binutils-gdb/sim/ft32/interp.c
Joel Brobecker 61baf725ec update copyright year range in GDB files
This applies the second part of GDB's End of Year Procedure, which
updates the copyright year range in all of GDB's files.

gdb/ChangeLog:

        Update copyright year range in all GDB files.
2017-01-01 10:52:34 +04:00

894 lines
21 KiB
C

/* Simulator for the FT32 processor
Copyright (C) 2008-2017 Free Software Foundation, Inc.
Contributed by FTDI <support@ftdichip.com>
This file is part of simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "config.h"
#include <fcntl.h>
#include <signal.h>
#include <stdlib.h>
#include <stdint.h>
#include "bfd.h"
#include "gdb/callback.h"
#include "libiberty.h"
#include "gdb/remote-sim.h"
#include "sim-main.h"
#include "sim-options.h"
#include "opcode/ft32.h"
/*
* FT32 is a Harvard architecture: RAM and code occupy
* different address spaces.
*
* sim and gdb model FT32 memory by adding 0x800000 to RAM
* addresses. This means that sim/gdb can treat all addresses
* similarly.
*
* The address space looks like:
*
* 00000 start of code memory
* 3ffff end of code memory
* 800000 start of RAM
* 80ffff end of RAM
*/
#define RAM_BIAS 0x800000 /* Bias added to RAM addresses. */
static unsigned long
ft32_extract_unsigned_integer (unsigned char *addr, int len)
{
unsigned long retval;
unsigned char *p;
unsigned char *startaddr = (unsigned char *) addr;
unsigned char *endaddr = startaddr + len;
/* Start at the most significant end of the integer, and work towards
the least significant. */
retval = 0;
for (p = endaddr; p > startaddr;)
retval = (retval << 8) | * -- p;
return retval;
}
static void
ft32_store_unsigned_integer (unsigned char *addr, int len, unsigned long val)
{
unsigned char *p;
unsigned char *startaddr = (unsigned char *)addr;
unsigned char *endaddr = startaddr + len;
for (p = startaddr; p < endaddr; p++)
{
*p = val & 0xff;
val >>= 8;
}
}
/*
* Align EA according to its size DW.
* The FT32 ignores the low bit of a 16-bit addresss,
* and the low two bits of a 32-bit address.
*/
static uint32_t ft32_align (uint32_t dw, uint32_t ea)
{
switch (dw)
{
case 1:
ea &= ~1;
break;
case 2:
ea &= ~3;
break;
default:
break;
}
return ea;
}
/* Read an item from memory address EA, sized DW. */
static uint32_t
ft32_read_item (SIM_DESC sd, int dw, uint32_t ea)
{
sim_cpu *cpu = STATE_CPU (sd, 0);
address_word cia = CPU_PC_GET (cpu);
uint8_t byte[4];
uint32_t r;
ea = ft32_align (dw, ea);
switch (dw) {
case 0:
return sim_core_read_aligned_1 (cpu, cia, read_map, ea);
case 1:
return sim_core_read_aligned_2 (cpu, cia, read_map, ea);
case 2:
return sim_core_read_aligned_4 (cpu, cia, read_map, ea);
default:
abort ();
}
}
/* Write item V to memory address EA, sized DW. */
static void
ft32_write_item (SIM_DESC sd, int dw, uint32_t ea, uint32_t v)
{
sim_cpu *cpu = STATE_CPU (sd, 0);
address_word cia = CPU_PC_GET (cpu);
uint8_t byte[4];
ea = ft32_align (dw, ea);
switch (dw) {
case 0:
sim_core_write_aligned_1 (cpu, cia, write_map, ea, v);
break;
case 1:
sim_core_write_aligned_2 (cpu, cia, write_map, ea, v);
break;
case 2:
sim_core_write_aligned_4 (cpu, cia, write_map, ea, v);
break;
default:
abort ();
}
}
#define ILLEGAL() \
sim_engine_halt (sd, cpu, NULL, insnpc, sim_signalled, SIM_SIGILL)
