int,
Target_arm* target,
Output_section* output_section,
size_t relnum,
const unsigned char* preloc,
const Sized_symbol<32>* gsym,
const Symbol_value<32>* psymval,
unsigned char* view,
Arm_address address,
section_size_type view_size)
{
if (view == NULL)
return true;
typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
const elfcpp::Rel<32, big_endian> rel(preloc);
unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info());
r_type = target->get_real_reloc_type(r_type);
const Arm_reloc_property* reloc_property =
arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
if (reloc_property == NULL)
{
std::string reloc_name =
arm_reloc_property_table->reloc_name_in_error_message(r_type);
gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
_("cannot relocate %s in object file"),
reloc_name.c_str());
return true;
}
const Arm_relobj<big_endian>* object =
Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
// If the final branch target of a relocation is THUMB instruction, this
// is 1. Otherwise it is 0.
Arm_address thumb_bit = 0;
Symbol_value<32> symval;
bool is_weakly_undefined_without_plt = false;
bool have_got_offset = false;
unsigned int got_offset = 0;
// If the relocation uses the GOT entry of a symbol instead of the symbol
// itself, we don't care about whether the symbol is defined or what kind
// of symbol it is.
if (reloc_property->uses_got_entry())
{
// Get the GOT offset.
// The GOT pointer points to the end of the GOT section.
// We need to subtract the size of the GOT section to get
// the actual offset to use in the relocation.
// TODO: We should move GOT offset computing code in TLS relocations
// to here.
switch (r_type)
{
case elfcpp::R_ARM_GOT_BREL:
case elfcpp::R_ARM_GOT_PREL:
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
- target->got_size());
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
gold_assert(object->local_has_got_offset(r_sym,
GOT_TYPE_STANDARD));
got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
- target->got_size());
}
have_got_offset = true;
break;
default:
break;
}
}
else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
{
if (gsym != NULL)
{
// This is a global symbol. Determine if we use PLT and if the
// final target is THUMB.
if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
{
// This uses a PLT, change the symbol value.
symval.set_output_value(target->plt_address_for_global(gsym));
psymval = &symval;
}
else if (gsym->is_weak_undefined())
{
// This is a weakly undefined symbol and we do not use PLT
// for this relocation. A branch targeting this symbol will
// be converted into an NOP.
is_weakly_undefined_without_plt = true;
}
else if (gsym->is_undefined() && reloc_property->uses_symbol())
{
// This relocation uses the symbol value but the symbol is
// undefined. Exit early and have the caller reporting an
// error.
return true;
}
else
{
// Set thumb bit if symbol:
// -Has type STT_ARM_TFUNC or
// -Has type STT_FUNC, is defined and with LSB in value set.
thumb_bit =
(((gsym->type() == elfcpp::STT_ARM_TFUNC)
|| (gsym->type() == elfcpp::STT_FUNC
&& !gsym->is_undefined()
&& ((psymval->value(object, 0) & 1) != 0)))
? 1
: 0);
}
}
else
{
// This is a local symbol. Determine if the final target is THUMB.
// We saved this information when all the local symbols were read.
elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
{
symval.set_output_value(
target->plt_address_for_local(object, r_sym));
psymval = &symval;
}
}
}
else
{
// This is a fake relocation synthesized for a stub. It does not have
// a real symbol. We just look at the LSB of the symbol value to
// determine if the target is THUMB or not.
thumb_bit = ((psymval->value(object, 0) & 1) != 0);
}
// Strip LSB if this points to a THUMB target.
if (thumb_bit != 0
&& reloc_property->uses_thumb_bit()
&& ((psymval->value(object, 0) & 1) != 0))
{
Arm_address stripped_value =
psymval->value(object, 0) & ~static_cast<Arm_address>(1);
symval.set_output_value(stripped_value);
psymval = &symval;
}
// To look up relocation stubs, we need to pass the symbol table index of
// a local symbol.
unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
// Get the addressing origin of the output segment defining the
// symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
Arm_address sym_origin = 0;
if (reloc_property->uses_symbol_base())
{
if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
// R_ARM_BASE_ABS with the NULL symbol will give the
// absolute address of the GOT origin (GOT_ORG) (see ARM IHI
// 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
sym_origin = target->got_plt_section()->address();
else if (gsym == NULL)
sym_origin = 0;
else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
sym_origin = gsym->output_segment()->vaddr();
else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
sym_origin = gsym->output_data()->address();
// TODO: Assumes the segment base to be zero for the global symbols
// till the proper support for the segment-base-relative addressing
// will be implemented. This is consistent with GNU ld.
}
// For relative addressing relocation, find out the relative address base.
Arm_address relative_address_base = 0;
switch(reloc_property->relative_address_base())
{
case Arm_reloc_property::RAB_NONE:
// Relocations with relative address bases RAB_TLS and RAB_tp are
// handled by relocate_tls. So we do not need to do anything here.
case Arm_reloc_property::RAB_TLS:
case Arm_reloc_property::RAB_tp:
break;
case Arm_reloc_property::RAB_B_S:
relative_address_base = sym_origin;
break;
case Arm_reloc_property::RAB_GOT_ORG:
relative_address_base = target->got_plt_section()->address();
break;
case Arm_reloc_property::RAB_P:
relative_address_base = address;
break;
case Arm_reloc_property::RAB_Pa:
relative_address_base = address & 0xfffffffcU;
break;
default:
gold_unreachable();
}
typename Arm_relocate_functions::Status reloc_status =
Arm_relocate_functions::STATUS_OKAY;
bool check_overflow = reloc_property->checks_overflow();
switch (r_type)
{
case elfcpp::R_ARM_NONE:
break;
case elfcpp::R_ARM_ABS8:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
break;
case elfcpp::R_ARM_ABS12:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
break;
case elfcpp::R_ARM_ABS16:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
break;
case elfcpp::R_ARM_ABS32:
if (should_apply_static_reloc(gsym, r_type, true, output_section))
reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
thumb_bit);
break;
case elfcpp::R_ARM_ABS32_NOI:
if (should_apply_static_reloc(gsym, r_type, true, output_section))
// No thumb bit for this relocation: (S + A)
reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
0);
break;
case elfcpp::R_ARM_MOVW_ABS_NC:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::movw(view, object, psymval,
0, thumb_bit,
check_overflow);
break;
case elfcpp::R_ARM_MOVT_ABS:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
break;
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
0, thumb_bit, false);
break;
case elfcpp::R_ARM_THM_MOVT_ABS:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::thm_movt(view, object,
psymval, 0);
break;
case elfcpp::R_ARM_MOVW_PREL_NC:
case elfcpp::R_ARM_MOVW_BREL_NC:
case elfcpp::R_ARM_MOVW_BREL:
reloc_status =
Arm_relocate_functions::movw(view, object, psymval,
relative_address_base, thumb_bit,
check_overflow);
break;
case elfcpp::R_ARM_MOVT_PREL:
case elfcpp::R_ARM_MOVT_BREL:
reloc_status =
Arm_relocate_functions::movt(view, object, psymval,
relative_address_base);
break;
case elfcpp::R_ARM_THM_MOVW_PREL_NC:
case elfcpp::R_ARM_THM_MOVW_BREL_NC:
case elfcpp::R_ARM_THM_MOVW_BREL:
reloc_status =
Arm_relocate_functions::thm_movw(view, object, psymval,
relative_address_base,
thumb_bit, check_overflow);
break;
case elfcpp::R_ARM_THM_MOVT_PREL:
case elfcpp::R_ARM_THM_MOVT_BREL:
reloc_status =
Arm_relocate_functions::thm_movt(view, object, psymval,
relative_address_base);
break;
case elfcpp::R_ARM_REL32:
reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
address, thumb_bit);
break;
case elfcpp::R_ARM_THM_ABS5:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
break;
// Thumb long branches.
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_THM_XPC22:
case elfcpp::R_ARM_THM_JUMP24:
reloc_status =
Arm_relocate_functions::thumb_branch_common(
r_type, relinfo, view, gsym, object, r_sym, psymval, address,
thumb_bit, is_weakly_undefined_without_plt);
break;
case elfcpp::R_ARM_GOTOFF32:
{
Arm_address got_origin;
got_origin = target->got_plt_section()->address();
reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
got_origin, thumb_bit);
}
break;
case elfcpp::R_ARM_BASE_PREL:
gold_assert(gsym != NULL);
reloc_status =
Arm_relocate_functions::base_prel(view, sym_origin, address);
break;
case elfcpp::R_ARM_BASE_ABS:
if (should_apply_static_reloc(gsym, r_type, false, output_section))
reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
break;
case elfcpp::R_ARM_GOT_BREL:
gold_assert(have_got_offset);
reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
break;
case elfcpp::R_ARM_GOT_PREL:
gold_assert(have_got_offset);
// Get the address origin for GOT PLT, which is allocated right
// after the GOT section, to calculate an absolute address of
// the symbol GOT entry (got_origin + got_offset).
Arm_address got_origin;
got_origin = target->got_plt_section()->address();
reloc_status = Arm_relocate_functions::got_prel(view,
got_origin + got_offset,
address);
break;
case elfcpp::R_ARM_PLT32:
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_XPC25:
gold_assert(gsym == NULL
|| gsym->has_plt_offset()
|| gsym->final_value_is_known()
|| (gsym->is_defined()
&& !gsym->is_from_dynobj()
&& !gsym->is_preemptible()));
reloc_status =
Arm_relocate_functions::arm_branch_common(
r_type, relinfo, view, gsym, object, r_sym, psymval, address,
thumb_bit, is_weakly_undefined_without_plt);
break;
case elfcpp::R_ARM_THM_JUMP19:
reloc_status =
Arm_relocate_functions::thm_jump19(view, object, psymval, address,
thumb_bit);
break;
case elfcpp::R_ARM_THM_JUMP6:
reloc_status =
Arm_relocate_functions::thm_jump6(view, object, psymval, address);
break;
case elfcpp::R_ARM_THM_JUMP8:
reloc_status =
Arm_relocate_functions::thm_jump8(view, object, psymval, address);
break;
case elfcpp::R_ARM_THM_JUMP11:
reloc_status =
Arm_relocate_functions::thm_jump11(view, object, psymval, address);
break;
case elfcpp::R_ARM_PREL31:
reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
address, thumb_bit);
break;
case elfcpp::R_ARM_V4BX:
if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
{
const bool is_v4bx_interworking =
(target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
reloc_status =
Arm_relocate_functions::v4bx(relinfo, view, object, address,
is_v4bx_interworking);
}
break;
case elfcpp::R_ARM_THM_PC8:
reloc_status =
Arm_relocate_functions::thm_pc8(view, object, psymval, address);
break;
case elfcpp::R_ARM_THM_PC12:
reloc_status =
Arm_relocate_functions::thm_pc12(view, object, psymval, address);
break;
case elfcpp::R_ARM_THM_ALU_PREL_11_0:
reloc_status =
Arm_relocate_functions::thm_alu11(view, object, psymval, address,
thumb_bit);
break;
case elfcpp::R_ARM_ALU_PC_G0_NC:
case elfcpp::R_ARM_ALU_PC_G0:
case elfcpp::R_ARM_ALU_PC_G1_NC:
case elfcpp::R_ARM_ALU_PC_G1:
case elfcpp::R_ARM_ALU_PC_G2:
case elfcpp::R_ARM_ALU_SB_G0_NC:
case elfcpp::R_ARM_ALU_SB_G0:
case elfcpp::R_ARM_ALU_SB_G1_NC:
case elfcpp::R_ARM_ALU_SB_G1:
case elfcpp::R_ARM_ALU_SB_G2:
reloc_status =
Arm_relocate_functions::arm_grp_alu(view, object, psymval,
reloc_property->group_index(),
relative_address_base,
thumb_bit, check_overflow);
break;
case elfcpp::R_ARM_LDR_PC_G0:
case elfcpp::R_ARM_LDR_PC_G1:
case elfcpp::R_ARM_LDR_PC_G2:
case elfcpp::R_ARM_LDR_SB_G0:
case elfcpp::R_ARM_LDR_SB_G1:
case elfcpp::R_ARM_LDR_SB_G2:
reloc_status =
Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
reloc_property->group_index(),
relative_address_base);
break;
case elfcpp::R_ARM_LDRS_PC_G0:
case elfcpp::R_ARM_LDRS_PC_G1:
case elfcpp::R_ARM_LDRS_PC_G2:
case elfcpp::R_ARM_LDRS_SB_G0:
case elfcpp::R_ARM_LDRS_SB_G1:
case elfcpp::R_ARM_LDRS_SB_G2:
reloc_status =
Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
reloc_property->group_index(),
relative_address_base);
break;
case elfcpp::R_ARM_LDC_PC_G0:
case elfcpp::R_ARM_LDC_PC_G1:
case elfcpp::R_ARM_LDC_PC_G2:
case elfcpp::R_ARM_LDC_SB_G0:
case elfcpp::R_ARM_LDC_SB_G1:
case elfcpp::R_ARM_LDC_SB_G2:
reloc_status =
Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
reloc_property->group_index(),
relative_address_base);
break;
// These are initial tls relocs, which are expected when
// linking.
