1898 lines
52 KiB
C
1898 lines
52 KiB
C
/* Remote debugging interface for Am290*0 running MiniMON monitor, for GDB.
|
|
Copyright 1990, 1991, 1992 Free Software Foundation, Inc.
|
|
Originally written by Daniel Mann at AMD.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
/* This is like remote.c but ecpects MiniMON to be running on the Am29000
|
|
target hardware.
|
|
- David Wood (wood@lab.ultra.nyu.edu) at New York University adapted this
|
|
file to gdb 3.95. I was unable to get this working on sun3os4
|
|
with termio, only with sgtty. Because we are only attempting to
|
|
use this module to debug our kernel, which is already loaded when
|
|
gdb is started up, I did not code up the file downloading facilities.
|
|
As a result this module has only the stubs to download files.
|
|
You should get tagged at compile time if you need to make any
|
|
changes/additions. */
|
|
|
|
#include "defs.h"
|
|
#include "inferior.h"
|
|
#include "wait.h"
|
|
#include "value.h"
|
|
#include <ctype.h>
|
|
#include <fcntl.h>
|
|
#include <signal.h>
|
|
#include <errno.h>
|
|
#include "gdb_string.h"
|
|
#include "terminal.h"
|
|
#include "minimon.h"
|
|
#include "target.h"
|
|
|
|
/* Offset of member MEMBER in a struct of type TYPE. */
|
|
#define offsetof(TYPE, MEMBER) ((int) &((TYPE *)0)->MEMBER)
|
|
|
|
#define DRAIN_INPUT() (msg_recv_serial((union msg_t*)0))
|
|
|
|
extern int stop_soon_quietly; /* for wait_for_inferior */
|
|
|
|
static void mm_resume ();
|
|
static void mm_fetch_registers ();
|
|
static int fetch_register ();
|
|
static void mm_store_registers ();
|
|
static int store_register ();
|
|
static int regnum_to_srnum ();
|
|
static void mm_close ();
|
|
static char *msg_str ();
|
|
static char *error_msg_str ();
|
|
static int expect_msg ();
|
|
static void init_target_mm ();
|
|
static int mm_memory_space ();
|
|
|
|
#define FREEZE_MODE (read_register(CPS_REGNUM) && 0x400)
|
|
#define USE_SHADOW_PC ((processor_type == a29k_freeze_mode) && FREEZE_MODE)
|
|
|
|
/* FIXME: Replace with `set remotedebug'. */
|
|
#define LLOG_FILE "minimon.log"
|
|
#if defined (LOG_FILE)
|
|
FILE *log_file;
|
|
#endif
|
|
|
|
/*
|
|
* Size of message buffers. I couldn't get memory reads to work when
|
|
* the byte_count was larger than 512 (it may be a baud rate problem).
|
|
*/
|
|
#define BUFER_SIZE 512
|
|
/*
|
|
* Size of data area in message buffer on the TARGET (remote system).
|
|
*/
|
|
#define MAXDATA_T (target_config.max_msg_size - \
|
|
offsetof(struct write_r_msg_t,data[0]))
|
|
/*
|
|
* Size of data area in message buffer on the HOST (gdb).
|
|
*/
|
|
#define MAXDATA_H (BUFER_SIZE - offsetof(struct write_r_msg_t,data[0]))
|
|
/*
|
|
* Defined as the minimum size of data areas of the two message buffers
|
|
*/
|
|
#define MAXDATA (MAXDATA_H < MAXDATA_T ? MAXDATA_H : MAXDATA_T)
|
|
|
|
static char out_buf[BUFER_SIZE];
|
|
static char in_buf[BUFER_SIZE];
|
|
|
|
int msg_recv_serial ();
|
|
int msg_send_serial ();
|
|
|
|
#define MAX_RETRIES 5000
|
|
extern struct target_ops mm_ops; /* Forward declaration */
|
|
struct config_msg_t target_config; /* HIF needs this */
|
|
union msg_t *out_msg_buf = (union msg_t *) out_buf;
|
|
union msg_t *in_msg_buf = (union msg_t *) in_buf;
|
|
|
|
static int timeout = 5;
|
|
|
|
/* Descriptor for I/O to remote machine. Initialize it to -1 so that
|
|
mm_open knows that we don't have a file open when the program
|
|
starts. */
|
|
int mm_desc = -1;
|
|
|
|
/* stream which is fdopen'd from mm_desc. Only valid when
|
|
mm_desc != -1. */
|
|
FILE *mm_stream;
|
|
|
|
/* Called when SIGALRM signal sent due to alarm() timeout. */
|
|
#ifndef HAVE_TERMIO
|
|
|
|
#ifndef __STDC__
|
|
#ifndef volatile
|
|
#define volatile
|
|
/**/
|
|
# endif
|
|
#endif
|
|
volatile int n_alarms;
|
|
|
|
static void
|
|
mm_timer ()
|
|
{
|
|
#if 0
|
|
if (kiodebug)
|
|
printf ("mm_timer called\n");
|
|
#endif
|
|
n_alarms++;
|
|
}
|
|
#endif /* HAVE_TERMIO */
|
|
|
|
/* malloc'd name of the program on the remote system. */
|
|
static char *prog_name = NULL;
|
|
|
|
|
|
/* Number of SIGTRAPs we need to simulate. That is, the next
|
|
NEED_ARTIFICIAL_TRAP calls to mm_wait should just return
|
|
SIGTRAP without actually waiting for anything. */
|
|
|
|
/**************************************************** REMOTE_CREATE_INFERIOR */
|
|
/* This is called not only when we first attach, but also when the
|
|
user types "run" after having attached. */
|
|
static void
|
|
mm_create_inferior (execfile, args, env)
|
|
char *execfile;
|
|
char *args;
|
|
char **env;
|
|
{
|
|
#define MAX_TOKENS 25
|
|
#define BUFFER_SIZE 256
|
|
int token_count;
|
|
int result;
|
|
char *token[MAX_TOKENS];
|
|
char cmd_line[BUFFER_SIZE];
|
|
|
|
if (args && *args)
|
|
error ("Can't pass arguments to remote mm process (yet).");
|
|
|
|
if (execfile == 0 /* || exec_bfd == 0 */ )
|
|
error ("No executable file specified");
|
|
|
|
if (!mm_stream)
|
|
{
|
|
printf ("Minimon not open yet.\n");
|
|
return;
|
|
}
|
|
|
|
/* On ultra3 (NYU) we assume the kernel is already running so there is
|
|
no file to download.
|
|
FIXME: Fixed required here -> load your program, possibly with mm_load().
|
|
*/
|
|
printf_filtered ("\n\
|
|
Assuming you are at NYU debuging a kernel, i.e., no need to download.\n\n");
|
|
|
|
/* We will get a task spawn event immediately. */
|
|
init_wait_for_inferior ();
|
|
clear_proceed_status ();
|
|
stop_soon_quietly = 1;
|
|
proceed (-1, TARGET_SIGNAL_DEFAULT, 0);
|
|
normal_stop ();
|
|
}
|
|
/**************************************************** REMOTE_MOURN_INFERIOR */
|
|
static void
|
|
mm_mourn ()
|
|
{
|
|
pop_target (); /* Pop back to no-child state */
|
|
generic_mourn_inferior ();
|
|
}
|
|
|
|
/********************************************************************** damn_b
|
|
*/
|
|
/* Translate baud rates from integers to damn B_codes. Unix should
|
|
have outgrown this crap years ago, but even POSIX wouldn't buck it. */
|
|
|
|
#ifndef B19200
|
|
#define B19200 EXTA
|
|
#endif
|
|
#ifndef B38400
|
|
#define B38400 EXTB
|
|
#endif
|
|
|
|
static struct
|
|
{
|
|
int rate, damn_b;
|
|
}
|
|
baudtab[] =
|
|
{
|
|
{
|
|
0, B0
|
|
}
|
|
,
|
|
{
|
|
50, B50
|
|
}
|
|
,
|
|
{
|
|
75, B75
|
|
}
|
|
,
|
|
{
|
|
110, B110
|
|
}
|
|
,
|
|
{
|
|
134, B134
|
|
}
|
|
,
|
|
{
|
|
150, B150
|
|
}
|
|
,
|
|
{
|
|
200, B200
|
|
}
|
|
,
|
|
{
|
|
300, B300
|
|
}
|
|
,
|
|
{
|
|
600, B600
|
|
}
|
|
,
|
|
{
|
|
1200, B1200
|
|
}
|
|
,
|
|
{
|
|
1800, B1800
|
|
}
|
|
,
|
|
{
|
|
2400, B2400
|
|
}
|
|
,
|
|
{
|
|
4800, B4800
|
|
}
|
|
,
|
|
{
|
|
9600, B9600
|
|
}
|
|
,
|
|
{
|
|
19200, B19200
|
|
}
|
|
,
|
|
{
|
|
38400, B38400
|
|
}
|
|
,
|
|
{
|
|
-1, -1
|
|
}
|
|
,
|
|
};
|
|
|
|
static int
|
|
damn_b (rate)
|
|
int rate;
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; baudtab[i].rate != -1; i++)
|
|
if (rate == baudtab[i].rate)
|
|
return baudtab[i].damn_b;
|
|
return B38400; /* Random */
|
|
}
|
|
|
|
|
|
/***************************************************************** REMOTE_OPEN
|
|
** Open a connection to remote minimon.
|
|
NAME is the filename used for communication, then a space,
|
|
then the baud rate.