static uint32_t cpu_mem_read (SIM_DESC sd, uint32_t dw, uint32_t ea)
{
sim_cpu *cpu = STATE_CPU (sd, 0);
uint32_t insnpc = cpu->state.pc;
uint32_t r;
uint8_t byte[4];
ea &= 0x1ffff;
if (ea & ~0xffff)
{
/* Simulate some IO devices */
switch (ea)
{
case 0x10000:
return getchar ();
case 0x1fff4:
/* Read the simulator cycle timer. */
return cpu->state.cycles / 100;
default:
sim_io_eprintf (sd, "Illegal IO read address %08x, pc %#x\n",
ea, insnpc);
ILLEGAL ();
}
}
return ft32_read_item (sd, dw, RAM_BIAS + ea);
}
static void cpu_mem_write (SIM_DESC sd, uint32_t dw, uint32_t ea, uint32_t d)
{
sim_cpu *cpu = STATE_CPU (sd, 0);
ea &= 0x1ffff;
if (ea & 0x10000)
{
/* Simulate some IO devices */
switch (ea)
{
case 0x10000:
/* Console output */
putchar (d & 0xff);
break;
case 0x1fc80:
/* Unlock the PM write port */
cpu->state.pm_unlock = (d == 0x1337f7d1);
break;
case 0x1fc84:
/* Set the PM write address register */
cpu->state.pm_addr = d;
break;
case 0x1fc88:
if (cpu->state.pm_unlock)
{
/* Write to PM. */
ft32_write_item (sd, dw, cpu->state.pm_addr, d);
cpu->state.pm_addr += 4;
}
break;
case 0x1fffc:
/* Normal exit. */
sim_engine_halt (sd, cpu, NULL, cpu->state.pc, sim_exited, cpu->state.regs[0]);
break;
case 0x1fff8:
sim_io_printf (sd, "Debug write %08x\n", d);
break;
default:
sim_io_eprintf (sd, "Unknown IO write %08x to to %08x\n", d, ea);
}
}
else
ft32_write_item (sd, dw, RAM_BIAS + ea, d);
}
#define GET_BYTE(ea) cpu_mem_read (sd, 0, (ea))
#define PUT_BYTE(ea, d) cpu_mem_write (sd, 0, (ea), (d))
/* LSBS (n) is a mask of the least significant N bits. */
#define LSBS(n) ((1U << (n)) - 1)
static void ft32_push (SIM_DESC sd, uint32_t v)
{
sim_cpu *cpu = STATE_CPU (sd, 0);
cpu->state.regs[FT32_HARD_SP] -= 4;
cpu->state.regs[FT32_HARD_SP] &= 0xffff;
cpu_mem_write (sd, 2, cpu->state.regs[FT32_HARD_SP], v);
}
static uint32_t ft32_pop (SIM_DESC sd)
{
sim_cpu *cpu = STATE_CPU (sd, 0);
uint32_t r = cpu_mem_read (sd, 2, cpu->state.regs[FT32_HARD_SP]);
cpu->state.regs[FT32_HARD_SP] += 4;
cpu->state.regs[FT32_HARD_SP] &= 0xffff;
return r;
}
/* Extract the low SIZ bits of N as an unsigned number. */
static int nunsigned (int siz, int n)
{
return n & LSBS (siz);
}
/* Extract the low SIZ bits of N as a signed number. */
static int nsigned (int siz, int n)
{
int shift = (sizeof (int) * 8) - siz;
return (n << shift) >> shift;
}
/* Signed division N / D, matching hw behavior for (MIN_INT, -1). */
static uint32_t ft32sdiv (uint32_t n, uint32_t d)
{
if (n == 0x80000000UL && d == 0xffffffffUL)
return 0x80000000UL;
else
return (uint32_t)((int)n / (int)d);
}
/* Signed modulus N % D, matching hw behavior for (MIN_INT, -1). */
static uint32_t ft32smod (uint32_t n, uint32_t d)
{
if (n == 0x80000000UL && d == 0xffffffffUL)
return 0;
else
return (uint32_t)((int)n % (int)d);
}
/* Circular rotate right N by B bits. */
static uint32_t ror (uint32_t n, uint32_t b)
{
b &= 31;
return (n >> b) | (n << (32 - b));
}
/* Implement the BINS machine instruction.
See FT32 Programmer's Reference for details. */
static uint32_t bins (uint32_t d, uint32_t f, uint32_t len, uint32_t pos)
{
uint32_t bitmask = LSBS (len) << pos;
return (d & ~bitmask) | ((f << pos) & bitmask);
}
/* Implement the FLIP machine instruction.