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
case elfcpp::R_ARM_TLS_LE32: // Local-exec
reloc_status =
this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
view, address, view_size);
break;
// The known and unknown unsupported and/or deprecated relocations.
case elfcpp::R_ARM_PC24:
case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
default:
// Just silently leave the method. We should get an appropriate error
// message in the scan methods.
break;
}
// Report any errors.
switch (reloc_status)
{
case Arm_relocate_functions::STATUS_OKAY:
break;
case Arm_relocate_functions::STATUS_OVERFLOW:
gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
_("relocation overflow in %s"),
reloc_property->name().c_str());
break;
case Arm_relocate_functions::STATUS_BAD_RELOC:
gold_error_at_location(
relinfo,
relnum,
rel.get_r_offset(),
_("unexpected opcode while processing relocation %s"),
reloc_property->name().c_str());
break;
default:
gold_unreachable();
}
return true;
}
// Perform a TLS relocation.
template<bool big_endian>
inline typename Arm_relocate_functions<big_endian>::Status
Target_arm<big_endian>::Relocate::relocate_tls(
const Relocate_info<32, big_endian>* relinfo,
Target_arm<big_endian>* target,
size_t relnum,
const elfcpp::Rel<32, big_endian>& rel,
unsigned int r_type,
const Sized_symbol<32>* gsym,
const Symbol_value<32>* psymval,
unsigned char* view,
elfcpp::Elf_types<32>::Elf_Addr address,
section_size_type /*view_size*/ )
{
typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
typedef Relocate_functions<32, big_endian> RelocFuncs;
Output_segment* tls_segment = relinfo->layout->tls_segment();
const Sized_relobj_file<32, big_endian>* object = relinfo->object;
elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
const bool is_final = (gsym == NULL
? !parameters->options().shared()
: gsym->final_value_is_known());
const tls::Tls_optimization optimized_type
= Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
switch (r_type)
{
case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
{
unsigned int got_type = GOT_TYPE_TLS_PAIR;
unsigned int got_offset;
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(got_type));
got_offset = gsym->got_offset(got_type) - target->got_size();
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
gold_assert(object->local_has_got_offset(r_sym, got_type));
got_offset = (object->local_got_offset(r_sym, got_type)
- target->got_size());
}
if (optimized_type == tls::TLSOPT_NONE)
{
Arm_address got_entry =
target->got_plt_section()->address() + got_offset;
// Relocate the field with the PC relative offset of the pair of
// GOT entries.
RelocFuncs::pcrel32_unaligned(view, got_entry, address);
return ArmRelocFuncs::STATUS_OKAY;
}
}
break;
case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
if (optimized_type == tls::TLSOPT_NONE)
{
// Relocate the field with the offset of the GOT entry for
// the module index.
unsigned int got_offset;
got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
- target->got_size());
Arm_address got_entry =
target->got_plt_section()->address() + got_offset;
// Relocate the field with the PC relative offset of the pair of
// GOT entries.
RelocFuncs::pcrel32_unaligned(view, got_entry, address);
return ArmRelocFuncs::STATUS_OKAY;
}
break;
case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
RelocFuncs::rel32_unaligned(view, value);
return ArmRelocFuncs::STATUS_OKAY;
case elfcpp::R_ARM_TLS_IE32: // Initial-exec
if (optimized_type == tls::TLSOPT_NONE)
{
// Relocate the field with the offset of the GOT entry for
// the tp-relative offset of the symbol.
unsigned int got_type = GOT_TYPE_TLS_OFFSET;
unsigned int got_offset;
if (gsym != NULL)
{
gold_assert(gsym->has_got_offset(got_type));
got_offset = gsym->got_offset(got_type);
}
else
{
unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
gold_assert(object->local_has_got_offset(r_sym, got_type));
got_offset = object->local_got_offset(r_sym, got_type);
}
// All GOT offsets are relative to the end of the GOT.
got_offset -= target->got_size();
Arm_address got_entry =
target->got_plt_section()->address() + got_offset;
// Relocate the field with the PC relative offset of the GOT entry.
RelocFuncs::pcrel32_unaligned(view, got_entry, address);
return ArmRelocFuncs::STATUS_OKAY;
}
break;
case elfcpp::R_ARM_TLS_LE32: // Local-exec
// If we're creating a shared library, a dynamic relocation will
// have been created for this location, so do not apply it now.
if (!parameters->options().shared())
{
gold_assert(tls_segment != NULL);
// $tp points to the TCB, which is followed by the TLS, so we
// need to add TCB size to the offset.
Arm_address aligned_tcb_size =
align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
}
return ArmRelocFuncs::STATUS_OKAY;
default:
gold_unreachable();
}
gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
_("unsupported reloc %u"),
r_type);
return ArmRelocFuncs::STATUS_BAD_RELOC;
}
// Relocate section data.
template<bool big_endian>
void
Target_arm<big_endian>::relocate_section(
const Relocate_info<32, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
unsigned char* view,
Arm_address address,
section_size_type view_size,
const Reloc_symbol_changes* reloc_symbol_changes)
{
typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
gold_assert(sh_type == elfcpp::SHT_REL);
// See if we are relocating a relaxed input section. If so, the view
// covers the whole output section and we need to adjust accordingly.
if (needs_special_offset_handling)
{
const Output_relaxed_input_section* poris =
output_section->find_relaxed_input_section(relinfo->object,
relinfo->data_shndx);
if (poris != NULL)
{
Arm_address section_address = poris->address();
section_size_type section_size = poris->data_size();
gold_assert((section_address >= address)
&& ((section_address + section_size)
<= (address + view_size)));
off_t offset = section_address - address;
view += offset;
address += offset;
view_size = section_size;
}
}
gold::relocate_section<32, big_endian, Target_arm, Arm_relocate,
gold::Default_comdat_behavior, Classify_reloc>(
relinfo,
this,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
view,
address,
view_size,
reloc_symbol_changes);
}
// Return the size of a relocation while scanning during a relocatable
// link.
template<bool big_endian>
unsigned int
Target_arm<big_endian>::Classify_reloc::get_size_for_reloc(
unsigned int r_type,
Relobj* object)
{
Target_arm<big_endian>* arm_target =
Target_arm<big_endian>::default_target();
r_type = arm_target->get_real_reloc_type(r_type);
const Arm_reloc_property* arp =
arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
if (arp != NULL)
return arp->size();
else
{
std::string reloc_name =
arm_reloc_property_table->reloc_name_in_error_message(r_type);
gold_error(_("%s: unexpected %s in object file"),
object->name().c_str(), reloc_name.c_str());
return 0;
}
}
// Scan the relocs during a relocatable link.
template<bool big_endian>
void
Target_arm<big_endian>::scan_relocatable_relocs(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols,
Relocatable_relocs* rr)
{
typedef Arm_scan_relocatable_relocs<big_endian, Classify_reloc>
Scan_relocatable_relocs;
gold_assert(sh_type == elfcpp::SHT_REL);
gold::scan_relocatable_relocs<32, big_endian, Scan_relocatable_relocs>(
symtab,
layout,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols,
rr);
}
// Scan the relocs for --emit-relocs.
template<bool big_endian>
void
Target_arm<big_endian>::emit_relocs_scan(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<32, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_syms,
Relocatable_relocs* rr)
{
typedef gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
Classify_reloc;
typedef gold::Default_emit_relocs_strategy<Classify_reloc>
Emit_relocs_strategy;
gold_assert(sh_type == elfcpp::SHT_REL);
gold::scan_relocatable_relocs<32, big_endian, Emit_relocs_strategy>(
symtab,
layout,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_syms,
rr);
}
// Emit relocations for a section.
template<bool big_endian>
void
Target_arm<big_endian>::relocate_relocs(
const Relocate_info<32, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
unsigned char* view,
Arm_address view_address,
section_size_type view_size,
unsigned char* reloc_view,
section_size_type reloc_view_size)
{
gold_assert(sh_type == elfcpp::SHT_REL);
gold::relocate_relocs<32, big_endian, Classify_reloc>(
relinfo,
prelocs,
reloc_count,
output_section,
offset_in_output_section,
view,
view_address,
view_size,
reloc_view,
reloc_view_size);
}
// Perform target-specific processing in a relocatable link. This is
// only used if we use the relocation strategy RELOC_SPECIAL.
template<bool big_endian>
void
Target_arm<big_endian>::relocate_special_relocatable(
const Relocate_info<32, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* preloc_in,
size_t relnum,
Output_section* output_section,
typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
unsigned char* view,
elfcpp::Elf_types<32>::Elf_Addr view_address,
section_size_type,
unsigned char* preloc_out)
{
// We can only handle REL type relocation sections.
gold_assert(sh_type == elfcpp::SHT_REL);
typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
Reltype_write;
const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
const Arm_relobj<big_endian>* object =
Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
const unsigned int local_count = object->local_symbol_count();
Reltype reloc(preloc_in);
Reltype_write reloc_write(preloc_out);
elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
const Arm_reloc_property* arp =
arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
gold_assert(arp != NULL);
// Get the new symbol index.
// We only use RELOC_SPECIAL strategy in local relocations.
gold_assert(r_sym < local_count);
// We are adjusting a section symbol. We need to find
// the symbol table index of the section symbol for
// the output section corresponding to input section
// in which this symbol is defined.
bool is_ordinary;
unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
gold_assert(is_ordinary);
Output_section* os = object->output_section(shndx);
gold_assert(os != NULL);
gold_assert(os->needs_symtab_index());
unsigned int new_symndx = os->symtab_index();
// Get the new offset--the location in the output section where
// this relocation should be applied.
Arm_address offset = reloc.get_r_offset();
Arm_address new_offset;
if (offset_in_output_section != invalid_address)
new_offset = offset + offset_in_output_section;
else
{
section_offset_type sot_offset =
convert_types<section_offset_type, Arm_address>(offset);
section_offset_type new_sot_offset =
output_section->output_offset(object, relinfo->data_shndx,
sot_offset);
gold_assert(new_sot_offset != -1);
new_offset = new_sot_offset;
}
// In an object file, r_offset is an offset within the section.
// In an executable or dynamic object, generated by
// --emit-relocs, r_offset is an absolute address.
if (!parameters->options().relocatable())
{
new_offset += view_address;
if (offset_in_output_section != invalid_address)
new_offset -= offset_in_output_section;
}
reloc_write.put_r_offset(new_offset);
reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
// Handle the reloc addend.
// The relocation uses a section symbol in the input file.
// We are adjusting it to use a section symbol in the output
// file. The input section symbol refers to some address in
// the input section. We need the relocation in the output
// file to refer to that same address. This adjustment to
// the addend is the same calculation we use for a simple
// absolute relocation for the input section symbol.
const Symbol_value<32>* psymval = object->local_symbol(r_sym);
// Handle THUMB bit.
