binutils-gdb/sim/mn10300/mn10300_sim.h
Mike Frysinger 61a0c964e6 sim: syscall: unify memory helpers
Almost every port implements these two callbacks in the same way, so
unify them in the common layer.
2015-06-17 13:19:51 -04:00

235 lines
7.1 KiB
C

#include <stdio.h>
#include <ctype.h>
#include "ansidecl.h"
#include "gdb/callback.h"
#include "opcode/mn10300.h"
#include <limits.h>
#include "gdb/remote-sim.h"
#include "bfd.h"
#include "sim-fpu.h"
extern host_callback *mn10300_callback;
extern SIM_DESC simulator;
typedef unsigned8 uint8;
typedef signed8 int8;
typedef unsigned16 uint16;
typedef signed16 int16;
typedef unsigned32 uint32;
typedef signed32 int32;
typedef struct
{
uint32 low, high;
} dword;
typedef uint32 reg_t;
struct simops
{
long opcode;
long mask;
void (*func)();
int length;
int format;
int numops;
int operands[16];
};
/* The current state of the processor; registers, memory, etc. */
struct _state
{
reg_t regs[32]; /* registers, d0-d3, a0-a3, sp, pc, mdr, psw,
lir, lar, mdrq, plus some room for processor
specific regs. */
union
{
reg_t fs[32]; /* FS0-31 */
dword fd[16]; /* FD0,2,...,30 */
} fpregs;
/* All internal state modified by signal_exception() that may need to be
rolled back for passing moment-of-exception image back to gdb. */
reg_t exc_trigger_regs[32];
reg_t exc_suspend_regs[32];
int exc_suspended;
#define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mn10300_cpu_exception_trigger(SD,CPU,CIA)
#define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mn10300_cpu_exception_suspend(SD,CPU,EXC)
#define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mn10300_cpu_exception_resume(SD,CPU,EXC)
};
extern struct _state State;
#define PC (State.regs[REG_PC])
#define SP (State.regs[REG_SP])
#define PSW (State.regs[11])
#define PSW_Z 0x1
#define PSW_N 0x2
#define PSW_C 0x4
#define PSW_V 0x8
#define PSW_IE LSBIT (11)
#define PSW_LM LSMASK (10, 8)
#define EXTRACT_PSW_LM LSEXTRACTED16 (PSW, 10, 8)
#define INSERT_PSW_LM(l) LSINSERTED16 ((l), 10, 8)
#define REG_D0 0
#define REG_A0 4
#define REG_SP 8
#define REG_PC 9
#define REG_MDR 10
#define REG_PSW 11
#define REG_LIR 12
#define REG_LAR 13
#define REG_MDRQ 14
#define REG_E0 15
#define REG_SSP 23
#define REG_MSP 24
#define REG_USP 25
#define REG_MCRH 26
#define REG_MCRL 27
#define REG_MCVF 28
#define REG_FPCR 29
#define FPCR (State.regs[REG_FPCR])
#define FCC_MASK LSMASK (21, 18)
#define RM_MASK LSMASK (17, 16) /* Must always be zero. */
#define EC_MASK LSMASK (14, 10)
#define EE_MASK LSMASK ( 9, 5)
#define EF_MASK LSMASK ( 4, 0)
#define FPCR_MASK (FCC_MASK | EC_MASK | EE_MASK | EF_MASK)
#define FCC_L LSBIT (21)
#define FCC_G LSBIT (20)
#define FCC_E LSBIT (19)
#define FCC_U LSBIT (18)
#define EC_V LSBIT (14)
#define EC_Z LSBIT (13)
#define EC_O LSBIT (12)
#define EC_U LSBIT (11)
#define EC_I LSBIT (10)
#define EE_V LSBIT (9)
#define EE_Z LSBIT (8)
#define EE_O LSBIT (7)
#define EE_U LSBIT (6)
#define EE_I LSBIT (5)
#define EF_V LSBIT (4)
#define EF_Z LSBIT (3)
#define EF_O LSBIT (2)
#define EF_U LSBIT (1)
#define EF_I LSBIT (0)
#define PSW_FE LSBIT(20)
#define FPU_DISABLED !(PSW & PSW_FE)
#define XS2FS(X,S) State.fpregs.fs[((X<<4)|(S))]
#define AS2FS(A,S) State.fpregs.fs[((A<<2)|(S))]
#define Xf2FD(X,f) State.fpregs.fd[((X<<3)|(f))]
#define FS2FPU(FS,F) sim_fpu_32to (&(F), (FS))
#define FD2FPU(FD,F) sim_fpu_232to (&(F), ((FD).high), ((FD).low))
#define FPU2FS(F,FS) sim_fpu_to32 (&(FS), &(F))
#define FPU2FD(F,FD) sim_fpu_to232 (&((FD).high), &((FD).low), &(F))
#define FETCH32(a,b,c,d) \
((a)+((b)<<8)+((c)<<16)+((d)<<24))
#define FETCH24(a,b,c) \
((a)+((b)<<8)+((c)<<16))
#define FETCH16(a,b) ((a)+((b)<<8))
