Tom Tromey 99806209a4 Update memattr.c help strings
This changes memattr.c to use the GNU style for help strings.

2018-04-29  Tom Tromey  <tom@tromey.com>

	* memattr.c (_initialize_mem): Update help string.
2018-05-24 12:29:20 -06:00

653 lines
16 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Memory attributes support, for GDB.
Copyright (C) 2001-2018 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "command.h"
#include "gdbcmd.h"
#include "memattr.h"
#include "target.h"
#include "target-dcache.h"
#include "value.h"
#include "language.h"
#include "vec.h"
#include "breakpoint.h"
#include "cli/cli-utils.h"
#include <algorithm>
static std::vector<mem_region> user_mem_region_list, target_mem_region_list;
static std::vector<mem_region> *mem_region_list = &target_mem_region_list;
static int mem_number = 0;
/* If this flag is set, the memory region list should be automatically
updated from the target. If it is clear, the list is user-controlled
and should be left alone. */
static bool
mem_use_target ()
{
return mem_region_list == &target_mem_region_list;
}
/* If this flag is set, we have tried to fetch the target memory regions
since the last time it was invalidated. If that list is still
empty, then the target can't supply memory regions. */
static bool target_mem_regions_valid;
/* If this flag is set, gdb will assume that memory ranges not
specified by the memory map have type MEM_NONE, and will
emit errors on all accesses to that memory. */
static int inaccessible_by_default = 1;
static void
show_inaccessible_by_default (struct ui_file *file, int from_tty,
struct cmd_list_element *c,
const char *value)
{
if (inaccessible_by_default)
fprintf_filtered (file, _("Unknown memory addresses will "
"be treated as inaccessible.\n"));
else
fprintf_filtered (file, _("Unknown memory addresses "
"will be treated as RAM.\n"));
}
/* This function should be called before any command which would
modify the memory region list. It will handle switching from
a target-provided list to a local list, if necessary. */
static void
require_user_regions (int from_tty)
{
/* If we're already using a user-provided list, nothing to do. */
if (!mem_use_target ())
return;
/* Switch to a user-provided list (possibly a copy of the current
one). */
mem_region_list = &user_mem_region_list;
/* If we don't have a target-provided region list yet, then
no need to warn. */
if (target_mem_region_list.empty ())
return;
/* Otherwise, let the user know how to get back. */
if (from_tty)
warning (_("Switching to manual control of memory regions; use "
"\"mem auto\" to fetch regions from the target again."));
/* And create a new list (copy of the target-supplied regions) for the user
to modify. */
user_mem_region_list = target_mem_region_list;
}
/* This function should be called before any command which would
read the memory region list, other than those which call
require_user_regions. It will handle fetching the
target-provided list, if necessary. */
static void
require_target_regions (void)
{
if (mem_use_target () && !target_mem_regions_valid)
{
target_mem_regions_valid = true;
target_mem_region_list = target_memory_map ();
}
}
/* Create a new user-defined memory region. */
static void
create_user_mem_region (CORE_ADDR lo, CORE_ADDR hi,
const mem_attrib &attrib)
{
/* lo == hi is a useless empty region. */
if (lo >= hi && hi != 0)
{
printf_unfiltered (_("invalid memory region: low >= high\n"));
return;
}
mem_region newobj (lo, hi, attrib);
auto it = std::lower_bound (user_mem_region_list.begin (),
user_mem_region_list.end (),
newobj);
int ix = std::distance (user_mem_region_list.begin (), it);
/* Check for an overlapping memory region. We only need to check
in the vicinity - at most one before and one after the
insertion point. */
for (int i = ix - 1; i < ix + 1; i++)
{
if (i < 0)
continue;
if (i >= user_mem_region_list.size ())
continue;
mem_region &n = user_mem_region_list[i];
if ((lo >= n.lo && (lo < n.hi || n.hi == 0))
|| (hi > n.lo && (hi <= n.hi || n.hi == 0))
|| (lo <= n.lo && ((hi >= n.hi && n.hi != 0) || hi == 0)))
{
printf_unfiltered (_("overlapping memory region\n"));
return;
}
}
newobj.number = ++mem_number;
user_mem_region_list.insert (it, newobj);
}
/* Look up the memory region corresponding to ADDR. */
struct mem_region *
lookup_mem_region (CORE_ADDR addr)
{
static struct mem_region region (0, 0);
CORE_ADDR lo;
CORE_ADDR hi;
require_target_regions ();
/* First we initialize LO and HI so that they describe the entire
memory space. As we process the memory region chain, they are
redefined to describe the minimal region containing ADDR. LO
and HI are used in the case where no memory region is defined
that contains ADDR. If a memory region is disabled, it is
treated as if it does not exist. The initial values for LO
and HI represent the bottom and top of memory. */
lo = 0;
hi = 0;
/* Either find memory range containing ADDR, or set LO and HI
to the nearest boundaries of an existing memory range.
