a79c6033ed
fixS's. * i960-bout and i960-coff "tested" against their predecessors.
2762 lines
78 KiB
C
2762 lines
78 KiB
C
/* i960.c - All the i80960-specific stuff
|
||
Copyright (C) 1989, 1990, 1991 Free Software Foundation, Inc.
|
||
|
||
This file is part of GAS.
|
||
|
||
GAS is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GAS is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GAS; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
/* $Id$ */
|
||
|
||
/* See comment on md_parse_option for 80960-specific invocation options. */
|
||
|
||
/******************************************************************************
|
||
* i80690 NOTE!!!:
|
||
* Header, symbol, and relocation info will be used on the host machine
|
||
* only -- only executable code is actually downloaded to the i80960.
|
||
* Therefore, leave all such information in host byte order.
|
||
*
|
||
* (That's a slight lie -- we DO download some header information, but
|
||
* the downloader converts the file format and corrects the byte-ordering
|
||
* of the relevant fields while doing so.)
|
||
*
|
||
***************************************************************************** */
|
||
|
||
/* There are 4 different lengths of (potentially) symbol-based displacements
|
||
* in the 80960 instruction set, each of which could require address fix-ups
|
||
* and (in the case of external symbols) emission of relocation directives:
|
||
*
|
||
* 32-bit (MEMB)
|
||
* This is a standard length for the base assembler and requires no
|
||
* special action.
|
||
*
|
||
* 13-bit (COBR)
|
||
* This is a non-standard length, but the base assembler has a hook for
|
||
* bit field address fixups: the fixS structure can point to a descriptor
|
||
* of the field, in which case our md_number_to_field() routine gets called
|
||
* to process it.
|
||
*
|
||
* I made the hook a little cleaner by having fix_new() (in the base
|
||
* assembler) return a pointer to the fixS in question. And I made it a
|
||
* little simpler by storing the field size (in this case 13) instead of
|
||
* of a pointer to another structure: 80960 displacements are ALWAYS
|
||
* stored in the low-order bits of a 4-byte word.
|
||
*
|
||
* Since the target of a COBR cannot be external, no relocation directives
|
||
* for this size displacement have to be generated. But the base assembler
|
||
* had to be modified to issue error messages if the symbol did turn out
|
||
* to be external.
|
||
*
|
||
* 24-bit (CTRL)
|
||
* Fixups are handled as for the 13-bit case (except that 24 is stored
|
||
* in the fixS).
|
||
*
|
||
* The relocation directive generated is the same as that for the 32-bit
|
||
* displacement, except that it's PC-relative (the 32-bit displacement
|
||
* never is). The i80960 version of the linker needs a mod to
|
||
* distinguish and handle the 24-bit case.
|
||
*
|
||
* 12-bit (MEMA)
|
||
* MEMA formats are always promoted to MEMB (32-bit) if the displacement
|
||
* is based on a symbol, because it could be relocated at link time.
|
||
* The only time we use the 12-bit format is if an absolute value of
|
||
* less than 4096 is specified, in which case we need neither a fixup nor
|
||
* a relocation directive.
|
||
*/
|
||
|
||
#include <stdio.h>
|
||
#include <ctype.h>
|
||
|
||
#include "as.h"
|
||
|
||
#include "obstack.h"
|
||
|
||
#include "i960-opcode.h"
|
||
|
||
extern char *input_line_pointer;
|
||
extern struct hash_control *po_hash;
|
||
extern char *next_object_file_charP;
|
||
|
||
#ifdef OBJ_COFF
|
||
int md_reloc_size = sizeof(struct reloc);
|
||
#else /* OBJ_COFF */
|
||
int md_reloc_size = sizeof(struct relocation_info);
|
||
#endif /* OBJ_COFF */
|
||
|
||
/***************************
|
||
* Local i80960 routines *
|
||
************************** */
|
||
|
||
static void brcnt_emit(); /* Emit branch-prediction instrumentation code */
|
||
static char * brlab_next(); /* Return next branch local label */
|
||
void brtab_emit(); /* Emit br-predict instrumentation table */
|
||
static void cobr_fmt(); /* Generate COBR instruction */
|
||
static void ctrl_fmt(); /* Generate CTRL instruction */
|
||
static char * emit(); /* Emit (internally) binary */
|
||
static int get_args(); /* Break arguments out of comma-separated list */
|
||
static void get_cdisp(); /* Handle COBR or CTRL displacement */
|
||
static char * get_ispec(); /* Find index specification string */
|
||
static int get_regnum(); /* Translate text to register number */
|
||
static int i_scan(); /* Lexical scan of instruction source */
|
||
static void mem_fmt(); /* Generate MEMA or MEMB instruction */
|
||
static void mema_to_memb(); /* Convert MEMA instruction to MEMB format */
|
||
static segT parse_expr(); /* Parse an expression */
|
||
static int parse_ldconst();/* Parse and replace a 'ldconst' pseudo-op */
|
||
static void parse_memop(); /* Parse a memory operand */
|
||
static void parse_po(); /* Parse machine-dependent pseudo-op */
|
||
static void parse_regop(); /* Parse a register operand */
|
||
static void reg_fmt(); /* Generate a REG format instruction */
|
||
void reloc_callj(); /* Relocate a 'callj' instruction */
|
||
static void relax_cobr(); /* "De-optimize" cobr into compare/branch */
|
||
static void s_leafproc(); /* Process '.leafproc' pseudo-op */
|
||
static void s_sysproc(); /* Process '.sysproc' pseudo-op */
|
||
static int shift_ok(); /* Will a 'shlo' substiture for a 'ldconst'? */
|
||
static void syntax(); /* Give syntax error */
|
||
static int targ_has_sfr(); /* Target chip supports spec-func register? */
|
||
static int targ_has_iclass();/* Target chip supports instruction set? */
|
||
/* static void unlink_sym(); */ /* Remove a symbol from the symbol list */
|
||
|
||
/* See md_parse_option() for meanings of these options */
|
||
static char norelax = 0; /* True if -norelax switch seen */
|
||
static char instrument_branches = 0; /* True if -b switch seen */
|
||
|
||
/* Characters that always start a comment.
|
||
* If the pre-processor is disabled, these aren't very useful.
|
||
*/
|
||
char comment_chars[] = "#";
|
||
|
||
/* Characters that only start a comment at the beginning of
|
||
* a line. If the line seems to have the form '# 123 filename'
|
||
* .line and .file directives will appear in the pre-processed output.
|
||
*
|
||
* Note that input_file.c hand checks for '#' at the beginning of the
|
||
* first line of the input file. This is because the compiler outputs
|
||
* #NO_APP at the beginning of its output.
|
||
*/
|
||
|
||
/* Also note that comments started like this one will always work. */
|
||
|
||
char line_comment_chars[] = "";
|
||
|
||
/* Chars that can be used to separate mant from exp in floating point nums */
|
||
char EXP_CHARS[] = "eE";
|
||
|
||
/* Chars that mean this number is a floating point constant,
|
||
* as in 0f12.456 or 0d1.2345e12
|
||
*/
|
||
char FLT_CHARS[] = "fFdDtT";
|
||
|
||
|
||
/* Table used by base assembler to relax addresses based on varying length
|
||
* instructions. The fields are:
|
||
* 1) most positive reach of this state,
|
||
* 2) most negative reach of this state,
|
||
* 3) how many bytes this mode will add to the size of the current frag
|
||
* 4) which index into the table to try if we can't fit into this one.
|
||
*
|
||
* For i80960, the only application is the (de-)optimization of cobr
|
||
* instructions into separate compare and branch instructions when a 13-bit
|
||
* displacement won't hack it.
|
||
*/
|
||
const relax_typeS
|
||
md_relax_table[] = {
|
||
{0, 0, 0,0}, /* State 0 => no more relaxation possible */
|
||
{4088, -4096, 0,2}, /* State 1: conditional branch (cobr) */
|
||
{0x800000-8,-0x800000,4,0}, /* State 2: compare (reg) & branch (ctrl) */
|
||
};
|
||
|
||
|
||
/* These are the machine dependent pseudo-ops.
|
||
*
|
||
* This table describes all the machine specific pseudo-ops the assembler
|
||
* has to support. The fields are:
|
||
* pseudo-op name without dot
|
||
* function to call to execute this pseudo-op
|
||
* integer arg to pass to the function
|
||
*/
|
||
#define S_LEAFPROC 1
|
||
#define S_SYSPROC 2
|
||
|
||
const pseudo_typeS
|
||
md_pseudo_table[] = {
|
||
|
||
{ "bss", s_lcomm, 1 },
|
||
{ "extended", float_cons, 't' },
|
||
{ "leafproc", parse_po, S_LEAFPROC },
|
||
{ "sysproc", parse_po, S_SYSPROC },
|
||
|
||
{ "word", cons, 4 },
|
||
{ "quad", big_cons, 16 },
|
||
|
||
{ 0, 0, 0 }
|
||
};
|
||
|
||
/* Macros to extract info from an 'expressionS' structure 'e' */
|
||
#define adds(e) e.X_add_symbol
|
||
#define subs(e) e.X_subtract_symbol
|
||
#define offs(e) e.X_add_number
|
||
#define segs(e) e.X_seg
|
||
|
||
|
||
/* Branch-prediction bits for CTRL/COBR format opcodes */
|
||
#define BP_MASK 0x00000002 /* Mask for branch-prediction bit */
|
||
#define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */
|
||
#define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */
|
||
|
||
|
||
/* Some instruction opcodes that we need explicitly */
|
||
#define BE 0x12000000
|
||
#define BG 0x11000000
|
||
#define BGE 0x13000000
|
||
#define BL 0x14000000
|
||
#define BLE 0x16000000
|
||
#define BNE 0x15000000
|
||
#define BNO 0x10000000
|
||
#define BO 0x17000000
|
||
#define CHKBIT 0x5a002700
|
||
#define CMPI 0x5a002080
|
||
#define CMPO 0x5a002000
|
||
|
||
#define B 0x08000000
|
||
#define BAL 0x0b000000
|
||
#define CALL 0x09000000
|
||
#define CALLS 0x66003800
|
||
#define RET 0x0a000000
|
||
|
||
|
||
/* These masks are used to build up a set of MEMB mode bits. */
|
||
#define A_BIT 0x0400
|
||
#define I_BIT 0x0800
|
||
#define MEMB_BIT 0x1000
|
||
#define D_BIT 0x2000
|
||
|
||
|
||
/* Mask for the only mode bit in a MEMA instruction (if set, abase reg is used) */
|
||
#define MEMA_ABASE 0x2000
|
||
|
||
/* Info from which a MEMA or MEMB format instruction can be generated */
|
||
typedef struct {
|
||
long opcode; /* (First) 32 bits of instruction */
|
||
int disp; /* 0-(none), 12- or, 32-bit displacement needed */
|
||
char *e; /* The expression in the source instruction from
|
||
* which the displacement should be determined
|
||
*/
|
||
} memS;
|
||
|
||
|
||
/* The two pieces of info we need to generate a register operand */
|
||
struct regop {
|
||
int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */
|
||
int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */
|
||
int n; /* Register number or literal value */
|
||
};
|
||
|
||
|
||
/* Number and assembler mnemonic for all registers that can appear in operands */
|
||
static struct {
|
||
char *reg_name;
|
||
int reg_num;
|
||
} regnames[] = {
|
||
{ "pfp", 0 }, { "sp", 1 }, { "rip", 2 }, { "r3", 3 },
|
||
{ "r4", 4 }, { "r5", 5 }, { "r6", 6 }, { "r7", 7 },
|
||
{ "r8", 8 }, { "r9", 9 }, { "r10", 10 }, { "r11", 11 },
|
||
{ "r12", 12 }, { "r13", 13 }, { "r14", 14 }, { "r15", 15 },
|
||
{ "g0", 16 }, { "g1", 17 }, { "g2", 18 }, { "g3", 19 },
|
||
{ "g4", 20 }, { "g5", 21 }, { "g6", 22 }, { "g7", 23 },
|
||
{ "g8", 24 }, { "g9", 25 }, { "g10", 26 }, { "g11", 27 },
|
||
{ "g12", 28 }, { "g13", 29 }, { "g14", 30 }, { "fp", 31 },
|
||
|
||
/* Numbers for special-function registers are for assembler internal
|
||
* use only: they are scaled back to range [0-31] for binary output.
|
||
*/
|
||
# define SF0 32
|
||
|
||
{ "sf0", 32 }, { "sf1", 33 }, { "sf2", 34 }, { "sf3", 35 },
|
||
{ "sf4", 36 }, { "sf5", 37 }, { "sf6", 38 }, { "sf7", 39 },
|
||
{ "sf8", 40 }, { "sf9", 41 }, { "sf10",42 }, { "sf11",43 },
|
||
{ "sf12",44 }, { "sf13",45 }, { "sf14",46 }, { "sf15",47 },
|
||
{ "sf16",48 }, { "sf17",49 }, { "sf18",50 }, { "sf19",51 },
|
||
{ "sf20",52 }, { "sf21",53 }, { "sf22",54 }, { "sf23",55 },
|
||
{ "sf24",56 }, { "sf25",57 }, { "sf26",58 }, { "sf27",59 },
|
||
{ "sf28",60 }, { "sf29",61 }, { "sf30",62 }, { "sf31",63 },
|
||
|
||
/* Numbers for floating point registers are for assembler internal use
|
||
* only: they are scaled back to [0-3] for binary output.