See FT32 Programmer's Reference for details. */
static uint32_t flip (uint32_t x, uint32_t b)
{
if (b & 1)
x = (x & 0x55555555) << 1 | (x & 0xAAAAAAAA) >> 1;
if (b & 2)
x = (x & 0x33333333) << 2 | (x & 0xCCCCCCCC) >> 2;
if (b & 4)
x = (x & 0x0F0F0F0F) << 4 | (x & 0xF0F0F0F0) >> 4;
if (b & 8)
x = (x & 0x00FF00FF) << 8 | (x & 0xFF00FF00) >> 8;
if (b & 16)
x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16;
return x;
}
static void
step_once (SIM_DESC sd)
{
sim_cpu *cpu = STATE_CPU (sd, 0);
address_word cia = CPU_PC_GET (cpu);
uint32_t inst;
uint32_t dw;
uint32_t cb;
uint32_t r_d;
uint32_t cr;
uint32_t cv;
uint32_t bt;
uint32_t r_1;
uint32_t rimm;
uint32_t r_2;
uint32_t k20;
uint32_t pa;
uint32_t aa;
uint32_t k16;
uint32_t k8;
uint32_t al;
uint32_t r_1v;
uint32_t rimmv;
uint32_t bit_pos;
uint32_t bit_len;
uint32_t upper;
uint32_t insnpc;
if (cpu->state.cycles >= cpu->state.next_tick_cycle)
{
cpu->state.next_tick_cycle += 100000;
ft32_push (sd, cpu->state.pc);
cpu->state.pc = 12; /* interrupt 1. */
}
inst = ft32_read_item (sd, 2, cpu->state.pc);
cpu->state.cycles += 1;
/* Handle "call 8" (which is FT32's "break" equivalent) here. */
if (inst == 0x00340002)
{
sim_engine_halt (sd, cpu, NULL,
cpu->state.pc,
sim_stopped, SIM_SIGTRAP);
goto escape;
}
dw = (inst >> FT32_FLD_DW_BIT) & LSBS (FT32_FLD_DW_SIZ);
cb = (inst >> FT32_FLD_CB_BIT) & LSBS (FT32_FLD_CB_SIZ);
r_d = (inst >> FT32_FLD_R_D_BIT) & LSBS (FT32_FLD_R_D_SIZ);
cr = (inst >> FT32_FLD_CR_BIT) & LSBS (FT32_FLD_CR_SIZ);
cv = (inst >> FT32_FLD_CV_BIT) & LSBS (FT32_FLD_CV_SIZ);
bt = (inst >> FT32_FLD_BT_BIT) & LSBS (FT32_FLD_BT_SIZ);
r_1 = (inst >> FT32_FLD_R_1_BIT) & LSBS (FT32_FLD_R_1_SIZ);
rimm = (inst >> FT32_FLD_RIMM_BIT) & LSBS (FT32_FLD_RIMM_SIZ);
r_2 = (inst >> FT32_FLD_R_2_BIT) & LSBS (FT32_FLD_R_2_SIZ);
k20 = nsigned (20, (inst >> FT32_FLD_K20_BIT) & LSBS (FT32_FLD_K20_SIZ));
pa = (inst >> FT32_FLD_PA_BIT) & LSBS (FT32_FLD_PA_SIZ);
aa = (inst >> FT32_FLD_AA_BIT) & LSBS (FT32_FLD_AA_SIZ);
k16 = (inst >> FT32_FLD_K16_BIT) & LSBS (FT32_FLD_K16_SIZ);
k8 = nsigned (8, (inst >> FT32_FLD_K8_BIT) & LSBS (FT32_FLD_K8_SIZ));
al = (inst >> FT32_FLD_AL_BIT) & LSBS (FT32_FLD_AL_SIZ);
r_1v = cpu->state.regs[r_1];
rimmv = (rimm & 0x400) ? nsigned (10, rimm) : cpu->state.regs[rimm & 0x1f];
bit_pos = rimmv & 31;
bit_len = 0xf & (rimmv >> 5);
if (bit_len == 0)
bit_len = 16;
upper = (inst >> 27);
insnpc = cpu->state.pc;
cpu->state.pc += 4;
switch (upper)
{
case FT32_PAT_TOC:
case FT32_PAT_TOCI:
{
int take = (cr == 3) || ((1 & (cpu->state.regs[28 + cr] >> cb)) == cv);
if (take)
{
cpu->state.cycles += 1;
if (bt)
ft32_push (sd, cpu->state.pc); /* this is a call. */
if (upper == FT32_PAT_TOC)
cpu->state.pc = pa << 2;
else
cpu->state.pc = cpu->state.regs[r_2];
if (cpu->state.pc == 0x8)
goto escape;
}
}
break;
case FT32_PAT_ALUOP:
case FT32_PAT_CMPOP:
{
uint32_t result;
switch (al)
