binutils-gdb/bfd/elf.c
John Gilmore 80bdcb77bd * elf.c (elf_obj_tdata): Merge elf_obj_tdata_struct and
elf_core_tdata_struct into a single common struct.  Core files
wouldn't have worked at all without this.
(bfd_elf_find_section):  New function for GDB's undercover use
to find string sections that BFD hides from it.
(elf_get_str_section):  Avoid multiple alloc&reads for same data; lint.
(elf_object_p, elf_core_file_p):  Allocate internal file header
storage dynamically.
* bfd.c (union {...} tdata):  Remove elf_core_tdata_struct.
* demo64.c:  Prevent "empty translation unit" warnings from idiots.
1992-06-11 08:10:04 +00:00

2622 lines
78 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* ELF executable support for BFD.
Copyright (C) 1991, 1992 Free Software Foundation, Inc.
Written by Fred Fish @ Cygnus Support, from information published
in "UNIX System V Release 4, Programmers Guide: ANSI C and
Programming Support Tools". Sufficient support for gdb.
Rewritten by Mark Eichin @ Cygnus Support, from information
published in "System V Application Binary Interface", chapters 4
and 5, as well as the various "Processor Supplement" documents
derived from it. Added support for assembler and other object file
utilities.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/****************************************
WARNING
This is only a partial ELF implementation,
incorporating only those parts that are
required to get gdb up and running. It is
expected that it will be expanded to a full
ELF implementation at some future date.
Unimplemented stubs call abort() to ensure
that they get proper attention if they are
ever called. The stubs are here since
this version was hacked from the COFF
version, and thus they will probably
go away or get expanded appropriately in a
future version.
fnf@cygnus.com
*****************************************/
/* Problems and other issues to resolve.
(1) BFD expects there to be some fixed number of "sections" in
the object file. I.E. there is a "section_count" variable in the
bfd structure which contains the number of sections. However, ELF
supports multiple "views" of a file. In particular, with current
implementations, executable files typically have two tables, a
program header table and a section header table, both of which
partition the executable.
In ELF-speak, the "linking view" of the file uses the section header
table to access "sections" within the file, and the "execution view"
uses the program header table to access "segments" within the file.
"Segments" typically may contain all the data from one or more
"sections".
Note that the section header table is optional in ELF executables,
but it is this information that is most useful to gdb. If the
section header table is missing, then gdb should probably try
to make do with the program header table. (FIXME)
*/
#include "bfd.h"
#include "sysdep.h"
#include "libbfd.h"
#include "obstack.h"
#include "elf/common.h"
#include "elf/internal.h"
#include "elf/external.h"
#ifdef HAVE_PROCFS /* Some core file support requires host /proc files */
#include <sys/procfs.h>
#else
#define bfd_prstatus(abfd, descdata, descsz, filepos) /* Define away */
#define bfd_fpregset(abfd, descdata, descsz, filepos) /* Define away */
#define bfd_prpsinfo(abfd, descdata, descsz, filepos) /* Define away */
#endif
/* Forward data declarations */
extern bfd_target elf_little_vec, elf_big_vec;
/* Currently the elf_symbol_type struct just contains the generic bfd
symbol structure. */
typedef struct
{
asymbol symbol;
} elf_symbol_type;
/* Some private data is stashed away for future use using the tdata pointer
in the bfd structure. */
struct elf_obj_tdata
{
Elf_Internal_Ehdr elf_header[1]; /* Actual data, but ref like ptr */
Elf_Internal_Shdr *elf_sect_ptr;
struct strtab *strtab_ptr;
int symtab_section;
void *prstatus; /* The raw /proc prstatus structure */
void *prpsinfo; /* The raw /proc prpsinfo structure */
};
#define elf_tdata(bfd) ((bfd) -> tdata.elf_obj_data)
#define elf_elfheader(bfd) (elf_tdata(bfd) -> elf_header)
#define elf_elfsections(bfd) (elf_tdata(bfd) -> elf_sect_ptr)
#define elf_shstrtab(bfd) (elf_tdata(bfd) -> strtab_ptr)
#define elf_onesymtab(bfd) (elf_tdata(bfd) -> symtab_section)
#define core_prpsinfo(bfd) (elf_tdata(bfd) -> prpsinfo)
#define core_prstatus(bfd) (elf_tdata(bfd) -> prstatus)
/* Translate an ELF symbol in external format into an ELF symbol in internal
format. */
static void
DEFUN(elf_swap_symbol_in,(abfd, src, dst),
bfd *abfd AND
Elf_External_Sym *src AND
Elf_Internal_Sym *dst)
{
dst -> st_name = bfd_h_get_32 (abfd, (bfd_byte *) src -> st_name);
dst -> st_value = bfd_h_get_32 (abfd, (bfd_byte *) src -> st_value);
dst -> st_size = bfd_h_get_32 (abfd, (bfd_byte *) src -> st_size);
dst -> st_info = bfd_h_get_8 (abfd, (bfd_byte *) src -> st_info);
dst -> st_other = bfd_h_get_8 (abfd, (bfd_byte *) src -> st_other);
dst -> st_shndx = bfd_h_get_16 (abfd, (bfd_byte *) src -> st_shndx);
}
/* Translate an ELF symbol in internal format into an ELF symbol in external
format. */
static void
DEFUN(elf_swap_symbol_out,(abfd, src, dst),
bfd *abfd AND
Elf_Internal_Sym *src AND
Elf_External_Sym *dst)
{
bfd_h_put_32 (abfd, src->st_name, dst->st_name);
bfd_h_put_32 (abfd, src->st_value, dst->st_value);
bfd_h_put_32 (abfd, src->st_size, dst->st_size);
bfd_h_put_8 (abfd, src->st_info, dst->st_info);
bfd_h_put_8 (abfd, src->st_other, dst->st_other);
bfd_h_put_16 (abfd, src->st_shndx, dst->st_shndx);
}
/* Translate an ELF file header in external format into an ELF file header in
internal format. */
static void
DEFUN(elf_swap_ehdr_in,(abfd, src, dst),
bfd *abfd AND
Elf_External_Ehdr *src AND
Elf_Internal_Ehdr *dst)
{
memcpy (dst -> e_ident, src -> e_ident, EI_NIDENT);
dst -> e_type = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_type);
dst -> e_machine = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_machine);
dst -> e_version = bfd_h_get_32 (abfd, (bfd_byte *) src -> e_version);
dst -> e_entry = bfd_h_get_32 (abfd, (bfd_byte *) src -> e_entry);
dst -> e_phoff = bfd_h_get_32 (abfd, (bfd_byte *) src -> e_phoff);
dst -> e_shoff = bfd_h_get_32 (abfd, (bfd_byte *) src -> e_shoff);
dst -> e_flags = bfd_h_get_32 (abfd, (bfd_byte *) src -> e_flags);
dst -> e_ehsize = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_ehsize);
dst -> e_phentsize = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_phentsize);
dst -> e_phnum = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_phnum);
dst -> e_shentsize = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_shentsize);
dst -> e_shnum = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_shnum);
dst -> e_shstrndx = bfd_h_get_16 (abfd, (bfd_byte *) src -> e_shstrndx);
}
/* Translate an ELF file header in internal format into an ELF file header in
external format. */
static void
DEFUN(elf_swap_ehdr_out,(abfd, src, dst),
bfd *abfd AND
Elf_Internal_Ehdr *src AND
Elf_External_Ehdr *dst)
{
memcpy (dst -> e_ident, src -> e_ident, EI_NIDENT);
/* note that all elements of dst are *arrays of unsigned char* already... */
bfd_h_put_16 (abfd, src->e_type, dst->e_type);
bfd_h_put_16 (abfd, src->e_machine, dst->e_machine);
bfd_h_put_32 (abfd, src->e_version, dst->e_version);
bfd_h_put_32 (abfd, src->e_entry, dst->e_entry);
bfd_h_put_32 (abfd, src->e_phoff, dst->e_phoff);
bfd_h_put_32 (abfd, src->e_shoff, dst->e_shoff);
bfd_h_put_32 (abfd, src->e_flags, dst->e_flags);
bfd_h_put_16 (abfd, src->e_ehsize, dst->e_ehsize);
bfd_h_put_16 (abfd, src->e_phentsize, dst->e_phentsize);
bfd_h_put_16 (abfd, src->e_phnum, dst->e_phnum);
bfd_h_put_16 (abfd, src->e_shentsize, dst->e_shentsize);
bfd_h_put_16 (abfd, src->e_shnum, dst->e_shnum);
bfd_h_put_16 (abfd, src->e_shstrndx, dst->e_shstrndx);
}
/* Translate an ELF section header table entry in external format into an
ELF section header table entry in internal format. */
static void
DEFUN(elf_swap_shdr_in,(abfd, src, dst),
bfd *abfd AND
Elf_External_Shdr *src AND
Elf_Internal_Shdr *dst)
{
dst->sh_name = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_name);
dst->sh_type = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_type);
dst->sh_flags = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_flags);
dst->sh_addr = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_addr);
dst->sh_offset = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_offset);
dst->sh_size = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_size);
dst->sh_link = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_link);
dst->sh_info = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_info);
dst->sh_addralign = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_addralign);
dst->sh_entsize = bfd_h_get_32 (abfd, (bfd_byte *) src->sh_entsize);
/* we haven't done any processing on it yet, so... */
dst->rawdata = (void*)0;
}
/* Translate an ELF section header table entry in internal format into an
ELF section header table entry in external format. */
static void
DEFUN(elf_swap_shdr_out,(abfd, src, dst),
bfd *abfd AND
Elf_Internal_Shdr *src AND
Elf_External_Shdr *dst)
{
/* note that all elements of dst are *arrays of unsigned char* already... */
bfd_h_put_32 (abfd, src->sh_name, dst->sh_name);
bfd_h_put_32 (abfd, src->sh_type, dst->sh_type);
bfd_h_put_32 (abfd, src->sh_flags, dst->sh_flags);
bfd_h_put_32 (abfd, src->sh_addr, dst->sh_addr);
bfd_h_put_32 (abfd, src->sh_offset, dst->sh_offset);
bfd_h_put_32 (abfd, src->sh_size, dst->sh_size);
bfd_h_put_32 (abfd, src->sh_link, dst->sh_link);