|
||
*/
|
||
# define FP0 64
|
||
|
||
{ "fp0", 64 }, { "fp1", 65 }, { "fp2", 66 }, { "fp3", 67 },
|
||
|
||
{ NULL, 0 }, /* END OF LIST */
|
||
};
|
||
|
||
#define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0))
|
||
#define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0))
|
||
#define IS_FP_REG(n) ((n) >= FP0)
|
||
|
||
/* Number and assembler mnemonic for all registers that can appear as 'abase'
|
||
* (indirect addressing) registers.
|
||
*/
|
||
static struct {
|
||
char *areg_name;
|
||
int areg_num;
|
||
} aregs[] = {
|
||
{ "(pfp)", 0 }, { "(sp)", 1 }, { "(rip)", 2 }, { "(r3)", 3 },
|
||
{ "(r4)", 4 }, { "(r5)", 5 }, { "(r6)", 6 }, { "(r7)", 7 },
|
||
{ "(r8)", 8 }, { "(r9)", 9 }, { "(r10)", 10 }, { "(r11)", 11 },
|
||
{ "(r12)", 12 }, { "(r13)", 13 }, { "(r14)", 14 }, { "(r15)", 15 },
|
||
{ "(g0)", 16 }, { "(g1)", 17 }, { "(g2)", 18 }, { "(g3)", 19 },
|
||
{ "(g4)", 20 }, { "(g5)", 21 }, { "(g6)", 22 }, { "(g7)", 23 },
|
||
{ "(g8)", 24 }, { "(g9)", 25 }, { "(g10)", 26 }, { "(g11)", 27 },
|
||
{ "(g12)", 28 }, { "(g13)", 29 }, { "(g14)", 30 }, { "(fp)", 31 },
|
||
|
||
# define IPREL 32
|
||
/* for assembler internal use only: this number never appears in binary
|
||
* output.
|
||
*/
|
||
{ "(ip)", IPREL },
|
||
|
||
{ NULL, 0 }, /* END OF LIST */
|
||
};
|
||
|
||
|
||
/* Hash tables */
|
||
static struct hash_control *op_hash = NULL; /* Opcode mnemonics */
|
||
static struct hash_control *reg_hash = NULL; /* Register name hash table */
|
||
static struct hash_control *areg_hash = NULL; /* Abase register hash table */
|
||
|
||
|
||
/* Architecture for which we are assembling */
|
||
#define ARCH_ANY 0 /* Default: no architecture checking done */
|
||
#define ARCH_KA 1
|
||
#define ARCH_KB 2
|
||
#define ARCH_MC 3
|
||
#define ARCH_CA 4
|
||
int architecture = ARCH_ANY; /* Architecture requested on invocation line */
|
||
int iclasses_seen = 0; /* OR of instruction classes (I_* constants)
|
||
* for which we've actually assembled
|
||
* instructions.
|
||
*/
|
||
|
||
|
||
/* BRANCH-PREDICTION INSTRUMENTATION
|
||
*
|
||
* The following supports generation of branch-prediction instrumentation
|
||
* (turned on by -b switch). The instrumentation collects counts
|
||
* of branches taken/not-taken for later input to a utility that will
|
||
* set the branch prediction bits of the instructions in accordance with
|
||
* the behavior observed. (Note that the KX series does not have
|
||
* brach-prediction.)
|
||
*
|
||
* The instrumentation consists of:
|
||
*
|
||
* (1) before and after each conditional branch, a call to an external
|
||
* routine that increments and steps over an inline counter. The
|
||
* counter itself, initialized to 0, immediately follows the call
|
||
* instruction. For each branch, the counter following the branch
|
||
* is the number of times the branch was not taken, and the difference
|
||
* between the counters is the number of times it was taken. An
|
||
* example of an instrumented conditional branch:
|
||
*
|
||
* call BR_CNT_FUNC
|
||
* .word 0
|
||
* LBRANCH23: be label
|
||
* call BR_CNT_FUNC
|
||
* .word 0
|
||
*
|
||
* (2) a table of pointers to the instrumented branches, so that an
|
||
* external postprocessing routine can locate all of the counters.
|
||
* the table begins with a 2-word header: a pointer to the next in
|
||
* a linked list of such tables (initialized to 0); and a count
|
||
* of the number of entries in the table (exclusive of the header.
|
||
*
|
||
* Note that input source code is expected to already contain calls
|
||
* an external routine that will link the branch local table into a
|
||
* list of such tables.
|
||
*/
|
||
|
||
static int br_cnt = 0; /* Number of branches instrumented so far.
|
||
* Also used to generate unique local labels
|
||
* for each instrumented branch
|
||
*/
|
||
|
||
#define BR_LABEL_BASE "LBRANCH"
|
||
/* Basename of local labels on instrumented
|
||
* branches, to avoid conflict with compiler-
|
||
* generated local labels.
|
||
*/
|
||
|
||
#define BR_CNT_FUNC "__inc_branch"
|
||
/* Name of the external routine that will
|
||
* increment (and step over) an inline counter.
|
||
*/
|
||
|
||
#define BR_TAB_NAME "__BRANCH_TABLE__"
|
||
/* Name of the table of pointers to branches.
|
||
* A local (i.e., non-external) symbol.
|
||
*/
|
||
|
||
/*****************************************************************************
|
||
* md_begin: One-time initialization.
|
||
*
|
||
* Set up hash tables.
|
||
*
|
||
**************************************************************************** */
|
||
void
|
||
md_begin()
|
||
{
|
||
int i; /* Loop counter */
|
||
const struct i960_opcode *oP; /* Pointer into opcode table */
|
||
char *retval; /* Value returned by hash functions */
|
||
|
||
if (((op_hash = hash_new()) == 0)
|
||
|| ((reg_hash = hash_new()) == 0)
|
||
|| ((areg_hash = hash_new()) == 0)) {
|
||
as_fatal("virtual memory exceeded");
|
||
}
|
||
|
||
retval = ""; /* For some reason, the base assembler uses an empty
|
||
* string for "no error message", instead of a NULL
|
||
* pointer.
|
||
*/
|
||
|
||
for (oP=i960_opcodes; oP->name && !*retval; oP++) {
|
||
retval = hash_insert(op_hash, oP->name, oP);
|
||
}
|
||
|
||
for (i=0; regnames[i].reg_name && !*retval; i++) {
|
||
retval = hash_insert(reg_hash, regnames[i].reg_name,
|
||
®names[i].reg_num);
|
||
}
|
||
|
||
for (i=0; aregs[i].areg_name && !*retval; i++){
|
||
retval = hash_insert(areg_hash, aregs[i].areg_name,
|
||
&aregs[i].areg_num);
|
||
}
|
||
|
||
if (*retval) {
|
||
as_fatal("Hashing returned \"%s\".", retval);
|
||
}
|
||
} /* md_begin() */
|
||
|
||
/*****************************************************************************
|
||
* md_end: One-time final cleanup
|
||
*
|
||
* None necessary
|
||
*
|
||
**************************************************************************** */
|
||
void
|
||
md_end()
|
||
{
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* md_assemble: Assemble an instruction
|
||
*
|
||
* Assumptions about the passed-in text:
|
||
* - all comments, labels removed
|
||
* - text is an instruction
|
||
* - all white space compressed to single blanks
|
||
* - all character constants have been replaced with decimal
|
||
*
|
||
**************************************************************************** */
|
||
void
|
||
md_assemble(textP)
|
||
char *textP; /* Source text of instruction */
|
||
{
|
||
char *args[4]; /* Parsed instruction text, containing NO whitespace:
|
||
* arg[0]->opcode mnemonic
|
||
* arg[1-3]->operands, with char constants
|
||
* replaced by decimal numbers
|
||
*/
|
||
int n_ops; /* Number of instruction operands */
|
||
|
||
struct i960_opcode *oP;
|
||
/* Pointer to instruction description */
|
||
int branch_predict;
|
||
/* TRUE iff opcode mnemonic included branch-prediction
|
||
* suffix (".f" or ".t")
|
||
*/
|
||
long bp_bits; /* Setting of branch-prediction bit(s) to be OR'd
|
||
* into instruction opcode of CTRL/COBR format
|
||
* instructions.
|
||
*/
|
||
int n; /* Offset of last character in opcode mnemonic */
|
||
|
||
static const char bp_error_msg[] = "branch prediction invalid on this opcode";
|
||
|
||
|
||
/* Parse instruction into opcode and operands */
|
||
bzero(args, sizeof(args));
|
||
n_ops = i_scan(textP, args);
|
||
if (n_ops == -1){
|
||
return; /* Error message already issued */
|
||
}
|
||
|
||
/* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */
|
||
if (!strcmp(args[0],"ldconst")){
|
||
n_ops = parse_ldconst(args);
|
||
if (n_ops == -1){
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Check for branch-prediction suffix on opcode mnemonic, strip it off */
|
||
n = strlen(args[0]) - 1;
|
||
branch_predict = 0;
|
||
bp_bits = 0;
|
||
if (args[0][n-1] == '.' && (args[0][n] == 't' || args[0][n] == 'f')){
|
||
/* We could check here to see if the target architecture
|
||
* supports branch prediction, but why bother? The bit
|
||
* will just be ignored by processors that don't use it.
|
||
*/
|
||
branch_predict = 1;
|
||
bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
|
||
args[0][n-1] = '\0'; /* Strip suffix from opcode mnemonic */
|
||
}
|
||
|
||
/* Look up opcode mnemonic in table and check number of operands.
|
||
* Check that opcode is legal for the target architecture.
|
||
* If all looks good, assemble instruction.
|
||
*/
|
||
oP = (struct i960_opcode *) hash_find(op_hash, args[0]);
|
||
if (!oP || !targ_has_iclass(oP->iclass)) {
|
||
as_bad("invalid opcode, \"%s\".", args[0]);
|
||
|
||
} else if (n_ops != oP->num_ops) {
|
||
as_bad("improper number of operands. expecting %d, got %d", oP->num_ops, n_ops);
|
||
|
||
} else {
|
||
switch (oP->format){
|
||
case FBRA:
|
||
case CTRL:
|
||
ctrl_fmt(args[1], oP->opcode | bp_bits, oP->num_ops);
|
||
if (oP->format == FBRA){
|
||
/* Now generate a 'bno' to same arg */
|
||
ctrl_fmt(args[1], BNO | bp_bits, 1);
|
||
}
|
||
break;
|
||
case COBR:
|
||
case COJ:
|
||
cobr_fmt(args, oP->opcode | bp_bits, oP);
|
||
break;
|
||
case REG:
|
||
if (branch_predict){
|
||
as_warn(bp_error_msg);
|
||
}
|
||
reg_fmt(args, oP);
|
||
break;
|
||
case MEM1:
|
||
case MEM2:
|
||
case MEM4:
|
||
case MEM8:
|
||
case MEM12:
|
||
case MEM16:
|
||
if (branch_predict){
|
||
as_warn(bp_error_msg);
|
||
}
|
||
mem_fmt(args, oP);
|
||
break;
|
||
case CALLJ:
|
||
if (branch_predict){
|
||
as_warn(bp_error_msg);
|
||
}
|
||
/* Output opcode & set up "fixup" (relocation);
|
||
* flag relocation as 'callj' type.
|
||
*/
|
||
know(oP->num_ops == 1);
|
||
get_cdisp(args[1], "CTRL", oP->opcode, 24, 0, 1);
|
||
break;
|
||
default:
|
||
BAD_CASE(oP->format);
|
||
break;
|
||
}
|
||
}
|
||
} /* md_assemble() */
|
||
|
||
/*****************************************************************************
|
||
* md_number_to_chars: convert a number to target byte order
|
||
*
|
||
**************************************************************************** */
|
||
void
|
||
md_number_to_chars(buf, value, n)
|
||
char *buf; /* Put output here */
|
||
long value; /* The integer to be converted */
|
||
int n; /* Number of bytes to output (significant bytes
|
||
* in 'value')
|
||
*/
|
||
{
|
||
while (n--){
|
||
*buf++ = value;
|
||
value >>= 8;
|
||
}
|
||
|
||
/* XXX line number probably botched for this warning message. */
|
||
if (value != 0 && value != -1){
|
||
as_bad("Displacement too long for instruction field length.");
|
||
}
|
||
|
||
return;
|
||
} /* md_number_to_chars() */
|
||
|
||
/*****************************************************************************
|
||
* md_chars_to_number: convert from target byte order to host byte order.