Symbol_value<32> symval;
Arm_address thumb_bit =
object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
if (thumb_bit != 0
&& arp->uses_thumb_bit()
&& ((psymval->value(object, 0) & 1) != 0))
{
Arm_address stripped_value =
psymval->value(object, 0) & ~static_cast<Arm_address>(1);
symval.set_output_value(stripped_value);
psymval = &symval;
}
unsigned char* paddend = view + offset;
typename Arm_relocate_functions<big_endian>::Status reloc_status =
Arm_relocate_functions<big_endian>::STATUS_OKAY;
switch (r_type)
{
case elfcpp::R_ARM_ABS8:
reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
psymval);
break;
case elfcpp::R_ARM_ABS12:
reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
psymval);
break;
case elfcpp::R_ARM_ABS16:
reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
psymval);
break;
case elfcpp::R_ARM_THM_ABS5:
reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
object,
psymval);
break;
case elfcpp::R_ARM_MOVW_ABS_NC:
case elfcpp::R_ARM_MOVW_PREL_NC:
case elfcpp::R_ARM_MOVW_BREL_NC:
case elfcpp::R_ARM_MOVW_BREL:
reloc_status = Arm_relocate_functions<big_endian>::movw(
paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
break;
case elfcpp::R_ARM_THM_MOVW_ABS_NC:
case elfcpp::R_ARM_THM_MOVW_PREL_NC:
case elfcpp::R_ARM_THM_MOVW_BREL_NC:
case elfcpp::R_ARM_THM_MOVW_BREL:
reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
break;
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_THM_XPC22:
case elfcpp::R_ARM_THM_JUMP24:
reloc_status =
Arm_relocate_functions<big_endian>::thumb_branch_common(
r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
false);
break;
case elfcpp::R_ARM_PLT32:
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_XPC25:
reloc_status =
Arm_relocate_functions<big_endian>::arm_branch_common(
r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
false);
break;
case elfcpp::R_ARM_THM_JUMP19:
reloc_status =
Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
psymval, 0, thumb_bit);
break;
case elfcpp::R_ARM_THM_JUMP6:
reloc_status =
Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
0);
break;
case elfcpp::R_ARM_THM_JUMP8:
reloc_status =
Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
0);
break;
case elfcpp::R_ARM_THM_JUMP11:
reloc_status =
Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
0);
break;
case elfcpp::R_ARM_PREL31:
reloc_status =
Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
thumb_bit);
break;
case elfcpp::R_ARM_THM_PC8:
reloc_status =
Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
0);
break;
case elfcpp::R_ARM_THM_PC12:
reloc_status =
Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
0);
break;
case elfcpp::R_ARM_THM_ALU_PREL_11_0:
reloc_status =
Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
0, thumb_bit);
break;
// These relocation truncate relocation results so we cannot handle them
// in a relocatable link.
case elfcpp::R_ARM_MOVT_ABS:
case elfcpp::R_ARM_THM_MOVT_ABS:
case elfcpp::R_ARM_MOVT_PREL:
case elfcpp::R_ARM_MOVT_BREL:
case elfcpp::R_ARM_THM_MOVT_PREL:
case elfcpp::R_ARM_THM_MOVT_BREL:
case elfcpp::R_ARM_ALU_PC_G0_NC:
case elfcpp::R_ARM_ALU_PC_G0:
case elfcpp::R_ARM_ALU_PC_G1_NC:
case elfcpp::R_ARM_ALU_PC_G1:
case elfcpp::R_ARM_ALU_PC_G2:
case elfcpp::R_ARM_ALU_SB_G0_NC:
case elfcpp::R_ARM_ALU_SB_G0:
case elfcpp::R_ARM_ALU_SB_G1_NC:
case elfcpp::R_ARM_ALU_SB_G1:
case elfcpp::R_ARM_ALU_SB_G2:
case elfcpp::R_ARM_LDR_PC_G0:
case elfcpp::R_ARM_LDR_PC_G1:
case elfcpp::R_ARM_LDR_PC_G2:
case elfcpp::R_ARM_LDR_SB_G0:
case elfcpp::R_ARM_LDR_SB_G1:
case elfcpp::R_ARM_LDR_SB_G2:
case elfcpp::R_ARM_LDRS_PC_G0:
case elfcpp::R_ARM_LDRS_PC_G1:
case elfcpp::R_ARM_LDRS_PC_G2:
case elfcpp::R_ARM_LDRS_SB_G0:
case elfcpp::R_ARM_LDRS_SB_G1:
case elfcpp::R_ARM_LDRS_SB_G2:
case elfcpp::R_ARM_LDC_PC_G0:
case elfcpp::R_ARM_LDC_PC_G1:
case elfcpp::R_ARM_LDC_PC_G2:
case elfcpp::R_ARM_LDC_SB_G0:
case elfcpp::R_ARM_LDC_SB_G1:
case elfcpp::R_ARM_LDC_SB_G2:
gold_error(_("cannot handle %s in a relocatable link"),
arp->name().c_str());
break;
default:
gold_unreachable();
}
// Report any errors.
switch (reloc_status)
{
case Arm_relocate_functions<big_endian>::STATUS_OKAY:
break;
case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
_("relocation overflow in %s"),
arp->name().c_str());
break;
case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
_("unexpected opcode while processing relocation %s"),
arp->name().c_str());
break;
default:
gold_unreachable();
}
}
// Return the value to use for a dynamic symbol which requires special
// treatment. This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.
template<bool big_endian>
uint64_t
Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
{
gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
return this->plt_address_for_global(gsym);
}
// Map platform-specific relocs to real relocs
//
template<bool big_endian>
unsigned int
Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type) const
{
switch (r_type)
{
case elfcpp::R_ARM_TARGET1:
return this->target1_reloc_;
case elfcpp::R_ARM_TARGET2:
return this->target2_reloc_;
default:
return r_type;
}
}
// Whether if two EABI versions V1 and V2 are compatible.
template<bool big_endian>
bool
Target_arm<big_endian>::are_eabi_versions_compatible(
elfcpp::Elf_Word v1,
elfcpp::Elf_Word v2)
{
// v4 and v5 are the same spec before and after it was released,
// so allow mixing them.
if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
|| (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
|| (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
return true;
return v1 == v2;
}
// Combine FLAGS from an input object called NAME and the processor-specific
// flags in the ELF header of the output. Much of this is adapted from the
// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
// in bfd/elf32-arm.c.
template<bool big_endian>
void
Target_arm<big_endian>::merge_processor_specific_flags(
const std::string& name,
elfcpp::Elf_Word flags)
{
if (this->are_processor_specific_flags_set())
{
elfcpp::Elf_Word out_flags = this->processor_specific_flags();
// Nothing to merge if flags equal to those in output.
if (flags == out_flags)
return;
// Complain about various flag mismatches.
elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
if (!this->are_eabi_versions_compatible(version1, version2)
&& parameters->options().warn_mismatch())
gold_error(_("Source object %s has EABI version %d but output has "
"EABI version %d."),
name.c_str(),
(flags & elfcpp::EF_ARM_EABIMASK) >> 24,
(out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
}
else
{
// If the input is the default architecture and had the default
// flags then do not bother setting the flags for the output
// architecture, instead allow future merges to do this. If no
// future merges ever set these flags then they will retain their
// uninitialised values, which surprise surprise, correspond
// to the default values.
if (flags == 0)
return;
// This is the first time, just copy the flags.
// We only copy the EABI version for now.
this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
}
}
// Adjust ELF file header.
template<bool big_endian>
void
Target_arm<big_endian>::do_adjust_elf_header(
unsigned char* view,
int len)
{
gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
elfcpp::Ehdr<32, big_endian> ehdr(view);
elfcpp::Elf_Word flags = this->processor_specific_flags();
unsigned char e_ident[elfcpp::EI_NIDENT];
memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
if (elfcpp::arm_eabi_version(flags)
== elfcpp::EF_ARM_EABI_UNKNOWN)
e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
else
e_ident[elfcpp::EI_OSABI] = 0;
e_ident[elfcpp::EI_ABIVERSION] = 0;
// Do EF_ARM_BE8 adjustment.
if (parameters->options().be8() && !big_endian)
gold_error("BE8 images only valid in big-endian mode.");
if (parameters->options().be8())
{
flags |= elfcpp::EF_ARM_BE8;
this->set_processor_specific_flags(flags);
}
// If we're working in EABI_VER5, set the hard/soft float ABI flags
// as appropriate.
if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
{
elfcpp::Elf_Half type = ehdr.get_e_type();
if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
{
Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
else
flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
this->set_processor_specific_flags(flags);
}
}
elfcpp::Ehdr_write<32, big_endian> oehdr(view);
oehdr.put_e_ident(e_ident);
oehdr.put_e_flags(this->processor_specific_flags());
}
// do_make_elf_object to override the same function in the base class.
// We need to use a target-specific sub-class of
// Sized_relobj_file<32, big_endian> to store ARM specific information.
// Hence we need to have our own ELF object creation.
template<bool big_endian>
Object*
Target_arm<big_endian>::do_make_elf_object(
const std::string& name,
Input_file* input_file,
off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
{
int et = ehdr.get_e_type();
// ET_EXEC files are valid input for --just-symbols/-R,
// and we treat them as relocatable objects.
if (et == elfcpp::ET_REL
|| (et == elfcpp::ET_EXEC && input_file->just_symbols()))
{
Arm_relobj<big_endian>* obj =
new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
obj->setup();
return obj;
}
else if (et == elfcpp::ET_DYN)
{
Sized_dynobj<32, big_endian>* obj =
new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
obj->setup();
return obj;
}
else
{
gold_error(_("%s: unsupported ELF file type %d"),
name.c_str(), et);
return NULL;
}
}
// Read the architecture from the Tag_also_compatible_with attribute, if any.
// Returns -1 if no architecture could be read.
// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
template<bool big_endian>
int
Target_arm<big_endian>::get_secondary_compatible_arch(
const Attributes_section_data* pasd)
{
const Object_attribute* known_attributes =
pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
// Note: the tag and its argument below are uleb128 values, though
// currently-defined values fit in one byte for each.
const std::string& sv =
known_attributes[elfcpp::Tag_also_compatible_with].string_value();
if (sv.size() == 2
&& sv.data()[0] == elfcpp::Tag_CPU_arch
&& (sv.data()[1] & 128) != 128)
return sv.data()[1];
// This tag is "safely ignorable", so don't complain if it looks funny.
return -1;
}
// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
// The tag is removed if ARCH is -1.
// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
template<bool big_endian>
void
Target_arm<big_endian>::set_secondary_compatible_arch(
Attributes_section_data* pasd,
int arch)
{
Object_attribute* known_attributes =
pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
if (arch == -1)
{
known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
return;
}
// Note: the tag and its argument below are uleb128 values, though
// currently-defined values fit in one byte for each.
char sv[3];
sv[0] = elfcpp::Tag_CPU_arch;
gold_assert(arch != 0);
sv[1] = arch;
sv[2] = '\0';
known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
}
// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
// into account.
// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
template<bool big_endian>
int
Target_arm<big_endian>::tag_cpu_arch_combine(
const char* name,
int oldtag,
int* secondary_compat_out,
int newtag,
int secondary_compat)
{
#define T(X) elfcpp::TAG_CPU_ARCH_##X
static const int v6t2[] =
{
T(V6T2), // PRE_V4.
T(V6T2), // V4.
T(V6T2), // V4T.
T(V6T2), // V5T.
T(V6T2), // V5TE.
T(V6T2), // V5TEJ.
T(V6T2), // V6.
T(V7), // V6KZ.
T(V6T2) // V6T2.
};
static const int v6k[] =
{
T(V6K), // PRE_V4.
T(V6K), // V4.
T(V6K), // V4T.
T(V6K), // V5T.
T(V6K), // V5TE.
T(V6K), // V5TEJ.
T(V6K), // V6.
T(V6KZ), // V6KZ.
T(V7), // V6T2.
T(V6K) // V6K.
};
static const int v7[] =
{
T(V7), // PRE_V4.
T(V7), // V4.
T(V7), // V4T.
T(V7), // V5T.
T(V7), // V5TE.
T(V7), // V5TEJ.
T(V7), // V6.
T(V7), // V6KZ.
T(V7), // V6T2.
T(V7), // V6K.
T(V7) // V7.
};
static const int v6_m[] =
{
-1, // PRE_V4.
-1, // V4.
T(V6K), // V4T.
T(V6K), // V5T.
T(V6K), // V5TE.
T(V6K), // V5TEJ.
T(V6K), // V6.
T(V6KZ), // V6KZ.
T(V7), // V6T2.