If we ever want to support a huge list of memory regions, this
check should be replaced with a binary search (probably using
VEC_lower_bound). */
for (mem_region &m : *mem_region_list)
{
if (m.enabled_p == 1)
{
/* If the address is in the memory region, return that
memory range. */
if (addr >= m.lo && (addr < m.hi || m.hi == 0))
return &m;
/* This (correctly) won't match if m->hi == 0, representing
the top of the address space, because CORE_ADDR is unsigned;
no value of LO is less than zero. */
if (addr >= m.hi && lo < m.hi)
lo = m.hi;
/* This will never set HI to zero; if we're here and ADDR
is at or below M, and the region starts at zero, then ADDR
would have been in the region. */
if (addr <= m.lo && (hi == 0 || hi > m.lo))
hi = m.lo;
}
}
/* Because no region was found, we must cons up one based on what
was learned above. */
region.lo = lo;
region.hi = hi;
/* When no memory map is defined at all, we always return
'default_mem_attrib', so that we do not make all memory
inaccessible for targets that don't provide a memory map. */
if (inaccessible_by_default && !mem_region_list->empty ())
region.attrib = mem_attrib::unknown ();
else
region.attrib = mem_attrib ();
return &region;
}
/* Invalidate any memory regions fetched from the target. */
void
invalidate_target_mem_regions (void)
{
if (!target_mem_regions_valid)
return;
target_mem_regions_valid = false;
target_mem_region_list.clear ();
}
/* Clear user-defined memory region list. */
static void
user_mem_clear (void)
{
user_mem_region_list.clear ();
}
static void
mem_command (const char *args, int from_tty)
{
CORE_ADDR lo, hi;
if (!args)
error_no_arg (_("No mem"));
/* For "mem auto", switch back to using a target provided list. */
if (strcmp (args, "auto") == 0)
{
if (mem_use_target ())
return;
user_mem_clear ();
mem_region_list = &target_mem_region_list;
return;
}
require_user_regions (from_tty);
std::string tok = extract_arg (&args);
if (tok == "")
error (_("no lo address"));
lo = parse_and_eval_address (tok.c_str ());
tok = extract_arg (&args);
if (tok == "")
error (_("no hi address"));
hi = parse_and_eval_address (tok.c_str ());
mem_attrib attrib;
while ((tok = extract_arg (&args)) != "")
{
if (tok == "rw")
attrib.mode = MEM_RW;
else if (tok == "ro")
attrib.mode = MEM_RO;
else if (tok == "wo")
attrib.mode = MEM_WO;
else if (tok == "8")
attrib.width = MEM_WIDTH_8;
else if (tok == "16")
{
if ((lo % 2 != 0) || (hi % 2 != 0))
error (_("region bounds not 16 bit aligned"));
attrib.width = MEM_WIDTH_16;
}
else if (tok == "32")
{
if ((lo % 4 != 0) || (hi % 4 != 0))
error (_("region bounds not 32 bit aligned"));
attrib.width = MEM_WIDTH_32;
}
else if (tok == "64")
{
if ((lo % 8 != 0) || (hi % 8 != 0))
error (_("region bounds not 64 bit aligned"));
attrib.width = MEM_WIDTH_64;
}
#if 0
else if (tok == "hwbreak")
attrib.hwbreak = 1;
else if (tok == "swbreak")
attrib.hwbreak = 0;
#endif
else if (tok == "cache")
attrib.cache = 1;
else if (tok == "nocache")
attrib.cache = 0;
#if 0
else if (tok == "verify")
attrib.verify = 1;
else if (tok == "noverify")
attrib.verify = 0;
#endif
else
error (_("unknown attribute: %s"), tok.c_str ());
}
create_user_mem_region (lo, hi, attrib);
}
static void
info_mem_command (const char *args, int from_tty)
{
if (mem_use_target ())