bfd_h_put_32 (abfd, src->sh_info, dst->sh_info);
bfd_h_put_32 (abfd, src->sh_addralign, dst->sh_addralign);
bfd_h_put_32 (abfd, src->sh_entsize, dst->sh_entsize);
}
/* Translate an ELF program header table entry in external format into an
ELF program header table entry in internal format. */
static void
DEFUN(elf_swap_phdr_in,(abfd, src, dst),
bfd *abfd AND
Elf_External_Phdr *src AND
Elf_Internal_Phdr *dst)
{
dst->p_type = bfd_h_get_32 (abfd, (bfd_byte *) src->p_type);
dst->p_offset = bfd_h_get_32 (abfd, (bfd_byte *) src->p_offset);
dst->p_vaddr = bfd_h_get_32 (abfd, (bfd_byte *) src->p_vaddr);
dst->p_paddr = bfd_h_get_32 (abfd, (bfd_byte *) src->p_paddr);
dst->p_filesz = bfd_h_get_32 (abfd, (bfd_byte *) src->p_filesz);
dst->p_memsz = bfd_h_get_32 (abfd, (bfd_byte *) src->p_memsz);
dst->p_flags = bfd_h_get_32 (abfd, (bfd_byte *) src->p_flags);
dst->p_align = bfd_h_get_32 (abfd, (bfd_byte *) src->p_align);
}
/* Translate an ELF reloc from external format to internal format. */
static void
DEFUN(elf_swap_reloc_in,(abfd, src, dst),
bfd *abfd AND
Elf_External_Rel *src AND
Elf_Internal_Rel *dst)
{
dst->r_offset = bfd_h_get_32 (abfd, (bfd_byte *) src->r_offset);
dst->r_info = bfd_h_get_32 (abfd, (bfd_byte *) src->r_info);
}
static void
DEFUN(elf_swap_reloca_in,(abfd, src, dst),
bfd *abfd AND
Elf_External_Rela *src AND
Elf_Internal_Rela *dst)
{
dst->r_offset = bfd_h_get_32 (abfd, (bfd_byte *) src->r_offset);
dst->r_info = bfd_h_get_32 (abfd, (bfd_byte *) src->r_info);
dst->r_addend = bfd_h_get_32 (abfd, (bfd_byte *) src->r_addend);
}
/* Translate an ELF reloc from internal format to external format. */
static void
DEFUN(elf_swap_reloc_out,(abfd, src, dst),
bfd *abfd AND
Elf_Internal_Rel *src AND
Elf_External_Rel *dst)
{
bfd_h_put_32 (abfd, src->r_offset, dst->r_offset);
bfd_h_put_32 (abfd, src->r_info, dst->r_info);
}
static void
DEFUN(elf_swap_reloca_out,(abfd, src, dst),
bfd *abfd AND
Elf_Internal_Rela *src AND
Elf_External_Rela *dst)
{
bfd_h_put_32 (abfd, src->r_offset, dst->r_offset);
bfd_h_put_32 (abfd, src->r_info, dst->r_info);
bfd_h_put_32 (abfd, src->r_addend, dst->r_addend);
}
static char *EXFUN(elf_read, (bfd *, long, int));
static struct sec * EXFUN(section_from_elf_index, (bfd *, int));
static int EXFUN(elf_section_from_bfd_section, (bfd *, struct sec *));
static boolean EXFUN(elf_slurp_symbol_table, (bfd *, Elf_Internal_Shdr*));
static void EXFUN(elf_info_to_howto, (bfd *, arelent *, Elf_Internal_Rela *));
static char *EXFUN(elf_get_str_section, (bfd *, unsigned int));
/* Helper functions for GDB to locate the string tables. */
Elf_Internal_Shdr *
DEFUN(bfd_elf_find_section, (abfd, name), /* .stabstr offset */
bfd *abfd AND
char *name)
{
Elf_Internal_Shdr *i_shdrp = elf_elfsections (abfd);
char *shstrtab = elf_get_str_section (abfd, elf_elfheader (abfd)->e_shstrndx);
unsigned int max = elf_elfheader (abfd)->e_shnum;
unsigned int i;
for (i = 1; i < max; i++)
if (!strcmp (&shstrtab[i_shdrp[i].sh_name], name))
return &i_shdrp[i];
return 0;
}
/* End of GDB support. */
static char *
DEFUN(elf_get_str_section, (abfd, shindex),
bfd *abfd AND
unsigned int shindex)
{
Elf_Internal_Shdr *i_shdrp = elf_elfsections (abfd);
unsigned int shstrtabsize = i_shdrp[shindex].sh_size;
unsigned int offset = i_shdrp[shindex].sh_offset;
char *shstrtab = i_shdrp[shindex].rawdata;
if (shstrtab)
return shstrtab;
if ((shstrtab = elf_read (abfd, offset, shstrtabsize)) == NULL)
{
return (NULL);
}
i_shdrp[shindex].rawdata = (void*)shstrtab;
return shstrtab;
}
static char *
DEFUN(elf_string_from_elf_section, (abfd, shindex, strindex),
bfd *abfd AND
unsigned int shindex AND
unsigned int strindex)
{
Elf_Internal_Shdr *i_shdrp = elf_elfsections (abfd);
Elf_Internal_Shdr *hdr = i_shdrp + shindex;
if (! hdr->rawdata)
{
if (elf_get_str_section (abfd, shindex) == NULL)
{
return NULL;
}
}
return ((char*)hdr->rawdata)+strindex;
}
#define elf_string_from_elf_strtab(abfd, strindex) \
elf_string_from_elf_section (abfd, elf_elfheader(abfd)->e_shstrndx, strindex)
/* Create a new bfd section from an ELF section header. */
static boolean
DEFUN(bfd_section_from_shdr, (abfd, shindex),
bfd *abfd AND
unsigned int shindex)
{
Elf_Internal_Shdr *i_shdrp = elf_elfsections (abfd);
Elf_Internal_Shdr *hdr = i_shdrp + shindex;
asection *newsect;
char *name;
name = hdr->sh_name ?
elf_string_from_elf_strtab (abfd, hdr->sh_name) : "unnamed";
switch(hdr->sh_type) {
case SHT_NULL:
/* inactive section. Throw it away. */
return true;
case SHT_PROGBITS:
case SHT_NOBITS:
/* Bits that get saved. This one is real. */
if (! hdr->rawdata )
{
newsect = bfd_make_section (abfd, name);
newsect->vma = hdr->sh_addr;
newsect->_raw_size = hdr->sh_size;
newsect->filepos = hdr->sh_offset; /* so we can read back the bits */
newsect->flags |= SEC_HAS_CONTENTS;
if (hdr->sh_flags & SHF_ALLOC)
{
newsect->flags |= SEC_ALLOC;
if (hdr->sh_type != SHT_NOBITS)
newsect->flags |= SEC_LOAD;
}
if (!(hdr->sh_flags & SHF_WRITE))
newsect->flags |= SEC_READONLY;
if (hdr->sh_flags & SHF_EXECINSTR)
newsect->flags |= SEC_CODE; /* FIXME: may only contain SOME code */
else
newsect->flags |= SEC_DATA;
hdr->rawdata = (void*)newsect;
}
return true;
break;
case SHT_SYMTAB:
/* we may be getting called by reference. Bring'em in... */
if (! hdr->rawdata) {
/* fetch our corresponding string table. */
bfd_section_from_shdr (abfd, hdr->sh_link);
/* start turning our elf symbols into bfd symbols. */
BFD_ASSERT (hdr->sh_entsize == sizeof (Elf_External_Sym));
elf_slurp_symbol_table (abfd, hdr);
abfd->flags |= HAS_SYMS;
}
return true;
case SHT_STRTAB:
/* we may be getting called by reference. Bring'em in... */
if (! hdr->rawdata)
{
/* we don't need to do anything, just make the data available. */
if (elf_get_str_section (abfd, shindex) == NULL)
return false;
}
return true;
case SHT_REL:
case SHT_RELA:
/* *these* do a lot of work -- but build no sections! */
/* the spec says there can be multiple strtabs, but only one symtab */
/* but there can be lots of REL* sections. */
{
asection *target_sect;
unsigned int idx;
bfd_section_from_shdr (abfd, hdr->sh_link); /* symbol table */
bfd_section_from_shdr (abfd, hdr->sh_info); /* target */
target_sect = section_from_elf_index (abfd, hdr->sh_info);
if (!elf_slurp_symbol_table(abfd, i_shdrp + hdr->sh_link))
return false;
target_sect->reloc_count = hdr->sh_size / hdr->sh_entsize;
target_sect->flags |= SEC_RELOC;
target_sect->relocation = 0;
target_sect->rel_filepos = hdr->sh_offset;
#if 0
fprintf(stderr, "ELF>> section %s reading %d relocs\n",
target_sect->name, target_sect->reloc_count);
#endif
return true;
}
break;
case SHT_HASH:
case SHT_DYNAMIC:
case SHT_DYNSYM: /* could treat this like symtab... */
#if 0
fprintf(stderr, "Dynamic Linking sections not yet supported.\n");
abort ();
#endif
break;
case SHT_NOTE:
#if 0
fprintf(stderr, "Note Sections not yet supported.\n");
abort ();
#endif
break;
case SHT_SHLIB:
#if 0
fprintf(stderr, "SHLIB Sections not supported (and non conforming.)\n");
#endif
return true;
default:
break;
}
return (true);
}
struct strtab {
char *tab;
int nentries;
int length;
};
static struct strtab *
DEFUN(bfd_new_strtab, (abfd),
bfd *abfd)
{
struct strtab *ss;
ss = (struct strtab *)malloc(sizeof(struct strtab));
ss->tab = malloc(1);
BFD_ASSERT(ss->tab != 0);
*ss->tab = 0;
ss->nentries = 0;
ss->length = 1;
return ss;
}
static int
DEFUN(bfd_add_to_strtab, (abfd, ss, str),
bfd *abfd AND
struct strtab *ss AND
CONST char *str)
{
/* should search first, but for now: */
/* include the trailing NUL */
int ln = strlen(str)+1;
/* should this be using obstacks? */
ss->tab = realloc(ss->tab, ss->length + ln);
BFD_ASSERT(ss->tab != 0);
strcpy(ss->tab + ss->length, str);
ss->nentries++;
ss->length += ln;
return ss->length - ln;
}
static int
DEFUN(bfd_add_2_to_strtab, (abfd, ss, str, str2),
bfd *abfd AND
struct strtab *ss AND
char *str AND
CONST char *str2)
{
/* should search first, but for now: */
/* include the trailing NUL */
int ln = strlen(str)+strlen(str2)+1;
/* should this be using obstacks? */
if (ss->length)
ss->tab = realloc(ss->tab, ss->length + ln);
else
ss->tab = malloc(ln);
BFD_ASSERT(ss->tab != 0);
strcpy(ss->tab + ss->length, str);
strcpy(ss->tab + ss->length + strlen(str), str2);
ss->nentries++;
ss->length += ln;
return ss->length - ln;
}
/* Create a new ELF section from a bfd section. */
static boolean
DEFUN(bfd_shdr_from_section, (abfd, hdr, shstrtab, indx),
bfd *abfd AND
Elf_Internal_Shdr *hdr AND
struct strtab *shstrtab AND
int indx)
{
asection *sect;
int ndx;
/* figure out out to write the section name from the bfd section name. MWE */
sect = abfd->sections;
for (ndx = indx; --ndx; )
{
sect = sect->next;
}
hdr[indx].sh_name = bfd_add_to_strtab(abfd, shstrtab,
bfd_section_name(abfd, sect));
hdr[indx].sh_addr = sect->vma;
hdr[indx].sh_size = sect->_raw_size;
hdr[indx].sh_flags = 0;
/* these need to be preserved on */
hdr[indx].sh_link = 0;
hdr[indx].sh_info = 0;
hdr[indx].sh_addralign = 0;
hdr[indx].sh_entsize = 0;
hdr[indx].sh_type = 0;
if (sect->flags & SEC_RELOC) {
hdr[indx].sh_type = SHT_RELA; /* FIXME -- sparc specific */
}
if (sect->flags & SEC_HAS_CONTENTS)
{
hdr[indx].sh_offset = sect->filepos;
hdr[indx].sh_size = sect->_raw_size;
}
if (sect->flags & SEC_ALLOC)
{
hdr[indx].sh_flags |= SHF_ALLOC;
if (sect->flags & SEC_LOAD)
{
/* do something with sh_type ? */
}
}
if (!(sect->flags & SEC_READONLY))
hdr[indx].sh_flags |= SHF_WRITE;
if (sect->flags & SEC_CODE)
hdr[indx].sh_flags |= SHF_EXECINSTR;
return (true);
}
/* Create a new bfd section from an ELF program header.