T(V6K), // V6K.
T(V7), // V7.
T(V6_M) // V6_M.
};
static const int v6s_m[] =
{
-1, // PRE_V4.
-1, // V4.
T(V6K), // V4T.
T(V6K), // V5T.
T(V6K), // V5TE.
T(V6K), // V5TEJ.
T(V6K), // V6.
T(V6KZ), // V6KZ.
T(V7), // V6T2.
T(V6K), // V6K.
T(V7), // V7.
T(V6S_M), // V6_M.
T(V6S_M) // V6S_M.
};
static const int v7e_m[] =
{
-1, // PRE_V4.
-1, // V4.
T(V7E_M), // V4T.
T(V7E_M), // V5T.
T(V7E_M), // V5TE.
T(V7E_M), // V5TEJ.
T(V7E_M), // V6.
T(V7E_M), // V6KZ.
T(V7E_M), // V6T2.
T(V7E_M), // V6K.
T(V7E_M), // V7.
T(V7E_M), // V6_M.
T(V7E_M), // V6S_M.
T(V7E_M) // V7E_M.
};
static const int v8[] =
{
T(V8), // PRE_V4.
T(V8), // V4.
T(V8), // V4T.
T(V8), // V5T.
T(V8), // V5TE.
T(V8), // V5TEJ.
T(V8), // V6.
T(V8), // V6KZ.
T(V8), // V6T2.
T(V8), // V6K.
T(V8), // V7.
T(V8), // V6_M.
T(V8), // V6S_M.
T(V8), // V7E_M.
T(V8) // V8.
};
static const int v4t_plus_v6_m[] =
{
-1, // PRE_V4.
-1, // V4.
T(V4T), // V4T.
T(V5T), // V5T.
T(V5TE), // V5TE.
T(V5TEJ), // V5TEJ.
T(V6), // V6.
T(V6KZ), // V6KZ.
T(V6T2), // V6T2.
T(V6K), // V6K.
T(V7), // V7.
T(V6_M), // V6_M.
T(V6S_M), // V6S_M.
T(V7E_M), // V7E_M.
T(V8), // V8.
T(V4T_PLUS_V6_M) // V4T plus V6_M.
};
static const int* comb[] =
{
v6t2,
v6k,
v7,
v6_m,
v6s_m,
v7e_m,
v8,
// Pseudo-architecture.
v4t_plus_v6_m
};
// Check we've not got a higher architecture than we know about.
if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
{
gold_error(_("%s: unknown CPU architecture"), name);
return -1;
}
// Override old tag if we have a Tag_also_compatible_with on the output.
if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
|| (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
oldtag = T(V4T_PLUS_V6_M);
// And override the new tag if we have a Tag_also_compatible_with on the
// input.
if ((newtag == T(V6_M) && secondary_compat == T(V4T))
|| (newtag == T(V4T) && secondary_compat == T(V6_M)))
newtag = T(V4T_PLUS_V6_M);
// Architectures before V6KZ add features monotonically.
int tagh = std::max(oldtag, newtag);
if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
return tagh;
int tagl = std::min(oldtag, newtag);
int result = comb[tagh - T(V6T2)][tagl];
// Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
// as the canonical version.
if (result == T(V4T_PLUS_V6_M))
{
result = T(V4T);
*secondary_compat_out = T(V6_M);
}
else
*secondary_compat_out = -1;
if (result == -1)
{
gold_error(_("%s: conflicting CPU architectures %d/%d"),
name, oldtag, newtag);
return -1;
}
return result;
#undef T
}
// Helper to print AEABI enum tag value.
template<bool big_endian>
std::string
Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
{
static const char* aeabi_enum_names[] =
{ "", "variable-size", "32-bit", "" };
const size_t aeabi_enum_names_size =
sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
if (value < aeabi_enum_names_size)
return std::string(aeabi_enum_names[value]);
else
{
char buffer[100];
sprintf(buffer, "<unknown value %u>", value);
return std::string(buffer);
}
}
// Return the string value to store in TAG_CPU_name.
template<bool big_endian>
std::string
Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
{
static const char* name_table[] = {
// These aren't real CPU names, but we can't guess
// that from the architecture version alone.
"Pre v4",
"ARM v4",
"ARM v4T",
"ARM v5T",
"ARM v5TE",
"ARM v5TEJ",
"ARM v6",
"ARM v6KZ",
"ARM v6T2",
"ARM v6K",
"ARM v7",
"ARM v6-M",
"ARM v6S-M",
"ARM v7E-M",
"ARM v8"
};
const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
if (value < name_table_size)
return std::string(name_table[value]);
else
{
char buffer[100];
sprintf(buffer, "<unknown CPU value %u>", value);
return std::string(buffer);
}
}
// Query attributes object to see if integer divide instructions may be
// present in an object.
template<bool big_endian>
bool
Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
const Object_attribute* div_attr)
{
switch (div_attr->int_value())
{
case 0:
// Integer divide allowed if instruction contained in
// architecture.
if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
return true;
else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
return true;
else
return false;
case 1:
// Integer divide explicitly prohibited.
return false;
default:
// Unrecognised case - treat as allowing divide everywhere.
case 2:
// Integer divide allowed in ARM state.
return true;
}
}
// Query attributes object to see if integer divide instructions are
// forbidden to be in the object. This is not the inverse of
// attributes_accept_div.
template<bool big_endian>
bool
Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
{
return div_attr->int_value() == 1;
}
// Merge object attributes from input file called NAME with those of the
// output. The input object attributes are in the object pointed by PASD.
template<bool big_endian>
void
Target_arm<big_endian>::merge_object_attributes(
const char* name,
const Attributes_section_data* pasd)
{
// Return if there is no attributes section data.
if (pasd == NULL)
return;
// If output has no object attributes, just copy.
const int vendor = Object_attribute::OBJ_ATTR_PROC;
if (this->attributes_section_data_ == NULL)
{
this->attributes_section_data_ = new Attributes_section_data(*pasd);
Object_attribute* out_attr =
this->attributes_section_data_->known_attributes(vendor);
// We do not output objects with Tag_MPextension_use_legacy - we move
// the attribute's value to Tag_MPextension_use. */
if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
{
if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
&& out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
!= out_attr[elfcpp::Tag_MPextension_use].int_value())
{
gold_error(_("%s has both the current and legacy "
"Tag_MPextension_use attributes"),
name);
}
out_attr[elfcpp::Tag_MPextension_use] =
out_attr[elfcpp::Tag_MPextension_use_legacy];
out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
}
return;
}
const Object_attribute* in_attr = pasd->known_attributes(vendor);
Object_attribute* out_attr =
this->attributes_section_data_->known_attributes(vendor);
// This needs to happen before Tag_ABI_FP_number_model is merged. */
if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
!= out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
{
// Ignore mismatches if the object doesn't use floating point. */
if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
== elfcpp::AEABI_FP_number_model_none
|| (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
!= elfcpp::AEABI_FP_number_model_none
&& out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
== elfcpp::AEABI_VFP_args_compatible))
out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
!= elfcpp::AEABI_FP_number_model_none
&& in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
!= elfcpp::AEABI_VFP_args_compatible
&& parameters->options().warn_mismatch())
gold_error(_("%s uses VFP register arguments, output does not"),
name);
}
for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
{
// Merge this attribute with existing attributes.
switch (i)
{
case elfcpp::Tag_CPU_raw_name:
case elfcpp::Tag_CPU_name:
// These are merged after Tag_CPU_arch.
break;
case elfcpp::Tag_ABI_optimization_goals:
case elfcpp::Tag_ABI_FP_optimization_goals:
// Use the first value seen.
break;
case elfcpp::Tag_CPU_arch:
{
unsigned int saved_out_attr = out_attr->int_value();
// Merge Tag_CPU_arch and Tag_also_compatible_with.
int secondary_compat =
this->get_secondary_compatible_arch(pasd);
int secondary_compat_out =
this->get_secondary_compatible_arch(
this->attributes_section_data_);
out_attr[i].set_int_value(
tag_cpu_arch_combine(name, out_attr[i].int_value(),
&secondary_compat_out,
in_attr[i].int_value(),
secondary_compat));
this->set_secondary_compatible_arch(this->attributes_section_data_,
secondary_compat_out);
// Merge Tag_CPU_name and Tag_CPU_raw_name.
if (out_attr[i].int_value() == saved_out_attr)
; // Leave the names alone.
else if (out_attr[i].int_value() == in_attr[i].int_value())
{
// The output architecture has been changed to match the
// input architecture. Use the input names.
out_attr[elfcpp::Tag_CPU_name].set_string_value(
in_attr[elfcpp::Tag_CPU_name].string_value());
out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
in_attr[elfcpp::Tag_CPU_raw_name].string_value());
}
else
{
out_attr[elfcpp::Tag_CPU_name].set_string_value("");
out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
}
// If we still don't have a value for Tag_CPU_name,
// make one up now. Tag_CPU_raw_name remains blank.
if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
{
const std::string cpu_name =
this->tag_cpu_name_value(out_attr[i].int_value());
// FIXME: If we see an unknown CPU, this will be set
// to "<unknown CPU n>", where n is the attribute value.
// This is different from BFD, which leaves the name alone.
out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
}
}
break;
case elfcpp::Tag_ARM_ISA_use:
case elfcpp::Tag_THUMB_ISA_use:
case elfcpp::Tag_WMMX_arch:
case elfcpp::Tag_Advanced_SIMD_arch:
// ??? Do Advanced_SIMD (NEON) and WMMX conflict?
case elfcpp::Tag_ABI_FP_rounding:
case elfcpp::Tag_ABI_FP_exceptions:
case elfcpp::Tag_ABI_FP_user_exceptions:
case elfcpp::Tag_ABI_FP_number_model:
case elfcpp::Tag_VFP_HP_extension:
case elfcpp::Tag_CPU_unaligned_access:
case elfcpp::Tag_T2EE_use:
case elfcpp::Tag_Virtualization_use:
case elfcpp::Tag_MPextension_use:
// Use the largest value specified.
if (in_attr[i].int_value() > out_attr[i].int_value())
out_attr[i].set_int_value(in_attr[i].int_value());
break;
case elfcpp::Tag_ABI_align8_preserved:
case elfcpp::Tag_ABI_PCS_RO_data:
// Use the smallest value specified.
if (in_attr[i].int_value() < out_attr[i].int_value())
out_attr[i].set_int_value(in_attr[i].int_value());
break;
case elfcpp::Tag_ABI_align8_needed:
if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
&& (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
|| (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
== 0)))
{
// This error message should be enabled once all non-conforming
// binaries in the toolchain have had the attributes set
// properly.
// gold_error(_("output 8-byte data alignment conflicts with %s"),
// name);
}
// Fall through.
case elfcpp::Tag_ABI_FP_denormal:
case elfcpp::Tag_ABI_PCS_GOT_use:
{
// These tags have 0 = don't care, 1 = strong requirement,
// 2 = weak requirement.
static const int order_021[3] = {0, 2, 1};
// Use the "greatest" from the sequence 0, 2, 1, or the largest
// value if greater than 2 (for future-proofing).
if ((in_attr[i].int_value() > 2
&& in_attr[i].int_value() > out_attr[i].int_value())
|| (in_attr[i].int_value() <= 2
&& out_attr[i].int_value() <= 2
&& (order_021[in_attr[i].int_value()]
> order_021[out_attr[i].int_value()])))
out_attr[i].set_int_value(in_attr[i].int_value());
}
break;
case elfcpp::Tag_CPU_arch_profile:
if (out_attr[i].int_value() != in_attr[i].int_value())
{
// 0 will merge with anything.
// 'A' and 'S' merge to 'A'.
// 'R' and 'S' merge to 'R'.