|
||
*
|
||
**************************************************************************** */
|
||
int
|
||
md_chars_to_number(val, n)
|
||
unsigned char *val; /* Value in target byte order */
|
||
int n; /* Number of bytes in the input */
|
||
{
|
||
int retval;
|
||
|
||
for (retval=0; n--;){
|
||
retval <<= 8;
|
||
retval |= val[n];
|
||
}
|
||
return retval;
|
||
}
|
||
|
||
|
||
#define MAX_LITTLENUMS 6
|
||
#define LNUM_SIZE sizeof(LITTLENUM_TYPE)
|
||
|
||
/*****************************************************************************
|
||
* md_atof: convert ascii to floating point
|
||
*
|
||
* Turn a string at input_line_pointer into a floating point constant of type
|
||
* 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS
|
||
* emitted is returned at 'sizeP'. An error message is returned, or a pointer
|
||
* to an empty message if OK.
|
||
*
|
||
* Note we call the i386 floating point routine, rather than complicating
|
||
* things with more files or symbolic links.
|
||
*
|
||
**************************************************************************** */
|
||
char * md_atof(type, litP, sizeP)
|
||
int type;
|
||
char *litP;
|
||
int *sizeP;
|
||
{
|
||
LITTLENUM_TYPE words[MAX_LITTLENUMS];
|
||
LITTLENUM_TYPE *wordP;
|
||
int prec;
|
||
char *t;
|
||
char *atof_ieee();
|
||
|
||
switch(type) {
|
||
case 'f':
|
||
case 'F':
|
||
prec = 2;
|
||
break;
|
||
|
||
case 'd':
|
||
case 'D':
|
||
prec = 4;
|
||
break;
|
||
|
||
case 't':
|
||
case 'T':
|
||
prec = 5;
|
||
type = 'x'; /* That's what atof_ieee() understands */
|
||
break;
|
||
|
||
default:
|
||
*sizeP=0;
|
||
return "Bad call to md_atof()";
|
||
}
|
||
|
||
t = atof_ieee(input_line_pointer, type, words);
|
||
if (t){
|
||
input_line_pointer = t;
|
||
}
|
||
|
||
*sizeP = prec * LNUM_SIZE;
|
||
|
||
/* Output the LITTLENUMs in REVERSE order in accord with i80960
|
||
* word-order. (Dunno why atof_ieee doesn't do it in the right
|
||
* order in the first place -- probably because it's a hack of
|
||
* atof_m68k.)
|
||
*/
|
||
|
||
for(wordP = words + prec - 1; prec--;){
|
||
md_number_to_chars(litP, (long) (*wordP--), LNUM_SIZE);
|
||
litP += sizeof(LITTLENUM_TYPE);
|
||
}
|
||
|
||
return ""; /* Someone should teach Dean about null pointers */
|
||
}
|
||
|
||
|
||
/*****************************************************************************
|
||
* md_number_to_imm
|
||
*
|
||
**************************************************************************** */
|
||
void
|
||
md_number_to_imm(buf, val, n)
|
||
char *buf;
|
||
long val;
|
||
int n;
|
||
{
|
||
md_number_to_chars(buf, val, n);
|
||
}
|
||
|
||
|
||
/*****************************************************************************
|
||
* md_number_to_disp
|
||
*
|
||
**************************************************************************** */
|
||
void
|
||
md_number_to_disp(buf, val, n)
|
||
char *buf;
|
||
long val;
|
||
int n;
|
||
{
|
||
md_number_to_chars(buf, val, n);
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* md_number_to_field:
|
||
*
|
||
* Stick a value (an address fixup) into a bit field of
|
||
* previously-generated instruction.
|
||
*
|
||
**************************************************************************** */
|
||
void
|
||
md_number_to_field(instrP, val, bfixP)
|
||
char *instrP; /* Pointer to instruction to be fixed */
|
||
long val; /* Address fixup value */
|
||
bit_fixS *bfixP; /* Description of bit field to be fixed up */
|
||
{
|
||
int numbits; /* Length of bit field to be fixed */
|
||
long instr; /* 32-bit instruction to be fixed-up */
|
||
long sign; /* 0 or -1, according to sign bit of 'val' */
|
||
|
||
/* Convert instruction back to host byte order
|
||
*/
|
||
instr = md_chars_to_number(instrP, 4);
|
||
|
||
/* Surprise! -- we stored the number of bits
|
||
* to be modified rather than a pointer to a structure.
|
||
*/
|
||
numbits = (int)bfixP;
|
||
if (numbits == 1){
|
||
/* This is a no-op, stuck here by reloc_callj() */
|
||
return;
|
||
}
|
||
|
||
know ((numbits==13) || (numbits==24));
|
||
|
||
/* Propagate sign bit of 'val' for the given number of bits.
|
||
* Result should be all 0 or all 1
|
||
*/
|
||
sign = val >> ((int)numbits - 1);
|
||
if (((val < 0) && (sign != -1))
|
||
|| ((val > 0) && (sign != 0))){
|
||
as_bad("Fixup of %d too large for field width of %d",
|
||
val, numbits);
|
||
} else {
|
||
/* Put bit field into instruction and write back in target
|
||
* byte order.
|
||
*/
|
||
val &= ~(-1 << (int)numbits); /* Clear unused sign bits */
|
||
instr |= val;
|
||
md_number_to_chars(instrP, instr, 4);
|
||
}
|
||
} /* md_number_to_field() */
|
||
|
||
|
||
/*****************************************************************************
|
||
* md_parse_option
|
||
* Invocation line includes a switch not recognized by the base assembler.
|
||
* See if it's a processor-specific option. For the 960, these are:
|
||
*
|
||
* -norelax:
|
||
* Conditional branch instructions that require displacements
|
||
* greater than 13 bits (or that have external targets) should
|
||
* generate errors. The default is to replace each such
|
||
* instruction with the corresponding compare (or chkbit) and
|
||
* branch instructions. Note that the Intel "j" cobr directives
|
||
* are ALWAYS "de-optimized" in this way when necessary,
|
||
* regardless of the setting of this option.
|
||
*
|
||
* -b:
|
||
* Add code to collect information about branches taken, for
|
||
* later optimization of branch prediction bits by a separate
|
||
* tool. COBR and CNTL format instructions have branch
|
||
* prediction bits (in the CX architecture); if "BR" represents
|
||
* an instruction in one of these classes, the following rep-
|
||
* resents the code generated by the assembler:
|
||
*
|
||
* call <increment routine>
|
||
* .word 0 # pre-counter
|
||
* Label: BR
|
||
* call <increment routine>
|
||
* .word 0 # post-counter
|
||
*
|
||
* A table of all such "Labels" is also generated.
|
||
*
|
||
*
|
||
* -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
|
||
* Select the 80960 architecture. Instructions or features not
|
||
* supported by the selected architecture cause fatal errors.
|
||
* The default is to generate code for any instruction or feature
|
||
* that is supported by SOME version of the 960 (even if this
|
||
* means mixing architectures!).
|
||
*
|
||
**************************************************************************** */
|
||
int
|
||
md_parse_option(argP, cntP, vecP)
|
||
char **argP;
|
||
int *cntP;
|
||
char ***vecP;
|
||
{
|
||
char *p;
|
||
struct tabentry { char *flag; int arch; };
|
||
static struct tabentry arch_tab[] = {
|
||
"KA", ARCH_KA,
|
||
"KB", ARCH_KB,
|
||
"SA", ARCH_KA, /* Synonym for KA */
|
||
"SB", ARCH_KB, /* Synonym for KB */
|
||
"KC", ARCH_MC, /* Synonym for MC */
|
||
"MC", ARCH_MC,
|
||
"CA", ARCH_CA,
|
||
NULL, 0
|
||
};
|
||
struct tabentry *tp;
|
||
|
||
if (!strcmp(*argP,"norelax")){
|
||
norelax = 1;
|
||
|
||
} else if (**argP == 'b'){
|
||
instrument_branches = 1;
|
||
|
||
} else if (**argP == 'A'){
|
||
p = (*argP) + 1;
|
||
|
||
for (tp = arch_tab; tp->flag != NULL; tp++){
|
||
if (!strcmp(p,tp->flag)){
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (tp->flag == NULL){
|
||
as_bad("unknown architecture: %s", p);
|
||
} else {
|
||
architecture = tp->arch;
|
||
}
|
||
} else {
|
||
/* Unknown option */
|
||
(*argP)++;
|
||
return 0;
|
||
}
|
||
**argP = '\0'; /* Done parsing this switch */
|
||
return 1;
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* md_convert_frag:
|
||
* Called by base assembler after address relaxation is finished: modify
|
||
* variable fragments according to how much relaxation was done.
|
||
*
|
||
* If the fragment substate is still 1, a 13-bit displacement was enough
|
||
* to reach the symbol in question. Set up an address fixup, but otherwise
|
||
* leave the cobr instruction alone.
|
||
*
|
||
* If the fragment substate is 2, a 13-bit displacement was not enough.
|
||
* Replace the cobr with a two instructions (a compare and a branch).
|
||
*
|
||
**************************************************************************** */
|
||
void
|
||
md_convert_frag(headers, fragP)
|
||
object_headers *headers;
|
||
fragS * fragP;
|
||
{
|
||
fixS *fixP; /* Structure describing needed address fix */
|
||
|
||
switch (fragP->fr_subtype){
|
||
case 1:
|
||
/* LEAVE SINGLE COBR INSTRUCTION */
|
||
fixP = fix_new(fragP,
|
||
fragP->fr_opcode-fragP->fr_literal,
|
||
4,
|
||
fragP->fr_symbol,
|
||
0,
|
||
fragP->fr_offset,
|
||
1,
|
||
0);
|
||
|
||
fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */
|
||
break;
|
||
case 2:
|
||
/* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */
|
||
relax_cobr(fragP);
|
||
break;
|
||
default:
|
||
BAD_CASE(fragP->fr_subtype);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* md_estimate_size_before_relax: How much does it look like *fragP will grow?
|
||
*
|
||
* Called by base assembler just before address relaxation.
|
||
* Return the amount by which the fragment will grow.
|
||
*
|
||
* Any symbol that is now undefined will not become defined; cobr's
|
||
* based on undefined symbols will have to be replaced with a compare
|
||
* instruction and a branch instruction, and the code fragment will grow
|
||
* by 4 bytes.
|
||
*
|
||
**************************************************************************** */
|
||
int
|
||
md_estimate_size_before_relax(fragP, segment_type)
|
||
register fragS *fragP;
|
||
register segT segment_type;
|
||
{
|
||
/* If symbol is undefined in this segment, go to "relaxed" state
|
||
* (compare and branch instructions instead of cobr) right now.
|
||
*/
|
||
if (S_GET_SEGMENT(fragP->fr_symbol) != segment_type) {
|
||
relax_cobr(fragP);
|
||
return 4;
|
||
}
|
||
return 0;
|
||
} /* md_estimate_size_before_relax() */
|
||
|
||
|
||
/*****************************************************************************
|
||
* md_ri_to_chars:
|
||
* This routine exists in order to overcome machine byte-order problems
|
||
* when dealing with bit-field entries in the relocation_info struct.
|
||
*
|
||
* But relocation info will be used on the host machine only (only
|
||
* executable code is actually downloaded to the i80960). Therefore,
|
||
* we leave it in host byte order.
|
||
*
|
||
**************************************************************************** */
|
||
void md_ri_to_chars(where, ri)
|
||
char *where;
|
||
struct relocation_info *ri;
|
||
{
|
||
*((struct relocation_info *) where) = *ri; /* structure assignment */
|
||
} /* md_ri_to_chars() */
|
||
|
||
#ifndef WORKING_DOT_WORD
|
||
|
||
int md_short_jump_size = 0;
|
||
int md_long_jump_size = 0;
|
||
|
||
void md_create_short_jump(ptr, from_addr, to_addr, frag, to_symbol)
|
||
char *ptr;
|
||
long from_addr;
|
||
long to_addr;
|
||
fragS *frag;
|
||
symbolS *to_symbol;
|
||
{
|
||
abort();
|
||
}
|
||
|
||
void
|
||
md_create_long_jump(ptr,from_addr,to_addr,frag,to_symbol)
|
||
char *ptr;
|
||
long from_addr, to_addr;
|
||
fragS *frag;
|
||
symbolS *to_symbol;
|
||
{
|
||
abort();
|
||
}
|
||
#endif
|
||
|
||
/*************************************************************
|
||
* *
|
||
* FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER *
|
||
* *
|
||
************************************************************ */
|
||
|
||
|
||
|
||
/*****************************************************************************
|
||
* brcnt_emit: Emit code to increment inline branch counter.
|
||
*
|
||
* See the comments above the declaration of 'br_cnt' for details on
|
||
* branch-prediction instrumentation.
|
||
**************************************************************************** */
|
||
static void
|
||
brcnt_emit()
|
||
{
|
||
ctrl_fmt(BR_CNT_FUNC,CALL,1);/* Emit call to "increment" routine */
|
||
emit(0); /* Emit inline counter to be incremented */
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* brlab_next: generate the next branch local label
|
||
*
|
||
* See the comments above the declaration of 'br_cnt' for details on
|
||
* branch-prediction instrumentation.
