binutils-gdb/gdb/ns32k-pinsn.c
K. Richard Pixley c398de0cdd index -> strchr
1993-09-01 22:24:34 +00:00

518 lines
12 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Print National Semiconductor 32000 instructions for GDB, the GNU debugger.
Copyright 1986, 1988, 1991, 1992 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "defs.h"
#include "symtab.h"
#include "ns32k-opcode.h"
#include "gdbcore.h"
/* 32000 instructions are never longer than this. */
#define MAXLEN 62
/* Number of elements in the opcode table. */
#define NOPCODES (sizeof notstrs / sizeof notstrs[0])
#define NEXT_IS_ADDR '|'
/*
* extract "count" bits starting "offset" bits
* into buffer
*/
int
bit_extract (buffer, offset, count)
char *buffer;
int offset;
int count;
{
int result;
int mask;
int bit;
buffer += offset >> 3;
offset &= 7;
bit = 1;
result = 0;
while (count--)
{
if ((*buffer & (1 << offset)))
result |= bit;
if (++offset == 8)
{
offset = 0;
buffer++;
}
bit <<= 1;
}
return result;
}
float
fbit_extract (buffer, offset, count)
{
union {
int ival;
float fval;
} foo;
foo.ival = bit_extract (buffer, offset, 32);
return foo.fval;
}
double
dbit_extract (buffer, offset, count)
{
union {
struct {int low, high; } ival;
double dval;
} foo;
foo.ival.low = bit_extract (buffer, offset, 32);
foo.ival.high = bit_extract (buffer, offset+32, 32);
return foo.dval;
}
sign_extend (value, bits)
{
value = value & ((1 << bits) - 1);
return (value & (1 << (bits-1))
? value | (~((1 << bits) - 1))
: value);
}
flip_bytes (ptr, count)
char *ptr;
int count;
{
char tmp;
while (count > 0)
{
tmp = *ptr;
ptr[0] = ptr[count-1];
ptr[count-1] = tmp;
ptr++;
count -= 2;
}
}
/* Given a character C, does it represent a general addressing mode? */
#define Is_gen(c) \
((c) == 'F' || (c) == 'L' || (c) == 'B' \
|| (c) == 'W' || (c) == 'D' || (c) == 'A')
/* Adressing modes. */
#define Adrmod_index_byte 0x1c
#define Adrmod_index_word 0x1d
#define Adrmod_index_doubleword 0x1e
#define Adrmod_index_quadword 0x1f
/* Is MODE an indexed addressing mode? */
#define Adrmod_is_index(mode) \
(mode == Adrmod_index_byte \
|| mode == Adrmod_index_word \
|| mode == Adrmod_index_doubleword \
|| mode == Adrmod_index_quadword)
/* Print the 32000 instruction at address MEMADDR in debugged memory,
on STREAM. Returns length of the instruction, in bytes. */
int
print_insn (memaddr, stream)
CORE_ADDR memaddr;
FILE *stream;
{
unsigned char buffer[MAXLEN];
register int i;
register unsigned char *p;
register char *d;
unsigned short first_word;
int gen, disp;
int ioffset; /* bits into instruction */
int aoffset; /* bits into arguments */
char arg_bufs[MAX_ARGS+1][ARG_LEN];
int argnum;
int maxarg;
read_memory (memaddr, buffer, MAXLEN);
first_word = *(unsigned short *) buffer;
for (i = 0; i < NOPCODES; i++)
if ((first_word & ((1 << notstrs[i].detail.obits) - 1))
== notstrs[i].detail.code)
break;
/* Handle undefined instructions. */
if (i == NOPCODES)
{
fprintf (stream, "0%o", buffer[0]);
return 1;
}
fprintf (stream, "%s", notstrs[i].name);
ioffset = notstrs[i].detail.ibits;
aoffset = notstrs[i].detail.ibits;
d = notstrs[i].detail.args;
if (*d)
{
/* Offset in bits of the first thing beyond each index byte.
Element 0 is for operand A and element 1 is for operand B.
