23669 lines
713 KiB
C
23669 lines
713 KiB
C
/* DWARF 2 debugging format support for GDB.
|
||
|
||
Copyright (C) 1994-2016 Free Software Foundation, Inc.
|
||
|
||
Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
|
||
Inc. with support from Florida State University (under contract
|
||
with the Ada Joint Program Office), and Silicon Graphics, Inc.
|
||
Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
|
||
based on Fred Fish's (Cygnus Support) implementation of DWARF 1
|
||
support.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* FIXME: Various die-reading functions need to be more careful with
|
||
reading off the end of the section.
|
||
E.g., load_partial_dies, read_partial_die. */
|
||
|
||
#include "defs.h"
|
||
#include "bfd.h"
|
||
#include "elf-bfd.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "objfiles.h"
|
||
#include "dwarf2.h"
|
||
#include "buildsym.h"
|
||
#include "demangle.h"
|
||
#include "gdb-demangle.h"
|
||
#include "expression.h"
|
||
#include "filenames.h" /* for DOSish file names */
|
||
#include "macrotab.h"
|
||
#include "language.h"
|
||
#include "complaints.h"
|
||
#include "bcache.h"
|
||
#include "dwarf2expr.h"
|
||
#include "dwarf2loc.h"
|
||
#include "cp-support.h"
|
||
#include "hashtab.h"
|
||
#include "command.h"
|
||
#include "gdbcmd.h"
|
||
#include "block.h"
|
||
#include "addrmap.h"
|
||
#include "typeprint.h"
|
||
#include "jv-lang.h"
|
||
#include "psympriv.h"
|
||
#include <sys/stat.h>
|
||
#include "completer.h"
|
||
#include "vec.h"
|
||
#include "c-lang.h"
|
||
#include "go-lang.h"
|
||
#include "valprint.h"
|
||
#include "gdbcore.h" /* for gnutarget */
|
||
#include "gdb/gdb-index.h"
|
||
#include <ctype.h>
|
||
#include "gdb_bfd.h"
|
||
#include "f-lang.h"
|
||
#include "source.h"
|
||
#include "filestuff.h"
|
||
#include "build-id.h"
|
||
#include "namespace.h"
|
||
|
||
#include <fcntl.h>
|
||
#include <sys/types.h>
|
||
|
||
typedef struct symbol *symbolp;
|
||
DEF_VEC_P (symbolp);
|
||
|
||
/* When == 1, print basic high level tracing messages.
|
||
When > 1, be more verbose.
|
||
This is in contrast to the low level DIE reading of dwarf_die_debug. */
|
||
static unsigned int dwarf_read_debug = 0;
|
||
|
||
/* When non-zero, dump DIEs after they are read in. */
|
||
static unsigned int dwarf_die_debug = 0;
|
||
|
||
/* When non-zero, dump line number entries as they are read in. */
|
||
static unsigned int dwarf_line_debug = 0;
|
||
|
||
/* When non-zero, cross-check physname against demangler. */
|
||
static int check_physname = 0;
|
||
|
||
/* When non-zero, do not reject deprecated .gdb_index sections. */
|
||
static int use_deprecated_index_sections = 0;
|
||
|
||
static const struct objfile_data *dwarf2_objfile_data_key;
|
||
|
||
/* The "aclass" indices for various kinds of computed DWARF symbols. */
|
||
|
||
static int dwarf2_locexpr_index;
|
||
static int dwarf2_loclist_index;
|
||
static int dwarf2_locexpr_block_index;
|
||
static int dwarf2_loclist_block_index;
|
||
|
||
/* A descriptor for dwarf sections.
|
||
|
||
S.ASECTION, SIZE are typically initialized when the objfile is first
|
||
scanned. BUFFER, READIN are filled in later when the section is read.
|
||
If the section contained compressed data then SIZE is updated to record
|
||
the uncompressed size of the section.
|
||
|
||
DWP file format V2 introduces a wrinkle that is easiest to handle by
|
||
creating the concept of virtual sections contained within a real section.
|
||
In DWP V2 the sections of the input DWO files are concatenated together
|
||
into one section, but section offsets are kept relative to the original
|
||
input section.
|
||
If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
|
||
the real section this "virtual" section is contained in, and BUFFER,SIZE
|
||
describe the virtual section. */
|
||
|
||
struct dwarf2_section_info
|
||
{
|
||
union
|
||
{
|
||
/* If this is a real section, the bfd section. */
|
||
asection *section;
|
||
/* If this is a virtual section, pointer to the containing ("real")
|
||
section. */
|
||
struct dwarf2_section_info *containing_section;
|
||
} s;
|
||
/* Pointer to section data, only valid if readin. */
|
||
const gdb_byte *buffer;
|
||
/* The size of the section, real or virtual. */
|
||
bfd_size_type size;
|
||
/* If this is a virtual section, the offset in the real section.
|
||
Only valid if is_virtual. */
|
||
bfd_size_type virtual_offset;
|
||
/* True if we have tried to read this section. */
|
||
char readin;
|
||
/* True if this is a virtual section, False otherwise.
|
||
This specifies which of s.section and s.containing_section to use. */
|
||
char is_virtual;
|
||
};
|
||
|
||
typedef struct dwarf2_section_info dwarf2_section_info_def;
|
||
DEF_VEC_O (dwarf2_section_info_def);
|
||
|
||
/* All offsets in the index are of this type. It must be
|
||
architecture-independent. */
|
||
typedef uint32_t offset_type;
|
||
|
||
DEF_VEC_I (offset_type);
|
||
|
||
/* Ensure only legit values are used. */
|
||
#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
|
||
do { \
|
||
gdb_assert ((unsigned int) (value) <= 1); \
|
||
GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
|
||
} while (0)
|
||
|
||
/* Ensure only legit values are used. */
|
||
#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
|
||
do { \
|
||
gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
|
||
&& (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
|
||
GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
|
||
} while (0)
|
||
|
||
/* Ensure we don't use more than the alloted nuber of bits for the CU. */
|
||
#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
|
||
do { \
|
||
gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
|
||
GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
|
||
} while (0)
|
||
|
||
/* A description of the mapped index. The file format is described in
|
||
a comment by the code that writes the index. */
|
||
struct mapped_index
|
||
{
|
||
/* Index data format version. */
|
||
int version;
|
||
|
||
/* The total length of the buffer. */
|
||
off_t total_size;
|
||
|
||
/* A pointer to the address table data. */
|
||
const gdb_byte *address_table;
|
||
|
||
/* Size of the address table data in bytes. */
|
||
offset_type address_table_size;
|
||
|
||
/* The symbol table, implemented as a hash table. */
|
||
const offset_type *symbol_table;
|
||
|
||
/* Size in slots, each slot is 2 offset_types. */
|
||
offset_type symbol_table_slots;
|
||
|
||
/* A pointer to the constant pool. */
|
||
const char *constant_pool;
|
||
};
|
||
|
||
typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
|
||
DEF_VEC_P (dwarf2_per_cu_ptr);
|
||
|
||
struct tu_stats
|
||
{
|
||
int nr_uniq_abbrev_tables;
|
||
int nr_symtabs;
|
||
int nr_symtab_sharers;
|
||
int nr_stmt_less_type_units;
|
||
int nr_all_type_units_reallocs;
|
||
};
|
||
|
||
/* Collection of data recorded per objfile.
|
||
This hangs off of dwarf2_objfile_data_key. */
|
||
|
||
struct dwarf2_per_objfile
|
||
{
|
||
struct dwarf2_section_info info;
|
||
struct dwarf2_section_info abbrev;
|
||
struct dwarf2_section_info line;
|
||
struct dwarf2_section_info loc;
|
||
struct dwarf2_section_info macinfo;
|
||
struct dwarf2_section_info macro;
|
||
struct dwarf2_section_info str;
|
||
struct dwarf2_section_info ranges;
|
||
struct dwarf2_section_info addr;
|
||
struct dwarf2_section_info frame;
|
||
struct dwarf2_section_info eh_frame;
|
||
struct dwarf2_section_info gdb_index;
|
||
|
||
VEC (dwarf2_section_info_def) *types;
|
||
|
||
/* Back link. */
|
||
struct objfile *objfile;
|
||
|
||
/* Table of all the compilation units. This is used to locate
|
||
the target compilation unit of a particular reference. */
|
||
struct dwarf2_per_cu_data **all_comp_units;
|
||
|
||
/* The number of compilation units in ALL_COMP_UNITS. */
|
||
int n_comp_units;
|
||
|
||
/* The number of .debug_types-related CUs. */
|
||
int n_type_units;
|
||
|
||
/* The number of elements allocated in all_type_units.
|
||
If there are skeleton-less TUs, we add them to all_type_units lazily. */
|
||
int n_allocated_type_units;
|
||
|
||
/* The .debug_types-related CUs (TUs).
|
||
This is stored in malloc space because we may realloc it. */
|
||
struct signatured_type **all_type_units;
|
||
|
||
/* Table of struct type_unit_group objects.
|
||
The hash key is the DW_AT_stmt_list value. */
|
||
htab_t type_unit_groups;
|
||
|
||
/* A table mapping .debug_types signatures to its signatured_type entry.
|
||
This is NULL if the .debug_types section hasn't been read in yet. */
|
||
htab_t signatured_types;
|
||
|
||
/* Type unit statistics, to see how well the scaling improvements
|
||
are doing. */
|
||
struct tu_stats tu_stats;
|
||
|
||
/* A chain of compilation units that are currently read in, so that
|
||
they can be freed later. */
|
||
struct dwarf2_per_cu_data *read_in_chain;
|
||
|
||
/* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
|
||
This is NULL if the table hasn't been allocated yet. */
|
||
htab_t dwo_files;
|
||
|
||
/* Non-zero if we've check for whether there is a DWP file. */
|
||
int dwp_checked;
|
||
|
||
/* The DWP file if there is one, or NULL. */
|
||
struct dwp_file *dwp_file;
|
||
|
||
/* The shared '.dwz' file, if one exists. This is used when the
|
||
original data was compressed using 'dwz -m'. */
|
||
struct dwz_file *dwz_file;
|
||
|
||
/* A flag indicating wether this objfile has a section loaded at a
|
||
VMA of 0. */
|
||
int has_section_at_zero;
|
||
|
||
/* True if we are using the mapped index,
|
||
or we are faking it for OBJF_READNOW's sake. */
|
||
unsigned char using_index;
|
||
|
||
/* The mapped index, or NULL if .gdb_index is missing or not being used. */
|
||
struct mapped_index *index_table;
|
||
|
||
/* When using index_table, this keeps track of all quick_file_names entries.
|
||
TUs typically share line table entries with a CU, so we maintain a
|
||
separate table of all line table entries to support the sharing.
|
||
Note that while there can be way more TUs than CUs, we've already
|
||
sorted all the TUs into "type unit groups", grouped by their
|
||
DW_AT_stmt_list value. Therefore the only sharing done here is with a
|
||
CU and its associated TU group if there is one. */
|
||
htab_t quick_file_names_table;
|
||
|
||
/* Set during partial symbol reading, to prevent queueing of full
|
||
symbols. */
|
||
int reading_partial_symbols;
|
||
|
||
/* Table mapping type DIEs to their struct type *.
|
||
This is NULL if not allocated yet.
|
||
The mapping is done via (CU/TU + DIE offset) -> type. */
|
||
htab_t die_type_hash;
|
||
|
||
/* The CUs we recently read. */
|
||
VEC (dwarf2_per_cu_ptr) *just_read_cus;
|
||
|
||
/* Table containing line_header indexed by offset and offset_in_dwz. */
|
||
htab_t line_header_hash;
|
||
};
|
||
|
||
static struct dwarf2_per_objfile *dwarf2_per_objfile;
|
||
|
||
/* Default names of the debugging sections. */
|
||
|
||
/* Note that if the debugging section has been compressed, it might
|
||
have a name like .zdebug_info. */
|
||
|
||
static const struct dwarf2_debug_sections dwarf2_elf_names =
|
||
{
|
||
{ ".debug_info", ".zdebug_info" },
|
||
{ ".debug_abbrev", ".zdebug_abbrev" },
|
||
{ ".debug_line", ".zdebug_line" },
|
||
{ ".debug_loc", ".zdebug_loc" },
|
||
{ ".debug_macinfo", ".zdebug_macinfo" },
|
||
{ ".debug_macro", ".zdebug_macro" },
|
||
{ ".debug_str", ".zdebug_str" },
|
||
{ ".debug_ranges", ".zdebug_ranges" },
|
||
{ ".debug_types", ".zdebug_types" },
|
||
{ ".debug_addr", ".zdebug_addr" },
|
||
{ ".debug_frame", ".zdebug_frame" },
|
||
{ ".eh_frame", NULL },
|
||
{ ".gdb_index", ".zgdb_index" },
|
||
23
|
||
};
|
||
|
||
/* List of DWO/DWP sections. */
|
||
|
||
static const struct dwop_section_names
|
||
{
|
||
struct dwarf2_section_names abbrev_dwo;
|
||
struct dwarf2_section_names info_dwo;
|
||
struct dwarf2_section_names line_dwo;
|
||
struct dwarf2_section_names loc_dwo;
|
||
struct dwarf2_section_names macinfo_dwo;
|
||
struct dwarf2_section_names macro_dwo;
|
||
struct dwarf2_section_names str_dwo;
|
||
struct dwarf2_section_names str_offsets_dwo;
|
||
struct dwarf2_section_names types_dwo;
|
||
struct dwarf2_section_names cu_index;
|
||
struct dwarf2_section_names tu_index;
|
||
}
|
||
dwop_section_names =
|
||
{
|
||
{ ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
|
||
{ ".debug_info.dwo", ".zdebug_info.dwo" },
|
||
{ ".debug_line.dwo", ".zdebug_line.dwo" },
|
||
{ ".debug_loc.dwo", ".zdebug_loc.dwo" },
|
||
{ ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
|
||
{ ".debug_macro.dwo", ".zdebug_macro.dwo" },
|
||
{ ".debug_str.dwo", ".zdebug_str.dwo" },
|
||
{ ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
|
||
{ ".debug_types.dwo", ".zdebug_types.dwo" },
|
||
{ ".debug_cu_index", ".zdebug_cu_index" },
|
||
{ ".debug_tu_index", ".zdebug_tu_index" },
|
||
};
|
||
|
||
/* local data types */
|
||
|
||
/* The data in a compilation unit header, after target2host
|
||
translation, looks like this. */
|
||
struct comp_unit_head
|
||
{
|
||
unsigned int length;
|
||
short version;
|
||
unsigned char addr_size;
|
||
unsigned char signed_addr_p;
|
||
sect_offset abbrev_offset;
|
||
|
||
/* Size of file offsets; either 4 or 8. */
|
||
unsigned int offset_size;
|
||
|
||
/* Size of the length field; either 4 or 12. */
|
||
unsigned int initial_length_size;
|
||
|
||
/* Offset to the first byte of this compilation unit header in the
|
||
.debug_info section, for resolving relative reference dies. */
|
||
sect_offset offset;
|
||
|
||
/* Offset to first die in this cu from the start of the cu.
|
||
This will be the first byte following the compilation unit header. */
|
||
cu_offset first_die_offset;
|
||
};
|
||
|
||
/* Type used for delaying computation of method physnames.
|
||
See comments for compute_delayed_physnames. */
|
||
struct delayed_method_info
|
||
{
|
||
/* The type to which the method is attached, i.e., its parent class. */
|
||
struct type *type;
|
||
|
||
/* The index of the method in the type's function fieldlists. */
|
||
int fnfield_index;
|
||
|
||
/* The index of the method in the fieldlist. */
|
||
int index;
|
||
|
||
/* The name of the DIE. */
|
||
const char *name;
|
||
|
||
/* The DIE associated with this method. */
|
||
struct die_info *die;
|
||
};
|
||
|
||
typedef struct delayed_method_info delayed_method_info;
|
||
DEF_VEC_O (delayed_method_info);
|
||
|
||
/* Internal state when decoding a particular compilation unit. */
|
||
struct dwarf2_cu
|
||
{
|
||
/* The objfile containing this compilation unit. */
|
||
struct objfile *objfile;
|
||
|
||
/* The header of the compilation unit. */
|
||
struct comp_unit_head header;
|
||
|
||
/* Base address of this compilation unit. */
|
||
CORE_ADDR base_address;
|
||
|
||
/* Non-zero if base_address has been set. */
|
||
int base_known;
|
||
|
||
/* The language we are debugging. */
|
||
enum language language;
|
||
const struct language_defn *language_defn;
|
||
|
||
const char *producer;
|
||
|
||
/* The generic symbol table building routines have separate lists for
|
||
file scope symbols and all all other scopes (local scopes). So
|
||
we need to select the right one to pass to add_symbol_to_list().
|
||
We do it by keeping a pointer to the correct list in list_in_scope.
|
||
|
||
FIXME: The original dwarf code just treated the file scope as the
|
||
first local scope, and all other local scopes as nested local
|
||
scopes, and worked fine. Check to see if we really need to
|
||
distinguish these in buildsym.c. */
|
||
struct pending **list_in_scope;
|
||
|
||
/* The abbrev table for this CU.
|
||
Normally this points to the abbrev table in the objfile.
|
||
But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
|
||
struct abbrev_table *abbrev_table;
|
||
|
||
/* Hash table holding all the loaded partial DIEs
|
||
with partial_die->offset.SECT_OFF as hash. */
|
||
htab_t partial_dies;
|
||
|
||
/* Storage for things with the same lifetime as this read-in compilation
|
||
unit, including partial DIEs. */
|
||
struct obstack comp_unit_obstack;
|
||
|
||
/* When multiple dwarf2_cu structures are living in memory, this field
|
||
chains them all together, so that they can be released efficiently.
|
||
We will probably also want a generation counter so that most-recently-used
|
||
compilation units are cached... */
|
||
struct dwarf2_per_cu_data *read_in_chain;
|
||
|
||
/* Backlink to our per_cu entry. */
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
|
||
/* How many compilation units ago was this CU last referenced? */
|
||
int last_used;
|
||
|
||
/* A hash table of DIE cu_offset for following references with
|
||
die_info->offset.sect_off as hash. */
|
||
htab_t die_hash;
|
||
|
||
/* Full DIEs if read in. */
|
||
struct die_info *dies;
|
||
|
||
/* A set of pointers to dwarf2_per_cu_data objects for compilation
|
||
units referenced by this one. Only set during full symbol processing;
|
||
partial symbol tables do not have dependencies. */
|
||
htab_t dependencies;
|
||
|
||
/* Header data from the line table, during full symbol processing. */
|
||
struct line_header *line_header;
|
||
|
||
/* A list of methods which need to have physnames computed
|
||
after all type information has been read. */
|
||
VEC (delayed_method_info) *method_list;
|
||
|
||
/* To be copied to symtab->call_site_htab. */
|
||
htab_t call_site_htab;
|
||
|
||
/* Non-NULL if this CU came from a DWO file.
|
||
There is an invariant here that is important to remember:
|
||
Except for attributes copied from the top level DIE in the "main"
|
||
(or "stub") file in preparation for reading the DWO file
|
||
(e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
|
||
Either there isn't a DWO file (in which case this is NULL and the point
|
||
is moot), or there is and either we're not going to read it (in which
|
||
case this is NULL) or there is and we are reading it (in which case this
|
||
is non-NULL). */
|
||
struct dwo_unit *dwo_unit;
|
||
|
||
/* The DW_AT_addr_base attribute if present, zero otherwise
|
||
(zero is a valid value though).
|
||
Note this value comes from the Fission stub CU/TU's DIE. */
|
||
ULONGEST addr_base;
|
||
|
||
/* The DW_AT_ranges_base attribute if present, zero otherwise
|
||
(zero is a valid value though).
|
||
Note this value comes from the Fission stub CU/TU's DIE.
|
||
Also note that the value is zero in the non-DWO case so this value can
|
||
be used without needing to know whether DWO files are in use or not.
|
||
N.B. This does not apply to DW_AT_ranges appearing in
|
||
DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
|
||
DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
|
||
DW_AT_ranges_base *would* have to be applied, and we'd have to care
|
||
whether the DW_AT_ranges attribute came from the skeleton or DWO. */
|
||
ULONGEST ranges_base;
|
||
|
||
/* Mark used when releasing cached dies. */
|
||
unsigned int mark : 1;
|
||
|
||
/* This CU references .debug_loc. See the symtab->locations_valid field.
|
||
This test is imperfect as there may exist optimized debug code not using
|
||
any location list and still facing inlining issues if handled as
|
||
unoptimized code. For a future better test see GCC PR other/32998. */
|
||
unsigned int has_loclist : 1;
|
||
|
||
/* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
|
||
if all the producer_is_* fields are valid. This information is cached
|
||
because profiling CU expansion showed excessive time spent in
|
||
producer_is_gxx_lt_4_6. */
|
||
unsigned int checked_producer : 1;
|
||
unsigned int producer_is_gxx_lt_4_6 : 1;
|
||
unsigned int producer_is_gcc_lt_4_3 : 1;
|
||
unsigned int producer_is_icc : 1;
|
||
|
||
/* When set, the file that we're processing is known to have
|
||
debugging info for C++ namespaces. GCC 3.3.x did not produce
|
||
this information, but later versions do. */
|
||
|
||
unsigned int processing_has_namespace_info : 1;
|
||
};
|
||
|
||
/* Persistent data held for a compilation unit, even when not
|
||
processing it. We put a pointer to this structure in the
|
||
read_symtab_private field of the psymtab. */
|
||
|
||
struct dwarf2_per_cu_data
|
||
{
|
||
/* The start offset and length of this compilation unit.
|
||
NOTE: Unlike comp_unit_head.length, this length includes
|
||
initial_length_size.
|
||
If the DIE refers to a DWO file, this is always of the original die,
|
||
not the DWO file. */
|
||
sect_offset offset;
|
||
unsigned int length;
|
||
|
||
/* Flag indicating this compilation unit will be read in before
|
||
any of the current compilation units are processed. */
|
||
unsigned int queued : 1;
|
||
|
||
/* This flag will be set when reading partial DIEs if we need to load
|
||
absolutely all DIEs for this compilation unit, instead of just the ones
|
||
we think are interesting. It gets set if we look for a DIE in the
|
||
hash table and don't find it. */
|
||
unsigned int load_all_dies : 1;
|
||
|
||
/* Non-zero if this CU is from .debug_types.
|
||
Struct dwarf2_per_cu_data is contained in struct signatured_type iff
|
||
this is non-zero. */
|
||
unsigned int is_debug_types : 1;
|
||
|
||
/* Non-zero if this CU is from the .dwz file. */
|
||
unsigned int is_dwz : 1;
|
||
|
||
/* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
|
||
This flag is only valid if is_debug_types is true.
|
||
We can't read a CU directly from a DWO file: There are required
|
||
attributes in the stub. */
|
||
unsigned int reading_dwo_directly : 1;
|
||
|
||
/* Non-zero if the TU has been read.
|
||
This is used to assist the "Stay in DWO Optimization" for Fission:
|
||
When reading a DWO, it's faster to read TUs from the DWO instead of
|
||
fetching them from random other DWOs (due to comdat folding).
|
||
If the TU has already been read, the optimization is unnecessary
|
||
(and unwise - we don't want to change where gdb thinks the TU lives
|
||
"midflight").
|
||
This flag is only valid if is_debug_types is true. */
|
||
unsigned int tu_read : 1;
|
||
|
||
/* The section this CU/TU lives in.
|
||
If the DIE refers to a DWO file, this is always the original die,
|
||
not the DWO file. */
|
||
struct dwarf2_section_info *section;
|
||
|
||
/* Set to non-NULL iff this CU is currently loaded. When it gets freed out
|
||
of the CU cache it gets reset to NULL again. This is left as NULL for
|
||
dummy CUs (a CU header, but nothing else). */
|
||
struct dwarf2_cu *cu;
|
||
|
||
/* The corresponding objfile.
|
||
Normally we can get the objfile from dwarf2_per_objfile.
|
||
However we can enter this file with just a "per_cu" handle. */
|
||
struct objfile *objfile;
|
||
|
||
/* When dwarf2_per_objfile->using_index is true, the 'quick' field
|
||
is active. Otherwise, the 'psymtab' field is active. */
|
||
union
|
||
{
|
||
/* The partial symbol table associated with this compilation unit,
|
||
or NULL for unread partial units. */
|
||
struct partial_symtab *psymtab;
|
||
|
||
/* Data needed by the "quick" functions. */
|
||
struct dwarf2_per_cu_quick_data *quick;
|
||
} v;
|
||
|
||
/* The CUs we import using DW_TAG_imported_unit. This is filled in
|
||
while reading psymtabs, used to compute the psymtab dependencies,
|
||
and then cleared. Then it is filled in again while reading full
|
||
symbols, and only deleted when the objfile is destroyed.
|
||
|
||
This is also used to work around a difference between the way gold
|
||
generates .gdb_index version <=7 and the way gdb does. Arguably this
|
||
is a gold bug. For symbols coming from TUs, gold records in the index
|
||
the CU that includes the TU instead of the TU itself. This breaks
|
||
dw2_lookup_symbol: It assumes that if the index says symbol X lives
|
||
in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
|
||
will find X. Alas TUs live in their own symtab, so after expanding CU Y
|
||
we need to look in TU Z to find X. Fortunately, this is akin to
|
||
DW_TAG_imported_unit, so we just use the same mechanism: For
|
||
.gdb_index version <=7 this also records the TUs that the CU referred
|
||
to. Concurrently with this change gdb was modified to emit version 8
|
||
indices so we only pay a price for gold generated indices.
|
||
http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
|
||
VEC (dwarf2_per_cu_ptr) *imported_symtabs;
|
||
};
|
||
|
||
/* Entry in the signatured_types hash table. */
|
||
|
||
struct signatured_type
|
||
{
|
||
/* The "per_cu" object of this type.
|
||
This struct is used iff per_cu.is_debug_types.
|
||
N.B.: This is the first member so that it's easy to convert pointers
|
||
between them. */
|
||
struct dwarf2_per_cu_data per_cu;
|
||
|
||
/* The type's signature. */
|
||
ULONGEST signature;
|
||
|
||
/* Offset in the TU of the type's DIE, as read from the TU header.
|
||
If this TU is a DWO stub and the definition lives in a DWO file
|
||
(specified by DW_AT_GNU_dwo_name), this value is unusable. */
|
||
cu_offset type_offset_in_tu;
|
||
|
||
/* Offset in the section of the type's DIE.
|
||
If the definition lives in a DWO file, this is the offset in the
|
||
.debug_types.dwo section.
|
||
The value is zero until the actual value is known.
|
||
Zero is otherwise not a valid section offset. */
|
||
sect_offset type_offset_in_section;
|
||
|
||
/* Type units are grouped by their DW_AT_stmt_list entry so that they
|
||
can share them. This points to the containing symtab. */
|
||
struct type_unit_group *type_unit_group;
|
||
|
||
/* The type.
|
||
The first time we encounter this type we fully read it in and install it
|
||
in the symbol tables. Subsequent times we only need the type. */
|
||
struct type *type;
|
||
|
||
/* Containing DWO unit.
|
||
This field is valid iff per_cu.reading_dwo_directly. */
|
||
struct dwo_unit *dwo_unit;
|
||
};
|
||
|
||
typedef struct signatured_type *sig_type_ptr;
|
||
DEF_VEC_P (sig_type_ptr);
|
||
|
||
/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
|
||
This includes type_unit_group and quick_file_names. */
|
||
|
||
struct stmt_list_hash
|
||
{
|
||
/* The DWO unit this table is from or NULL if there is none. */
|
||
struct dwo_unit *dwo_unit;
|
||
|
||
/* Offset in .debug_line or .debug_line.dwo. */
|
||
sect_offset line_offset;
|
||
};
|
||
|
||
/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
|
||
an object of this type. */
|
||
|
||
struct type_unit_group
|
||
{
|
||
/* dwarf2read.c's main "handle" on a TU symtab.
|
||
To simplify things we create an artificial CU that "includes" all the
|
||
type units using this stmt_list so that the rest of the code still has
|
||
a "per_cu" handle on the symtab.
|
||
This PER_CU is recognized by having no section. */
|
||
#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
|
||
struct dwarf2_per_cu_data per_cu;
|
||
|
||
/* The TUs that share this DW_AT_stmt_list entry.
|
||
This is added to while parsing type units to build partial symtabs,
|
||
and is deleted afterwards and not used again. */
|
||
VEC (sig_type_ptr) *tus;
|
||
|
||
/* The compunit symtab.
|
||
Type units in a group needn't all be defined in the same source file,
|
||
so we create an essentially anonymous symtab as the compunit symtab. */
|
||
struct compunit_symtab *compunit_symtab;
|
||
|
||
/* The data used to construct the hash key. */
|
||
struct stmt_list_hash hash;
|
||
|
||
/* The number of symtabs from the line header.
|
||
The value here must match line_header.num_file_names. */
|
||
unsigned int num_symtabs;
|
||
|
||
/* The symbol tables for this TU (obtained from the files listed in
|
||
DW_AT_stmt_list).
|
||
WARNING: The order of entries here must match the order of entries
|
||
in the line header. After the first TU using this type_unit_group, the
|
||
line header for the subsequent TUs is recreated from this. This is done
|
||
because we need to use the same symtabs for each TU using the same
|
||
DW_AT_stmt_list value. Also note that symtabs may be repeated here,
|
||
there's no guarantee the line header doesn't have duplicate entries. */
|
||
struct symtab **symtabs;
|
||
};
|
||
|
||
/* These sections are what may appear in a (real or virtual) DWO file. */
|
||
|
||
struct dwo_sections
|
||
{
|
||
struct dwarf2_section_info abbrev;
|
||
struct dwarf2_section_info line;
|
||
struct dwarf2_section_info loc;
|
||
struct dwarf2_section_info macinfo;
|
||
struct dwarf2_section_info macro;
|
||
struct dwarf2_section_info str;
|
||
struct dwarf2_section_info str_offsets;
|
||
/* In the case of a virtual DWO file, these two are unused. */
|
||
struct dwarf2_section_info info;
|
||
VEC (dwarf2_section_info_def) *types;
|
||
};
|
||
|
||
/* CUs/TUs in DWP/DWO files. */
|
||
|
||
struct dwo_unit
|
||
{
|
||
/* Backlink to the containing struct dwo_file. */
|
||
struct dwo_file *dwo_file;
|
||
|
||
/* The "id" that distinguishes this CU/TU.
|
||
.debug_info calls this "dwo_id", .debug_types calls this "signature".
|
||
Since signatures came first, we stick with it for consistency. */
|
||
ULONGEST signature;
|
||
|
||
/* The section this CU/TU lives in, in the DWO file. */
|
||
struct dwarf2_section_info *section;
|
||
|
||
/* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
|
||
sect_offset offset;
|
||
unsigned int length;
|
||
|
||
/* For types, offset in the type's DIE of the type defined by this TU. */
|
||
cu_offset type_offset_in_tu;
|
||
};
|
||
|
||
/* include/dwarf2.h defines the DWP section codes.
|
||
It defines a max value but it doesn't define a min value, which we
|
||
use for error checking, so provide one. */
|
||
|
||
enum dwp_v2_section_ids
|
||
{
|
||
DW_SECT_MIN = 1
|
||
};
|
||
|
||
/* Data for one DWO file.
|
||
|
||
This includes virtual DWO files (a virtual DWO file is a DWO file as it
|
||
appears in a DWP file). DWP files don't really have DWO files per se -
|
||
comdat folding of types "loses" the DWO file they came from, and from
|
||
a high level view DWP files appear to contain a mass of random types.
|
||
However, to maintain consistency with the non-DWP case we pretend DWP
|
||
files contain virtual DWO files, and we assign each TU with one virtual
|
||
DWO file (generally based on the line and abbrev section offsets -
|
||
a heuristic that seems to work in practice). */
|
||
|
||
struct dwo_file
|
||
{
|
||
/* The DW_AT_GNU_dwo_name attribute.
|
||
For virtual DWO files the name is constructed from the section offsets
|
||
of abbrev,line,loc,str_offsets so that we combine virtual DWO files
|
||
from related CU+TUs. */
|
||
const char *dwo_name;
|
||
|
||
/* The DW_AT_comp_dir attribute. */
|
||
const char *comp_dir;
|
||
|
||
/* The bfd, when the file is open. Otherwise this is NULL.
|
||
This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
|
||
bfd *dbfd;
|
||
|
||
/* The sections that make up this DWO file.
|
||
Remember that for virtual DWO files in DWP V2, these are virtual
|
||
sections (for lack of a better name). */
|
||
struct dwo_sections sections;
|
||
|
||
/* The CU in the file.
|
||
We only support one because having more than one requires hacking the
|
||
dwo_name of each to match, which is highly unlikely to happen.
|
||
Doing this means all TUs can share comp_dir: We also assume that
|
||
DW_AT_comp_dir across all TUs in a DWO file will be identical. */
|
||
struct dwo_unit *cu;
|
||
|
||
/* Table of TUs in the file.
|
||
Each element is a struct dwo_unit. */
|
||
htab_t tus;
|
||
};
|
||
|
||
/* These sections are what may appear in a DWP file. */
|
||
|
||
struct dwp_sections
|
||
{
|
||
/* These are used by both DWP version 1 and 2. */
|
||
struct dwarf2_section_info str;
|
||
struct dwarf2_section_info cu_index;
|
||
struct dwarf2_section_info tu_index;
|
||
|
||
/* These are only used by DWP version 2 files.
|
||
In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
|
||
sections are referenced by section number, and are not recorded here.
|
||
In DWP version 2 there is at most one copy of all these sections, each
|
||
section being (effectively) comprised of the concatenation of all of the
|
||
individual sections that exist in the version 1 format.
|
||
To keep the code simple we treat each of these concatenated pieces as a
|
||
section itself (a virtual section?). */
|
||
struct dwarf2_section_info abbrev;
|
||
struct dwarf2_section_info info;
|
||
struct dwarf2_section_info line;
|
||
struct dwarf2_section_info loc;
|
||
struct dwarf2_section_info macinfo;
|
||
struct dwarf2_section_info macro;
|
||
struct dwarf2_section_info str_offsets;
|
||
struct dwarf2_section_info types;
|
||
};
|
||
|
||
/* These sections are what may appear in a virtual DWO file in DWP version 1.