|
||
**************************************************************************** */
|
||
static char *
|
||
brlab_next()
|
||
{
|
||
static char buf[20];
|
||
|
||
sprintf(buf, "%s%d", BR_LABEL_BASE, br_cnt++);
|
||
return buf;
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* brtab_emit: generate the fetch-prediction branch table.
|
||
*
|
||
* See the comments above the declaration of 'br_cnt' for details on
|
||
* branch-prediction instrumentation.
|
||
*
|
||
* The code emitted here would be functionally equivalent to the following
|
||
* example assembler source.
|
||
*
|
||
* .data
|
||
* .align 2
|
||
* BR_TAB_NAME:
|
||
* .word 0 # link to next table
|
||
* .word 3 # length of table
|
||
* .word LBRANCH0 # 1st entry in table proper
|
||
* .word LBRANCH1
|
||
* .word LBRANCH2
|
||
***************************************************************************** */
|
||
void
|
||
brtab_emit()
|
||
{
|
||
int i;
|
||
char buf[20];
|
||
char *p; /* Where the binary was output to */
|
||
fixS *fixP; /*->description of deferred address fixup */
|
||
|
||
if (!instrument_branches){
|
||
return;
|
||
}
|
||
|
||
subseg_new(SEG_DATA,0); /* .data */
|
||
frag_align(2,0); /* .align 2 */
|
||
record_alignment(now_seg,2);
|
||
colon(BR_TAB_NAME); /* BR_TAB_NAME: */
|
||
emit(0); /* .word 0 #link to next table */
|
||
emit(br_cnt); /* .word n #length of table */
|
||
|
||
for (i=0; i<br_cnt; i++){
|
||
sprintf(buf, "%s%d", BR_LABEL_BASE, i);
|
||
p = emit(0);
|
||
fixP = fix_new(frag_now,
|
||
p - frag_now->fr_literal,
|
||
4,
|
||
symbol_find(buf),
|
||
0,
|
||
0,
|
||
0,
|
||
0);
|
||
fixP->fx_im_disp = 2; /* 32-bit displacement fix */
|
||
}
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* cobr_fmt: generate a COBR-format instruction
|
||
*
|
||
**************************************************************************** */
|
||
static
|
||
void
|
||
cobr_fmt(arg, opcode, oP)
|
||
char *arg[]; /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
|
||
long opcode; /* Opcode, with branch-prediction bits already set
|
||
* if necessary.
|
||
*/
|
||
struct i960_opcode *oP;
|
||
/*->description of instruction */
|
||
{
|
||
long instr; /* 32-bit instruction */
|
||
struct regop regop; /* Description of register operand */
|
||
int n; /* Number of operands */
|
||
int var_frag; /* 1 if varying length code fragment should
|
||
* be emitted; 0 if an address fix
|
||
* should be emitted.
|
||
*/
|
||
|
||
instr = opcode;
|
||
n = oP->num_ops;
|
||
|
||
if (n >= 1) {
|
||
/* First operand (if any) of a COBR is always a register
|
||
* operand. Parse it.
|
||
*/
|
||
parse_regop(®op, arg[1], oP->operand[0]);
|
||
instr |= (regop.n << 19) | (regop.mode << 13);
|
||
}
|
||
if (n >= 2) {
|
||
/* Second operand (if any) of a COBR is always a register
|
||
* operand. Parse it.
|
||
*/
|
||
parse_regop(®op, arg[2], oP->operand[1]);
|
||
instr |= (regop.n << 14) | regop.special;
|
||
}
|
||
|
||
|
||
if (n < 3){
|
||
emit(instr);
|
||
|
||
} else {
|
||
if (instrument_branches){
|
||
brcnt_emit();
|
||
colon(brlab_next());
|
||
}
|
||
|
||
/* A third operand to a COBR is always a displacement.
|
||
* Parse it; if it's relaxable (a cobr "j" directive, or any
|
||
* cobr other than bbs/bbc when the "-norelax" option is not in
|
||
* use) set up a variable code fragment; otherwise set up an
|
||
* address fix.
|
||
*/
|
||
var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */
|
||
get_cdisp(arg[3], "COBR", instr, 13, var_frag, 0);
|
||
|
||
if (instrument_branches){
|
||
brcnt_emit();
|
||
}
|
||
}
|
||
} /* cobr_fmt() */
|
||
|
||
|
||
/*****************************************************************************
|
||
* ctrl_fmt: generate a CTRL-format instruction
|
||
*
|
||
**************************************************************************** */
|
||
static
|
||
void
|
||
ctrl_fmt(targP, opcode, num_ops)
|
||
char *targP; /* Pointer to text of lone operand (if any) */
|
||
long opcode; /* Template of instruction */
|
||
int num_ops; /* Number of operands */
|
||
{
|
||
int instrument; /* TRUE iff we should add instrumentation to track
|
||
* how often the branch is taken
|
||
*/
|
||
|
||
|
||
if (num_ops == 0){
|
||
emit(opcode); /* Output opcode */
|
||
} else {
|
||
|
||
instrument = instrument_branches && (opcode!=CALL)
|
||
&& (opcode!=B) && (opcode!=RET) && (opcode!=BAL);
|
||
|
||
if (instrument){
|
||
brcnt_emit();
|
||
colon(brlab_next());
|
||
}
|
||
|
||
/* The operand MUST be an ip-relative displacment. Parse it
|
||
* and set up address fix for the instruction we just output.
|
||
*/
|
||
get_cdisp(targP, "CTRL", opcode, 24, 0, 0);
|
||
|
||
if (instrument){
|
||
brcnt_emit();
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
|
||
/*****************************************************************************
|
||
* emit: output instruction binary
|
||
*
|
||
* Output instruction binary, in target byte order, 4 bytes at a time.
|
||
* Return pointer to where it was placed.
|
||
*
|
||
**************************************************************************** */
|
||
static
|
||
char *
|
||
emit(instr)
|
||
long instr; /* Word to be output, host byte order */
|
||
{
|
||
char *toP; /* Where to output it */
|
||
|
||
toP = frag_more(4); /* Allocate storage */
|
||
md_number_to_chars(toP, instr, 4); /* Convert to target byte order */
|
||
return toP;
|
||
}
|
||
|
||
|
||
/*****************************************************************************
|
||
* get_args: break individual arguments out of comma-separated list
|
||
*
|
||
* Input assumptions:
|
||
* - all comments and labels have been removed
|
||
* - all strings of whitespace have been collapsed to a single blank.
|
||
* - all character constants ('x') have been replaced with decimal
|
||
*
|
||
* Output:
|
||
* args[0] is untouched. args[1] points to first operand, etc. All args:
|
||
* - are NULL-terminated
|
||
* - contain no whitespace
|
||
*
|
||
* Return value:
|
||
* Number of operands (0,1,2, or 3) or -1 on error.
|
||
*
|
||
**************************************************************************** */
|
||
static int get_args(p, args)
|
||
register char *p; /* Pointer to comma-separated operands; MUCKED BY US */
|
||
char *args[]; /* Output arg: pointers to operands placed in args[1-3].
|
||
* MUST ACCOMMODATE 4 ENTRIES (args[0-3]).
|
||
*/
|
||
{
|
||
register int n; /* Number of operands */
|
||
register char *to;
|
||
/* char buf[4]; */
|
||
/* int len; */
|
||
|
||
|
||
/* Skip lead white space */
|
||
while (*p == ' '){
|
||
p++;
|
||
}
|
||
|
||
if (*p == '\0'){
|
||
return 0;
|
||
}
|
||
|
||
n = 1;
|
||
args[1] = p;
|
||
|
||
/* Squeze blanks out by moving non-blanks toward start of string.
|
||
* Isolate operands, whenever comma is found.
|
||
*/
|
||
to = p;
|
||
while (*p != '\0'){
|
||
|
||
if (*p == ' '){
|
||
p++;
|
||
|
||
} else if (*p == ','){
|
||
|
||
/* Start of operand */
|
||
if (n == 3){
|
||
as_bad("too many operands");
|
||
return -1;
|
||
}
|
||
*to++ = '\0'; /* Terminate argument */
|
||
args[++n] = to; /* Start next argument */
|
||
p++;
|
||
|
||
} else {
|
||
*to++ = *p++;
|
||
}
|
||
}
|
||
*to = '\0';
|
||
return n;
|
||
}
|
||
|
||
|
||
/*****************************************************************************
|
||
* get_cdisp: handle displacement for a COBR or CTRL instruction.
|
||
*
|
||
* Parse displacement for a COBR or CTRL instruction.
|
||
*
|
||
* If successful, output the instruction opcode and set up for it,
|
||
* depending on the arg 'var_frag', either:
|
||
* o an address fixup to be done when all symbol values are known, or
|
||
* o a varying length code fragment, with address fixup info. This
|
||
* will be done for cobr instructions that may have to be relaxed
|
||
* in to compare/branch instructions (8 bytes) if the final address
|
||
* displacement is greater than 13 bits.
|
||
*
|
||
**************************************************************************** */
|
||
static
|
||
void
|
||
get_cdisp(dispP, ifmtP, instr, numbits, var_frag, callj)
|
||
char *dispP; /*->displacement as specified in source instruction */
|
||
char *ifmtP; /*->"COBR" or "CTRL" (for use in error message) */
|
||
long instr; /* Instruction needing the displacement */
|
||
int numbits; /* # bits of displacement (13 for COBR, 24 for CTRL) */
|
||
int var_frag; /* 1 if varying length code fragment should be emitted;
|
||
* 0 if an address fix should be emitted.
|
||
*/
|
||
int callj; /* 1 if callj relocation should be done; else 0 */
|
||
{
|
||
expressionS e; /* Parsed expression */
|
||
fixS *fixP; /* Structure describing needed address fix */
|
||
char *outP; /* Where instruction binary is output to */
|
||
|
||
fixP = NULL;
|
||
|
||
switch (parse_expr(dispP,&e)) {
|
||
|
||
case SEG_GOOF:
|
||
as_bad("expression syntax error");
|
||
break;
|
||
|
||
case SEG_TEXT:
|
||
case SEG_UNKNOWN:
|
||
if (var_frag) {
|
||
outP = frag_more(8); /* Allocate worst-case storage */
|
||
md_number_to_chars(outP, instr, 4);
|
||
frag_variant(rs_machine_dependent, 4, 4, 1,
|
||
adds(e), offs(e), outP, 0, 0);
|
||
} else {
|
||
/* Set up a new fix structure, so address can be updated
|
||
* when all symbol values are known.
|
||
*/
|
||
outP = emit(instr);
|
||
fixP = fix_new(frag_now,
|
||
outP - frag_now->fr_literal,
|
||
4,
|
||
adds(e),
|
||
0,
|
||
offs(e),
|
||
1,
|
||
0);
|
||
|
||
fixP->fx_callj = callj;
|
||
|
||
/* We want to modify a bit field when the address is
|
||
* known. But we don't need all the garbage in the
|
||
* bit_fix structure. So we're going to lie and store
|
||
* the number of bits affected instead of a pointer.
|
||
*/
|
||
fixP->fx_bit_fixP = (bit_fixS *) numbits;
|
||
}
|
||
break;
|
||
|
||
case SEG_DATA:
|
||
case SEG_BSS:
|
||
as_bad("attempt to branch into different segment");
|
||
break;
|
||
|
||
default:
|
||
as_bad("target of %s instruction must be a label", ifmtP);
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
/*****************************************************************************
|
||
* get_ispec: parse a memory operand for an index specification
|
||
*
|
||
* Here, an "index specification" is taken to be anything surrounded
|
||
* by square brackets and NOT followed by anything else.
|
||
*
|
||
* If it's found, detach it from the input string, remove the surrounding
|
||
* square brackets, and return a pointer to it. Otherwise, return NULL.
|
||
*
|
||
**************************************************************************** */
|
||
static
|
||
char *
|
||
get_ispec(textP)
|
||
char *textP; /*->memory operand from source instruction, no white space */
|
||
{
|
||
char *start; /*->start of index specification */
|
||
char *end; /*->end of index specification */
|
||
|
||
/* Find opening square bracket, if any
|
||
*/
|
||
start = strchr(textP, '[');
|
||
|
||
if (start != NULL){
|
||
|
||
/* Eliminate '[', detach from rest of operand */
|
||
*start++ = '\0';
|
||
|
||
end = strchr(start, ']');
|
||
|
||
if (end == NULL){
|
||
as_bad("unmatched '['");
|
||
|
||
} else {
|
||
/* Eliminate ']' and make sure it was the last thing
|
||
* in the string.
|
||
*/
|
||
*end = '\0';
|
||
if (*(end+1) != '\0'){
|
||
as_bad("garbage after index spec ignored");
|
||
}
|
||
}
|
||
}
|
||
return start;
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* get_regnum:
|
||
*
|
||
* Look up a (suspected) register name in the register table and return the
|
||
* associated register number (or -1 if not found).
