binutils-gdb/gdb/block.c
Jan Kratochvil 8e3b41a906 gdb/
Implement basic support for DW_TAG_GNU_call_site.
	* block.c: Include gdbtypes.h and exceptions.h.
	(call_site_for_pc): New function.
	* block.h (call_site_for_pc): New declaration.
	* defs.h: Include hashtab.h.
	(make_cleanup_htab_delete, core_addr_hash, core_addr_eq): New
	declarations.
	* dwarf2-frame.c (dwarf2_frame_ctx_funcs): Install
	ctx_no_push_dwarf_reg_entry_value.
	* dwarf2expr.c (read_uleb128, read_sleb128): Support R as NULL.
	(dwarf_block_to_dwarf_reg): New function.
	(execute_stack_op) <DW_OP_GNU_entry_value>: Implement it.
	(ctx_no_push_dwarf_reg_entry_value): New function.
	* dwarf2expr.h (struct dwarf_expr_context_funcs): New field
	push_dwarf_reg_entry_value.
	(ctx_no_push_dwarf_reg_entry_value, dwarf_block_to_dwarf_reg): New
	declarations.
	* dwarf2loc.c: Include gdbcmd.h.
	(dwarf_expr_ctx_funcs): New forward declaration.
	(entry_values_debug, show_entry_values_debug, call_site_to_target_addr)
	(dwarf_expr_reg_to_entry_parameter)
	(dwarf_expr_push_dwarf_reg_entry_value): New.
	(dwarf_expr_ctx_funcs): Install dwarf_expr_push_dwarf_reg_entry_value.
	(dwarf2_evaluate_loc_desc_full): Handle NO_ENTRY_VALUE_ERROR.
	(needs_dwarf_reg_entry_value): New function.
	(needs_frame_ctx_funcs): Install it.
	(_initialize_dwarf2loc): New function.
	* dwarf2loc.h (entry_values_debug): New declaration.
	* dwarf2read.c (struct dwarf2_cu): New field call_site_htab.
	(read_call_site_scope): New forward declaration.
	(process_full_comp_unit): Copy call_site_htab.
	(process_die): Support DW_TAG_GNU_call_site.
	(read_call_site_scope): New function.
	(dwarf2_get_pc_bounds): Support NULL HIGHPC.
	(dwarf_tag_name): Support DW_TAG_GNU_call_site.
	(cleanup_htab): Delete.
	(write_psymtabs_to_index): Use make_cleanup_htab_delete instead of it.
	* exceptions.h (enum errors): New NO_ENTRY_VALUE_ERROR.
	* gdb-gdb.py (StructMainTypePrettyPrinter): Support
	FIELD_LOC_KIND_DWARF_BLOCK.
	* gdbtypes.h (enum field_loc_kind): New entry
	FIELD_LOC_KIND_DWARF_BLOCK.
	(struct main_type): New loc entry dwarf_block.
	(struct call_site, FIELD_DWARF_BLOCK, SET_FIELD_DWARF_BLOCK)
	(TYPE_FIELD_DWARF_BLOCK): New.
	* python/py-type.c: Include dwarf2loc.h.
	(check_types_equal): Support FIELD_LOC_KIND_DWARF_BLOCK.  New
	internal_error call on unknown FIELD_LOC_KIND.
	* symtab.h (struct symtab): New field call_site_htab.
	* utils.c (do_htab_delete_cleanup, make_cleanup_htab_delete)
	(core_addr_hash, core_addr_eq): New functions.

gdb/testsuite/
	Implement basic support for DW_TAG_GNU_call_site.
	* gdb.arch/Makefile.in (EXECUTABLES): Add amd64-entry-value.
	* gdb.arch/amd64-entry-value.cc: New file.
	* gdb.arch/amd64-entry-value.exp: New file.
2011-10-09 19:21:39 +00:00

359 lines
9.4 KiB
C

/* Block-related functions for the GNU debugger, GDB.