Since program segments have no names, we generate a synthetic name
of the form segment<NUM>, where NUM is generally the index in the
program header table. For segments that are split (see below) we
generate the names segment<NUM>a and segment<NUM>b.
Note that some program segments may have a file size that is different than
(less than) the memory size. All this means is that at execution the
system must allocate the amount of memory specified by the memory size,
but only initialize it with the first "file size" bytes read from the
file. This would occur for example, with program segments consisting
of combined data+bss.
To handle the above situation, this routine generates TWO bfd sections
for the single program segment. The first has the length specified by
the file size of the segment, and the second has the length specified
by the difference between the two sizes. In effect, the segment is split
into it's initialized and uninitialized parts.
*/
static boolean
DEFUN(bfd_section_from_phdr, (abfd, hdr, index),
bfd *abfd AND
Elf_Internal_Phdr *hdr AND
int index)
{
asection *newsect;
char *name;
char namebuf[64];
int split;
split = ((hdr -> p_memsz > 0) &&
(hdr -> p_filesz > 0) &&
(hdr -> p_memsz > hdr -> p_filesz));
sprintf (namebuf, split ? "segment%da" : "segment%d", index);
name = bfd_alloc (abfd, strlen (namebuf) + 1);
(void) strcpy (name, namebuf);
newsect = bfd_make_section (abfd, name);
newsect -> vma = hdr -> p_vaddr;
newsect -> _raw_size = hdr -> p_filesz;
newsect -> filepos = hdr -> p_offset;
newsect -> flags |= SEC_HAS_CONTENTS;
if (hdr -> p_type == PT_LOAD)
{
newsect -> flags |= SEC_ALLOC;
newsect -> flags |= SEC_LOAD;
if (hdr -> p_flags & PF_X)
{
/* FIXME: all we known is that it has execute PERMISSION,
may be data. */
newsect -> flags |= SEC_CODE;
}
}
if (!(hdr -> p_flags & PF_W))
{
newsect -> flags |= SEC_READONLY;
}
if (split)
{
sprintf (namebuf, "segment%db", index);
name = bfd_alloc (abfd, strlen (namebuf) + 1);
(void) strcpy (name, namebuf);
newsect = bfd_make_section (abfd, name);
newsect -> vma = hdr -> p_vaddr + hdr -> p_filesz;
newsect -> _raw_size = hdr -> p_memsz - hdr -> p_filesz;
if (hdr -> p_type == PT_LOAD)
{
newsect -> flags |= SEC_ALLOC;
if (hdr -> p_flags & PF_X)
newsect -> flags |= SEC_CODE;
}
if (!(hdr -> p_flags & PF_W))
newsect -> flags |= SEC_READONLY;
}
return (true);
}
#ifdef HAVE_PROCFS
static void
DEFUN(bfd_prstatus,(abfd, descdata, descsz, filepos),
bfd *abfd AND
char *descdata AND
int descsz AND
long filepos)
{
asection *newsect;
prstatus_t *status = (prstatus_t *)0;
if (descsz == sizeof (prstatus_t))
{
newsect = bfd_make_section (abfd, ".reg");
newsect -> _raw_size = sizeof (status->pr_reg);
newsect -> filepos = filepos + (long) &status->pr_reg;
newsect -> flags = SEC_ALLOC | SEC_HAS_CONTENTS;
newsect -> alignment_power = 2;
if ((core_prstatus (abfd) = bfd_alloc (abfd, descsz)) != NULL)
{
memcpy (core_prstatus (abfd), descdata, descsz);
}
}
}
/* Stash a copy of the prpsinfo structure away for future use. */
static void
DEFUN(bfd_prpsinfo,(abfd, descdata, descsz, filepos),
bfd *abfd AND
char *descdata AND
int descsz AND
long filepos)
{
asection *newsect;
if (descsz == sizeof (prpsinfo_t))
{
if ((core_prpsinfo (abfd) = bfd_alloc (abfd, descsz)) != NULL)
{
bcopy (descdata, core_prpsinfo (abfd), descsz);
}
}
}
static void
DEFUN(bfd_fpregset,(abfd, descdata, descsz, filepos),
bfd *abfd AND
char *descdata AND
int descsz AND
long filepos)
{
asection *newsect;
newsect = bfd_make_section (abfd, ".reg2");
newsect -> _raw_size = descsz;
newsect -> filepos = filepos;
newsect -> flags = SEC_ALLOC | SEC_HAS_CONTENTS;
newsect -> alignment_power = 2;
}
#endif /* HAVE_PROCFS */
/* Return a pointer to the args (including the command name) that were
seen by the program that generated the core dump. Note that for
some reason, a spurious space is tacked onto the end of the args
in some (at least one anyway) implementations, so strip it off if
it exists. */
char *
DEFUN(elf_core_file_failing_command, (abfd),
bfd *abfd)
{
#ifdef HAVE_PROCFS
if (core_prpsinfo (abfd))
{
prpsinfo_t *p = core_prpsinfo (abfd);
char *scan = p -> pr_psargs;
while (*scan++) {;}
scan -= 2;
if ((scan > p -> pr_psargs) && (*scan == ' '))
{
*scan = '\000';
}
return (p -> pr_psargs);
}
#endif
return (NULL);
}
/* Return the number of the signal that caused the core dump. Presumably,
since we have a core file, we got a signal of some kind, so don't bother
checking the other process status fields, just return the signal number.
*/
static int
DEFUN(elf_core_file_failing_signal, (abfd),
bfd *abfd)
{
#ifdef HAVE_PROCFS
if (core_prstatus (abfd))
{
return (((prstatus_t *)(core_prstatus (abfd))) -> pr_cursig);
}
#endif
return (-1);
}
/* Check to see if the core file could reasonably be expected to have
come for the current executable file. Note that by default we return
true unless we find something that indicates that there might be a
problem.
*/
static boolean
DEFUN(elf_core_file_matches_executable_p, (core_bfd, exec_bfd),
bfd *core_bfd AND
bfd *exec_bfd)
{
#ifdef HAVE_PROCFS
char *corename;
char *execname;
#endif
/* First, xvecs must match since both are ELF files for the same target. */
if (core_bfd->xvec != exec_bfd->xvec)
{
bfd_error = system_call_error;
return (false);
}
#ifdef HAVE_PROCFS
/* If no prpsinfo, just return true. Otherwise, grab the last component
of the exec'd pathname from the prpsinfo. */
if (core_prpsinfo (core_bfd))
{
corename = (((struct prpsinfo *) core_prpsinfo (core_bfd)) -> pr_fname);
}
else
{
return (true);
}
/* Find the last component of the executable pathname. */
if ((execname = strrchr (exec_bfd -> filename, '/')) != NULL)
{
execname++;
}
else
{
execname = (char *) exec_bfd -> filename;
}
/* See if they match */
return (strcmp (execname, corename) ? false : true);
#else
return (true);
#endif /* HAVE_PROCFS */
}
/* ELF core files contain a segment of type PT_NOTE, that holds much of
the information that would normally be available from the /proc interface
for the process, at the time the process dumped core. Currently this
includes copies of the prstatus, prpsinfo, and fpregset structures.
Since these structures are potentially machine dependent in size and
ordering, bfd provides two levels of support for them. The first level,
available on all machines since it does not require that the host
have /proc support or the relevant include files, is to create a bfd
section for each of the prstatus, prpsinfo, and fpregset structures,
without any interpretation of their contents. With just this support,
the bfd client will have to interpret the structures itself. Even with
/proc support, it might want these full structures for it's own reasons.
In the second level of support, where HAVE_PROCFS is defined, bfd will
pick apart the structures to gather some additional information that
clients may want, such as the general register set, the name of the
exec'ed file and its arguments, the signal (if any) that caused the
core dump, etc.
*/
static boolean
DEFUN(elf_corefile_note, (abfd, hdr),
bfd *abfd AND
Elf_Internal_Phdr *hdr)
{
Elf_External_Note *x_note_p; /* Elf note, external form */
Elf_Internal_Note i_note; /* Elf note, internal form */
char *buf = NULL; /* Entire note segment contents */
char *namedata; /* Name portion of the note */
char *descdata; /* Descriptor portion of the note */
char *sectname; /* Name to use for new section */
long filepos; /* File offset to descriptor data */
asection *newsect;
if (hdr -> p_filesz > 0
&& (buf = (char *) bfd_xmalloc (hdr -> p_filesz)) != NULL
&& bfd_seek (abfd, hdr -> p_offset, SEEK_SET) != -1L
&& bfd_read ((PTR) buf, hdr -> p_filesz, 1, abfd) == hdr -> p_filesz)
{
x_note_p = (Elf_External_Note *) buf;
while ((char *) x_note_p < (buf + hdr -> p_filesz))
{
i_note.namesz = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p -> namesz);
i_note.descsz = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p -> descsz);
i_note.type = bfd_h_get_32 (abfd, (bfd_byte *) x_note_p -> type);
namedata = x_note_p -> name;
descdata = namedata + BFD_ALIGN (i_note.namesz, 4);
filepos = hdr -> p_offset + (descdata - buf);
switch (i_note.type) {
case NT_PRSTATUS:
/* process descdata as prstatus info */
bfd_prstatus (abfd, descdata, i_note.descsz, filepos);
sectname = ".prstatus";
break;
case NT_FPREGSET:
/* process descdata as fpregset info */
bfd_fpregset (abfd, descdata, i_note.descsz, filepos);
sectname = ".fpregset";
break;
case NT_PRPSINFO:
/* process descdata as prpsinfo */
bfd_prpsinfo (abfd, descdata, i_note.descsz, filepos);
sectname = ".prpsinfo";
break;
default:
/* Unknown descriptor, just ignore it. */
sectname = NULL;
break;
}
if (sectname != NULL)
{
newsect = bfd_make_section (abfd, sectname);
newsect -> _raw_size = i_note.descsz;
newsect -> filepos = filepos;
newsect -> flags = SEC_ALLOC | SEC_HAS_CONTENTS;
newsect -> alignment_power = 2;
}
x_note_p = (Elf_External_Note *)
(descdata + BFD_ALIGN (i_note.descsz, 4));
}
}
if (buf != NULL)
{
free (buf);
}
return true;
}
/* Read a specified number of bytes at a specified offset in an ELF
file, into a newly allocated buffer, and return a pointer to the
buffer. */
static char *
DEFUN(elf_read, (abfd, offset, size),
bfd *abfd AND
long offset AND
int size)
{
char *buf;
if ((buf = bfd_alloc (abfd, size)) == NULL)
{
bfd_error = no_memory;
return (NULL);
}
if (bfd_seek (abfd, offset, SEEK_SET) == -1)
{
bfd_error = system_call_error;
return (NULL);
}
if (bfd_read ((PTR) buf, size, 1, abfd) != size)
{
bfd_error = system_call_error;
return (NULL);
}
return (buf);
}
/* Begin processing a given object.