|
||
A virtual DWO file is a DWO file as it appears in a DWP file. */
|
||
|
||
struct virtual_v1_dwo_sections
|
||
{
|
||
struct dwarf2_section_info abbrev;
|
||
struct dwarf2_section_info line;
|
||
struct dwarf2_section_info loc;
|
||
struct dwarf2_section_info macinfo;
|
||
struct dwarf2_section_info macro;
|
||
struct dwarf2_section_info str_offsets;
|
||
/* Each DWP hash table entry records one CU or one TU.
|
||
That is recorded here, and copied to dwo_unit.section. */
|
||
struct dwarf2_section_info info_or_types;
|
||
};
|
||
|
||
/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
|
||
In version 2, the sections of the DWO files are concatenated together
|
||
and stored in one section of that name. Thus each ELF section contains
|
||
several "virtual" sections. */
|
||
|
||
struct virtual_v2_dwo_sections
|
||
{
|
||
bfd_size_type abbrev_offset;
|
||
bfd_size_type abbrev_size;
|
||
|
||
bfd_size_type line_offset;
|
||
bfd_size_type line_size;
|
||
|
||
bfd_size_type loc_offset;
|
||
bfd_size_type loc_size;
|
||
|
||
bfd_size_type macinfo_offset;
|
||
bfd_size_type macinfo_size;
|
||
|
||
bfd_size_type macro_offset;
|
||
bfd_size_type macro_size;
|
||
|
||
bfd_size_type str_offsets_offset;
|
||
bfd_size_type str_offsets_size;
|
||
|
||
/* Each DWP hash table entry records one CU or one TU.
|
||
That is recorded here, and copied to dwo_unit.section. */
|
||
bfd_size_type info_or_types_offset;
|
||
bfd_size_type info_or_types_size;
|
||
};
|
||
|
||
/* Contents of DWP hash tables. */
|
||
|
||
struct dwp_hash_table
|
||
{
|
||
uint32_t version, nr_columns;
|
||
uint32_t nr_units, nr_slots;
|
||
const gdb_byte *hash_table, *unit_table;
|
||
union
|
||
{
|
||
struct
|
||
{
|
||
const gdb_byte *indices;
|
||
} v1;
|
||
struct
|
||
{
|
||
/* This is indexed by column number and gives the id of the section
|
||
in that column. */
|
||
#define MAX_NR_V2_DWO_SECTIONS \
|
||
(1 /* .debug_info or .debug_types */ \
|
||
+ 1 /* .debug_abbrev */ \
|
||
+ 1 /* .debug_line */ \
|
||
+ 1 /* .debug_loc */ \
|
||
+ 1 /* .debug_str_offsets */ \
|
||
+ 1 /* .debug_macro or .debug_macinfo */)
|
||
int section_ids[MAX_NR_V2_DWO_SECTIONS];
|
||
const gdb_byte *offsets;
|
||
const gdb_byte *sizes;
|
||
} v2;
|
||
} section_pool;
|
||
};
|
||
|
||
/* Data for one DWP file. */
|
||
|
||
struct dwp_file
|
||
{
|
||
/* Name of the file. */
|
||
const char *name;
|
||
|
||
/* File format version. */
|
||
int version;
|
||
|
||
/* The bfd. */
|
||
bfd *dbfd;
|
||
|
||
/* Section info for this file. */
|
||
struct dwp_sections sections;
|
||
|
||
/* Table of CUs in the file. */
|
||
const struct dwp_hash_table *cus;
|
||
|
||
/* Table of TUs in the file. */
|
||
const struct dwp_hash_table *tus;
|
||
|
||
/* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
|
||
htab_t loaded_cus;
|
||
htab_t loaded_tus;
|
||
|
||
/* Table to map ELF section numbers to their sections.
|
||
This is only needed for the DWP V1 file format. */
|
||
unsigned int num_sections;
|
||
asection **elf_sections;
|
||
};
|
||
|
||
/* This represents a '.dwz' file. */
|
||
|
||
struct dwz_file
|
||
{
|
||
/* A dwz file can only contain a few sections. */
|
||
struct dwarf2_section_info abbrev;
|
||
struct dwarf2_section_info info;
|
||
struct dwarf2_section_info str;
|
||
struct dwarf2_section_info line;
|
||
struct dwarf2_section_info macro;
|
||
struct dwarf2_section_info gdb_index;
|
||
|
||
/* The dwz's BFD. */
|
||
bfd *dwz_bfd;
|
||
};
|
||
|
||
/* Struct used to pass misc. parameters to read_die_and_children, et
|
||
al. which are used for both .debug_info and .debug_types dies.
|
||
All parameters here are unchanging for the life of the call. This
|
||
struct exists to abstract away the constant parameters of die reading. */
|
||
|
||
struct die_reader_specs
|
||
{
|
||
/* The bfd of die_section. */
|
||
bfd* abfd;
|
||
|
||
/* The CU of the DIE we are parsing. */
|
||
struct dwarf2_cu *cu;
|
||
|
||
/* Non-NULL if reading a DWO file (including one packaged into a DWP). */
|
||
struct dwo_file *dwo_file;
|
||
|
||
/* The section the die comes from.
|
||
This is either .debug_info or .debug_types, or the .dwo variants. */
|
||
struct dwarf2_section_info *die_section;
|
||
|
||
/* die_section->buffer. */
|
||
const gdb_byte *buffer;
|
||
|
||
/* The end of the buffer. */
|
||
const gdb_byte *buffer_end;
|
||
|
||
/* The value of the DW_AT_comp_dir attribute. */
|
||
const char *comp_dir;
|
||
};
|
||
|
||
/* Type of function passed to init_cutu_and_read_dies, et.al. */
|
||
typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
|
||
const gdb_byte *info_ptr,
|
||
struct die_info *comp_unit_die,
|
||
int has_children,
|
||
void *data);
|
||
|
||
struct file_entry
|
||
{
|
||
const char *name;
|
||
unsigned int dir_index;
|
||
unsigned int mod_time;
|
||
unsigned int length;
|
||
/* Non-zero if referenced by the Line Number Program. */
|
||
int included_p;
|
||
/* The associated symbol table, if any. */
|
||
struct symtab *symtab;
|
||
};
|
||
|
||
/* The line number information for a compilation unit (found in the
|
||
.debug_line section) begins with a "statement program header",
|
||
which contains the following information. */
|
||
struct line_header
|
||
{
|
||
/* Offset of line number information in .debug_line section. */
|
||
sect_offset offset;
|
||
|
||
/* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
|
||
unsigned offset_in_dwz : 1;
|
||
|
||
unsigned int total_length;
|
||
unsigned short version;
|
||
unsigned int header_length;
|
||
unsigned char minimum_instruction_length;
|
||
unsigned char maximum_ops_per_instruction;
|
||
unsigned char default_is_stmt;
|
||
int line_base;
|
||
unsigned char line_range;
|
||
unsigned char opcode_base;
|
||
|
||
/* standard_opcode_lengths[i] is the number of operands for the
|
||
standard opcode whose value is i. This means that
|
||
standard_opcode_lengths[0] is unused, and the last meaningful
|
||
element is standard_opcode_lengths[opcode_base - 1]. */
|
||
unsigned char *standard_opcode_lengths;
|
||
|
||
/* The include_directories table. NOTE! These strings are not
|
||
allocated with xmalloc; instead, they are pointers into
|
||
debug_line_buffer. If you try to free them, `free' will get
|
||
indigestion. */
|
||
unsigned int num_include_dirs, include_dirs_size;
|
||
const char **include_dirs;
|
||
|
||
/* The file_names table. NOTE! These strings are not allocated
|
||
with xmalloc; instead, they are pointers into debug_line_buffer.
|
||
Don't try to free them directly. */
|
||
unsigned int num_file_names, file_names_size;
|
||
struct file_entry *file_names;
|
||
|
||
/* The start and end of the statement program following this
|
||
header. These point into dwarf2_per_objfile->line_buffer. */
|
||
const gdb_byte *statement_program_start, *statement_program_end;
|
||
};
|
||
|
||
/* When we construct a partial symbol table entry we only
|
||
need this much information. */
|
||
struct partial_die_info
|
||
{
|
||
/* Offset of this DIE. */
|
||
sect_offset offset;
|
||
|
||
/* DWARF-2 tag for this DIE. */
|
||
ENUM_BITFIELD(dwarf_tag) tag : 16;
|
||
|
||
/* Assorted flags describing the data found in this DIE. */
|
||
unsigned int has_children : 1;
|
||
unsigned int is_external : 1;
|
||
unsigned int is_declaration : 1;
|
||
unsigned int has_type : 1;
|
||
unsigned int has_specification : 1;
|
||
unsigned int has_pc_info : 1;
|
||
unsigned int may_be_inlined : 1;
|
||
|
||
/* Flag set if the SCOPE field of this structure has been
|
||
computed. */
|
||
unsigned int scope_set : 1;
|
||
|
||
/* Flag set if the DIE has a byte_size attribute. */
|
||
unsigned int has_byte_size : 1;
|
||
|
||
/* Flag set if the DIE has a DW_AT_const_value attribute. */
|
||
unsigned int has_const_value : 1;
|
||
|
||
/* Flag set if any of the DIE's children are template arguments. */
|
||
unsigned int has_template_arguments : 1;
|
||
|
||
/* Flag set if fixup_partial_die has been called on this die. */
|
||
unsigned int fixup_called : 1;
|
||
|
||
/* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
|
||
unsigned int is_dwz : 1;
|
||
|
||
/* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
|
||
unsigned int spec_is_dwz : 1;
|
||
|
||
/* The name of this DIE. Normally the value of DW_AT_name, but
|
||
sometimes a default name for unnamed DIEs. */
|
||
const char *name;
|
||
|
||
/* The linkage name, if present. */
|
||
const char *linkage_name;
|
||
|
||
/* The scope to prepend to our children. This is generally
|
||
allocated on the comp_unit_obstack, so will disappear
|
||
when this compilation unit leaves the cache. */
|
||
const char *scope;
|
||
|
||
/* Some data associated with the partial DIE. The tag determines
|
||
which field is live. */
|
||
union
|
||
{
|
||
/* The location description associated with this DIE, if any. */
|
||
struct dwarf_block *locdesc;
|
||
/* The offset of an import, for DW_TAG_imported_unit. */
|
||
sect_offset offset;
|
||
} d;
|
||
|
||
/* If HAS_PC_INFO, the PC range associated with this DIE. */
|
||
CORE_ADDR lowpc;
|
||
CORE_ADDR highpc;
|
||
|
||
/* Pointer into the info_buffer (or types_buffer) pointing at the target of
|
||
DW_AT_sibling, if any. */
|
||
/* NOTE: This member isn't strictly necessary, read_partial_die could
|
||
return DW_AT_sibling values to its caller load_partial_dies. */
|
||
const gdb_byte *sibling;
|
||
|
||
/* If HAS_SPECIFICATION, the offset of the DIE referred to by
|
||
DW_AT_specification (or DW_AT_abstract_origin or
|
||
DW_AT_extension). */
|
||
sect_offset spec_offset;
|
||
|
||
/* Pointers to this DIE's parent, first child, and next sibling,
|
||
if any. */
|
||
struct partial_die_info *die_parent, *die_child, *die_sibling;
|
||
};
|
||
|
||
/* This data structure holds the information of an abbrev. */
|
||
struct abbrev_info
|
||
{
|
||
unsigned int number; /* number identifying abbrev */
|
||
enum dwarf_tag tag; /* dwarf tag */
|
||
unsigned short has_children; /* boolean */
|
||
unsigned short num_attrs; /* number of attributes */
|
||
struct attr_abbrev *attrs; /* an array of attribute descriptions */
|
||
struct abbrev_info *next; /* next in chain */
|
||
};
|
||
|
||
struct attr_abbrev
|
||
{
|
||
ENUM_BITFIELD(dwarf_attribute) name : 16;
|
||
ENUM_BITFIELD(dwarf_form) form : 16;
|
||
};
|
||
|
||
/* Size of abbrev_table.abbrev_hash_table. */
|
||
#define ABBREV_HASH_SIZE 121
|
||
|
||
/* Top level data structure to contain an abbreviation table. */
|
||
|
||
struct abbrev_table
|
||
{
|
||
/* Where the abbrev table came from.
|
||
This is used as a sanity check when the table is used. */
|
||
sect_offset offset;
|
||
|
||
/* Storage for the abbrev table. */
|
||
struct obstack abbrev_obstack;
|
||
|
||
/* Hash table of abbrevs.
|
||
This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
|
||
It could be statically allocated, but the previous code didn't so we
|
||
don't either. */
|
||
struct abbrev_info **abbrevs;
|
||
};
|
||
|
||
/* Attributes have a name and a value. */
|
||
struct attribute
|
||
{
|
||
ENUM_BITFIELD(dwarf_attribute) name : 16;
|
||
ENUM_BITFIELD(dwarf_form) form : 15;
|
||
|
||
/* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
|
||
field should be in u.str (existing only for DW_STRING) but it is kept
|
||
here for better struct attribute alignment. */
|
||
unsigned int string_is_canonical : 1;
|
||
|
||
union
|
||
{
|
||
const char *str;
|
||
struct dwarf_block *blk;
|
||
ULONGEST unsnd;
|
||
LONGEST snd;
|
||
CORE_ADDR addr;
|
||
ULONGEST signature;
|
||
}
|
||
u;
|
||
};
|
||
|
||
/* This data structure holds a complete die structure. */
|
||
struct die_info
|
||
{
|
||
/* DWARF-2 tag for this DIE. */
|
||
ENUM_BITFIELD(dwarf_tag) tag : 16;
|
||
|
||
/* Number of attributes */
|
||
unsigned char num_attrs;
|
||
|
||
/* True if we're presently building the full type name for the
|
||
type derived from this DIE. */
|
||
unsigned char building_fullname : 1;
|
||
|
||
/* True if this die is in process. PR 16581. */
|
||
unsigned char in_process : 1;
|
||
|
||
/* Abbrev number */
|
||
unsigned int abbrev;
|
||
|
||
/* Offset in .debug_info or .debug_types section. */
|
||
sect_offset offset;
|
||
|
||
/* The dies in a compilation unit form an n-ary tree. PARENT
|
||
points to this die's parent; CHILD points to the first child of
|
||
this node; and all the children of a given node are chained
|
||
together via their SIBLING fields. */
|
||
struct die_info *child; /* Its first child, if any. */
|
||
struct die_info *sibling; /* Its next sibling, if any. */
|
||
struct die_info *parent; /* Its parent, if any. */
|
||
|
||
/* An array of attributes, with NUM_ATTRS elements. There may be
|
||
zero, but it's not common and zero-sized arrays are not
|
||
sufficiently portable C. */
|
||
struct attribute attrs[1];
|
||
};
|
||
|
||
/* Get at parts of an attribute structure. */
|
||
|
||
#define DW_STRING(attr) ((attr)->u.str)
|
||
#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
|
||
#define DW_UNSND(attr) ((attr)->u.unsnd)
|
||
#define DW_BLOCK(attr) ((attr)->u.blk)
|
||
#define DW_SND(attr) ((attr)->u.snd)
|
||
#define DW_ADDR(attr) ((attr)->u.addr)
|
||
#define DW_SIGNATURE(attr) ((attr)->u.signature)
|
||
|
||
/* Blocks are a bunch of untyped bytes. */
|
||
struct dwarf_block
|
||
{
|
||
size_t size;
|
||
|
||
/* Valid only if SIZE is not zero. */
|
||
const gdb_byte *data;
|
||
};
|
||
|
||
#ifndef ATTR_ALLOC_CHUNK
|
||
#define ATTR_ALLOC_CHUNK 4
|
||
#endif
|
||
|
||
/* Allocate fields for structs, unions and enums in this size. */
|
||
#ifndef DW_FIELD_ALLOC_CHUNK
|
||
#define DW_FIELD_ALLOC_CHUNK 4
|
||
#endif
|
||
|
||
/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
|
||
but this would require a corresponding change in unpack_field_as_long
|
||
and friends. */
|
||
static int bits_per_byte = 8;
|
||
|
||
struct nextfield
|
||
{
|
||
struct nextfield *next;
|
||
int accessibility;
|
||
int virtuality;
|
||
struct field field;
|
||
};
|
||
|
||
struct nextfnfield
|
||
{
|
||
struct nextfnfield *next;
|
||
struct fn_field fnfield;
|
||
};
|
||
|
||
struct fnfieldlist
|
||
{
|
||
const char *name;
|
||
int length;
|
||
struct nextfnfield *head;
|
||
};
|
||
|
||
struct typedef_field_list
|
||
{
|
||
struct typedef_field field;
|
||
struct typedef_field_list *next;
|
||
};
|
||
|
||
/* The routines that read and process dies for a C struct or C++ class
|
||
pass lists of data member fields and lists of member function fields
|
||
in an instance of a field_info structure, as defined below. */
|
||
struct field_info
|
||
{
|
||
/* List of data member and baseclasses fields. */
|
||
struct nextfield *fields, *baseclasses;
|
||
|
||
/* Number of fields (including baseclasses). */
|
||
int nfields;
|
||
|
||
/* Number of baseclasses. */
|
||
int nbaseclasses;
|
||
|
||
/* Set if the accesibility of one of the fields is not public. */
|
||
int non_public_fields;
|
||
|
||
/* Member function fields array, entries are allocated in the order they
|
||
are encountered in the object file. */
|
||
struct nextfnfield *fnfields;
|
||
|
||
/* Member function fieldlist array, contains name of possibly overloaded
|
||
member function, number of overloaded member functions and a pointer
|
||
to the head of the member function field chain. */
|
||
struct fnfieldlist *fnfieldlists;
|
||
|
||
/* Number of entries in the fnfieldlists array. */
|
||
int nfnfields;
|
||
|
||
/* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
|
||
a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
|
||
struct typedef_field_list *typedef_field_list;
|
||
unsigned typedef_field_list_count;
|
||
};
|
||
|
||
/* One item on the queue of compilation units to read in full symbols
|
||
for. */
|
||
struct dwarf2_queue_item
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
enum language pretend_language;
|
||
struct dwarf2_queue_item *next;
|
||
};
|
||
|
||
/* The current queue. */
|
||
static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
|
||
|
||
/* Loaded secondary compilation units are kept in memory until they
|
||
have not been referenced for the processing of this many
|
||
compilation units. Set this to zero to disable caching. Cache
|
||
sizes of up to at least twenty will improve startup time for
|
||
typical inter-CU-reference binaries, at an obvious memory cost. */
|
||
static int dwarf_max_cache_age = 5;
|
||
static void
|
||
show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("The upper bound on the age of cached "
|
||
"DWARF compilation units is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* local function prototypes */
|
||
|
||
static const char *get_section_name (const struct dwarf2_section_info *);
|
||
|
||
static const char *get_section_file_name (const struct dwarf2_section_info *);
|
||
|
||
static void dwarf2_locate_sections (bfd *, asection *, void *);
|
||
|
||
static void dwarf2_find_base_address (struct die_info *die,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static struct partial_symtab *create_partial_symtab
|
||
(struct dwarf2_per_cu_data *per_cu, const char *name);
|
||
|
||
static void dwarf2_build_psymtabs_hard (struct objfile *);
|
||
|
||
static void scan_partial_symbols (struct partial_die_info *,
|
||
CORE_ADDR *, CORE_ADDR *,
|
||
int, struct dwarf2_cu *);
|
||
|
||
static void add_partial_symbol (struct partial_die_info *,
|
||
struct dwarf2_cu *);
|
||
|
||
static void add_partial_namespace (struct partial_die_info *pdi,
|
||
CORE_ADDR *lowpc, CORE_ADDR *highpc,
|
||
int set_addrmap, struct dwarf2_cu *cu);
|
||
|
||
static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
|
||
CORE_ADDR *highpc, int set_addrmap,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static void add_partial_enumeration (struct partial_die_info *enum_pdi,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static void add_partial_subprogram (struct partial_die_info *pdi,
|
||
CORE_ADDR *lowpc, CORE_ADDR *highpc,
|
||
int need_pc, struct dwarf2_cu *cu);
|
||
|
||
static void dwarf2_read_symtab (struct partial_symtab *,
|
||
struct objfile *);
|
||
|
||
static void psymtab_to_symtab_1 (struct partial_symtab *);
|
||
|
||
static struct abbrev_info *abbrev_table_lookup_abbrev
|
||
(const struct abbrev_table *, unsigned int);
|
||
|
||
static struct abbrev_table *abbrev_table_read_table
|
||
(struct dwarf2_section_info *, sect_offset);
|
||
|
||
static void abbrev_table_free (struct abbrev_table *);
|
||
|
||
static void abbrev_table_free_cleanup (void *);
|
||
|
||
static void dwarf2_read_abbrevs (struct dwarf2_cu *,
|
||
struct dwarf2_section_info *);
|
||
|
||
static void dwarf2_free_abbrev_table (void *);
|
||
|
||
static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
|
||
|
||
static struct partial_die_info *load_partial_dies
|
||
(const struct die_reader_specs *, const gdb_byte *, int);
|
||
|
||
static const gdb_byte *read_partial_die (const struct die_reader_specs *,
|
||
struct partial_die_info *,
|
||
struct abbrev_info *,
|
||
unsigned int,
|
||
const gdb_byte *);
|
||
|
||
static struct partial_die_info *find_partial_die (sect_offset, int,
|
||
struct dwarf2_cu *);
|
||
|
||
static void fixup_partial_die (struct partial_die_info *,
|
||
struct dwarf2_cu *);
|
||
|
||
static const gdb_byte *read_attribute (const struct die_reader_specs *,
|
||
struct attribute *, struct attr_abbrev *,
|
||
const gdb_byte *);
|
||
|
||
static unsigned int read_1_byte (bfd *, const gdb_byte *);
|
||
|
||
static int read_1_signed_byte (bfd *, const gdb_byte *);
|
||
|
||
static unsigned int read_2_bytes (bfd *, const gdb_byte *);
|
||
|
||
static unsigned int read_4_bytes (bfd *, const gdb_byte *);
|
||
|
||
static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
|
||
|
||
static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
|
||
unsigned int *);
|
||
|
||
static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
|
||
|
||
static LONGEST read_checked_initial_length_and_offset
|
||
(bfd *, const gdb_byte *, const struct comp_unit_head *,
|
||
unsigned int *, unsigned int *);
|
||
|
||
static LONGEST read_offset (bfd *, const gdb_byte *,
|
||
const struct comp_unit_head *,
|
||
unsigned int *);
|
||
|
||
static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
|
||
|
||
static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
|
||
sect_offset);
|
||
|
||
static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
|
||
|
||
static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
|
||
|
||
static const char *read_indirect_string (bfd *, const gdb_byte *,
|
||
const struct comp_unit_head *,
|
||
unsigned int *);
|
||
|
||
static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
|
||
|
||
static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
|
||
|
||
static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
|
||
|
||
static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
|
||
const gdb_byte *,
|
||
unsigned int *);
|
||
|
||
static const char *read_str_index (const struct die_reader_specs *reader,
|
||
ULONGEST str_index);
|
||
|
||
static void set_cu_language (unsigned int, struct dwarf2_cu *);
|
||
|
||
static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
|
||
struct dwarf2_cu *);
|
||
|
||
static struct attribute *dwarf2_attr_no_follow (struct die_info *,
|
||
unsigned int);
|
||
|
||
static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
|
||
|
||
static struct die_info *die_specification (struct die_info *die,
|
||
struct dwarf2_cu **);
|
||
|
||
static void free_line_header (struct line_header *lh);
|
||
|
||
static struct line_header *dwarf_decode_line_header (unsigned int offset,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static void dwarf_decode_lines (struct line_header *, const char *,
|
||
struct dwarf2_cu *, struct partial_symtab *,
|
||
CORE_ADDR, int decode_mapping);
|
||
|
||
static void dwarf2_start_subfile (const char *, const char *);
|
||
|
||
static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
|
||
const char *, const char *,
|
||
CORE_ADDR);
|
||
|
||
static struct symbol *new_symbol (struct die_info *, struct type *,
|
||
struct dwarf2_cu *);
|
||
|
||
static struct symbol *new_symbol_full (struct die_info *, struct type *,
|
||
struct dwarf2_cu *, struct symbol *);
|
||
|
||
static void dwarf2_const_value (const struct attribute *, struct symbol *,
|
||
struct dwarf2_cu *);
|
||
|
||
static void dwarf2_const_value_attr (const struct attribute *attr,
|
||
struct type *type,
|
||
const char *name,
|
||
struct obstack *obstack,
|
||
struct dwarf2_cu *cu, LONGEST *value,
|
||
const gdb_byte **bytes,
|
||
struct dwarf2_locexpr_baton **baton);
|
||
|
||
static struct type *die_type (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static int need_gnat_info (struct dwarf2_cu *);
|
||
|
||
static struct type *die_descriptive_type (struct die_info *,
|
||
struct dwarf2_cu *);
|
||
|
||
static void set_descriptive_type (struct type *, struct die_info *,
|
||
struct dwarf2_cu *);
|
||
|
||
static struct type *die_containing_type (struct die_info *,
|
||
struct dwarf2_cu *);
|
||
|
||
static struct type *lookup_die_type (struct die_info *, const struct attribute *,
|
||
struct dwarf2_cu *);
|
||
|
||
static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
|
||
|
||
static char *typename_concat (struct obstack *obs, const char *prefix,
|
||
const char *suffix, int physname,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static void read_file_scope (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static void read_func_scope (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
|
||
|
||
static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
|
||
struct dwarf2_cu *, struct partial_symtab *);
|
||
|
||
/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
|
||
values. Keep the items ordered with increasing constraints compliance. */
|
||
enum pc_bounds_kind
|
||
{
|
||
/* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
|
||
PC_BOUNDS_NOT_PRESENT,
|
||
|
||
/* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
|
||
were present but they do not form a valid range of PC addresses. */
|
||
PC_BOUNDS_INVALID,
|
||
|
||
/* Discontiguous range was found - that is DW_AT_ranges was found. */
|
||
PC_BOUNDS_RANGES,
|
||
|
||
/* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
|
||
PC_BOUNDS_HIGH_LOW,
|
||
};
|
||
|
||
static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
|
||
CORE_ADDR *, CORE_ADDR *,
|
||
struct dwarf2_cu *,
|
||
struct partial_symtab *);
|
||
|
||
static void get_scope_pc_bounds (struct die_info *,
|
||
CORE_ADDR *, CORE_ADDR *,
|
||
struct dwarf2_cu *);
|
||
|
||
static void dwarf2_record_block_ranges (struct die_info *, struct block *,
|
||
CORE_ADDR, struct dwarf2_cu *);
|
||
|
||
static void dwarf2_add_field (struct field_info *, struct die_info *,
|
||
struct dwarf2_cu *);
|
||
|
||
static void dwarf2_attach_fields_to_type (struct field_info *,
|
||
struct type *, struct dwarf2_cu *);
|
||
|
||
static void dwarf2_add_member_fn (struct field_info *,
|
||
struct die_info *, struct type *,
|
||
struct dwarf2_cu *);
|
||
|
||
static void dwarf2_attach_fn_fields_to_type (struct field_info *,
|
||
struct type *,
|
||
struct dwarf2_cu *);
|
||
|
||
static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static void read_common_block (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static void read_namespace (struct die_info *die, struct dwarf2_cu *);
|
||
|
||
static void read_module (struct die_info *die, struct dwarf2_cu *cu);
|
||
|
||
static struct using_direct **using_directives (enum language);
|
||
|
||
static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
|
||
|
||
static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
|
||
|
||
static struct type *read_module_type (struct die_info *die,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static const char *namespace_name (struct die_info *die,
|
||
int *is_anonymous, struct dwarf2_cu *);
|
||
|
||
static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
|
||
|
||
static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
|
||
struct dwarf2_cu *);
|
||
|
||
static struct die_info *read_die_and_siblings_1
|
||
(const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
|
||
struct die_info *);
|
||
|
||
static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
|
||
const gdb_byte *info_ptr,
|
||
const gdb_byte **new_info_ptr,
|
||
struct die_info *parent);
|
||
|
||
static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
|
||
struct die_info **, const gdb_byte *,
|
||
int *, int);
|
||
|
||
static const gdb_byte *read_full_die (const struct die_reader_specs *,
|
||
struct die_info **, const gdb_byte *,
|
||
int *);
|
||
|
||
static void process_die (struct die_info *, struct dwarf2_cu *);
|
||
|
||
static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
|
||
struct obstack *);
|
||
|
||
static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
|
||
|
||
static const char *dwarf2_full_name (const char *name,
|
||
struct die_info *die,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static const char *dwarf2_physname (const char *name, struct die_info *die,
|
||
struct dwarf2_cu *cu);
|
||
|
||
static struct die_info *dwarf2_extension (struct die_info *die,
|
||
struct dwarf2_cu **);
|
||
|
||
static const char *dwarf_tag_name (unsigned int);
|
||
|
||
static const char *dwarf_attr_name (unsigned int);
|
||
|
||
static const char *dwarf_form_name (unsigned int);
|
||
|
||
static char *dwarf_bool_name (unsigned int);
|
||
|
||
static const char *dwarf_type_encoding_name (unsigned int);
|
||
|
||
static struct die_info *sibling_die (struct die_info *);
|
||
|
||
static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
|
||
|
||
static void dump_die_for_error (struct die_info *);
|
||
|
||
static void dump_die_1 (struct ui_file *, int level, int max_level,
|
||
struct die_info *);
|
||
|
||
/*static*/ void dump_die (struct die_info *, int max_level);
|
||
|
||
static void store_in_ref_table (struct die_info *,
|
||
struct dwarf2_cu *);
|
||
|
||
static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
|
||
|
||
static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
|
||
|
||
static struct die_info *follow_die_ref_or_sig (struct die_info *,
|
||
const struct attribute *,
|
||
struct dwarf2_cu **);
|
||
|
||
static struct die_info *follow_die_ref (struct die_info *,
|
||
const struct attribute *,
|
||
struct dwarf2_cu **);
|
||
|
||
static struct die_info *follow_die_sig (struct die_info *,
|
||
const struct attribute *,
|
||
struct dwarf2_cu **);
|
||
|
||
static struct type *get_signatured_type (struct die_info *, ULONGEST,
|
||
struct dwarf2_cu *);
|
||
|
||
static struct type *get_DW_AT_signature_type (struct die_info *,
|
||
const struct attribute *,
|
||
struct dwarf2_cu *);
|
||
|
||
static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
|
||
|
||
static void read_signatured_type (struct signatured_type *);
|
||
|
||
static int attr_to_dynamic_prop (const struct attribute *attr,
|
||
struct die_info *die, struct dwarf2_cu *cu,
|
||
struct dynamic_prop *prop);
|
||
|
||
/* memory allocation interface */
|
||
|
||
static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
|
||
|
||
static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
|
||
|
||
static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
|
||
|
||
static int attr_form_is_block (const struct attribute *);
|
||
|
||
static int attr_form_is_section_offset (const struct attribute *);
|
||
|
||
static int attr_form_is_constant (const struct attribute *);
|
||
|
||
static int attr_form_is_ref (const struct attribute *);
|
||
|
||
static void fill_in_loclist_baton (struct dwarf2_cu *cu,
|
||
struct dwarf2_loclist_baton *baton,
|
||
const struct attribute *attr);
|
||
|
||
static void dwarf2_symbol_mark_computed (const struct attribute *attr,
|
||
struct symbol *sym,
|
||
struct dwarf2_cu *cu,
|
||
int is_block);
|
||
|
||
static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
|
||
const gdb_byte *info_ptr,
|
||
struct abbrev_info *abbrev);
|
||
|
||
static void free_stack_comp_unit (void *);
|
||
|
||
static hashval_t partial_die_hash (const void *item);
|
||
|
||
static int partial_die_eq (const void *item_lhs, const void *item_rhs);
|
||
|
||
static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
|
||
(sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
|
||
|
||
static void init_one_comp_unit (struct dwarf2_cu *cu,
|
||
struct dwarf2_per_cu_data *per_cu);
|
||
|
||
static void prepare_one_comp_unit (struct dwarf2_cu *cu,
|
||
struct die_info *comp_unit_die,
|
||
enum language pretend_language);
|
||
|
||
static void free_heap_comp_unit (void *);
|
||
|
||
static void free_cached_comp_units (void *);
|
||
|
||
static void age_cached_comp_units (void);
|
||
|
||
static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
|
||
|
||
static struct type *set_die_type (struct die_info *, struct type *,
|
||
struct dwarf2_cu *);
|
||
|
||
static void create_all_comp_units (struct objfile *);
|
||
|
||
static int create_all_type_units (struct objfile *);
|
||
|
||
static void load_full_comp_unit (struct dwarf2_per_cu_data *,
|
||
enum language);
|
||
|
||
static void process_full_comp_unit (struct dwarf2_per_cu_data *,
|
||
enum language);
|
||
|
||
static void process_full_type_unit (struct dwarf2_per_cu_data *,
|
||
enum language);
|
||
|
||
static void dwarf2_add_dependence (struct dwarf2_cu *,
|
||
struct dwarf2_per_cu_data *);
|
||
|
||
static void dwarf2_mark (struct dwarf2_cu *);
|
||
|
||
static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
|
||
|
||
static struct type *get_die_type_at_offset (sect_offset,
|
||
struct dwarf2_per_cu_data *);
|
||
|
||
static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
|
||
|
||
static void dwarf2_release_queue (void *dummy);
|
||
|
||
static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
|
||
enum language pretend_language);
|
||
|
||
static void process_queue (void);
|
||
|
||
static void find_file_and_directory (struct die_info *die,
|
||
struct dwarf2_cu *cu,
|
||
const char **name, const char **comp_dir);
|
||
|
||
static char *file_full_name (int file, struct line_header *lh,
|
||
const char *comp_dir);
|
||
|
||
static const gdb_byte *read_and_check_comp_unit_head
|
||
(struct comp_unit_head *header,
|
||
struct dwarf2_section_info *section,
|
||
struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
|
||
int is_debug_types_section);
|
||
|
||
static void init_cutu_and_read_dies
|
||
(struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
|
||
int use_existing_cu, int keep,
|
||
die_reader_func_ftype *die_reader_func, void *data);
|
||
|
||
static void init_cutu_and_read_dies_simple
|
||
(struct dwarf2_per_cu_data *this_cu,
|
||
die_reader_func_ftype *die_reader_func, void *data);
|
||
|
||
static htab_t allocate_signatured_type_table (struct objfile *objfile);
|
||
|
||
static htab_t allocate_dwo_unit_table (struct objfile *objfile);
|
||
|
||
static struct dwo_unit *lookup_dwo_unit_in_dwp
|
||
(struct dwp_file *dwp_file, const char *comp_dir,
|
||
ULONGEST signature, int is_debug_types);
|
||
|
||
static struct dwp_file *get_dwp_file (void);
|
||
|
||
static struct dwo_unit *lookup_dwo_comp_unit
|
||
(struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
|
||
|
||
static struct dwo_unit *lookup_dwo_type_unit
|
||
(struct signatured_type *, const char *, const char *);
|
||
|
||
static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
|
||
|
||
static void free_dwo_file_cleanup (void *);
|
||
|
||
static void process_cu_includes (void);
|
||
|
||
static void check_producer (struct dwarf2_cu *cu);
|
||
|
||
static void free_line_header_voidp (void *arg);
|
||
|
||
/* Various complaints about symbol reading that don't abort the process. */
|
||
|
||
static void
|
||
dwarf2_statement_list_fits_in_line_number_section_complaint (void)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("statement list doesn't fit in .debug_line section"));
|
||
}
|
||
|
||
static void
|
||
dwarf2_debug_line_missing_file_complaint (void)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_(".debug_line section has line data without a file"));
|
||
}
|
||
|
||
static void
|
||
dwarf2_debug_line_missing_end_sequence_complaint (void)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_(".debug_line section has line "
|
||
"program sequence without an end"));
|
||
}
|
||
|
||
static void
|
||
dwarf2_complex_location_expr_complaint (void)
|
||
{
|
||
complaint (&symfile_complaints, _("location expression too complex"));
|
||
}
|
||
|
||
static void
|
||
dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
|
||
int arg3)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("const value length mismatch for '%s', got %d, expected %d"),
|
||
arg1, arg2, arg3);
|
||
}
|
||
|
||
static void
|
||
dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("debug info runs off end of %s section"
|
||
" [in module %s]"),
|
||
get_section_name (section),
|
||
get_section_file_name (section));
|
||
}
|
||
|
||
static void
|
||
dwarf2_macro_malformed_definition_complaint (const char *arg1)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("macro debug info contains a "
|
||
"malformed macro definition:\n`%s'"),
|
||
arg1);
|
||
}
|
||
|
||
static void
|
||
dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("invalid attribute class or form for '%s' in '%s'"),
|
||
arg1, arg2);
|
||
}
|
||
|
||
/* Hash function for line_header_hash. */
|
||
|
||
static hashval_t
|
||
line_header_hash (const struct line_header *ofs)
|
||
{
|
||
return ofs->offset.sect_off ^ ofs->offset_in_dwz;
|
||
}
|
||
|
||
/* Hash function for htab_create_alloc_ex for line_header_hash. */
|
||
|
||
static hashval_t
|
||
line_header_hash_voidp (const void *item)
|
||
{
|
||
const struct line_header *ofs = (const struct line_header *) item;
|
||
|
||
return line_header_hash (ofs);
|
||
}
|
||
|
||
/* Equality function for line_header_hash. */
|
||
|
||
static int
|
||
line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
|
||
{
|
||
const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
|
||
const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
|
||
|
||
return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
|
||
&& ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
|
||
}
|
||
|
||
|
||
#if WORDS_BIGENDIAN
|
||
|
||
/* Convert VALUE between big- and little-endian. */
|
||
static offset_type
|
||
byte_swap (offset_type value)
|
||
{
|
||
offset_type result;
|
||
|
||
result = (value & 0xff) << 24;
|
||
result |= (value & 0xff00) << 8;
|
||
result |= (value & 0xff0000) >> 8;
|
||
result |= (value & 0xff000000) >> 24;
|
||
return result;
|
||
}
|
||
|
||
#define MAYBE_SWAP(V) byte_swap (V)
|
||
|
||
#else
|
||
#define MAYBE_SWAP(V) (V)
|
||
#endif /* WORDS_BIGENDIAN */
|
||
|
||
/* Read the given attribute value as an address, taking the attribute's
|
||
form into account. */
|
||
|
||
static CORE_ADDR
|
||
attr_value_as_address (struct attribute *attr)
|
||
{
|
||
CORE_ADDR addr;
|
||
|
||
if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
|
||
{
|
||
/* Aside from a few clearly defined exceptions, attributes that
|
||
contain an address must always be in DW_FORM_addr form.