// 'M' and 'A|R|S' is an error.
if (out_attr[i].int_value() == 0
|| (out_attr[i].int_value() == 'S'
&& (in_attr[i].int_value() == 'A'
|| in_attr[i].int_value() == 'R')))
out_attr[i].set_int_value(in_attr[i].int_value());
else if (in_attr[i].int_value() == 0
|| (in_attr[i].int_value() == 'S'
&& (out_attr[i].int_value() == 'A'
|| out_attr[i].int_value() == 'R')))
; // Do nothing.
else if (parameters->options().warn_mismatch())
{
gold_error
(_("conflicting architecture profiles %c/%c"),
in_attr[i].int_value() ? in_attr[i].int_value() : '0',
out_attr[i].int_value() ? out_attr[i].int_value() : '0');
}
}
break;
case elfcpp::Tag_VFP_arch:
{
static const struct
{
int ver;
int regs;
} vfp_versions[7] =
{
{0, 0},
{1, 16},
{2, 16},
{3, 32},
{3, 16},
{4, 32},
{4, 16}
};
// Values greater than 6 aren't defined, so just pick the
// biggest.
if (in_attr[i].int_value() > 6
&& in_attr[i].int_value() > out_attr[i].int_value())
{
*out_attr = *in_attr;
break;
}
// The output uses the superset of input features
// (ISA version) and registers.
int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
vfp_versions[out_attr[i].int_value()].ver);
int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
vfp_versions[out_attr[i].int_value()].regs);
// This assumes all possible supersets are also a valid
// options.
int newval;
for (newval = 6; newval > 0; newval--)
{
if (regs == vfp_versions[newval].regs
&& ver == vfp_versions[newval].ver)
break;
}
out_attr[i].set_int_value(newval);
}
break;
case elfcpp::Tag_PCS_config:
if (out_attr[i].int_value() == 0)
out_attr[i].set_int_value(in_attr[i].int_value());
else if (in_attr[i].int_value() != 0
&& out_attr[i].int_value() != 0
&& parameters->options().warn_mismatch())
{
// It's sometimes ok to mix different configs, so this is only
// a warning.
gold_warning(_("%s: conflicting platform configuration"), name);
}
break;
case elfcpp::Tag_ABI_PCS_R9_use:
if (in_attr[i].int_value() != out_attr[i].int_value()
&& out_attr[i].int_value() != elfcpp::AEABI_R9_unused
&& in_attr[i].int_value() != elfcpp::AEABI_R9_unused
&& parameters->options().warn_mismatch())
{
gold_error(_("%s: conflicting use of R9"), name);
}
if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
out_attr[i].set_int_value(in_attr[i].int_value());
break;
case elfcpp::Tag_ABI_PCS_RW_data:
if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
&& (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
!= elfcpp::AEABI_R9_SB)
&& (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
!= elfcpp::AEABI_R9_unused)
&& parameters->options().warn_mismatch())
{
gold_error(_("%s: SB relative addressing conflicts with use "
"of R9"),
name);
}
// Use the smallest value specified.
if (in_attr[i].int_value() < out_attr[i].int_value())
out_attr[i].set_int_value(in_attr[i].int_value());
break;
case elfcpp::Tag_ABI_PCS_wchar_t:
if (out_attr[i].int_value()
&& in_attr[i].int_value()
&& out_attr[i].int_value() != in_attr[i].int_value()
&& parameters->options().warn_mismatch()
&& parameters->options().wchar_size_warning())
{
gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
"use %u-byte wchar_t; use of wchar_t values "
"across objects may fail"),
name, in_attr[i].int_value(),
out_attr[i].int_value());
}
else if (in_attr[i].int_value() && !out_attr[i].int_value())
out_attr[i].set_int_value(in_attr[i].int_value());
break;
case elfcpp::Tag_ABI_enum_size:
if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
{
if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
|| out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
{
// The existing object is compatible with anything.
// Use whatever requirements the new object has.
out_attr[i].set_int_value(in_attr[i].int_value());
}
else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
&& out_attr[i].int_value() != in_attr[i].int_value()
&& parameters->options().warn_mismatch()
&& parameters->options().enum_size_warning())
{
unsigned int in_value = in_attr[i].int_value();
unsigned int out_value = out_attr[i].int_value();
gold_warning(_("%s uses %s enums yet the output is to use "
"%s enums; use of enum values across objects "
"may fail"),
name,
this->aeabi_enum_name(in_value).c_str(),
this->aeabi_enum_name(out_value).c_str());
}
}
break;
case elfcpp::Tag_ABI_VFP_args:
// Already done.
break;
case elfcpp::Tag_ABI_WMMX_args:
if (in_attr[i].int_value() != out_attr[i].int_value()
&& parameters->options().warn_mismatch())
{
gold_error(_("%s uses iWMMXt register arguments, output does "
"not"),
name);
}
break;
case Object_attribute::Tag_compatibility:
// Merged in target-independent code.
break;
case elfcpp::Tag_ABI_HardFP_use:
// 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
|| (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
out_attr[i].set_int_value(3);
else if (in_attr[i].int_value() > out_attr[i].int_value())
out_attr[i].set_int_value(in_attr[i].int_value());
break;
case elfcpp::Tag_ABI_FP_16bit_format:
if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
{
if (in_attr[i].int_value() != out_attr[i].int_value()
&& parameters->options().warn_mismatch())
gold_error(_("fp16 format mismatch between %s and output"),
name);
}
if (in_attr[i].int_value() != 0)
out_attr[i].set_int_value(in_attr[i].int_value());
break;
case elfcpp::Tag_DIV_use:
{
// A value of zero on input means that the divide
// instruction may be used if available in the base
// architecture as specified via Tag_CPU_arch and
// Tag_CPU_arch_profile. A value of 1 means that the user
// did not want divide instructions. A value of 2
// explicitly means that divide instructions were allowed
// in ARM and Thumb state.
int arch = this->
get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
int_value();
int profile = this->
get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
int_value();
if (in_attr[i].int_value() == out_attr[i].int_value())
{
// Do nothing.
}
else if (attributes_forbid_div(&in_attr[i])
&& !attributes_accept_div(arch, profile, &out_attr[i]))
out_attr[i].set_int_value(1);
else if (attributes_forbid_div(&out_attr[i])
&& attributes_accept_div(arch, profile, &in_attr[i]))
out_attr[i].set_int_value(in_attr[i].int_value());
else if (in_attr[i].int_value() == 2)
out_attr[i].set_int_value(in_attr[i].int_value());
}
break;
case elfcpp::Tag_MPextension_use_legacy:
// We don't output objects with Tag_MPextension_use_legacy - we
// move the value to Tag_MPextension_use.
if (in_attr[i].int_value() != 0
&& in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
{
if (in_attr[elfcpp::Tag_MPextension_use].int_value()
!= in_attr[i].int_value())
{
gold_error(_("%s has has both the current and legacy "
"Tag_MPextension_use attributes"),
name);
}
}
if (in_attr[i].int_value()
> out_attr[elfcpp::Tag_MPextension_use].int_value())
out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
break;
case elfcpp::Tag_nodefaults:
// This tag is set if it exists, but the value is unused (and is
// typically zero). We don't actually need to do anything here -
// the merge happens automatically when the type flags are merged
// below.
break;
case elfcpp::Tag_also_compatible_with:
// Already done in Tag_CPU_arch.
break;
case elfcpp::Tag_conformance:
// Keep the attribute if it matches. Throw it away otherwise.
// No attribute means no claim to conform.
if (in_attr[i].string_value() != out_attr[i].string_value())
out_attr[i].set_string_value("");
break;
default:
{
const char* err_object = NULL;
// The "known_obj_attributes" table does contain some undefined
// attributes. Ensure that there are unused.
if (out_attr[i].int_value() != 0
|| out_attr[i].string_value() != "")
err_object = "output";
else if (in_attr[i].int_value() != 0
|| in_attr[i].string_value() != "")
err_object = name;
if (err_object != NULL
&& parameters->options().warn_mismatch())
{
// Attribute numbers >=64 (mod 128) can be safely ignored.
if ((i & 127) < 64)
gold_error(_("%s: unknown mandatory EABI object attribute "
"%d"),
err_object, i);
else
gold_warning(_("%s: unknown EABI object attribute %d"),
err_object, i);
}
// Only pass on attributes that match in both inputs.
if (!in_attr[i].matches(out_attr[i]))
{
out_attr[i].set_int_value(0);
out_attr[i].set_string_value("");
}
}
}
// If out_attr was copied from in_attr then it won't have a type yet.
if (in_attr[i].type() && !out_attr[i].type())
out_attr[i].set_type(in_attr[i].type());
}
// Merge Tag_compatibility attributes and any common GNU ones.
this->attributes_section_data_->merge(name, pasd);
// Check for any attributes not known on ARM.
typedef Vendor_object_attributes::Other_attributes Other_attributes;
const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
Other_attributes::const_iterator in_iter = in_other_attributes->begin();
Other_attributes* out_other_attributes =
this->attributes_section_data_->other_attributes(vendor);
Other_attributes::iterator out_iter = out_other_attributes->begin();
while (in_iter != in_other_attributes->end()
|| out_iter != out_other_attributes->end())
{
const char* err_object = NULL;
int err_tag = 0;
// The tags for each list are in numerical order.
// If the tags are equal, then merge.
if (out_iter != out_other_attributes->end()
&& (in_iter == in_other_attributes->end()
|| in_iter->first > out_iter->first))
{
// This attribute only exists in output. We can't merge, and we
// don't know what the tag means, so delete it.
err_object = "output";
err_tag = out_iter->first;
int saved_tag = out_iter->first;
delete out_iter->second;
out_other_attributes->erase(out_iter);
out_iter = out_other_attributes->upper_bound(saved_tag);
}
else if (in_iter != in_other_attributes->end()
&& (out_iter != out_other_attributes->end()
|| in_iter->first < out_iter->first))
{
// This attribute only exists in input. We can't merge, and we
// don't know what the tag means, so ignore it.
err_object = name;
err_tag = in_iter->first;
++in_iter;
}
else // The tags are equal.
{
// As present, all attributes in the list are unknown, and
// therefore can't be merged meaningfully.
err_object = "output";
err_tag = out_iter->first;
// Only pass on attributes that match in both inputs.
if (!in_iter->second->matches(*(out_iter->second)))
{
// No match. Delete the attribute.
int saved_tag = out_iter->first;
delete out_iter->second;
out_other_attributes->erase(out_iter);
out_iter = out_other_attributes->upper_bound(saved_tag);
}
else
{
// Matched. Keep the attribute and move to the next.
++out_iter;
++in_iter;
}
}
if (err_object && parameters->options().warn_mismatch())
{
// Attribute numbers >=64 (mod 128) can be safely ignored. */
if ((err_tag & 127) < 64)
{
gold_error(_("%s: unknown mandatory EABI object attribute %d"),
err_object, err_tag);
}
else
{
gold_warning(_("%s: unknown EABI object attribute %d"),
err_object, err_tag);
}
}
}
}
// Stub-generation methods for Target_arm.
// Make a new Arm_input_section object.
template<bool big_endian>
Arm_input_section<big_endian>*
Target_arm<big_endian>::new_arm_input_section(
Relobj* relobj,
unsigned int shndx)
{
Section_id sid(relobj, shndx);
Arm_input_section<big_endian>* arm_input_section =
new Arm_input_section<big_endian>(relobj, shndx);
arm_input_section->init();
// Register new Arm_input_section in map for look-up.
std::pair<typename Arm_input_section_map::iterator, bool> ins =
this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
// Make sure that it we have not created another Arm_input_section
// for this input section already.
gold_assert(ins.second);
return arm_input_section;
}
// Find the Arm_input_section object corresponding to the SHNDX-th input
// section of RELOBJ.
template<bool big_endian>
Arm_input_section<big_endian>*
Target_arm<big_endian>::find_arm_input_section(
Relobj* relobj,
unsigned int shndx) const
{
Section_id sid(relobj, shndx);
typename Arm_input_section_map::const_iterator p =
this->arm_input_section_map_.find(sid);
return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
}
// Make a new stub table.
template<bool big_endian>
Stub_table<big_endian>*
Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
{
Stub_table<big_endian>* stub_table =
new Stub_table<big_endian>(owner);
this->stub_tables_.push_back(stub_table);
stub_table->set_address(owner->address() + owner->data_size());
stub_table->set_file_offset(owner->offset() + owner->data_size());
stub_table->finalize_data_size();
return stub_table;
}
// Scan a relocation for stub generation.
template<bool big_endian>
void
Target_arm<big_endian>::scan_reloc_for_stub(
const Relocate_info<32, big_endian>* relinfo,
unsigned int r_type,
const Sized_symbol<32>* gsym,
unsigned int r_sym,
const Symbol_value<32>* psymval,
elfcpp::Elf_types<32>::Elf_Swxword addend,
Arm_address address)
{
const Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
bool target_is_thumb;
Symbol_value<32> symval;
if (gsym != NULL)
{
// This is a global symbol. Determine if we use PLT and if the
// final target is THUMB.
if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
{
// This uses a PLT, change the symbol value.
symval.set_output_value(this->plt_address_for_global(gsym));
psymval = &symval;
target_is_thumb = false;
}
else if (gsym->is_undefined())
// There is no need to generate a stub symbol is undefined.
return;
else
{
target_is_thumb =
((gsym->type() == elfcpp::STT_ARM_TFUNC)
|| (gsym->type() == elfcpp::STT_FUNC
&& !gsym->is_undefined()
&& ((psymval->value(arm_relobj, 0) & 1) != 0)));
}
}
else
{
// This is a local symbol. Determine if the final target is THUMB.
target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
}
// Strip LSB if this points to a THUMB target.
const Arm_reloc_property* reloc_property =
arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
gold_assert(reloc_property != NULL);
if (target_is_thumb
&& reloc_property->uses_thumb_bit()
&& ((psymval->value(arm_relobj, 0) & 1) != 0))
{
Arm_address stripped_value =
psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
symval.set_output_value(stripped_value);
psymval = &symval;
}
// Get the symbol value.
Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
// Owing to pipelining, the PC relative branches below actually skip
// two instructions when the branch offset is 0.
Arm_address destination;
switch (r_type)
{
case elfcpp::R_ARM_CALL:
case elfcpp::R_ARM_JUMP24:
case elfcpp::R_ARM_PLT32:
// ARM branches.
destination = value + addend + 8;
break;
case elfcpp::R_ARM_THM_CALL:
case elfcpp::R_ARM_THM_XPC22:
case elfcpp::R_ARM_THM_JUMP24:
case elfcpp::R_ARM_THM_JUMP19:
// THUMB branches.
destination = value + addend + 4;
break;
default:
gold_unreachable();
}
Reloc_stub* stub = NULL;
Stub_type stub_type =
Reloc_stub::stub_type_for_reloc(r_type, address, destination,
target_is_thumb);
if (stub_type != arm_stub_none)
{
// Try looking up an existing stub from a stub table.
Stub_table<big_endian>* stub_table =
arm_relobj->stub_table(relinfo->data_shndx);
gold_assert(stub_table != NULL);
// Locate stub by destination.
Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
// Create a stub if there is not one already
stub = stub_table->find_reloc_stub(stub_key);
if (stub == NULL)
{
// create a new stub and add it to stub table.
stub = this->stub_factory().make_reloc_stub(stub_type);
stub_table->add_reloc_stub(stub, stub_key);
}
// Record the destination address.
stub->set_destination_address(destination
| (target_is_thumb ? 1 : 0));
}
// For Cortex-A8, we need to record a relocation at 4K page boundary.
if (this->fix_cortex_a8_
&& (r_type == elfcpp::R_ARM_THM_JUMP24
|| r_type == elfcpp::R_ARM_THM_JUMP19
|| r_type == elfcpp::R_ARM_THM_CALL
|| r_type == elfcpp::R_ARM_THM_XPC22)
&& (address & 0xfffU) == 0xffeU)
{
// Found a candidate. Note we haven't checked the destination is
// within 4K here: if we do so (and don't create a record) we can't
// tell that a branch should have been relocated when scanning later.
this->cortex_a8_relocs_info_[address] =
new Cortex_a8_reloc(stub, r_type,
destination | (target_is_thumb ? 1 : 0));
}
}
// This function scans a relocation sections for stub generation.
// The template parameter Relocate must be a class type which provides
// a single function, relocate(), which implements the machine
// specific part of a relocation.
// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
// SHT_REL or SHT_RELA.
// PRELOCS points to the relocation data. RELOC_COUNT is the number
// of relocs. OUTPUT_SECTION is the output section.
// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
// mapped to output offsets.
// VIEW is the section data, VIEW_ADDRESS is its memory address, and
// VIEW_SIZE is the size. These refer to the input section, unless
// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
// the output section.
template<bool big_endian>
template<int sh_type>
void inline
Target_arm<big_endian>::scan_reloc_section_for_stubs(
const Relocate_info<32, big_endian>* relinfo,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
const unsigned char* view,
elfcpp::Elf_types<32>::Elf_Addr view_address,
section_size_type)
{
typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
const int reloc_size =
Reloc_types<sh_type, 32, big_endian>::reloc_size;
Arm_relobj<big_endian>* arm_object =
Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
unsigned int local_count = arm_object->local_symbol_count();
gold::Default_comdat_behavior default_comdat_behavior;
Comdat_behavior comdat_behavior = CB_UNDETERMINED;
for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
{
Reltype reloc(prelocs);
typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
r_type = this->get_real_reloc_type(r_type);
// Only a few relocation types need stubs.
if ((r_type != elfcpp::R_ARM_CALL)
&& (r_type != elfcpp::R_ARM_JUMP24)
&& (r_type != elfcpp::R_ARM_PLT32)
&& (r_type != elfcpp::R_ARM_THM_CALL)
&& (r_type != elfcpp::R_ARM_THM_XPC22)
&& (r_type != elfcpp::R_ARM_THM_JUMP24)
&& (r_type != elfcpp::R_ARM_THM_JUMP19)
&& (r_type != elfcpp::R_ARM_V4BX))
continue;
section_offset_type offset =
convert_to_section_size_type(reloc.get_r_offset());
if (needs_special_offset_handling)
{
offset = output_section->output_offset(relinfo->object,
relinfo->data_shndx,
offset);
if (offset == -1)
continue;
}
// Create a v4bx stub if --fix-v4bx-interworking is used.
if (r_type == elfcpp::R_ARM_V4BX)
{
if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
{
// Get the BX instruction.
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
const Valtype* wv =
reinterpret_cast<const Valtype*>(view + offset);
elfcpp::Elf_types<32>::Elf_Swxword insn =
elfcpp::Swap<32, big_endian>::readval(wv);
const uint32_t reg = (insn & 0xf);
if (reg < 0xf)
{
// Try looking up an existing stub from a stub table.
Stub_table<big_endian>* stub_table =
arm_object->stub_table(relinfo->data_shndx);
gold_assert(stub_table != NULL);
if (stub_table->find_arm_v4bx_stub(reg) == NULL)
{
// create a new stub and add it to stub table.
Arm_v4bx_stub* stub =
this->stub_factory().make_arm_v4bx_stub(reg);
gold_assert(stub != NULL);
stub_table->add_arm_v4bx_stub(stub);
}
}
}
continue;
}
// Get the addend.
Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
elfcpp::Elf_types<32>::Elf_Swxword addend =
stub_addend_reader(r_type, view + offset, reloc);
const Sized_symbol<32>* sym;
Symbol_value<32> symval;
const Symbol_value<32> *psymval;
bool is_defined_in_discarded_section;
unsigned int shndx;
if (r_sym < local_count)
{
sym = NULL;
psymval = arm_object->local_symbol(r_sym);
// If the local symbol belongs to a section we are discarding,
// and that section is a debug section, try to find the
// corresponding kept section and map this symbol to its
// counterpart in the kept section. The symbol must not
// correspond to a section we are folding.
bool is_ordinary;
shndx = psymval->input_shndx(&is_ordinary);
is_defined_in_discarded_section =
(is_ordinary
&& shndx != elfcpp::SHN_UNDEF
&& !arm_object->is_section_included(shndx)
&& !relinfo->symtab->is_section_folded(arm_object, shndx));
// We need to compute the would-be final value of this local
// symbol.
if (!is_defined_in_discarded_section)
{
typedef Sized_relobj_file<32, big_endian> ObjType;
if (psymval->is_section_symbol())
symval.set_is_section_symbol();
typename ObjType::Compute_final_local_value_status status =
arm_object->compute_final_local_value(r_sym, psymval, &symval,
relinfo->symtab);
if (status == ObjType::CFLV_OK)
{
// Currently we cannot handle a branch to a target in
// a merged section. If this is the case, issue an error
// and also free the merge symbol value.
if (!symval.has_output_value())
{
const std::string& section_name =
arm_object->section_name(shndx);
arm_object->error(_("cannot handle branch to local %u "
"in a merged section %s"),
r_sym, section_name.c_str());
}
psymval = &symval;
}
else
{
// We cannot determine the final value.
continue;
}
}
}
else
{
const Symbol* gsym;
gsym = arm_object->global_symbol(r_sym);
gold_assert(gsym != NULL);
if (gsym->is_forwarder())
gsym = relinfo->symtab->resolve_forwards(gsym);
sym = static_cast<const Sized_symbol<32>*>(gsym);
if (sym->has_symtab_index() && sym->symtab_index() != -1U)
symval.set_output_symtab_index(sym->symtab_index());
else
symval.set_no_output_symtab_entry();
// We need to compute the would-be final value of this global
// symbol.
const Symbol_table* symtab = relinfo->symtab;
const Sized_symbol<32>* sized_symbol =
symtab->get_sized_symbol<32>(gsym);
Symbol_table::Compute_final_value_status status;
Arm_address value =
symtab->compute_final_value<32>(sized_symbol, &status);
// Skip this if the symbol has not output section.
if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
continue;
symval.set_output_value(value);
if (gsym->type() == elfcpp::STT_TLS)
symval.set_is_tls_symbol();
else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
symval.set_is_ifunc_symbol();
psymval = &symval;
is_defined_in_discarded_section =
(gsym->is_defined_in_discarded_section()
&& gsym->is_undefined());
shndx = 0;
}
Symbol_value<32> symval2;
if (is_defined_in_discarded_section)
{
if (comdat_behavior == CB_UNDETERMINED)
{
std::string name = arm_object->section_name(relinfo->data_shndx);
comdat_behavior = default_comdat_behavior.get(name.c_str());
}
if (comdat_behavior == CB_PRETEND)
{
// FIXME: This case does not work for global symbols.
// We have no place to store the original section index.
// Fortunately this does not matter for comdat sections,
// only for sections explicitly discarded by a linker
// script.
bool found;
typename elfcpp::Elf_types<32>::Elf_Addr value =
arm_object->map_to_kept_section(shndx, &found);
if (found)
symval2.set_output_value(value + psymval->input_value());
else
symval2.set_output_value(0);
}
else
{
if (comdat_behavior == CB_WARNING)
gold_warning_at_location(relinfo, i, offset,
_("relocation refers to discarded "
"section"));
symval2.set_output_value(0);
}
symval2.set_no_output_symtab_entry();
psymval = &symval2;
}
// If symbol is a section symbol, we don't know the actual type of
// destination. Give up.
if (psymval->is_section_symbol())
continue;
this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
addend, view_address + offset);
}
}
// Scan an input section for stub generation.
template<bool big_endian>
void
Target_arm<big_endian>::scan_section_for_stubs(
const Relocate_info<32, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
const unsigned char* view,
Arm_address view_address,
section_size_type view_size)
{
if (sh_type == elfcpp::SHT_REL)
this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
relinfo,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
view,
view_address,
view_size);
else if (sh_type == elfcpp::SHT_RELA)
// We do not support RELA type relocations yet. This is provided for
// completeness.
this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
relinfo,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
view,
view_address,
view_size);
else
gold_unreachable();
}
// Group input sections for stub generation.
//
// We group input sections in an output section so that the total size,
// including any padding space due to alignment is smaller than GROUP_SIZE
// unless the only input section in group is bigger than GROUP_SIZE already.