First we validate the file by reading in the ELF header and checking
the magic number.
*/
static bfd_target *
DEFUN (elf_object_p, (abfd), bfd *abfd)
{
Elf_External_Ehdr x_ehdr; /* Elf file header, external form */
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
Elf_External_Shdr x_shdr; /* Section header table entry, external form */
Elf_Internal_Shdr *i_shdrp; /* Section header table, internal form */
int shindex;
char *shstrtab; /* Internal copy of section header stringtab */
Elf_Off offset; /* Temp place to stash file offsets */
/* Read in the ELF header in external format. */
if (bfd_read ((PTR) &x_ehdr, sizeof (x_ehdr), 1, abfd) != sizeof (x_ehdr))
{
bfd_error = system_call_error;
return (NULL);
}
/* Now check to see if we have a valid ELF file, and one that BFD can
make use of. The magic number must match, the address size ('class')
and byte-swapping must match our XVEC entry, and it must have a
section header table (FIXME: See comments re sections at top of this
file). */
if (x_ehdr.e_ident[EI_MAG0] != ELFMAG0 ||
x_ehdr.e_ident[EI_MAG1] != ELFMAG1 ||
x_ehdr.e_ident[EI_MAG2] != ELFMAG2 ||
x_ehdr.e_ident[EI_MAG3] != ELFMAG3)
{
wrong:
bfd_error = wrong_format;
return (NULL);
}
/* FIXME, Check EI_VERSION here ! */
switch (x_ehdr.e_ident[EI_CLASS])
{
case ELFCLASSNONE: /* address size not specified */
goto wrong; /* No support if can't tell address size */
case ELFCLASS32: /* 32-bit addresses */
break;
case ELFCLASS64: /* 64-bit addresses */
goto wrong; /* FIXME: 64 bits not yet supported */
default:
goto wrong; /* No support if unknown address class */
}
/* Switch xvec to match the specified byte order. */
switch (x_ehdr.e_ident[EI_DATA])
{
case ELFDATA2MSB: /* Big-endian */
if (!abfd->xvec->header_byteorder_big_p)
goto wrong;
break;
case ELFDATA2LSB: /* Little-endian */
if (abfd->xvec->header_byteorder_big_p)
goto wrong;
break;
case ELFDATANONE: /* No data encoding specified */
default: /* Unknown data encoding specified */
goto wrong;
}
/* Allocate an instance of the elf_obj_tdata structure and hook it up to
the tdata pointer in the bfd. */
if (NULL == (elf_tdata (abfd) = (struct elf_obj_tdata *)
bfd_zalloc (abfd, sizeof (struct elf_obj_tdata))))
{
bfd_error = no_memory;
return (NULL);
}
/* FIXME: Any `wrong' exits below here will leak memory (tdata). */
/* Now that we know the byte order, swap in the rest of the header */
i_ehdrp = elf_elfheader (abfd);
elf_swap_ehdr_in (abfd, &x_ehdr, i_ehdrp);
/* If there is no section header table, we're hosed. */
if (i_ehdrp->e_shoff == 0)
goto wrong;
if (i_ehdrp->e_type == ET_EXEC || i_ehdrp->e_type == ET_DYN)
abfd -> flags |= EXEC_P;
switch (i_ehdrp->e_machine)
{
case EM_NONE:
case EM_M32: /* or should this be bfd_arch_obscure? */
bfd_default_set_arch_mach(abfd, bfd_arch_unknown, 0);
break;
case EM_SPARC:
bfd_default_set_arch_mach(abfd, bfd_arch_sparc, 0);
break;
case EM_386:
bfd_default_set_arch_mach(abfd, bfd_arch_i386, 0);
break;
case EM_68K:
bfd_default_set_arch_mach(abfd, bfd_arch_m68k, 0);
break;
case EM_88K:
bfd_default_set_arch_mach(abfd, bfd_arch_m88k, 0);
break;
case EM_860:
bfd_default_set_arch_mach(abfd, bfd_arch_i860, 0);
break;
case EM_MIPS:
bfd_default_set_arch_mach(abfd, bfd_arch_mips, 0);
break;
default:
goto wrong;
}
/* Allocate space for a copy of the section header table in
internal form, seek to the section header table in the file,
read it in, and convert it to internal form. As a simple sanity
check, verify that the what BFD thinks is the size of each section
header table entry actually matches the size recorded in the file. */
if (i_ehdrp->e_shentsize != sizeof (x_shdr))
goto wrong;
i_shdrp = (Elf_Internal_Shdr *)
bfd_alloc (abfd, sizeof (*i_shdrp) * i_ehdrp->e_shnum);
if (! i_shdrp)
{
bfd_error = no_memory;
return (NULL);
}
if (bfd_seek (abfd, i_ehdrp->e_shoff, SEEK_SET) == -1)
{
bfd_error = system_call_error;
return (NULL);
}
for (shindex = 0; shindex < i_ehdrp->e_shnum; shindex++)
{
if (bfd_read ((PTR) &x_shdr, sizeof x_shdr, 1, abfd)
!= sizeof (x_shdr))
{
bfd_error = system_call_error;
return (NULL);
}
elf_swap_shdr_in (abfd, &x_shdr, i_shdrp + shindex);
}
elf_elfsections (abfd) = i_shdrp;
/* Read in the string table containing the names of the sections. We
will need the base pointer to this table later. */
/* We read this inline now, so that we don't have to go through
bfd_section_from_shdr with it (since this particular strtab is
used to find all of the ELF section names.) */
shstrtab = elf_get_str_section (abfd, i_ehdrp->e_shstrndx);
if (! shstrtab)
return (NULL);
/* Once all of the section headers have been read and converted, we
can start processing them. Note that the first section header is
a dummy placeholder entry, so we ignore it.
We also watch for the symbol table section and remember the file
offset and section size for both the symbol table section and the
associated string table section. */
for (shindex = 1; shindex < i_ehdrp->e_shnum; shindex++)
{
bfd_section_from_shdr (abfd, shindex);
}
/* Remember the entry point specified in the ELF file header. */
bfd_get_start_address (abfd) = i_ehdrp->e_entry;
return (abfd->xvec);
}
/* Core files are simply standard ELF formatted files that partition
the file using the execution view of the file (program header table)
rather than the linking view. In fact, there is no section header
table in a core file.
The process status information (including the contents of the general
register set) and the floating point register set are stored in a
segment of type PT_NOTE. We handcraft a couple of extra bfd sections
that allow standard bfd access to the general registers (.reg) and the
floating point registers (.reg2).
*/
static bfd_target *
DEFUN (elf_core_file_p, (abfd), bfd *abfd)
{
Elf_External_Ehdr x_ehdr; /* Elf file header, external form */
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
Elf_External_Phdr x_phdr; /* Program header table entry, external form */
Elf_Internal_Phdr *i_phdrp; /* Program header table, internal form */
unsigned int phindex;
/* Read in the ELF header in external format. */
if (bfd_read ((PTR) &x_ehdr, sizeof (x_ehdr), 1, abfd) != sizeof (x_ehdr))
{
bfd_error = system_call_error;
return (NULL);
}
/* Now check to see if we have a valid ELF file, and one that BFD can
make use of. The magic number must match, the address size ('class')
and byte-swapping must match our XVEC entry, and it must have a
program header table (FIXME: See comments re segments at top of this
file). */
if (x_ehdr.e_ident[EI_MAG0] != ELFMAG0 ||
x_ehdr.e_ident[EI_MAG1] != ELFMAG1 ||
x_ehdr.e_ident[EI_MAG2] != ELFMAG2 ||
x_ehdr.e_ident[EI_MAG3] != ELFMAG3)
{
wrong:
bfd_error = wrong_format;
return (NULL);
}
/* FIXME, Check EI_VERSION here ! */
switch (x_ehdr.e_ident[EI_CLASS])
{
case ELFCLASSNONE: /* address size not specified */
goto wrong; /* No support if can't tell address size */
case ELFCLASS32: /* 32-bit addresses */
break;
case ELFCLASS64: /* 64-bit addresses */
goto wrong; /* FIXME: 64 bits not yet supported */
default:
goto wrong; /* No support if unknown address class */
}
/* Switch xvec to match the specified byte order. */
switch (x_ehdr.e_ident[EI_DATA])
{
case ELFDATA2MSB: /* Big-endian */
abfd->xvec = &elf_big_vec;
break;
case ELFDATA2LSB: /* Little-endian */
abfd->xvec = &elf_little_vec;
break;
case ELFDATANONE: /* No data encoding specified */
default: /* Unknown data encoding specified */
goto wrong;
}
/* Allocate an instance of the elf_obj_tdata structure and hook it up to
the tdata pointer in the bfd. */
elf_tdata (abfd) =
(struct elf_obj_tdata *) bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
if (elf_tdata (abfd) == NULL)
{
bfd_error = no_memory;
return (NULL);
}
/* FIXME, `wrong' returns from this point onward, leak memory. */
/* Now that we know the byte order, swap in the rest of the header */
i_ehdrp = elf_elfheader (abfd);
elf_swap_ehdr_in (abfd, &x_ehdr, i_ehdrp);
/* If there is no program header, or the type is not a core file, then
we are hosed. */
if (i_ehdrp->e_phoff == 0 || i_ehdrp->e_type != ET_CORE)
goto wrong;
/* Allocate space for a copy of the program header table in
internal form, seek to the program header table in the file,
read it in, and convert it to internal form. As a simple sanity
check, verify that the what BFD thinks is the size of each program
header table entry actually matches the size recorded in the file. */
if (i_ehdrp->e_phentsize != sizeof (x_phdr))
goto wrong;
i_phdrp = (Elf_Internal_Phdr *)
bfd_alloc (abfd, sizeof (*i_phdrp) * i_ehdrp->e_phnum);
if (! i_phdrp)
{
bfd_error = no_memory;
return (NULL);
}
if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) == -1)
{
bfd_error = system_call_error;
return (NULL);
}
for (phindex = 0; phindex < i_ehdrp->e_phnum; phindex++)
{
if (bfd_read ((PTR) &x_phdr, sizeof (x_phdr), 1, abfd)
!= sizeof (x_phdr))
{
bfd_error = system_call_error;
return (NULL);
}
elf_swap_phdr_in (abfd, &x_phdr, i_phdrp + phindex);
}
/* Once all of the program headers have been read and converted, we
can start processing them. */
for (phindex = 0; phindex < i_ehdrp->e_phnum; phindex++)
{
bfd_section_from_phdr (abfd, i_phdrp + phindex, phindex);
if ((i_phdrp + phindex) -> p_type == PT_NOTE)
{
elf_corefile_note (abfd, i_phdrp + phindex);
}
}
/* Remember the entry point specified in the ELF file header. */
bfd_get_start_address (abfd) = i_ehdrp->e_entry;
return (abfd->xvec);
}
static boolean
DEFUN (elf_mkobject, (abfd), bfd *abfd)
{
/* this just does initialization */
/* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
elf_tdata(abfd) = (struct elf_obj_tdata *)
bfd_zalloc (abfd, sizeof(struct elf_obj_tdata));
if (elf_tdata(abfd) == 0) {
bfd_error = no_memory;
return false;
}
/* since everything is done at close time, do we need any
initialization? */
return (true);
}
/*
Create ELF output from BFD sections.
