binutils-gdb/gdb/memattr.c
Daniel Jacobowitz a76d924dff * Makefile.in (SFILES): Add target-memory.c.
(COMMON_OBS): Add target-memory.o.
	* memattr.c (lookup_mem_region): Adjust handling for
	the top of memory.  Improve comments.
	* remote.c (packet_check_result): New function, split out
	from packet_ok.  Recognize "E." as an error prefix.
	(packet_ok): Use it.
	(remote_write_bytes_aux): New function, renamed from
	remote_write_bytes.  Take packet header, packet format,
	and length flag as arguments.
	(remote_write_bytes): Rewrite to use remote_write_bytes_aux.
	(remote_send_printf, restore_remote_timeout)
	(remote_flash_timeout, remote_flash_erase, remote_flash_write)
	(remote_flash_done): New.
	(remote_xfer_partial): Handle flash writes.
	(init_remote_ops, init_remote_async_ops): Set to_flash_erase
	and to_flash_done.
	* symfile.c (struct load_section_data): Include a pointer to
	the cumulative stats and a request queue.  Move most members
	to other types.
	(struct load_progress_data, struct load_progress_section_data): New
	types.
	(load_progress): Handle a NULL baton and zero bytes.  Update for
	type changes.
	(load_section_callback): Create memory write requests instead of
	writing to memory.  Don't print the progress message here.
	(clear_memory_write_data): New function.
	(generic_load): Use target_write_memory_blocks.
	* target-memory.c: New file.
	* target.c (update_current_target): Mention new uninherited methods.
	(memory_xfer_partial): Issue an error for flash writes.
	(target_flash_erase, target_flash_done): New functions.
	(target_write_with_progress): Call the progress callback at the
	start also.
	* target.h (enum target_object): Add TARGET_OBJECT_FLASH.
	(target_write_with_progress): Update comment.
	(struct target_ops): Add to_flash_erase and to_flash_done.
	(target_flash_erase, target_flash_done, struct memory_write_request)
	(memory_write_request_s, enum flash_preserve_mode)
	(target_write_memory_blocks): New, including a vector type
	for memory_write_request_s.
2006-09-21 14:00:53 +00:00

713 lines
17 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Memory attributes support, for GDB.
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "defs.h"
#include "command.h"
#include "gdbcmd.h"
#include "memattr.h"
#include "target.h"
#include "value.h"
#include "language.h"
#include "vec.h"
#include "gdb_string.h"
const struct mem_attrib default_mem_attrib =
{
MEM_RW, /* mode */
MEM_WIDTH_UNSPECIFIED,
0, /* hwbreak */
0, /* cache */
0, /* verify */
-1 /* Flash blocksize not specified. */
};
VEC(mem_region_s) *mem_region_list, *target_mem_region_list;
static int mem_number = 0;
/* If this flag is set, the memory region list should be automatically
updated from the target. If it is clear, the list is user-controlled
and should be left alone. */
static int mem_use_target = 1;
/* If this flag is set, we have tried to fetch the target memory regions
since the last time it was invalidated. If that list is still
empty, then the target can't supply memory regions. */
static int target_mem_regions_valid;
/* Predicate function which returns true if LHS should sort before RHS
in a list of memory regions, useful for VEC_lower_bound. */
static int
mem_region_lessthan (const struct mem_region *lhs,
const struct mem_region *rhs)
{
return lhs->lo < rhs->lo;
}
/* A helper function suitable for qsort, used to sort a
VEC(mem_region_s) by starting address. */
int
mem_region_cmp (const void *untyped_lhs, const void *untyped_rhs)
{
const struct mem_region *lhs = untyped_lhs;
const struct mem_region *rhs = untyped_rhs;
if (lhs->lo < rhs->lo)
return -1;
else if (lhs->lo == rhs->lo)
return 0;
else
return 1;
}
/* Allocate a new memory region, with default settings. */
void
mem_region_init (struct mem_region *new)
{
memset (new, 0, sizeof (struct mem_region));
new->enabled_p = 1;
new->attrib = default_mem_attrib;
}