|
||
*
|
||
**************************************************************************** */
|
||
static
|
||
int
|
||
get_regnum(regname)
|
||
char *regname; /* Suspected register name */
|
||
{
|
||
int *rP;
|
||
|
||
rP = (int *) hash_find(reg_hash, regname);
|
||
return (rP == NULL) ? -1 : *rP;
|
||
}
|
||
|
||
|
||
/*****************************************************************************
|
||
* i_scan: perform lexical scan of ascii assembler instruction.
|
||
*
|
||
* Input assumptions:
|
||
* - input string is an i80960 instruction (not a pseudo-op)
|
||
* - all comments and labels have been removed
|
||
* - all strings of whitespace have been collapsed to a single blank.
|
||
*
|
||
* Output:
|
||
* args[0] points to opcode, other entries point to operands. All strings:
|
||
* - are NULL-terminated
|
||
* - contain no whitespace
|
||
* - have character constants ('x') replaced with a decimal number
|
||
*
|
||
* Return value:
|
||
* Number of operands (0,1,2, or 3) or -1 on error.
|
||
*
|
||
**************************************************************************** */
|
||
static int i_scan(iP, args)
|
||
register char *iP; /* Pointer to ascii instruction; MUCKED BY US. */
|
||
char *args[]; /* Output arg: pointers to opcode and operands placed
|
||
* here. MUST ACCOMMODATE 4 ENTRIES.
|
||
*/
|
||
{
|
||
|
||
/* Isolate opcode */
|
||
if (*(iP) == ' ') {
|
||
iP++;
|
||
} /* Skip lead space, if any */
|
||
args[0] = iP;
|
||
for (; *iP != ' '; iP++) {
|
||
if (*iP == '\0') {
|
||
/* There are no operands */
|
||
if (args[0] == iP) {
|
||
/* We never moved: there was no opcode either! */
|
||
as_bad("missing opcode");
|
||
return -1;
|
||
}
|
||
return 0;
|
||
}
|
||
}
|
||
*iP++ = '\0'; /* Terminate opcode */
|
||
return(get_args(iP, args));
|
||
} /* i_scan() */
|
||
|
||
|
||
/*****************************************************************************
|
||
* mem_fmt: generate a MEMA- or MEMB-format instruction
|
||
*
|
||
**************************************************************************** */
|
||
static void mem_fmt(args, oP)
|
||
char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
|
||
struct i960_opcode *oP; /* Pointer to description of instruction */
|
||
{
|
||
int i; /* Loop counter */
|
||
struct regop regop; /* Description of register operand */
|
||
char opdesc; /* Operand descriptor byte */
|
||
memS instr; /* Description of binary to be output */
|
||
char *outP; /* Where the binary was output to */
|
||
expressionS expr; /* Parsed expression */
|
||
fixS *fixP; /*->description of deferred address fixup */
|
||
|
||
bzero(&instr, sizeof(memS));
|
||
instr.opcode = oP->opcode;
|
||
|
||
/* Process operands. */
|
||
for (i = 1; i <= oP->num_ops; i++){
|
||
opdesc = oP->operand[i-1];
|
||
|
||
if (MEMOP(opdesc)){
|
||
parse_memop(&instr, args[i], oP->format);
|
||
} else {
|
||
parse_regop(®op, args[i], opdesc);
|
||
instr.opcode |= regop.n << 19;
|
||
}
|
||
}
|
||
|
||
/* Output opcode */
|
||
outP = emit(instr.opcode);
|
||
|
||
if (instr.disp == 0){
|
||
return;
|
||
}
|
||
|
||
/* Parse and process the displacement */
|
||
switch (parse_expr(instr.e,&expr)){
|
||
|
||
case SEG_GOOF:
|
||
as_bad("expression syntax error");
|
||
break;
|
||
|
||
case SEG_ABSOLUTE:
|
||
if (instr.disp == 32){
|
||
(void) emit(offs(expr)); /* Output displacement */
|
||
} else {
|
||
/* 12-bit displacement */
|
||
if (offs(expr) & ~0xfff){
|
||
/* Won't fit in 12 bits: convert already-output
|
||
* instruction to MEMB format, output
|
||
* displacement.
|
||
*/
|
||
mema_to_memb(outP);
|
||
(void) emit(offs(expr));
|
||
} else {
|
||
/* WILL fit in 12 bits: OR into opcode and
|
||
* overwrite the binary we already put out
|
||
*/
|
||
instr.opcode |= offs(expr);
|
||
md_number_to_chars(outP, instr.opcode, 4);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case SEG_DIFFERENCE:
|
||
case SEG_TEXT:
|
||
case SEG_DATA:
|
||
case SEG_BSS:
|
||
case SEG_UNKNOWN:
|
||
if (instr.disp == 12){
|
||
/* Displacement is dependent on a symbol, whose value
|
||
* may change at link time. We HAVE to reserve 32 bits.
|
||
* Convert already-output opcode to MEMB format.
|
||
*/
|
||
mema_to_memb(outP);
|
||
}
|
||
|
||
/* Output 0 displacement and set up address fixup for when
|
||
* this symbol's value becomes known.
|
||
*/
|
||
outP = emit((long) 0);
|
||
fixP = fix_new(frag_now,
|
||
outP - frag_now->fr_literal,
|
||
4,
|
||
adds(expr),
|
||
subs(expr),
|
||
offs(expr),
|
||
0,
|
||
0);
|
||
fixP->fx_im_disp = 2; /* 32-bit displacement fix */
|
||
break;
|
||
|
||
default:
|
||
BAD_CASE(segs(expr));
|
||
break;
|
||
}
|
||
} /* memfmt() */
|
||
|
||
|
||
/*****************************************************************************
|
||
* mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode.
|
||
*
|
||
* There are 2 possible MEMA formats:
|
||
* - displacement only
|
||
* - displacement + abase
|
||
*
|
||
* They are distinguished by the setting of the MEMA_ABASE bit.
|
||
*
|
||
**************************************************************************** */
|
||
static void mema_to_memb(opcodeP)
|
||
char *opcodeP; /* Where to find the opcode, in target byte order */
|
||
{
|
||
long opcode; /* Opcode in host byte order */
|
||
long mode; /* Mode bits for MEMB instruction */
|
||
|
||
opcode = md_chars_to_number(opcodeP, 4);
|
||
know(!(opcode & MEMB_BIT));
|
||
|
||
mode = MEMB_BIT | D_BIT;
|
||
if (opcode & MEMA_ABASE){
|
||
mode |= A_BIT;
|
||
}
|
||
|
||
opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */
|
||
opcode |= mode; /* Set MEMB mode bits */
|
||
|
||
md_number_to_chars(opcodeP, opcode, 4);
|
||
} /* mema_to_memb() */
|
||
|
||
|
||
/*****************************************************************************
|
||
* parse_expr: parse an expression
|
||
*
|
||
* Use base assembler's expression parser to parse an expression.
|
||
* It, unfortunately, runs off a global which we have to save/restore
|
||
* in order to make it work for us.
|
||
*
|
||
* An empty expression string is treated as an absolute 0.
|
||
*
|
||
* Return "segment" to which the expression evaluates.
|
||
* Return SEG_GOOF regardless of expression evaluation if entire input
|
||
* string is not consumed in the evaluation -- tolerate no dangling junk!
|
||
*
|
||
**************************************************************************** */
|
||
static
|
||
segT
|
||
parse_expr(textP, expP)
|
||
char *textP; /* Text of expression to be parsed */
|
||
expressionS *expP; /* Where to put the results of parsing */
|
||
{
|
||
char *save_in; /* Save global here */
|
||
segT seg; /* Segment to which expression evaluates */
|
||
symbolS *symP;
|
||
|
||
know(textP);
|
||
|
||
if (*textP == '\0') {
|
||
/* Treat empty string as absolute 0 */
|
||
expP->X_add_symbol = expP->X_subtract_symbol = NULL;
|
||
expP->X_add_number = 0;
|
||
seg = expP->X_seg = SEG_ABSOLUTE;
|
||
|
||
} else {
|
||
save_in = input_line_pointer; /* Save global */
|
||
input_line_pointer = textP; /* Make parser work for us */
|
||
|
||
seg = expression(expP);
|
||
if (input_line_pointer - textP != strlen(textP)) {
|
||
/* Did not consume all of the input */
|
||
seg = SEG_GOOF;
|
||
}
|
||
symP = expP->X_add_symbol;
|
||
if (symP && (hash_find(reg_hash, S_GET_NAME(symP)))) {
|
||
/* Register name in an expression */
|
||
seg = SEG_GOOF;
|
||
}
|
||
|
||
input_line_pointer = save_in; /* Restore global */
|
||
}
|
||
return seg;
|
||
}
|
||
|
||
|
||
/*****************************************************************************
|
||
* parse_ldcont:
|
||
* Parse and replace a 'ldconst' pseudo-instruction with an appropriate
|
||
* i80960 instruction.
|
||
*
|
||
* Assumes the input consists of:
|
||
* arg[0] opcode mnemonic ('ldconst')
|
||
* arg[1] first operand (constant)
|
||
* arg[2] name of register to be loaded
|
||
*
|
||
* Replaces opcode and/or operands as appropriate.
|
||
*
|
||
* Returns the new number of arguments, or -1 on failure.
|
||
*
|
||
**************************************************************************** */
|
||
static
|
||
int
|
||
parse_ldconst(arg)
|
||
char *arg[]; /* See above */
|
||
{
|
||
int n; /* Constant to be loaded */
|
||
int shift; /* Shift count for "shlo" instruction */
|
||
static char buf[5]; /* Literal for first operand */
|
||
static char buf2[5]; /* Literal for second operand */
|
||
expressionS e; /* Parsed expression */
|
||
|
||
|
||
arg[3] = NULL; /* So we can tell at the end if it got used or not */
|
||
|
||
switch(parse_expr(arg[1],&e)){
|
||
|
||
case SEG_TEXT:
|
||
case SEG_DATA:
|
||
case SEG_BSS:
|
||
case SEG_UNKNOWN:
|
||
case SEG_DIFFERENCE:
|
||
/* We're dependent on one or more symbols -- use "lda" */
|
||
arg[0] = "lda";
|
||
break;
|
||
|
||
case SEG_ABSOLUTE:
|
||
/* Try the following mappings:
|
||
* ldconst 0,<reg> ->mov 0,<reg>
|
||
* ldconst 31,<reg> ->mov 31,<reg>
|
||
* ldconst 32,<reg> ->addo 1,31,<reg>
|
||
* ldconst 62,<reg> ->addo 31,31,<reg>
|
||
* ldconst 64,<reg> ->shlo 8,3,<reg>
|
||
* ldconst -1,<reg> ->subo 1,0,<reg>
|
||
* ldconst -31,<reg>->subo 31,0,<reg>
|
||
*
|
||
* anthing else becomes:
|
||
* lda xxx,<reg>
|
||
*/
|
||
n = offs(e);
|
||
if ((0 <= n) && (n <= 31)){
|
||
arg[0] = "mov";
|
||
|
||
} else if ((-31 <= n) && (n <= -1)){
|
||
arg[0] = "subo";
|
||
arg[3] = arg[2];
|
||
sprintf(buf, "%d", -n);
|
||
arg[1] = buf;
|
||
arg[2] = "0";
|
||
|
||
} else if ((32 <= n) && (n <= 62)){
|
||
arg[0] = "addo";
|
||
arg[3] = arg[2];
|
||
arg[1] = "31";
|
||
sprintf(buf, "%d", n-31);
|
||
arg[2] = buf;
|
||
|
||
} else if ((shift = shift_ok(n)) != 0){
|
||
arg[0] = "shlo";
|
||
arg[3] = arg[2];
|
||
sprintf(buf, "%d", shift);
|
||
arg[1] = buf;
|
||
sprintf(buf2, "%d", n >> shift);
|
||
arg[2] = buf2;
|
||
|
||
} else {
|
||
arg[0] = "lda";
|
||
}
|
||
break;
|
||
|
||
default:
|
||
as_bad("invalid constant");
|
||
return -1;
|
||
break;
|
||
}
|
||
return (arg[3] == 0) ? 2: 3;
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* parse_memop: parse a memory operand
|
||
*
|
||
* This routine is based on the observation that the 4 mode bits of the
|
||
* MEMB format, taken individually, have fairly consistent meaning:
|
||
*
|
||
* M3 (bit 13): 1 if displacement is present (D_BIT)
|
||
* M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
|
||
* M1 (bit 11): 1 if index is present (I_BIT)
|
||
* M0 (bit 10): 1 if abase is present (A_BIT)
|
||
*
|
||
* So we parse the memory operand and set bits in the mode as we find
|
||
* things. Then at the end, if we go to MEMB format, we need only set
|
||
* the MEMB bit (M2) and our mode is built for us.