|
|
'target adapt /dev/ttya 9600 [prognam]' for example.
|
|
*/
|
|
|
|
static char *dev_name;
|
|
int baudrate = 9600;
|
|
static void
|
|
mm_open (name, from_tty)
|
|
char *name;
|
|
int from_tty;
|
|
{
|
|
TERMINAL sg;
|
|
unsigned int prl;
|
|
char *p;
|
|
|
|
/* Find the first whitespace character, it separates dev_name from
|
|
prog_name. */
|
|
for (p = name;
|
|
p && *p && !isspace (*p); p++)
|
|
;
|
|
if (p == 0 || *p == '\0')
|
|
erroid:
|
|
error ("Usage : <command> <serial-device> <baud-rate> [progname]");
|
|
dev_name = (char *) xmalloc (p - name + 1);
|
|
strncpy (dev_name, name, p - name);
|
|
dev_name[p - name] = '\0';
|
|
|
|
/* Skip over the whitespace after dev_name */
|
|
for (; isspace (*p); p++)
|
|
/*EMPTY */ ;
|
|
|
|
if (1 != sscanf (p, "%d ", &baudrate))
|
|
goto erroid;
|
|
|
|
/* Skip the number and then the spaces */
|
|
for (; isdigit (*p); p++)
|
|
/*EMPTY */ ;
|
|
for (; isspace (*p); p++)
|
|
/*EMPTY */ ;
|
|
|
|
if (prog_name != NULL)
|
|
free (prog_name);
|
|
prog_name = savestring (p, strlen (p));
|
|
|
|
|
|
if (mm_desc >= 0)
|
|
close (mm_desc);
|
|
|
|
mm_desc = open (dev_name, O_RDWR);
|
|
if (mm_desc < 0)
|
|
perror_with_name (dev_name);
|
|
ioctl (mm_desc, TIOCGETP, &sg);
|
|
#ifdef HAVE_TERMIO
|
|
sg.c_cc[VMIN] = 0; /* read with timeout. */
|
|
sg.c_cc[VTIME] = timeout * 10;
|
|
sg.c_lflag &= ~(ICANON | ECHO);
|
|
sg.c_cflag = (sg.c_cflag & ~CBAUD) | damn_b (baudrate);
|
|
#else
|
|
sg.sg_ispeed = damn_b (baudrate);
|
|
sg.sg_ospeed = damn_b (baudrate);
|
|
sg.sg_flags |= RAW;
|
|
sg.sg_flags |= ANYP;
|
|
sg.sg_flags &= ~ECHO;
|
|
#endif
|
|
|
|
|
|
ioctl (mm_desc, TIOCSETP, &sg);
|
|
mm_stream = fdopen (mm_desc, "r+");
|
|
|
|
push_target (&mm_ops);
|
|
|
|
#ifndef HAVE_TERMIO
|
|
#ifndef NO_SIGINTERRUPT
|
|
/* Cause SIGALRM's to make reads fail with EINTR instead of resuming
|
|
the read. */
|
|
if (siginterrupt (SIGALRM, 1) != 0)
|
|
perror ("mm_open: error in siginterrupt");
|
|
#endif
|
|
|
|
/* Set up read timeout timer. */
|
|
if ((void (*)) signal (SIGALRM, mm_timer) == (void (*)) -1)
|
|
perror ("mm_open: error in signal");
|
|
#endif
|
|
|
|
#if defined (LOG_FILE)
|
|
log_file = fopen (LOG_FILE, "w");
|
|
if (log_file == NULL)
|
|
perror_with_name (LOG_FILE);
|
|
#endif
|
|
/*
|
|
** Initialize target configuration structure (global)
|
|
*/
|
|
DRAIN_INPUT ();
|
|
out_msg_buf->config_req_msg.code = CONFIG_REQ;
|
|
out_msg_buf->config_req_msg.length = 4 * 0;
|
|
msg_send_serial (out_msg_buf); /* send config request message */
|
|
|
|
expect_msg (CONFIG, in_msg_buf, 1);
|
|
|
|
a29k_get_processor_type ();
|
|
|
|
/* Print out some stuff, letting the user now what's going on */
|
|
printf_filtered ("Connected to MiniMon via %s.\n", dev_name);
|
|
/* FIXME: can this restriction be removed? */
|
|
printf_filtered ("Remote debugging using virtual addresses works only\n");
|
|
printf_filtered ("\twhen virtual addresses map 1:1 to physical addresses.\n")
|
|
;
|
|
if (processor_type != a29k_freeze_mode)
|
|
{
|
|
fprintf_filtered (gdb_stderr,
|
|
"Freeze-mode debugging not available, and can only be done on an A29050.\n");
|
|
}
|
|
|
|
target_config.code = CONFIG;
|
|
target_config.length = 0;
|
|
target_config.processor_id = in_msg_buf->config_msg.processor_id;
|
|
target_config.version = in_msg_buf->config_msg.version;
|
|
target_config.I_mem_start = in_msg_buf->config_msg.I_mem_start;
|
|
target_config.I_mem_size = in_msg_buf->config_msg.I_mem_size;
|
|
target_config.D_mem_start = in_msg_buf->config_msg.D_mem_start;
|
|
target_config.D_mem_size = in_msg_buf->config_msg.D_mem_size;
|
|
target_config.ROM_start = in_msg_buf->config_msg.ROM_start;
|
|
target_config.ROM_size = in_msg_buf->config_msg.ROM_size;
|
|
target_config.max_msg_size = in_msg_buf->config_msg.max_msg_size;
|
|
target_config.max_bkpts = in_msg_buf->config_msg.max_bkpts;
|
|
target_config.coprocessor = in_msg_buf->config_msg.coprocessor;
|
|
target_config.reserved = in_msg_buf->config_msg.reserved;
|
|
if (from_tty)
|
|
{
|
|
printf ("Connected to MiniMON :\n");
|
|
printf (" Debugcore version %d.%d\n",
|
|
0x0f & (target_config.version >> 4),
|
|
0x0f & (target_config.version));
|
|
printf (" Configuration version %d.%d\n",
|
|
0x0f & (target_config.version >> 12),
|
|
0x0f & (target_config.version >> 8));
|
|
printf (" Message system version %d.%d\n",
|
|
0x0f & (target_config.version >> 20),
|
|
0x0f & (target_config.version >> 16));
|
|
printf (" Communication driver version %d.%d\n",
|
|
0x0f & (target_config.version >> 28),
|
|
0x0f & (target_config.version >> 24));
|
|
}
|
|
|
|
/* Leave the target running...
|
|
* The above message stopped the target in the dbg core (MiniMon),
|
|
* so restart the target out of MiniMon,
|
|
*/
|
|
out_msg_buf->go_msg.code = GO;
|
|
out_msg_buf->go_msg.length = 0;
|
|
msg_send_serial (out_msg_buf);
|
|
/* No message to expect after a GO */
|
|
}
|
|
|
|
/**************************************************************** REMOTE_CLOSE
|
|
** Close the open connection to the minimon debugger.
|
|
Use this when you want to detach and do something else
|
|
with your gdb. */
|
|
static void
|
|
mm_close (quitting) /*FIXME: how is quitting used */
|
|
int quitting;
|
|
{
|
|
if (mm_desc < 0)
|
|
error ("Can't close remote connection: not debugging remotely.");
|
|
|
|
/* We should never get here if there isn't something valid in
|
|
mm_desc and mm_stream.
|
|
|
|
Due to a bug in Unix, fclose closes not only the stdio stream,
|
|
but also the file descriptor. So we don't actually close
|
|
mm_desc. */
|
|
DRAIN_INPUT ();
|
|
fclose (mm_stream);
|
|
/* close (mm_desc); */
|
|
|
|
/* Do not try to close mm_desc again, later in the program. */
|
|
mm_stream = NULL;
|
|
mm_desc = -1;
|
|
|
|
#if defined (LOG_FILE)
|
|
if (ferror (log_file))
|
|
printf ("Error writing log file.\n");
|
|
if (fclose (log_file) != 0)
|
|
printf ("Error closing log file.\n");
|
|
#endif
|
|
|
|
printf ("Ending remote debugging\n");
|
|
}
|
|
|
|
/************************************************************* REMOTE_ATACH */
|
|
/* Attach to a program that is already loaded and running
|
|
* Upon exiting the process's execution is stopped.
|
|
*/
|
|
static void
|
|
mm_attach (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
|
|
if (!mm_stream)
|
|
error ("MiniMon not opened yet, use the 'target minimon' command.\n");
|
|
|
|
if (from_tty)
|
|
printf ("Attaching to remote program %s...\n", prog_name);
|
|
|
|
/* Make sure the target is currently running, it is supposed to be. */
|
|
/* FIXME: is it ok to send MiniMon a BREAK if it is already stopped in
|
|
* the dbg core. If so, we don't need to send this GO.