/* This function should be called before any command which would
modify the memory region list. It will handle switching from
a target-provided list to a local list, if necessary. */
static void
require_user_regions (int from_tty)
{
struct mem_region *m;
int ix, length;
/* If we're already using a user-provided list, nothing to do. */
if (!mem_use_target)
return;
/* Switch to a user-provided list (possibly a copy of the current
one). */
mem_use_target = 0;
/* If we don't have a target-provided region list yet, then
no need to warn. */
if (mem_region_list == NULL)
return;
/* Otherwise, let the user know how to get back. */
if (from_tty)
warning (_("Switching to manual control of memory regions; use "
"\"mem auto\" to fetch regions from the target again."));
/* And create a new list for the user to modify. */
length = VEC_length (mem_region_s, target_mem_region_list);
mem_region_list = VEC_alloc (mem_region_s, length);
for (ix = 0; VEC_iterate (mem_region_s, target_mem_region_list, ix, m); ix++)
VEC_quick_push (mem_region_s, mem_region_list, m);
}
/* This function should be called before any command which would
read the memory region list, other than those which call
require_user_regions. It will handle fetching the
target-provided list, if necessary. */
static void
require_target_regions (void)
{
if (mem_use_target && !target_mem_regions_valid)
{
target_mem_regions_valid = 1;
target_mem_region_list = target_memory_map ();
mem_region_list = target_mem_region_list;
}
}
static void
create_mem_region (CORE_ADDR lo, CORE_ADDR hi,
const struct mem_attrib *attrib)
{
struct mem_region new;
int i, ix;
/* lo == hi is a useless empty region */
if (lo >= hi && hi != 0)
{
printf_unfiltered (_("invalid memory region: low >= high\n"));
return;
}
mem_region_init (&new);
new.lo = lo;
new.hi = hi;
ix = VEC_lower_bound (mem_region_s, mem_region_list, &new,
mem_region_lessthan);
/* Check for an overlapping memory region. We only need to check
in the vicinity - at most one before and one after the
insertion point. */
for (i = ix - 1; i < ix + 1; i++)
{
struct mem_region *n;
if (i < 0)
continue;
if (i >= VEC_length (mem_region_s, mem_region_list))
continue;
n = VEC_index (mem_region_s, mem_region_list, i);
if ((lo >= n->lo && (lo < n->hi || n->hi == 0))
|| (hi > n->lo && (hi <= n->hi || n->hi == 0))
|| (lo <= n->lo && (hi >= n->hi || hi == 0)))
{
printf_unfiltered (_("overlapping memory region\n"));
return;
}
}
new.number = ++mem_number;
new.attrib = *attrib;
VEC_safe_insert (mem_region_s, mem_region_list, ix, &new);
}
/*
* Look up the memory region cooresponding to ADDR.
*/
struct mem_region *
lookup_mem_region (CORE_ADDR addr)
{
static struct mem_region region;
struct mem_region *m;
CORE_ADDR lo;
CORE_ADDR hi;
int ix;
require_target_regions ();
/* First we initialize LO and HI so that they describe the entire
memory space. As we process the memory region chain, they are
redefined to describe the minimal region containing ADDR. LO
and HI are used in the case where no memory region is defined
that contains ADDR. If a memory region is disabled, it is
treated as if it does not exist. The initial values for LO
and HI represent the bottom and top of memory. */
lo = 0;
hi = 0;
/* If we ever want to support a huge list of memory regions, this
check should be replaced with a binary search (probably using
VEC_lower_bound). */
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
{
if (m->enabled_p == 1)
{
if (addr >= m->lo && (addr < m->hi || m->hi == 0))
return m;
/* This (correctly) won't match if m->hi == 0, representing
the top of the address space, because CORE_ADDR is unsigned;
no value of LO is less than zero. */
if (addr >= m->hi && lo < m->hi)
lo = m->hi;
/* This will never set HI to zero; if we're here and ADDR
is at or below M, and the region starts at zero, then ADDR
would have been in the region. */
if (addr <= m->lo && (hi == 0 || hi > m->lo))
hi = m->lo;
}
}