|
||
*
|
||
* Unfortunately, I said "fairly consistent". The exceptions:
|
||
*
|
||
* DBIA
|
||
* 0100 Would seem illegal, but means "abase-only".
|
||
*
|
||
* 0101 Would seem to mean "abase-only" -- it means IP-relative.
|
||
* Must be converted to 0100.
|
||
*
|
||
* 0110 Would seem to mean "index-only", but is reserved.
|
||
* We turn on the D bit and provide a 0 displacement.
|
||
*
|
||
* The other thing to observe is that we parse from the right, peeling
|
||
* things * off as we go: first any index spec, then any abase, then
|
||
* the displacement.
|
||
*
|
||
**************************************************************************** */
|
||
static
|
||
void
|
||
parse_memop(memP, argP, optype)
|
||
memS *memP; /* Where to put the results */
|
||
char *argP; /* Text of the operand to be parsed */
|
||
int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */
|
||
{
|
||
char *indexP; /* Pointer to index specification with "[]" removed */
|
||
char *p; /* Temp char pointer */
|
||
char iprel_flag;/* True if this is an IP-relative operand */
|
||
int regnum; /* Register number */
|
||
int scale; /* Scale factor: 1,2,4,8, or 16. Later converted
|
||
* to internal format (0,1,2,3,4 respectively).
|
||
*/
|
||
int mode; /* MEMB mode bits */
|
||
int *intP; /* Pointer to register number */
|
||
|
||
/* The following table contains the default scale factors for each
|
||
* type of memory instruction. It is accessed using (optype-MEM1)
|
||
* as an index -- thus it assumes the 'optype' constants are assigned
|
||
* consecutive values, in the order they appear in this table
|
||
*/
|
||
static int def_scale[] = {
|
||
1, /* MEM1 */
|
||
2, /* MEM2 */
|
||
4, /* MEM4 */
|
||
8, /* MEM8 */
|
||
-1, /* MEM12 -- no valid default */
|
||
16 /* MEM16 */
|
||
};
|
||
|
||
|
||
iprel_flag = mode = 0;
|
||
|
||
/* Any index present? */
|
||
indexP = get_ispec(argP);
|
||
if (indexP) {
|
||
p = strchr(indexP, '*');
|
||
if (p == NULL) {
|
||
/* No explicit scale -- use default for this
|
||
*instruction type.
|
||
*/
|
||
scale = def_scale[ optype - MEM1 ];
|
||
} else {
|
||
*p++ = '\0'; /* Eliminate '*' */
|
||
|
||
/* Now indexP->a '\0'-terminated register name,
|
||
* and p->a scale factor.
|
||
*/
|
||
|
||
if (!strcmp(p,"16")){
|
||
scale = 16;
|
||
} else if (strchr("1248",*p) && (p[1] == '\0')){
|
||
scale = *p - '0';
|
||
} else {
|
||
scale = -1;
|
||
}
|
||
}
|
||
|
||
regnum = get_regnum(indexP); /* Get index reg. # */
|
||
if (!IS_RG_REG(regnum)){
|
||
as_bad("invalid index register");
|
||
return;
|
||
}
|
||
|
||
/* Convert scale to its binary encoding */
|
||
switch (scale){
|
||
case 1: scale = 0 << 7; break;
|
||
case 2: scale = 1 << 7; break;
|
||
case 4: scale = 2 << 7; break;
|
||
case 8: scale = 3 << 7; break;
|
||
case 16: scale = 4 << 7; break;
|
||
default: as_bad("invalid scale factor"); return;
|
||
};
|
||
|
||
memP->opcode |= scale | regnum; /* Set index bits in opcode */
|
||
mode |= I_BIT; /* Found a valid index spec */
|
||
}
|
||
|
||
/* Any abase (Register Indirect) specification present? */
|
||
if ((p = strrchr(argP,'(')) != NULL) {
|
||
/* "(" is there -- does it start a legal abase spec?
|
||
* (If not it could be part of a displacement expression.)
|
||
*/
|
||
intP = (int *) hash_find(areg_hash, p);
|
||
if (intP != NULL){
|
||
/* Got an abase here */
|
||
regnum = *intP;
|
||
*p = '\0'; /* discard register spec */
|
||
if (regnum == IPREL){
|
||
/* We have to specialcase ip-rel mode */
|
||
iprel_flag = 1;
|
||
} else {
|
||
memP->opcode |= regnum << 14;
|
||
mode |= A_BIT;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Any expression present? */
|
||
memP->e = argP;
|
||
if (*argP != '\0'){
|
||
mode |= D_BIT;
|
||
}
|
||
|
||
/* Special-case ip-relative addressing */
|
||
if (iprel_flag){
|
||
if (mode & I_BIT){
|
||
syntax();
|
||
} else {
|
||
memP->opcode |= 5 << 10; /* IP-relative mode */
|
||
memP->disp = 32;
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* Handle all other modes */
|
||
switch (mode){
|
||
case D_BIT | A_BIT:
|
||
/* Go with MEMA instruction format for now (grow to MEMB later
|
||
* if 12 bits is not enough for the displacement).
|
||
* MEMA format has a single mode bit: set it to indicate
|
||
* that abase is present.
|
||
*/
|
||
memP->opcode |= MEMA_ABASE;
|
||
memP->disp = 12;
|
||
break;
|
||
|
||
case D_BIT:
|
||
/* Go with MEMA instruction format for now (grow to MEMB later
|
||
* if 12 bits is not enough for the displacement).
|
||
*/
|
||
memP->disp = 12;
|
||
break;
|
||
|
||
case A_BIT:
|
||
/* For some reason, the bit string for this mode is not
|
||
* consistent: it should be 0 (exclusive of the MEMB bit),
|
||
* so we set it "by hand" here.
|
||
*/
|
||
memP->opcode |= MEMB_BIT;
|
||
break;
|
||
|
||
case A_BIT | I_BIT:
|
||
/* set MEMB bit in mode, and OR in mode bits */
|
||
memP->opcode |= mode | MEMB_BIT;
|
||
break;
|
||
|
||
case I_BIT:
|
||
/* Treat missing displacement as displacement of 0 */
|
||
mode |= D_BIT;
|
||
/***********************
|
||
* Fall into next case *
|
||
********************** */
|
||
case D_BIT | A_BIT | I_BIT:
|
||
case D_BIT | I_BIT:
|
||
/* set MEMB bit in mode, and OR in mode bits */
|
||
memP->opcode |= mode | MEMB_BIT;
|
||
memP->disp = 32;
|
||
break;
|
||
|
||
default:
|
||
syntax();
|
||
break;
|
||
}
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* parse_po: parse machine-dependent pseudo-op
|
||
*
|
||
* This is a top-level routine for machine-dependent pseudo-ops. It slurps
|
||
* up the rest of the input line, breaks out the individual arguments,
|
||
* and dispatches them to the correct handler.
|
||
**************************************************************************** */
|
||
static
|
||
void
|
||
parse_po(po_num)
|
||
int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */
|
||
{
|
||
char *args[4]; /* Pointers operands, with no embedded whitespace.
|
||
* arg[0] unused.
|
||
* arg[1-3]->operands
|
||
*/
|
||
int n_ops; /* Number of operands */
|
||
char *p; /* Pointer to beginning of unparsed argument string */
|
||
char eol; /* Character that indicated end of line */
|
||
|
||
extern char is_end_of_line[];
|
||
|
||
/* Advance input pointer to end of line. */
|
||
p = input_line_pointer;
|
||
while (!is_end_of_line[ *input_line_pointer ]){
|
||
input_line_pointer++;
|
||
}
|
||
eol = *input_line_pointer; /* Save end-of-line char */
|
||
*input_line_pointer = '\0'; /* Terminate argument list */
|
||
|
||
/* Parse out operands */
|
||
n_ops = get_args(p, args);
|
||
if (n_ops == -1){
|
||
return;
|
||
}
|
||
|
||
/* Dispatch to correct handler */
|
||
switch(po_num){
|
||
case S_SYSPROC: s_sysproc(n_ops, args); break;
|
||
case S_LEAFPROC: s_leafproc(n_ops, args); break;
|
||
default: BAD_CASE(po_num); break;
|
||
}
|
||
|
||
/* Restore eol, so line numbers get updated correctly. Base assembler
|
||
* assumes we leave input pointer pointing at char following the eol.
|
||
*/
|
||
*input_line_pointer++ = eol;
|
||
}
|
||
|
||
/*****************************************************************************
|
||
* parse_regop: parse a register operand.
|
||
*
|
||
* In case of illegal operand, issue a message and return some valid
|
||
* information so instruction processing can continue.
|
||
**************************************************************************** */
|
||
static
|
||
void
|
||
parse_regop(regopP, optext, opdesc)
|
||
struct regop *regopP; /* Where to put description of register operand */
|
||
char *optext; /* Text of operand */
|
||
char opdesc; /* Descriptor byte: what's legal for this operand */
|
||
{
|
||
int n; /* Register number */
|
||
expressionS e; /* Parsed expression */
|
||
|
||
/* See if operand is a register */
|
||
n = get_regnum(optext);
|
||
if (n >= 0){
|
||
if (IS_RG_REG(n)){
|
||
/* global or local register */
|
||
if (!REG_ALIGN(opdesc,n)){
|
||
as_bad("unaligned register");
|
||
}
|
||
regopP->n = n;
|
||
regopP->mode = 0;
|
||
regopP->special = 0;
|
||
return;
|
||
} else if (IS_FP_REG(n) && FP_OK(opdesc)){
|
||
/* Floating point register, and it's allowed */
|
||
regopP->n = n - FP0;
|
||
regopP->mode = 1;
|
||
regopP->special = 0;
|
||
return;
|
||
} else if (IS_SF_REG(n) && SFR_OK(opdesc)){
|
||
/* Special-function register, and it's allowed */
|
||
regopP->n = n - SF0;
|
||
regopP->mode = 0;
|
||
regopP->special = 1;
|
||
if (!targ_has_sfr(regopP->n)){
|
||
as_bad("no such sfr in this architecture");
|
||
}
|
||
return;
|
||
}
|
||
} else if (LIT_OK(opdesc)){
|
||
/*
|
||
* How about a literal?
|
||
*/
|
||
regopP->mode = 1;
|
||
regopP->special = 0;
|
||
if (FP_OK(opdesc)){ /* floating point literal acceptable */
|
||
/* Skip over 0f, 0d, or 0e prefix */
|
||
if ( (optext[0] == '0')
|
||
&& (optext[1] >= 'd')
|
||
&& (optext[1] <= 'f') ){
|
||
optext += 2;
|
||
}
|
||
|
||
if (!strcmp(optext,"0.0") || !strcmp(optext,"0") ){
|
||
regopP->n = 0x10;
|
||
return;
|
||
}
|
||
if (!strcmp(optext,"1.0") || !strcmp(optext,"1") ){
|
||
regopP->n = 0x16;
|
||
return;
|
||
}
|
||
|
||
} else { /* fixed point literal acceptable */
|
||
if ((parse_expr(optext,&e) != SEG_ABSOLUTE)
|
||
|| (offs(e) < 0) || (offs(e) > 31)){
|
||
as_bad("illegal literal");
|
||
offs(e) = 0;
|
||
}
|
||
regopP->n = offs(e);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Nothing worked */
|
||
syntax();
|
||
regopP->mode = 0; /* Register r0 is always a good one */
|
||
regopP->n = 0;
|
||
regopP->special = 0;
|
||
} /* parse_regop() */
|
||
|
||
/*****************************************************************************
|
||
* reg_fmt: generate a REG-format instruction
|
||
*
|
||
**************************************************************************** */
|
||
static void reg_fmt(args, oP)
|
||
char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
|
||
struct i960_opcode *oP; /* Pointer to description of instruction */
|
||
{
|
||
long instr; /* Binary to be output */
|
||
struct regop regop; /* Description of register operand */
|
||
int n_ops; /* Number of operands */
|
||
|
||
|
||
instr = oP->opcode;
|
||
n_ops = oP->num_ops;
|
||
|
||
if (n_ops >= 1){
|
||
parse_regop(®op, args[1], oP->operand[0]);
|
||
|
||
if ((n_ops == 1) && !(instr & M3)){
|
||
/* 1-operand instruction in which the dst field should
|
||
* be used (instead of src1).
|
||
*/
|
||
regop.n <<= 19;
|
||
if (regop.special){
|
||
regop.mode = regop.special;
|
||
}
|
||
regop.mode <<= 13;
|
||
regop.special = 0;
|
||
} else {
|
||
/* regop.n goes in bit 0, needs no shifting */
|
||
regop.mode <<= 11;
|
||
regop.special <<= 5;
|
||
}
|
||
instr |= regop.n | regop.mode | regop.special;
|
||
}
|
||
|
||
if (n_ops >= 2) {
|
||
parse_regop(®op, args[2], oP->operand[1]);
|
||
|
||
if ((n_ops == 2) && !(instr & M3)){
|
||
/* 2-operand instruction in which the dst field should
|
||
* be used instead of src2).