|
|
*/
|
|
out_msg_buf->go_msg.code = GO;
|
|
out_msg_buf->go_msg.length = 0;
|
|
msg_send_serial (out_msg_buf);
|
|
sleep (2); /* At the worst it will stop, receive a message, continue */
|
|
|
|
/* Send the mm a break. */
|
|
out_msg_buf->break_msg.code = BREAK;
|
|
out_msg_buf->break_msg.length = 0;
|
|
msg_send_serial (out_msg_buf);
|
|
}
|
|
/********************************************************** REMOTE_DETACH */
|
|
/* Terminate the open connection to the remote debugger.
|
|
Use this when you want to detach and do something else
|
|
with your gdb. Leave remote process running (with no breakpoints set). */
|
|
static void
|
|
mm_detach (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
remove_breakpoints (); /* Just in case there were any left in */
|
|
out_msg_buf->go_msg.code = GO;
|
|
out_msg_buf->go_msg.length = 0;
|
|
msg_send_serial (out_msg_buf);
|
|
pop_target (); /* calls mm_close to do the real work */
|
|
}
|
|
|
|
|
|
/*************************************************************** REMOTE_RESUME
|
|
** Tell the remote machine to resume. */
|
|
|
|
static void
|
|
mm_resume (pid, step, sig)
|
|
int pid, step;
|
|
enum target_signal sig;
|
|
{
|
|
if (sig != TARGET_SIGNAL_0)
|
|
warning ("Can't send signals to a remote MiniMon system.");
|
|
|
|
if (step)
|
|
{
|
|
out_msg_buf->step_msg.code = STEP;
|
|
out_msg_buf->step_msg.length = 1 * 4;
|
|
out_msg_buf->step_msg.count = 1; /* step 1 instruction */
|
|
msg_send_serial (out_msg_buf);
|
|
}
|
|
else
|
|
{
|
|
out_msg_buf->go_msg.code = GO;
|
|
out_msg_buf->go_msg.length = 0;
|
|
msg_send_serial (out_msg_buf);
|
|
}
|
|
}
|
|
|
|
/***************************************************************** REMOTE_WAIT
|
|
** Wait until the remote machine stops, then return,
|
|
storing status in STATUS just as `wait' would. */
|
|
|
|
static int
|
|
mm_wait (status)
|
|
struct target_waitstatus *status;
|
|
{
|
|
int i, result;
|
|
int old_timeout = timeout;
|
|
int old_immediate_quit = immediate_quit;
|
|
|
|
status->kind = TARGET_WAITKIND_EXITED;
|
|
status->value.integer = 0;
|
|
|
|
/* wait for message to arrive. It should be:
|
|
- A HIF service request.
|
|
- A HIF exit service request.
|
|
- A CHANNEL0_ACK.
|
|
- A CHANNEL1 request.
|
|
- a debugcore HALT message.
|
|
HIF services must be responded too, and while-looping continued.
|
|
If the target stops executing, mm_wait() should return.
|
|
*/
|
|
timeout = 0; /* Wait indefinetly for a message */
|
|
immediate_quit = 1; /* Helps ability to QUIT */
|
|
while (1)
|
|
{
|
|
while (msg_recv_serial (in_msg_buf))
|
|
{
|
|
QUIT; /* Let user quit if they want */
|
|
}
|
|
switch (in_msg_buf->halt_msg.code)
|
|
{
|
|
case HIF_CALL:
|
|
i = in_msg_buf->hif_call_rtn_msg.service_number;
|
|
result = service_HIF (in_msg_buf);
|
|
if (i == 1) /* EXIT */
|
|
goto exit;
|
|
if (result)
|
|
printf ("Warning: failure during HIF service %d\n", i);
|
|
break;
|
|
case CHANNEL0_ACK:
|
|
service_HIF (in_msg_buf);
|
|
break;
|
|
case CHANNEL1:
|
|
i = in_msg_buf->channel1_msg.length;
|
|
in_msg_buf->channel1_msg.data[i] = '\0';
|
|
printf ("%s", in_msg_buf->channel1_msg.data);
|
|
gdb_flush (gdb_stdout);
|
|
/* Send CHANNEL1_ACK message */
|
|
out_msg_buf->channel1_ack_msg.code = CHANNEL1_ACK;
|
|
out_msg_buf->channel1_ack_msg.length = 0;
|
|
result = msg_send_serial (out_msg_buf);
|
|
break;
|
|
case HALT:
|
|
goto halted;
|
|
default:
|
|
goto halted;
|
|
}
|
|
}
|
|
halted:
|
|
/* FIXME, these printfs should not be here. This is a source level
|
|
debugger, guys! */
|
|
if (in_msg_buf->halt_msg.trap_number == 0)
|
|
{
|
|
printf ("Am290*0 received vector number %d (break point)\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_TRAP;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number == 1)
|
|
{
|
|
printf ("Am290*0 received vector number %d\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_BUS;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number == 3
|
|
|| in_msg_buf->halt_msg.trap_number == 4)
|
|
{
|
|
printf ("Am290*0 received vector number %d\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_FPE;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number == 5)
|
|
{
|
|
printf ("Am290*0 received vector number %d\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_ILL;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number >= 6
|
|
&& in_msg_buf->halt_msg.trap_number <= 11)
|
|
{
|
|
printf ("Am290*0 received vector number %d\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_SEGV;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number == 12
|
|
|| in_msg_buf->halt_msg.trap_number == 13)
|
|
{
|
|
printf ("Am290*0 received vector number %d\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_ILL;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number == 14)
|
|
{
|
|
printf ("Am290*0 received vector number %d\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_ALRM;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number == 15)
|
|
{
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_TRAP;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number >= 16
|
|
&& in_msg_buf->halt_msg.trap_number <= 21)
|
|
{
|
|
printf ("Am290*0 received vector number %d\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_INT;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number == 22)
|
|
{
|
|
printf ("Am290*0 received vector number %d\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_ILL;
|
|
} /* BREAK message was sent */
|
|
else if (in_msg_buf->halt_msg.trap_number == 75)
|
|
{
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_TRAP;
|
|
}
|
|
else
|
|
exit:
|
|
{
|
|
status->kind = TARGET_WAITKIND_EXITED;
|
|
status->value.integer = 0;
|
|
}
|
|
|
|
timeout = old_timeout; /* Restore original timeout value */
|
|
immediate_quit = old_immediate_quit;
|
|
return 0;
|
|
}
|
|
|
|
/******************************************************* REMOTE_FETCH_REGISTERS
|
|
* Read a remote register 'regno'.
|
|
* If regno==-1 then read all the registers.
|
|
*/
|
|
static void
|
|
mm_fetch_registers (regno)
|
|
int regno;
|
|
{
|
|
INT32 *data_p;
|
|
|
|
if (regno >= 0)
|
|
{
|
|
fetch_register (regno);
|
|
return;
|
|
}
|
|
|
|
/* Gr1/rsp */
|
|
out_msg_buf->read_req_msg.byte_count = 4 * 1;
|
|
out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->read_req_msg.address = 1;
|
|
msg_send_serial (out_msg_buf);
|
|
expect_msg (READ_ACK, in_msg_buf, 1);
|
|
data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
|
|
supply_register (GR1_REGNUM, data_p);
|
|
|
|
#if defined(GR64_REGNUM) /* Read gr64-127 */
|
|
/* Global Registers gr64-gr95 */
|
|
out_msg_buf->read_req_msg.code = READ_REQ;
|
|
out_msg_buf->read_req_msg.length = 4 * 3;
|
|
out_msg_buf->read_req_msg.byte_count = 4 * 32;
|
|
out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->read_req_msg.address = 64;
|
|
msg_send_serial (out_msg_buf);
|
|
expect_msg (READ_ACK, in_msg_buf, 1);
|
|
data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
|
|
|
|
for (regno = GR64_REGNUM; regno < GR64_REGNUM + 32; regno++)
|
|
{
|
|
supply_register (regno, data_p++);
|
|
}
|
|
#endif /* GR64_REGNUM */
|
|
|
|
/* Global Registers gr96-gr127 */
|
|
out_msg_buf->read_req_msg.code = READ_REQ;
|
|
out_msg_buf->read_req_msg.length = 4 * 3;
|
|
out_msg_buf->read_req_msg.byte_count = 4 * 32;
|
|
out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->read_req_msg.address = 96;
|
|
msg_send_serial (out_msg_buf);
|
|
expect_msg (READ_ACK, in_msg_buf, 1);
|
|
data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
|
|
|
|
for (regno = GR96_REGNUM; regno < GR96_REGNUM + 32; regno++)
|
|
{
|
|
supply_register (regno, data_p++);
|
|
}
|
|
|
|
/* Local Registers */
|
|
out_msg_buf->read_req_msg.byte_count = 4 * (128);
|
|
out_msg_buf->read_req_msg.memory_space = LOCAL_REG;
|
|
out_msg_buf->read_req_msg.address = 0;
|
|
msg_send_serial (out_msg_buf);
|
|
expect_msg (READ_ACK, in_msg_buf, 1);
|
|
data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
|
|
|
|
for (regno = LR0_REGNUM; regno < LR0_REGNUM + 128; regno++)
|
|
{
|
|
supply_register (regno, data_p++);
|
|
}
|
|
|
|
/* Protected Special Registers */
|
|
out_msg_buf->read_req_msg.byte_count = 4 * 15;
|
|
out_msg_buf->read_req_msg.memory_space = SPECIAL_REG;
|
|
out_msg_buf->read_req_msg.address = 0;
|
|
msg_send_serial (out_msg_buf);
|
|
expect_msg (READ_ACK, in_msg_buf, 1);
|
|
data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
|
|
|
|
for (regno = 0; regno <= 14; regno++)
|
|
{
|
|
supply_register (SR_REGNUM (regno), data_p++);
|
|
}
|
|
if (USE_SHADOW_PC)
|
|
{ /* Let regno_to_srnum() handle the register number */
|
|
fetch_register (NPC_REGNUM);
|
|
fetch_register (PC_REGNUM);
|
|
fetch_register (PC2_REGNUM);
|
|
}
|
|
|
|
/* Unprotected Special Registers */
|
|
out_msg_buf->read_req_msg.byte_count = 4 * 8;
|
|
out_msg_buf->read_req_msg.memory_space = SPECIAL_REG;
|
|
out_msg_buf->read_req_msg.address = 128;
|
|
msg_send_serial (out_msg_buf);
|
|
expect_msg (READ_ACK, in_msg_buf, 1);
|
|
data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
|
|
|
|
for (regno = 128; regno <= 135; regno++)
|
|
{
|
|
supply_register (SR_REGNUM (regno), data_p++);
|
|
}
|
|
|
|
/* There doesn't seem to be any way to get these. */
|
|
{
|
|
int val = -1;
|
|
supply_register (FPE_REGNUM, &val);
|
|
supply_register (INTE_REGNUM, &val);
|
|
supply_register (FPS_REGNUM, &val);
|
|
supply_register (EXO_REGNUM, &val);
|
|
}
|
|
}
|
|
|
|
|
|
/****************************************************** REMOTE_STORE_REGISTERS
|
|
* Store register regno into the target.