Copyright (C) 2003, 2007, 2008, 2009, 2010, 2011
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "block.h"
#include "symtab.h"
#include "symfile.h"
#include "gdb_obstack.h"
#include "cp-support.h"
#include "addrmap.h"
#include "gdbtypes.h"
#include "exceptions.h"
/* This is used by struct block to store namespace-related info for
C++ files, namely using declarations and the current namespace in
scope. */
struct block_namespace_info
{
const char *scope;
struct using_direct *using;
};
static void block_initialize_namespace (struct block *block,
struct obstack *obstack);
/* Return Nonzero if block a is lexically nested within block b,
or if a and b have the same pc range.
Return zero otherwise. */
int
contained_in (const struct block *a, const struct block *b)
{
if (!a || !b)
return 0;
do
{
if (a == b)
return 1;
/* If A is a function block, then A cannot be contained in B,
except if A was inlined. */
if (BLOCK_FUNCTION (a) != NULL && !block_inlined_p (a))
return 0;
a = BLOCK_SUPERBLOCK (a);
}
while (a != NULL);
return 0;
}
/* Return the symbol for the function which contains a specified
lexical block, described by a struct block BL. The return value
will not be an inlined function; the containing function will be
returned instead. */
struct symbol *
block_linkage_function (const struct block *bl)
{
while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl))
&& BLOCK_SUPERBLOCK (bl) != NULL)
bl = BLOCK_SUPERBLOCK (bl);
return BLOCK_FUNCTION (bl);
}
/* Return one if BL represents an inlined function. */
int
block_inlined_p (const struct block *bl)
{
return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl));
}
/* Return the blockvector immediately containing the innermost lexical
block containing the specified pc value and section, or 0 if there
is none. PBLOCK is a pointer to the block. If PBLOCK is NULL, we
don't pass this information back to the caller. */
struct blockvector *
blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section,
struct block **pblock, struct symtab *symtab)
{
struct block *b;
int bot, top, half;
struct blockvector *bl;
if (symtab == 0) /* if no symtab specified by caller */
{
/* First search all symtabs for one whose file contains our pc */
symtab = find_pc_sect_symtab (pc, section);
if (symtab == 0)
return 0;
}
bl = BLOCKVECTOR (symtab);
/* Then search that symtab for the smallest block that wins. */
/* If we have an addrmap mapping code addresses to blocks, then use
that. */
if (BLOCKVECTOR_MAP (bl))
{
b = addrmap_find (BLOCKVECTOR_MAP (bl), pc);
if (b)
{
if (pblock)
*pblock = b;
return bl;
}
else
return 0;
}
/* Otherwise, use binary search to find the last block that starts
before PC. */
bot = 0;
top = BLOCKVECTOR_NBLOCKS (bl);
while (top - bot > 1)
{
half = (top - bot + 1) >> 1;
b = BLOCKVECTOR_BLOCK (bl, bot + half);
if (BLOCK_START (b) <= pc)
bot += half;
else
top = bot + half;
}
/* Now search backward for a block that ends after PC. */
while (bot >= 0)
{
b = BLOCKVECTOR_BLOCK (bl, bot);
if (BLOCK_END (b) > pc)
{
if (pblock)
*pblock = b;
return bl;
}
bot--;
}
return 0;
}
/* Return call_site for specified PC in GDBARCH. PC must match exactly, it
must be the next instruction after call (or after tail call jump). Throw
NO_ENTRY_VALUE_ERROR otherwise. This function never returns NULL. */
struct call_site *
call_site_for_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
{
struct symtab *symtab;
void **slot = NULL;
/* -1 as tail call PC can be already after the compilation unit range. */
symtab = find_pc_symtab (pc - 1);
if (symtab != NULL && symtab->call_site_htab != NULL)
slot = htab_find_slot (symtab->call_site_htab, &pc, NO_INSERT);
if (slot == NULL)
{
struct minimal_symbol *msym = lookup_minimal_symbol_by_pc (pc);
/* DW_TAG_gnu_call_site will be missing just if GCC could not determine
the call target. */
throw_error (NO_ENTRY_VALUE_ERROR,
_("DW_OP_GNU_entry_value resolving cannot find "
"DW_TAG_GNU_call_site %s in %s"),
paddress (gdbarch, pc),
msym == NULL ? "???" : SYMBOL_PRINT_NAME (msym));
}
return *slot;
}
/* Return the blockvector immediately containing the innermost lexical block
containing the specified pc value, or 0 if there is none.