|
||
*/
|
||
regop.n <<= 19;
|
||
if (regop.special){
|
||
regop.mode = regop.special;
|
||
}
|
||
regop.mode <<= 13;
|
||
regop.special = 0;
|
||
} else {
|
||
regop.n <<= 14;
|
||
regop.mode <<= 12;
|
||
regop.special <<= 6;
|
||
}
|
||
instr |= regop.n | regop.mode | regop.special;
|
||
}
|
||
if (n_ops == 3){
|
||
parse_regop(®op, args[3], oP->operand[2]);
|
||
if (regop.special){
|
||
regop.mode = regop.special;
|
||
}
|
||
instr |= (regop.n <<= 19) | (regop.mode <<= 13);
|
||
}
|
||
emit(instr);
|
||
}
|
||
|
||
|
||
/*****************************************************************************
|
||
* relax_cobr:
|
||
* Replace cobr instruction in a code fragment with equivalent branch and
|
||
* compare instructions, so it can reach beyond a 13-bit displacement.
|
||
* Set up an address fix/relocation for the new branch instruction.
|
||
*
|
||
**************************************************************************** */
|
||
|
||
/* This "conditional jump" table maps cobr instructions into equivalent
|
||
* compare and branch opcodes.
|
||
*/
|
||
static
|
||
struct {
|
||
long compare;
|
||
long branch;
|
||
} coj[] = { /* COBR OPCODE: */
|
||
CHKBIT, BNO, /* 0x30 - bbc */
|
||
CMPO, BG, /* 0x31 - cmpobg */
|
||
CMPO, BE, /* 0x32 - cmpobe */
|
||
CMPO, BGE, /* 0x33 - cmpobge */
|
||
CMPO, BL, /* 0x34 - cmpobl */
|
||
CMPO, BNE, /* 0x35 - cmpobne */
|
||
CMPO, BLE, /* 0x36 - cmpoble */
|
||
CHKBIT, BO, /* 0x37 - bbs */
|
||
CMPI, BNO, /* 0x38 - cmpibno */
|
||
CMPI, BG, /* 0x39 - cmpibg */
|
||
CMPI, BE, /* 0x3a - cmpibe */
|
||
CMPI, BGE, /* 0x3b - cmpibge */
|
||
CMPI, BL, /* 0x3c - cmpibl */
|
||
CMPI, BNE, /* 0x3d - cmpibne */
|
||
CMPI, BLE, /* 0x3e - cmpible */
|
||
CMPI, BO, /* 0x3f - cmpibo */
|
||
};
|
||
|
||
static
|
||
void
|
||
relax_cobr(fragP)
|
||
register fragS *fragP; /* fragP->fr_opcode is assumed to point to
|
||
* the cobr instruction, which comes at the
|
||
* end of the code fragment.
|
||
*/
|
||
{
|
||
int opcode, src1, src2, m1, s2;
|
||
/* Bit fields from cobr instruction */
|
||
long bp_bits; /* Branch prediction bits from cobr instruction */
|
||
long instr; /* A single i960 instruction */
|
||
char *iP; /*->instruction to be replaced */
|
||
fixS *fixP; /* Relocation that can be done at assembly time */
|
||
|
||
/* PICK UP & PARSE COBR INSTRUCTION */
|
||
iP = fragP->fr_opcode;
|
||
instr = md_chars_to_number(iP, 4);
|
||
opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */
|
||
src1 = (instr >> 19) & 0x1f;
|
||
m1 = (instr >> 13) & 1;
|
||
s2 = instr & 1;
|
||
src2 = (instr >> 14) & 0x1f;
|
||
bp_bits= instr & BP_MASK;
|
||
|
||
/* GENERATE AND OUTPUT COMPARE INSTRUCTION */
|
||
instr = coj[opcode].compare
|
||
| src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
|
||
md_number_to_chars(iP, instr, 4);
|
||
|
||
/* OUTPUT BRANCH INSTRUCTION */
|
||
md_number_to_chars(iP+4, coj[opcode].branch | bp_bits, 4);
|
||
|
||
/* SET UP ADDRESS FIXUP/RELOCATION */
|
||
fixP = fix_new(fragP,
|
||
iP+4 - fragP->fr_literal,
|
||
4,
|
||
fragP->fr_symbol,
|
||
0,
|
||
fragP->fr_offset,
|
||
1,
|
||
0);
|
||
|
||
fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */
|
||
|
||
fragP->fr_fix += 4;
|
||
frag_wane(fragP);
|
||
}
|
||
|
||
|
||
/*****************************************************************************
|
||
* reloc_callj: Relocate a 'callj' instruction
|
||
*
|
||
* This is a "non-(GNU)-standard" machine-dependent hook. The base
|
||
* assembler calls it when it decides it can relocate an address at
|
||
* assembly time instead of emitting a relocation directive.
|
||
*
|
||
* Check to see if the relocation involves a 'callj' instruction to a:
|
||
* sysproc: Replace the default 'call' instruction with a 'calls'
|
||
* leafproc: Replace the default 'call' instruction with a 'bal'.
|
||
* other proc: Do nothing.
|
||
*
|
||
* See b.out.h for details on the 'n_other' field in a symbol structure.
|
||
*
|
||
* IMPORTANT!:
|
||
* Assumes the caller has already figured out, in the case of a leafproc,
|
||
* to use the 'bal' entry point, and has substituted that symbol into the
|
||
* passed fixup structure.
|
||
*
|
||
**************************************************************************** */
|
||
void reloc_callj(fixP)
|
||
fixS *fixP; /* Relocation that can be done at assembly time */
|
||
{
|
||
char *where; /*->the binary for the instruction being relocated */
|
||
|
||
if (!fixP->fx_callj) {
|
||
return;
|
||
} /* This wasn't a callj instruction in the first place */
|
||
|
||
where = fixP->fx_frag->fr_literal + fixP->fx_where;
|
||
|
||
if (TC_S_IS_SYSPROC(fixP->fx_addsy)) {
|
||
/* Symbol is a .sysproc: replace 'call' with 'calls'.
|
||
* System procedure number is (other-1).
|
||
*/
|
||
md_number_to_chars(where, CALLS|TC_S_GET_SYSPROC(fixP->fx_addsy), 4);
|
||
|
||
/* Nothing else needs to be done for this instruction.
|
||
* Make sure 'md_number_to_field()' will perform a no-op.
|
||
*/
|
||
fixP->fx_bit_fixP = (bit_fixS *) 1;
|
||
|
||
} else if (TC_S_IS_CALLNAME(fixP->fx_addsy)) {
|
||
/* Should not happen: see block comment above */
|
||
as_fatal("Trying to 'bal' to %s", S_GET_NAME(fixP->fx_addsy));
|
||
|
||
} else if (TC_S_IS_BALNAME(fixP->fx_addsy)) {
|
||
/* Replace 'call' with 'bal'; both instructions have
|
||
* the same format, so calling code should complete
|
||
* relocation as if nothing happened here.
|
||
*/
|
||
md_number_to_chars(where, BAL, 4);
|
||
} else if (TC_S_IS_BADPROC(fixP->fx_addsy)) {
|
||
as_bad("Looks like a proc, but can't tell what kind.\n");
|
||
} /* switch on proc type */
|
||
|
||
/* else Symbol is neither a sysproc nor a leafproc */
|
||
|
||
return;
|
||
} /* reloc_callj() */
|
||
|
||
|
||
/*****************************************************************************
|
||
* s_leafproc: process .leafproc pseudo-op
|
||
*
|
||
* .leafproc takes two arguments, the second one is optional:
|
||
* arg[1]: name of 'call' entry point to leaf procedure
|
||
* arg[2]: name of 'bal' entry point to leaf procedure
|
||
*
|
||
* If the two arguments are identical, or if the second one is missing,
|
||
* the first argument is taken to be the 'bal' entry point.
|
||
*
|
||
* If there are 2 distinct arguments, we must make sure that the 'bal'
|
||
* entry point immediately follows the 'call' entry point in the linked
|
||
* list of symbols.
|
||
*
|
||
**************************************************************************** */
|
||
static void s_leafproc(n_ops, args)
|
||
int n_ops; /* Number of operands */
|
||
char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
|
||
{
|
||
symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */
|
||
symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */
|
||
|
||
if ((n_ops != 1) && (n_ops != 2)) {
|
||
as_bad("should have 1 or 2 operands");
|
||
return;
|
||
} /* Check number of arguments */
|
||
|
||
/* Find or create symbol for 'call' entry point. */
|
||
callP = symbol_find_or_make(args[1]);
|
||
|
||
if (TC_S_IS_CALLNAME(callP)) {
|
||
as_warn("Redefining leafproc %s", S_GET_NAME(callP));
|
||
} /* is leafproc */
|
||
|
||
/* If that was the only argument, use it as the 'bal' entry point.
|
||
* Otherwise, mark it as the 'call' entry point and find or create
|
||
* another symbol for the 'bal' entry point.
|
||
*/
|
||
if ((n_ops == 1) || !strcmp(args[1],args[2])) {
|
||
TC_S_FORCE_TO_BALNAME(callP);
|
||
|
||
} else {
|
||
TC_S_FORCE_TO_CALLNAME(callP);
|
||
|
||
balP = symbol_find_or_make(args[2]);
|
||
if (TC_S_IS_CALLNAME(balP)) {
|
||
as_warn("Redefining leafproc %s", S_GET_NAME(balP));
|
||
}
|
||
TC_S_FORCE_TO_BALNAME(balP);
|
||
|
||
tc_set_bal_of_call(callP, balP);
|
||
} /* if only one arg, or the args are the same */
|
||
|
||
return;
|
||
} /* s_leafproc() */
|
||
|
||
|
||
/*
|
||
* s_sysproc: process .sysproc pseudo-op
|
||
*
|
||
* .sysproc takes two arguments:
|
||
* arg[1]: name of entry point to system procedure
|
||
* arg[2]: 'entry_num' (index) of system procedure in the range
|
||
* [0,31] inclusive.
|
||
*
|
||
* For [ab].out, we store the 'entrynum' in the 'n_other' field of
|
||
* the symbol. Since that entry is normally 0, we bias 'entrynum'
|
||
* by adding 1 to it. It must be unbiased before it is used.
|
||
*/
|
||
static void s_sysproc(n_ops, args)
|
||
int n_ops; /* Number of operands */
|
||
char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
|
||
{
|
||
expressionS exp;
|
||
symbolS *symP;
|
||
|
||
if (n_ops != 2) {
|
||
as_bad("should have two operands");
|
||
return;
|
||
} /* bad arg count */
|
||
|
||
/* Parse "entry_num" argument and check it for validity. */
|
||
if ((parse_expr(args[2],&exp) != SEG_ABSOLUTE)
|
||
|| (offs(exp) < 0)
|
||
|| (offs(exp) > 31)) {
|
||
as_bad("'entry_num' must be absolute number in [0,31]");
|
||
return;
|
||
}
|
||
|
||
/* Find/make symbol and stick entry number (biased by +1) into it */
|
||
symP = symbol_find_or_make(args[1]);
|
||
|
||
if (TC_S_IS_SYSPROC(symP)) {
|
||
as_warn("Redefining entrynum for sysproc %s", S_GET_NAME(symP));
|
||
} /* redefining */
|
||
|
||
TC_S_SET_SYSPROC(symP, offs(exp)); /* encode entry number */
|
||
TC_S_FORCE_TO_SYSPROC(symP);
|
||
|
||
return;
|
||
} /* s_sysproc() */
|
||
|
||
|
||
/*****************************************************************************
|
||
* shift_ok:
|
||
* Determine if a "shlo" instruction can be used to implement a "ldconst".
|
||
* This means that some number X < 32 can be shifted left to produce the
|
||
* constant of interest.
|
||
*
|
||
* Return the shift count, or 0 if we can't do it.
|
||
* Caller calculates X by shifting original constant right 'shift' places.
|
||
*
|
||
**************************************************************************** */
|
||
static
|
||
int
|
||
shift_ok(n)
|
||
int n; /* The constant of interest */
|
||
{
|
||
int shift; /* The shift count */
|
||
|
||
if (n <= 0){
|
||
/* Can't do it for negative numbers */
|
||
return 0;
|
||
}
|
||
|
||
/* Shift 'n' right until a 1 is about to be lost */
|
||
for (shift = 0; (n & 1) == 0; shift++){
|
||
n >>= 1;
|
||
}
|
||
|
||
if (n >= 32){
|
||
return 0;
|
||
}
|
||
return shift;
|
||
}
|
||
|
||
|
||
/*****************************************************************************
|
||
* syntax: issue syntax error
|
||
*
|
||
**************************************************************************** */
|
||
static void syntax() {
|
||
as_bad("syntax error");
|
||
} /* syntax() */
|
||
|
||
|
||
/*****************************************************************************
|
||
* targ_has_sfr:
|
||
* Return TRUE iff the target architecture supports the specified
|
||
* special-function register (sfr).