|
|
* If regno==-1 then store all the registers.
|
|
* Result is 0 for success, -1 for failure.
|
|
*/
|
|
|
|
static void
|
|
mm_store_registers (regno)
|
|
int regno;
|
|
{
|
|
int result;
|
|
|
|
if (regno >= 0)
|
|
{
|
|
store_register (regno);
|
|
return;
|
|
}
|
|
|
|
result = 0;
|
|
|
|
out_msg_buf->write_r_msg.code = WRITE_REQ;
|
|
|
|
/* Gr1/rsp */
|
|
out_msg_buf->write_r_msg.byte_count = 4 * 1;
|
|
out_msg_buf->write_r_msg.length = 3 * 4 + out_msg_buf->write_r_msg.byte_count;
|
|
out_msg_buf->write_r_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->write_r_msg.address = 1;
|
|
out_msg_buf->write_r_msg.data[0] = read_register (GR1_REGNUM);
|
|
|
|
msg_send_serial (out_msg_buf);
|
|
if (!expect_msg (WRITE_ACK, in_msg_buf, 1))
|
|
{
|
|
result = -1;
|
|
}
|
|
|
|
#if defined(GR64_REGNUM)
|
|
/* Global registers gr64-gr95 */
|
|
out_msg_buf->write_r_msg.byte_count = 4 * (32);
|
|
out_msg_buf->write_r_msg.length = 3 * 4 + out_msg_buf->write_r_msg.byte_count;
|
|
out_msg_buf->write_r_msg.address = 64;
|
|
|
|
for (regno = GR64_REGNUM; regno < GR64_REGNUM + 32; regno++)
|
|
{
|
|
out_msg_buf->write_r_msg.data[regno - GR64_REGNUM] = read_register (regno);
|
|
}
|
|
msg_send_serial (out_msg_buf);
|
|
if (!expect_msg (WRITE_ACK, in_msg_buf, 1))
|
|
{
|
|
result = -1;
|
|
}
|
|
#endif /* GR64_REGNUM */
|
|
|
|
/* Global registers gr96-gr127 */
|
|
out_msg_buf->write_r_msg.byte_count = 4 * (32);
|
|
out_msg_buf->write_r_msg.length = 3 * 4 + out_msg_buf->write_r_msg.byte_count;
|
|
out_msg_buf->write_r_msg.address = 96;
|
|
for (regno = GR96_REGNUM; regno < GR96_REGNUM + 32; regno++)
|
|
{
|
|
out_msg_buf->write_r_msg.data[regno - GR96_REGNUM] = read_register (regno);
|
|
}
|
|
msg_send_serial (out_msg_buf);
|
|
if (!expect_msg (WRITE_ACK, in_msg_buf, 1))
|
|
{
|
|
result = -1;
|
|
}
|
|
|
|
/* Local Registers */
|
|
out_msg_buf->write_r_msg.memory_space = LOCAL_REG;
|
|
out_msg_buf->write_r_msg.byte_count = 4 * 128;
|
|
out_msg_buf->write_r_msg.length = 3 * 4 + out_msg_buf->write_r_msg.byte_count;
|
|
out_msg_buf->write_r_msg.address = 0;
|
|
|
|
for (regno = LR0_REGNUM; regno < LR0_REGNUM + 128; regno++)
|
|
{
|
|
out_msg_buf->write_r_msg.data[regno - LR0_REGNUM] = read_register (regno);
|
|
}
|
|
msg_send_serial (out_msg_buf);
|
|
if (!expect_msg (WRITE_ACK, in_msg_buf, 1))
|
|
{
|
|
result = -1;
|
|
}
|
|
|
|
/* Protected Special Registers */
|
|
/* VAB through TMR */
|
|
out_msg_buf->write_r_msg.memory_space = SPECIAL_REG;
|
|
out_msg_buf->write_r_msg.byte_count = 4 * 10;
|
|
out_msg_buf->write_r_msg.length = 3 * 4 + out_msg_buf->write_r_msg.byte_count;
|
|
out_msg_buf->write_r_msg.address = 0;
|
|
for (regno = 0; regno <= 9; regno++) /* VAB through TMR */
|
|
out_msg_buf->write_r_msg.data[regno] = read_register (SR_REGNUM (regno));
|
|
msg_send_serial (out_msg_buf);
|
|
if (!expect_msg (WRITE_ACK, in_msg_buf, 1))
|
|
{
|
|
result = -1;
|
|
}
|
|
|
|
/* PC0, PC1, PC2 possibly as shadow registers */
|
|
out_msg_buf->write_r_msg.byte_count = 4 * 3;
|
|
out_msg_buf->write_r_msg.length = 3 * 4 + out_msg_buf->write_r_msg.byte_count;
|
|
for (regno = 10; regno <= 12; regno++) /* LRU and MMU */
|
|
out_msg_buf->write_r_msg.data[regno - 10] = read_register (SR_REGNUM (regno));
|
|
if (USE_SHADOW_PC)
|
|
out_msg_buf->write_r_msg.address = 20; /* SPC0 */
|
|
else
|
|
out_msg_buf->write_r_msg.address = 10; /* PC0 */
|
|
msg_send_serial (out_msg_buf);
|
|
if (!expect_msg (WRITE_ACK, in_msg_buf, 1))
|
|
{
|
|
result = -1;
|
|
}
|
|
|
|
/* LRU and MMU */
|
|
out_msg_buf->write_r_msg.byte_count = 4 * 2;
|
|
out_msg_buf->write_r_msg.length = 3 * 4 + out_msg_buf->write_r_msg.byte_count;
|
|
out_msg_buf->write_r_msg.address = 13;
|
|
for (regno = 13; regno <= 14; regno++) /* LRU and MMU */
|
|
out_msg_buf->write_r_msg.data[regno - 13] = read_register (SR_REGNUM (regno));
|
|
msg_send_serial (out_msg_buf);
|
|
if (!expect_msg (WRITE_ACK, in_msg_buf, 1))
|
|
{
|
|
result = -1;
|
|
}
|
|
|
|
/* Unprotected Special Registers */
|
|
out_msg_buf->write_r_msg.byte_count = 4 * 8;
|
|
out_msg_buf->write_r_msg.length = 3 * 4 + out_msg_buf->write_r_msg.byte_count;
|
|
out_msg_buf->write_r_msg.address = 128;
|
|
for (regno = 128; regno <= 135; regno++)
|
|
out_msg_buf->write_r_msg.data[regno - 128] = read_register (SR_REGNUM (regno));
|
|
msg_send_serial (out_msg_buf);
|
|
if (!expect_msg (WRITE_ACK, in_msg_buf, 1))
|
|
{
|
|
result = -1;
|
|
}
|
|
|
|
registers_changed ();
|
|
}
|
|
|
|
/*************************************************** REMOTE_PREPARE_TO_STORE */
|
|
/* Get ready to modify the registers array. On machines which store
|
|
individual registers, this doesn't need to do anything. On machines
|
|
which store all the registers in one fell swoop, this makes sure
|
|
that registers contains all the registers from the program being
|
|
debugged. */
|
|
|
|
static void
|
|
mm_prepare_to_store ()
|
|
{
|
|
/* Do nothing, since we can store individual regs */
|
|
}
|
|
|
|
/******************************************************* REMOTE_XFER_MEMORY */
|
|
static CORE_ADDR
|
|
translate_addr (addr)
|
|
CORE_ADDR addr;
|
|
{
|
|
#if defined(KERNEL_DEBUGGING)
|
|
/* Check for a virtual address in the kernel */
|
|
/* Assume physical address of ublock is in paddr_u register */
|
|
/* FIXME: doesn't work for user virtual addresses */
|
|
if (addr >= UVADDR)
|
|
{
|
|
/* PADDR_U register holds the physical address of the ublock */
|
|
CORE_ADDR i = (CORE_ADDR) read_register (PADDR_U_REGNUM);
|
|
return (i + addr - (CORE_ADDR) UVADDR);
|
|
}
|
|
else
|
|
{
|
|
return (addr);
|
|
}
|
|
#else
|
|
return (addr);
|
|
#endif
|
|
}
|
|
|
|
/******************************************************* REMOTE_FILES_INFO */
|
|
static void
|
|
mm_files_info ()
|
|
{
|
|
printf ("\tAttached to %s at %d baud and running program %s.\n",
|
|
dev_name, baudrate, prog_name);