{
case 0x0: result = r_1v + rimmv; break;
case 0x1: result = ror (r_1v, rimmv); break;
case 0x2: result = r_1v - rimmv; break;
case 0x3: result = (r_1v << 10) | (1023 & rimmv); break;
case 0x4: result = r_1v & rimmv; break;
case 0x5: result = r_1v | rimmv; break;
case 0x6: result = r_1v ^ rimmv; break;
case 0x7: result = ~(r_1v ^ rimmv); break;
case 0x8: result = r_1v << rimmv; break;
case 0x9: result = r_1v >> rimmv; break;
case 0xa: result = (int32_t)r_1v >> rimmv; break;
case 0xb: result = bins (r_1v, rimmv >> 10, bit_len, bit_pos); break;
case 0xc: result = nsigned (bit_len, r_1v >> bit_pos); break;
case 0xd: result = nunsigned (bit_len, r_1v >> bit_pos); break;
case 0xe: result = flip (r_1v, rimmv); break;
default:
sim_io_eprintf (sd, "Unhandled alu %#x\n", al);
ILLEGAL ();
}
if (upper == FT32_PAT_ALUOP)
cpu->state.regs[r_d] = result;
else
{
uint32_t dwmask = 0;
int dwsiz = 0;
int zero;
int sign;
int ahi;
int bhi;
int overflow;
int carry;
int bit;
uint64_t ra;
uint64_t rb;
int above;
int greater;
int greatereq;
switch (dw)
{
case 0: dwsiz = 7; dwmask = 0xffU; break;
case 1: dwsiz = 15; dwmask = 0xffffU; break;
case 2: dwsiz = 31; dwmask = 0xffffffffU; break;
}
zero = (0 == (result & dwmask));
sign = 1 & (result >> dwsiz);
ahi = 1 & (r_1v >> dwsiz);
bhi = 1 & (rimmv >> dwsiz);
overflow = (sign != ahi) & (ahi == !bhi);
bit = (dwsiz + 1);
ra = r_1v & dwmask;
rb = rimmv & dwmask;
switch (al)
{
case 0x0: carry = 1 & ((ra + rb) >> bit); break;
case 0x2: carry = 1 & ((ra - rb) >> bit); break;
default: carry = 0; break;
}
above = (!carry & !zero);
greater = (sign == overflow) & !zero;
greatereq = (sign == overflow);
cpu->state.regs[r_d] = (
(above << 6) |
(greater << 5) |
(greatereq << 4) |
(sign << 3) |
(overflow << 2) |
(carry << 1) |
(zero << 0));
}
}
break;
case FT32_PAT_LDK:
cpu->state.regs[r_d] = k20;
break;
case FT32_PAT_LPM:
cpu->state.regs[r_d] = ft32_read_item (sd, dw, pa << 2);
cpu->state.cycles += 1;
break;
case FT32_PAT_LPMI:
cpu->state.regs[r_d] = ft32_read_item (sd, dw, cpu->state.regs[r_1] + k8);
cpu->state.cycles += 1;
break;
case FT32_PAT_STA:
cpu_mem_write (sd, dw, aa, cpu->state.regs[r_d]);
break;
case FT32_PAT_STI:
cpu_mem_write (sd, dw, cpu->state.regs[r_d] + k8, cpu->state.regs[r_1]);
break;
case FT32_PAT_LDA:
cpu->state.regs[r_d] = cpu_mem_read (sd, dw, aa);
cpu->state.cycles += 1;
break;
case FT32_PAT_LDI:
cpu->state.regs[r_d] = cpu_mem_read (sd, dw, cpu->state.regs[r_1] + k8);
cpu->state.cycles += 1;
break;
case FT32_PAT_EXA:
{
uint32_t tmp;
tmp = cpu_mem_read (sd, dw, aa);
cpu_mem_write (sd, dw, aa, cpu->state.regs[r_d]);
cpu->state.regs[r_d] = tmp;
cpu->state.cycles += 1;
}
break;
case FT32_PAT_EXI:
{
uint32_t tmp;
tmp = cpu_mem_read (sd, dw, cpu->state.regs[r_1] + k8);
cpu_mem_write (sd, dw, cpu->state.regs[r_1] + k8, cpu->state.regs[r_d]);
cpu->state.regs[r_d] = tmp;
cpu->state.cycles += 1;