Backward compatibility, no section. */
struct blockvector *
blockvector_for_pc (CORE_ADDR pc, struct block **pblock)
{
return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
pblock, NULL);
}
/* Return the innermost lexical block containing the specified pc value
in the specified section, or 0 if there is none. */
struct block *
block_for_pc_sect (CORE_ADDR pc, struct obj_section *section)
{
struct blockvector *bl;
struct block *b;
bl = blockvector_for_pc_sect (pc, section, &b, NULL);
if (bl)
return b;
return 0;
}
/* Return the innermost lexical block containing the specified pc value,
or 0 if there is none. Backward compatibility, no section. */
struct block *
block_for_pc (CORE_ADDR pc)
{
return block_for_pc_sect (pc, find_pc_mapped_section (pc));
}
/* Now come some functions designed to deal with C++ namespace issues.
The accessors are safe to use even in the non-C++ case. */
/* This returns the namespace that BLOCK is enclosed in, or "" if it
isn't enclosed in a namespace at all. This travels the chain of
superblocks looking for a scope, if necessary. */
const char *
block_scope (const struct block *block)
{
for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
{
if (BLOCK_NAMESPACE (block) != NULL
&& BLOCK_NAMESPACE (block)->scope != NULL)
return BLOCK_NAMESPACE (block)->scope;
}
return "";
}
/* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
OBSTACK. (It won't make a copy of SCOPE, however, so that already
has to be allocated correctly.) */
void
block_set_scope (struct block *block, const char *scope,
struct obstack *obstack)
{
block_initialize_namespace (block, obstack);
BLOCK_NAMESPACE (block)->scope = scope;
}
/* This returns the using directives list associated with BLOCK, if
any. */
struct using_direct *
block_using (const struct block *block)
{
if (block == NULL || BLOCK_NAMESPACE (block) == NULL)
return NULL;
else
return BLOCK_NAMESPACE (block)->using;
}
/* Set BLOCK's using member to USING; if needed, allocate memory via
OBSTACK. (It won't make a copy of USING, however, so that already
has to be allocated correctly.) */
void
block_set_using (struct block *block,
struct using_direct *using,
struct obstack *obstack)
{
block_initialize_namespace (block, obstack);
BLOCK_NAMESPACE (block)->using = using;
}
/* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
ititialize its members to zero. */
static void
block_initialize_namespace (struct block *block, struct obstack *obstack)
{
if (BLOCK_NAMESPACE (block) == NULL)
{
BLOCK_NAMESPACE (block)
= obstack_alloc (obstack, sizeof (struct block_namespace_info));
BLOCK_NAMESPACE (block)->scope = NULL;
BLOCK_NAMESPACE (block)->using = NULL;
}
}
/* Return the static block associated to BLOCK. Return NULL if block
is NULL or if block is a global block. */
const struct block *
block_static_block (const struct block *block)
{
if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
return NULL;
while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
block = BLOCK_SUPERBLOCK (block);
return block;
}
/* Return the static block associated to BLOCK. Return NULL if block
is NULL. */
const struct block *
block_global_block (const struct block *block)
{
if (block == NULL)
return NULL;
while (BLOCK_SUPERBLOCK (block) != NULL)
block = BLOCK_SUPERBLOCK (block);
return block;
}
/* Allocate a block on OBSTACK, and initialize its elements to
zero/NULL. This is useful for creating "dummy" blocks that don't
correspond to actual source files.
Warning: it sets the block's BLOCK_DICT to NULL, which isn't a
valid value. If you really don't want the block to have a
dictionary, then you should subsequently set its BLOCK_DICT to
dict_create_linear (obstack, NULL). */
struct block *
allocate_block (struct obstack *obstack)
{
struct block *bl = obstack_alloc (obstack, sizeof (struct block));
BLOCK_START (bl) = 0;
BLOCK_END (bl) = 0;
BLOCK_FUNCTION (bl) = NULL;
BLOCK_SUPERBLOCK (bl) = NULL;
BLOCK_DICT (bl) = NULL;
BLOCK_NAMESPACE (bl) = NULL;
return bl;
}