|
|
}
|
|
|
|
/************************************************* REMOTE_INSERT_BREAKPOINT */
|
|
static int
|
|
mm_insert_breakpoint (addr, contents_cache)
|
|
CORE_ADDR addr;
|
|
char *contents_cache;
|
|
{
|
|
out_msg_buf->bkpt_set_msg.code = BKPT_SET;
|
|
out_msg_buf->bkpt_set_msg.length = 4 * 4;
|
|
out_msg_buf->bkpt_set_msg.memory_space = I_MEM;
|
|
out_msg_buf->bkpt_set_msg.bkpt_addr = (ADDR32) addr;
|
|
out_msg_buf->bkpt_set_msg.pass_count = 1;
|
|
out_msg_buf->bkpt_set_msg.bkpt_type = -1; /* use illop for 29000 */
|
|
msg_send_serial (out_msg_buf);
|
|
if (expect_msg (BKPT_SET_ACK, in_msg_buf, 1))
|
|
{
|
|
return 0; /* Success */
|
|
}
|
|
else
|
|
{
|
|
return 1; /* Failure */
|
|
}
|
|
}
|
|
|
|
/************************************************* REMOTE_DELETE_BREAKPOINT */
|
|
static int
|
|
mm_remove_breakpoint (addr, contents_cache)
|
|
CORE_ADDR addr;
|
|
char *contents_cache;
|
|
{
|
|
out_msg_buf->bkpt_rm_msg.code = BKPT_RM;
|
|
out_msg_buf->bkpt_rm_msg.length = 4 * 3;
|
|
out_msg_buf->bkpt_rm_msg.memory_space = I_MEM;
|
|
out_msg_buf->bkpt_rm_msg.bkpt_addr = (ADDR32) addr;
|
|
msg_send_serial (out_msg_buf);
|
|
if (expect_msg (BKPT_RM_ACK, in_msg_buf, 1))
|
|
{
|
|
return 0; /* Success */
|
|
}
|
|
else
|
|
{
|
|
return 1; /* Failure */
|
|
}
|
|
}
|
|
|
|
|
|
/******************************************************* REMOTE_KILL */
|
|
static void
|
|
mm_kill (arg, from_tty)
|
|
char *arg;
|
|
int from_tty;
|
|
{
|
|
char buf[4];
|
|
|
|
#if defined(KERNEL_DEBUGGING)
|
|
/* We don't ever kill the kernel */
|
|
if (from_tty)
|
|
{
|
|
printf ("Kernel not killed, but left in current state.\n");
|
|
printf ("Use detach to leave kernel running.\n");
|
|
}
|
|
#else
|
|
out_msg_buf->break_msg.code = BREAK;
|
|
out_msg_buf->bkpt_set_msg.length = 4 * 0;
|
|
expect_msg (HALT, in_msg_buf, from_tty);
|
|
if (from_tty)
|
|
{
|
|
printf ("Target has been stopped.");
|
|
printf ("Would you like to do a hardware reset (y/n) [n] ");
|
|
fgets (buf, 3, stdin);
|
|
if (buf[0] == 'y')
|
|
{
|
|
out_msg_buf->reset_msg.code = RESET;
|
|
out_msg_buf->bkpt_set_msg.length = 4 * 0;
|
|
expect_msg (RESET_ACK, in_msg_buf, from_tty);
|
|
printf ("Target has been reset.");
|
|
}
|
|
}
|
|
pop_target ();
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
/***************************************************************************/
|
|
/*
|
|
* Load a program into the target.
|
|
*/
|
|
static void
|
|
mm_load (arg_string, from_tty)
|
|
char *arg_string;
|
|
int from_tty;
|
|
{
|
|
dont_repeat ();
|
|
|
|
#if defined(KERNEL_DEBUGGING)
|
|
printf ("The kernel had better be loaded already! Loading not done.\n");
|
|
#else
|
|
if (arg_string == 0)
|
|
error ("The load command takes a file name");
|
|
|
|
arg_string = tilde_expand (arg_string);
|
|
make_cleanup (free, arg_string);
|
|
QUIT;
|
|
immediate_quit++;
|
|
error ("File loading is not yet supported for MiniMon.");
|
|
/* FIXME, code to load your file here... */
|
|
/* You may need to do an init_target_mm() */
|
|
/* init_target_mm(?,?,?,?,?,?,?,?); */
|
|
immediate_quit--;
|
|
/* symbol_file_add (arg_string, from_tty, text_addr, 0, 0, 0, 0); */
|
|
#endif
|
|
|
|
}
|
|
|
|
/************************************************ REMOTE_WRITE_INFERIOR_MEMORY
|
|
** Copy LEN bytes of data from debugger memory at MYADDR
|
|
to inferior's memory at MEMADDR. Returns number of bytes written. */
|
|
static int
|
|
mm_write_inferior_memory (memaddr, myaddr, len)
|
|
CORE_ADDR memaddr;
|
|
char *myaddr;
|
|
int len;
|
|
{
|
|
int i, nwritten;
|
|
|
|
out_msg_buf->write_req_msg.code = WRITE_REQ;
|
|
out_msg_buf->write_req_msg.memory_space = mm_memory_space (memaddr);
|
|
|
|
nwritten = 0;
|
|
while (nwritten < len)
|
|
{
|
|
int num_to_write = len - nwritten;
|
|
if (num_to_write > MAXDATA)
|
|
num_to_write = MAXDATA;
|
|
for (i = 0; i < num_to_write; i++)
|
|
out_msg_buf->write_req_msg.data[i] = myaddr[i + nwritten];
|
|
out_msg_buf->write_req_msg.byte_count = num_to_write;
|
|
out_msg_buf->write_req_msg.length = 3 * 4 + num_to_write;
|
|
out_msg_buf->write_req_msg.address = memaddr + nwritten;
|
|
msg_send_serial (out_msg_buf);
|
|
|
|
if (expect_msg (WRITE_ACK, in_msg_buf, 1))
|
|
{
|
|
nwritten += in_msg_buf->write_ack_msg.byte_count;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
return (nwritten);
|
|
}
|
|
|
|
/************************************************* REMOTE_READ_INFERIOR_MEMORY
|
|
** Read LEN bytes from inferior memory at MEMADDR. Put the result
|
|
at debugger address MYADDR. Returns number of bytes read. */
|
|
static int
|
|
mm_read_inferior_memory (memaddr, myaddr, len)
|
|
CORE_ADDR memaddr;
|
|
char *myaddr;
|
|
int len;
|
|
{
|
|
int i, nread;
|
|
|
|
out_msg_buf->read_req_msg.code = READ_REQ;
|
|
out_msg_buf->read_req_msg.memory_space = mm_memory_space (memaddr);
|
|
|
|
nread = 0;
|
|
while (nread < len)
|
|
{
|
|
int num_to_read = (len - nread);
|
|
if (num_to_read > MAXDATA)
|
|
num_to_read = MAXDATA;
|
|
out_msg_buf->read_req_msg.byte_count = num_to_read;
|
|
out_msg_buf->read_req_msg.length = 3 * 4 + num_to_read;
|
|
out_msg_buf->read_req_msg.address = memaddr + nread;
|
|
msg_send_serial (out_msg_buf);
|
|
|
|
if (expect_msg (READ_ACK, in_msg_buf, 1))
|
|
{
|
|
for (i = 0; i < in_msg_buf->read_ack_msg.byte_count; i++)
|
|
myaddr[i + nread] = in_msg_buf->read_ack_msg.data[i];
|
|
nread += in_msg_buf->read_ack_msg.byte_count;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
return (nread);
|
|
}
|
|
|
|
/* FIXME! Merge these two. */
|
|
static int
|
|
mm_xfer_inferior_memory (memaddr, myaddr, len, write)
|
|
CORE_ADDR memaddr;
|
|
char *myaddr;
|
|
int len;
|
|
int write;
|
|
{
|
|
|
|
memaddr = translate_addr (memaddr);
|
|
|
|
if (write)
|
|
return mm_write_inferior_memory (memaddr, myaddr, len);
|
|
else
|
|
return mm_read_inferior_memory (memaddr, myaddr, len);