#define load_byte(ADDR) \
sim_core_read_unaligned_1 (STATE_CPU (simulator, 0), PC, read_map, (ADDR))
#define load_half(ADDR) \
sim_core_read_unaligned_2 (STATE_CPU (simulator, 0), PC, read_map, (ADDR))
#define load_word(ADDR) \
sim_core_read_unaligned_4 (STATE_CPU (simulator, 0), PC, read_map, (ADDR))
#define load_dword(ADDR) \
u642dw (sim_core_read_unaligned_8 (STATE_CPU (simulator, 0), \
PC, read_map, (ADDR)))
static INLINE dword
u642dw (unsigned64 dw)
{
dword r;
r.low = (unsigned32)dw;
r.high = (unsigned32)(dw >> 32);
return r;
}
#define store_byte(ADDR, DATA) \
sim_core_write_unaligned_1 (STATE_CPU (simulator, 0), \
PC, write_map, (ADDR), (DATA))
#define store_half(ADDR, DATA) \
sim_core_write_unaligned_2 (STATE_CPU (simulator, 0), \
PC, write_map, (ADDR), (DATA))
#define store_word(ADDR, DATA) \
sim_core_write_unaligned_4 (STATE_CPU (simulator, 0), \
PC, write_map, (ADDR), (DATA))
#define store_dword(ADDR, DATA) \
sim_core_write_unaligned_8 (STATE_CPU (simulator, 0), \
PC, write_map, (ADDR), dw2u64 (DATA))
static INLINE unsigned64
dw2u64 (dword data)
{
return data.low | (((unsigned64)data.high) << 32);
}
/* Function declarations. */
INLINE_SIM_MAIN (void) genericAdd (unsigned32 source, unsigned32 destReg);
INLINE_SIM_MAIN (void) genericSub (unsigned32 source, unsigned32 destReg);
INLINE_SIM_MAIN (void) genericCmp (unsigned32 leftOpnd, unsigned32 rightOpnd);
INLINE_SIM_MAIN (void) genericOr (unsigned32 source, unsigned32 destReg);
INLINE_SIM_MAIN (void) genericXor (unsigned32 source, unsigned32 destReg);
INLINE_SIM_MAIN (void) genericBtst (unsigned32 leftOpnd, unsigned32 rightOpnd);
INLINE_SIM_MAIN (void) do_syscall (void);
void program_interrupt (SIM_DESC sd, sim_cpu *cpu, sim_cia cia, SIM_SIGNAL sig);
void mn10300_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
void mn10300_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
void mn10300_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
void fpu_disabled_exception (SIM_DESC, sim_cpu *, address_word);
void fpu_unimp_exception (SIM_DESC, sim_cpu *, address_word);
void fpu_check_signal_exception (SIM_DESC, sim_cpu *, address_word);
extern const struct fp_prec_t
{
void (* reg2val) (const void *, sim_fpu *);
int (* round) (sim_fpu *);
void (* val2reg) (const sim_fpu *, void *);
} fp_single_prec, fp_double_prec;
#define FP_SINGLE (&fp_single_prec)
#define FP_DOUBLE (&fp_double_prec)
void fpu_rsqrt (SIM_DESC, sim_cpu *, address_word, const void *, void *, const struct fp_prec_t *);
void fpu_sqrt (SIM_DESC, sim_cpu *, address_word, const void *, void *, const struct fp_prec_t *);
void fpu_cmp (SIM_DESC, sim_cpu *, address_word, const void *, const void *, const struct fp_prec_t *);
void fpu_add (SIM_DESC, sim_cpu *, address_word, const void *, const void *, void *, const struct fp_prec_t *);
void fpu_sub (SIM_DESC, sim_cpu *, address_word, const void *, const void *, void *, const struct fp_prec_t *);
void fpu_mul (SIM_DESC, sim_cpu *, address_word, const void *, const void *, void *, const struct fp_prec_t *);
void fpu_div (SIM_DESC, sim_cpu *, address_word, const void *, const void *, void *, const struct fp_prec_t *);
void fpu_fmadd (SIM_DESC, sim_cpu *, address_word, const void *, const void *, const void *, void *, const struct fp_prec_t *);
void fpu_fmsub (SIM_DESC, sim_cpu *, address_word, const void *, const void *, const void *, void *, const struct fp_prec_t *);
void fpu_fnmadd (SIM_DESC, sim_cpu *, address_word, const void *, const void *, const void *, void *, const struct fp_prec_t *);
void fpu_fnmsub (SIM_DESC, sim_cpu *, address_word, const void *, const void *, const void *, void *, const struct fp_prec_t *);