|
||
Unfortunately, some compilers happen to be violating this
|
||
requirement by encoding addresses using other forms, such
|
||
as DW_FORM_data4 for example. For those broken compilers,
|
||
we try to do our best, without any guarantee of success,
|
||
to interpret the address correctly. It would also be nice
|
||
to generate a complaint, but that would require us to maintain
|
||
a list of legitimate cases where a non-address form is allowed,
|
||
as well as update callers to pass in at least the CU's DWARF
|
||
version. This is more overhead than what we're willing to
|
||
expand for a pretty rare case. */
|
||
addr = DW_UNSND (attr);
|
||
}
|
||
else
|
||
addr = DW_ADDR (attr);
|
||
|
||
return addr;
|
||
}
|
||
|
||
/* The suffix for an index file. */
|
||
#define INDEX_SUFFIX ".gdb-index"
|
||
|
||
/* Try to locate the sections we need for DWARF 2 debugging
|
||
information and return true if we have enough to do something.
|
||
NAMES points to the dwarf2 section names, or is NULL if the standard
|
||
ELF names are used. */
|
||
|
||
int
|
||
dwarf2_has_info (struct objfile *objfile,
|
||
const struct dwarf2_debug_sections *names)
|
||
{
|
||
dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
|
||
objfile_data (objfile, dwarf2_objfile_data_key));
|
||
if (!dwarf2_per_objfile)
|
||
{
|
||
/* Initialize per-objfile state. */
|
||
struct dwarf2_per_objfile *data
|
||
= XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
|
||
|
||
memset (data, 0, sizeof (*data));
|
||
set_objfile_data (objfile, dwarf2_objfile_data_key, data);
|
||
dwarf2_per_objfile = data;
|
||
|
||
bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
|
||
(void *) names);
|
||
dwarf2_per_objfile->objfile = objfile;
|
||
}
|
||
return (!dwarf2_per_objfile->info.is_virtual
|
||
&& dwarf2_per_objfile->info.s.section != NULL
|
||
&& !dwarf2_per_objfile->abbrev.is_virtual
|
||
&& dwarf2_per_objfile->abbrev.s.section != NULL);
|
||
}
|
||
|
||
/* Return the containing section of virtual section SECTION. */
|
||
|
||
static struct dwarf2_section_info *
|
||
get_containing_section (const struct dwarf2_section_info *section)
|
||
{
|
||
gdb_assert (section->is_virtual);
|
||
return section->s.containing_section;
|
||
}
|
||
|
||
/* Return the bfd owner of SECTION. */
|
||
|
||
static struct bfd *
|
||
get_section_bfd_owner (const struct dwarf2_section_info *section)
|
||
{
|
||
if (section->is_virtual)
|
||
{
|
||
section = get_containing_section (section);
|
||
gdb_assert (!section->is_virtual);
|
||
}
|
||
return section->s.section->owner;
|
||
}
|
||
|
||
/* Return the bfd section of SECTION.
|
||
Returns NULL if the section is not present. */
|
||
|
||
static asection *
|
||
get_section_bfd_section (const struct dwarf2_section_info *section)
|
||
{
|
||
if (section->is_virtual)
|
||
{
|
||
section = get_containing_section (section);
|
||
gdb_assert (!section->is_virtual);
|
||
}
|
||
return section->s.section;
|
||
}
|
||
|
||
/* Return the name of SECTION. */
|
||
|
||
static const char *
|
||
get_section_name (const struct dwarf2_section_info *section)
|
||
{
|
||
asection *sectp = get_section_bfd_section (section);
|
||
|
||
gdb_assert (sectp != NULL);
|
||
return bfd_section_name (get_section_bfd_owner (section), sectp);
|
||
}
|
||
|
||
/* Return the name of the file SECTION is in. */
|
||
|
||
static const char *
|
||
get_section_file_name (const struct dwarf2_section_info *section)
|
||
{
|
||
bfd *abfd = get_section_bfd_owner (section);
|
||
|
||
return bfd_get_filename (abfd);
|
||
}
|
||
|
||
/* Return the id of SECTION.
|
||
Returns 0 if SECTION doesn't exist. */
|
||
|
||
static int
|
||
get_section_id (const struct dwarf2_section_info *section)
|
||
{
|
||
asection *sectp = get_section_bfd_section (section);
|
||
|
||
if (sectp == NULL)
|
||
return 0;
|
||
return sectp->id;
|
||
}
|
||
|
||
/* Return the flags of SECTION.
|
||
SECTION (or containing section if this is a virtual section) must exist. */
|
||
|
||
static int
|
||
get_section_flags (const struct dwarf2_section_info *section)
|
||
{
|
||
asection *sectp = get_section_bfd_section (section);
|
||
|
||
gdb_assert (sectp != NULL);
|
||
return bfd_get_section_flags (sectp->owner, sectp);
|
||
}
|
||
|
||
/* When loading sections, we look either for uncompressed section or for
|
||
compressed section names. */
|
||
|
||
static int
|
||
section_is_p (const char *section_name,
|
||
const struct dwarf2_section_names *names)
|
||
{
|
||
if (names->normal != NULL
|
||
&& strcmp (section_name, names->normal) == 0)
|
||
return 1;
|
||
if (names->compressed != NULL
|
||
&& strcmp (section_name, names->compressed) == 0)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* This function is mapped across the sections and remembers the
|
||
offset and size of each of the debugging sections we are interested
|
||
in. */
|
||
|
||
static void
|
||
dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
|
||
{
|
||
const struct dwarf2_debug_sections *names;
|
||
flagword aflag = bfd_get_section_flags (abfd, sectp);
|
||
|
||
if (vnames == NULL)
|
||
names = &dwarf2_elf_names;
|
||
else
|
||
names = (const struct dwarf2_debug_sections *) vnames;
|
||
|
||
if ((aflag & SEC_HAS_CONTENTS) == 0)
|
||
{
|
||
}
|
||
else if (section_is_p (sectp->name, &names->info))
|
||
{
|
||
dwarf2_per_objfile->info.s.section = sectp;
|
||
dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->abbrev))
|
||
{
|
||
dwarf2_per_objfile->abbrev.s.section = sectp;
|
||
dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->line))
|
||
{
|
||
dwarf2_per_objfile->line.s.section = sectp;
|
||
dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->loc))
|
||
{
|
||
dwarf2_per_objfile->loc.s.section = sectp;
|
||
dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->macinfo))
|
||
{
|
||
dwarf2_per_objfile->macinfo.s.section = sectp;
|
||
dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->macro))
|
||
{
|
||
dwarf2_per_objfile->macro.s.section = sectp;
|
||
dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->str))
|
||
{
|
||
dwarf2_per_objfile->str.s.section = sectp;
|
||
dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->addr))
|
||
{
|
||
dwarf2_per_objfile->addr.s.section = sectp;
|
||
dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->frame))
|
||
{
|
||
dwarf2_per_objfile->frame.s.section = sectp;
|
||
dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->eh_frame))
|
||
{
|
||
dwarf2_per_objfile->eh_frame.s.section = sectp;
|
||
dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->ranges))
|
||
{
|
||
dwarf2_per_objfile->ranges.s.section = sectp;
|
||
dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->types))
|
||
{
|
||
struct dwarf2_section_info type_section;
|
||
|
||
memset (&type_section, 0, sizeof (type_section));
|
||
type_section.s.section = sectp;
|
||
type_section.size = bfd_get_section_size (sectp);
|
||
|
||
VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
|
||
&type_section);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->gdb_index))
|
||
{
|
||
dwarf2_per_objfile->gdb_index.s.section = sectp;
|
||
dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
|
||
}
|
||
|
||
if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
|
||
&& bfd_section_vma (abfd, sectp) == 0)
|
||
dwarf2_per_objfile->has_section_at_zero = 1;
|
||
}
|
||
|
||
/* A helper function that decides whether a section is empty,
|
||
or not present. */
|
||
|
||
static int
|
||
dwarf2_section_empty_p (const struct dwarf2_section_info *section)
|
||
{
|
||
if (section->is_virtual)
|
||
return section->size == 0;
|
||
return section->s.section == NULL || section->size == 0;
|
||
}
|
||
|
||
/* Read the contents of the section INFO.
|
||
OBJFILE is the main object file, but not necessarily the file where
|
||
the section comes from. E.g., for DWO files the bfd of INFO is the bfd
|
||
of the DWO file.
|
||
If the section is compressed, uncompress it before returning. */
|
||
|
||
static void
|
||
dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
|
||
{
|
||
asection *sectp;
|
||
bfd *abfd;
|
||
gdb_byte *buf, *retbuf;
|
||
|
||
if (info->readin)
|
||
return;
|
||
info->buffer = NULL;
|
||
info->readin = 1;
|
||
|
||
if (dwarf2_section_empty_p (info))
|
||
return;
|
||
|
||
sectp = get_section_bfd_section (info);
|
||
|
||
/* If this is a virtual section we need to read in the real one first. */
|
||
if (info->is_virtual)
|
||
{
|
||
struct dwarf2_section_info *containing_section =
|
||
get_containing_section (info);
|
||
|
||
gdb_assert (sectp != NULL);
|
||
if ((sectp->flags & SEC_RELOC) != 0)
|
||
{
|
||
error (_("Dwarf Error: DWP format V2 with relocations is not"
|
||
" supported in section %s [in module %s]"),
|
||
get_section_name (info), get_section_file_name (info));
|
||
}
|
||
dwarf2_read_section (objfile, containing_section);
|
||
/* Other code should have already caught virtual sections that don't
|
||
fit. */
|
||
gdb_assert (info->virtual_offset + info->size
|
||
<= containing_section->size);
|
||
/* If the real section is empty or there was a problem reading the
|
||
section we shouldn't get here. */
|
||
gdb_assert (containing_section->buffer != NULL);
|
||
info->buffer = containing_section->buffer + info->virtual_offset;
|
||
return;
|
||
}
|
||
|
||
/* If the section has relocations, we must read it ourselves.
|
||
Otherwise we attach it to the BFD. */
|
||
if ((sectp->flags & SEC_RELOC) == 0)
|
||
{
|
||
info->buffer = gdb_bfd_map_section (sectp, &info->size);
|
||
return;
|
||
}
|
||
|
||
buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
|
||
info->buffer = buf;
|
||
|
||
/* When debugging .o files, we may need to apply relocations; see
|
||
http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
|
||
We never compress sections in .o files, so we only need to
|
||
try this when the section is not compressed. */
|
||
retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
|
||
if (retbuf != NULL)
|
||
{
|
||
info->buffer = retbuf;
|
||
return;
|
||
}
|
||
|
||
abfd = get_section_bfd_owner (info);
|
||
gdb_assert (abfd != NULL);
|
||
|
||
if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
|
||
|| bfd_bread (buf, info->size, abfd) != info->size)
|
||
{
|
||
error (_("Dwarf Error: Can't read DWARF data"
|
||
" in section %s [in module %s]"),
|
||
bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
|
||
}
|
||
}
|
||
|
||
/* A helper function that returns the size of a section in a safe way.
|
||
If you are positive that the section has been read before using the
|
||
size, then it is safe to refer to the dwarf2_section_info object's
|
||
"size" field directly. In other cases, you must call this
|
||
function, because for compressed sections the size field is not set
|
||
correctly until the section has been read. */
|
||
|
||
static bfd_size_type
|
||
dwarf2_section_size (struct objfile *objfile,
|
||
struct dwarf2_section_info *info)
|
||
{
|
||
if (!info->readin)
|
||
dwarf2_read_section (objfile, info);
|
||
return info->size;
|
||
}
|
||
|
||
/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
|
||
SECTION_NAME. */
|
||
|
||
void
|
||
dwarf2_get_section_info (struct objfile *objfile,
|
||
enum dwarf2_section_enum sect,
|
||
asection **sectp, const gdb_byte **bufp,
|
||
bfd_size_type *sizep)
|
||
{
|
||
struct dwarf2_per_objfile *data
|
||
= (struct dwarf2_per_objfile *) objfile_data (objfile,
|
||
dwarf2_objfile_data_key);
|
||
struct dwarf2_section_info *info;
|
||
|
||
/* We may see an objfile without any DWARF, in which case we just
|
||
return nothing. */
|
||
if (data == NULL)
|
||
{
|
||
*sectp = NULL;
|
||
*bufp = NULL;
|
||
*sizep = 0;
|
||
return;
|
||
}
|
||
switch (sect)
|
||
{
|
||
case DWARF2_DEBUG_FRAME:
|
||
info = &data->frame;
|
||
break;
|
||
case DWARF2_EH_FRAME:
|
||
info = &data->eh_frame;
|
||
break;
|
||
default:
|
||
gdb_assert_not_reached ("unexpected section");
|
||
}
|
||
|
||
dwarf2_read_section (objfile, info);
|
||
|
||
*sectp = get_section_bfd_section (info);
|
||
*bufp = info->buffer;
|
||
*sizep = info->size;
|
||
}
|
||
|
||
/* A helper function to find the sections for a .dwz file. */
|
||
|
||
static void
|
||
locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
|
||
{
|
||
struct dwz_file *dwz_file = (struct dwz_file *) arg;
|
||
|
||
/* Note that we only support the standard ELF names, because .dwz
|
||
is ELF-only (at the time of writing). */
|
||
if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
|
||
{
|
||
dwz_file->abbrev.s.section = sectp;
|
||
dwz_file->abbrev.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
|
||
{
|
||
dwz_file->info.s.section = sectp;
|
||
dwz_file->info.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
|
||
{
|
||
dwz_file->str.s.section = sectp;
|
||
dwz_file->str.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
|
||
{
|
||
dwz_file->line.s.section = sectp;
|
||
dwz_file->line.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
|
||
{
|
||
dwz_file->macro.s.section = sectp;
|
||
dwz_file->macro.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
|
||
{
|
||
dwz_file->gdb_index.s.section = sectp;
|
||
dwz_file->gdb_index.size = bfd_get_section_size (sectp);
|
||
}
|
||
}
|
||
|
||
/* Open the separate '.dwz' debug file, if needed. Return NULL if
|
||
there is no .gnu_debugaltlink section in the file. Error if there
|
||
is such a section but the file cannot be found. */
|
||
|
||
static struct dwz_file *
|
||
dwarf2_get_dwz_file (void)
|
||
{
|
||
bfd *dwz_bfd;
|
||
char *data;
|
||
struct cleanup *cleanup;
|
||
const char *filename;
|
||
struct dwz_file *result;
|
||
bfd_size_type buildid_len_arg;
|
||
size_t buildid_len;
|
||
bfd_byte *buildid;
|
||
|
||
if (dwarf2_per_objfile->dwz_file != NULL)
|
||
return dwarf2_per_objfile->dwz_file;
|
||
|
||
bfd_set_error (bfd_error_no_error);
|
||
data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
|
||
&buildid_len_arg, &buildid);
|
||
if (data == NULL)
|
||
{
|
||
if (bfd_get_error () == bfd_error_no_error)
|
||
return NULL;
|
||
error (_("could not read '.gnu_debugaltlink' section: %s"),
|
||
bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
cleanup = make_cleanup (xfree, data);
|
||
make_cleanup (xfree, buildid);
|
||
|
||
buildid_len = (size_t) buildid_len_arg;
|
||
|
||
filename = (const char *) data;
|
||
if (!IS_ABSOLUTE_PATH (filename))
|
||
{
|
||
char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
|
||
char *rel;
|
||
|
||
make_cleanup (xfree, abs);
|
||
abs = ldirname (abs);
|
||
make_cleanup (xfree, abs);
|
||
|
||
rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
|
||
make_cleanup (xfree, rel);
|
||
filename = rel;
|
||
}
|
||
|
||
/* First try the file name given in the section. If that doesn't
|
||
work, try to use the build-id instead. */
|
||
dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
|
||
if (dwz_bfd != NULL)
|
||
{
|
||
if (!build_id_verify (dwz_bfd, buildid_len, buildid))
|
||
{
|
||
gdb_bfd_unref (dwz_bfd);
|
||
dwz_bfd = NULL;
|
||
}
|
||
}
|
||
|
||
if (dwz_bfd == NULL)
|
||
dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
|
||
|
||
if (dwz_bfd == NULL)
|
||
error (_("could not find '.gnu_debugaltlink' file for %s"),
|
||
objfile_name (dwarf2_per_objfile->objfile));
|
||
|
||
result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
|
||
struct dwz_file);
|
||
result->dwz_bfd = dwz_bfd;
|
||
|
||
bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
|
||
|
||
do_cleanups (cleanup);
|
||
|
||
gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
|
||
dwarf2_per_objfile->dwz_file = result;
|
||
return result;
|
||
}
|
||
|
||
/* DWARF quick_symbols_functions support. */
|
||
|
||
/* TUs can share .debug_line entries, and there can be a lot more TUs than
|
||
unique line tables, so we maintain a separate table of all .debug_line
|
||
derived entries to support the sharing.
|
||
All the quick functions need is the list of file names. We discard the
|
||
line_header when we're done and don't need to record it here. */
|
||
struct quick_file_names
|
||
{
|
||
/* The data used to construct the hash key. */
|
||
struct stmt_list_hash hash;
|
||
|
||
/* The number of entries in file_names, real_names. */
|
||
unsigned int num_file_names;
|
||
|
||
/* The file names from the line table, after being run through
|
||
file_full_name. */
|
||
const char **file_names;
|
||
|
||
/* The file names from the line table after being run through
|
||
gdb_realpath. These are computed lazily. */
|
||
const char **real_names;
|
||
};
|
||
|
||
/* When using the index (and thus not using psymtabs), each CU has an
|
||
object of this type. This is used to hold information needed by
|
||
the various "quick" methods. */
|
||
struct dwarf2_per_cu_quick_data
|
||
{
|
||
/* The file table. This can be NULL if there was no file table
|
||
or it's currently not read in.
|
||
NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
|
||
struct quick_file_names *file_names;
|
||
|
||
/* The corresponding symbol table. This is NULL if symbols for this
|
||
CU have not yet been read. */
|
||
struct compunit_symtab *compunit_symtab;
|
||
|
||
/* A temporary mark bit used when iterating over all CUs in
|
||
expand_symtabs_matching. */
|
||
unsigned int mark : 1;
|
||
|
||
/* True if we've tried to read the file table and found there isn't one.
|
||
There will be no point in trying to read it again next time. */
|
||
unsigned int no_file_data : 1;
|
||
};
|
||
|
||
/* Utility hash function for a stmt_list_hash. */
|
||
|
||
static hashval_t
|
||
hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
|
||
{
|
||
hashval_t v = 0;
|
||
|
||
if (stmt_list_hash->dwo_unit != NULL)
|
||
v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
|
||
v += stmt_list_hash->line_offset.sect_off;
|
||
return v;
|
||
}
|
||
|
||
/* Utility equality function for a stmt_list_hash. */
|
||
|
||
static int
|
||
eq_stmt_list_entry (const struct stmt_list_hash *lhs,
|
||
const struct stmt_list_hash *rhs)
|
||
{
|
||
if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
|
||
return 0;
|
||
if (lhs->dwo_unit != NULL
|
||
&& lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
|
||
return 0;
|
||
|
||
return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
|
||
}
|
||
|
||
/* Hash function for a quick_file_names. */
|
||
|
||
static hashval_t
|
||
hash_file_name_entry (const void *e)
|
||
{
|
||
const struct quick_file_names *file_data
|
||
= (const struct quick_file_names *) e;
|
||
|
||
return hash_stmt_list_entry (&file_data->hash);
|
||
}
|
||
|
||
/* Equality function for a quick_file_names. */
|
||
|
||
static int
|
||
eq_file_name_entry (const void *a, const void *b)
|
||
{
|
||
const struct quick_file_names *ea = (const struct quick_file_names *) a;
|
||
const struct quick_file_names *eb = (const struct quick_file_names *) b;
|
||
|
||
return eq_stmt_list_entry (&ea->hash, &eb->hash);
|
||
}
|
||
|
||
/* Delete function for a quick_file_names. */
|
||
|
||
static void
|
||
delete_file_name_entry (void *e)
|
||
{
|
||
struct quick_file_names *file_data = (struct quick_file_names *) e;
|
||
int i;
|
||
|
||
for (i = 0; i < file_data->num_file_names; ++i)
|
||
{
|
||
xfree ((void*) file_data->file_names[i]);
|
||
if (file_data->real_names)
|
||
xfree ((void*) file_data->real_names[i]);
|
||
}
|
||
|
||
/* The space for the struct itself lives on objfile_obstack,
|
||
so we don't free it here. */
|
||
}
|
||
|
||
/* Create a quick_file_names hash table. */
|
||
|
||
static htab_t
|
||
create_quick_file_names_table (unsigned int nr_initial_entries)
|
||
{
|
||
return htab_create_alloc (nr_initial_entries,
|
||
hash_file_name_entry, eq_file_name_entry,
|
||
delete_file_name_entry, xcalloc, xfree);
|
||
}
|
||
|
||
/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
|
||
have to be created afterwards. You should call age_cached_comp_units after
|
||
processing PER_CU->CU. dw2_setup must have been already called. */
|
||
|
||
static void
|
||
load_cu (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
if (per_cu->is_debug_types)
|
||
load_full_type_unit (per_cu);
|
||
else
|
||
load_full_comp_unit (per_cu, language_minimal);
|
||
|
||
if (per_cu->cu == NULL)
|
||
return; /* Dummy CU. */
|
||
|
||
dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
|
||
}
|
||
|
||
/* Read in the symbols for PER_CU. */
|
||
|
||
static void
|
||
dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
struct cleanup *back_to;
|
||
|
||
/* Skip type_unit_groups, reading the type units they contain
|
||
is handled elsewhere. */
|
||
if (IS_TYPE_UNIT_GROUP (per_cu))
|
||
return;
|
||
|
||
back_to = make_cleanup (dwarf2_release_queue, NULL);
|
||
|
||
if (dwarf2_per_objfile->using_index
|
||
? per_cu->v.quick->compunit_symtab == NULL
|
||
: (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
|
||
{
|
||
queue_comp_unit (per_cu, language_minimal);
|
||
load_cu (per_cu);
|
||
|
||
/* If we just loaded a CU from a DWO, and we're working with an index
|
||
that may badly handle TUs, load all the TUs in that DWO as well.
|
||
http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
|
||
if (!per_cu->is_debug_types
|
||
&& per_cu->cu != NULL
|
||
&& per_cu->cu->dwo_unit != NULL
|
||
&& dwarf2_per_objfile->index_table != NULL
|
||
&& dwarf2_per_objfile->index_table->version <= 7
|
||
/* DWP files aren't supported yet. */
|
||
&& get_dwp_file () == NULL)
|
||
queue_and_load_all_dwo_tus (per_cu);
|
||
}
|
||
|
||
process_queue ();
|
||
|
||
/* Age the cache, releasing compilation units that have not
|
||
been used recently. */
|
||
age_cached_comp_units ();
|
||
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
|
||
the objfile from which this CU came. Returns the resulting symbol
|
||
table. */
|
||
|
||
static struct compunit_symtab *
|
||
dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
gdb_assert (dwarf2_per_objfile->using_index);
|
||
if (!per_cu->v.quick->compunit_symtab)
|
||
{
|
||
struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
|
||
increment_reading_symtab ();
|
||
dw2_do_instantiate_symtab (per_cu);
|
||
process_cu_includes ();
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
return per_cu->v.quick->compunit_symtab;
|
||
}
|
||
|
||
/* Return the CU/TU given its index.
|
||
|
||
This is intended for loops like:
|
||
|
||
for (i = 0; i < (dwarf2_per_objfile->n_comp_units
|
||
+ dwarf2_per_objfile->n_type_units); ++i)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
|
||
|
||
...;
|
||
}
|
||
*/
|
||
|
||
static struct dwarf2_per_cu_data *
|
||
dw2_get_cutu (int index)
|
||
{
|
||
if (index >= dwarf2_per_objfile->n_comp_units)
|
||
{
|
||
index -= dwarf2_per_objfile->n_comp_units;
|
||
gdb_assert (index < dwarf2_per_objfile->n_type_units);
|
||
return &dwarf2_per_objfile->all_type_units[index]->per_cu;
|
||
}
|
||
|
||
return dwarf2_per_objfile->all_comp_units[index];
|
||
}
|
||
|
||
/* Return the CU given its index.
|
||
This differs from dw2_get_cutu in that it's for when you know INDEX
|
||
refers to a CU. */
|
||
|
||
static struct dwarf2_per_cu_data *
|
||
dw2_get_cu (int index)
|
||
{
|
||
gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
|
||
|
||
return dwarf2_per_objfile->all_comp_units[index];
|
||
}
|
||
|
||
/* A helper for create_cus_from_index that handles a given list of
|
||
CUs. */
|
||
|
||
static void
|
||
create_cus_from_index_list (struct objfile *objfile,
|
||
const gdb_byte *cu_list, offset_type n_elements,
|
||
struct dwarf2_section_info *section,
|
||
int is_dwz,
|
||
int base_offset)
|
||
{
|
||
offset_type i;
|
||
|
||
for (i = 0; i < n_elements; i += 2)
|
||
{
|
||
struct dwarf2_per_cu_data *the_cu;
|
||
ULONGEST offset, length;
|
||
|
||
gdb_static_assert (sizeof (ULONGEST) >= 8);
|
||
offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
|
||
length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
|
||
cu_list += 2 * 8;
|
||
|
||
the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct dwarf2_per_cu_data);
|
||
the_cu->offset.sect_off = offset;
|
||
the_cu->length = length;
|
||
the_cu->objfile = objfile;
|
||
the_cu->section = section;
|
||
the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct dwarf2_per_cu_quick_data);
|
||
the_cu->is_dwz = is_dwz;
|
||
dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
|
||
}
|
||
}
|
||
|
||
/* Read the CU list from the mapped index, and use it to create all
|
||
the CU objects for this objfile. */
|
||
|
||
static void
|
||
create_cus_from_index (struct objfile *objfile,
|
||
const gdb_byte *cu_list, offset_type cu_list_elements,
|
||
const gdb_byte *dwz_list, offset_type dwz_elements)
|
||
{
|
||
struct dwz_file *dwz;
|
||
|
||
dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
|
||
dwarf2_per_objfile->all_comp_units =
|
||
XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
|
||
dwarf2_per_objfile->n_comp_units);
|
||
|
||
create_cus_from_index_list (objfile, cu_list, cu_list_elements,
|
||
&dwarf2_per_objfile->info, 0, 0);
|
||
|
||
if (dwz_elements == 0)
|
||
return;
|
||
|
||
dwz = dwarf2_get_dwz_file ();
|
||
create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
|
||
cu_list_elements / 2);
|
||
}
|
||
|
||
/* Create the signatured type hash table from the index. */
|
||
|
||
static void
|
||
create_signatured_type_table_from_index (struct objfile *objfile,
|
||
struct dwarf2_section_info *section,
|
||
const gdb_byte *bytes,
|
||
offset_type elements)
|
||
{
|
||
offset_type i;
|
||
htab_t sig_types_hash;
|
||
|
||
dwarf2_per_objfile->n_type_units
|
||
= dwarf2_per_objfile->n_allocated_type_units
|
||
= elements / 3;
|
||
dwarf2_per_objfile->all_type_units =
|
||
XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
|
||
|
||
sig_types_hash = allocate_signatured_type_table (objfile);
|
||
|
||
for (i = 0; i < elements; i += 3)
|
||
{
|
||
struct signatured_type *sig_type;
|
||
ULONGEST offset, type_offset_in_tu, signature;
|
||
void **slot;
|
||
|
||
gdb_static_assert (sizeof (ULONGEST) >= 8);
|
||
offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
|
||
type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
|
||
BFD_ENDIAN_LITTLE);
|
||
signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
|
||
bytes += 3 * 8;
|
||
|
||
sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct signatured_type);
|
||
sig_type->signature = signature;
|
||
sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
|
||
sig_type->per_cu.is_debug_types = 1;
|
||
sig_type->per_cu.section = section;
|
||
sig_type->per_cu.offset.sect_off = offset;
|
||
sig_type->per_cu.objfile = objfile;
|
||
sig_type->per_cu.v.quick
|
||
= OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct dwarf2_per_cu_quick_data);
|
||
|
||
slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
|
||
*slot = sig_type;
|
||
|
||
dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
|
||
}
|
||
|
||
dwarf2_per_objfile->signatured_types = sig_types_hash;
|
||
}
|
||
|
||
/* Read the address map data from the mapped index, and use it to
|
||
populate the objfile's psymtabs_addrmap. */
|
||
|
||
static void
|
||
create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
|
||
{
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
const gdb_byte *iter, *end;
|
||
struct obstack temp_obstack;
|
||
struct addrmap *mutable_map;
|
||
struct cleanup *cleanup;
|
||
CORE_ADDR baseaddr;
|
||
|
||
obstack_init (&temp_obstack);
|
||
cleanup = make_cleanup_obstack_free (&temp_obstack);
|
||
mutable_map = addrmap_create_mutable (&temp_obstack);
|
||
|
||
iter = index->address_table;
|
||
end = iter + index->address_table_size;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
while (iter < end)
|
||
{
|
||
ULONGEST hi, lo, cu_index;
|
||
lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
|
||
iter += 8;
|
||
hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
|
||
iter += 8;
|
||
cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
|
||
iter += 4;
|
||
|
||
if (lo > hi)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_(".gdb_index address table has invalid range (%s - %s)"),
|
||
hex_string (lo), hex_string (hi));
|
||
continue;
|
||
}
|
||
|
||
if (cu_index >= dwarf2_per_objfile->n_comp_units)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_(".gdb_index address table has invalid CU number %u"),
|
||
(unsigned) cu_index);
|
||
continue;
|
||
}
|
||
|
||
lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
|
||
hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
|
||
addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
|
||
}
|
||
|
||
objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
|
||
&objfile->objfile_obstack);
|
||
do_cleanups (cleanup);
|
||
}
|
||
|
||
/* The hash function for strings in the mapped index. This is the same as
|
||
SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
|
||
implementation. This is necessary because the hash function is tied to the
|
||
format of the mapped index file. The hash values do not have to match with
|
||
SYMBOL_HASH_NEXT.