|
|
}
|
|
|
|
|
|
/********************************************************** MSG_SEND_SERIAL
|
|
** This function is used to send a message over the
|
|
** serial line.
|
|
**
|
|
** If the message is successfully sent, a zero is
|
|
** returned. If the message was not sendable, a -1
|
|
** is returned. This function blocks. That is, it
|
|
** does not return until the message is completely
|
|
** sent, or until an error is encountered.
|
|
**
|
|
*/
|
|
|
|
int
|
|
msg_send_serial (msg_ptr)
|
|
union msg_t *msg_ptr;
|
|
{
|
|
INT32 message_size;
|
|
int byte_count;
|
|
int result;
|
|
char c;
|
|
|
|
/* Send message header */
|
|
byte_count = 0;
|
|
message_size = msg_ptr->generic_msg.length + (2 * sizeof (INT32));
|
|
do
|
|
{
|
|
c = *((char *) msg_ptr + byte_count);
|
|
result = write (mm_desc, &c, 1);
|
|
if (result == 1)
|
|
{
|
|
byte_count = byte_count + 1;
|
|
}
|
|
}
|
|
while ((byte_count < message_size));
|
|
|
|
return (0);
|
|
} /* end msg_send_serial() */
|
|
|
|
/********************************************************** MSG_RECV_SERIAL
|
|
** This function is used to receive a message over a
|
|
** serial line.
|
|
**
|
|
** If the message is waiting in the buffer, a zero is
|
|
** returned and the buffer pointed to by msg_ptr is filled
|
|
** in. If no message was available, a -1 is returned.
|
|
** If timeout==0, wait indefinetly for a character.
|
|
**
|
|
*/
|
|
|
|
int
|
|
msg_recv_serial (msg_ptr)
|
|
union msg_t *msg_ptr;
|
|
{
|
|
static INT32 length = 0;
|
|
static INT32 byte_count = 0;
|
|
int result;
|
|
char c;
|
|
if (msg_ptr == 0) /* re-sync request */
|
|
{
|
|
length = 0;
|
|
byte_count = 0;
|
|
#ifdef HAVE_TERMIO
|
|
/* The timeout here is the prevailing timeout set with VTIME */
|
|
->"timeout==0 semantics not supported"
|
|
read (mm_desc, in_buf, BUFER_SIZE);
|
|
#else
|
|
alarm (1);
|
|
read (mm_desc, in_buf, BUFER_SIZE);
|
|
alarm (0);
|
|
#endif
|
|
return (0);
|
|
}
|
|
/* Receive message */
|
|
#ifdef HAVE_TERMIO
|
|
/* Timeout==0, help support the mm_wait() routine */
|
|
->"timeout==0 semantics not supported (and its nice if they are)"
|
|
result = read (mm_desc, &c, 1);
|
|
#else
|
|
alarm (timeout);
|
|
result = read (mm_desc, &c, 1);
|
|
alarm (0);
|
|
#endif
|
|
if (result < 0)
|
|
{
|
|
if (errno == EINTR)
|
|
{
|
|
error ("Timeout reading from remote system.");
|
|
}
|
|
else
|
|
perror_with_name ("remote");
|
|
}
|
|
else if (result == 1)
|
|
{
|
|
*((char *) msg_ptr + byte_count) = c;
|
|
byte_count = byte_count + 1;
|
|
}
|
|
|
|
/* Message header received. Save message length. */
|
|
if (byte_count == (2 * sizeof (INT32)))
|
|
length = msg_ptr->generic_msg.length;
|
|
|
|
if (byte_count >= (length + (2 * sizeof (INT32))))
|
|
{
|
|
/* Message received */
|
|
byte_count = 0;
|
|
return (0);
|
|
}
|
|
else
|
|
return (-1);
|
|
|
|
} /* end msg_recv_serial() */
|
|
|
|
/********************************************************************* KBD_RAW
|
|
** This function is used to put the keyboard in "raw"
|
|
** mode for BSD Unix. The original status is saved
|
|
** so that it may be restored later.
|
|
*/
|
|
TERMINAL kbd_tbuf;
|
|
|
|
int
|
|
kbd_raw ()
|
|
{
|
|
int result;
|
|
TERMINAL tbuf;
|
|
|
|
/* Get keyboard termio (to save to restore original modes) */
|
|
#ifdef HAVE_TERMIO
|
|
result = ioctl (0, TCGETA, &kbd_tbuf);
|
|
#else
|
|
result = ioctl (0, TIOCGETP, &kbd_tbuf);
|
|
#endif
|
|
if (result == -1)
|
|
return (errno);
|
|
|
|
/* Get keyboard TERMINAL (for modification) */
|
|
#ifdef HAVE_TERMIO
|
|
result = ioctl (0, TCGETA, &tbuf);
|
|
#else
|
|
result = ioctl (0, TIOCGETP, &tbuf);
|
|
#endif
|
|
if (result == -1)
|
|
return (errno);
|
|
|
|
/* Set up new parameters */
|
|
#ifdef HAVE_TERMIO
|
|
tbuf.c_iflag = tbuf.c_iflag &
|
|
~(INLCR | ICRNL | IUCLC | ISTRIP | IXON | BRKINT);
|
|
tbuf.c_lflag = tbuf.c_lflag & ~(ICANON | ISIG | ECHO);
|
|
tbuf.c_cc[4] = 0; /* MIN */
|
|
tbuf.c_cc[5] = 0; /* TIME */
|
|
#else
|
|
/* FIXME: not sure if this is correct (matches HAVE_TERMIO). */
|
|
tbuf.sg_flags |= RAW;
|
|
tbuf.sg_flags |= ANYP;
|
|
tbuf.sg_flags &= ~ECHO;
|
|
#endif
|
|
|
|
/* Set keyboard termio to new mode (RAW) */
|
|
#ifdef HAVE_TERMIO
|
|
result = ioctl (0, TCSETAF, &tbuf);
|
|
#else
|
|
result = ioctl (0, TIOCSETP, &tbuf);
|
|
#endif
|
|
if (result == -1)
|
|
return (errno);
|
|
|
|
return (0);
|
|
} /* end kbd_raw() */
|
|
|
|
|
|
|
|
/***************************************************************** KBD_RESTORE
|
|
** This function is used to put the keyboard back in the
|
|
** mode it was in before kbk_raw was called. Note that
|
|
** kbk_raw() must have been called at least once before
|
|
** kbd_restore() is called.
|
|
*/
|
|
|
|
int
|
|
kbd_restore ()
|
|
{
|
|
int result;
|
|
|
|
/* Set keyboard termio to original mode */
|
|
#ifdef HAVE_TERMIO
|
|
result = ioctl (0, TCSETAF, &kbd_tbuf);
|
|
#else
|
|
result = ioctl (0, TIOCGETP, &kbd_tbuf);
|
|
#endif
|
|
|
|
if (result == -1)
|
|
return (errno);
|
|
|
|
return (0);
|
|
} /* end kbd_cooked() */
|
|
|
|
|
|
/*****************************************************************************/
|
|
/* Fetch a single register indicatated by 'regno'.
|
|
* Returns 0/-1 on success/failure.
|
|
*/
|
|
static int
|
|
fetch_register (regno)
|
|
int regno;
|
|
{
|
|
int result;
|
|
out_msg_buf->read_req_msg.code = READ_REQ;
|
|
out_msg_buf->read_req_msg.length = 4 * 3;
|
|
out_msg_buf->read_req_msg.byte_count = 4;
|
|
|
|
if (regno == GR1_REGNUM)
|
|
{
|
|
out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->read_req_msg.address = 1;
|
|
}
|
|
else if (regno >= GR96_REGNUM && regno < GR96_REGNUM + 32)
|
|
{
|
|
out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->read_req_msg.address = (regno - GR96_REGNUM) + 96;
|
|
}
|
|
#if defined(GR64_REGNUM)
|
|
else if (regno >= GR64_REGNUM && regno < GR64_REGNUM + 32)
|
|
{
|
|
out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->read_req_msg.address = (regno - GR64_REGNUM) + 64;
|
|
}
|
|
#endif /* GR64_REGNUM */
|
|
else if (regno >= LR0_REGNUM && regno < LR0_REGNUM + 128)
|
|
{
|
|
out_msg_buf->read_req_msg.memory_space = LOCAL_REG;
|
|
out_msg_buf->read_req_msg.address = (regno - LR0_REGNUM);
|
|
}
|
|
else if (regno >= FPE_REGNUM && regno <= EXO_REGNUM)
|
|
{
|
|
int val = -1;
|
|
supply_register (160 + (regno - FPE_REGNUM), &val);
|
|
return 0; /* Pretend Success */
|
|
}
|
|
else
|
|
{
|
|
out_msg_buf->read_req_msg.memory_space = SPECIAL_REG;
|
|
out_msg_buf->read_req_msg.address = regnum_to_srnum (regno);
|
|
}
|
|
|
|
msg_send_serial (out_msg_buf);
|
|
|
|
if (expect_msg (READ_ACK, in_msg_buf, 1))
|
|
{
|
|
supply_register (regno, &(in_msg_buf->read_r_ack_msg.data[0]));
|
|
result = 0;
|
|
}
|
|
else
|
|
{
|
|
result = -1;
|
|
}
|
|
return result;
|
|
}
|
|
/*****************************************************************************/
|
|
/* Store a single register indicated by 'regno'.