printf_filtered (_("Using memory regions provided by the target.\n"));
else
printf_filtered (_("Using user-defined memory regions.\n"));
require_target_regions ();
if (mem_region_list->empty ())
{
printf_unfiltered (_("There are no memory regions defined.\n"));
return;
}
printf_filtered ("Num ");
printf_filtered ("Enb ");
printf_filtered ("Low Addr ");
if (gdbarch_addr_bit (target_gdbarch ()) > 32)
printf_filtered (" ");
printf_filtered ("High Addr ");
if (gdbarch_addr_bit (target_gdbarch ()) > 32)
printf_filtered (" ");
printf_filtered ("Attrs ");
printf_filtered ("\n");
for (const mem_region &m : *mem_region_list)
{
const char *tmp;
printf_filtered ("%-3d %-3c\t",
m.number,
m.enabled_p ? 'y' : 'n');
if (gdbarch_addr_bit (target_gdbarch ()) <= 32)
tmp = hex_string_custom (m.lo, 8);
else
tmp = hex_string_custom (m.lo, 16);
printf_filtered ("%s ", tmp);
if (gdbarch_addr_bit (target_gdbarch ()) <= 32)
{
if (m.hi == 0)
tmp = "0x100000000";
else
tmp = hex_string_custom (m.hi, 8);
}
else
{
if (m.hi == 0)
tmp = "0x10000000000000000";
else
tmp = hex_string_custom (m.hi, 16);
}
printf_filtered ("%s ", tmp);
/* Print a token for each attribute.
* FIXME: Should we output a comma after each token? It may
* make it easier for users to read, but we'd lose the ability
* to cut-and-paste the list of attributes when defining a new
* region. Perhaps that is not important.
*
* FIXME: If more attributes are added to GDB, the output may
* become cluttered and difficult for users to read. At that
* time, we may want to consider printing tokens only if they
* are different from the default attribute. */
switch (m.attrib.mode)
{
case MEM_RW:
printf_filtered ("rw ");
break;
case MEM_RO:
printf_filtered ("ro ");
break;
case MEM_WO:
printf_filtered ("wo ");
break;
case MEM_FLASH:
printf_filtered ("flash blocksize 0x%x ", m.attrib.blocksize);
break;
}
switch (m.attrib.width)
{
case MEM_WIDTH_8:
printf_filtered ("8 ");
break;
case MEM_WIDTH_16:
printf_filtered ("16 ");
break;
case MEM_WIDTH_32:
printf_filtered ("32 ");
break;
case MEM_WIDTH_64:
printf_filtered ("64 ");
break;
case MEM_WIDTH_UNSPECIFIED:
break;
}
#if 0
if (attrib->hwbreak)
printf_filtered ("hwbreak");
else
printf_filtered ("swbreak");
#endif
if (m.attrib.cache)
printf_filtered ("cache ");
else
printf_filtered ("nocache ");
#if 0
if (attrib->verify)
printf_filtered ("verify ");
else
printf_filtered ("noverify ");
#endif
printf_filtered ("\n");
gdb_flush (gdb_stdout);
}
}
/* Enable the memory region number NUM. */
static void
mem_enable (int num)
{
for (mem_region &m : *mem_region_list)
if (m.number == num)
{
m.enabled_p = 1;
return;
}
printf_unfiltered (_("No memory region number %d.\n"), num);
}
static void
enable_mem_command (const char *args, int from_tty)
{
require_user_regions (from_tty);
target_dcache_invalidate ();
if (args == NULL || *args == '\0')
{ /* Enable all mem regions. */
for (mem_region &m : *mem_region_list)
m.enabled_p = 1;
}
else
{
number_or_range_parser parser (args);
while (!parser.finished ())
{
int num = parser.get_number ();
mem_enable (num);
}
}
}
/* Disable the memory region number NUM. */
static void
mem_disable (int num)
{
for (mem_region &m : *mem_region_list)
if (m.number == num)
{
m.enabled_p = 0;
return;
}