|
||
|
||
Use INT_MAX for INDEX_VERSION if you generate the current index format. */
|
||
|
||
static hashval_t
|
||
mapped_index_string_hash (int index_version, const void *p)
|
||
{
|
||
const unsigned char *str = (const unsigned char *) p;
|
||
hashval_t r = 0;
|
||
unsigned char c;
|
||
|
||
while ((c = *str++) != 0)
|
||
{
|
||
if (index_version >= 5)
|
||
c = tolower (c);
|
||
r = r * 67 + c - 113;
|
||
}
|
||
|
||
return r;
|
||
}
|
||
|
||
/* Find a slot in the mapped index INDEX for the object named NAME.
|
||
If NAME is found, set *VEC_OUT to point to the CU vector in the
|
||
constant pool and return 1. If NAME cannot be found, return 0. */
|
||
|
||
static int
|
||
find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
|
||
offset_type **vec_out)
|
||
{
|
||
struct cleanup *back_to = make_cleanup (null_cleanup, 0);
|
||
offset_type hash;
|
||
offset_type slot, step;
|
||
int (*cmp) (const char *, const char *);
|
||
|
||
if (current_language->la_language == language_cplus
|
||
|| current_language->la_language == language_java
|
||
|| current_language->la_language == language_fortran
|
||
|| current_language->la_language == language_d)
|
||
{
|
||
/* NAME is already canonical. Drop any qualifiers as .gdb_index does
|
||
not contain any. */
|
||
|
||
if (strchr (name, '(') != NULL)
|
||
{
|
||
char *without_params = cp_remove_params (name);
|
||
|
||
if (without_params != NULL)
|
||
{
|
||
make_cleanup (xfree, without_params);
|
||
name = without_params;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Index version 4 did not support case insensitive searches. But the
|
||
indices for case insensitive languages are built in lowercase, therefore
|
||
simulate our NAME being searched is also lowercased. */
|
||
hash = mapped_index_string_hash ((index->version == 4
|
||
&& case_sensitivity == case_sensitive_off
|
||
? 5 : index->version),
|
||
name);
|
||
|
||
slot = hash & (index->symbol_table_slots - 1);
|
||
step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
|
||
cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
|
||
|
||
for (;;)
|
||
{
|
||
/* Convert a slot number to an offset into the table. */
|
||
offset_type i = 2 * slot;
|
||
const char *str;
|
||
if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
|
||
{
|
||
do_cleanups (back_to);
|
||
return 0;
|
||
}
|
||
|
||
str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
|
||
if (!cmp (name, str))
|
||
{
|
||
*vec_out = (offset_type *) (index->constant_pool
|
||
+ MAYBE_SWAP (index->symbol_table[i + 1]));
|
||
do_cleanups (back_to);
|
||
return 1;
|
||
}
|
||
|
||
slot = (slot + step) & (index->symbol_table_slots - 1);
|
||
}
|
||
}
|
||
|
||
/* A helper function that reads the .gdb_index from SECTION and fills
|
||
in MAP. FILENAME is the name of the file containing the section;
|
||
it is used for error reporting. DEPRECATED_OK is nonzero if it is
|
||
ok to use deprecated sections.
|
||
|
||
CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
|
||
out parameters that are filled in with information about the CU and
|
||
TU lists in the section.
|
||
|
||
Returns 1 if all went well, 0 otherwise. */
|
||
|
||
static int
|
||
read_index_from_section (struct objfile *objfile,
|
||
const char *filename,
|
||
int deprecated_ok,
|
||
struct dwarf2_section_info *section,
|
||
struct mapped_index *map,
|
||
const gdb_byte **cu_list,
|
||
offset_type *cu_list_elements,
|
||
const gdb_byte **types_list,
|
||
offset_type *types_list_elements)
|
||
{
|
||
const gdb_byte *addr;
|
||
offset_type version;
|
||
offset_type *metadata;
|
||
int i;
|
||
|
||
if (dwarf2_section_empty_p (section))
|
||
return 0;
|
||
|
||
/* Older elfutils strip versions could keep the section in the main
|
||
executable while splitting it for the separate debug info file. */
|
||
if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
|
||
return 0;
|
||
|
||
dwarf2_read_section (objfile, section);
|
||
|
||
addr = section->buffer;
|
||
/* Version check. */
|
||
version = MAYBE_SWAP (*(offset_type *) addr);
|
||
/* Versions earlier than 3 emitted every copy of a psymbol. This
|
||
causes the index to behave very poorly for certain requests. Version 3
|
||
contained incomplete addrmap. So, it seems better to just ignore such
|
||
indices. */
|
||
if (version < 4)
|
||
{
|
||
static int warning_printed = 0;
|
||
if (!warning_printed)
|
||
{
|
||
warning (_("Skipping obsolete .gdb_index section in %s."),
|
||
filename);
|
||
warning_printed = 1;
|
||
}
|
||
return 0;
|
||
}
|
||
/* Index version 4 uses a different hash function than index version
|
||
5 and later.
|
||
|
||
Versions earlier than 6 did not emit psymbols for inlined
|
||
functions. Using these files will cause GDB not to be able to
|
||
set breakpoints on inlined functions by name, so we ignore these
|
||
indices unless the user has done
|
||
"set use-deprecated-index-sections on". */
|
||
if (version < 6 && !deprecated_ok)
|
||
{
|
||
static int warning_printed = 0;
|
||
if (!warning_printed)
|
||
{
|
||
warning (_("\
|
||
Skipping deprecated .gdb_index section in %s.\n\
|
||
Do \"set use-deprecated-index-sections on\" before the file is read\n\
|
||
to use the section anyway."),
|
||
filename);
|
||
warning_printed = 1;
|
||
}
|
||
return 0;
|
||
}
|
||
/* Version 7 indices generated by gold refer to the CU for a symbol instead
|
||
of the TU (for symbols coming from TUs),
|
||
http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
|
||
Plus gold-generated indices can have duplicate entries for global symbols,
|
||
http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
|
||
These are just performance bugs, and we can't distinguish gdb-generated
|
||
indices from gold-generated ones, so issue no warning here. */
|
||
|
||
/* Indexes with higher version than the one supported by GDB may be no
|
||
longer backward compatible. */
|
||
if (version > 8)
|
||
return 0;
|
||
|
||
map->version = version;
|
||
map->total_size = section->size;
|
||
|
||
metadata = (offset_type *) (addr + sizeof (offset_type));
|
||
|
||
i = 0;
|
||
*cu_list = addr + MAYBE_SWAP (metadata[i]);
|
||
*cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
|
||
/ 8);
|
||
++i;
|
||
|
||
*types_list = addr + MAYBE_SWAP (metadata[i]);
|
||
*types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
|
||
- MAYBE_SWAP (metadata[i]))
|
||
/ 8);
|
||
++i;
|
||
|
||
map->address_table = addr + MAYBE_SWAP (metadata[i]);
|
||
map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
|
||
- MAYBE_SWAP (metadata[i]));
|
||
++i;
|
||
|
||
map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
|
||
map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
|
||
- MAYBE_SWAP (metadata[i]))
|
||
/ (2 * sizeof (offset_type)));
|
||
++i;
|
||
|
||
map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Read the index file. If everything went ok, initialize the "quick"
|
||
elements of all the CUs and return 1. Otherwise, return 0. */
|
||
|
||
static int
|
||
dwarf2_read_index (struct objfile *objfile)
|
||
{
|
||
struct mapped_index local_map, *map;
|
||
const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
|
||
offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
|
||
struct dwz_file *dwz;
|
||
|
||
if (!read_index_from_section (objfile, objfile_name (objfile),
|
||
use_deprecated_index_sections,
|
||
&dwarf2_per_objfile->gdb_index, &local_map,
|
||
&cu_list, &cu_list_elements,
|
||
&types_list, &types_list_elements))
|
||
return 0;
|
||
|
||
/* Don't use the index if it's empty. */
|
||
if (local_map.symbol_table_slots == 0)
|
||
return 0;
|
||
|
||
/* If there is a .dwz file, read it so we can get its CU list as
|
||
well. */
|
||
dwz = dwarf2_get_dwz_file ();
|
||
if (dwz != NULL)
|
||
{
|
||
struct mapped_index dwz_map;
|
||
const gdb_byte *dwz_types_ignore;
|
||
offset_type dwz_types_elements_ignore;
|
||
|
||
if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
|
||
1,
|
||
&dwz->gdb_index, &dwz_map,
|
||
&dwz_list, &dwz_list_elements,
|
||
&dwz_types_ignore,
|
||
&dwz_types_elements_ignore))
|
||
{
|
||
warning (_("could not read '.gdb_index' section from %s; skipping"),
|
||
bfd_get_filename (dwz->dwz_bfd));
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
|
||
dwz_list_elements);
|
||
|
||
if (types_list_elements)
|
||
{
|
||
struct dwarf2_section_info *section;
|
||
|
||
/* We can only handle a single .debug_types when we have an
|
||
index. */
|
||
if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
|
||
return 0;
|
||
|
||
section = VEC_index (dwarf2_section_info_def,
|
||
dwarf2_per_objfile->types, 0);
|
||
|
||
create_signatured_type_table_from_index (objfile, section, types_list,
|
||
types_list_elements);
|
||
}
|
||
|
||
create_addrmap_from_index (objfile, &local_map);
|
||
|
||
map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
|
||
*map = local_map;
|
||
|
||
dwarf2_per_objfile->index_table = map;
|
||
dwarf2_per_objfile->using_index = 1;
|
||
dwarf2_per_objfile->quick_file_names_table =
|
||
create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* A helper for the "quick" functions which sets the global
|
||
dwarf2_per_objfile according to OBJFILE. */
|
||
|
||
static void
|
||
dw2_setup (struct objfile *objfile)
|
||
{
|
||
dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
|
||
objfile_data (objfile, dwarf2_objfile_data_key));
|
||
gdb_assert (dwarf2_per_objfile);
|
||
}
|
||
|
||
/* die_reader_func for dw2_get_file_names. */
|
||
|
||
static void
|
||
dw2_get_file_names_reader (const struct die_reader_specs *reader,
|
||
const gdb_byte *info_ptr,
|
||
struct die_info *comp_unit_die,
|
||
int has_children,
|
||
void *data)
|
||
{
|
||
struct dwarf2_cu *cu = reader->cu;
|
||
struct dwarf2_per_cu_data *this_cu = cu->per_cu;
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
struct dwarf2_per_cu_data *lh_cu;
|
||
struct line_header *lh;
|
||
struct attribute *attr;
|
||
int i;
|
||
const char *name, *comp_dir;
|
||
void **slot;
|
||
struct quick_file_names *qfn;
|
||
unsigned int line_offset;
|
||
|
||
gdb_assert (! this_cu->is_debug_types);
|
||
|
||
/* Our callers never want to match partial units -- instead they
|
||
will match the enclosing full CU. */
|
||
if (comp_unit_die->tag == DW_TAG_partial_unit)
|
||
{
|
||
this_cu->v.quick->no_file_data = 1;
|
||
return;
|
||
}
|
||
|
||
lh_cu = this_cu;
|
||
lh = NULL;
|
||
slot = NULL;
|
||
line_offset = 0;
|
||
|
||
attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
|
||
if (attr)
|
||
{
|
||
struct quick_file_names find_entry;
|
||
|
||
line_offset = DW_UNSND (attr);
|
||
|
||
/* We may have already read in this line header (TU line header sharing).
|
||
If we have we're done. */
|
||
find_entry.hash.dwo_unit = cu->dwo_unit;
|
||
find_entry.hash.line_offset.sect_off = line_offset;
|
||
slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
|
||
&find_entry, INSERT);
|
||
if (*slot != NULL)
|
||
{
|
||
lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
|
||
return;
|
||
}
|
||
|
||
lh = dwarf_decode_line_header (line_offset, cu);
|
||
}
|
||
if (lh == NULL)
|
||
{
|
||
lh_cu->v.quick->no_file_data = 1;
|
||
return;
|
||
}
|
||
|
||
qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
|
||
qfn->hash.dwo_unit = cu->dwo_unit;
|
||
qfn->hash.line_offset.sect_off = line_offset;
|
||
gdb_assert (slot != NULL);
|
||
*slot = qfn;
|
||
|
||
find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
|
||
|
||
qfn->num_file_names = lh->num_file_names;
|
||
qfn->file_names =
|
||
XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
|
||
for (i = 0; i < lh->num_file_names; ++i)
|
||
qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
|
||
qfn->real_names = NULL;
|
||
|
||
free_line_header (lh);
|
||
|
||
lh_cu->v.quick->file_names = qfn;
|
||
}
|
||
|
||
/* A helper for the "quick" functions which attempts to read the line
|
||
table for THIS_CU. */
|
||
|
||
static struct quick_file_names *
|
||
dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
|
||
{
|
||
/* This should never be called for TUs. */
|
||
gdb_assert (! this_cu->is_debug_types);
|
||
/* Nor type unit groups. */
|
||
gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
|
||
|
||
if (this_cu->v.quick->file_names != NULL)
|
||
return this_cu->v.quick->file_names;
|
||
/* If we know there is no line data, no point in looking again. */
|
||
if (this_cu->v.quick->no_file_data)
|
||
return NULL;
|
||
|
||
init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
|
||
|
||
if (this_cu->v.quick->no_file_data)
|
||
return NULL;
|
||
return this_cu->v.quick->file_names;
|
||
}
|
||
|
||
/* A helper for the "quick" functions which computes and caches the
|
||
real path for a given file name from the line table. */
|
||
|
||
static const char *
|
||
dw2_get_real_path (struct objfile *objfile,
|
||
struct quick_file_names *qfn, int index)
|
||
{
|
||
if (qfn->real_names == NULL)
|
||
qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
|
||
qfn->num_file_names, const char *);
|
||
|
||
if (qfn->real_names[index] == NULL)
|
||
qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
|
||
|
||
return qfn->real_names[index];
|
||
}
|
||
|
||
static struct symtab *
|
||
dw2_find_last_source_symtab (struct objfile *objfile)
|
||
{
|
||
struct compunit_symtab *cust;
|
||
int index;
|
||
|
||
dw2_setup (objfile);
|
||
index = dwarf2_per_objfile->n_comp_units - 1;
|
||
cust = dw2_instantiate_symtab (dw2_get_cutu (index));
|
||
if (cust == NULL)
|
||
return NULL;
|
||
return compunit_primary_filetab (cust);
|
||
}
|
||
|
||
/* Traversal function for dw2_forget_cached_source_info. */
|
||
|
||
static int
|
||
dw2_free_cached_file_names (void **slot, void *info)
|
||
{
|
||
struct quick_file_names *file_data = (struct quick_file_names *) *slot;
|
||
|
||
if (file_data->real_names)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < file_data->num_file_names; ++i)
|
||
{
|
||
xfree ((void*) file_data->real_names[i]);
|
||
file_data->real_names[i] = NULL;
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
static void
|
||
dw2_forget_cached_source_info (struct objfile *objfile)
|
||
{
|
||
dw2_setup (objfile);
|
||
|
||
htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
|
||
dw2_free_cached_file_names, NULL);
|
||
}
|
||
|
||
/* Helper function for dw2_map_symtabs_matching_filename that expands
|
||
the symtabs and calls the iterator. */
|
||
|
||
static int
|
||
dw2_map_expand_apply (struct objfile *objfile,
|
||
struct dwarf2_per_cu_data *per_cu,
|
||
const char *name, const char *real_path,
|
||
int (*callback) (struct symtab *, void *),
|
||
void *data)
|
||
{
|
||
struct compunit_symtab *last_made = objfile->compunit_symtabs;
|
||
|
||
/* Don't visit already-expanded CUs. */
|
||
if (per_cu->v.quick->compunit_symtab)
|
||
return 0;
|
||
|
||
/* This may expand more than one symtab, and we want to iterate over
|
||
all of them. */
|
||
dw2_instantiate_symtab (per_cu);
|
||
|
||
return iterate_over_some_symtabs (name, real_path, callback, data,
|
||
objfile->compunit_symtabs, last_made);
|
||
}
|
||
|
||
/* Implementation of the map_symtabs_matching_filename method. */
|
||
|
||
static int
|
||
dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
|
||
const char *real_path,
|
||
int (*callback) (struct symtab *, void *),
|
||
void *data)
|
||
{
|
||
int i;
|
||
const char *name_basename = lbasename (name);
|
||
|
||
dw2_setup (objfile);
|
||
|
||
/* The rule is CUs specify all the files, including those used by
|
||
any TU, so there's no need to scan TUs here. */
|
||
|
||
for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
|
||
{
|
||
int j;
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
|
||
struct quick_file_names *file_data;
|
||
|
||
/* We only need to look at symtabs not already expanded. */
|
||
if (per_cu->v.quick->compunit_symtab)
|
||
continue;
|
||
|
||
file_data = dw2_get_file_names (per_cu);
|
||
if (file_data == NULL)
|
||
continue;
|
||
|
||
for (j = 0; j < file_data->num_file_names; ++j)
|
||
{
|
||
const char *this_name = file_data->file_names[j];
|
||
const char *this_real_name;
|
||
|
||
if (compare_filenames_for_search (this_name, name))
|
||
{
|
||
if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
|
||
callback, data))
|
||
return 1;
|
||
continue;
|
||
}
|
||
|
||
/* Before we invoke realpath, which can get expensive when many
|
||
files are involved, do a quick comparison of the basenames. */
|
||
if (! basenames_may_differ
|
||
&& FILENAME_CMP (lbasename (this_name), name_basename) != 0)
|
||
continue;
|
||
|
||
this_real_name = dw2_get_real_path (objfile, file_data, j);
|
||
if (compare_filenames_for_search (this_real_name, name))
|
||
{
|
||
if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
|
||
callback, data))
|
||
return 1;
|
||
continue;
|
||
}
|
||
|
||
if (real_path != NULL)
|
||
{
|
||
gdb_assert (IS_ABSOLUTE_PATH (real_path));
|
||
gdb_assert (IS_ABSOLUTE_PATH (name));
|
||
if (this_real_name != NULL
|
||
&& FILENAME_CMP (real_path, this_real_name) == 0)
|
||
{
|
||
if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
|
||
callback, data))
|
||
return 1;
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Struct used to manage iterating over all CUs looking for a symbol. */
|
||
|
||
struct dw2_symtab_iterator
|
||
{
|
||
/* The internalized form of .gdb_index. */
|
||
struct mapped_index *index;
|
||
/* If non-zero, only look for symbols that match BLOCK_INDEX. */
|
||
int want_specific_block;
|
||
/* One of GLOBAL_BLOCK or STATIC_BLOCK.
|
||
Unused if !WANT_SPECIFIC_BLOCK. */
|
||
int block_index;
|
||
/* The kind of symbol we're looking for. */
|
||
domain_enum domain;
|
||
/* The list of CUs from the index entry of the symbol,
|
||
or NULL if not found. */
|
||
offset_type *vec;
|
||
/* The next element in VEC to look at. */
|
||
int next;
|
||
/* The number of elements in VEC, or zero if there is no match. */
|
||
int length;
|
||
/* Have we seen a global version of the symbol?
|
||
If so we can ignore all further global instances.
|
||
This is to work around gold/15646, inefficient gold-generated
|
||
indices. */
|
||
int global_seen;
|
||
};
|
||
|
||
/* Initialize the index symtab iterator ITER.
|
||
If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
|
||
in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
|
||
|
||
static void
|
||
dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
|
||
struct mapped_index *index,
|
||
int want_specific_block,
|
||
int block_index,
|
||
domain_enum domain,
|
||
const char *name)
|
||
{
|
||
iter->index = index;
|
||
iter->want_specific_block = want_specific_block;
|
||
iter->block_index = block_index;
|
||
iter->domain = domain;
|
||
iter->next = 0;
|
||
iter->global_seen = 0;
|
||
|
||
if (find_slot_in_mapped_hash (index, name, &iter->vec))
|
||
iter->length = MAYBE_SWAP (*iter->vec);
|
||
else
|
||
{
|
||
iter->vec = NULL;
|
||
iter->length = 0;
|
||
}
|
||
}
|
||
|
||
/* Return the next matching CU or NULL if there are no more. */
|
||
|
||
static struct dwarf2_per_cu_data *
|
||
dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
|
||
{
|
||
for ( ; iter->next < iter->length; ++iter->next)
|
||
{
|
||
offset_type cu_index_and_attrs =
|
||
MAYBE_SWAP (iter->vec[iter->next + 1]);
|
||
offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
int want_static = iter->block_index != GLOBAL_BLOCK;
|
||
/* This value is only valid for index versions >= 7. */
|
||
int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
|
||
gdb_index_symbol_kind symbol_kind =
|
||
GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
|
||
/* Only check the symbol attributes if they're present.
|
||
Indices prior to version 7 don't record them,
|
||
and indices >= 7 may elide them for certain symbols
|
||
(gold does this). */
|
||
int attrs_valid =
|
||
(iter->index->version >= 7
|
||
&& symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
|
||
|
||
/* Don't crash on bad data. */
|
||
if (cu_index >= (dwarf2_per_objfile->n_comp_units
|
||
+ dwarf2_per_objfile->n_type_units))
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_(".gdb_index entry has bad CU index"
|
||
" [in module %s]"),
|
||
objfile_name (dwarf2_per_objfile->objfile));
|
||
continue;
|
||
}
|
||
|
||
per_cu = dw2_get_cutu (cu_index);
|
||
|
||
/* Skip if already read in. */
|
||
if (per_cu->v.quick->compunit_symtab)
|
||
continue;
|
||
|
||
/* Check static vs global. */
|
||
if (attrs_valid)
|
||
{
|
||
if (iter->want_specific_block
|
||
&& want_static != is_static)
|
||
continue;
|
||
/* Work around gold/15646. */
|
||
if (!is_static && iter->global_seen)
|
||
continue;
|
||
if (!is_static)
|
||
iter->global_seen = 1;
|
||
}
|
||
|
||
/* Only check the symbol's kind if it has one. */
|
||
if (attrs_valid)
|
||
{
|
||
switch (iter->domain)
|
||
{
|
||
case VAR_DOMAIN:
|
||
if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
|
||
&& symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
|
||
/* Some types are also in VAR_DOMAIN. */
|
||
&& symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
|
||
continue;
|
||
break;
|
||
case STRUCT_DOMAIN:
|
||
if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
|
||
continue;
|
||
break;
|
||
case LABEL_DOMAIN:
|
||
if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
|
||
continue;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
++iter->next;
|
||
return per_cu;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static struct compunit_symtab *
|
||
dw2_lookup_symbol (struct objfile *objfile, int block_index,
|
||
const char *name, domain_enum domain)
|
||
{
|
||
struct compunit_symtab *stab_best = NULL;
|
||
struct mapped_index *index;
|
||
|
||
dw2_setup (objfile);
|
||
|
||
index = dwarf2_per_objfile->index_table;
|
||
|
||
/* index is NULL if OBJF_READNOW. */
|
||
if (index)
|
||
{
|
||
struct dw2_symtab_iterator iter;
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
|
||
dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
|
||
|
||
while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
|
||
{
|
||
struct symbol *sym, *with_opaque = NULL;
|
||
struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
|
||
const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
|
||
struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
|
||
|
||
sym = block_find_symbol (block, name, domain,
|
||
block_find_non_opaque_type_preferred,
|
||
&with_opaque);
|
||
|
||
/* Some caution must be observed with overloaded functions
|
||
and methods, since the index will not contain any overload
|
||
information (but NAME might contain it). */
|
||
|
||
if (sym != NULL
|
||
&& strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
|
||
return stab;
|
||
if (with_opaque != NULL
|
||
&& strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
|
||
stab_best = stab;
|
||
|
||
/* Keep looking through other CUs. */
|
||
}
|
||
}
|
||
|
||
return stab_best;
|
||
}
|
||
|
||
static void
|
||
dw2_print_stats (struct objfile *objfile)
|
||
{
|
||
int i, total, count;
|
||
|
||
dw2_setup (objfile);
|
||
total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
|
||
count = 0;
|
||
for (i = 0; i < total; ++i)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
|
||
|
||
if (!per_cu->v.quick->compunit_symtab)
|
||
++count;
|
||
}
|
||
printf_filtered (_(" Number of read CUs: %d\n"), total - count);
|
||
printf_filtered (_(" Number of unread CUs: %d\n"), count);
|
||
}
|
||
|
||
/* This dumps minimal information about the index.
|
||
It is called via "mt print objfiles".
|
||
One use is to verify .gdb_index has been loaded by the
|
||
gdb.dwarf2/gdb-index.exp testcase. */
|
||
|
||
static void
|
||
dw2_dump (struct objfile *objfile)
|
||
{
|
||
dw2_setup (objfile);
|
||
gdb_assert (dwarf2_per_objfile->using_index);
|
||
printf_filtered (".gdb_index:");
|
||
if (dwarf2_per_objfile->index_table != NULL)
|
||
{
|
||
printf_filtered (" version %d\n",
|
||
dwarf2_per_objfile->index_table->version);
|
||
}
|
||
else
|
||
printf_filtered (" faked for \"readnow\"\n");
|
||
printf_filtered ("\n");
|
||
}
|
||
|
||
static void
|
||
dw2_relocate (struct objfile *objfile,
|
||
const struct section_offsets *new_offsets,
|
||
const struct section_offsets *delta)
|
||
{
|
||
/* There's nothing to relocate here. */
|
||
}
|
||
|
||
static void
|
||
dw2_expand_symtabs_for_function (struct objfile *objfile,
|
||
const char *func_name)
|
||
{
|
||
struct mapped_index *index;
|
||
|
||
dw2_setup (objfile);
|
||
|
||
index = dwarf2_per_objfile->index_table;
|
||
|
||
/* index is NULL if OBJF_READNOW. */
|
||
if (index)
|
||
{
|
||
struct dw2_symtab_iterator iter;
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
|
||
/* Note: It doesn't matter what we pass for block_index here. */
|
||
dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
|
||
func_name);
|
||
|
||
while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
|
||
dw2_instantiate_symtab (per_cu);
|
||
}
|
||
}
|
||
|
||
static void
|
||
dw2_expand_all_symtabs (struct objfile *objfile)
|
||
{
|
||
int i;
|
||
|
||
dw2_setup (objfile);
|
||
|
||
for (i = 0; i < (dwarf2_per_objfile->n_comp_units
|
||
+ dwarf2_per_objfile->n_type_units); ++i)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
|
||
|
||
dw2_instantiate_symtab (per_cu);
|
||
}
|
||
}
|
||
|
||
static void
|
||
dw2_expand_symtabs_with_fullname (struct objfile *objfile,
|
||
const char *fullname)
|
||
{
|
||
int i;
|
||
|
||
dw2_setup (objfile);
|
||
|
||
/* We don't need to consider type units here.
|
||
This is only called for examining code, e.g. expand_line_sal.
|
||
There can be an order of magnitude (or more) more type units
|
||
than comp units, and we avoid them if we can. */
|
||
|
||
for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
|
||
{
|
||
int j;
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
|
||
struct quick_file_names *file_data;
|
||
|
||
/* We only need to look at symtabs not already expanded. */
|
||
if (per_cu->v.quick->compunit_symtab)
|
||
continue;
|
||
|
||
file_data = dw2_get_file_names (per_cu);
|
||
if (file_data == NULL)
|
||
continue;
|
||
|
||
for (j = 0; j < file_data->num_file_names; ++j)
|
||
{
|
||
const char *this_fullname = file_data->file_names[j];
|
||
|
||
if (filename_cmp (this_fullname, fullname) == 0)
|
||
{
|
||
dw2_instantiate_symtab (per_cu);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
dw2_map_matching_symbols (struct objfile *objfile,
|
||
const char * name, domain_enum domain,
|
||
int global,
|
||
int (*callback) (struct block *,
|
||
struct symbol *, void *),
|
||
void *data, symbol_compare_ftype *match,
|
||
symbol_compare_ftype *ordered_compare)
|
||
{
|
||
/* Currently unimplemented; used for Ada. The function can be called if the
|
||
current language is Ada for a non-Ada objfile using GNU index. As Ada
|
||
does not look for non-Ada symbols this function should just return. */
|
||
}
|
||
|
||
static void
|
||
dw2_expand_symtabs_matching
|
||
(struct objfile *objfile,
|
||
expand_symtabs_file_matcher_ftype *file_matcher,
|
||
expand_symtabs_symbol_matcher_ftype *symbol_matcher,
|
||
expand_symtabs_exp_notify_ftype *expansion_notify,
|
||
enum search_domain kind,
|
||
void *data)
|
||
{
|
||
int i;
|
||
offset_type iter;
|
||
struct mapped_index *index;
|
||
|
||
dw2_setup (objfile);
|
||
|
||
/* index_table is NULL if OBJF_READNOW. */
|
||
if (!dwarf2_per_objfile->index_table)
|
||
return;
|
||
index = dwarf2_per_objfile->index_table;
|
||
|
||
if (file_matcher != NULL)
|
||
{
|
||
struct cleanup *cleanup;
|
||
htab_t visited_found, visited_not_found;
|
||
|
||
visited_found = htab_create_alloc (10,
|
||
htab_hash_pointer, htab_eq_pointer,
|
||
NULL, xcalloc, xfree);
|
||
cleanup = make_cleanup_htab_delete (visited_found);
|
||
visited_not_found = htab_create_alloc (10,
|
||
htab_hash_pointer, htab_eq_pointer,
|
||
NULL, xcalloc, xfree);
|
||
make_cleanup_htab_delete (visited_not_found);
|
||
|
||
/* The rule is CUs specify all the files, including those used by
|
||
any TU, so there's no need to scan TUs here. */
|
||
|
||
for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
|
||
{
|
||
int j;
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
|
||
struct quick_file_names *file_data;
|
||
void **slot;
|
||
|
||
QUIT;
|
||
|
||
per_cu->v.quick->mark = 0;
|
||
|
||
/* We only need to look at symtabs not already expanded. */
|
||
if (per_cu->v.quick->compunit_symtab)
|
||
continue;
|
||
|
||
file_data = dw2_get_file_names (per_cu);
|
||
if (file_data == NULL)
|
||
continue;
|
||
|
||
if (htab_find (visited_not_found, file_data) != NULL)
|
||
continue;
|
||
else if (htab_find (visited_found, file_data) != NULL)
|
||
{
|
||
per_cu->v.quick->mark = 1;
|
||
continue;
|
||
}
|
||
|
||
for (j = 0; j < file_data->num_file_names; ++j)
|
||
{
|
||
const char *this_real_name;
|
||
|
||
if (file_matcher (file_data->file_names[j], data, 0))
|
||
{
|
||
per_cu->v.quick->mark = 1;
|
||
break;
|
||
}
|
||
|
||
/* Before we invoke realpath, which can get expensive when many
|
||
files are involved, do a quick comparison of the basenames. */
|
||
if (!basenames_may_differ
|
||
&& !file_matcher (lbasename (file_data->file_names[j]),
|
||
data, 1))
|
||
continue;
|
||
|
||
this_real_name = dw2_get_real_path (objfile, file_data, j);
|
||
if (file_matcher (this_real_name, data, 0))
|
||
{
|
||
per_cu->v.quick->mark = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
slot = htab_find_slot (per_cu->v.quick->mark
|
||
? visited_found
|
||
: visited_not_found,
|
||
file_data, INSERT);
|
||
*slot = file_data;
|
||
}
|
||
|
||
do_cleanups (cleanup);
|
||
}
|
||
|
||
for (iter = 0; iter < index->symbol_table_slots; ++iter)
|
||
{
|
||
offset_type idx = 2 * iter;
|
||
const char *name;
|
||
offset_type *vec, vec_len, vec_idx;
|
||
int global_seen = 0;
|
||
|
||
QUIT;
|
||
|
||
if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
|
||
continue;
|
||
|
||
name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
|
||
|
||
if (! (*symbol_matcher) (name, data))
|
||
continue;
|
||
|
||
/* The name was matched, now expand corresponding CUs that were
|
||
marked. */
|
||
vec = (offset_type *) (index->constant_pool
|
||
+ MAYBE_SWAP (index->symbol_table[idx + 1]));
|
||
vec_len = MAYBE_SWAP (vec[0]);
|
||
for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
|
||
/* This value is only valid for index versions >= 7. */
|
||
int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
|
||
gdb_index_symbol_kind symbol_kind =
|
||
GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
|
||
int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
|
||
/* Only check the symbol attributes if they're present.