Essentially, just create the section header and forget about the program
header for now.
*/
/* lacking nested functions and nested types, set up for mapping over
BFD sections to produce ELF sections */
typedef struct {
Elf_Internal_Ehdr *i_ehdr;
Elf_Internal_Shdr *i_shdrp;
struct strtab *shstrtab;
int symtab_section;
} elf_sect_thunk;
static void
DEFUN (elf_make_sections, (abfd, asect, obj),
bfd *abfd AND
asection *asect AND
PTR obj)
{
elf_sect_thunk *thunk = (elf_sect_thunk*)obj;
/* most of what is in bfd_shdr_from_section goes in here... */
/* and all of these sections generate at *least* one ELF section. */
int this_section;
int idx;
/* check if we're making a PROGBITS section... */
/* if ((asect->flags & SEC_ALLOC) && (asect->flags & SEC_LOAD)) */
/* this was too strict... what *do* we want to check here? */
if(1)
{
Elf_Internal_Shdr *this_hdr;
this_section = elf_section_from_bfd_section (abfd, asect);
this_hdr = &thunk->i_shdrp[this_section];
this_hdr->sh_addr = asect->vma;
this_hdr->sh_size = asect->_raw_size;
/* contents already set by elf_set_section_contents */
if (asect->flags & SEC_RELOC)
{
/* emit a reloc section, and thus strtab and symtab... */
Elf_Internal_Shdr *rela_hdr;
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Shdr *symstrtab_hdr;
Elf_External_Rela *outbound_relocs;
Elf_External_Sym *outbound_syms;
int rela_section;
int symstrtab_section;
symtab_hdr = &thunk->i_shdrp[thunk->symtab_section];
if (thunk->symtab_section == this_section + 1)
rela_section = thunk->symtab_section + 2; /* symtab + symstrtab */
else
rela_section = this_section + 1;
rela_hdr = &thunk->i_shdrp[rela_section];
rela_hdr->sh_type = SHT_RELA;
rela_hdr->sh_link = thunk->symtab_section;
rela_hdr->sh_info = this_section;
rela_hdr->sh_entsize = sizeof (Elf_External_Rela);
/* orelocation has the data, reloc_count has the count... */
rela_hdr->sh_size = rela_hdr->sh_entsize * asect->reloc_count;
fprintf(stderr,"ELF>> sending out %d relocs to %s\n",
asect->reloc_count, asect->name);
outbound_relocs = (Elf_External_Rela *)
bfd_alloc(abfd, asect->reloc_count * sizeof(Elf_External_Rela));
for (idx = 0; idx < asect->reloc_count; idx++)
{
Elf_Internal_Rela dst;
arelent *ptr;
Elf_External_Rela *src;
ptr = asect->orelocation[idx];
src = outbound_relocs + idx;
if (asect->flags & SEC_RELOC)
dst.r_offset = ptr->address - asect->vma;
else
dst.r_offset = ptr->address;
dst.r_info = ELF_R_INFO(1 /*ptr->sym_ptr_ptr*/, /* needs index into symtab (FIXME) */
ptr->howto->type);
dst.r_addend = ptr->addend;
elf_swap_reloca_out(abfd, &dst, src);
}
rela_hdr->contents = (void*)outbound_relocs;
}
}
}
static void
DEFUN (elf_fake_sections, (abfd, asect, obj),
bfd *abfd AND
asection *asect AND
PTR obj)
{
elf_sect_thunk *thunk = (elf_sect_thunk*)obj;
/* most of what is in bfd_shdr_from_section goes in here... */
/* and all of these sections generate at *least* one ELF section. */
int this_section;
int idx;
/* check if we're making a PROGBITS section... */
/* if ((asect->flags & SEC_ALLOC) && (asect->flags & SEC_LOAD)) */
/* this was too strict... what *do* we want to check here? */
if(1)
{
Elf_Internal_Shdr *this_hdr;
this_section = thunk->i_ehdr->e_shnum++;
this_hdr = &thunk->i_shdrp[this_section];
this_hdr->sh_name =
bfd_add_to_strtab (abfd, thunk->shstrtab, asect->name);
/* we need to log the type *now* so that elf_section_from_bfd_section
can find us... have to set rawdata too. */
this_hdr->rawdata = (void*)asect;
if ((asect->flags & SEC_ALLOC) && (asect->flags & SEC_LOAD))
this_hdr->sh_type = SHT_PROGBITS;
else
/* what *do* we put here? */
this_hdr->sh_type = SHT_PROGBITS;
if (asect->flags & SEC_RELOC)
{
/* emit a reloc section, and thus strtab and symtab... */
Elf_Internal_Shdr *rela_hdr;
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Shdr *symstrtab_hdr;
Elf_External_Rela *outbound_relocs;
Elf_External_Sym *outbound_syms;
int rela_section;
int symstrtab_section;
/* note that only one symtab is used, so just remember it
for now */
if (! thunk->symtab_section)
{
thunk->symtab_section = thunk->i_ehdr->e_shnum++;
symtab_hdr = &thunk->i_shdrp[thunk->symtab_section];
symtab_hdr->sh_name =
bfd_add_to_strtab (abfd, thunk->shstrtab, ".symtab");
symtab_hdr->sh_type = SHT_SYMTAB;
symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
symstrtab_section = thunk->i_ehdr->e_shnum++;
BFD_ASSERT(symstrtab_section == thunk->symtab_section+1);
symstrtab_hdr = &thunk->i_shdrp[symstrtab_section];
symtab_hdr->sh_link = symstrtab_section;
symstrtab_hdr->sh_name =
bfd_add_to_strtab (abfd, thunk->shstrtab, ".strtab");
symstrtab_hdr->sh_type = SHT_STRTAB;
symtab_hdr->contents = 0;
symstrtab_hdr->contents = 0;
symstrtab_hdr->sh_size = 0;
}
else
symtab_hdr = &thunk->i_shdrp[thunk->symtab_section];
rela_section = thunk->i_ehdr->e_shnum++;
rela_hdr = &thunk->i_shdrp[rela_section];
rela_hdr->sh_name =
bfd_add_2_to_strtab (abfd, thunk->shstrtab, ".rela", asect->name);
rela_hdr->sh_type = SHT_RELA;
rela_hdr->sh_link = thunk->symtab_section;
rela_hdr->sh_info = this_section;
rela_hdr->sh_entsize = sizeof (Elf_External_Rela);
}
}
}
static boolean
DEFUN (elf_compute_section_file_positions, (abfd), bfd *abfd)
{
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
Elf_Internal_Shdr *i_shdrp; /* Section header table, internal form */
struct strtab *shstrtab;
int count, maxsections;
int outbase;
elf_sect_thunk est;
if (! elf_shstrtab (abfd)) {
i_ehdrp = elf_elfheader (abfd); /* build new header in tdata memory */
shstrtab = bfd_new_strtab(abfd);
i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
i_ehdrp->e_ident[EI_CLASS] = ELFCLASS32; /* FIXME: find out from bfd */
i_ehdrp->e_ident[EI_DATA] =
abfd->xvec->byteorder_big_p ? ELFDATA2MSB : ELFDATA2LSB;
i_ehdrp->e_ident[EI_VERSION] = EV_CURRENT;
for(count = EI_PAD; count < EI_NIDENT; count ++)
i_ehdrp->e_ident[count] = 0;
i_ehdrp->e_type = (abfd->flags & EXEC_P)? ET_EXEC : ET_REL;
switch(bfd_get_arch(abfd))
{
case bfd_arch_unknown:
i_ehdrp->e_machine = EM_NONE;
break;
case bfd_arch_sparc:
i_ehdrp->e_machine = EM_SPARC;
break;
case bfd_arch_i386:
i_ehdrp->e_machine = EM_386;
break;
case bfd_arch_m68k:
i_ehdrp->e_machine = EM_68K;
break;
case bfd_arch_m88k:
i_ehdrp->e_machine = EM_88K;
break;
case bfd_arch_i860:
i_ehdrp->e_machine = EM_860;
break;
case bfd_arch_mips: /* MIPS Rxxxx */
i_ehdrp->e_machine = EM_MIPS; /* only MIPS R3000 */
break;
/* also note that EM_M32, AT&T WE32100 is unknown to bfd */
default:
i_ehdrp->e_machine = EM_NONE;
}
i_ehdrp->e_version = EV_CURRENT;
i_ehdrp->e_ehsize = sizeof(Elf_External_Ehdr);
/* no program header, for now. */
i_ehdrp->e_phoff = 0;
i_ehdrp->e_phentsize = 0;
i_ehdrp->e_phnum = 0;
/* each bfd section is section header entry */
i_ehdrp->e_entry = bfd_get_start_address (abfd);
i_ehdrp->e_shentsize = sizeof (Elf_External_Shdr);
/* can't do this: we'll need many more... */
/* i_ehdr.e_shnum = bfd_count_sections(abfd)+1; /* include 0th, shstrtab */
/* figure at most each section can have a rel, strtab, symtab */
maxsections = 4*bfd_count_sections(abfd)+2;
i_ehdrp->e_shoff = i_ehdrp->e_ehsize;
/* and we'll just have to fix up the offsets later. */
/* outbase += i_ehdr.e_shentsize * i_ehdr.e_shnum; */
i_shdrp = (Elf_Internal_Shdr *)
bfd_alloc (abfd, sizeof (*i_shdrp) * maxsections);
if (! i_shdrp)
{
bfd_error = no_memory;
return (false);
}
for (count=0; count < maxsections; count++)
{
i_shdrp[count].rawdata = 0;
i_shdrp[count].contents = 0;
}
i_shdrp[0].sh_name = 0;
i_shdrp[0].sh_type = SHT_NULL;
i_shdrp[0].sh_flags = 0;