|
||
*
|
||
**************************************************************************** */
|
||
static
|
||
int
|
||
targ_has_sfr(n)
|
||
int n; /* Number (0-31) of sfr */
|
||
{
|
||
switch (architecture){
|
||
case ARCH_KA:
|
||
case ARCH_KB:
|
||
case ARCH_MC:
|
||
return 0;
|
||
case ARCH_CA:
|
||
default:
|
||
return ((0<=n) && (n<=2));
|
||
}
|
||
}
|
||
|
||
|
||
/*****************************************************************************
|
||
* targ_has_iclass:
|
||
* Return TRUE iff the target architecture supports the indicated
|
||
* class of instructions.
|
||
*
|
||
**************************************************************************** */
|
||
static
|
||
int
|
||
targ_has_iclass(ic)
|
||
int ic; /* Instruction class; one of:
|
||
* I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM
|
||
*/
|
||
{
|
||
iclasses_seen |= ic;
|
||
switch (architecture){
|
||
case ARCH_KA: return ic & (I_BASE | I_KX);
|
||
case ARCH_KB: return ic & (I_BASE | I_KX | I_FP | I_DEC);
|
||
case ARCH_MC: return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
|
||
case ARCH_CA: return ic & (I_BASE | I_CX | I_CASIM);
|
||
default:
|
||
if ((iclasses_seen & (I_KX|I_FP|I_DEC|I_MIL))
|
||
&& (iclasses_seen & I_CX)){
|
||
as_warn("architecture of opcode conflicts with that of earlier instruction(s)");
|
||
iclasses_seen &= ~ic;
|
||
}
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
|
||
/* Parse an operand that is machine-specific.
|
||
We just return without modifying the expression if we have nothing
|
||
to do. */
|
||
|
||
/* ARGSUSED */
|
||
void
|
||
md_operand (expressionP)
|
||
expressionS *expressionP;
|
||
{
|
||
}
|
||
|
||
/* We have no need to default values of symbols. */
|
||
|
||
/* ARGSUSED */
|
||
symbolS *md_undefined_symbol(name)
|
||
char *name;
|
||
{
|
||
return 0;
|
||
} /* md_undefined_symbol() */
|
||
|
||
/* Exactly what point is a PC-relative offset relative TO?
|
||
On the i960, they're relative to the address of the instruction,
|
||
which we have set up as the address of the fixup too. */
|
||
long
|
||
md_pcrel_from (fixP)
|
||
fixS *fixP;
|
||
{
|
||
return fixP->fx_where + fixP->fx_frag->fr_address;
|
||
}
|
||
|
||
void
|
||
md_apply_fix(fixP, val)
|
||
fixS *fixP;
|
||
long val;
|
||
{
|
||
char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
|
||
|
||
if (!fixP->fx_bit_fixP) {
|
||
|
||
switch (fixP->fx_im_disp) {
|
||
case 0:
|
||
fixP->fx_addnumber = val;
|
||
md_number_to_imm(place, val, fixP->fx_size, fixP);
|
||
break;
|
||
case 1:
|
||
md_number_to_disp(place,
|
||
fixP->fx_pcrel ? val + fixP->fx_pcrel_adjust : val,
|
||
fixP->fx_size);
|
||
break;
|
||
case 2: /* fix requested for .long .word etc */
|
||
md_number_to_chars(place, val, fixP->fx_size);
|
||
break;
|
||
default:
|
||
as_fatal("Internal error in md_apply_fix() in file \"%s\"", __FILE__);
|
||
} /* OVE: maybe one ought to put _imm _disp _chars in one md-func */
|
||
} else {
|
||
md_number_to_field(place, val, fixP->fx_bit_fixP);
|
||
}
|
||
|
||
return;
|
||
} /* md_apply_fix() */
|
||
|
||
#if defined(OBJ_AOUT) | defined(OBJ_BOUT)
|
||
void tc_bout_fix_to_chars(where, fixP, segment_address_in_file)
|
||
char *where;
|
||
fixS *fixP;
|
||
relax_addressT segment_address_in_file;
|
||
{
|
||
static unsigned char nbytes_r_length [] = { 42, 0, 1, 42, 2 };
|
||
struct relocation_info ri;
|
||
symbolS *symbolP;
|
||
|
||
/* JF this is for paranoia */
|
||
bzero((char *)&ri, sizeof(ri));
|
||
|
||
know((symbolP = fixP->fx_addsy) != 0);
|
||
|
||
/* These two 'cuz of NS32K */
|
||
ri.r_callj = fixP->fx_callj;
|
||
|
||
ri.r_length = nbytes_r_length[fixP->fx_size];
|
||
ri.r_pcrel = fixP->fx_pcrel;
|
||
ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file;
|
||
|
||
if (!S_IS_DEFINED(symbolP)) {
|
||
ri.r_extern = 1;
|
||
ri.r_index = symbolP->sy_number;
|
||
} else {
|
||
ri.r_extern = 0;
|
||
ri.r_index = S_GET_TYPE(symbolP);
|
||
}
|
||
|
||
/* Output the relocation information in machine-dependent form. */
|
||
md_ri_to_chars(where, &ri);
|
||
|
||
return;
|
||
} /* tc_bout_fix_to_chars() */
|
||
|
||
#endif /* OBJ_AOUT or OBJ_BOUT */
|
||
|
||
/* Align an address by rounding it up to the specified boundary.
|
||
*/
|
||
long md_section_align(seg, addr)
|
||
segT seg;
|
||
long addr; /* Address to be rounded up */
|
||
{
|
||
return((addr + (1 << section_alignment[(int) seg]) - 1) & (-1 << section_alignment[(int) seg]));
|
||
} /* md_section_align() */
|
||
|
||
#ifdef OBJ_COFF
|
||
void tc_headers_hook(headers)
|
||
object_headers *headers;
|
||
{
|
||
unsigned short arch_flag = 0;
|
||
|
||
if (iclasses_seen == I_BASE){
|
||
headers->filehdr.f_flags |= F_I960CORE;
|
||
} else if (iclasses_seen & I_CX){
|
||
headers->filehdr.f_flags |= F_I960CA;
|
||
} else if (iclasses_seen & I_MIL){
|
||
headers->filehdr.f_flags |= F_I960MC;
|
||
} else if (iclasses_seen & (I_DEC|I_FP)){
|
||
headers->filehdr.f_flags |= F_I960KB;
|
||
} else {
|
||
headers->filehdr.f_flags |= F_I960KA;
|
||
} /* set arch flag */
|
||
|
||
if (flagseen['R']) {
|
||
headers->filehdr.f_magic = I960RWMAGIC;
|
||
headers->aouthdr.magic = OMAGIC;
|
||
} else {
|
||
headers->filehdr.f_magic = I960ROMAGIC;
|
||
headers->aouthdr.magic = NMAGIC;
|
||
} /* set magic numbers */
|
||
|
||
return;
|
||
} /* tc_headers_hook() */
|
||
#endif /* OBJ_COFF */
|
||
|
||
/*
|
||
* Things going on here:
|
||
*
|
||
* For bout, We need to assure a couple of simplifying
|
||
* assumptions about leafprocs for the linker: the leafproc
|
||
* entry symbols will be defined in the same assembly in
|
||
* which they're declared with the '.leafproc' directive;
|
||
* and if a leafproc has both 'call' and 'bal' entry points
|
||
* they are both global or both local.
|
||
*
|
||
* For coff, the call symbol has a second aux entry that
|
||
* contains the bal entry point. The bal symbol becomes a
|
||
* label.
|
||
*
|
||
* For coff representation, the call symbol has a second aux entry that
|
||
* contains the bal entry point. The bal symbol becomes a label.
|
||
*
|
||
*/
|
||
|
||
void tc_crawl_symbol_chain(headers)
|
||
object_headers *headers;
|
||
{
|
||
symbolS *symbolP;
|
||
|
||
for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next(symbolP)) {
|
||
#ifdef OBJ_COFF
|
||
if (TC_S_IS_SYSPROC(symbolP)) {
|
||
/* second aux entry already contains the sysproc number */
|
||
S_SET_NUMBER_AUXILIARY(symbolP, 2);
|
||
S_SET_STORAGE_CLASS(symbolP, C_SCALL);
|
||
S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT));
|
||
continue;
|
||
} /* rewrite sysproc */
|
||
#endif /* OBJ_COFF */
|
||
|
||
if (!TC_S_IS_BALNAME(symbolP) && !TC_S_IS_CALLNAME(symbolP)) {
|
||
continue;
|
||
} /* Not a leafproc symbol */
|
||
|
||
if (!S_IS_DEFINED(symbolP)) {
|
||
as_bad("leafproc symbol '%s' undefined", S_GET_NAME(symbolP));
|
||
} /* undefined leaf */
|
||
|
||
if (TC_S_IS_CALLNAME(symbolP)) {
|
||
symbolS *balP = tc_get_bal_of_call(symbolP);
|
||
if (S_IS_EXTERNAL(symbolP) != S_IS_EXTERNAL(balP)) {
|
||
S_SET_EXTERNAL(symbolP);
|
||
S_SET_EXTERNAL(balP);
|
||
as_warn("Warning: making leafproc entries %s and %s both global\n",
|
||
S_GET_NAME(symbolP), S_GET_NAME(balP));
|
||
} /* externality mismatch */
|
||
} /* if callname */
|
||
} /* walk the symbol chain */
|
||
|
||
return;
|
||
} /* tc_crawl_symbol_chain() */
|
||
|
||
/*
|
||
* For aout or bout, the bal immediately follows the call.
|
||
*
|
||
* For coff, we cheat and store a pointer to the bal symbol
|
||
* in the second aux entry of the call.
|
||
*/
|
||
|
||
void tc_set_bal_of_call(callP, balP)
|
||
symbolS *callP;
|
||
symbolS *balP;
|
||
{
|
||
know(TC_S_IS_CALLNAME(callP));
|
||
know(TC_S_IS_BALNAME(balP));
|
||
|
||
#ifdef OBJ_COFF
|
||
|
||
callP->sy_symbol.ost_auxent[1].x_bal.x_balntry = (int) balP;
|
||
S_SET_NUMBER_AUXILIARY(callP,2);
|
||
|
||
#elif defined(OBJ_AOUT) || defined(OBJ_BOUT)
|
||
|
||
/* If the 'bal' entry doesn't immediately follow the 'call'
|
||
* symbol, unlink it from the symbol list and re-insert it.
|
||
*/
|
||
if (symbol_next(callP) != balP) {
|
||
symbol_remove(balP, &symbol_rootP, &symbol_lastP);
|
||
symbol_append(balP, callP, &symbol_rootP, &symbol_lastP);
|
||
} /* if not in order */
|
||
|
||
#else
|
||
(as yet unwritten.);
|
||
#endif /* switch on OBJ_FORMAT */
|
||
|
||
return;
|
||
} /* tc_set_bal_of_call() */
|
||
|
||
char *_tc_get_bal_of_call(callP)
|
||
symbolS *callP;
|
||
{
|
||
symbolS *retval;
|
||
|
||
know(TC_S_IS_CALLNAME(callP));
|
||
|
||
#ifdef OBJ_COFF
|
||
retval = (symbolS *) (callP->sy_symbol.ost_auxent[1].x_bal.x_balntry);
|
||
#elif defined(OBJ_AOUT) || defined(OBJ_BOUT)
|
||
retval = symbol_next(callP);
|
||
#else
|
||
(as yet unwritten.);
|
||
#endif /* switch on OBJ_FORMAT */
|
||
|
||
know(TC_S_IS_BALNAME(retval));
|
||
return((char *) retval);
|
||
} /* _tc_get_bal_of_call() */
|
||
|
||
void tc_coff_symbol_emit_hook(symbolP)
|
||
symbolS *symbolP;
|
||
{
|
||
if (TC_S_IS_CALLNAME(symbolP)) {
|
||
#ifdef OBJ_COFF
|
||
symbolS *balP = tc_get_bal_of_call(symbolP);
|
||
|
||
/* second aux entry contains the bal entry point */
|
||
/* S_SET_NUMBER_AUXILIARY(symbolP, 2); */
|
||
symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE(balP);
|
||
S_SET_STORAGE_CLASS(symbolP, (!SF_GET_LOCAL(symbolP) ? C_LEAFEXT : C_LEAFSTAT));
|
||
S_SET_DATA_TYPE(symbolP, S_GET_DATA_TYPE(symbolP) | (DT_FCN << N_BTSHFT));
|
||
/* fix up the bal symbol */
|
||
S_SET_STORAGE_CLASS(balP, C_LABEL);
|
||
#endif /* OBJ_COFF */
|
||
} /* only on calls */
|
||
|
||
return;
|
||
} /* tc_coff_symbol_emit_hook() */
|
||
|
||
/*
|
||
* Local Variables:
|
||
* comment-column: 0
|
||
* fill-column: 131
|
||
* End:
|
||
*/
|
||
|
||
/* end of i960.c */
|