|
||
Indices prior to version 7 don't record them,
|
||
and indices >= 7 may elide them for certain symbols
|
||
(gold does this). */
|
||
int attrs_valid =
|
||
(index->version >= 7
|
||
&& symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
|
||
|
||
/* Work around gold/15646. */
|
||
if (attrs_valid)
|
||
{
|
||
if (!is_static && global_seen)
|
||
continue;
|
||
if (!is_static)
|
||
global_seen = 1;
|
||
}
|
||
|
||
/* Only check the symbol's kind if it has one. */
|
||
if (attrs_valid)
|
||
{
|
||
switch (kind)
|
||
{
|
||
case VARIABLES_DOMAIN:
|
||
if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
|
||
continue;
|
||
break;
|
||
case FUNCTIONS_DOMAIN:
|
||
if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
|
||
continue;
|
||
break;
|
||
case TYPES_DOMAIN:
|
||
if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
|
||
continue;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Don't crash on bad data. */
|
||
if (cu_index >= (dwarf2_per_objfile->n_comp_units
|
||
+ dwarf2_per_objfile->n_type_units))
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_(".gdb_index entry has bad CU index"
|
||
" [in module %s]"), objfile_name (objfile));
|
||
continue;
|
||
}
|
||
|
||
per_cu = dw2_get_cutu (cu_index);
|
||
if (file_matcher == NULL || per_cu->v.quick->mark)
|
||
{
|
||
int symtab_was_null =
|
||
(per_cu->v.quick->compunit_symtab == NULL);
|
||
|
||
dw2_instantiate_symtab (per_cu);
|
||
|
||
if (expansion_notify != NULL
|
||
&& symtab_was_null
|
||
&& per_cu->v.quick->compunit_symtab != NULL)
|
||
{
|
||
expansion_notify (per_cu->v.quick->compunit_symtab,
|
||
data);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
|
||
symtab. */
|
||
|
||
static struct compunit_symtab *
|
||
recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
|
||
CORE_ADDR pc)
|
||
{
|
||
int i;
|
||
|
||
if (COMPUNIT_BLOCKVECTOR (cust) != NULL
|
||
&& blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
|
||
return cust;
|
||
|
||
if (cust->includes == NULL)
|
||
return NULL;
|
||
|
||
for (i = 0; cust->includes[i]; ++i)
|
||
{
|
||
struct compunit_symtab *s = cust->includes[i];
|
||
|
||
s = recursively_find_pc_sect_compunit_symtab (s, pc);
|
||
if (s != NULL)
|
||
return s;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static struct compunit_symtab *
|
||
dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
|
||
struct bound_minimal_symbol msymbol,
|
||
CORE_ADDR pc,
|
||
struct obj_section *section,
|
||
int warn_if_readin)
|
||
{
|
||
struct dwarf2_per_cu_data *data;
|
||
struct compunit_symtab *result;
|
||
|
||
dw2_setup (objfile);
|
||
|
||
if (!objfile->psymtabs_addrmap)
|
||
return NULL;
|
||
|
||
data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
|
||
pc);
|
||
if (!data)
|
||
return NULL;
|
||
|
||
if (warn_if_readin && data->v.quick->compunit_symtab)
|
||
warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
|
||
paddress (get_objfile_arch (objfile), pc));
|
||
|
||
result
|
||
= recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
|
||
pc);
|
||
gdb_assert (result != NULL);
|
||
return result;
|
||
}
|
||
|
||
static void
|
||
dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
|
||
void *data, int need_fullname)
|
||
{
|
||
int i;
|
||
struct cleanup *cleanup;
|
||
htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
|
||
NULL, xcalloc, xfree);
|
||
|
||
cleanup = make_cleanup_htab_delete (visited);
|
||
dw2_setup (objfile);
|
||
|
||
/* The rule is CUs specify all the files, including those used by
|
||
any TU, so there's no need to scan TUs here.
|
||
We can ignore file names coming from already-expanded CUs. */
|
||
|
||
for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
|
||
|
||
if (per_cu->v.quick->compunit_symtab)
|
||
{
|
||
void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
|
||
INSERT);
|
||
|
||
*slot = per_cu->v.quick->file_names;
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
|
||
{
|
||
int j;
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
|
||
struct quick_file_names *file_data;
|
||
void **slot;
|
||
|
||
/* We only need to look at symtabs not already expanded. */
|
||
if (per_cu->v.quick->compunit_symtab)
|
||
continue;
|
||
|
||
file_data = dw2_get_file_names (per_cu);
|
||
if (file_data == NULL)
|
||
continue;
|
||
|
||
slot = htab_find_slot (visited, file_data, INSERT);
|
||
if (*slot)
|
||
{
|
||
/* Already visited. */
|
||
continue;
|
||
}
|
||
*slot = file_data;
|
||
|
||
for (j = 0; j < file_data->num_file_names; ++j)
|
||
{
|
||
const char *this_real_name;
|
||
|
||
if (need_fullname)
|
||
this_real_name = dw2_get_real_path (objfile, file_data, j);
|
||
else
|
||
this_real_name = NULL;
|
||
(*fun) (file_data->file_names[j], this_real_name, data);
|
||
}
|
||
}
|
||
|
||
do_cleanups (cleanup);
|
||
}
|
||
|
||
static int
|
||
dw2_has_symbols (struct objfile *objfile)
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
const struct quick_symbol_functions dwarf2_gdb_index_functions =
|
||
{
|
||
dw2_has_symbols,
|
||
dw2_find_last_source_symtab,
|
||
dw2_forget_cached_source_info,
|
||
dw2_map_symtabs_matching_filename,
|
||
dw2_lookup_symbol,
|
||
dw2_print_stats,
|
||
dw2_dump,
|
||
dw2_relocate,
|
||
dw2_expand_symtabs_for_function,
|
||
dw2_expand_all_symtabs,
|
||
dw2_expand_symtabs_with_fullname,
|
||
dw2_map_matching_symbols,
|
||
dw2_expand_symtabs_matching,
|
||
dw2_find_pc_sect_compunit_symtab,
|
||
dw2_map_symbol_filenames
|
||
};
|
||
|
||
/* Initialize for reading DWARF for this objfile. Return 0 if this
|
||
file will use psymtabs, or 1 if using the GNU index. */
|
||
|
||
int
|
||
dwarf2_initialize_objfile (struct objfile *objfile)
|
||
{
|
||
/* If we're about to read full symbols, don't bother with the
|
||
indices. In this case we also don't care if some other debug
|
||
format is making psymtabs, because they are all about to be
|
||
expanded anyway. */
|
||
if ((objfile->flags & OBJF_READNOW))
|
||
{
|
||
int i;
|
||
|
||
dwarf2_per_objfile->using_index = 1;
|
||
create_all_comp_units (objfile);
|
||
create_all_type_units (objfile);
|
||
dwarf2_per_objfile->quick_file_names_table =
|
||
create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
|
||
|
||
for (i = 0; i < (dwarf2_per_objfile->n_comp_units
|
||
+ dwarf2_per_objfile->n_type_units); ++i)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
|
||
|
||
per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct dwarf2_per_cu_quick_data);
|
||
}
|
||
|
||
/* Return 1 so that gdb sees the "quick" functions. However,
|
||
these functions will be no-ops because we will have expanded
|
||
all symtabs. */
|
||
return 1;
|
||
}
|
||
|
||
if (dwarf2_read_index (objfile))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
|
||
/* Build a partial symbol table. */
|
||
|
||
void
|
||
dwarf2_build_psymtabs (struct objfile *objfile)
|
||
{
|
||
|
||
if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
|
||
{
|
||
init_psymbol_list (objfile, 1024);
|
||
}
|
||
|
||
TRY
|
||
{
|
||
/* This isn't really ideal: all the data we allocate on the
|
||
objfile's obstack is still uselessly kept around. However,
|
||
freeing it seems unsafe. */
|
||
struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
|
||
|
||
dwarf2_build_psymtabs_hard (objfile);
|
||
discard_cleanups (cleanups);
|
||
}
|
||
CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
exception_print (gdb_stderr, except);
|
||
}
|
||
END_CATCH
|
||
}
|
||
|
||
/* Return the total length of the CU described by HEADER. */
|
||
|
||
static unsigned int
|
||
get_cu_length (const struct comp_unit_head *header)
|
||
{
|
||
return header->initial_length_size + header->length;
|
||
}
|
||
|
||
/* Return TRUE if OFFSET is within CU_HEADER. */
|
||
|
||
static inline int
|
||
offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
|
||
{
|
||
sect_offset bottom = { cu_header->offset.sect_off };
|
||
sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
|
||
|
||
return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
|
||
}
|
||
|
||
/* Find the base address of the compilation unit for range lists and
|
||
location lists. It will normally be specified by DW_AT_low_pc.
|
||
In DWARF-3 draft 4, the base address could be overridden by
|
||
DW_AT_entry_pc. It's been removed, but GCC still uses this for
|
||
compilation units with discontinuous ranges. */
|
||
|
||
static void
|
||
dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
cu->base_known = 0;
|
||
cu->base_address = 0;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
|
||
if (attr)
|
||
{
|
||
cu->base_address = attr_value_as_address (attr);
|
||
cu->base_known = 1;
|
||
}
|
||
else
|
||
{
|
||
attr = dwarf2_attr (die, DW_AT_low_pc, cu);
|
||
if (attr)
|
||
{
|
||
cu->base_address = attr_value_as_address (attr);
|
||
cu->base_known = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Read in the comp unit header information from the debug_info at info_ptr.
|
||
NOTE: This leaves members offset, first_die_offset to be filled in
|
||
by the caller. */
|
||
|
||
static const gdb_byte *
|
||
read_comp_unit_head (struct comp_unit_head *cu_header,
|
||
const gdb_byte *info_ptr, bfd *abfd)
|
||
{
|
||
int signed_addr;
|
||
unsigned int bytes_read;
|
||
|
||
cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
|
||
cu_header->initial_length_size = bytes_read;
|
||
cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
|
||
info_ptr += bytes_read;
|
||
cu_header->version = read_2_bytes (abfd, info_ptr);
|
||
info_ptr += 2;
|
||
cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
|
||
&bytes_read);
|
||
info_ptr += bytes_read;
|
||
cu_header->addr_size = read_1_byte (abfd, info_ptr);
|
||
info_ptr += 1;
|
||
signed_addr = bfd_get_sign_extend_vma (abfd);
|
||
if (signed_addr < 0)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("read_comp_unit_head: dwarf from non elf file"));
|
||
cu_header->signed_addr_p = signed_addr;
|
||
|
||
return info_ptr;
|
||
}
|
||
|
||
/* Helper function that returns the proper abbrev section for
|
||
THIS_CU. */
|
||
|
||
static struct dwarf2_section_info *
|
||
get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
|
||
{
|
||
struct dwarf2_section_info *abbrev;
|
||
|
||
if (this_cu->is_dwz)
|
||
abbrev = &dwarf2_get_dwz_file ()->abbrev;
|
||
else
|
||
abbrev = &dwarf2_per_objfile->abbrev;
|
||
|
||
return abbrev;
|
||
}
|
||
|
||
/* Subroutine of read_and_check_comp_unit_head and
|
||
read_and_check_type_unit_head to simplify them.
|
||
Perform various error checking on the header. */
|
||
|
||
static void
|
||
error_check_comp_unit_head (struct comp_unit_head *header,
|
||
struct dwarf2_section_info *section,
|
||
struct dwarf2_section_info *abbrev_section)
|
||
{
|
||
const char *filename = get_section_file_name (section);
|
||
|
||
if (header->version != 2 && header->version != 3 && header->version != 4)
|
||
error (_("Dwarf Error: wrong version in compilation unit header "
|
||
"(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
|
||
filename);
|
||
|
||
if (header->abbrev_offset.sect_off
|
||
>= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
|
||
error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
|
||
"(offset 0x%lx + 6) [in module %s]"),
|
||
(long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
|
||
filename);
|
||
|
||
/* Cast to unsigned long to use 64-bit arithmetic when possible to
|
||
avoid potential 32-bit overflow. */
|
||
if (((unsigned long) header->offset.sect_off + get_cu_length (header))
|
||
> section->size)
|
||
error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
|
||
"(offset 0x%lx + 0) [in module %s]"),
|
||
(long) header->length, (long) header->offset.sect_off,
|
||
filename);
|
||
}
|
||
|
||
/* Read in a CU/TU header and perform some basic error checking.
|
||
The contents of the header are stored in HEADER.
|
||
The result is a pointer to the start of the first DIE. */
|
||
|
||
static const gdb_byte *
|
||
read_and_check_comp_unit_head (struct comp_unit_head *header,
|
||
struct dwarf2_section_info *section,
|
||
struct dwarf2_section_info *abbrev_section,
|
||
const gdb_byte *info_ptr,
|
||
int is_debug_types_section)
|
||
{
|
||
const gdb_byte *beg_of_comp_unit = info_ptr;
|
||
bfd *abfd = get_section_bfd_owner (section);
|
||
|
||
header->offset.sect_off = beg_of_comp_unit - section->buffer;
|
||
|
||
info_ptr = read_comp_unit_head (header, info_ptr, abfd);
|
||
|
||
/* If we're reading a type unit, skip over the signature and
|
||
type_offset fields. */
|
||
if (is_debug_types_section)
|
||
info_ptr += 8 /*signature*/ + header->offset_size;
|
||
|
||
header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
|
||
|
||
error_check_comp_unit_head (header, section, abbrev_section);
|
||
|
||
return info_ptr;
|
||
}
|
||
|
||
/* Read in the types comp unit header information from .debug_types entry at
|
||
types_ptr. The result is a pointer to one past the end of the header. */
|
||
|
||
static const gdb_byte *
|
||
read_and_check_type_unit_head (struct comp_unit_head *header,
|
||
struct dwarf2_section_info *section,
|
||
struct dwarf2_section_info *abbrev_section,
|
||
const gdb_byte *info_ptr,
|
||
ULONGEST *signature,
|
||
cu_offset *type_offset_in_tu)
|
||
{
|
||
const gdb_byte *beg_of_comp_unit = info_ptr;
|
||
bfd *abfd = get_section_bfd_owner (section);
|
||
|
||
header->offset.sect_off = beg_of_comp_unit - section->buffer;
|
||
|
||
info_ptr = read_comp_unit_head (header, info_ptr, abfd);
|
||
|
||
/* If we're reading a type unit, skip over the signature and
|
||
type_offset fields. */
|
||
if (signature != NULL)
|
||
*signature = read_8_bytes (abfd, info_ptr);
|
||
info_ptr += 8;
|
||
if (type_offset_in_tu != NULL)
|
||
type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
|
||
header->offset_size);
|
||
info_ptr += header->offset_size;
|
||
|
||
header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
|
||
|
||
error_check_comp_unit_head (header, section, abbrev_section);
|
||
|
||
return info_ptr;
|
||
}
|
||
|
||
/* Fetch the abbreviation table offset from a comp or type unit header. */
|
||
|
||
static sect_offset
|
||
read_abbrev_offset (struct dwarf2_section_info *section,
|
||
sect_offset offset)
|
||
{
|
||
bfd *abfd = get_section_bfd_owner (section);
|
||
const gdb_byte *info_ptr;
|
||
unsigned int length, initial_length_size, offset_size;
|
||
sect_offset abbrev_offset;
|
||
|
||
dwarf2_read_section (dwarf2_per_objfile->objfile, section);
|
||
info_ptr = section->buffer + offset.sect_off;
|
||
length = read_initial_length (abfd, info_ptr, &initial_length_size);
|
||
offset_size = initial_length_size == 4 ? 4 : 8;
|
||
info_ptr += initial_length_size + 2 /*version*/;
|
||
abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
|
||
return abbrev_offset;
|
||
}
|
||
|
||
/* Allocate a new partial symtab for file named NAME and mark this new
|
||
partial symtab as being an include of PST. */
|
||
|
||
static void
|
||
dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
|
||
struct objfile *objfile)
|
||
{
|
||
struct partial_symtab *subpst = allocate_psymtab (name, objfile);
|
||
|
||
if (!IS_ABSOLUTE_PATH (subpst->filename))
|
||
{
|
||
/* It shares objfile->objfile_obstack. */
|
||
subpst->dirname = pst->dirname;
|
||
}
|
||
|
||
subpst->textlow = 0;
|
||
subpst->texthigh = 0;
|
||
|
||
subpst->dependencies
|
||
= XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
|
||
subpst->dependencies[0] = pst;
|
||
subpst->number_of_dependencies = 1;
|
||
|
||
subpst->globals_offset = 0;
|
||
subpst->n_global_syms = 0;
|
||
subpst->statics_offset = 0;
|
||
subpst->n_static_syms = 0;
|
||
subpst->compunit_symtab = NULL;
|
||
subpst->read_symtab = pst->read_symtab;
|
||
subpst->readin = 0;
|
||
|
||
/* No private part is necessary for include psymtabs. This property
|
||
can be used to differentiate between such include psymtabs and
|
||
the regular ones. */
|
||
subpst->read_symtab_private = NULL;
|
||
}
|
||
|
||
/* Read the Line Number Program data and extract the list of files
|
||
included by the source file represented by PST. Build an include
|
||
partial symtab for each of these included files. */
|
||
|
||
static void
|
||
dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
|
||
struct die_info *die,
|
||
struct partial_symtab *pst)
|
||
{
|
||
struct line_header *lh = NULL;
|
||
struct attribute *attr;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
|
||
if (attr)
|
||
lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
|
||
if (lh == NULL)
|
||
return; /* No linetable, so no includes. */
|
||
|
||
/* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
|
||
dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
|
||
|
||
free_line_header (lh);
|
||
}
|
||
|
||
static hashval_t
|
||
hash_signatured_type (const void *item)
|
||
{
|
||
const struct signatured_type *sig_type
|
||
= (const struct signatured_type *) item;
|
||
|
||
/* This drops the top 32 bits of the signature, but is ok for a hash. */
|
||
return sig_type->signature;
|
||
}
|
||
|
||
static int
|
||
eq_signatured_type (const void *item_lhs, const void *item_rhs)
|
||
{
|
||
const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
|
||
const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
|
||
|
||
return lhs->signature == rhs->signature;
|
||
}
|
||
|
||
/* Allocate a hash table for signatured types. */
|
||
|
||
static htab_t
|
||
allocate_signatured_type_table (struct objfile *objfile)
|
||
{
|
||
return htab_create_alloc_ex (41,
|
||
hash_signatured_type,
|
||
eq_signatured_type,
|
||
NULL,
|
||
&objfile->objfile_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
}
|
||
|
||
/* A helper function to add a signatured type CU to a table. */
|
||
|
||
static int
|
||
add_signatured_type_cu_to_table (void **slot, void *datum)
|
||
{
|
||
struct signatured_type *sigt = (struct signatured_type *) *slot;
|
||
struct signatured_type ***datap = (struct signatured_type ***) datum;
|
||
|
||
**datap = sigt;
|
||
++*datap;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Create the hash table of all entries in the .debug_types
|
||
(or .debug_types.dwo) section(s).
|
||
If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
|
||
otherwise it is NULL.
|
||
|
||
The result is a pointer to the hash table or NULL if there are no types.
|
||
|
||
Note: This function processes DWO files only, not DWP files. */
|
||
|
||
static htab_t
|
||
create_debug_types_hash_table (struct dwo_file *dwo_file,
|
||
VEC (dwarf2_section_info_def) *types)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
htab_t types_htab = NULL;
|
||
int ix;
|
||
struct dwarf2_section_info *section;
|
||
struct dwarf2_section_info *abbrev_section;
|
||
|
||
if (VEC_empty (dwarf2_section_info_def, types))
|
||
return NULL;
|
||
|
||
abbrev_section = (dwo_file != NULL
|
||
? &dwo_file->sections.abbrev
|
||
: &dwarf2_per_objfile->abbrev);
|
||
|
||
if (dwarf_read_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
|
||
dwo_file ? ".dwo" : "",
|
||
get_section_file_name (abbrev_section));
|
||
|
||
for (ix = 0;
|
||
VEC_iterate (dwarf2_section_info_def, types, ix, section);
|
||
++ix)
|
||
{
|
||
bfd *abfd;
|
||
const gdb_byte *info_ptr, *end_ptr;
|
||
|
||
dwarf2_read_section (objfile, section);
|
||
info_ptr = section->buffer;
|
||
|
||
if (info_ptr == NULL)
|
||
continue;
|
||
|
||
/* We can't set abfd until now because the section may be empty or
|
||
not present, in which case the bfd is unknown. */
|
||
abfd = get_section_bfd_owner (section);
|
||
|
||
/* We don't use init_cutu_and_read_dies_simple, or some such, here
|
||
because we don't need to read any dies: the signature is in the
|
||
header. */
|
||
|
||
end_ptr = info_ptr + section->size;
|
||
while (info_ptr < end_ptr)
|
||
{
|
||
sect_offset offset;
|
||
cu_offset type_offset_in_tu;
|
||
ULONGEST signature;
|
||
struct signatured_type *sig_type;
|
||
struct dwo_unit *dwo_tu;
|
||
void **slot;
|
||
const gdb_byte *ptr = info_ptr;
|
||
struct comp_unit_head header;
|
||
unsigned int length;
|
||
|
||
offset.sect_off = ptr - section->buffer;
|
||
|
||
/* We need to read the type's signature in order to build the hash
|
||
table, but we don't need anything else just yet. */
|
||
|
||
ptr = read_and_check_type_unit_head (&header, section,
|
||
abbrev_section, ptr,
|
||
&signature, &type_offset_in_tu);
|
||
|
||
length = get_cu_length (&header);
|
||
|
||
/* Skip dummy type units. */
|
||
if (ptr >= info_ptr + length
|
||
|| peek_abbrev_code (abfd, ptr) == 0)
|
||
{
|
||
info_ptr += length;
|
||
continue;
|
||
}
|
||
|
||
if (types_htab == NULL)
|
||
{
|
||
if (dwo_file)
|
||
types_htab = allocate_dwo_unit_table (objfile);
|
||
else
|
||
types_htab = allocate_signatured_type_table (objfile);
|
||
}
|
||
|
||
if (dwo_file)
|
||
{
|
||
sig_type = NULL;
|
||
dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct dwo_unit);
|
||
dwo_tu->dwo_file = dwo_file;
|
||
dwo_tu->signature = signature;
|
||
dwo_tu->type_offset_in_tu = type_offset_in_tu;
|
||
dwo_tu->section = section;
|
||
dwo_tu->offset = offset;
|
||
dwo_tu->length = length;
|
||
}
|
||
else
|
||
{
|
||
/* N.B.: type_offset is not usable if this type uses a DWO file.
|
||
The real type_offset is in the DWO file. */
|
||
dwo_tu = NULL;
|
||
sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct signatured_type);
|
||
sig_type->signature = signature;
|
||
sig_type->type_offset_in_tu = type_offset_in_tu;
|
||
sig_type->per_cu.objfile = objfile;
|
||
sig_type->per_cu.is_debug_types = 1;
|
||
sig_type->per_cu.section = section;
|
||
sig_type->per_cu.offset = offset;
|
||
sig_type->per_cu.length = length;
|
||
}
|
||
|
||
slot = htab_find_slot (types_htab,
|
||
dwo_file ? (void*) dwo_tu : (void *) sig_type,
|
||
INSERT);
|
||
gdb_assert (slot != NULL);
|
||
if (*slot != NULL)
|
||
{
|
||
sect_offset dup_offset;
|
||
|
||
if (dwo_file)
|
||
{
|
||
const struct dwo_unit *dup_tu
|
||
= (const struct dwo_unit *) *slot;
|
||
|
||
dup_offset = dup_tu->offset;
|
||
}
|
||
else
|
||
{
|
||
const struct signatured_type *dup_tu
|
||
= (const struct signatured_type *) *slot;
|
||
|
||
dup_offset = dup_tu->per_cu.offset;
|
||
}
|
||
|
||
complaint (&symfile_complaints,
|
||
_("debug type entry at offset 0x%x is duplicate to"
|
||
" the entry at offset 0x%x, signature %s"),
|
||
offset.sect_off, dup_offset.sect_off,
|
||
hex_string (signature));
|
||
}
|
||
*slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
|
||
|
||
if (dwarf_read_debug > 1)
|
||
fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
|
||
offset.sect_off,
|
||
hex_string (signature));
|
||
|
||
info_ptr += length;
|
||
}
|
||
}
|
||
|
||
return types_htab;
|
||
}
|
||
|
||
/* Create the hash table of all entries in the .debug_types section,
|
||
and initialize all_type_units.
|
||
The result is zero if there is an error (e.g. missing .debug_types section),
|
||
otherwise non-zero. */
|
||
|
||
static int
|
||
create_all_type_units (struct objfile *objfile)
|
||
{
|
||
htab_t types_htab;
|
||
struct signatured_type **iter;
|
||
|
||
types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
|
||
if (types_htab == NULL)
|
||
{
|
||
dwarf2_per_objfile->signatured_types = NULL;
|
||
return 0;
|
||
}
|
||
|
||
dwarf2_per_objfile->signatured_types = types_htab;
|
||
|
||
dwarf2_per_objfile->n_type_units
|
||
= dwarf2_per_objfile->n_allocated_type_units
|
||
= htab_elements (types_htab);
|
||
dwarf2_per_objfile->all_type_units =
|
||
XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
|
||
iter = &dwarf2_per_objfile->all_type_units[0];
|
||
htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
|
||
gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
|
||
== dwarf2_per_objfile->n_type_units);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
|
||
If SLOT is non-NULL, it is the entry to use in the hash table.
|
||
Otherwise we find one. */
|
||
|
||
static struct signatured_type *
|
||
add_type_unit (ULONGEST sig, void **slot)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
int n_type_units = dwarf2_per_objfile->n_type_units;
|
||
struct signatured_type *sig_type;
|
||
|
||
gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
|
||
++n_type_units;
|
||
if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
|
||
{
|
||
if (dwarf2_per_objfile->n_allocated_type_units == 0)
|
||
dwarf2_per_objfile->n_allocated_type_units = 1;
|
||
dwarf2_per_objfile->n_allocated_type_units *= 2;
|
||
dwarf2_per_objfile->all_type_units
|
||
= XRESIZEVEC (struct signatured_type *,
|
||
dwarf2_per_objfile->all_type_units,
|
||
dwarf2_per_objfile->n_allocated_type_units);
|
||
++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
|
||
}
|
||
dwarf2_per_objfile->n_type_units = n_type_units;
|
||
|
||
sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct signatured_type);
|
||
dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
|
||
sig_type->signature = sig;
|
||
sig_type->per_cu.is_debug_types = 1;
|
||
if (dwarf2_per_objfile->using_index)
|
||
{
|
||
sig_type->per_cu.v.quick =
|
||
OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct dwarf2_per_cu_quick_data);
|
||
}
|
||
|
||
if (slot == NULL)
|
||
{
|
||
slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
|
||
sig_type, INSERT);
|
||
}
|
||
gdb_assert (*slot == NULL);
|
||
*slot = sig_type;
|
||
/* The rest of sig_type must be filled in by the caller. */
|
||
return sig_type;
|
||
}
|
||
|
||
/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
|
||
Fill in SIG_ENTRY with DWO_ENTRY. */
|
||
|
||
static void
|
||
fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
|
||
struct signatured_type *sig_entry,
|
||
struct dwo_unit *dwo_entry)
|
||
{
|
||
/* Make sure we're not clobbering something we don't expect to. */
|
||
gdb_assert (! sig_entry->per_cu.queued);
|
||
gdb_assert (sig_entry->per_cu.cu == NULL);
|
||
if (dwarf2_per_objfile->using_index)
|
||
{
|
||
gdb_assert (sig_entry->per_cu.v.quick != NULL);
|
||
gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
|
||
}
|
||
else
|
||
gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
|
||
gdb_assert (sig_entry->signature == dwo_entry->signature);
|
||
gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
|
||
gdb_assert (sig_entry->type_unit_group == NULL);
|
||
gdb_assert (sig_entry->dwo_unit == NULL);
|
||
|
||
sig_entry->per_cu.section = dwo_entry->section;
|
||
sig_entry->per_cu.offset = dwo_entry->offset;
|
||
sig_entry->per_cu.length = dwo_entry->length;
|
||
sig_entry->per_cu.reading_dwo_directly = 1;
|
||
sig_entry->per_cu.objfile = objfile;
|
||
sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
|
||
sig_entry->dwo_unit = dwo_entry;
|
||
}
|
||
|
||
/* Subroutine of lookup_signatured_type.
|
||
If we haven't read the TU yet, create the signatured_type data structure
|
||
for a TU to be read in directly from a DWO file, bypassing the stub.
|
||
This is the "Stay in DWO Optimization": When there is no DWP file and we're
|
||
using .gdb_index, then when reading a CU we want to stay in the DWO file
|
||
containing that CU. Otherwise we could end up reading several other DWO
|
||
files (due to comdat folding) to process the transitive closure of all the
|
||
mentioned TUs, and that can be slow. The current DWO file will have every
|
||
type signature that it needs.
|
||
We only do this for .gdb_index because in the psymtab case we already have
|
||
to read all the DWOs to build the type unit groups. */
|
||
|
||
static struct signatured_type *
|
||
lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
struct dwo_file *dwo_file;
|
||
struct dwo_unit find_dwo_entry, *dwo_entry;
|
||
struct signatured_type find_sig_entry, *sig_entry;
|
||
void **slot;
|
||
|
||
gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
|
||
|
||
/* If TU skeletons have been removed then we may not have read in any
|
||
TUs yet. */
|
||
if (dwarf2_per_objfile->signatured_types == NULL)
|
||
{
|
||
dwarf2_per_objfile->signatured_types
|
||
= allocate_signatured_type_table (objfile);
|
||
}
|
||
|
||
/* We only ever need to read in one copy of a signatured type.
|
||
Use the global signatured_types array to do our own comdat-folding
|
||
of types. If this is the first time we're reading this TU, and
|
||
the TU has an entry in .gdb_index, replace the recorded data from
|
||
.gdb_index with this TU. */
|
||
|
||
find_sig_entry.signature = sig;
|
||
slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
|
||
&find_sig_entry, INSERT);
|
||
sig_entry = (struct signatured_type *) *slot;
|
||
|
||
/* We can get here with the TU already read, *or* in the process of being
|
||
read. Don't reassign the global entry to point to this DWO if that's
|
||
the case. Also note that if the TU is already being read, it may not
|
||
have come from a DWO, the program may be a mix of Fission-compiled
|
||
code and non-Fission-compiled code. */
|
||
|
||
/* Have we already tried to read this TU?
|
||
Note: sig_entry can be NULL if the skeleton TU was removed (thus it
|
||
needn't exist in the global table yet). */
|
||
if (sig_entry != NULL && sig_entry->per_cu.tu_read)
|
||
return sig_entry;
|
||
|
||
/* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
|
||
dwo_unit of the TU itself. */
|
||
dwo_file = cu->dwo_unit->dwo_file;
|
||
|
||
/* Ok, this is the first time we're reading this TU. */
|
||
if (dwo_file->tus == NULL)
|
||
return NULL;
|
||
find_dwo_entry.signature = sig;
|
||
dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
|
||
if (dwo_entry == NULL)
|
||
return NULL;
|
||
|
||
/* If the global table doesn't have an entry for this TU, add one. */
|
||
if (sig_entry == NULL)
|
||
sig_entry = add_type_unit (sig, slot);
|
||
|
||
fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
|
||
sig_entry->per_cu.tu_read = 1;
|
||
return sig_entry;
|
||
}
|
||
|
||
/* Subroutine of lookup_signatured_type.
|
||
Look up the type for signature SIG, and if we can't find SIG in .gdb_index
|
||
then try the DWP file. If the TU stub (skeleton) has been removed then
|
||
it won't be in .gdb_index. */
|
||
|
||
static struct signatured_type *
|
||
lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
struct dwp_file *dwp_file = get_dwp_file ();
|
||
struct dwo_unit *dwo_entry;
|
||
struct signatured_type find_sig_entry, *sig_entry;
|
||
void **slot;
|
||
|
||
gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
|
||
gdb_assert (dwp_file != NULL);
|
||
|
||
/* If TU skeletons have been removed then we may not have read in any
|
||
TUs yet. */
|
||
if (dwarf2_per_objfile->signatured_types == NULL)
|
||
{
|
||
dwarf2_per_objfile->signatured_types
|
||
= allocate_signatured_type_table (objfile);
|
||
}
|
||
|
||
find_sig_entry.signature = sig;
|
||
slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
|
||
&find_sig_entry, INSERT);
|
||
sig_entry = (struct signatured_type *) *slot;
|
||
|
||
/* Have we already tried to read this TU?
|
||
Note: sig_entry can be NULL if the skeleton TU was removed (thus it
|
||
needn't exist in the global table yet). */
|
||
if (sig_entry != NULL)
|
||
return sig_entry;
|
||
|
||
if (dwp_file->tus == NULL)
|
||
return NULL;
|
||
dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
|
||
sig, 1 /* is_debug_types */);
|
||
if (dwo_entry == NULL)
|
||
return NULL;
|
||
|
||
sig_entry = add_type_unit (sig, slot);
|
||
fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
|
||
|
||
return sig_entry;
|
||
}
|
||
|
||
/* Lookup a signature based type for DW_FORM_ref_sig8.
|
||
Returns NULL if signature SIG is not present in the table.
|
||
It is up to the caller to complain about this. */
|
||
|
||
static struct signatured_type *
|
||
lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
|
||
{
|
||
if (cu->dwo_unit
|
||
&& dwarf2_per_objfile->using_index)
|
||
{
|
||
/* We're in a DWO/DWP file, and we're using .gdb_index.
|
||
These cases require special processing. */
|
||
if (get_dwp_file () == NULL)
|
||
return lookup_dwo_signatured_type (cu, sig);
|
||
else
|
||
return lookup_dwp_signatured_type (cu, sig);
|
||
}
|
||
else
|
||
{
|
||
struct signatured_type find_entry, *entry;
|
||
|
||
if (dwarf2_per_objfile->signatured_types == NULL)
|
||
return NULL;
|
||
find_entry.signature = sig;
|
||
entry = ((struct signatured_type *)
|
||
htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
|
||
return entry;
|
||
}
|
||
}
|
||
|
||
/* Low level DIE reading support. */
|
||
|
||
/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
|
||
|
||
static void
|
||
init_cu_die_reader (struct die_reader_specs *reader,
|
||
struct dwarf2_cu *cu,
|
||
struct dwarf2_section_info *section,
|
||
struct dwo_file *dwo_file)
|
||
{
|
||
gdb_assert (section->readin && section->buffer != NULL);
|
||
reader->abfd = get_section_bfd_owner (section);
|
||
reader->cu = cu;
|
||
reader->dwo_file = dwo_file;
|
||
reader->die_section = section;
|
||
reader->buffer = section->buffer;
|
||
reader->buffer_end = section->buffer + section->size;
|
||
reader->comp_dir = NULL;
|
||
}
|
||
|
||
/* Subroutine of init_cutu_and_read_dies to simplify it.
|
||
Read in the rest of a CU/TU top level DIE from DWO_UNIT.
|
||
There's just a lot of work to do, and init_cutu_and_read_dies is big enough
|
||
already.
|
||
|
||
STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
|
||
from it to the DIE in the DWO. If NULL we are skipping the stub.