// Then an ARM stub table is created to follow the last input section
// in group. For each group an ARM stub table is created an is placed
// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
// extend the group after the stub table.
template<bool big_endian>
void
Target_arm<big_endian>::group_sections(
Layout* layout,
section_size_type group_size,
bool stubs_always_after_branch,
const Task* task)
{
// Group input sections and insert stub table
Layout::Section_list section_list;
layout->get_executable_sections(&section_list);
for (Layout::Section_list::const_iterator p = section_list.begin();
p != section_list.end();
++p)
{
Arm_output_section<big_endian>* output_section =
Arm_output_section<big_endian>::as_arm_output_section(*p);
output_section->group_sections(group_size, stubs_always_after_branch,
this, task);
}
}
// Relaxation hook. This is where we do stub generation.
template<bool big_endian>
bool
Target_arm<big_endian>::do_relax(
int pass,
const Input_objects* input_objects,
Symbol_table* symtab,
Layout* layout,
const Task* task)
{
// No need to generate stubs if this is a relocatable link.
gold_assert(!parameters->options().relocatable());
// If this is the first pass, we need to group input sections into
// stub groups.
bool done_exidx_fixup = false;
typedef typename Stub_table_list::iterator Stub_table_iterator;
if (pass == 1)
{
// Determine the stub group size. The group size is the absolute
// value of the parameter --stub-group-size. If --stub-group-size
// is passed a negative value, we restrict stubs to be always after
// the stubbed branches.
int32_t stub_group_size_param =
parameters->options().stub_group_size();
bool stubs_always_after_branch = stub_group_size_param < 0;
section_size_type stub_group_size = abs(stub_group_size_param);
if (stub_group_size == 1)
{
// Default value.
// Thumb branch range is +-4MB has to be used as the default
// maximum size (a given section can contain both ARM and Thumb
// code, so the worst case has to be taken into account). If we are
// fixing cortex-a8 errata, the branch range has to be even smaller,
// since wide conditional branch has a range of +-1MB only.
//
// This value is 48K less than that, which allows for 4096
// 12-byte stubs. If we exceed that, then we will fail to link.
// The user will have to relink with an explicit group size
// option.
stub_group_size = 4145152;
}
// The Cortex-A8 erratum fix depends on stubs not being in the same 4K
// page as the first half of a 32-bit branch straddling two 4K pages.
// This is a crude way of enforcing that. In addition, long conditional
// branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
// erratum, limit the group size to (1M - 12k) to avoid unreachable
// cortex-A8 stubs from long conditional branches.
if (this->fix_cortex_a8_)
{
stubs_always_after_branch = true;
const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
}
group_sections(layout, stub_group_size, stubs_always_after_branch, task);
// Also fix .ARM.exidx section coverage.
Arm_output_section<big_endian>* exidx_output_section = NULL;
for (Layout::Section_list::const_iterator p =
layout->section_list().begin();
p != layout->section_list().end();
++p)
if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
{
if (exidx_output_section == NULL)
exidx_output_section =
Arm_output_section<big_endian>::as_arm_output_section(*p);
else
// We cannot handle this now.
gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
"non-relocatable link"),
exidx_output_section->name(),
(*p)->name());
}
if (exidx_output_section != NULL)
{
this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
symtab, task);
done_exidx_fixup = true;
}
}
else
{
// If this is not the first pass, addresses and file offsets have
// been reset at this point, set them here.
for (Stub_table_iterator sp = this->stub_tables_.begin();
sp != this->stub_tables_.end();
++sp)
{
Arm_input_section<big_endian>* owner = (*sp)->owner();
off_t off = align_address(owner->original_size(),
(*sp)->addralign());
(*sp)->set_address_and_file_offset(owner->address() + off,
owner->offset() + off);
}
}
// The Cortex-A8 stubs are sensitive to layout of code sections. At the
// beginning of each relaxation pass, just blow away all the stubs.
// Alternatively, we could selectively remove only the stubs and reloc
// information for code sections that have moved since the last pass.
// That would require more book-keeping.
if (this->fix_cortex_a8_)
{
// Clear all Cortex-A8 reloc information.
for (typename Cortex_a8_relocs_info::const_iterator p =
this->cortex_a8_relocs_info_.begin();
p != this->cortex_a8_relocs_info_.end();
++p)
delete p->second;
this->cortex_a8_relocs_info_.clear();
// Remove all Cortex-A8 stubs.
for (Stub_table_iterator sp = this->stub_tables_.begin();
sp != this->stub_tables_.end();
++sp)
(*sp)->remove_all_cortex_a8_stubs();
}
// Scan relocs for relocation stubs
for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
op != input_objects->relobj_end();
++op)
{
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(*op);
// Lock the object so we can read from it. This is only called
// single-threaded from Layout::finalize, so it is OK to lock.
Task_lock_obj<Object> tl(task, arm_relobj);
arm_relobj->scan_sections_for_stubs(this, symtab, layout);
}
// Check all stub tables to see if any of them have their data sizes
// or addresses alignments changed. These are the only things that
// matter.
bool any_stub_table_changed = false;
Unordered_set<const Output_section*> sections_needing_adjustment;
for (Stub_table_iterator sp = this->stub_tables_.begin();
(sp != this->stub_tables_.end()) && !any_stub_table_changed;
++sp)
{
if ((*sp)->update_data_size_and_addralign())
{
// Update data size of stub table owner.
Arm_input_section<big_endian>* owner = (*sp)->owner();
uint64_t address = owner->address();
off_t offset = owner->offset();
owner->reset_address_and_file_offset();
owner->set_address_and_file_offset(address, offset);
sections_needing_adjustment.insert(owner->output_section());
any_stub_table_changed = true;
}
}
// Output_section_data::output_section() returns a const pointer but we
// need to update output sections, so we record all output sections needing
// update above and scan the sections here to find out what sections need
// to be updated.
for (Layout::Section_list::const_iterator p = layout->section_list().begin();
p != layout->section_list().end();
++p)
{
if (sections_needing_adjustment.find(*p)
!= sections_needing_adjustment.end())
(*p)->set_section_offsets_need_adjustment();
}
// Stop relaxation if no EXIDX fix-up and no stub table change.
bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
// Finalize the stubs in the last relaxation pass.
if (!continue_relaxation)
{
for (Stub_table_iterator sp = this->stub_tables_.begin();
(sp != this->stub_tables_.end()) && !any_stub_table_changed;
++sp)
(*sp)->finalize_stubs();
// Update output local symbol counts of objects if necessary.
for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
op != input_objects->relobj_end();
++op)
{
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(*op);
// Update output local symbol counts. We need to discard local
// symbols defined in parts of input sections that are discarded by
// relaxation.
if (arm_relobj->output_local_symbol_count_needs_update())
{
// We need to lock the object's file to update it.
Task_lock_obj<Object> tl(task, arm_relobj);
arm_relobj->update_output_local_symbol_count();
}
}
}
return continue_relaxation;
}
// Relocate a stub.
template<bool big_endian>
void
Target_arm<big_endian>::relocate_stub(
Stub* stub,
const Relocate_info<32, big_endian>* relinfo,
Output_section* output_section,
unsigned char* view,
Arm_address address,
section_size_type view_size)
{
Relocate relocate;
const Stub_template* stub_template = stub->stub_template();
for (size_t i = 0; i < stub_template->reloc_count(); i++)
{
size_t reloc_insn_index = stub_template->reloc_insn_index(i);
const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
unsigned int r_type = insn->r_type();
section_size_type reloc_offset = stub_template->reloc_offset(i);
section_size_type reloc_size = insn->size();
gold_assert(reloc_offset + reloc_size <= view_size);
// This is the address of the stub destination.
Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
Symbol_value<32> symval;
symval.set_output_value(target);
// Synthesize a fake reloc just in case. We don't have a symbol so
// we use 0.
unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
memset(reloc_buffer, 0, sizeof(reloc_buffer));
elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
reloc_write.put_r_offset(reloc_offset);
reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
relocate.relocate(relinfo, elfcpp::SHT_REL, this, output_section,
this->fake_relnum_for_stubs, reloc_buffer,
NULL, &symval, view + reloc_offset,
address + reloc_offset, reloc_size);
}
}
// Determine whether an object attribute tag takes an integer, a
// string or both.
template<bool big_endian>
int
Target_arm<big_endian>::do_attribute_arg_type(int tag) const
{
if (tag == Object_attribute::Tag_compatibility)
return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
| Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
else if (tag == elfcpp::Tag_nodefaults)
return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
| Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
else if (tag < 32)
return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
else
return ((tag & 1) != 0
? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
: Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
}
// Reorder attributes.
//
// The ABI defines that Tag_conformance should be emitted first, and that
// Tag_nodefaults should be second (if either is defined). This sets those
// two positions, and bumps up the position of all the remaining tags to
// compensate.
template<bool big_endian>
int
Target_arm<big_endian>::do_attributes_order(int num) const
{
// Reorder the known object attributes in output. We want to move
// Tag_conformance to position 4 and Tag_conformance to position 5
// and shift everything between 4 .. Tag_conformance - 1 to make room.
if (num == 4)
return elfcpp::Tag_conformance;
if (num == 5)
return elfcpp::Tag_nodefaults;
if ((num - 2) < elfcpp::Tag_nodefaults)
return num - 2;
if ((num - 1) < elfcpp::Tag_conformance)
return num - 1;
return num;
}
// Scan a span of THUMB code for Cortex-A8 erratum.
template<bool big_endian>
void
Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
Arm_relobj<big_endian>* arm_relobj,
unsigned int shndx,
section_size_type span_start,
section_size_type span_end,
const unsigned char* view,
Arm_address address)
{
// Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
//
// The opcode is BLX.W, BL.W, B.W, Bcc.W
// The branch target is in the same 4KB region as the
// first half of the branch.
// The instruction before the branch is a 32-bit
// length non-branch instruction.
section_size_type i = span_start;
bool last_was_32bit = false;
bool last_was_branch = false;
while (i < span_end)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
bool is_blx = false, is_b = false;
bool is_bl = false, is_bcc = false;
bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
if (insn_32bit)
{
// Load the rest of the insn (in manual-friendly order).
insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
// Encoding T4: B<c>.W.
is_b = (insn & 0xf800d000U) == 0xf0009000U;
// Encoding T1: BL<c>.W.
is_bl = (insn & 0xf800d000U) == 0xf000d000U;
// Encoding T2: BLX<c>.W.
is_blx = (insn & 0xf800d000U) == 0xf000c000U;
// Encoding T3: B<c>.W (not permitted in IT block).
is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
&& (insn & 0x07f00000U) != 0x03800000U);
}
bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
// If this instruction is a 32-bit THUMB branch that crosses a 4K
// page boundary and it follows 32-bit non-branch instruction,
// we need to work around.
if (is_32bit_branch
&& ((address + i) & 0xfffU) == 0xffeU
&& last_was_32bit
&& !last_was_branch)
{
// Check to see if there is a relocation stub for this branch.
bool force_target_arm = false;
bool force_target_thumb = false;
const Cortex_a8_reloc* cortex_a8_reloc = NULL;
Cortex_a8_relocs_info::const_iterator p =
this->cortex_a8_relocs_info_.find(address + i);
if (p != this->cortex_a8_relocs_info_.end())
{
cortex_a8_reloc = p->second;
bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
&& !target_is_thumb)
force_target_arm = true;
else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
&& target_is_thumb)
force_target_thumb = true;
}
off_t offset;
Stub_type stub_type = arm_stub_none;
// Check if we have an offending branch instruction.
uint16_t upper_insn = (insn >> 16) & 0xffffU;
uint16_t lower_insn = insn & 0xffffU;
typedef class Arm_relocate_functions<big_endian> RelocFuncs;
if (cortex_a8_reloc != NULL
&& cortex_a8_reloc->reloc_stub() != NULL)
// We've already made a stub for this instruction, e.g.
// it's a long branch or a Thumb->ARM stub. Assume that
// stub will suffice to work around the A8 erratum (see
// setting of always_after_branch above).