/* Because no region was found, we must cons up one based on what
was learned above. */
region.lo = lo;
region.hi = hi;
region.attrib = default_mem_attrib;
return &region;
}
/* Invalidate any memory regions fetched from the target. */
void
invalidate_target_mem_regions (void)
{
struct mem_region *m;
int ix;
if (!target_mem_regions_valid)
return;
target_mem_regions_valid = 0;
VEC_free (mem_region_s, target_mem_region_list);
if (mem_use_target)
mem_region_list = NULL;
}
/* Clear memory region list */
static void
mem_clear (void)
{
VEC_free (mem_region_s, mem_region_list);
}
static void
mem_command (char *args, int from_tty)
{
CORE_ADDR lo, hi;
char *tok;
struct mem_attrib attrib;
if (!args)
error_no_arg (_("No mem"));
/* For "mem auto", switch back to using a target provided list. */
if (strcmp (args, "auto") == 0)
{
if (mem_use_target)
return;
if (mem_region_list != target_mem_region_list)
{
mem_clear ();
mem_region_list = target_mem_region_list;
}
mem_use_target = 1;
return;
}
require_user_regions (from_tty);
tok = strtok (args, " \t");
if (!tok)
error (_("no lo address"));
lo = parse_and_eval_address (tok);
tok = strtok (NULL, " \t");
if (!tok)
error (_("no hi address"));
hi = parse_and_eval_address (tok);
attrib = default_mem_attrib;
while ((tok = strtok (NULL, " \t")) != NULL)
{
if (strcmp (tok, "rw") == 0)
attrib.mode = MEM_RW;
else if (strcmp (tok, "ro") == 0)
attrib.mode = MEM_RO;
else if (strcmp (tok, "wo") == 0)
attrib.mode = MEM_WO;
else if (strcmp (tok, "8") == 0)
attrib.width = MEM_WIDTH_8;
else if (strcmp (tok, "16") == 0)
{
if ((lo % 2 != 0) || (hi % 2 != 0))
error (_("region bounds not 16 bit aligned"));
attrib.width = MEM_WIDTH_16;
}
else if (strcmp (tok, "32") == 0)
{
if ((lo % 4 != 0) || (hi % 4 != 0))
error (_("region bounds not 32 bit aligned"));
attrib.width = MEM_WIDTH_32;
}
else if (strcmp (tok, "64") == 0)
{
if ((lo % 8 != 0) || (hi % 8 != 0))
error (_("region bounds not 64 bit aligned"));
attrib.width = MEM_WIDTH_64;
}
#if 0
else if (strcmp (tok, "hwbreak") == 0)
attrib.hwbreak = 1;
else if (strcmp (tok, "swbreak") == 0)
attrib.hwbreak = 0;
#endif
else if (strcmp (tok, "cache") == 0)
attrib.cache = 1;
else if (strcmp (tok, "nocache") == 0)
attrib.cache = 0;
#if 0
else if (strcmp (tok, "verify") == 0)
attrib.verify = 1;
else if (strcmp (tok, "noverify") == 0)
attrib.verify = 0;
#endif
else
error (_("unknown attribute: %s"), tok);
}
create_mem_region (lo, hi, &attrib);
}
static void
mem_info_command (char *args, int from_tty)
{
struct mem_region *m;
struct mem_attrib *attrib;
int ix;
if (mem_use_target)
printf_filtered (_("Using memory regions provided by the target.\n"));
else
printf_filtered (_("Using user-defined memory regions.\n"));
require_target_regions ();
if (!mem_region_list)
{
printf_unfiltered (_("There are no memory regions defined.\n"));
return;
}
printf_filtered ("Num ");
printf_filtered ("Enb ");
printf_filtered ("Low Addr ");
if (TARGET_ADDR_BIT > 32)
printf_filtered (" ");
printf_filtered ("High Addr ");
if (TARGET_ADDR_BIT > 32)
printf_filtered (" ");
printf_filtered ("Attrs ");
printf_filtered ("\n");
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
{
char *tmp;
printf_filtered ("%-3d %-3c\t",
m->number,
m->enabled_p ? 'y' : 'n');
if (TARGET_ADDR_BIT <= 32)
tmp = hex_string_custom ((unsigned long) m->lo, 8);
else
tmp = hex_string_custom ((unsigned long) m->lo, 16);
printf_filtered ("%s ", tmp);
if (TARGET_ADDR_BIT <= 32)
{
if (m->hi == 0)
tmp = "0x100000000";
else
tmp = hex_string_custom ((unsigned long) m->hi, 8);
}
else
{
if (m->hi == 0)
tmp = "0x10000000000000000";
else
tmp = hex_string_custom ((unsigned long) m->hi, 16);
}
printf_filtered ("%s ", tmp);
/* Print a token for each attribute.
* FIXME: Should we output a comma after each token? It may
* make it easier for users to read, but we'd lose the ability
* to cut-and-paste the list of attributes when defining a new
* region. Perhaps that is not important.