printf_unfiltered (_("No memory region number %d.\n"), num);
}
static void
disable_mem_command (const char *args, int from_tty)
{
require_user_regions (from_tty);
target_dcache_invalidate ();
if (args == NULL || *args == '\0')
{
for (mem_region &m : *mem_region_list)
m.enabled_p = false;
}
else
{
number_or_range_parser parser (args);
while (!parser.finished ())
{
int num = parser.get_number ();
mem_disable (num);
}
}
}
/* Delete the memory region number NUM. */
static void
mem_delete (int num)
{
if (!mem_region_list)
{
printf_unfiltered (_("No memory region number %d.\n"), num);
return;
}
auto it = std::remove_if (mem_region_list->begin (), mem_region_list->end (),
[num] (const mem_region &m)
{
return m.number == num;
});
if (it != mem_region_list->end ())
mem_region_list->erase (it);
else
printf_unfiltered (_("No memory region number %d.\n"), num);
}
static void
delete_mem_command (const char *args, int from_tty)
{
require_user_regions (from_tty);
target_dcache_invalidate ();
if (args == NULL || *args == '\0')
{
if (query (_("Delete all memory regions? ")))
user_mem_clear ();
dont_repeat ();
return;
}
number_or_range_parser parser (args);
while (!parser.finished ())
{
int num = parser.get_number ();
mem_delete (num);
}
dont_repeat ();
}
static void
dummy_cmd (const char *args, int from_tty)
{
}
static struct cmd_list_element *mem_set_cmdlist;
static struct cmd_list_element *mem_show_cmdlist;
void
_initialize_mem (void)
{
add_com ("mem", class_vars, mem_command, _("\
Define attributes for memory region or reset memory region handling to\n\
target-based.\n\
Usage: mem auto\n\
mem LOW HIGH [MODE WIDTH CACHE],\n\
where MODE may be rw (read/write), ro (read-only) or wo (write-only),\n\
WIDTH may be 8, 16, 32, or 64, and\n\
CACHE may be cache or nocache"));
add_cmd ("mem", class_vars, enable_mem_command, _("\
Enable memory region.\n\
Arguments are the IDs of the memory regions to enable.\n\
Usage: enable mem [ID]...\n\
Do \"info mem\" to see current list of IDs."), &enablelist);
add_cmd ("mem", class_vars, disable_mem_command, _("\
Disable memory region.\n\
Arguments are the IDs of the memory regions to disable.\n\
Usage: disable mem [ID]...\n\
Do \"info mem\" to see current list of IDs."), &disablelist);
add_cmd ("mem", class_vars, delete_mem_command, _("\
Delete memory region.\n\
Arguments are the IDs of the memory regions to delete.\n\
Usage: delete mem [ID]...\n\
Do \"info mem\" to see current list of IDs."), &deletelist);
add_info ("mem", info_mem_command,
_("Memory region attributes"));
add_prefix_cmd ("mem", class_vars, dummy_cmd, _("\
Memory regions settings"),
&mem_set_cmdlist, "set mem ",
0/* allow-unknown */, &setlist);
add_prefix_cmd ("mem", class_vars, dummy_cmd, _("\
Memory regions settings"),
&mem_show_cmdlist, "show mem ",
0/* allow-unknown */, &showlist);
add_setshow_boolean_cmd ("inaccessible-by-default", no_class,
&inaccessible_by_default, _("\
Set handling of unknown memory regions."), _("\
Show handling of unknown memory regions."), _("\
If on, and some memory map is defined, debugger will emit errors on\n\
accesses to memory not defined in the memory map. If off, accesses to all\n\
memory addresses will be allowed."),
NULL,
show_inaccessible_by_default,
&mem_set_cmdlist,
&mem_show_cmdlist);
}