i_shdrp[0].sh_addr = 0;
i_shdrp[0].sh_offset = 0;
i_shdrp[0].sh_size = 0;
i_shdrp[0].sh_link = SHN_UNDEF;
i_shdrp[0].sh_info = 0;
i_shdrp[0].sh_addralign = 0;
i_shdrp[0].sh_entsize = 0;
i_ehdrp->e_shnum = 1;
elf_elfsections (abfd) = i_shdrp;
elf_shstrtab (abfd) = shstrtab;
}
est.i_ehdr = elf_elfheader(abfd);
est.i_shdrp = elf_elfsections(abfd);
est.shstrtab = elf_shstrtab(abfd);
est.symtab_section = 0; /* elf_fake_sections fils it in */
bfd_map_over_sections(abfd, elf_fake_sections, &est);
elf_onesymtab (abfd) = est.symtab_section;
return (true);
}
static boolean
DEFUN (elf_write_object_contents, (abfd), bfd *abfd)
{
Elf_External_Ehdr x_ehdr; /* Elf file header, external form */
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
Elf_External_Phdr *x_phdrp; /* Program header table, external form */
Elf_Internal_Phdr *i_phdrp; /* Program header table, internal form */
Elf_External_Shdr *x_shdrp; /* Section header table, external form */
Elf_Internal_Shdr *i_shdrp; /* Section header table, internal form */
asection *nsect;
int maxsections;
elf_sect_thunk est;
int outbase = 0;
int count;
struct strtab *shstrtab;
if(abfd->output_has_begun == false)
elf_compute_section_file_positions(abfd);
i_ehdrp = elf_elfheader (abfd);
i_shdrp = elf_elfsections (abfd);
shstrtab = elf_shstrtab (abfd);
est.i_ehdr = i_ehdrp;
est.i_shdrp = i_shdrp;
est.shstrtab = shstrtab;
est.symtab_section = elf_onesymtab (abfd); /* filled in by elf_fake */
bfd_map_over_sections(abfd, elf_make_sections, &est);
/* dump out the one symtab */
{
int symcount = bfd_get_symcount (abfd);
asymbol ** syms = bfd_get_outsymbols (abfd);
struct strtab * stt = bfd_new_strtab (abfd);
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Shdr *symstrtab_hdr;
int symstrtab_section;
Elf_External_Sym *outbound_syms;
int idx;
symtab_hdr = &i_shdrp[est.symtab_section];
symtab_hdr->sh_type = SHT_SYMTAB;
symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
symtab_hdr->sh_size = symtab_hdr->sh_entsize * symcount;
/* see assert in elf_fake_sections that supports this: */
symstrtab_section = est.symtab_section+1;
symstrtab_hdr = &i_shdrp[symstrtab_section];
symtab_hdr->sh_link = symstrtab_section;
symstrtab_hdr->sh_type = SHT_STRTAB;
fprintf(stderr,"ELF>> sending out %d syms\n",symcount);
outbound_syms = (Elf_External_Sym*)
bfd_alloc(abfd, (1+symcount) * sizeof(Elf_External_Sym));
/* now generate the data (for "contents") */
for (idx = 0; idx < symcount; idx++)
{
Elf_Internal_Sym sym;
sym.st_name = bfd_add_to_strtab (abfd, stt, syms[idx]->name);
sym.st_value = syms[idx]->value;
sym.st_size = 0; /* we should recover this (FIXME) */
if (syms[idx]->flags & BSF_WEAK)
sym.st_info = ELF_ST_INFO(STB_WEAK, STT_OBJECT);
else if (syms[idx]->flags & BSF_LOCAL)
sym.st_info = ELF_ST_INFO(STB_LOCAL, STT_OBJECT);
else if (syms[idx]->flags & BSF_GLOBAL)
sym.st_info = ELF_ST_INFO(STB_GLOBAL, STT_OBJECT);
sym.st_other = 0;
if (syms[idx]->section)
sym.st_shndx =
elf_section_from_bfd_section(abfd,
syms[idx]->section->output_section);
else
sym.st_shndx = SHN_UNDEF;
elf_swap_symbol_out (abfd, &sym, outbound_syms+idx+1);
}
{
/* fill in 0th symbol */
Elf_Internal_Sym sym;
sym.st_name = 0;
sym.st_value = 0;
sym.st_size = 0;
sym.st_info = 0;
sym.st_other = 0;
sym.st_shndx = SHN_UNDEF;
elf_swap_symbol_out (abfd, &sym, outbound_syms);
}
symtab_hdr->contents = (void*)outbound_syms;
symstrtab_hdr->contents = (void*)stt->tab;
symstrtab_hdr->sh_size = stt->length;
}
/* put the strtab out too... */
{
Elf_Internal_Shdr *this_hdr;
int this_section;
this_section = i_ehdrp->e_shnum++;
i_ehdrp->e_shstrndx = this_section;
this_hdr = &i_shdrp[this_section];
this_hdr->sh_name = bfd_add_to_strtab (abfd, shstrtab, ".shstrtab");
this_hdr->sh_size = shstrtab->length;
this_hdr->contents = (void*)shstrtab->tab;
}
outbase = i_ehdrp->e_ehsize;
/* swap the header before spitting it out... */
elf_swap_ehdr_out (abfd, i_ehdrp, &x_ehdr);
bfd_seek (abfd, 0L, SEEK_SET);
bfd_write ((PTR) &x_ehdr, sizeof(x_ehdr), 1, abfd);
outbase += i_ehdrp->e_shentsize * i_ehdrp->e_shnum;
/* now we fix up the offsets... */
for (count = 0; count < i_ehdrp->e_shnum; count ++)
{
i_shdrp[count].sh_offset = outbase;
outbase += i_shdrp[count].sh_size;
}
/* at this point we've concocted all the ELF sections... */
x_shdrp = (Elf_External_Shdr *)
bfd_alloc (abfd, sizeof (*x_shdrp) * (i_ehdrp->e_shnum));
if (! x_shdrp)
{
bfd_error = no_memory;
return (false);
}
fprintf(stderr, "ELF>> total sections: %d\n", i_ehdrp->e_shnum);
for (count = 0; count < i_ehdrp->e_shnum; count ++)
{
elf_swap_shdr_out (abfd, i_shdrp+count, x_shdrp+count);
}
bfd_write ((PTR) x_shdrp, sizeof(*x_shdrp), i_ehdrp->e_shnum, abfd);
/* need to dump the string table too... */
/* after writing the headers, we need to write the sections too... */
nsect = abfd->sections;
for (count = 0; count < i_ehdrp->e_shnum; count ++)
{
if(i_shdrp[count].contents)
{
fprintf(stderr, "found some userdata: count %d, pos 0x%x\n",
count, i_shdrp[count].sh_offset);
bfd_seek (abfd, i_shdrp[count].sh_offset, SEEK_SET);
bfd_write (i_shdrp[count].contents, i_shdrp[count].sh_size, 1, abfd);
}
}
/* sample use of bfd:
* bfd_seek (abfd, 0L, false);
* bfd_write ((PTR) &exec_bytes, 1, EXEC_BYTES_SIZE, abfd);
* if (bfd_seek(abfd, scn_base, SEEK_SET) != 0)
* return false;
* old = bfd_tell(abfd);
*/
return true;
}
/* Given an index of a section, retrieve a pointer to it. Note
that for our purposes, sections are indexed by {1, 2, ...} with
0 being an illegal index. */
/* In the original, each ELF section went into exactly one BFD
section. This doesn't really make sense, so we need a real mapping.
The mapping has to hide in the Elf_Internal_Shdr since asection
doesn't have anything like a tdata field... */
static struct sec *
DEFUN (section_from_elf_index, (abfd, index),
bfd *abfd AND
int index)
{
Elf_Internal_Shdr *i_shdrp = elf_elfsections (abfd);
Elf_Internal_Shdr *hdr = i_shdrp + index;
switch (hdr->sh_type)
{
/* ELF sections that map to BFD sections */
case SHT_PROGBITS:
case SHT_NOBITS:
if (! hdr->rawdata)
bfd_section_from_shdr (abfd, index);
return (struct sec *)hdr->rawdata;
break;
default:
return 0;
}
}
/* given a section, search the header to find them... */
static int
DEFUN (elf_section_from_bfd_section, (abfd, asect),
bfd *abfd AND
struct sec *asect)
{
Elf_Internal_Shdr *i_shdrp = elf_elfsections (abfd);
int index;
Elf_Internal_Shdr *hdr;
int maxindex = elf_elfheader (abfd)->e_shnum;
for(index = 0; index < maxindex; index++) {
hdr = &i_shdrp[index];
switch (hdr->sh_type)
{
/* ELF sections that map to BFD sections */
case SHT_PROGBITS:
case SHT_NOBITS:
if (hdr->rawdata)
{
if (((struct sec *)(hdr->rawdata)) == asect)
return index;
}
break;
default:
break;
}
}
return 0;
}
static boolean
DEFUN (elf_slurp_symbol_table, (abfd, hdr),
bfd *abfd AND
Elf_Internal_Shdr *hdr)
{
int symcount; /* Number of external ELF symbols */
char *strtab; /* Buffer for raw ELF string table section */
asymbol *sym; /* Pointer to current bfd symbol */
asymbol *symbase; /* Buffer for generated bfd symbols */
asymbol **vec; /* Pointer to current bfd symbol pointer */
Elf_Internal_Sym i_sym;
Elf_External_Sym x_sym;
Elf_External_Sym *x_symp;
unsigned int *table_ptr; /* bfd symbol translation table */
/* this is only valid because there is only one symtab... */
if (bfd_get_outsymbols (abfd) != NULL)
{
return (true);
}
/* Read each raw ELF symbol, converting from external ELF form to
internal ELF form, and then using the information to create a
canonical bfd symbol table entry.