}
break;
case FT32_PAT_PUSH:
ft32_push (sd, r_1v);
break;
case FT32_PAT_LINK:
ft32_push (sd, cpu->state.regs[r_d]);
cpu->state.regs[r_d] = cpu->state.regs[FT32_HARD_SP];
cpu->state.regs[FT32_HARD_SP] -= k16;
cpu->state.regs[FT32_HARD_SP] &= 0xffff;
break;
case FT32_PAT_UNLINK:
cpu->state.regs[FT32_HARD_SP] = cpu->state.regs[r_d];
cpu->state.regs[FT32_HARD_SP] &= 0xffff;
cpu->state.regs[r_d] = ft32_pop (sd);
break;
case FT32_PAT_POP:
cpu->state.cycles += 1;
cpu->state.regs[r_d] = ft32_pop (sd);
break;
case FT32_PAT_RETURN:
cpu->state.pc = ft32_pop (sd);
break;
case FT32_PAT_FFUOP:
switch (al)
{
case 0x0:
cpu->state.regs[r_d] = r_1v / rimmv;
break;
case 0x1:
cpu->state.regs[r_d] = r_1v % rimmv;
break;
case 0x2:
cpu->state.regs[r_d] = ft32sdiv (r_1v, rimmv);
break;
case 0x3:
cpu->state.regs[r_d] = ft32smod (r_1v, rimmv);
break;
case 0x4:
{
/* strcmp instruction. */
uint32_t a = r_1v;
uint32_t b = rimmv;
uint32_t i = 0;
while ((GET_BYTE (a + i) != 0) &&
(GET_BYTE (a + i) == GET_BYTE (b + i)))
i++;
cpu->state.regs[r_d] = GET_BYTE (a + i) - GET_BYTE (b + i);
}
break;
case 0x5:
{
/* memcpy instruction. */
uint32_t src = r_1v;
uint32_t dst = cpu->state.regs[r_d];
uint32_t i;
for (i = 0; i < (rimmv & 0x7fff); i++)
PUT_BYTE (dst + i, GET_BYTE (src + i));
}
break;
case 0x6:
{
/* strlen instruction. */
uint32_t src = r_1v;
uint32_t i;
for (i = 0; GET_BYTE (src + i) != 0; i++)
;
cpu->state.regs[r_d] = i;
}
break;
case 0x7:
{
/* memset instruction. */
uint32_t dst = cpu->state.regs[r_d];
uint32_t i;
for (i = 0; i < (rimmv & 0x7fff); i++)
PUT_BYTE (dst + i, r_1v);
}
break;
case 0x8:
cpu->state.regs[r_d] = r_1v * rimmv;
break;
case 0x9:
cpu->state.regs[r_d] = ((uint64_t)r_1v * (uint64_t)rimmv) >> 32;
break;
case 0xa:
{
/* stpcpy instruction. */
uint32_t src = r_1v;
uint32_t dst = cpu->state.regs[r_d];
uint32_t i;
for (i = 0; GET_BYTE (src + i) != 0; i++)
PUT_BYTE (dst + i, GET_BYTE (src + i));
PUT_BYTE (dst + i, 0);
cpu->state.regs[r_d] = dst + i;
}
break;
case 0xe:
{
/* streamout instruction. */
uint32_t i;
uint32_t src = cpu->state.regs[r_1];
for (i = 0; i < rimmv; i += (1 << dw))
{
cpu_mem_write (sd,
dw,
cpu->state.regs[r_d],
cpu_mem_read (sd, dw, src));
src += (1 << dw);
}
}
break;
default:
sim_io_eprintf (sd, "Unhandled ffu %#x at %08x\n", al, insnpc);
ILLEGAL ();
}
break;
default:
sim_io_eprintf (sd, "Unhandled pattern %d at %08x\n", upper, insnpc);
ILLEGAL ();
}
cpu->state.num_i++;
escape:
;
}
void
sim_engine_run (SIM_DESC sd,
int next_cpu_nr, /* ignore */
int nr_cpus, /* ignore */
int siggnal) /* ignore */
{
sim_cpu *cpu;
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
cpu = STATE_CPU (sd, 0);
while (1)
{
step_once (sd);
if (sim_events_tick (sd))
sim_events_process (sd);
}
}
static uint32_t *
ft32_lookup_register (SIM_CPU *cpu, int nr)
{
/* Handle the register number translation here.
* Sim registers are 0-31.