The rest are irrelevant, but we put them here so we don't
index outside the array. */
int index_offset[MAX_ARGS];
/* 0 for operand A, 1 for operand B, greater for other args. */
int whicharg = 0;
fputc ('\t', stream);
maxarg = 0;
/* First we have to find and keep track of the index bytes,
if we are using scaled indexed addressing mode, since the index
bytes occur right after the basic instruction, not as part
of the addressing extension. */
if (Is_gen(d[1]))
{
int addr_mode = bit_extract (buffer, ioffset - 5, 5);
if (Adrmod_is_index (addr_mode))
{
aoffset += 8;
index_offset[0] = aoffset;
}
}
if (d[2] && Is_gen(d[3]))
{
int addr_mode = bit_extract (buffer, ioffset - 10, 5);
if (Adrmod_is_index (addr_mode))
{
aoffset += 8;
index_offset[1] = aoffset;
}
}
while (*d)
{
argnum = *d - '1';
d++;
if (argnum > maxarg && argnum < MAX_ARGS)
maxarg = argnum;
ioffset = print_insn_arg (*d, ioffset, &aoffset, buffer,
memaddr, arg_bufs[argnum],
index_offset[whicharg]);
d++;
whicharg++;
}
for (argnum = 0; argnum <= maxarg; argnum++)
{
CORE_ADDR addr;
char *ch;
for (ch = arg_bufs[argnum]; *ch;)
{
if (*ch == NEXT_IS_ADDR)
{
++ch;
addr = atoi (ch);
print_address (addr, stream);
while (*ch && *ch != NEXT_IS_ADDR)
++ch;
if (*ch)
++ch;
}
else
putc (*ch++, stream);
}
if (argnum < maxarg)
fprintf (stream, ", ");
}
}
return aoffset / 8;
}
/* Print an instruction operand of category given by d. IOFFSET is
the bit position below which small (<1 byte) parts of the operand can
be found (usually in the basic instruction, but for indexed
addressing it can be in the index byte). AOFFSETP is a pointer to the
bit position of the addressing extension. BUFFER contains the
instruction. ADDR is where BUFFER was read from. Put the disassembled
version of the operand in RESULT. INDEX_OFFSET is the bit position
of the index byte (it contains garbage if this operand is not a
general operand using scaled indexed addressing mode). */
print_insn_arg (d, ioffset, aoffsetp, buffer, addr, result, index_offset)
char d;
int ioffset, *aoffsetp;
char *buffer;
CORE_ADDR addr;
char *result;
int index_offset;
{
int addr_mode;
float Fvalue;
double Lvalue;
int Ivalue;
int disp1, disp2;
int index;
switch (d)
{
case 'F':
case 'L':
case 'B':
case 'W':
case 'D':
case 'A':
addr_mode = bit_extract (buffer, ioffset-5, 5);
ioffset -= 5;
switch (addr_mode)
{
case 0x0: case 0x1: case 0x2: case 0x3:
case 0x4: case 0x5: case 0x6: case 0x7:
switch (d)
{
case 'F':
case 'L':
sprintf (result, "f%d", addr_mode);
break;
default:
sprintf (result, "r%d", addr_mode);
}
break;
case 0x8: case 0x9: case 0xa: case 0xb:
case 0xc: case 0xd: case 0xe: case 0xf:
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "%d(r%d)", disp1, addr_mode & 7);
break;
case 0x10:
case 0x11:
case 0x12:
disp1 = get_displacement (buffer, aoffsetp);
disp2 = get_displacement (buffer, aoffsetp);
sprintf (result, "%d(%d(%s))", disp2, disp1,
addr_mode==0x10?"fp":addr_mode==0x11?"sp":"sb");
break;
case 0x13:
sprintf (result, "reserved");
break;
case 0x14:
switch (d)
{
case 'B':
Ivalue = bit_extract (buffer, *aoffsetp, 8);
Ivalue = sign_extend (Ivalue, 8);
*aoffsetp += 8;
sprintf (result, "$%d", Ivalue);
break;
case 'W':
Ivalue = bit_extract (buffer, *aoffsetp, 16);
flip_bytes (&Ivalue, 2);
*aoffsetp += 16;
Ivalue = sign_extend (Ivalue, 16);
sprintf (result, "$%d", Ivalue);
break;
case 'D':
Ivalue = bit_extract (buffer, *aoffsetp, 32);
flip_bytes (&Ivalue, 4);
*aoffsetp += 32;
sprintf (result, "$%d", Ivalue);
break;
case 'A':
Ivalue = bit_extract (buffer, *aoffsetp, 32);
flip_bytes (&Ivalue, 4);
*aoffsetp += 32;
sprintf (result, "$|%d|", Ivalue);
break;
case 'F':
Fvalue = fbit_extract (buffer, *aoffsetp, 32);