Note that we allocate the initial bfd canonical symbol buffer
based on a one-to-one mapping of the ELF symbols to canonical
symbols. However, it is likely that not all the ELF symbols will
be used, so there will be some space leftover at the end. Once
we know how many symbols we actual generate, we realloc the buffer
to the correct size and then build the pointer vector. */
if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) == -1)
{
bfd_error = system_call_error;
return (false);
}
symcount = hdr->sh_size / sizeof (Elf_External_Sym);
sym = symbase = (asymbol *) bfd_zalloc (abfd, symcount * sizeof (asymbol));
x_symp = (Elf_External_Sym *)
bfd_zalloc (abfd, symcount * sizeof (Elf_External_Sym));
if (bfd_read ((PTR) x_symp, sizeof (Elf_External_Sym), symcount, abfd)
!= symcount * sizeof (Elf_External_Sym))
{
bfd_error = system_call_error;
return (false);
}
while (symcount-- > 0)
{
elf_swap_symbol_in (abfd, x_symp + symcount, &i_sym);
if (i_sym.st_name > 0)
{
sym -> the_bfd = abfd;
sym -> name = elf_string_from_elf_section(abfd, hdr->sh_link,
i_sym.st_name);
sym -> value = i_sym.st_value;
/* FIXME -- this is almost certainly bogus. It's from Pace Willisson's
hasty Solaris support, to pass the sizes of object files or functions
down into GDB via the back door, to circumvent some other kludge in
how Sun hacked stabs. */
sym -> udata = (PTR)i_sym.st_size;
/* FIXME -- end of bogosity. */
if (i_sym.st_shndx > 0 && i_sym.st_shndx < SHN_LORESERV)
{
sym -> section = section_from_elf_index (abfd, i_sym.st_shndx);
}
else if (i_sym.st_shndx == SHN_ABS)
{
sym -> section = &bfd_abs_section;
}
else if (i_sym.st_shndx == SHN_COMMON)
{
sym -> section = &bfd_com_section;
}
else if (i_sym.st_shndx == SHN_UNDEF)
{
sym -> section = &bfd_und_section;
}
switch (ELF_ST_BIND (i_sym.st_info))
{
case STB_LOCAL:
sym -> flags |= BSF_LOCAL;
break;
case STB_GLOBAL:
sym -> flags |= (BSF_GLOBAL | BSF_EXPORT);
break;
case STB_WEAK:
sym -> flags |= BSF_WEAK;
break;
}
sym++;
}
else
{
/* let's try *not* punting unnamed symbols... */
sym -> the_bfd = abfd;
sym -> name = "unnamed"; /* perhaps should include the number? */
sym -> value = i_sym.st_value;
if (i_sym.st_shndx > 0 && i_sym.st_shndx < SHN_LORESERV)
{
sym -> section = section_from_elf_index (abfd, i_sym.st_shndx);
}
else if (i_sym.st_shndx == SHN_ABS)
{
sym -> section = &bfd_abs_section;
}
else if (i_sym.st_shndx == SHN_COMMON)
{
sym -> section = &bfd_com_section;
}
else if (i_sym.st_shndx == SHN_UNDEF)
{
sym -> section = &bfd_und_section;
}
switch (ELF_ST_BIND (i_sym.st_info))
{
case STB_LOCAL:
sym -> flags |= BSF_LOCAL;
break;
case STB_GLOBAL:
sym -> flags |= (BSF_GLOBAL | BSF_EXPORT);
break;
case STB_WEAK:
sym -> flags |= BSF_WEAK;
break;
}
sym++;
}
}
bfd_get_symcount(abfd) = symcount = sym - symbase;
sym = symbase = (asymbol *)
bfd_realloc (abfd, symbase, symcount * sizeof (asymbol));
bfd_get_outsymbols(abfd) = vec = (asymbol **)
bfd_alloc (abfd, symcount * sizeof (asymbol *));
while (symcount-- > 0)
{
*vec++ = sym++;
}
return (true);
}
/* Return the number of bytes required to hold the symtab vector.
Note that we base it on the count plus 1, since we will null terminate
the vector allocated based on this size. */
static unsigned int
DEFUN (elf_get_symtab_upper_bound, (abfd), bfd *abfd)
{
unsigned int symtab_size = 0;
/* if (elf_slurp_symbol_table (abfd, ???)) */
{
symtab_size = (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol));
}
return (symtab_size);
}
/*
This function return the number of bytes required to store the
relocation information associated with section <<sect>>
attached to bfd <<abfd>>
*/
static unsigned int
elf_get_reloc_upper_bound (abfd, asect)
bfd *abfd;
sec_ptr asect;
{
if (asect->flags & SEC_RELOC)
{
/* either rel or rela */
return asect->_raw_size;
}
else
return (0);
}
/* FIXME!!! sparc howto should go into elf-32-sparc.c */
#ifdef sparc
enum reloc_type
{
R_SPARC_NONE = 0,
R_SPARC_8, R_SPARC_16, R_SPARC_32,
R_SPARC_DISP8, R_SPARC_DISP16, R_SPARC_DISP32,
R_SPARC_WDISP30, R_SPARC_WDISP22,
R_SPARC_HI22, R_SPARC_22,
R_SPARC_13, R_SPARC_LO10,
R_SPARC_GOT10, R_SPARC_GOT13, R_SPARC_GOT22,
R_SPARC_PC10, R_SPARC_PC22,
R_SPARC_WPLT30,
R_SPARC_COPY,
R_SPARC_GLOB_DAT, R_SPARC_JMP_SLOT,
R_SPARC_RELATIVE,
R_SPARC_UA32,
};
#define RELOC_TYPE_NAMES \
"R_SPARC_NONE", \
"R_SPARC_8", "R_SPARC_16", "R_SPARC_32", \
"R_SPARC_DISP8", "R_SPARC_DISP16", "R_SPARC_DISP32", \
"R_SPARC_WDISP30", "R_SPARC_WDISP22", \
"R_SPARC_HI22", "R_SPARC_22", \
"R_SPARC_13", "R_SPARC_LO10", \
"R_SPARC_GOT10", "R_SPARC_GOT13", "R_SPARC_GOT22", \
"R_SPARC_PC10", "R_SPARC_PC22", \
"R_SPARC_WPLT30", \
"R_SPARC_COPY", \
"R_SPARC_GLOB_DAT", "R_SPARC_JMP_SLOT", \
"R_SPARC_RELATIVE", \
"R_SPARC_UA32"
static reloc_howto_type elf_howto_table[] =
{
HOWTO(R_SPARC_NONE, 0,0, 0,false,0,false,false, 0,"R_SPARC_NONE", false,0,0x00000000,false),
HOWTO(R_SPARC_8, 0,0, 8,false,0,true, true, 0,"R_SPARC_8", false,0,0x000000ff,false),
HOWTO(R_SPARC_16, 0,1,16,false,0,true, true, 0,"R_SPARC_16", false,0,0x0000ffff,false),
HOWTO(R_SPARC_32, 0,2,32,false,0,true, true, 0,"R_SPARC_32", false,0,0xffffffff,false),
HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,false, true, 0,"R_SPARC_DISP8", false,0,0x000000ff,false),
HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,false, true, 0,"R_SPARC_DISP16", false,0,0x0000ffff,false),
HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,false, true, 0,"R_SPARC_DISP32", false,0,0x00ffffff,false),
HOWTO(R_SPARC_WDISP30,2,2,30,true, 0,false, true, 0,"R_SPARC_WDISP30",false,0,0x3fffffff,false),
HOWTO(R_SPARC_WDISP22,2,2,22,true, 0,false, true, 0,"R_SPARC_WDISP22",false,0,0x003fffff,false),
HOWTO(R_SPARC_HI22, 10,2,22,false,0,true, false, 0,"R_SPARC_HI22", false,0,0x003fffff,false),
HOWTO(R_SPARC_22, 0,2,22,false,0,true, true, 0,"R_SPARC_22", false,0,0x003fffff,false),
HOWTO(R_SPARC_13, 0,1,13,false,0,true, true, 0,"R_SPARC_13", false,0,0x00001fff,false),
HOWTO(R_SPARC_LO10, 0,1,10,false,0,true, false, 0,"R_SPARC_LO10", false,0,0x000003ff,false),
HOWTO(R_SPARC_GOT10, 0,1,10,false,0,false, true, 0,"R_SPARC_GOT10", false,0,0x000003ff,false),
HOWTO(R_SPARC_GOT13, 0,1,13,false,0,false, true, 0,"R_SPARC_GOT13", false,0,0x00001fff,false),
HOWTO(R_SPARC_GOT22, 10,2,22,false,0,false, true, 0,"R_SPARC_GOT22", false,0,0x003fffff,false),
HOWTO(R_SPARC_PC10, 0,1,10,false,0,true, true, 0,"R_SPARC_PC10", false,0,0x000003ff,false),
HOWTO(R_SPARC_PC22, 0,2,22,false,0,true, true, 0,"R_SPARC_PC22", false,0,0x003fffff,false),
HOWTO(R_SPARC_WPLT30, 0,0,00,false,0,false,false, 0,"R_SPARC_WPLT30", false,0,0x00000000,false),
HOWTO(R_SPARC_COPY, 0,0,00,false,0,false,false, 0,"R_SPARC_COPY", false,0,0x00000000,false),
HOWTO(R_SPARC_GLOB_DAT,0,0,00,false,0,false,false,0,"R_SPARC_GLOB_DAT",false,0,0x00000000,false),
HOWTO(R_SPARC_JMP_SLOT,0,0,00,false,0,false,false,0,"R_SPARC_JMP_SLOT",false,0,0x00000000,false),
HOWTO(R_SPARC_RELATIVE,0,0,00,false,0,false,false,0,"R_SPARC_RELATIVE",false,0,0x00000000,false),
HOWTO(R_SPARC_UA32, 0,0,00,false,0,false,false,0,"R_SPARC_UA32", false,0,0x00000000,false),
};
#endif
static void
DEFUN(elf_info_to_howto, (abfd, cache_ptr, dst),
bfd *abfd AND
arelent *cache_ptr AND
Elf_Internal_Rela *dst)
{
/* FIXME!!! just doing sparc for now... */
#ifdef sparc
BFD_ASSERT (ELF_R_TYPE(dst->r_info) < 24);
cache_ptr->howto = &elf_howto_table[ELF_R_TYPE(dst->r_info)];
#else
fprintf (stderr, "elf_info_to_howto not implemented\n");
abort ();
#endif
}
static boolean
DEFUN(elf_slurp_reloca_table,(abfd, asect, symbols),
bfd *abfd AND
sec_ptr asect AND
asymbol **symbols)
{
Elf_External_Rela *native_relocs;
arelent *reloc_cache;
arelent *cache_ptr;
unsigned int idx;
if (asect->relocation)
return true;
if (asect->reloc_count == 0)
return true;
if (asect->flags & SEC_CONSTRUCTOR)
return true;
/* if (!elf_slurp_symbol_table(abfd))
return false; -- should be done by now */
bfd_seek (abfd, asect->rel_filepos, SEEK_SET);
native_relocs = (Elf_External_Rela *)
bfd_alloc(abfd, asect->reloc_count * sizeof(Elf_External_Rela));
fprintf(stderr, "ELF>> really reading %d relocs for section %s\n",
asect->reloc_count, asect->name);
bfd_read ((PTR) native_relocs,
sizeof(Elf_External_Rela), asect->reloc_count, abfd);
reloc_cache = (arelent *)
bfd_alloc(abfd, (size_t) (asect->reloc_count * sizeof(arelent)));
if (! reloc_cache) {
bfd_error = no_memory;
return false;
}
for (idx = 0; idx < asect->reloc_count; idx ++)
{
#ifdef RELOC_PROCESSING
/* sparc, 68k, 88k, 860 use rela only. */
/* 386 and we32000 use rel only... fix it for them later. */
Elf_Internal_Rela dst;
Elf_External_Rela *src;
cache_ptr = reloc_cache + idx;
src = native_relocs + idx;
elf_swap_reloca_in(abfd, src, &dst);
RELOC_PROCESSING(cache_ptr, &dst, symbols, abfd, asect);
#else
Elf_Internal_Rela dst;
asymbol *ptr;
Elf_External_Rela *src;
cache_ptr = reloc_cache + idx;
src = native_relocs + idx;
elf_swap_reloca_in(abfd, src, &dst);
if(asect->flags & SEC_RELOC)
{
/* relocatable, so the offset is off of the section */
cache_ptr->address = dst.r_offset + asect->vma;
}
else
{
/* non-relocatable, so the offset a virtual address */
cache_ptr->address = dst.r_offset;
}
/* ELF_R_SYM(dst.r_info) is the symbol table offset... */
cache_ptr->sym_ptr_ptr = symbols + ELF_R_SYM(dst.r_info);
cache_ptr->addend = dst.r_addend;
/* ptr = *(cache_ptr->sym_ptr_ptr); */
/* Fill in the cache_ptr->howto field from dst.r_type */
elf_info_to_howto(abfd, cache_ptr, &dst);
#endif
}
asect->relocation = reloc_cache;
return true;
}
static unsigned int
elf_canonicalize_reloc (abfd, section, relptr, symbols)