* Other tools (gcc, gdb) use:
* 0 - fp
* 1 - sp
* 2 - r0
* 31 - cc
*/
if ((nr < 0) || (nr > 32))
{
sim_io_eprintf (CPU_STATE (cpu), "unknown register %i\n", nr);
abort ();
}
switch (nr)
{
case FT32_FP_REGNUM:
return &cpu->state.regs[FT32_HARD_FP];
case FT32_SP_REGNUM:
return &cpu->state.regs[FT32_HARD_SP];
case FT32_CC_REGNUM:
return &cpu->state.regs[FT32_HARD_CC];
case FT32_PC_REGNUM:
return &cpu->state.pc;
default:
return &cpu->state.regs[nr - 2];
}
}
static int
ft32_reg_store (SIM_CPU *cpu,
int rn,
unsigned char *memory,
int length)
{
if (0 <= rn && rn <= 32)
{
if (length == 4)
*ft32_lookup_register (cpu, rn) = ft32_extract_unsigned_integer (memory, 4);
return 4;
}
else
return 0;
}
static int
ft32_reg_fetch (SIM_CPU *cpu,
int rn,
unsigned char *memory,
int length)
{
if (0 <= rn && rn <= 32)
{
if (length == 4)
ft32_store_unsigned_integer (memory, 4, *ft32_lookup_register (cpu, rn));
return 4;
}
else
return 0;
}
static sim_cia
ft32_pc_get (SIM_CPU *cpu)
{
return cpu->state.pc;
}
static void
ft32_pc_set (SIM_CPU *cpu, sim_cia newpc)
{
cpu->state.pc = newpc;
}
/* Cover function of sim_state_free to free the cpu buffers as well. */
static void
free_state (SIM_DESC sd)
{
if (STATE_MODULES (sd) != NULL)
sim_module_uninstall (sd);
sim_cpu_free_all (sd);
sim_state_free (sd);
}
SIM_DESC
sim_open (SIM_OPEN_KIND kind,
host_callback *cb,
struct bfd *abfd,
char * const *argv)
{
char c;
size_t i;
SIM_DESC sd = sim_state_alloc (kind, cb);
/* The cpu data is kept in a separately allocated chunk of memory. */
if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* The parser will print an error message for us, so we silently return. */
if (sim_parse_args (sd, argv) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* Allocate external memory if none specified by user.
Use address 4 here in case the user wanted address 0 unmapped. */
if (sim_core_read_buffer (sd, NULL, read_map, &c, 4, 1) == 0)
{
sim_do_command (sd, "memory region 0x00000000,0x40000");
sim_do_command (sd, "memory region 0x800000,0x10000");
}
/* Check for/establish the reference program image. */
if (sim_analyze_program (sd,
(STATE_PROG_ARGV (sd) != NULL
? *STATE_PROG_ARGV (sd)
: NULL), abfd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* Configure/verify the target byte order and other runtime
configuration options. */
if (sim_config (sd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
if (sim_post_argv_init (sd) != SIM_RC_OK)
{
free_state (sd);
return 0;
}
/* CPU specific initialization. */
for (i = 0; i < MAX_NR_PROCESSORS; ++i)
{
SIM_CPU *cpu = STATE_CPU (sd, i);
CPU_REG_FETCH (cpu) = ft32_reg_fetch;
CPU_REG_STORE (cpu) = ft32_reg_store;
CPU_PC_FETCH (cpu) = ft32_pc_get;
CPU_PC_STORE (cpu) = ft32_pc_set;
}
return sd;
}
SIM_RC
sim_create_inferior (SIM_DESC sd,
struct bfd *abfd,
char * const *argv,
char * const *env)
{
uint32_t addr;
sim_cpu *cpu = STATE_CPU (sd, 0);
/* Set the PC. */
if (abfd != NULL)
addr = bfd_get_start_address (abfd);
else
addr = 0;
/* Standalone mode (i.e. `run`) will take care of the argv for us in
sim_open() -> sim_parse_args(). But in debug mode (i.e. 'target sim'
with `gdb`), we need to handle it because the user can change the
argv on the fly via gdb's 'run'. */
if (STATE_PROG_ARGV (sd) != argv)
{
freeargv (STATE_PROG_ARGV (sd));
STATE_PROG_ARGV (sd) = dupargv (argv);
}
cpu->state.regs[FT32_HARD_SP] = addr;
cpu->state.num_i = 0;
cpu->state.cycles = 0;
cpu->state.next_tick_cycle = 100000;
return SIM_RC_OK;
}