*
* FIXME: If more attributes are added to GDB, the output may
* become cluttered and difficult for users to read. At that
* time, we may want to consider printing tokens only if they
* are different from the default attribute. */
attrib = &m->attrib;
switch (attrib->mode)
{
case MEM_RW:
printf_filtered ("rw ");
break;
case MEM_RO:
printf_filtered ("ro ");
break;
case MEM_WO:
printf_filtered ("wo ");
break;
case MEM_FLASH:
printf_filtered ("flash blocksize 0x%x ", attrib->blocksize);
break;
}
switch (attrib->width)
{
case MEM_WIDTH_8:
printf_filtered ("8 ");
break;
case MEM_WIDTH_16:
printf_filtered ("16 ");
break;
case MEM_WIDTH_32:
printf_filtered ("32 ");
break;
case MEM_WIDTH_64:
printf_filtered ("64 ");
break;
case MEM_WIDTH_UNSPECIFIED:
break;
}
#if 0
if (attrib->hwbreak)
printf_filtered ("hwbreak");
else
printf_filtered ("swbreak");
#endif
if (attrib->cache)
printf_filtered ("cache ");
else
printf_filtered ("nocache ");
#if 0
if (attrib->verify)
printf_filtered ("verify ");
else
printf_filtered ("noverify ");
#endif
printf_filtered ("\n");
gdb_flush (gdb_stdout);
}
}
/* Enable the memory region number NUM. */
static void
mem_enable (int num)
{
struct mem_region *m;
int ix;
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
if (m->number == num)
{
m->enabled_p = 1;
return;
}
printf_unfiltered (_("No memory region number %d.\n"), num);
}
static void
mem_enable_command (char *args, int from_tty)
{
char *p = args;
char *p1;
int num;
struct mem_region *m;
int ix;
require_user_regions (from_tty);
dcache_invalidate (target_dcache);
if (p == 0)
{
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
m->enabled_p = 1;
}
else
while (*p)
{
p1 = p;
while (*p1 >= '0' && *p1 <= '9')
p1++;
if (*p1 && *p1 != ' ' && *p1 != '\t')
error (_("Arguments must be memory region numbers."));
num = atoi (p);
mem_enable (num);
p = p1;
while (*p == ' ' || *p == '\t')
p++;
}
}
/* Disable the memory region number NUM. */
static void
mem_disable (int num)
{
struct mem_region *m;
int ix;
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
if (m->number == num)
{
m->enabled_p = 0;
return;
}
printf_unfiltered (_("No memory region number %d.\n"), num);
}
static void
mem_disable_command (char *args, int from_tty)
{
char *p = args;
char *p1;
int num;
struct mem_region *m;
int ix;
require_user_regions (from_tty);
dcache_invalidate (target_dcache);
if (p == 0)
{
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
m->enabled_p = 0;
}
else
while (*p)
{
p1 = p;
while (*p1 >= '0' && *p1 <= '9')
p1++;
if (*p1 && *p1 != ' ' && *p1 != '\t')
error (_("Arguments must be memory region numbers."));
num = atoi (p);
mem_disable (num);
p = p1;
while (*p == ' ' || *p == '\t')
p++;
}
}
/* Delete the memory region number NUM. */
static void
mem_delete (int num)
{
struct mem_region *m1, *m;
int ix;
if (!mem_region_list)
{
printf_unfiltered (_("No memory region number %d.\n"), num);
return;
}
for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
if (m->number == num)
break;
if (m == NULL)
{
printf_unfiltered (_("No memory region number %d.\n"), num);
return;
}
VEC_ordered_remove (mem_region_s, mem_region_list, ix);
}
static void
mem_delete_command (char *args, int from_tty)
{
char *p = args;
char *p1;
int num;
require_user_regions (from_tty);
dcache_invalidate (target_dcache);
if (p == 0)
{
if (query ("Delete all memory regions? "))
mem_clear ();
dont_repeat ();
return;
}
while (*p)
{
p1 = p;
while (*p1 >= '0' && *p1 <= '9')
p1++;
if (*p1 && *p1 != ' ' && *p1 != '\t')
error (_("Arguments must be memory region numbers."));
num = atoi (p);
mem_delete (num);
p = p1;
while (*p == ' ' || *p == '\t')
p++;
}
dont_repeat ();
}
extern initialize_file_ftype _initialize_mem; /* -Wmissing-prototype */
void
_initialize_mem (void)
{
add_com ("mem", class_vars, mem_command, _("\
Define attributes for memory region or reset memory region handling to\n\
target-based.\n\
Usage: mem auto\n\
mem <lo addr> <hi addr> [<mode> <width> <cache>], \n\
where <mode> may be rw (read/write), ro (read-only) or wo (write-only), \n\
<width> may be 8, 16, 32, or 64, and \n\
<cache> may be cache or nocache"));
add_cmd ("mem", class_vars, mem_enable_command, _("\
Enable memory region.\n\
Arguments are the code numbers of the memory regions to enable.\n\
Usage: enable mem <code number>\n\
Do \"info mem\" to see current list of code numbers."), &enablelist);
add_cmd ("mem", class_vars, mem_disable_command, _("\
Disable memory region.\n\
Arguments are the code numbers of the memory regions to disable.\n\
Usage: disable mem <code number>\n\
Do \"info mem\" to see current list of code numbers."), &disablelist);
add_cmd ("mem", class_vars, mem_delete_command, _("\
Delete memory region.\n\
Arguments are the code numbers of the memory regions to delete.\n\
Usage: delete mem <code number>\n\
Do \"info mem\" to see current list of code numbers."), &deletelist);
add_info ("mem", mem_info_command,
_("Memory region attributes"));
}