|
|
* Returns 0/-1 on success/failure.
|
|
*/
|
|
static int
|
|
store_register (regno)
|
|
int regno;
|
|
{
|
|
int result;
|
|
|
|
out_msg_buf->write_req_msg.code = WRITE_REQ;
|
|
out_msg_buf->write_req_msg.length = 4 * 4;
|
|
out_msg_buf->write_req_msg.byte_count = 4;
|
|
out_msg_buf->write_r_msg.data[0] = read_register (regno);
|
|
|
|
if (regno == GR1_REGNUM)
|
|
{
|
|
out_msg_buf->write_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->write_req_msg.address = 1;
|
|
/* Setting GR1 changes the numbers of all the locals, so invalidate the
|
|
* register cache. Do this *after* calling read_register, because we want
|
|
* read_register to return the value that write_register has just stuffed
|
|
* into the registers array, not the value of the register fetched from
|
|
* the inferior.
|
|
*/
|
|
registers_changed ();
|
|
}
|
|
#if defined(GR64_REGNUM)
|
|
else if (regno >= GR64_REGNUM && regno < GR64_REGNUM + 32)
|
|
{
|
|
out_msg_buf->write_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->write_req_msg.address = (regno - GR64_REGNUM) + 64;
|
|
}
|
|
#endif /* GR64_REGNUM */
|
|
else if (regno >= GR96_REGNUM && regno < GR96_REGNUM + 32)
|
|
{
|
|
out_msg_buf->write_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->write_req_msg.address = (regno - GR96_REGNUM) + 96;
|
|
}
|
|
else if (regno >= LR0_REGNUM && regno < LR0_REGNUM + 128)
|
|
{
|
|
out_msg_buf->write_req_msg.memory_space = LOCAL_REG;
|
|
out_msg_buf->write_req_msg.address = (regno - LR0_REGNUM);
|
|
}
|
|
else if (regno >= FPE_REGNUM && regno <= EXO_REGNUM)
|
|
{
|
|
return 0; /* Pretend Success */
|
|
}
|
|
else
|
|
/* An unprotected or protected special register */
|
|
{
|
|
out_msg_buf->write_req_msg.memory_space = SPECIAL_REG;
|
|
out_msg_buf->write_req_msg.address = regnum_to_srnum (regno);
|
|
}
|
|
|
|
msg_send_serial (out_msg_buf);
|
|
|
|
if (expect_msg (WRITE_ACK, in_msg_buf, 1))
|
|
{
|
|
result = 0;
|
|
}
|
|
else
|
|
{
|
|
result = -1;
|
|
}
|
|
return result;
|
|
}
|
|
/****************************************************************************/
|
|
/*
|
|
* Convert a gdb special register number to a 29000 special register number.
|
|
*/
|
|
static int
|
|
regnum_to_srnum (regno)
|
|
int regno;
|
|
{
|
|
switch (regno)
|
|
{
|
|
case VAB_REGNUM:
|
|
return (0);
|
|
case OPS_REGNUM:
|
|
return (1);
|
|
case CPS_REGNUM:
|
|
return (2);
|
|
case CFG_REGNUM:
|
|
return (3);
|
|
case CHA_REGNUM:
|
|
return (4);
|
|
case CHD_REGNUM:
|
|
return (5);
|
|
case CHC_REGNUM:
|
|
return (6);
|
|
case RBP_REGNUM:
|
|
return (7);
|
|
case TMC_REGNUM:
|
|
return (8);
|
|
case TMR_REGNUM:
|
|
return (9);
|
|
case NPC_REGNUM:
|
|
return (USE_SHADOW_PC ? (20) : (10));
|
|
case PC_REGNUM:
|
|
return (USE_SHADOW_PC ? (21) : (11));
|
|
case PC2_REGNUM:
|
|
return (USE_SHADOW_PC ? (22) : (12));
|
|
case MMU_REGNUM:
|
|
return (13);
|
|
case LRU_REGNUM:
|
|
return (14);
|
|
case IPC_REGNUM:
|
|
return (128);
|
|
case IPA_REGNUM:
|
|
return (129);
|
|
case IPB_REGNUM:
|
|
return (130);
|
|
case Q_REGNUM:
|
|
return (131);
|
|
case ALU_REGNUM:
|
|
return (132);
|
|
case BP_REGNUM:
|
|
return (133);
|
|
case FC_REGNUM:
|
|
return (134);
|
|
case CR_REGNUM:
|
|
return (135);
|
|
case FPE_REGNUM:
|
|
return (160);
|
|
case INTE_REGNUM:
|
|
return (161);
|
|
case FPS_REGNUM:
|
|
return (162);
|
|
case EXO_REGNUM:
|
|
return (164);
|
|
default:
|
|
return (255); /* Failure ? */
|
|
}
|
|
}
|
|
/****************************************************************************/
|
|
/*
|
|
* Initialize the target debugger (minimon only).
|
|
*/
|
|
static void
|
|
init_target_mm (tstart, tend, dstart, dend, entry, ms_size, rs_size, arg_start)
|
|
ADDR32 tstart, tend, dstart, dend, entry;
|
|
INT32 ms_size, rs_size;
|
|
ADDR32 arg_start;
|
|
{
|
|
out_msg_buf->init_msg.code = INIT;
|
|
out_msg_buf->init_msg.length = sizeof (struct init_msg_t) - 2 * sizeof (INT32);
|
|
out_msg_buf->init_msg.text_start = tstart;
|
|
out_msg_buf->init_msg.text_end = tend;
|
|
out_msg_buf->init_msg.data_start = dstart;
|
|
out_msg_buf->init_msg.data_end = dend;
|
|
out_msg_buf->init_msg.entry_point = entry;
|
|
out_msg_buf->init_msg.mem_stack_size = ms_size;
|
|
out_msg_buf->init_msg.reg_stack_size = rs_size;
|
|
out_msg_buf->init_msg.arg_start = arg_start;
|
|
msg_send_serial (out_msg_buf);
|
|
expect_msg (INIT_ACK, in_msg_buf, 1);
|
|
}
|
|
/****************************************************************************/
|
|
/*
|
|
* Return a pointer to a string representing the given message code.
|
|
* Not all messages are represented here, only the ones that we expect
|
|
* to be called with.
|
|
*/
|
|
static char *
|
|
msg_str (code)
|
|
INT32 code;
|
|
{
|
|
static char cbuf[32];
|
|
|
|
switch (code)
|
|
{
|
|
case BKPT_SET_ACK:
|
|
sprintf (cbuf, "%s (%d)", "BKPT_SET_ACK", code);
|
|
break;
|
|
case BKPT_RM_ACK:
|
|
sprintf (cbuf, "%s (%d)", "BKPT_RM_ACK", code);
|
|
break;
|
|
case INIT_ACK:
|
|
sprintf (cbuf, "%s (%d)", "INIT_ACK", code);
|
|
break;
|
|
case READ_ACK:
|
|
sprintf (cbuf, "%s (%d)", "READ_ACK", code);
|
|
break;
|
|
case WRITE_ACK:
|
|
sprintf (cbuf, "%s (%d)", "WRITE_ACK", code);
|
|
break;
|
|
case ERROR:
|
|
sprintf (cbuf, "%s (%d)", "ERROR", code);
|
|
break;
|
|
case HALT:
|
|
sprintf (cbuf, "%s (%d)", "HALT", code);
|
|
break;
|
|
default:
|
|
sprintf (cbuf, "UNKNOWN (%d)", code);
|
|
break;
|
|
}
|
|
return (cbuf);
|
|
}
|
|
/****************************************************************************/
|
|
/*
|
|
* Selected (not all of them) error codes that we might get.