|
||
STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
|
||
from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
|
||
attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
|
||
STUB_COMP_DIR may be non-NULL.
|
||
*RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
|
||
are filled in with the info of the DIE from the DWO file.
|
||
ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
|
||
provided an abbrev table to use.
|
||
The result is non-zero if a valid (non-dummy) DIE was found. */
|
||
|
||
static int
|
||
read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
|
||
struct dwo_unit *dwo_unit,
|
||
int abbrev_table_provided,
|
||
struct die_info *stub_comp_unit_die,
|
||
const char *stub_comp_dir,
|
||
struct die_reader_specs *result_reader,
|
||
const gdb_byte **result_info_ptr,
|
||
struct die_info **result_comp_unit_die,
|
||
int *result_has_children)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
struct dwarf2_cu *cu = this_cu->cu;
|
||
struct dwarf2_section_info *section;
|
||
bfd *abfd;
|
||
const gdb_byte *begin_info_ptr, *info_ptr;
|
||
ULONGEST signature; /* Or dwo_id. */
|
||
struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
|
||
int i,num_extra_attrs;
|
||
struct dwarf2_section_info *dwo_abbrev_section;
|
||
struct attribute *attr;
|
||
struct die_info *comp_unit_die;
|
||
|
||
/* At most one of these may be provided. */
|
||
gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
|
||
|
||
/* These attributes aren't processed until later:
|
||
DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
|
||
DW_AT_comp_dir is used now, to find the DWO file, but it is also
|
||
referenced later. However, these attributes are found in the stub
|
||
which we won't have later. In order to not impose this complication
|
||
on the rest of the code, we read them here and copy them to the
|
||
DWO CU/TU die. */
|
||
|
||
stmt_list = NULL;
|
||
low_pc = NULL;
|
||
high_pc = NULL;
|
||
ranges = NULL;
|
||
comp_dir = NULL;
|
||
|
||
if (stub_comp_unit_die != NULL)
|
||
{
|
||
/* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
|
||
DWO file. */
|
||
if (! this_cu->is_debug_types)
|
||
stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
|
||
low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
|
||
high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
|
||
ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
|
||
comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
|
||
|
||
/* There should be a DW_AT_addr_base attribute here (if needed).
|
||
We need the value before we can process DW_FORM_GNU_addr_index. */
|
||
cu->addr_base = 0;
|
||
attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
|
||
if (attr)
|
||
cu->addr_base = DW_UNSND (attr);
|
||
|
||
/* There should be a DW_AT_ranges_base attribute here (if needed).
|
||
We need the value before we can process DW_AT_ranges. */
|
||
cu->ranges_base = 0;
|
||
attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
|
||
if (attr)
|
||
cu->ranges_base = DW_UNSND (attr);
|
||
}
|
||
else if (stub_comp_dir != NULL)
|
||
{
|
||
/* Reconstruct the comp_dir attribute to simplify the code below. */
|
||
comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
|
||
comp_dir->name = DW_AT_comp_dir;
|
||
comp_dir->form = DW_FORM_string;
|
||
DW_STRING_IS_CANONICAL (comp_dir) = 0;
|
||
DW_STRING (comp_dir) = stub_comp_dir;
|
||
}
|
||
|
||
/* Set up for reading the DWO CU/TU. */
|
||
cu->dwo_unit = dwo_unit;
|
||
section = dwo_unit->section;
|
||
dwarf2_read_section (objfile, section);
|
||
abfd = get_section_bfd_owner (section);
|
||
begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
|
||
dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
|
||
init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
|
||
|
||
if (this_cu->is_debug_types)
|
||
{
|
||
ULONGEST header_signature;
|
||
cu_offset type_offset_in_tu;
|
||
struct signatured_type *sig_type = (struct signatured_type *) this_cu;
|
||
|
||
info_ptr = read_and_check_type_unit_head (&cu->header, section,
|
||
dwo_abbrev_section,
|
||
info_ptr,
|
||
&header_signature,
|
||
&type_offset_in_tu);
|
||
/* This is not an assert because it can be caused by bad debug info. */
|
||
if (sig_type->signature != header_signature)
|
||
{
|
||
error (_("Dwarf Error: signature mismatch %s vs %s while reading"
|
||
" TU at offset 0x%x [in module %s]"),
|
||
hex_string (sig_type->signature),
|
||
hex_string (header_signature),
|
||
dwo_unit->offset.sect_off,
|
||
bfd_get_filename (abfd));
|
||
}
|
||
gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
|
||
/* For DWOs coming from DWP files, we don't know the CU length
|
||
nor the type's offset in the TU until now. */
|
||
dwo_unit->length = get_cu_length (&cu->header);
|
||
dwo_unit->type_offset_in_tu = type_offset_in_tu;
|
||
|
||
/* Establish the type offset that can be used to lookup the type.
|
||
For DWO files, we don't know it until now. */
|
||
sig_type->type_offset_in_section.sect_off =
|
||
dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
|
||
}
|
||
else
|
||
{
|
||
info_ptr = read_and_check_comp_unit_head (&cu->header, section,
|
||
dwo_abbrev_section,
|
||
info_ptr, 0);
|
||
gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
|
||
/* For DWOs coming from DWP files, we don't know the CU length
|
||
until now. */
|
||
dwo_unit->length = get_cu_length (&cu->header);
|
||
}
|
||
|
||
/* Replace the CU's original abbrev table with the DWO's.
|
||
Reminder: We can't read the abbrev table until we've read the header. */
|
||
if (abbrev_table_provided)
|
||
{
|
||
/* Don't free the provided abbrev table, the caller of
|
||
init_cutu_and_read_dies owns it. */
|
||
dwarf2_read_abbrevs (cu, dwo_abbrev_section);
|
||
/* Ensure the DWO abbrev table gets freed. */
|
||
make_cleanup (dwarf2_free_abbrev_table, cu);
|
||
}
|
||
else
|
||
{
|
||
dwarf2_free_abbrev_table (cu);
|
||
dwarf2_read_abbrevs (cu, dwo_abbrev_section);
|
||
/* Leave any existing abbrev table cleanup as is. */
|
||
}
|
||
|
||
/* Read in the die, but leave space to copy over the attributes
|
||
from the stub. This has the benefit of simplifying the rest of
|
||
the code - all the work to maintain the illusion of a single
|
||
DW_TAG_{compile,type}_unit DIE is done here. */
|
||
num_extra_attrs = ((stmt_list != NULL)
|
||
+ (low_pc != NULL)
|
||
+ (high_pc != NULL)
|
||
+ (ranges != NULL)
|
||
+ (comp_dir != NULL));
|
||
info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
|
||
result_has_children, num_extra_attrs);
|
||
|
||
/* Copy over the attributes from the stub to the DIE we just read in. */
|
||
comp_unit_die = *result_comp_unit_die;
|
||
i = comp_unit_die->num_attrs;
|
||
if (stmt_list != NULL)
|
||
comp_unit_die->attrs[i++] = *stmt_list;
|
||
if (low_pc != NULL)
|
||
comp_unit_die->attrs[i++] = *low_pc;
|
||
if (high_pc != NULL)
|
||
comp_unit_die->attrs[i++] = *high_pc;
|
||
if (ranges != NULL)
|
||
comp_unit_die->attrs[i++] = *ranges;
|
||
if (comp_dir != NULL)
|
||
comp_unit_die->attrs[i++] = *comp_dir;
|
||
comp_unit_die->num_attrs += num_extra_attrs;
|
||
|
||
if (dwarf_die_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"Read die from %s@0x%x of %s:\n",
|
||
get_section_name (section),
|
||
(unsigned) (begin_info_ptr - section->buffer),
|
||
bfd_get_filename (abfd));
|
||
dump_die (comp_unit_die, dwarf_die_debug);
|
||
}
|
||
|
||
/* Save the comp_dir attribute. If there is no DWP file then we'll read
|
||
TUs by skipping the stub and going directly to the entry in the DWO file.
|
||
However, skipping the stub means we won't get DW_AT_comp_dir, so we have
|
||
to get it via circuitous means. Blech. */
|
||
if (comp_dir != NULL)
|
||
result_reader->comp_dir = DW_STRING (comp_dir);
|
||
|
||
/* Skip dummy compilation units. */
|
||
if (info_ptr >= begin_info_ptr + dwo_unit->length
|
||
|| peek_abbrev_code (abfd, info_ptr) == 0)
|
||
return 0;
|
||
|
||
*result_info_ptr = info_ptr;
|
||
return 1;
|
||
}
|
||
|
||
/* Subroutine of init_cutu_and_read_dies to simplify it.
|
||
Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
|
||
Returns NULL if the specified DWO unit cannot be found. */
|
||
|
||
static struct dwo_unit *
|
||
lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
|
||
struct die_info *comp_unit_die)
|
||
{
|
||
struct dwarf2_cu *cu = this_cu->cu;
|
||
struct attribute *attr;
|
||
ULONGEST signature;
|
||
struct dwo_unit *dwo_unit;
|
||
const char *comp_dir, *dwo_name;
|
||
|
||
gdb_assert (cu != NULL);
|
||
|
||
/* Yeah, we look dwo_name up again, but it simplifies the code. */
|
||
dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
|
||
comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
|
||
|
||
if (this_cu->is_debug_types)
|
||
{
|
||
struct signatured_type *sig_type;
|
||
|
||
/* Since this_cu is the first member of struct signatured_type,
|
||
we can go from a pointer to one to a pointer to the other. */
|
||
sig_type = (struct signatured_type *) this_cu;
|
||
signature = sig_type->signature;
|
||
dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
|
||
}
|
||
else
|
||
{
|
||
struct attribute *attr;
|
||
|
||
attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
|
||
if (! attr)
|
||
error (_("Dwarf Error: missing dwo_id for dwo_name %s"
|
||
" [in module %s]"),
|
||
dwo_name, objfile_name (this_cu->objfile));
|
||
signature = DW_UNSND (attr);
|
||
dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
|
||
signature);
|
||
}
|
||
|
||
return dwo_unit;
|
||
}
|
||
|
||
/* Subroutine of init_cutu_and_read_dies to simplify it.
|
||
See it for a description of the parameters.
|
||
Read a TU directly from a DWO file, bypassing the stub.
|
||
|
||
Note: This function could be a little bit simpler if we shared cleanups
|
||
with our caller, init_cutu_and_read_dies. That's generally a fragile thing
|
||
to do, so we keep this function self-contained. Or we could move this
|
||
into our caller, but it's complex enough already. */
|
||
|
||
static void
|
||
init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
|
||
int use_existing_cu, int keep,
|
||
die_reader_func_ftype *die_reader_func,
|
||
void *data)
|
||
{
|
||
struct dwarf2_cu *cu;
|
||
struct signatured_type *sig_type;
|
||
struct cleanup *cleanups, *free_cu_cleanup = NULL;
|
||
struct die_reader_specs reader;
|
||
const gdb_byte *info_ptr;
|
||
struct die_info *comp_unit_die;
|
||
int has_children;
|
||
|
||
/* Verify we can do the following downcast, and that we have the
|
||
data we need. */
|
||
gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
|
||
sig_type = (struct signatured_type *) this_cu;
|
||
gdb_assert (sig_type->dwo_unit != NULL);
|
||
|
||
cleanups = make_cleanup (null_cleanup, NULL);
|
||
|
||
if (use_existing_cu && this_cu->cu != NULL)
|
||
{
|
||
gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
|
||
cu = this_cu->cu;
|
||
/* There's no need to do the rereading_dwo_cu handling that
|
||
init_cutu_and_read_dies does since we don't read the stub. */
|
||
}
|
||
else
|
||
{
|
||
/* If !use_existing_cu, this_cu->cu must be NULL. */
|
||
gdb_assert (this_cu->cu == NULL);
|
||
cu = XNEW (struct dwarf2_cu);
|
||
init_one_comp_unit (cu, this_cu);
|
||
/* If an error occurs while loading, release our storage. */
|
||
free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
|
||
}
|
||
|
||
/* A future optimization, if needed, would be to use an existing
|
||
abbrev table. When reading DWOs with skeletonless TUs, all the TUs
|
||
could share abbrev tables. */
|
||
|
||
if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
|
||
0 /* abbrev_table_provided */,
|
||
NULL /* stub_comp_unit_die */,
|
||
sig_type->dwo_unit->dwo_file->comp_dir,
|
||
&reader, &info_ptr,
|
||
&comp_unit_die, &has_children) == 0)
|
||
{
|
||
/* Dummy die. */
|
||
do_cleanups (cleanups);
|
||
return;
|
||
}
|
||
|
||
/* All the "real" work is done here. */
|
||
die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
|
||
|
||
/* This duplicates the code in init_cutu_and_read_dies,
|
||
but the alternative is making the latter more complex.
|
||
This function is only for the special case of using DWO files directly:
|
||
no point in overly complicating the general case just to handle this. */
|
||
if (free_cu_cleanup != NULL)
|
||
{
|
||
if (keep)
|
||
{
|
||
/* We've successfully allocated this compilation unit. Let our
|
||
caller clean it up when finished with it. */
|
||
discard_cleanups (free_cu_cleanup);
|
||
|
||
/* We can only discard free_cu_cleanup and all subsequent cleanups.
|
||
So we have to manually free the abbrev table. */
|
||
dwarf2_free_abbrev_table (cu);
|
||
|
||
/* Link this CU into read_in_chain. */
|
||
this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
|
||
dwarf2_per_objfile->read_in_chain = this_cu;
|
||
}
|
||
else
|
||
do_cleanups (free_cu_cleanup);
|
||
}
|
||
|
||
do_cleanups (cleanups);
|
||
}
|
||
|
||
/* Initialize a CU (or TU) and read its DIEs.
|
||
If the CU defers to a DWO file, read the DWO file as well.
|
||
|
||
ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
|
||
Otherwise the table specified in the comp unit header is read in and used.
|
||
This is an optimization for when we already have the abbrev table.
|
||
|
||
If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
|
||
Otherwise, a new CU is allocated with xmalloc.
|
||
|
||
If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
|
||
read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
|
||
|
||
WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
|
||
linker) then DIE_READER_FUNC will not get called. */
|
||
|
||
static void
|
||
init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
|
||
struct abbrev_table *abbrev_table,
|
||
int use_existing_cu, int keep,
|
||
die_reader_func_ftype *die_reader_func,
|
||
void *data)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
struct dwarf2_section_info *section = this_cu->section;
|
||
bfd *abfd = get_section_bfd_owner (section);
|
||
struct dwarf2_cu *cu;
|
||
const gdb_byte *begin_info_ptr, *info_ptr;
|
||
struct die_reader_specs reader;
|
||
struct die_info *comp_unit_die;
|
||
int has_children;
|
||
struct attribute *attr;
|
||
struct cleanup *cleanups, *free_cu_cleanup = NULL;
|
||
struct signatured_type *sig_type = NULL;
|
||
struct dwarf2_section_info *abbrev_section;
|
||
/* Non-zero if CU currently points to a DWO file and we need to
|
||
reread it. When this happens we need to reread the skeleton die
|
||
before we can reread the DWO file (this only applies to CUs, not TUs). */
|
||
int rereading_dwo_cu = 0;
|
||
|
||
if (dwarf_die_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
|
||
this_cu->is_debug_types ? "type" : "comp",
|
||
this_cu->offset.sect_off);
|
||
|
||
if (use_existing_cu)
|
||
gdb_assert (keep);
|
||
|
||
/* If we're reading a TU directly from a DWO file, including a virtual DWO
|
||
file (instead of going through the stub), short-circuit all of this. */
|
||
if (this_cu->reading_dwo_directly)
|
||
{
|
||
/* Narrow down the scope of possibilities to have to understand. */
|
||
gdb_assert (this_cu->is_debug_types);
|
||
gdb_assert (abbrev_table == NULL);
|
||
init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
|
||
die_reader_func, data);
|
||
return;
|
||
}
|
||
|
||
cleanups = make_cleanup (null_cleanup, NULL);
|
||
|
||
/* This is cheap if the section is already read in. */
|
||
dwarf2_read_section (objfile, section);
|
||
|
||
begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
|
||
|
||
abbrev_section = get_abbrev_section_for_cu (this_cu);
|
||
|
||
if (use_existing_cu && this_cu->cu != NULL)
|
||
{
|
||
cu = this_cu->cu;
|
||
/* If this CU is from a DWO file we need to start over, we need to
|
||
refetch the attributes from the skeleton CU.
|
||
This could be optimized by retrieving those attributes from when we
|
||
were here the first time: the previous comp_unit_die was stored in
|
||
comp_unit_obstack. But there's no data yet that we need this
|
||
optimization. */
|
||
if (cu->dwo_unit != NULL)
|
||
rereading_dwo_cu = 1;
|
||
}
|
||
else
|
||
{
|
||
/* If !use_existing_cu, this_cu->cu must be NULL. */
|
||
gdb_assert (this_cu->cu == NULL);
|
||
cu = XNEW (struct dwarf2_cu);
|
||
init_one_comp_unit (cu, this_cu);
|
||
/* If an error occurs while loading, release our storage. */
|
||
free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
|
||
}
|
||
|
||
/* Get the header. */
|
||
if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
|
||
{
|
||
/* We already have the header, there's no need to read it in again. */
|
||
info_ptr += cu->header.first_die_offset.cu_off;
|
||
}
|
||
else
|
||
{
|
||
if (this_cu->is_debug_types)
|
||
{
|
||
ULONGEST signature;
|
||
cu_offset type_offset_in_tu;
|
||
|
||
info_ptr = read_and_check_type_unit_head (&cu->header, section,
|
||
abbrev_section, info_ptr,
|
||
&signature,
|
||
&type_offset_in_tu);
|
||
|
||
/* Since per_cu is the first member of struct signatured_type,
|
||
we can go from a pointer to one to a pointer to the other. */
|
||
sig_type = (struct signatured_type *) this_cu;
|
||
gdb_assert (sig_type->signature == signature);
|
||
gdb_assert (sig_type->type_offset_in_tu.cu_off
|
||
== type_offset_in_tu.cu_off);
|
||
gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
|
||
|
||
/* LENGTH has not been set yet for type units if we're
|
||
using .gdb_index. */
|
||
this_cu->length = get_cu_length (&cu->header);
|
||
|
||
/* Establish the type offset that can be used to lookup the type. */
|
||
sig_type->type_offset_in_section.sect_off =
|
||
this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
|
||
}
|
||
else
|
||
{
|
||
info_ptr = read_and_check_comp_unit_head (&cu->header, section,
|
||
abbrev_section,
|
||
info_ptr, 0);
|
||
|
||
gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
|
||
gdb_assert (this_cu->length == get_cu_length (&cu->header));
|
||
}
|
||
}
|
||
|
||
/* Skip dummy compilation units. */
|
||
if (info_ptr >= begin_info_ptr + this_cu->length
|
||
|| peek_abbrev_code (abfd, info_ptr) == 0)
|
||
{
|
||
do_cleanups (cleanups);
|
||
return;
|
||
}
|
||
|
||
/* If we don't have them yet, read the abbrevs for this compilation unit.
|
||
And if we need to read them now, make sure they're freed when we're
|
||
done. Note that it's important that if the CU had an abbrev table
|
||
on entry we don't free it when we're done: Somewhere up the call stack
|
||
it may be in use. */
|
||
if (abbrev_table != NULL)
|
||
{
|
||
gdb_assert (cu->abbrev_table == NULL);
|
||
gdb_assert (cu->header.abbrev_offset.sect_off
|
||
== abbrev_table->offset.sect_off);
|
||
cu->abbrev_table = abbrev_table;
|
||
}
|
||
else if (cu->abbrev_table == NULL)
|
||
{
|
||
dwarf2_read_abbrevs (cu, abbrev_section);
|
||
make_cleanup (dwarf2_free_abbrev_table, cu);
|
||
}
|
||
else if (rereading_dwo_cu)
|
||
{
|
||
dwarf2_free_abbrev_table (cu);
|
||
dwarf2_read_abbrevs (cu, abbrev_section);
|
||
}
|
||
|
||
/* Read the top level CU/TU die. */
|
||
init_cu_die_reader (&reader, cu, section, NULL);
|
||
info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
|
||
|
||
/* If we are in a DWO stub, process it and then read in the "real" CU/TU
|
||
from the DWO file.
|
||
Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
|
||
DWO CU, that this test will fail (the attribute will not be present). */
|
||
attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
|
||
if (attr)
|
||
{
|
||
struct dwo_unit *dwo_unit;
|
||
struct die_info *dwo_comp_unit_die;
|
||
|
||
if (has_children)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("compilation unit with DW_AT_GNU_dwo_name"
|
||
" has children (offset 0x%x) [in module %s]"),
|
||
this_cu->offset.sect_off, bfd_get_filename (abfd));
|
||
}
|
||
dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
|
||
if (dwo_unit != NULL)
|
||
{
|
||
if (read_cutu_die_from_dwo (this_cu, dwo_unit,
|
||
abbrev_table != NULL,
|
||
comp_unit_die, NULL,
|
||
&reader, &info_ptr,
|
||
&dwo_comp_unit_die, &has_children) == 0)
|
||
{
|
||
/* Dummy die. */
|
||
do_cleanups (cleanups);
|
||
return;
|
||
}
|
||
comp_unit_die = dwo_comp_unit_die;
|
||
}
|
||
else
|
||
{
|
||
/* Yikes, we couldn't find the rest of the DIE, we only have
|
||
the stub. A complaint has already been logged. There's
|
||
not much more we can do except pass on the stub DIE to
|
||
die_reader_func. We don't want to throw an error on bad
|
||
debug info. */
|
||
}
|
||
}
|
||
|
||
/* All of the above is setup for this call. Yikes. */
|
||
die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
|
||
|
||
/* Done, clean up. */
|
||
if (free_cu_cleanup != NULL)
|
||
{
|
||
if (keep)
|
||
{
|
||
/* We've successfully allocated this compilation unit. Let our
|
||
caller clean it up when finished with it. */
|
||
discard_cleanups (free_cu_cleanup);
|
||
|
||
/* We can only discard free_cu_cleanup and all subsequent cleanups.
|
||
So we have to manually free the abbrev table. */
|
||
dwarf2_free_abbrev_table (cu);
|
||
|
||
/* Link this CU into read_in_chain. */
|
||
this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
|
||
dwarf2_per_objfile->read_in_chain = this_cu;
|
||
}
|
||
else
|
||
do_cleanups (free_cu_cleanup);
|
||
}
|
||
|
||
do_cleanups (cleanups);
|
||
}
|
||
|
||
/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
|
||
DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
|
||
to have already done the lookup to find the DWO file).
|
||
|
||
The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
|
||
THIS_CU->is_debug_types, but nothing else.
|
||
|
||
We fill in THIS_CU->length.
|
||
|
||
WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
|
||
linker) then DIE_READER_FUNC will not get called.
|
||
|
||
THIS_CU->cu is always freed when done.
|
||
This is done in order to not leave THIS_CU->cu in a state where we have
|
||
to care whether it refers to the "main" CU or the DWO CU. */
|
||
|
||
static void
|
||
init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
|
||
struct dwo_file *dwo_file,
|
||
die_reader_func_ftype *die_reader_func,
|
||
void *data)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
struct dwarf2_section_info *section = this_cu->section;
|
||
bfd *abfd = get_section_bfd_owner (section);
|
||
struct dwarf2_section_info *abbrev_section;
|
||
struct dwarf2_cu cu;
|
||
const gdb_byte *begin_info_ptr, *info_ptr;
|
||
struct die_reader_specs reader;
|
||
struct cleanup *cleanups;
|
||
struct die_info *comp_unit_die;
|
||
int has_children;
|
||
|
||
if (dwarf_die_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
|
||
this_cu->is_debug_types ? "type" : "comp",
|
||
this_cu->offset.sect_off);
|
||
|
||
gdb_assert (this_cu->cu == NULL);
|
||
|
||
abbrev_section = (dwo_file != NULL
|
||
? &dwo_file->sections.abbrev
|
||
: get_abbrev_section_for_cu (this_cu));
|
||
|
||
/* This is cheap if the section is already read in. */
|
||
dwarf2_read_section (objfile, section);
|
||
|
||
init_one_comp_unit (&cu, this_cu);
|
||
|
||
cleanups = make_cleanup (free_stack_comp_unit, &cu);
|
||
|
||
begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
|
||
info_ptr = read_and_check_comp_unit_head (&cu.header, section,
|
||
abbrev_section, info_ptr,
|
||
this_cu->is_debug_types);
|
||
|
||
this_cu->length = get_cu_length (&cu.header);
|
||
|
||
/* Skip dummy compilation units. */
|
||
if (info_ptr >= begin_info_ptr + this_cu->length
|
||
|| peek_abbrev_code (abfd, info_ptr) == 0)
|
||
{
|
||
do_cleanups (cleanups);
|
||
return;
|
||
}
|
||
|
||
dwarf2_read_abbrevs (&cu, abbrev_section);
|
||
make_cleanup (dwarf2_free_abbrev_table, &cu);
|
||
|
||
init_cu_die_reader (&reader, &cu, section, dwo_file);
|
||
info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
|
||
|
||
die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
|
||
|
||
do_cleanups (cleanups);
|
||
}
|
||
|
||
/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
|
||
does not lookup the specified DWO file.
|
||
This cannot be used to read DWO files.
|
||
|
||
THIS_CU->cu is always freed when done.
|
||
This is done in order to not leave THIS_CU->cu in a state where we have
|
||
to care whether it refers to the "main" CU or the DWO CU.
|
||
We can revisit this if the data shows there's a performance issue. */
|
||
|
||
static void
|
||
init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
|
||
die_reader_func_ftype *die_reader_func,
|
||
void *data)
|
||
{
|
||
init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
|
||
}
|
||
|
||
/* Type Unit Groups.
|
||
|
||
Type Unit Groups are a way to collapse the set of all TUs (type units) into
|
||
a more manageable set. The grouping is done by DW_AT_stmt_list entry
|
||
so that all types coming from the same compilation (.o file) are grouped
|
||
together. A future step could be to put the types in the same symtab as
|
||
the CU the types ultimately came from. */
|
||
|
||
static hashval_t
|
||
hash_type_unit_group (const void *item)
|
||
{
|
||
const struct type_unit_group *tu_group
|
||
= (const struct type_unit_group *) item;
|
||
|
||
return hash_stmt_list_entry (&tu_group->hash);
|
||
}
|
||
|
||
static int
|
||
eq_type_unit_group (const void *item_lhs, const void *item_rhs)
|
||
{
|
||
const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
|
||
const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
|
||
|
||
return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
|
||
}
|
||
|
||
/* Allocate a hash table for type unit groups. */
|
||
|
||
static htab_t
|
||
allocate_type_unit_groups_table (void)
|
||
{
|
||
return htab_create_alloc_ex (3,
|
||
hash_type_unit_group,
|
||
eq_type_unit_group,
|
||
NULL,
|
||
&dwarf2_per_objfile->objfile->objfile_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
}
|
||
|
||
/* Type units that don't have DW_AT_stmt_list are grouped into their own
|
||
partial symtabs. We combine several TUs per psymtab to not let the size
|
||
of any one psymtab grow too big. */
|
||
#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
|
||
#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
|
||
|
||
/* Helper routine for get_type_unit_group.
|
||
Create the type_unit_group object used to hold one or more TUs. */
|
||
|
||
static struct type_unit_group *
|
||
create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
struct type_unit_group *tu_group;
|
||
|
||
tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct type_unit_group);
|
||
per_cu = &tu_group->per_cu;
|
||
per_cu->objfile = objfile;
|
||
|
||
if (dwarf2_per_objfile->using_index)
|
||
{
|
||
per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct dwarf2_per_cu_quick_data);
|
||
}
|
||
else
|
||
{
|
||
unsigned int line_offset = line_offset_struct.sect_off;
|
||
struct partial_symtab *pst;
|
||
char *name;
|
||
|
||
/* Give the symtab a useful name for debug purposes. */
|
||
if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
|
||
name = xstrprintf ("<type_units_%d>",
|
||
(line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
|
||
else
|
||
name = xstrprintf ("<type_units_at_0x%x>", line_offset);
|
||
|
||
pst = create_partial_symtab (per_cu, name);
|
||
pst->anonymous = 1;
|
||
|
||
xfree (name);
|
||
}
|
||
|
||
tu_group->hash.dwo_unit = cu->dwo_unit;
|
||
tu_group->hash.line_offset = line_offset_struct;
|
||
|
||
return tu_group;
|
||
}
|
||
|
||
/* Look up the type_unit_group for type unit CU, and create it if necessary.
|
||
STMT_LIST is a DW_AT_stmt_list attribute. */
|
||
|
||
static struct type_unit_group *
|
||
get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
|
||
{
|
||
struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
|
||
struct type_unit_group *tu_group;
|
||
void **slot;
|
||
unsigned int line_offset;
|
||
struct type_unit_group type_unit_group_for_lookup;
|
||
|
||
if (dwarf2_per_objfile->type_unit_groups == NULL)
|
||
{
|
||
dwarf2_per_objfile->type_unit_groups =
|
||
allocate_type_unit_groups_table ();
|
||
}
|
||
|
||
/* Do we need to create a new group, or can we use an existing one? */
|
||
|
||
if (stmt_list)
|
||
{
|
||
line_offset = DW_UNSND (stmt_list);
|
||
++tu_stats->nr_symtab_sharers;
|
||
}
|
||
else
|
||
{
|
||
/* Ugh, no stmt_list. Rare, but we have to handle it.
|
||
We can do various things here like create one group per TU or
|
||
spread them over multiple groups to split up the expansion work.
|
||
To avoid worst case scenarios (too many groups or too large groups)
|
||
we, umm, group them in bunches. */
|
||
line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
|
||
| (tu_stats->nr_stmt_less_type_units
|
||
/ NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
|
||
++tu_stats->nr_stmt_less_type_units;
|
||
}
|
||
|
||
type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
|
||
type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
|
||
slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
|
||
&type_unit_group_for_lookup, INSERT);
|
||
if (*slot != NULL)
|
||
{
|
||
tu_group = (struct type_unit_group *) *slot;
|
||
gdb_assert (tu_group != NULL);
|
||
}
|
||
else
|
||
{
|
||
sect_offset line_offset_struct;
|
||
|
||
line_offset_struct.sect_off = line_offset;
|
||
tu_group = create_type_unit_group (cu, line_offset_struct);
|
||
*slot = tu_group;
|
||
++tu_stats->nr_symtabs;
|
||
}
|
||
|
||
return tu_group;
|
||
}
|
||
|
||
/* Partial symbol tables. */
|
||
|
||
/* Create a psymtab named NAME and assign it to PER_CU.
|
||
|
||
The caller must fill in the following details:
|
||
dirname, textlow, texthigh. */
|
||
|
||
static struct partial_symtab *
|
||
create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
|
||
{
|
||
struct objfile *objfile = per_cu->objfile;
|
||
struct partial_symtab *pst;
|
||
|
||
pst = start_psymtab_common (objfile, name, 0,
|
||
objfile->global_psymbols.next,
|
||
objfile->static_psymbols.next);
|
||
|
||
pst->psymtabs_addrmap_supported = 1;
|
||
|
||
/* This is the glue that links PST into GDB's symbol API. */
|
||
pst->read_symtab_private = per_cu;
|
||
pst->read_symtab = dwarf2_read_symtab;
|
||
per_cu->v.psymtab = pst;
|
||
|
||
return pst;
|
||
}
|
||
|
||
/* The DATA object passed to process_psymtab_comp_unit_reader has this
|
||
type. */
|
||
|
||
struct process_psymtab_comp_unit_data
|
||
{
|
||
/* True if we are reading a DW_TAG_partial_unit. */
|
||
|
||
int want_partial_unit;
|
||
|
||
/* The "pretend" language that is used if the CU doesn't declare a
|
||
language. */
|
||
|
||
enum language pretend_language;
|
||
};
|
||
|
||
/* die_reader_func for process_psymtab_comp_unit. */
|
||
|
||
static void
|
||
process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
|
||
const gdb_byte *info_ptr,
|
||
struct die_info *comp_unit_die,
|
||
int has_children,
|
||
void *data)
|
||
{
|
||
struct dwarf2_cu *cu = reader->cu;
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
struct dwarf2_per_cu_data *per_cu = cu->per_cu;
|
||
CORE_ADDR baseaddr;
|
||
CORE_ADDR best_lowpc = 0, best_highpc = 0;
|
||
struct partial_symtab *pst;
|
||
enum pc_bounds_kind cu_bounds_kind;
|
||
const char *filename;
|
||
struct process_psymtab_comp_unit_data *info
|
||
= (struct process_psymtab_comp_unit_data *) data;
|
||
|
||
if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
|
||
return;
|
||
|
||
gdb_assert (! per_cu->is_debug_types);
|
||
|
||
prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
|
||
|
||
cu->list_in_scope = &file_symbols;
|
||
|
||
/* Allocate a new partial symbol table structure. */
|
||
filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
|
||
if (filename == NULL)
|
||
filename = "";
|
||
|
||
pst = create_partial_symtab (per_cu, filename);
|
||
|
||
/* This must be done before calling dwarf2_build_include_psymtabs. */
|
||
pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
dwarf2_find_base_address (comp_unit_die, cu);
|
||
|
||
/* Possibly set the default values of LOWPC and HIGHPC from
|
||
`DW_AT_ranges'. */
|
||
cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
|
||
&best_highpc, cu, pst);
|
||
if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
|
||
/* Store the contiguous range if it is not empty; it can be empty for
|
||
CUs with no code. */
|
||
addrmap_set_empty (objfile->psymtabs_addrmap,
|
||
gdbarch_adjust_dwarf2_addr (gdbarch,
|
||
best_lowpc + baseaddr),
|
||
gdbarch_adjust_dwarf2_addr (gdbarch,
|
||
best_highpc + baseaddr) - 1,
|
||
pst);
|
||
|
||
/* Check if comp unit has_children.
|
||
If so, read the rest of the partial symbols from this comp unit.