flip_bytes (&Fvalue, 4);
*aoffsetp += 32;
sprintf (result, "$%g", Fvalue);
break;
case 'L':
Lvalue = dbit_extract (buffer, *aoffsetp, 64);
flip_bytes (&Lvalue, 8);
*aoffsetp += 64;
sprintf (result, "$%g", Lvalue);
break;
}
break;
case 0x15:
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "@|%d|", disp1);
break;
case 0x16:
disp1 = get_displacement (buffer, aoffsetp);
disp2 = get_displacement (buffer, aoffsetp);
sprintf (result, "EXT(%d) + %d", disp1, disp2);
break;
case 0x17:
sprintf (result, "tos");
break;
case 0x18:
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "%d(fp)", disp1);
break;
case 0x19:
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "%d(sp)", disp1);
break;
case 0x1a:
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "%d(sb)", disp1);
break;
case 0x1b:
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "|%d|", addr + disp1);
break;
case 0x1c:
case 0x1d:
case 0x1e:
case 0x1f:
index = bit_extract (buffer, index_offset - 8, 3);
print_insn_arg (d, index_offset, aoffsetp, buffer, addr,
result, 0);
{
static char *ind[] = {"b", "w", "d", "q"};
char *off;
off = result + strlen (result);
sprintf (off, "[r%d:%s]", index,
ind[addr_mode & 3]);
}
break;
}
break;
case 'q':
Ivalue = bit_extract (buffer, ioffset-4, 4);
Ivalue = sign_extend (Ivalue, 4);
sprintf (result, "%d", Ivalue);
ioffset -= 4;
break;
case 'r':
Ivalue = bit_extract (buffer, ioffset-3, 3);
sprintf (result, "r%d", Ivalue&7);
ioffset -= 3;
break;
case 'd':
sprintf (result, "%d", get_displacement (buffer, aoffsetp));
break;
case 'p':
sprintf (result, "%c%d%c", NEXT_IS_ADDR,
addr + get_displacement (buffer, aoffsetp),
NEXT_IS_ADDR);
break;
case 'i':
Ivalue = bit_extract (buffer, *aoffsetp, 8);
*aoffsetp += 8;
sprintf (result, "0x%x", Ivalue);
break;
}
return ioffset;
}
get_displacement (buffer, aoffsetp)
char *buffer;
int *aoffsetp;
{
int Ivalue;
Ivalue = bit_extract (buffer, *aoffsetp, 8);
switch (Ivalue & 0xc0)
{
case 0x00:
case 0x40:
Ivalue = sign_extend (Ivalue, 7);
*aoffsetp += 8;
break;
case 0x80:
Ivalue = bit_extract (buffer, *aoffsetp, 16);
flip_bytes (&Ivalue, 2);
Ivalue = sign_extend (Ivalue, 14);
*aoffsetp += 16;
break;
case 0xc0:
Ivalue = bit_extract (buffer, *aoffsetp, 32);
flip_bytes (&Ivalue, 4);
Ivalue = sign_extend (Ivalue, 30);
*aoffsetp += 32;
break;
}
return Ivalue;
}
/* Return the number of locals in the current frame given a pc
pointing to the enter instruction. This is used in the macro
FRAME_FIND_SAVED_REGS. */
ns32k_localcount (enter_pc)
CORE_ADDR enter_pc;
{
unsigned char localtype;
int localcount;
localtype = read_memory_integer (enter_pc+2, 1);
if ((localtype & 0x80) == 0)
localcount = localtype;
else if ((localtype & 0xc0) == 0x80)
localcount = (((localtype & 0x3f) << 8)
| (read_memory_integer (enter_pc+3, 1) & 0xff));
else
localcount = (((localtype & 0x3f) << 24)
| ((read_memory_integer (enter_pc+3, 1) & 0xff) << 16)
| ((read_memory_integer (enter_pc+4, 1) & 0xff) << 8 )
| (read_memory_integer (enter_pc+5, 1) & 0xff));
return localcount;
}
/*
* Get the address of the enter opcode for the function
* containing PC, if there is an enter for the function,
* and if the pc is between the enter and exit.
* Returns positive address if pc is between enter/exit,
* 1 if pc before enter or after exit, 0 otherwise.
*/
CORE_ADDR
ns32k_get_enter_addr (pc)
CORE_ADDR pc;
{
CORE_ADDR enter_addr;
unsigned char op;
if (ABOUT_TO_RETURN (pc))
return 1; /* after exit */
enter_addr = get_pc_function_start (pc);
if (pc == enter_addr)
return 1; /* before enter */
op = read_memory_integer (enter_addr, 1);
if (op != 0x82)
return 0; /* function has no enter/exit */
return enter_addr; /* pc is between enter and exit */
}