|
|
*/
|
|
static char *
|
|
error_msg_str (code)
|
|
INT32 code;
|
|
{
|
|
static char cbuf[50];
|
|
|
|
switch (code)
|
|
{
|
|
case EMFAIL:
|
|
return ("EMFAIL: unrecoverable error");
|
|
case EMBADADDR:
|
|
return ("EMBADADDR: Illegal address");
|
|
case EMBADREG:
|
|
return ("EMBADREG: Illegal register ");
|
|
case EMACCESS:
|
|
return ("EMACCESS: Could not access memory");
|
|
case EMBADMSG:
|
|
return ("EMBADMSG: Unknown message type");
|
|
case EMMSG2BIG:
|
|
return ("EMMSG2BIG: Message to large");
|
|
case EMNOSEND:
|
|
return ("EMNOSEND: Could not send message");
|
|
case EMNORECV:
|
|
return ("EMNORECV: Could not recv message");
|
|
case EMRESET:
|
|
return ("EMRESET: Could not RESET target");
|
|
case EMCONFIG:
|
|
return ("EMCONFIG: Could not get target CONFIG");
|
|
case EMSTATUS:
|
|
return ("EMSTATUS: Could not get target STATUS");
|
|
case EMREAD:
|
|
return ("EMREAD: Could not READ target memory");
|
|
case EMWRITE:
|
|
return ("EMWRITE: Could not WRITE target memory");
|
|
case EMBKPTSET:
|
|
return ("EMBKPTSET: Could not set breakpoint");
|
|
case EMBKPTRM:
|
|
return ("EMBKPTRM: Could not remove breakpoint");
|
|
case EMBKPTSTAT:
|
|
return ("EMBKPTSTAT: Could not get breakpoint status");
|
|
case EMBKPTNONE:
|
|
return ("EMBKPTNONE: All breakpoints in use");
|
|
case EMBKPTUSED:
|
|
return ("EMBKPTUSED: Breakpoints already in use");
|
|
case EMINIT:
|
|
return ("EMINIT: Could not init target memory");
|
|
case EMGO:
|
|
return ("EMGO: Could not start execution");
|
|
case EMSTEP:
|
|
return ("EMSTEP: Could not single step");
|
|
case EMBREAK:
|
|
return ("EMBREAK: Could not BREAK");
|
|
case EMCOMMERR:
|
|
return ("EMCOMMERR: Communication error");
|
|
default:
|
|
sprintf (cbuf, "error number %d", code);
|
|
break;
|
|
} /* end switch */
|
|
|
|
return (cbuf);
|
|
}
|
|
/****************************************************************************/
|
|
/*
|
|
* Receive a message and expect it to be of type msgcode.
|
|
* Returns 0/1 on failure/success.
|
|
*/
|
|
static int
|
|
expect_msg (msgcode, msg_buf, from_tty)
|
|
INT32 msgcode; /* Msg code we expect */
|
|
union msg_t *msg_buf; /* Where to put the message received */
|
|
int from_tty; /* Print message on error if non-zero */
|
|
{
|
|
int retries = 0;
|
|
while (msg_recv_serial (msg_buf) && (retries++ < MAX_RETRIES));
|
|
if (retries >= MAX_RETRIES)
|
|
{
|
|
printf ("Expected msg %s, ", msg_str (msgcode));
|
|
printf ("no message received!\n");
|
|
return (0); /* Failure */
|
|
}
|
|
|
|
if (msg_buf->generic_msg.code != msgcode)
|
|
{
|
|
if (from_tty)
|
|
{
|
|
printf ("Expected msg %s, ", msg_str (msgcode));
|
|
printf ("got msg %s\n", msg_str (msg_buf->generic_msg.code));
|
|
if (msg_buf->generic_msg.code == ERROR)
|
|
printf ("%s\n", error_msg_str (msg_buf->error_msg.error_code));
|
|
}
|
|
return (0); /* Failure */
|
|
}
|
|
return (1); /* Success */
|
|
}
|
|
/****************************************************************************/
|
|
/*
|
|
* Determine the MiniMon memory space qualifier based on the addr.
|
|
* FIXME: Can't distinguis I_ROM/D_ROM.
|
|
* FIXME: Doesn't know anything about I_CACHE/D_CACHE.
|
|
*/
|
|
static int
|
|
mm_memory_space (addr)
|
|
CORE_ADDR *addr;
|
|
{
|
|
ADDR32 tstart = target_config.I_mem_start;
|
|
ADDR32 tend = tstart + target_config.I_mem_size;
|
|
ADDR32 dstart = target_config.D_mem_start;
|
|
ADDR32 dend = tstart + target_config.D_mem_size;
|
|
ADDR32 rstart = target_config.ROM_start;
|
|
ADDR32 rend = tstart + target_config.ROM_size;
|
|
|
|
if (((ADDR32) addr >= tstart) && ((ADDR32) addr < tend))
|
|
{
|
|
return I_MEM;
|
|
}
|
|
else if (((ADDR32) addr >= dstart) && ((ADDR32) addr < dend))
|
|
{
|
|
return D_MEM;
|
|
}
|
|
else if (((ADDR32) addr >= rstart) && ((ADDR32) addr < rend))
|
|
{
|
|
/* FIXME: how do we determine between D_ROM and I_ROM */
|
|
return D_ROM;
|
|
}
|
|
else /* FIXME: what do me do now? */
|
|
return D_MEM; /* Hmmm! */
|
|
}
|
|
|
|
/****************************************************************************/
|
|
/*
|
|
* Define the target subroutine names
|
|
*/
|
|
struct target_ops mm_ops;
|
|
|
|
static void
|
|
init_mm_ops (void)
|
|
{
|
|
mm_ops.to_shortname = "minimon";
|
|
mm_ops.to_longname = "Remote AMD/Minimon target";
|
|
mm_ops.to_doc = "Remote debug an AMD 290*0 using the MiniMon dbg core on the target";
|
|
mm_ops.to_open = mm_open;
|
|
mm_ops.to_close = mm_close;
|
|
mm_ops.to_attach = mm_attach;
|
|
mm_ops.to_post_attach = NULL;
|
|
mm_ops.to_require_attach = NULL;
|
|
mm_ops.to_detach = mm_detach;
|
|
mm_ops.to_require_detach = NULL;
|
|
mm_ops.to_resume = mm_resume;
|
|
mm_ops.to_wait = mm_wait;
|
|
mm_ops.to_post_wait = NULL;
|
|
mm_ops.to_fetch_registers = mm_fetch_registers;
|
|
mm_ops.to_store_registers = mm_store_registers;
|
|
mm_ops.to_prepare_to_store = mm_prepare_to_store;
|
|
mm_ops.to_xfer_memory = mm_xfer_inferior_memory;
|
|
mm_ops.to_files_info = mm_files_info;
|
|
mm_ops.to_insert_breakpoint = mm_insert_breakpoint;
|
|
mm_ops.to_remove_breakpoint = mm_remove_breakpoint;
|
|
mm_ops.to_terminal_init = 0;
|
|
mm_ops.to_terminal_inferior = 0;
|
|
mm_ops.to_terminal_ours_for_output = 0;
|
|
mm_ops.to_terminal_ours = 0;
|
|
mm_ops.to_terminal_info = 0;
|
|
mm_ops.to_kill = mm_kill;
|
|
mm_ops.to_load = mm_load;
|
|
mm_ops.to_lookup_symbol = 0;
|
|
mm_ops.to_create_inferior = mm_create_inferior;
|
|
mm_ops.to_post_startup_inferior = NULL;
|
|
mm_ops.to_acknowledge_created_inferior = NULL;
|
|
mm_ops.to_clone_and_follow_inferior = NULL;
|
|
mm_ops.to_post_follow_inferior_by_clone = NULL;
|
|
mm_ops.to_insert_fork_catchpoint = NULL;
|
|
mm_ops.to_remove_fork_catchpoint = NULL;
|
|
mm_ops.to_insert_vfork_catchpoint = NULL;
|
|
mm_ops.to_remove_vfork_catchpoint = NULL;
|
|
mm_ops.to_has_forked = NULL;
|
|
mm_ops.to_has_vforked = NULL;
|
|
mm_ops.to_can_follow_vfork_prior_to_exec = NULL;
|
|
mm_ops.to_post_follow_vfork = NULL;
|
|
mm_ops.to_insert_exec_catchpoint = NULL;
|
|
mm_ops.to_remove_exec_catchpoint = NULL;
|
|
mm_ops.to_has_execd = NULL;
|
|
mm_ops.to_reported_exec_events_per_exec_call = NULL;
|
|
mm_ops.to_has_exited = NULL;
|
|
mm_ops.to_mourn_inferior = mm_mourn;
|
|
mm_ops.to_can_run = 0;
|
|
mm_ops.to_notice_signals = 0;
|
|
mm_ops.to_thread_alive = 0;
|
|
mm_ops.to_stop = 0;
|
|
mm_ops.to_pid_to_exec_file = NULL;
|
|
mm_ops.to_core_file_to_sym_file = NULL;
|
|
mm_ops.to_stratum = process_stratum;
|
|
mm_ops.DONT_USE = 0;
|
|
mm_ops.to_has_all_memory = 1;
|
|
mm_ops.to_has_memory = 1;
|
|
mm_ops.to_has_stack = 1;
|
|
mm_ops.to_has_registers = 1;
|
|
mm_ops.to_has_execution = 1;
|
|
mm_ops.to_sections = 0;
|
|
mm_ops.to_sections_end = 0;
|
|
mm_ops.to_magic = OPS_MAGIC;
|
|
};
|
|
|
|
void
|
|
_initialize_remote_mm ()
|
|
{
|
|
init_mm_ops ();
|
|
add_target (&mm_ops);
|
|
}
|
|
|
|
#ifdef NO_HIF_SUPPORT
|
|
service_HIF (msg)
|
|
union msg_t *msg;
|
|
{
|
|
return (0); /* Emulate a failure */
|
|
}
|
|
#endif
|