|
||
If not, there's no more debug_info for this comp unit. */
|
||
if (has_children)
|
||
{
|
||
struct partial_die_info *first_die;
|
||
CORE_ADDR lowpc, highpc;
|
||
|
||
lowpc = ((CORE_ADDR) -1);
|
||
highpc = ((CORE_ADDR) 0);
|
||
|
||
first_die = load_partial_dies (reader, info_ptr, 1);
|
||
|
||
scan_partial_symbols (first_die, &lowpc, &highpc,
|
||
cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
|
||
|
||
/* If we didn't find a lowpc, set it to highpc to avoid
|
||
complaints from `maint check'. */
|
||
if (lowpc == ((CORE_ADDR) -1))
|
||
lowpc = highpc;
|
||
|
||
/* If the compilation unit didn't have an explicit address range,
|
||
then use the information extracted from its child dies. */
|
||
if (cu_bounds_kind <= PC_BOUNDS_INVALID)
|
||
{
|
||
best_lowpc = lowpc;
|
||
best_highpc = highpc;
|
||
}
|
||
}
|
||
pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
|
||
pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
|
||
|
||
end_psymtab_common (objfile, pst);
|
||
|
||
if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
|
||
{
|
||
int i;
|
||
int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
|
||
struct dwarf2_per_cu_data *iter;
|
||
|
||
/* Fill in 'dependencies' here; we fill in 'users' in a
|
||
post-pass. */
|
||
pst->number_of_dependencies = len;
|
||
pst->dependencies =
|
||
XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
|
||
for (i = 0;
|
||
VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
|
||
i, iter);
|
||
++i)
|
||
pst->dependencies[i] = iter->v.psymtab;
|
||
|
||
VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
|
||
}
|
||
|
||
/* Get the list of files included in the current compilation unit,
|
||
and build a psymtab for each of them. */
|
||
dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
|
||
|
||
if (dwarf_read_debug)
|
||
{
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"Psymtab for %s unit @0x%x: %s - %s"
|
||
", %d global, %d static syms\n",
|
||
per_cu->is_debug_types ? "type" : "comp",
|
||
per_cu->offset.sect_off,
|
||
paddress (gdbarch, pst->textlow),
|
||
paddress (gdbarch, pst->texthigh),
|
||
pst->n_global_syms, pst->n_static_syms);
|
||
}
|
||
}
|
||
|
||
/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
|
||
Process compilation unit THIS_CU for a psymtab. */
|
||
|
||
static void
|
||
process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
|
||
int want_partial_unit,
|
||
enum language pretend_language)
|
||
{
|
||
struct process_psymtab_comp_unit_data info;
|
||
|
||
/* If this compilation unit was already read in, free the
|
||
cached copy in order to read it in again. This is
|
||
necessary because we skipped some symbols when we first
|
||
read in the compilation unit (see load_partial_dies).
|
||
This problem could be avoided, but the benefit is unclear. */
|
||
if (this_cu->cu != NULL)
|
||
free_one_cached_comp_unit (this_cu);
|
||
|
||
gdb_assert (! this_cu->is_debug_types);
|
||
info.want_partial_unit = want_partial_unit;
|
||
info.pretend_language = pretend_language;
|
||
init_cutu_and_read_dies (this_cu, NULL, 0, 0,
|
||
process_psymtab_comp_unit_reader,
|
||
&info);
|
||
|
||
/* Age out any secondary CUs. */
|
||
age_cached_comp_units ();
|
||
}
|
||
|
||
/* Reader function for build_type_psymtabs. */
|
||
|
||
static void
|
||
build_type_psymtabs_reader (const struct die_reader_specs *reader,
|
||
const gdb_byte *info_ptr,
|
||
struct die_info *type_unit_die,
|
||
int has_children,
|
||
void *data)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
struct dwarf2_cu *cu = reader->cu;
|
||
struct dwarf2_per_cu_data *per_cu = cu->per_cu;
|
||
struct signatured_type *sig_type;
|
||
struct type_unit_group *tu_group;
|
||
struct attribute *attr;
|
||
struct partial_die_info *first_die;
|
||
CORE_ADDR lowpc, highpc;
|
||
struct partial_symtab *pst;
|
||
|
||
gdb_assert (data == NULL);
|
||
gdb_assert (per_cu->is_debug_types);
|
||
sig_type = (struct signatured_type *) per_cu;
|
||
|
||
if (! has_children)
|
||
return;
|
||
|
||
attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
|
||
tu_group = get_type_unit_group (cu, attr);
|
||
|
||
VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
|
||
|
||
prepare_one_comp_unit (cu, type_unit_die, language_minimal);
|
||
cu->list_in_scope = &file_symbols;
|
||
pst = create_partial_symtab (per_cu, "");
|
||
pst->anonymous = 1;
|
||
|
||
first_die = load_partial_dies (reader, info_ptr, 1);
|
||
|
||
lowpc = (CORE_ADDR) -1;
|
||
highpc = (CORE_ADDR) 0;
|
||
scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
|
||
|
||
end_psymtab_common (objfile, pst);
|
||
}
|
||
|
||
/* Struct used to sort TUs by their abbreviation table offset. */
|
||
|
||
struct tu_abbrev_offset
|
||
{
|
||
struct signatured_type *sig_type;
|
||
sect_offset abbrev_offset;
|
||
};
|
||
|
||
/* Helper routine for build_type_psymtabs_1, passed to qsort. */
|
||
|
||
static int
|
||
sort_tu_by_abbrev_offset (const void *ap, const void *bp)
|
||
{
|
||
const struct tu_abbrev_offset * const *a
|
||
= (const struct tu_abbrev_offset * const*) ap;
|
||
const struct tu_abbrev_offset * const *b
|
||
= (const struct tu_abbrev_offset * const*) bp;
|
||
unsigned int aoff = (*a)->abbrev_offset.sect_off;
|
||
unsigned int boff = (*b)->abbrev_offset.sect_off;
|
||
|
||
return (aoff > boff) - (aoff < boff);
|
||
}
|
||
|
||
/* Efficiently read all the type units.
|
||
This does the bulk of the work for build_type_psymtabs.
|
||
|
||
The efficiency is because we sort TUs by the abbrev table they use and
|
||
only read each abbrev table once. In one program there are 200K TUs
|
||
sharing 8K abbrev tables.
|
||
|
||
The main purpose of this function is to support building the
|
||
dwarf2_per_objfile->type_unit_groups table.
|
||
TUs typically share the DW_AT_stmt_list of the CU they came from, so we
|
||
can collapse the search space by grouping them by stmt_list.
|
||
The savings can be significant, in the same program from above the 200K TUs
|
||
share 8K stmt_list tables.
|
||
|
||
FUNC is expected to call get_type_unit_group, which will create the
|
||
struct type_unit_group if necessary and add it to
|
||
dwarf2_per_objfile->type_unit_groups. */
|
||
|
||
static void
|
||
build_type_psymtabs_1 (void)
|
||
{
|
||
struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
|
||
struct cleanup *cleanups;
|
||
struct abbrev_table *abbrev_table;
|
||
sect_offset abbrev_offset;
|
||
struct tu_abbrev_offset *sorted_by_abbrev;
|
||
int i;
|
||
|
||
/* It's up to the caller to not call us multiple times. */
|
||
gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
|
||
|
||
if (dwarf2_per_objfile->n_type_units == 0)
|
||
return;
|
||
|
||
/* TUs typically share abbrev tables, and there can be way more TUs than
|
||
abbrev tables. Sort by abbrev table to reduce the number of times we
|
||
read each abbrev table in.
|
||
Alternatives are to punt or to maintain a cache of abbrev tables.
|
||
This is simpler and efficient enough for now.
|
||
|
||
Later we group TUs by their DW_AT_stmt_list value (as this defines the
|
||
symtab to use). Typically TUs with the same abbrev offset have the same
|
||
stmt_list value too so in practice this should work well.
|
||
|
||
The basic algorithm here is:
|
||
|
||
sort TUs by abbrev table
|
||
for each TU with same abbrev table:
|
||
read abbrev table if first user
|
||
read TU top level DIE
|
||
[IWBN if DWO skeletons had DW_AT_stmt_list]
|
||
call FUNC */
|
||
|
||
if (dwarf_read_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
|
||
|
||
/* Sort in a separate table to maintain the order of all_type_units
|
||
for .gdb_index: TU indices directly index all_type_units. */
|
||
sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
|
||
dwarf2_per_objfile->n_type_units);
|
||
for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
|
||
{
|
||
struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
|
||
|
||
sorted_by_abbrev[i].sig_type = sig_type;
|
||
sorted_by_abbrev[i].abbrev_offset =
|
||
read_abbrev_offset (sig_type->per_cu.section,
|
||
sig_type->per_cu.offset);
|
||
}
|
||
cleanups = make_cleanup (xfree, sorted_by_abbrev);
|
||
qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
|
||
sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
|
||
|
||
abbrev_offset.sect_off = ~(unsigned) 0;
|
||
abbrev_table = NULL;
|
||
make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
|
||
|
||
for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
|
||
{
|
||
const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
|
||
|
||
/* Switch to the next abbrev table if necessary. */
|
||
if (abbrev_table == NULL
|
||
|| tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
|
||
{
|
||
if (abbrev_table != NULL)
|
||
{
|
||
abbrev_table_free (abbrev_table);
|
||
/* Reset to NULL in case abbrev_table_read_table throws
|
||
an error: abbrev_table_free_cleanup will get called. */
|
||
abbrev_table = NULL;
|
||
}
|
||
abbrev_offset = tu->abbrev_offset;
|
||
abbrev_table =
|
||
abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
|
||
abbrev_offset);
|
||
++tu_stats->nr_uniq_abbrev_tables;
|
||
}
|
||
|
||
init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
|
||
build_type_psymtabs_reader, NULL);
|
||
}
|
||
|
||
do_cleanups (cleanups);
|
||
}
|
||
|
||
/* Print collected type unit statistics. */
|
||
|
||
static void
|
||
print_tu_stats (void)
|
||
{
|
||
struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
|
||
|
||
fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
|
||
fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
|
||
dwarf2_per_objfile->n_type_units);
|
||
fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
|
||
tu_stats->nr_uniq_abbrev_tables);
|
||
fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
|
||
tu_stats->nr_symtabs);
|
||
fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
|
||
tu_stats->nr_symtab_sharers);
|
||
fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
|
||
tu_stats->nr_stmt_less_type_units);
|
||
fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
|
||
tu_stats->nr_all_type_units_reallocs);
|
||
}
|
||
|
||
/* Traversal function for build_type_psymtabs. */
|
||
|
||
static int
|
||
build_type_psymtab_dependencies (void **slot, void *info)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
|
||
struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
|
||
struct partial_symtab *pst = per_cu->v.psymtab;
|
||
int len = VEC_length (sig_type_ptr, tu_group->tus);
|
||
struct signatured_type *iter;
|
||
int i;
|
||
|
||
gdb_assert (len > 0);
|
||
gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
|
||
|
||
pst->number_of_dependencies = len;
|
||
pst->dependencies =
|
||
XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
|
||
for (i = 0;
|
||
VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
|
||
++i)
|
||
{
|
||
gdb_assert (iter->per_cu.is_debug_types);
|
||
pst->dependencies[i] = iter->per_cu.v.psymtab;
|
||
iter->type_unit_group = tu_group;
|
||
}
|
||
|
||
VEC_free (sig_type_ptr, tu_group->tus);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
|
||
Build partial symbol tables for the .debug_types comp-units. */
|
||
|
||
static void
|
||
build_type_psymtabs (struct objfile *objfile)
|
||
{
|
||
if (! create_all_type_units (objfile))
|
||
return;
|
||
|
||
build_type_psymtabs_1 ();
|
||
}
|
||
|
||
/* Traversal function for process_skeletonless_type_unit.
|
||
Read a TU in a DWO file and build partial symbols for it. */
|
||
|
||
static int
|
||
process_skeletonless_type_unit (void **slot, void *info)
|
||
{
|
||
struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
|
||
struct objfile *objfile = (struct objfile *) info;
|
||
struct signatured_type find_entry, *entry;
|
||
|
||
/* If this TU doesn't exist in the global table, add it and read it in. */
|
||
|
||
if (dwarf2_per_objfile->signatured_types == NULL)
|
||
{
|
||
dwarf2_per_objfile->signatured_types
|
||
= allocate_signatured_type_table (objfile);
|
||
}
|
||
|
||
find_entry.signature = dwo_unit->signature;
|
||
slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
|
||
INSERT);
|
||
/* If we've already seen this type there's nothing to do. What's happening
|
||
is we're doing our own version of comdat-folding here. */
|
||
if (*slot != NULL)
|
||
return 1;
|
||
|
||
/* This does the job that create_all_type_units would have done for
|
||
this TU. */
|
||
entry = add_type_unit (dwo_unit->signature, slot);
|
||
fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
|
||
*slot = entry;
|
||
|
||
/* This does the job that build_type_psymtabs_1 would have done. */
|
||
init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
|
||
build_type_psymtabs_reader, NULL);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Traversal function for process_skeletonless_type_units. */
|
||
|
||
static int
|
||
process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
|
||
{
|
||
struct dwo_file *dwo_file = (struct dwo_file *) *slot;
|
||
|
||
if (dwo_file->tus != NULL)
|
||
{
|
||
htab_traverse_noresize (dwo_file->tus,
|
||
process_skeletonless_type_unit, info);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Scan all TUs of DWO files, verifying we've processed them.
|
||
This is needed in case a TU was emitted without its skeleton.
|
||
Note: This can't be done until we know what all the DWO files are. */
|
||
|
||
static void
|
||
process_skeletonless_type_units (struct objfile *objfile)
|
||
{
|
||
/* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
|
||
if (get_dwp_file () == NULL
|
||
&& dwarf2_per_objfile->dwo_files != NULL)
|
||
{
|
||
htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
|
||
process_dwo_file_for_skeletonless_type_units,
|
||
objfile);
|
||
}
|
||
}
|
||
|
||
/* A cleanup function that clears objfile's psymtabs_addrmap field. */
|
||
|
||
static void
|
||
psymtabs_addrmap_cleanup (void *o)
|
||
{
|
||
struct objfile *objfile = (struct objfile *) o;
|
||
|
||
objfile->psymtabs_addrmap = NULL;
|
||
}
|
||
|
||
/* Compute the 'user' field for each psymtab in OBJFILE. */
|
||
|
||
static void
|
||
set_partial_user (struct objfile *objfile)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
|
||
struct partial_symtab *pst = per_cu->v.psymtab;
|
||
int j;
|
||
|
||
if (pst == NULL)
|
||
continue;
|
||
|
||
for (j = 0; j < pst->number_of_dependencies; ++j)
|
||
{
|
||
/* Set the 'user' field only if it is not already set. */
|
||
if (pst->dependencies[j]->user == NULL)
|
||
pst->dependencies[j]->user = pst;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Build the partial symbol table by doing a quick pass through the
|
||
.debug_info and .debug_abbrev sections. */
|
||
|
||
static void
|
||
dwarf2_build_psymtabs_hard (struct objfile *objfile)
|
||
{
|
||
struct cleanup *back_to, *addrmap_cleanup;
|
||
struct obstack temp_obstack;
|
||
int i;
|
||
|
||
if (dwarf_read_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
|
||
objfile_name (objfile));
|
||
}
|
||
|
||
dwarf2_per_objfile->reading_partial_symbols = 1;
|
||
|
||
dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
|
||
|
||
/* Any cached compilation units will be linked by the per-objfile
|
||
read_in_chain. Make sure to free them when we're done. */
|
||
back_to = make_cleanup (free_cached_comp_units, NULL);
|
||
|
||
build_type_psymtabs (objfile);
|
||
|
||
create_all_comp_units (objfile);
|
||
|
||
/* Create a temporary address map on a temporary obstack. We later
|
||
copy this to the final obstack. */
|
||
obstack_init (&temp_obstack);
|
||
make_cleanup_obstack_free (&temp_obstack);
|
||
objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
|
||
addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
|
||
|
||
for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
|
||
|
||
process_psymtab_comp_unit (per_cu, 0, language_minimal);
|
||
}
|
||
|
||
/* This has to wait until we read the CUs, we need the list of DWOs. */
|
||
process_skeletonless_type_units (objfile);
|
||
|
||
/* Now that all TUs have been processed we can fill in the dependencies. */
|
||
if (dwarf2_per_objfile->type_unit_groups != NULL)
|
||
{
|
||
htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
|
||
build_type_psymtab_dependencies, NULL);
|
||
}
|
||
|
||
if (dwarf_read_debug)
|
||
print_tu_stats ();
|
||
|
||
set_partial_user (objfile);
|
||
|
||
objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
|
||
&objfile->objfile_obstack);
|
||
discard_cleanups (addrmap_cleanup);
|
||
|
||
do_cleanups (back_to);
|
||
|
||
if (dwarf_read_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
|
||
objfile_name (objfile));
|
||
}
|
||
|
||
/* die_reader_func for load_partial_comp_unit. */
|
||
|
||
static void
|
||
load_partial_comp_unit_reader (const struct die_reader_specs *reader,
|
||
const gdb_byte *info_ptr,
|
||
struct die_info *comp_unit_die,
|
||
int has_children,
|
||
void *data)
|
||
{
|
||
struct dwarf2_cu *cu = reader->cu;
|
||
|
||
prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
|
||
|
||
/* Check if comp unit has_children.
|
||
If so, read the rest of the partial symbols from this comp unit.
|
||
If not, there's no more debug_info for this comp unit. */
|
||
if (has_children)
|
||
load_partial_dies (reader, info_ptr, 0);
|
||
}
|
||
|
||
/* Load the partial DIEs for a secondary CU into memory.
|
||
This is also used when rereading a primary CU with load_all_dies. */
|
||
|
||
static void
|
||
load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
|
||
{
|
||
init_cutu_and_read_dies (this_cu, NULL, 1, 1,
|
||
load_partial_comp_unit_reader, NULL);
|
||
}
|
||
|
||
static void
|
||
read_comp_units_from_section (struct objfile *objfile,
|
||
struct dwarf2_section_info *section,
|
||
unsigned int is_dwz,
|
||
int *n_allocated,
|
||
int *n_comp_units,
|
||
struct dwarf2_per_cu_data ***all_comp_units)
|
||
{
|
||
const gdb_byte *info_ptr;
|
||
bfd *abfd = get_section_bfd_owner (section);
|
||
|
||
if (dwarf_read_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
|
||
get_section_name (section),
|
||
get_section_file_name (section));
|
||
|
||
dwarf2_read_section (objfile, section);
|
||
|
||
info_ptr = section->buffer;
|
||
|
||
while (info_ptr < section->buffer + section->size)
|
||
{
|
||
unsigned int length, initial_length_size;
|
||
struct dwarf2_per_cu_data *this_cu;
|
||
sect_offset offset;
|
||
|
||
offset.sect_off = info_ptr - section->buffer;
|
||
|
||
/* Read just enough information to find out where the next
|
||
compilation unit is. */
|
||
length = read_initial_length (abfd, info_ptr, &initial_length_size);
|
||
|
||
/* Save the compilation unit for later lookup. */
|
||
this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
|
||
memset (this_cu, 0, sizeof (*this_cu));
|
||
this_cu->offset = offset;
|
||
this_cu->length = length + initial_length_size;
|
||
this_cu->is_dwz = is_dwz;
|
||
this_cu->objfile = objfile;
|
||
this_cu->section = section;
|
||
|
||
if (*n_comp_units == *n_allocated)
|
||
{
|
||
*n_allocated *= 2;
|
||
*all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
|
||
*all_comp_units, *n_allocated);
|
||
}
|
||
(*all_comp_units)[*n_comp_units] = this_cu;
|
||
++*n_comp_units;
|
||
|
||
info_ptr = info_ptr + this_cu->length;
|
||
}
|
||
}
|
||
|
||
/* Create a list of all compilation units in OBJFILE.
|
||
This is only done for -readnow and building partial symtabs. */
|
||
|
||
static void
|
||
create_all_comp_units (struct objfile *objfile)
|
||
{
|
||
int n_allocated;
|
||
int n_comp_units;
|
||
struct dwarf2_per_cu_data **all_comp_units;
|
||
struct dwz_file *dwz;
|
||
|
||
n_comp_units = 0;
|
||
n_allocated = 10;
|
||
all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
|
||
|
||
read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
|
||
&n_allocated, &n_comp_units, &all_comp_units);
|
||
|
||
dwz = dwarf2_get_dwz_file ();
|
||
if (dwz != NULL)
|
||
read_comp_units_from_section (objfile, &dwz->info, 1,
|
||
&n_allocated, &n_comp_units,
|
||
&all_comp_units);
|
||
|
||
dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
|
||
struct dwarf2_per_cu_data *,
|
||
n_comp_units);
|
||
memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
|
||
n_comp_units * sizeof (struct dwarf2_per_cu_data *));
|
||
xfree (all_comp_units);
|
||
dwarf2_per_objfile->n_comp_units = n_comp_units;
|
||
}
|
||
|
||
/* Process all loaded DIEs for compilation unit CU, starting at
|
||
FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
|
||
unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
|
||
DW_AT_ranges). See the comments of add_partial_subprogram on how
|
||
SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
|
||
|
||
static void
|
||
scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
|
||
CORE_ADDR *highpc, int set_addrmap,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct partial_die_info *pdi;
|
||
|
||
/* Now, march along the PDI's, descending into ones which have
|
||
interesting children but skipping the children of the other ones,
|
||
until we reach the end of the compilation unit. */
|
||
|
||
pdi = first_die;
|
||
|
||
while (pdi != NULL)
|
||
{
|
||
fixup_partial_die (pdi, cu);
|
||
|
||
/* Anonymous namespaces or modules have no name but have interesting
|
||
children, so we need to look at them. Ditto for anonymous
|
||
enums. */
|
||
|
||
if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
|
||
|| pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
|
||
|| pdi->tag == DW_TAG_imported_unit)
|
||
{
|
||
switch (pdi->tag)
|
||
{
|
||
case DW_TAG_subprogram:
|
||
add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
|
||
break;
|
||
case DW_TAG_constant:
|
||
case DW_TAG_variable:
|
||
case DW_TAG_typedef:
|
||
case DW_TAG_union_type:
|
||
if (!pdi->is_declaration)
|
||
{
|
||
add_partial_symbol (pdi, cu);
|
||
}
|
||
break;
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_structure_type:
|
||
if (!pdi->is_declaration)
|
||
{
|
||
add_partial_symbol (pdi, cu);
|
||
}
|
||
break;
|
||
case DW_TAG_enumeration_type:
|
||
if (!pdi->is_declaration)
|
||
add_partial_enumeration (pdi, cu);
|
||
break;
|
||
case DW_TAG_base_type:
|
||
case DW_TAG_subrange_type:
|
||
/* File scope base type definitions are added to the partial
|
||
symbol table. */
|
||
add_partial_symbol (pdi, cu);
|
||
break;
|
||
case DW_TAG_namespace:
|
||
add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
|
||
break;
|
||
case DW_TAG_module:
|
||
add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
|
||
break;
|
||
case DW_TAG_imported_unit:
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
|
||
/* For now we don't handle imported units in type units. */
|
||
if (cu->per_cu->is_debug_types)
|
||
{
|
||
error (_("Dwarf Error: DW_TAG_imported_unit is not"
|
||
" supported in type units [in module %s]"),
|
||
objfile_name (cu->objfile));
|
||
}
|
||
|
||
per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
|
||
pdi->is_dwz,
|
||
cu->objfile);
|
||
|
||
/* Go read the partial unit, if needed. */
|
||
if (per_cu->v.psymtab == NULL)
|
||
process_psymtab_comp_unit (per_cu, 1, cu->language);
|
||
|
||
VEC_safe_push (dwarf2_per_cu_ptr,
|
||
cu->per_cu->imported_symtabs, per_cu);
|
||
}
|
||
break;
|
||
case DW_TAG_imported_declaration:
|
||
add_partial_symbol (pdi, cu);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If the die has a sibling, skip to the sibling. */
|
||
|
||
pdi = pdi->die_sibling;
|
||
}
|
||
}
|
||
|
||
/* Functions used to compute the fully scoped name of a partial DIE.
|
||
|
||
Normally, this is simple. For C++, the parent DIE's fully scoped
|
||
name is concatenated with "::" and the partial DIE's name. For
|
||
Java, the same thing occurs except that "." is used instead of "::".
|
||
Enumerators are an exception; they use the scope of their parent
|
||
enumeration type, i.e. the name of the enumeration type is not
|
||
prepended to the enumerator.
|
||
|
||
There are two complexities. One is DW_AT_specification; in this
|
||
case "parent" means the parent of the target of the specification,
|
||
instead of the direct parent of the DIE. The other is compilers
|
||
which do not emit DW_TAG_namespace; in this case we try to guess
|
||
the fully qualified name of structure types from their members'
|
||
linkage names. This must be done using the DIE's children rather
|
||
than the children of any DW_AT_specification target. We only need
|
||
to do this for structures at the top level, i.e. if the target of
|
||
any DW_AT_specification (if any; otherwise the DIE itself) does not
|
||
have a parent. */
|
||
|
||
/* Compute the scope prefix associated with PDI's parent, in
|
||
compilation unit CU. The result will be allocated on CU's
|
||
comp_unit_obstack, or a copy of the already allocated PDI->NAME
|
||
field. NULL is returned if no prefix is necessary. */
|
||
static const char *
|
||
partial_die_parent_scope (struct partial_die_info *pdi,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
const char *grandparent_scope;
|
||
struct partial_die_info *parent, *real_pdi;
|
||
|
||
/* We need to look at our parent DIE; if we have a DW_AT_specification,
|
||
then this means the parent of the specification DIE. */
|
||
|
||
real_pdi = pdi;
|
||
while (real_pdi->has_specification)
|
||
real_pdi = find_partial_die (real_pdi->spec_offset,
|
||
real_pdi->spec_is_dwz, cu);
|
||
|
||
parent = real_pdi->die_parent;
|
||
if (parent == NULL)
|
||
return NULL;
|
||
|
||
if (parent->scope_set)
|
||
return parent->scope;
|
||
|
||
fixup_partial_die (parent, cu);
|
||
|
||
grandparent_scope = partial_die_parent_scope (parent, cu);
|
||
|
||
/* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
|
||
DW_TAG_namespace DIEs with a name of "::" for the global namespace.
|
||
Work around this problem here. */
|
||
if (cu->language == language_cplus
|
||
&& parent->tag == DW_TAG_namespace
|
||
&& strcmp (parent->name, "::") == 0
|
||
&& grandparent_scope == NULL)
|
||
{
|
||
parent->scope = NULL;
|
||
parent->scope_set = 1;
|
||
return NULL;
|
||
}
|
||
|
||
if (pdi->tag == DW_TAG_enumerator)
|
||
/* Enumerators should not get the name of the enumeration as a prefix. */
|
||
parent->scope = grandparent_scope;
|
||
else if (parent->tag == DW_TAG_namespace
|
||
|| parent->tag == DW_TAG_module
|
||
|| parent->tag == DW_TAG_structure_type
|
||
|| parent->tag == DW_TAG_class_type
|
||
|| parent->tag == DW_TAG_interface_type
|
||
|| parent->tag == DW_TAG_union_type
|
||
|| parent->tag == DW_TAG_enumeration_type)
|
||
{
|
||
if (grandparent_scope == NULL)
|
||
parent->scope = parent->name;
|
||
else
|
||
parent->scope = typename_concat (&cu->comp_unit_obstack,
|
||
grandparent_scope,
|
||
parent->name, 0, cu);
|
||
}
|
||
else
|
||
{
|
||
/* FIXME drow/2004-04-01: What should we be doing with
|
||
function-local names? For partial symbols, we should probably be
|
||
ignoring them. */
|
||
complaint (&symfile_complaints,
|
||
_("unhandled containing DIE tag %d for DIE at %d"),
|
||
parent->tag, pdi->offset.sect_off);
|
||
parent->scope = grandparent_scope;
|
||
}
|
||
|
||
parent->scope_set = 1;
|
||
return parent->scope;
|
||
}
|
||
|
||
/* Return the fully scoped name associated with PDI, from compilation unit
|
||
CU. The result will be allocated with malloc. */
|
||
|
||
static char *
|
||
partial_die_full_name (struct partial_die_info *pdi,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
const char *parent_scope;
|
||
|
||
/* If this is a template instantiation, we can not work out the
|
||
template arguments from partial DIEs. So, unfortunately, we have
|
||
to go through the full DIEs. At least any work we do building
|
||
types here will be reused if full symbols are loaded later. */
|
||
if (pdi->has_template_arguments)
|
||
{
|
||
fixup_partial_die (pdi, cu);
|
||
|
||
if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
|
||
{
|
||
struct die_info *die;
|
||
struct attribute attr;
|
||
struct dwarf2_cu *ref_cu = cu;
|
||
|
||
/* DW_FORM_ref_addr is using section offset. */
|
||
attr.name = (enum dwarf_attribute) 0;
|
||
attr.form = DW_FORM_ref_addr;
|
||
attr.u.unsnd = pdi->offset.sect_off;
|
||
die = follow_die_ref (NULL, &attr, &ref_cu);
|
||
|
||
return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
|
||
}
|
||
}
|
||
|
||
parent_scope = partial_die_parent_scope (pdi, cu);
|
||
if (parent_scope == NULL)
|
||
return NULL;
|
||
else
|
||
return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
|
||
}
|
||
|
||
static void
|
||
add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
CORE_ADDR addr = 0;
|
||
const char *actual_name = NULL;
|
||
CORE_ADDR baseaddr;
|
||
char *built_actual_name;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
built_actual_name = partial_die_full_name (pdi, cu);
|
||
if (built_actual_name != NULL)
|
||
actual_name = built_actual_name;
|
||
|
||
if (actual_name == NULL)
|
||
actual_name = pdi->name;
|
||
|
||
switch (pdi->tag)
|
||
{
|
||
case DW_TAG_subprogram:
|
||
addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
|
||
if (pdi->is_external || cu->language == language_ada)
|
||
{
|
||
/* brobecker/2007-12-26: Normally, only "external" DIEs are part
|
||
of the global scope. But in Ada, we want to be able to access
|
||
nested procedures globally. So all Ada subprograms are stored
|
||
in the global scope. */
|
||
add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name != NULL,
|
||
VAR_DOMAIN, LOC_BLOCK,
|
||
&objfile->global_psymbols,
|
||
addr, cu->language, objfile);
|
||
}
|
||
else
|
||
{
|
||
add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name != NULL,
|
||
VAR_DOMAIN, LOC_BLOCK,
|
||
&objfile->static_psymbols,
|
||
addr, cu->language, objfile);
|
||
}
|
||
break;
|
||
case DW_TAG_constant:
|
||
{
|
||
struct psymbol_allocation_list *list;
|
||
|
||
if (pdi->is_external)
|
||
list = &objfile->global_psymbols;
|
||
else
|
||
list = &objfile->static_psymbols;
|
||
add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
|
||
list, 0, cu->language, objfile);
|
||
}
|
||
break;
|
||
case DW_TAG_variable:
|
||
if (pdi->d.locdesc)
|
||
addr = decode_locdesc (pdi->d.locdesc, cu);
|
||
|
||
if (pdi->d.locdesc
|
||
&& addr == 0
|
||
&& !dwarf2_per_objfile->has_section_at_zero)
|
||
{
|
||
/* A global or static variable may also have been stripped
|
||
out by the linker if unused, in which case its address
|
||
will be nullified; do not add such variables into partial
|
||
symbol table then. */
|
||
}
|
||
else if (pdi->is_external)
|
||
{
|
||
/* Global Variable.
|
||
Don't enter into the minimal symbol tables as there is
|
||
a minimal symbol table entry from the ELF symbols already.
|
||
Enter into partial symbol table if it has a location
|
||
descriptor or a type.
|
||
If the location descriptor is missing, new_symbol will create
|
||
a LOC_UNRESOLVED symbol, the address of the variable will then
|
||
be determined from the minimal symbol table whenever the variable
|
||
is referenced.