;
else if (is_bcc)
{
offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
lower_insn);
stub_type = arm_stub_a8_veneer_b_cond;
}
else if (is_b || is_bl || is_blx)
{
offset = RelocFuncs::thumb32_branch_offset(upper_insn,
lower_insn);
if (is_blx)
offset &= ~3;
stub_type = (is_blx
? arm_stub_a8_veneer_blx
: (is_bl
? arm_stub_a8_veneer_bl
: arm_stub_a8_veneer_b));
}
if (stub_type != arm_stub_none)
{
Arm_address pc_for_insn = address + i + 4;
// The original instruction is a BL, but the target is
// an ARM instruction. If we were not making a stub,
// the BL would have been converted to a BLX. Use the
// BLX stub instead in that case.
if (this->may_use_v5t_interworking() && force_target_arm
&& stub_type == arm_stub_a8_veneer_bl)
{
stub_type = arm_stub_a8_veneer_blx;
is_blx = true;
is_bl = false;
}
// Conversely, if the original instruction was
// BLX but the target is Thumb mode, use the BL stub.
else if (force_target_thumb
&& stub_type == arm_stub_a8_veneer_blx)
{
stub_type = arm_stub_a8_veneer_bl;
is_blx = false;
is_bl = true;
}
if (is_blx)
pc_for_insn &= ~3;
// If we found a relocation, use the proper destination,
// not the offset in the (unrelocated) instruction.
// Note this is always done if we switched the stub type above.
if (cortex_a8_reloc != NULL)
offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
// Add a new stub if destination address in in the same page.
if (((address + i) & ~0xfffU) == (target & ~0xfffU))
{
Cortex_a8_stub* stub =
this->stub_factory_.make_cortex_a8_stub(stub_type,
arm_relobj, shndx,
address + i,
target, insn);
Stub_table<big_endian>* stub_table =
arm_relobj->stub_table(shndx);
gold_assert(stub_table != NULL);
stub_table->add_cortex_a8_stub(address + i, stub);
}
}
}
i += insn_32bit ? 4 : 2;
last_was_32bit = insn_32bit;
last_was_branch = is_32bit_branch;
}
}
// Apply the Cortex-A8 workaround.
template<bool big_endian>
void
Target_arm<big_endian>::apply_cortex_a8_workaround(
const Cortex_a8_stub* stub,
Arm_address stub_address,
unsigned char* insn_view,
Arm_address insn_address)
{
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
off_t branch_offset = stub_address - (insn_address + 4);
typedef class Arm_relocate_functions<big_endian> RelocFuncs;
switch (stub->stub_template()->type())
{
case arm_stub_a8_veneer_b_cond:
// For a conditional branch, we re-write it to be an unconditional
// branch to the stub. We use the THUMB-2 encoding here.
upper_insn = 0xf000U;
lower_insn = 0xb800U;
// Fall through.
case arm_stub_a8_veneer_b:
case arm_stub_a8_veneer_bl:
case arm_stub_a8_veneer_blx:
if ((lower_insn & 0x5000U) == 0x4000U)
// For a BLX instruction, make sure that the relocation is
// rounded up to a word boundary. This follows the semantics of
// the instruction which specifies that bit 1 of the target
// address will come from bit 1 of the base address.
branch_offset = (branch_offset + 2) & ~3;
// Put BRANCH_OFFSET back into the insn.
gold_assert(!Bits<25>::has_overflow32(branch_offset));
upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
break;
default:
gold_unreachable();
}
// Put the relocated value back in the object file:
elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
}
// Target selector for ARM. Note this is never instantiated directly.
// It's only used in Target_selector_arm_nacl, below.
template<bool big_endian>
class Target_selector_arm : public Target_selector
{
public:
Target_selector_arm()
: Target_selector(elfcpp::EM_ARM, 32, big_endian,
(big_endian ? "elf32-bigarm" : "elf32-littlearm"),
(big_endian ? "armelfb" : "armelf"))
{ }
Target*
do_instantiate_target()
{ return new Target_arm<big_endian>(); }
};
// Fix .ARM.exidx section coverage.
template<bool big_endian>
void
Target_arm<big_endian>::fix_exidx_coverage(
Layout* layout,
const Input_objects* input_objects,
Arm_output_section<big_endian>* exidx_section,
Symbol_table* symtab,
const Task* task)
{
// We need to look at all the input sections in output in ascending
// order of of output address. We do that by building a sorted list
// of output sections by addresses. Then we looks at the output sections
// in order. The input sections in an output section are already sorted
// by addresses within the output section.
typedef std::set<Output_section*, output_section_address_less_than>
Sorted_output_section_list;
Sorted_output_section_list sorted_output_sections;
// Find out all the output sections of input sections pointed by
// EXIDX input sections.
for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
p != input_objects->relobj_end();
++p)
{
Arm_relobj<big_endian>* arm_relobj =
Arm_relobj<big_endian>::as_arm_relobj(*p);
std::vector<unsigned int> shndx_list;
arm_relobj->get_exidx_shndx_list(&shndx_list);
for (size_t i = 0; i < shndx_list.size(); ++i)
{
const Arm_exidx_input_section* exidx_input_section =
arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
gold_assert(exidx_input_section != NULL);
if (!exidx_input_section->has_errors())
{
unsigned int text_shndx = exidx_input_section->link();
Output_section* os = arm_relobj->output_section(text_shndx);
if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
sorted_output_sections.insert(os);
}
}
}
// Go over the output sections in ascending order of output addresses.
typedef typename Arm_output_section<big_endian>::Text_section_list
Text_section_list;
Text_section_list sorted_text_sections;
for (typename Sorted_output_section_list::iterator p =
sorted_output_sections.begin();
p != sorted_output_sections.end();
++p)
{
Arm_output_section<big_endian>* arm_output_section =
Arm_output_section<big_endian>::as_arm_output_section(*p);
arm_output_section->append_text_sections_to_list(&sorted_text_sections);
}
exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
merge_exidx_entries(), task);
}
template<bool big_endian>
void
Target_arm<big_endian>::do_define_standard_symbols(
Symbol_table* symtab,
Layout* layout)
{
// Handle the .ARM.exidx section.
Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
if (exidx_section != NULL)
{
// Create __exidx_start and __exidx_end symbols.
symtab->define_in_output_data("__exidx_start",
NULL, // version
Symbol_table::PREDEFINED,
exidx_section,
0, // value
0, // symsize
elfcpp::STT_NOTYPE,
elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN,
0, // nonvis
false, // offset_is_from_end
true); // only_if_ref
symtab->define_in_output_data("__exidx_end",
NULL, // version
Symbol_table::PREDEFINED,
exidx_section,
0, // value
0, // symsize
elfcpp::STT_NOTYPE,
elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN,
0, // nonvis
true, // offset_is_from_end
true); // only_if_ref
}
else
{
// Define __exidx_start and __exidx_end even when .ARM.exidx
// section is missing to match ld's behaviour.
symtab->define_as_constant("__exidx_start", NULL,
Symbol_table::PREDEFINED,
0, 0, elfcpp::STT_OBJECT,
elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
true, false);
symtab->define_as_constant("__exidx_end", NULL,
Symbol_table::PREDEFINED,
0, 0, elfcpp::STT_OBJECT,
elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
true, false);
}
}
// NaCl variant. It uses different PLT contents.
template<bool big_endian>
class Output_data_plt_arm_nacl;
template<bool big_endian>
class Target_arm_nacl : public Target_arm<big_endian>
{
public:
Target_arm_nacl()
: Target_arm<big_endian>(&arm_nacl_info)
{ }
protected:
virtual Output_data_plt_arm<big_endian>*
do_make_data_plt(
Layout* layout,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative)
{ return new Output_data_plt_arm_nacl<big_endian>(
layout, got, got_plt, got_irelative); }
private:
static const Target::Target_info arm_nacl_info;
};
template<bool big_endian>
const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
{
32, // size
big_endian, // is_big_endian
elfcpp::EM_ARM, // machine_code
false, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
false, // can_icf_inline_merge_sections
'\0', // wrap_char
"/lib/ld-nacl-arm.so.1", // dynamic_linker
0x20000, // default_text_segment_address
0x10000, // abi_pagesize (overridable by -z max-page-size)
0x10000, // common_pagesize (overridable by -z common-page-size)
true, // isolate_execinstr
0x10000000, // rosegment_gap
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0, // large_common_section_flags
".ARM.attributes", // attributes_section
"aeabi", // attributes_vendor
"_start", // entry_symbol_name
32, // hash_entry_size
};
template<bool big_endian>
class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
{
public:
Output_data_plt_arm_nacl(
Layout* layout,
Arm_output_data_got<big_endian>* got,
Output_data_space* got_plt,
Output_data_space* got_irelative)
: Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
{ }
protected:
// Return the offset of the first non-reserved PLT entry.
virtual unsigned int
do_first_plt_entry_offset() const
{ return sizeof(first_plt_entry); }
// Return the size of a PLT entry.
virtual unsigned int
do_get_plt_entry_size() const
{ return sizeof(plt_entry); }
virtual void
do_fill_first_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address);
virtual void
do_fill_plt_entry(unsigned char* pov,
Arm_address got_address,
Arm_address plt_address,
unsigned int got_offset,
unsigned int plt_offset);
private:
inline uint32_t arm_movw_immediate(uint32_t value)
{
return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
}
inline uint32_t arm_movt_immediate(uint32_t value)
{
return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
}
// Template for the first PLT entry.
static const uint32_t first_plt_entry[16];
// Template for subsequent PLT entries.
static const uint32_t plt_entry[4];
};
// The first entry in the PLT.
template<bool big_endian>
const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
{
// First bundle:
0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
0xe08cc00f, // add ip, ip, pc
0xe52dc008, // str ip, [sp, #-8]!
// Second bundle:
0xe3ccc103, // bic ip, ip, #0xc0000000
0xe59cc000, // ldr ip, [ip]
0xe3ccc13f, // bic ip, ip, #0xc000000f
0xe12fff1c, // bx ip
// Third bundle:
0xe320f000, // nop
0xe320f000, // nop
0xe320f000, // nop
// .Lplt_tail:
0xe50dc004, // str ip, [sp, #-4]
// Fourth bundle:
0xe3ccc103, // bic ip, ip, #0xc0000000
0xe59cc000, // ldr ip, [ip]
0xe3ccc13f, // bic ip, ip, #0xc000000f
0xe12fff1c, // bx ip
};
template<bool big_endian>
void
Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
unsigned char* pov,
Arm_address got_address,
Arm_address plt_address)
{
// Write first PLT entry. All but first two words are constants.
const size_t num_first_plt_words = (sizeof(first_plt_entry)
/ sizeof(first_plt_entry[0]));
int32_t got_displacement = got_address + 8 - (plt_address + 16);
elfcpp::Swap<32, big_endian>::writeval
(pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
elfcpp::Swap<32, big_endian>::writeval
(pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
for (size_t i = 2; i < num_first_plt_words; ++i)
elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
}
// Subsequent entries in the PLT.
template<bool big_endian>
const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
{
0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
0xe08cc00f, // add ip, ip, pc
0xea000000, // b .Lplt_tail
};
template<bool big_endian>
void
Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
unsigned char* pov,
Arm_address got_address,
Arm_address plt_address,
unsigned int got_offset,
unsigned int plt_offset)
{
// Calculate the displacement between the PLT slot and the
// common tail that's part of the special initial PLT slot.
int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
- (plt_address + plt_offset
+ sizeof(plt_entry) + sizeof(uint32_t)));
gold_assert((tail_displacement & 3) == 0);
tail_displacement >>= 2;
gold_assert ((tail_displacement & 0xff000000) == 0
|| (-tail_displacement & 0xff000000) == 0);
// Calculate the displacement between the PLT slot and the entry
// in the GOT. The offset accounts for the value produced by
// adding to pc in the penultimate instruction of the PLT stub.
const int32_t got_displacement = (got_address + got_offset
- (plt_address + sizeof(plt_entry)));
elfcpp::Swap<32, big_endian>::writeval
(pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
elfcpp::Swap<32, big_endian>::writeval
(pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
elfcpp::Swap<32, big_endian>::writeval
(pov + 8, plt_entry[2]);
elfcpp::Swap<32, big_endian>::writeval
(pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
}
// Target selectors.
template<bool big_endian>
class Target_selector_arm_nacl
: public Target_selector_nacl<Target_selector_arm<big_endian>,
Target_arm_nacl<big_endian> >
{
public:
Target_selector_arm_nacl()
: Target_selector_nacl<Target_selector_arm<big_endian>,
Target_arm_nacl<big_endian> >(
"arm",
big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
big_endian ? "armelfb_nacl" : "armelf_nacl")
{ }
};
Target_selector_arm_nacl<false> target_selector_arm;
Target_selector_arm_nacl<true> target_selector_armbe;
} // End anonymous namespace.