bfd *abfd;
sec_ptr section;
arelent **relptr;
asymbol **symbols;
{
arelent *tblptr = section->relocation;
unsigned int count = 0;
/* snarfed from coffcode.h */
/* FIXME: this could be reloc... */
elf_slurp_reloca_table(abfd, section, symbols);
tblptr = section->relocation;
if (!tblptr)
return 0;
for (; count++ < section->reloc_count;)
*relptr++ = tblptr++;
*relptr = 0;
return section->reloc_count;
}
static unsigned int
DEFUN (elf_get_symtab, (abfd, alocation),
bfd *abfd AND
asymbol **alocation)
{
unsigned int symcount;
asymbol **vec;
/* if (!elf_slurp_symbol_table (abfd))
return (0);
else */
{
symcount = bfd_get_symcount (abfd);
vec = bfd_get_outsymbols (abfd);
while (symcount-- > 0)
{
*alocation++ = *vec++;
}
*alocation++ = NULL;
return (bfd_get_symcount (abfd));
}
}
static asymbol *
DEFUN (elf_make_empty_symbol, (abfd),
bfd *abfd)
{
elf_symbol_type *newsym;
newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (elf_symbol_type));
if (! newsym)
{
bfd_error = no_memory;
return (NULL);
}
else
{
newsym -> symbol.the_bfd = abfd;
return (&newsym -> symbol);
}
}
static void
DEFUN (elf_print_symbol,(ignore_abfd, filep, symbol, how),
bfd *ignore_abfd AND
PTR filep AND
asymbol *symbol AND
bfd_print_symbol_type how)
{
FILE *file = (FILE *)filep;
switch (how)
{
case bfd_print_symbol_name:
fprintf(file, "%s", symbol->name);
break;
case bfd_print_symbol_more:
fprintf(file, "elf %lx %lx",
symbol->value,
symbol->flags);
break;
case bfd_print_symbol_nm:
case bfd_print_symbol_all:
{
char *section_name;
section_name = symbol->section? symbol->section->name : "(*none*)";
bfd_print_symbol_vandf((PTR) file, symbol);
fprintf(file, " %-5s %s %s %s",
section_name,
" ", " ",
symbol->name);
}
break;
}
}
static alent *
DEFUN (elf_get_lineno,(ignore_abfd, symbol),
bfd *ignore_abfd AND
asymbol *symbol)
{
fprintf (stderr, "elf_get_lineno unimplemented\n");
fflush (stderr);
abort ();
return (NULL);
}
static boolean
DEFUN (elf_set_arch_mach,(abfd, arch, machine),
bfd *abfd AND
enum bfd_architecture arch AND
unsigned long machine)
{
/* Allow any architecture to be supported by the elf backend */
switch(arch)
{
case bfd_arch_unknown: /* EM_NONE */
case bfd_arch_sparc: /* EM_SPARC */
case bfd_arch_i386: /* EM_386 */
case bfd_arch_m68k: /* EM_68K */
case bfd_arch_m88k: /* EM_88K */
case bfd_arch_i860: /* EM_860 */
case bfd_arch_mips: /* EM_MIPS (MIPS R3000) */
return bfd_default_set_arch_mach(abfd, arch, machine);
default:
return false;
}
}
static boolean
DEFUN (elf_find_nearest_line,(abfd,
section,
symbols,
offset,
filename_ptr,
functionname_ptr,
line_ptr),
bfd *abfd AND
asection *section AND
asymbol **symbols AND
bfd_vma offset AND
CONST char **filename_ptr AND
CONST char **functionname_ptr AND
unsigned int *line_ptr)
{
fprintf (stderr, "elf_find_nearest_line unimplemented\n");
fflush (stderr);
abort ();
return (false);
}
static int
DEFUN (elf_sizeof_headers, (abfd, reloc),
bfd *abfd AND
boolean reloc)
{
fprintf (stderr, "elf_sizeof_headers unimplemented\n");
fflush (stderr);
abort ();
return (0);
}
boolean
DEFUN(elf_set_section_contents, (abfd, section, location, offset, count),
bfd *abfd AND
sec_ptr section AND
PTR location AND
file_ptr offset AND
bfd_size_type count)
{
int dest_sect;
void *contents;
if (abfd->output_has_begun == false) /* set by bfd.c handler? */
{
/* do setup calculations (FIXME) */
elf_compute_section_file_positions(abfd);
}
#if 0
if(bfd_seek (abfd, (file_ptr)section->filepos + offset, SEEK_SET) == -1)
return false;
if(bfd_write (location, (bfd_size_type)1, count, abfd) != count)
return false;
#endif
/* we really just need to save the contents away... */
dest_sect = elf_section_from_bfd_section(abfd, section);
if(!dest_sect)
return false;
/* FIXME: allocate in set_section_size, then copy in here... */
contents = (void*)bfd_alloc(abfd, count);
BFD_ASSERT(contents);
memcpy(contents, location, count);
elf_elfsections (abfd)[dest_sect].contents = contents;
return true;
}
/* This structure contains everything that BFD knows about a target.
It includes things like its byte order, name, what routines to call
to do various operations, etc. Every BFD points to a target structure
with its "xvec" member.
There are two such structures here: one for big-endian machines and
one for little-endian machines. */
/* Archives are generic or unimplemented. */
#define elf_slurp_armap bfd_false
#define elf_slurp_extended_name_table _bfd_slurp_extended_name_table
#define elf_truncate_arname bfd_dont_truncate_arname
#define elf_openr_next_archived_file bfd_generic_openr_next_archived_file
#define elf_generic_stat_arch_elt bfd_generic_stat_arch_elt
#define elf_write_armap (PROTO (boolean, (*), \
(bfd *arch, unsigned int elength, struct orl *map, unsigned int orl_count, \
int stridx))) bfd_false
/* Ordinary section reading and writing */
#define elf_new_section_hook _bfd_dummy_new_section_hook
#define elf_get_section_contents bfd_generic_get_section_contents
/* #define elf_set_section_contents bfd_generic_set_section_contents */
#define elf_close_and_cleanup bfd_generic_close_and_cleanup
#define elf_bfd_debug_info_start bfd_void
#define elf_bfd_debug_info_end bfd_void
#define elf_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
#define elf_bfd_get_relocated_section_contents \
bfd_generic_get_relocated_section_contents
#define elf_bfd_relax_section bfd_generic_relax_section
bfd_target elf_big_vec =
{
/* name: identify kind of target */
"elf-big",
/* flavour: general indication about file */
bfd_target_elf_flavour,
/* byteorder_big_p: data is big endian */
true,
/* header_byteorder_big_p: header is also big endian */
true,
/* object_flags: mask of all file flags */
(HAS_RELOC | EXEC_P | HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS |
DYNAMIC | WP_TEXT),
/* section_flags: mask of all section flags */
(SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_READONLY |
SEC_CODE | SEC_DATA),
/* ar_pad_char: pad character for filenames within an archive header
FIXME: this really has nothing to do with ELF, this is a characteristic
of the archiver and/or os and should be independently tunable */
'/',
/* ar_max_namelen: maximum number of characters in an archive header
FIXME: this really has nothing to do with ELF, this is a characteristic
of the archiver and should be independently tunable. This value is
a WAG (wild a** guess) */
15,
/* align_power_min: minimum alignment restriction for any section
FIXME: this value may be target machine dependent */
3,
/* Routines to byte-swap various sized integers from the data sections */
_do_getb64, _do_putb64, _do_getb32, _do_putb32, _do_getb16, _do_putb16,
/* Routines to byte-swap various sized integers from the file headers */
_do_getb64, _do_putb64, _do_getb32, _do_putb32, _do_getb16, _do_putb16,
/* bfd_check_format: check the format of a file being read */
{ _bfd_dummy_target, /* unknown format */
elf_object_p, /* assembler/linker output (object file) */
bfd_generic_archive_p, /* an archive */
elf_core_file_p /* a core file */
},
/* bfd_set_format: set the format of a file being written */
{ bfd_false,
elf_mkobject,
_bfd_generic_mkarchive,
bfd_false
},
/* bfd_write_contents: write cached information into a file being written */
{ bfd_false,
elf_write_object_contents,
_bfd_write_archive_contents,
bfd_false
},
/* Initialize a jump table with the standard macro. All names start
with "elf" */
JUMP_TABLE(elf),
/* SWAP_TABLE */
NULL, NULL, NULL
};
bfd_target elf_little_vec =
{
/* name: identify kind of target */
"elf-little",
/* flavour: general indication about file */
bfd_target_elf_flavour,
/* byteorder_big_p: data is big endian */
false, /* Nope -- this one's little endian */
/* header_byteorder_big_p: header is also big endian */
false, /* Nope -- this one's little endian */
/* object_flags: mask of all file flags */
(HAS_RELOC | EXEC_P | HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS |
DYNAMIC | WP_TEXT),
/* section_flags: mask of all section flags */
(SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_READONLY |
SEC_DATA),
/* ar_pad_char: pad character for filenames within an archive header
FIXME: this really has nothing to do with ELF, this is a characteristic
of the archiver and/or os and should be independently tunable */
'/',
/* ar_max_namelen: maximum number of characters in an archive header
FIXME: this really has nothing to do with ELF, this is a characteristic
of the archiver and should be independently tunable. This value is
a WAG (wild a** guess) */
15,
/* align_power_min: minimum alignment restriction for any section
FIXME: this value may be target machine dependent */
3,
/* Routines to byte-swap various sized integers from the data sections */
_do_getl64, _do_putl64, _do_getl32, _do_putl32, _do_getl16, _do_putl16,
/* Routines to byte-swap various sized integers from the file headers */
_do_getl64, _do_putl64, _do_getl32, _do_putl32, _do_getl16, _do_putl16,
/* bfd_check_format: check the format of a file being read */
{ _bfd_dummy_target, /* unknown format */
elf_object_p, /* assembler/linker output (object file) */
bfd_generic_archive_p, /* an archive */
elf_core_file_p /* a core file */
},
/* bfd_set_format: set the format of a file being written */
{ bfd_false,
elf_mkobject,
_bfd_generic_mkarchive,
bfd_false
},
/* bfd_write_contents: write cached information into a file being written */
{ bfd_false,
elf_write_object_contents,
_bfd_write_archive_contents,
bfd_false
},
/* Initialize a jump table with the standard macro. All names start
with "elf" */
JUMP_TABLE(elf),
/* SWAP_TABLE */
NULL, NULL, NULL
};