|
||
The address for the partial symbol table entry is not
|
||
used by GDB, but it comes in handy for debugging partial symbol
|
||
table building. */
|
||
|
||
if (pdi->d.locdesc || pdi->has_type)
|
||
add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name != NULL,
|
||
VAR_DOMAIN, LOC_STATIC,
|
||
&objfile->global_psymbols,
|
||
addr + baseaddr,
|
||
cu->language, objfile);
|
||
}
|
||
else
|
||
{
|
||
int has_loc = pdi->d.locdesc != NULL;
|
||
|
||
/* Static Variable. Skip symbols whose value we cannot know (those
|
||
without location descriptors or constant values). */
|
||
if (!has_loc && !pdi->has_const_value)
|
||
{
|
||
xfree (built_actual_name);
|
||
return;
|
||
}
|
||
|
||
add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name != NULL,
|
||
VAR_DOMAIN, LOC_STATIC,
|
||
&objfile->static_psymbols,
|
||
has_loc ? addr + baseaddr : (CORE_ADDR) 0,
|
||
cu->language, objfile);
|
||
}
|
||
break;
|
||
case DW_TAG_typedef:
|
||
case DW_TAG_base_type:
|
||
case DW_TAG_subrange_type:
|
||
add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name != NULL,
|
||
VAR_DOMAIN, LOC_TYPEDEF,
|
||
&objfile->static_psymbols,
|
||
0, cu->language, objfile);
|
||
break;
|
||
case DW_TAG_imported_declaration:
|
||
case DW_TAG_namespace:
|
||
add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name != NULL,
|
||
VAR_DOMAIN, LOC_TYPEDEF,
|
||
&objfile->global_psymbols,
|
||
0, cu->language, objfile);
|
||
break;
|
||
case DW_TAG_module:
|
||
add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name != NULL,
|
||
MODULE_DOMAIN, LOC_TYPEDEF,
|
||
&objfile->global_psymbols,
|
||
0, cu->language, objfile);
|
||
break;
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_structure_type:
|
||
case DW_TAG_union_type:
|
||
case DW_TAG_enumeration_type:
|
||
/* Skip external references. The DWARF standard says in the section
|
||
about "Structure, Union, and Class Type Entries": "An incomplete
|
||
structure, union or class type is represented by a structure,
|
||
union or class entry that does not have a byte size attribute
|
||
and that has a DW_AT_declaration attribute." */
|
||
if (!pdi->has_byte_size && pdi->is_declaration)
|
||
{
|
||
xfree (built_actual_name);
|
||
return;
|
||
}
|
||
|
||
/* NOTE: carlton/2003-10-07: See comment in new_symbol about
|
||
static vs. global. */
|
||
add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name != NULL,
|
||
STRUCT_DOMAIN, LOC_TYPEDEF,
|
||
(cu->language == language_cplus
|
||
|| cu->language == language_java)
|
||
? &objfile->global_psymbols
|
||
: &objfile->static_psymbols,
|
||
0, cu->language, objfile);
|
||
|
||
break;
|
||
case DW_TAG_enumerator:
|
||
add_psymbol_to_list (actual_name, strlen (actual_name),
|
||
built_actual_name != NULL,
|
||
VAR_DOMAIN, LOC_CONST,
|
||
(cu->language == language_cplus
|
||
|| cu->language == language_java)
|
||
? &objfile->global_psymbols
|
||
: &objfile->static_psymbols,
|
||
0, cu->language, objfile);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
xfree (built_actual_name);
|
||
}
|
||
|
||
/* Read a partial die corresponding to a namespace; also, add a symbol
|
||
corresponding to that namespace to the symbol table. NAMESPACE is
|
||
the name of the enclosing namespace. */
|
||
|
||
static void
|
||
add_partial_namespace (struct partial_die_info *pdi,
|
||
CORE_ADDR *lowpc, CORE_ADDR *highpc,
|
||
int set_addrmap, struct dwarf2_cu *cu)
|
||
{
|
||
/* Add a symbol for the namespace. */
|
||
|
||
add_partial_symbol (pdi, cu);
|
||
|
||
/* Now scan partial symbols in that namespace. */
|
||
|
||
if (pdi->has_children)
|
||
scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
|
||
}
|
||
|
||
/* Read a partial die corresponding to a Fortran module. */
|
||
|
||
static void
|
||
add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
|
||
CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
|
||
{
|
||
/* Add a symbol for the namespace. */
|
||
|
||
add_partial_symbol (pdi, cu);
|
||
|
||
/* Now scan partial symbols in that module. */
|
||
|
||
if (pdi->has_children)
|
||
scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
|
||
}
|
||
|
||
/* Read a partial die corresponding to a subprogram and create a partial
|
||
symbol for that subprogram. When the CU language allows it, this
|
||
routine also defines a partial symbol for each nested subprogram
|
||
that this subprogram contains. If SET_ADDRMAP is true, record the
|
||
covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
|
||
and highest PC values found in PDI.
|
||
|
||
PDI may also be a lexical block, in which case we simply search
|
||
recursively for subprograms defined inside that lexical block.
|
||
Again, this is only performed when the CU language allows this
|
||
type of definitions. */
|
||
|
||
static void
|
||
add_partial_subprogram (struct partial_die_info *pdi,
|
||
CORE_ADDR *lowpc, CORE_ADDR *highpc,
|
||
int set_addrmap, struct dwarf2_cu *cu)
|
||
{
|
||
if (pdi->tag == DW_TAG_subprogram)
|
||
{
|
||
if (pdi->has_pc_info)
|
||
{
|
||
if (pdi->lowpc < *lowpc)
|
||
*lowpc = pdi->lowpc;
|
||
if (pdi->highpc > *highpc)
|
||
*highpc = pdi->highpc;
|
||
if (set_addrmap)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
CORE_ADDR baseaddr;
|
||
CORE_ADDR highpc;
|
||
CORE_ADDR lowpc;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets,
|
||
SECT_OFF_TEXT (objfile));
|
||
lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
|
||
pdi->lowpc + baseaddr);
|
||
highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
|
||
pdi->highpc + baseaddr);
|
||
addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
|
||
cu->per_cu->v.psymtab);
|
||
}
|
||
}
|
||
|
||
if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
|
||
{
|
||
if (!pdi->is_declaration)
|
||
/* Ignore subprogram DIEs that do not have a name, they are
|
||
illegal. Do not emit a complaint at this point, we will
|
||
do so when we convert this psymtab into a symtab. */
|
||
if (pdi->name)
|
||
add_partial_symbol (pdi, cu);
|
||
}
|
||
}
|
||
|
||
if (! pdi->has_children)
|
||
return;
|
||
|
||
if (cu->language == language_ada)
|
||
{
|
||
pdi = pdi->die_child;
|
||
while (pdi != NULL)
|
||
{
|
||
fixup_partial_die (pdi, cu);
|
||
if (pdi->tag == DW_TAG_subprogram
|
||
|| pdi->tag == DW_TAG_lexical_block)
|
||
add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
|
||
pdi = pdi->die_sibling;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Read a partial die corresponding to an enumeration type. */
|
||
|
||
static void
|
||
add_partial_enumeration (struct partial_die_info *enum_pdi,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct partial_die_info *pdi;
|
||
|
||
if (enum_pdi->name != NULL)
|
||
add_partial_symbol (enum_pdi, cu);
|
||
|
||
pdi = enum_pdi->die_child;
|
||
while (pdi)
|
||
{
|
||
if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
|
||
complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
|
||
else
|
||
add_partial_symbol (pdi, cu);
|
||
pdi = pdi->die_sibling;
|
||
}
|
||
}
|
||
|
||
/* Return the initial uleb128 in the die at INFO_PTR. */
|
||
|
||
static unsigned int
|
||
peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
|
||
{
|
||
unsigned int bytes_read;
|
||
|
||
return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
|
||
}
|
||
|
||
/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
|
||
Return the corresponding abbrev, or NULL if the number is zero (indicating
|
||
an empty DIE). In either case *BYTES_READ will be set to the length of
|
||
the initial number. */
|
||
|
||
static struct abbrev_info *
|
||
peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
bfd *abfd = cu->objfile->obfd;
|
||
unsigned int abbrev_number;
|
||
struct abbrev_info *abbrev;
|
||
|
||
abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
|
||
|
||
if (abbrev_number == 0)
|
||
return NULL;
|
||
|
||
abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
|
||
if (!abbrev)
|
||
{
|
||
error (_("Dwarf Error: Could not find abbrev number %d in %s"
|
||
" at offset 0x%x [in module %s]"),
|
||
abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
|
||
cu->header.offset.sect_off, bfd_get_filename (abfd));
|
||
}
|
||
|
||
return abbrev;
|
||
}
|
||
|
||
/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
|
||
Returns a pointer to the end of a series of DIEs, terminated by an empty
|
||
DIE. Any children of the skipped DIEs will also be skipped. */
|
||
|
||
static const gdb_byte *
|
||
skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
|
||
{
|
||
struct dwarf2_cu *cu = reader->cu;
|
||
struct abbrev_info *abbrev;
|
||
unsigned int bytes_read;
|
||
|
||
while (1)
|
||
{
|
||
abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
|
||
if (abbrev == NULL)
|
||
return info_ptr + bytes_read;
|
||
else
|
||
info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
|
||
}
|
||
}
|
||
|
||
/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
|
||
INFO_PTR should point just after the initial uleb128 of a DIE, and the
|
||
abbrev corresponding to that skipped uleb128 should be passed in
|
||
ABBREV. Returns a pointer to this DIE's sibling, skipping any
|
||
children. */
|
||
|
||
static const gdb_byte *
|
||
skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
|
||
struct abbrev_info *abbrev)
|
||
{
|
||
unsigned int bytes_read;
|
||
struct attribute attr;
|
||
bfd *abfd = reader->abfd;
|
||
struct dwarf2_cu *cu = reader->cu;
|
||
const gdb_byte *buffer = reader->buffer;
|
||
const gdb_byte *buffer_end = reader->buffer_end;
|
||
unsigned int form, i;
|
||
|
||
for (i = 0; i < abbrev->num_attrs; i++)
|
||
{
|
||
/* The only abbrev we care about is DW_AT_sibling. */
|
||
if (abbrev->attrs[i].name == DW_AT_sibling)
|
||
{
|
||
read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
|
||
if (attr.form == DW_FORM_ref_addr)
|
||
complaint (&symfile_complaints,
|
||
_("ignoring absolute DW_AT_sibling"));
|
||
else
|
||
{
|
||
unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
|
||
const gdb_byte *sibling_ptr = buffer + off;
|
||
|
||
if (sibling_ptr < info_ptr)
|
||
complaint (&symfile_complaints,
|
||
_("DW_AT_sibling points backwards"));
|
||
else if (sibling_ptr > reader->buffer_end)
|
||
dwarf2_section_buffer_overflow_complaint (reader->die_section);
|
||
else
|
||
return sibling_ptr;
|
||
}
|
||
}
|
||
|
||
/* If it isn't DW_AT_sibling, skip this attribute. */
|
||
form = abbrev->attrs[i].form;
|
||
skip_attribute:
|
||
switch (form)
|
||
{
|
||
case DW_FORM_ref_addr:
|
||
/* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
|
||
and later it is offset sized. */
|
||
if (cu->header.version == 2)
|
||
info_ptr += cu->header.addr_size;
|
||
else
|
||
info_ptr += cu->header.offset_size;
|
||
break;
|
||
case DW_FORM_GNU_ref_alt:
|
||
info_ptr += cu->header.offset_size;
|
||
break;
|
||
case DW_FORM_addr:
|
||
info_ptr += cu->header.addr_size;
|
||
break;
|
||
case DW_FORM_data1:
|
||
case DW_FORM_ref1:
|
||
case DW_FORM_flag:
|
||
info_ptr += 1;
|
||
break;
|
||
case DW_FORM_flag_present:
|
||
break;
|
||
case DW_FORM_data2:
|
||
case DW_FORM_ref2:
|
||
info_ptr += 2;
|
||
break;
|
||
case DW_FORM_data4:
|
||
case DW_FORM_ref4:
|
||
info_ptr += 4;
|
||
break;
|
||
case DW_FORM_data8:
|
||
case DW_FORM_ref8:
|
||
case DW_FORM_ref_sig8:
|
||
info_ptr += 8;
|
||
break;
|
||
case DW_FORM_string:
|
||
read_direct_string (abfd, info_ptr, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_sec_offset:
|
||
case DW_FORM_strp:
|
||
case DW_FORM_GNU_strp_alt:
|
||
info_ptr += cu->header.offset_size;
|
||
break;
|
||
case DW_FORM_exprloc:
|
||
case DW_FORM_block:
|
||
info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_block1:
|
||
info_ptr += 1 + read_1_byte (abfd, info_ptr);
|
||
break;
|
||
case DW_FORM_block2:
|
||
info_ptr += 2 + read_2_bytes (abfd, info_ptr);
|
||
break;
|
||
case DW_FORM_block4:
|
||
info_ptr += 4 + read_4_bytes (abfd, info_ptr);
|
||
break;
|
||
case DW_FORM_sdata:
|
||
case DW_FORM_udata:
|
||
case DW_FORM_ref_udata:
|
||
case DW_FORM_GNU_addr_index:
|
||
case DW_FORM_GNU_str_index:
|
||
info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
|
||
break;
|
||
case DW_FORM_indirect:
|
||
form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
/* We need to continue parsing from here, so just go back to
|
||
the top. */
|
||
goto skip_attribute;
|
||
|
||
default:
|
||
error (_("Dwarf Error: Cannot handle %s "
|
||
"in DWARF reader [in module %s]"),
|
||
dwarf_form_name (form),
|
||
bfd_get_filename (abfd));
|
||
}
|
||
}
|
||
|
||
if (abbrev->has_children)
|
||
return skip_children (reader, info_ptr);
|
||
else
|
||
return info_ptr;
|
||
}
|
||
|
||
/* Locate ORIG_PDI's sibling.
|
||
INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
|
||
|
||
static const gdb_byte *
|
||
locate_pdi_sibling (const struct die_reader_specs *reader,
|
||
struct partial_die_info *orig_pdi,
|
||
const gdb_byte *info_ptr)
|
||
{
|
||
/* Do we know the sibling already? */
|
||
|
||
if (orig_pdi->sibling)
|
||
return orig_pdi->sibling;
|
||
|
||
/* Are there any children to deal with? */
|
||
|
||
if (!orig_pdi->has_children)
|
||
return info_ptr;
|
||
|
||
/* Skip the children the long way. */
|
||
|
||
return skip_children (reader, info_ptr);
|
||
}
|
||
|
||
/* Expand this partial symbol table into a full symbol table. SELF is
|
||
not NULL. */
|
||
|
||
static void
|
||
dwarf2_read_symtab (struct partial_symtab *self,
|
||
struct objfile *objfile)
|
||
{
|
||
if (self->readin)
|
||
{
|
||
warning (_("bug: psymtab for %s is already read in."),
|
||
self->filename);
|
||
}
|
||
else
|
||
{
|
||
if (info_verbose)
|
||
{
|
||
printf_filtered (_("Reading in symbols for %s..."),
|
||
self->filename);
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
|
||
/* Restore our global data. */
|
||
dwarf2_per_objfile
|
||
= (struct dwarf2_per_objfile *) objfile_data (objfile,
|
||
dwarf2_objfile_data_key);
|
||
|
||
/* If this psymtab is constructed from a debug-only objfile, the
|
||
has_section_at_zero flag will not necessarily be correct. We
|
||
can get the correct value for this flag by looking at the data
|
||
associated with the (presumably stripped) associated objfile. */
|
||
if (objfile->separate_debug_objfile_backlink)
|
||
{
|
||
struct dwarf2_per_objfile *dpo_backlink
|
||
= ((struct dwarf2_per_objfile *)
|
||
objfile_data (objfile->separate_debug_objfile_backlink,
|
||
dwarf2_objfile_data_key));
|
||
|
||
dwarf2_per_objfile->has_section_at_zero
|
||
= dpo_backlink->has_section_at_zero;
|
||
}
|
||
|
||
dwarf2_per_objfile->reading_partial_symbols = 0;
|
||
|
||
psymtab_to_symtab_1 (self);
|
||
|
||
/* Finish up the debug error message. */
|
||
if (info_verbose)
|
||
printf_filtered (_("done.\n"));
|
||
}
|
||
|
||
process_cu_includes ();
|
||
}
|
||
|
||
/* Reading in full CUs. */
|
||
|
||
/* Add PER_CU to the queue. */
|
||
|
||
static void
|
||
queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
|
||
enum language pretend_language)
|
||
{
|
||
struct dwarf2_queue_item *item;
|
||
|
||
per_cu->queued = 1;
|
||
item = XNEW (struct dwarf2_queue_item);
|
||
item->per_cu = per_cu;
|
||
item->pretend_language = pretend_language;
|
||
item->next = NULL;
|
||
|
||
if (dwarf2_queue == NULL)
|
||
dwarf2_queue = item;
|
||
else
|
||
dwarf2_queue_tail->next = item;
|
||
|
||
dwarf2_queue_tail = item;
|
||
}
|
||
|
||
/* If PER_CU is not yet queued, add it to the queue.
|
||
If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
|
||
dependency.
|
||
The result is non-zero if PER_CU was queued, otherwise the result is zero
|
||
meaning either PER_CU is already queued or it is already loaded.
|
||
|
||
N.B. There is an invariant here that if a CU is queued then it is loaded.
|
||
The caller is required to load PER_CU if we return non-zero. */
|
||
|
||
static int
|
||
maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
|
||
struct dwarf2_per_cu_data *per_cu,
|
||
enum language pretend_language)
|
||
{
|
||
/* We may arrive here during partial symbol reading, if we need full
|
||
DIEs to process an unusual case (e.g. template arguments). Do
|
||
not queue PER_CU, just tell our caller to load its DIEs. */
|
||
if (dwarf2_per_objfile->reading_partial_symbols)
|
||
{
|
||
if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Mark the dependence relation so that we don't flush PER_CU
|
||
too early. */
|
||
if (dependent_cu != NULL)
|
||
dwarf2_add_dependence (dependent_cu, per_cu);
|
||
|
||
/* If it's already on the queue, we have nothing to do. */
|
||
if (per_cu->queued)
|
||
return 0;
|
||
|
||
/* If the compilation unit is already loaded, just mark it as
|
||
used. */
|
||
if (per_cu->cu != NULL)
|
||
{
|
||
per_cu->cu->last_used = 0;
|
||
return 0;
|
||
}
|
||
|
||
/* Add it to the queue. */
|
||
queue_comp_unit (per_cu, pretend_language);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Process the queue. */
|
||
|
||
static void
|
||
process_queue (void)
|
||
{
|
||
struct dwarf2_queue_item *item, *next_item;
|
||
|
||
if (dwarf_read_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"Expanding one or more symtabs of objfile %s ...\n",
|
||
objfile_name (dwarf2_per_objfile->objfile));
|
||
}
|
||
|
||
/* The queue starts out with one item, but following a DIE reference
|
||
may load a new CU, adding it to the end of the queue. */
|
||
for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
|
||
{
|
||
if ((dwarf2_per_objfile->using_index
|
||
? !item->per_cu->v.quick->compunit_symtab
|
||
: (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
|
||
/* Skip dummy CUs. */
|
||
&& item->per_cu->cu != NULL)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu = item->per_cu;
|
||
unsigned int debug_print_threshold;
|
||
char buf[100];
|
||
|
||
if (per_cu->is_debug_types)
|
||
{
|
||
struct signatured_type *sig_type =
|
||
(struct signatured_type *) per_cu;
|
||
|
||
sprintf (buf, "TU %s at offset 0x%x",
|
||
hex_string (sig_type->signature),
|
||
per_cu->offset.sect_off);
|
||
/* There can be 100s of TUs.
|
||
Only print them in verbose mode. */
|
||
debug_print_threshold = 2;
|
||
}
|
||
else
|
||
{
|
||
sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
|
||
debug_print_threshold = 1;
|
||
}
|
||
|
||
if (dwarf_read_debug >= debug_print_threshold)
|
||
fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
|
||
|
||
if (per_cu->is_debug_types)
|
||
process_full_type_unit (per_cu, item->pretend_language);
|
||
else
|
||
process_full_comp_unit (per_cu, item->pretend_language);
|
||
|
||
if (dwarf_read_debug >= debug_print_threshold)
|
||
fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
|
||
}
|
||
|
||
item->per_cu->queued = 0;
|
||
next_item = item->next;
|
||
xfree (item);
|
||
}
|
||
|
||
dwarf2_queue_tail = NULL;
|
||
|
||
if (dwarf_read_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
|
||
objfile_name (dwarf2_per_objfile->objfile));
|
||
}
|
||
}
|
||
|
||
/* Free all allocated queue entries. This function only releases anything if
|
||
an error was thrown; if the queue was processed then it would have been
|
||
freed as we went along. */
|
||
|
||
static void
|
||
dwarf2_release_queue (void *dummy)
|
||
{
|
||
struct dwarf2_queue_item *item, *last;
|
||
|
||
item = dwarf2_queue;
|
||
while (item)
|
||
{
|
||
/* Anything still marked queued is likely to be in an
|
||
inconsistent state, so discard it. */
|
||
if (item->per_cu->queued)
|
||
{
|
||
if (item->per_cu->cu != NULL)
|
||
free_one_cached_comp_unit (item->per_cu);
|
||
item->per_cu->queued = 0;
|
||
}
|
||
|
||
last = item;
|
||
item = item->next;
|
||
xfree (last);
|
||
}
|
||
|
||
dwarf2_queue = dwarf2_queue_tail = NULL;
|
||
}
|
||
|
||
/* Read in full symbols for PST, and anything it depends on. */
|
||
|
||
static void
|
||
psymtab_to_symtab_1 (struct partial_symtab *pst)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
int i;
|
||
|
||
if (pst->readin)
|
||
return;
|
||
|
||
for (i = 0; i < pst->number_of_dependencies; i++)
|
||
if (!pst->dependencies[i]->readin
|
||
&& pst->dependencies[i]->user == NULL)
|
||
{
|
||
/* Inform about additional files that need to be read in. */
|
||
if (info_verbose)
|
||
{
|
||
/* FIXME: i18n: Need to make this a single string. */
|
||
fputs_filtered (" ", gdb_stdout);
|
||
wrap_here ("");
|
||
fputs_filtered ("and ", gdb_stdout);
|
||
wrap_here ("");
|
||
printf_filtered ("%s...", pst->dependencies[i]->filename);
|
||
wrap_here (""); /* Flush output. */
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
psymtab_to_symtab_1 (pst->dependencies[i]);
|
||
}
|
||
|
||
per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
|
||
|
||
if (per_cu == NULL)
|
||
{
|
||
/* It's an include file, no symbols to read for it.
|
||
Everything is in the parent symtab. */
|
||
pst->readin = 1;
|
||
return;
|
||
}
|
||
|
||
dw2_do_instantiate_symtab (per_cu);
|
||
}
|
||
|
||
/* Trivial hash function for die_info: the hash value of a DIE
|
||
is its offset in .debug_info for this objfile. */
|
||
|
||
static hashval_t
|
||
die_hash (const void *item)
|
||
{
|
||
const struct die_info *die = (const struct die_info *) item;
|
||
|
||
return die->offset.sect_off;
|
||
}
|
||
|
||
/* Trivial comparison function for die_info structures: two DIEs
|
||
are equal if they have the same offset. */
|
||
|
||
static int
|
||
die_eq (const void *item_lhs, const void *item_rhs)
|
||
{
|
||
const struct die_info *die_lhs = (const struct die_info *) item_lhs;
|
||
const struct die_info *die_rhs = (const struct die_info *) item_rhs;
|
||
|
||
return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
|
||
}
|
||
|
||
/* die_reader_func for load_full_comp_unit.
|
||
This is identical to read_signatured_type_reader,
|
||
but is kept separate for now. */
|
||
|
||
static void
|
||
load_full_comp_unit_reader (const struct die_reader_specs *reader,
|
||
const gdb_byte *info_ptr,
|
||
struct die_info *comp_unit_die,
|
||
int has_children,
|
||
void *data)
|
||
{
|
||
struct dwarf2_cu *cu = reader->cu;
|
||
enum language *language_ptr = (enum language *) data;
|
||
|
||
gdb_assert (cu->die_hash == NULL);
|
||
cu->die_hash =
|
||
htab_create_alloc_ex (cu->header.length / 12,
|
||
die_hash,
|
||
die_eq,
|
||
NULL,
|
||
&cu->comp_unit_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
|
||
if (has_children)
|
||
comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
|
||
&info_ptr, comp_unit_die);
|
||
cu->dies = comp_unit_die;
|
||
/* comp_unit_die is not stored in die_hash, no need. */
|
||
|
||
/* We try not to read any attributes in this function, because not
|
||
all CUs needed for references have been loaded yet, and symbol
|
||
table processing isn't initialized. But we have to set the CU language,
|
||
or we won't be able to build types correctly.
|
||
Similarly, if we do not read the producer, we can not apply
|
||
producer-specific interpretation. */
|
||
prepare_one_comp_unit (cu, cu->dies, *language_ptr);
|
||
}
|
||
|
||
/* Load the DIEs associated with PER_CU into memory. */
|
||
|
||
static void
|
||
load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
|
||
enum language pretend_language)
|
||
{
|
||
gdb_assert (! this_cu->is_debug_types);
|
||
|
||
init_cutu_and_read_dies (this_cu, NULL, 1, 1,
|
||
load_full_comp_unit_reader, &pretend_language);
|
||
}
|
||
|
||
/* Add a DIE to the delayed physname list. */
|
||
|
||
static void
|
||
add_to_method_list (struct type *type, int fnfield_index, int index,
|
||
const char *name, struct die_info *die,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct delayed_method_info mi;
|
||
mi.type = type;
|
||
mi.fnfield_index = fnfield_index;
|
||
mi.index = index;
|
||
mi.name = name;
|
||
mi.die = die;
|
||
VEC_safe_push (delayed_method_info, cu->method_list, &mi);
|
||
}
|
||
|
||
/* A cleanup for freeing the delayed method list. */
|
||
|
||
static void
|
||
free_delayed_list (void *ptr)
|
||
{
|
||
struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
|
||
if (cu->method_list != NULL)
|
||
{
|
||
VEC_free (delayed_method_info, cu->method_list);
|
||
cu->method_list = NULL;
|
||
}
|
||
}
|
||
|
||
/* Compute the physnames of any methods on the CU's method list.
|
||
|
||
The computation of method physnames is delayed in order to avoid the
|
||
(bad) condition that one of the method's formal parameters is of an as yet
|
||
incomplete type. */
|
||
|
||
static void
|
||
compute_delayed_physnames (struct dwarf2_cu *cu)
|
||
{
|
||
int i;
|
||
struct delayed_method_info *mi;
|
||
for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
|
||
{
|
||
const char *physname;
|
||
struct fn_fieldlist *fn_flp
|
||
= &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
|
||
physname = dwarf2_physname (mi->name, mi->die, cu);
|
||
TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
|
||
= physname ? physname : "";
|
||
}
|
||
}
|
||
|
||
/* Go objects should be embedded in a DW_TAG_module DIE,
|
||
and it's not clear if/how imported objects will appear.
|
||
To keep Go support simple until that's worked out,
|
||
go back through what we've read and create something usable.
|
||
We could do this while processing each DIE, and feels kinda cleaner,
|
||
but that way is more invasive.
|
||
This is to, for example, allow the user to type "p var" or "b main"
|
||
without having to specify the package name, and allow lookups
|
||
of module.object to work in contexts that use the expression
|
||
parser. */
|
||
|
||
static void
|
||
fixup_go_packaging (struct dwarf2_cu *cu)
|
||
{
|
||
char *package_name = NULL;
|
||
struct pending *list;
|
||
int i;
|
||
|
||
for (list = global_symbols; list != NULL; list = list->next)
|
||
{
|
||
for (i = 0; i < list->nsyms; ++i)
|
||
{
|
||
struct symbol *sym = list->symbol[i];
|
||
|
||
if (SYMBOL_LANGUAGE (sym) == language_go
|
||
&& SYMBOL_CLASS (sym) == LOC_BLOCK)
|
||
{
|
||
char *this_package_name = go_symbol_package_name (sym);
|
||
|
||
if (this_package_name == NULL)
|
||
continue;
|
||
if (package_name == NULL)
|
||
package_name = this_package_name;
|
||
else
|
||
{
|
||
if (strcmp (package_name, this_package_name) != 0)
|
||
complaint (&symfile_complaints,
|
||
_("Symtab %s has objects from two different Go packages: %s and %s"),
|
||
(symbol_symtab (sym) != NULL
|
||
? symtab_to_filename_for_display
|
||
(symbol_symtab (sym))
|
||
: objfile_name (cu->objfile)),
|
||
this_package_name, package_name);
|
||
xfree (this_package_name);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (package_name != NULL)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
const char *saved_package_name
|
||
= (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
|
||
package_name,
|
||
strlen (package_name));
|
||
struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
|
||
saved_package_name, objfile);
|
||
struct symbol *sym;
|
||
|
||
TYPE_TAG_NAME (type) = TYPE_NAME (type);
|
||
|
||
sym = allocate_symbol (objfile);
|
||
SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
|
||
SYMBOL_SET_NAMES (sym, saved_package_name,
|
||
strlen (saved_package_name), 0, objfile);
|
||
/* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
|
||
e.g., "main" finds the "main" module and not C's main(). */
|
||
SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
|
||
SYMBOL_TYPE (sym) = type;
|
||
|
||
add_symbol_to_list (sym, &global_symbols);
|
||
|
||
xfree (package_name);
|
||
}
|
||
}
|
||
|
||
/* Return the symtab for PER_CU. This works properly regardless of
|
||
whether we're using the index or psymtabs. */
|
||
|
||
static struct compunit_symtab *
|
||
get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
return (dwarf2_per_objfile->using_index
|
||
? per_cu->v.quick->compunit_symtab
|
||
: per_cu->v.psymtab->compunit_symtab);
|
||
}
|
||
|
||
/* A helper function for computing the list of all symbol tables
|
||
included by PER_CU. */
|
||
|
||
static void
|
||
recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
|
||
htab_t all_children, htab_t all_type_symtabs,
|
||
struct dwarf2_per_cu_data *per_cu,
|
||
struct compunit_symtab *immediate_parent)
|
||
{
|
||
void **slot;
|
||
int ix;
|
||
struct compunit_symtab *cust;
|
||
struct dwarf2_per_cu_data *iter;
|
||
|
||
slot = htab_find_slot (all_children, per_cu, INSERT);
|
||
if (*slot != NULL)
|
||
{
|
||
/* This inclusion and its children have been processed. */
|
||
return;
|
||
}
|
||
|
||
*slot = per_cu;
|
||
/* Only add a CU if it has a symbol table. */
|
||
cust = get_compunit_symtab (per_cu);
|
||
if (cust != NULL)
|
||
{
|
||
/* If this is a type unit only add its symbol table if we haven't
|
||
seen it yet (type unit per_cu's can share symtabs). */
|
||
if (per_cu->is_debug_types)
|
||
{
|
||
slot = htab_find_slot (all_type_symtabs, cust, INSERT);
|
||
if (*slot == NULL)
|
||
{
|
||
*slot = cust;
|
||
VEC_safe_push (compunit_symtab_ptr, *result, cust);
|
||
if (cust->user == NULL)
|
||
cust->user = immediate_parent;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
VEC_safe_push (compunit_symtab_ptr, *result, cust);
|
||
if (cust->user == NULL)
|
||
cust->user = immediate_parent;
|
||
}
|
||
}
|
||
|
||
for (ix = 0;
|
||
VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
|
||
++ix)
|
||
{
|
||
recursively_compute_inclusions (result, all_children,
|
||
all_type_symtabs, iter, cust);
|
||
}
|
||
}
|
||
|
||
/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
|
||
PER_CU. */
|
||
|
||
static void
|
||
compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
gdb_assert (! per_cu->is_debug_types);
|
||
|
||
if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
|
||
{
|
||
int ix, len;
|
||
struct dwarf2_per_cu_data *per_cu_iter;
|
||
struct compunit_symtab *compunit_symtab_iter;
|
||
VEC (compunit_symtab_ptr) *result_symtabs = NULL;
|
||
htab_t all_children, all_type_symtabs;
|
||
struct compunit_symtab *cust = get_compunit_symtab (per_cu);
|
||
|
||
/* If we don't have a symtab, we can just skip this case. */
|
||
if (cust == NULL)
|
||
return;
|
||
|
||
all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
|
||
NULL, xcalloc, xfree);
|
||
all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
|
||
NULL, xcalloc, xfree);
|
||
|
||
for (ix = 0;
|
||
VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
|
||
ix, per_cu_iter);
|
||
++ix)
|
||
{
|
||
recursively_compute_inclusions (&result_symtabs, all_children,
|
||
all_type_symtabs, per_cu_iter,
|
||
cust);
|
||
}
|
||
|
||
/* Now we have a transitive closure of all the included symtabs. */
|
||
len = VEC_length (compunit_symtab_ptr, result_symtabs);
|
||
cust->includes
|
||
= XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
|
||
struct compunit_symtab *, len + 1);
|
||
for (ix = 0;
|
||
VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
|
||
compunit_symtab_iter);
|
||
++ix)
|
||
cust->includes[ix] = compunit_symtab_iter;
|
||
cust->includes[len] = NULL;
|
||
|
||
VEC_free (compunit_symtab_ptr, result_symtabs);
|
||
htab_delete (all_children);
|
||
htab_delete (all_type_symtabs);
|
||
}
|
||
}
|
||
|
||
/* Compute the 'includes' field for the symtabs of all the CUs we just
|
||
read. */
|
||
|
||
static void
|
||
process_cu_includes (void)
|
||
{
|
||
int ix;
|
||
struct dwarf2_per_cu_data *iter;
|
||
|
||
for (ix = 0;
|
||
VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
|
||
ix, iter);
|
||
++ix)
|
||
{
|
||
if (! iter->is_debug_types)
|
||
compute_compunit_symtab_includes (iter);
|
||
}
|
||
|
||
VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
|
||
}
|
||
|
||
/* Generate full symbol information for PER_CU, whose DIEs have
|
||
already been loaded into memory. */
|
||
|
||
static void
|
||
process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
|
||
enum language pretend_language)
|
||
{
|
||
struct dwarf2_cu *cu = per_cu->cu;
|
||
struct objfile *objfile = per_cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
CORE_ADDR lowpc, highpc;
|
||
struct compunit_symtab *cust;
|
||
struct cleanup *back_to, *delayed_list_cleanup;
|
||
CORE_ADDR baseaddr;
|
||
struct block *static_block;
|
||
CORE_ADDR addr;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
buildsym_init ();
|
||
back_to = make_cleanup (really_free_pendings, NULL);
|
||
delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
|
||
|
||
cu->list_in_scope = &file_symbols;
|
||
|
||
cu->language = pretend_language;
|
||
cu->language_defn = language_def (cu->language);
|
||
|
||
/* Do line number decoding in read_file_scope () */
|
||
process_die (cu->dies, cu);
|
||
|
||
/* For now fudge the Go package. */
|
||
if (cu->language == language_go)
|
||
fixup_go_packaging (cu);
|
||
|
||
/* Now that we have processed all the DIEs in the CU, all the types
|
||
should be complete, and it should now be safe to compute all of the
|
||
physnames. */
|
||
compute_delayed_physnames (cu);
|
||
do_cleanups (delayed_list_cleanup);
|
||
|
||
/* Some compilers don't define a DW_AT_high_pc attribute for the
|
||
compilation unit. If the DW_AT_high_pc is missing, synthesize
|
||
it, by scanning the DIE's below the compilation unit. */
|
||
get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
|
||
|
||
addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
|
||
static_block = end_symtab_get_static_block (addr, 0, 1);
|
||
|
||
/* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
|
||
Also, DW_AT_ranges may record ranges not belonging to any child DIEs
|
||
(such as virtual method tables). Record the ranges in STATIC_BLOCK's
|
||
addrmap to help ensure it has an accurate map of pc values belonging to
|
||
this comp unit. */
|
||
dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
|
||
|
||
cust = end_symtab_from_static_block (static_block,
|
||
SECT_OFF_TEXT (objfile), 0);
|
||
|
||
if (cust != NULL)
|
||
{
|
||
int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
|
||
|
||
/* Set symtab language to language from DW_AT_language. If the
|
||
compilation is from a C file generated by language preprocessors, do
|
||
not set the language if it was already deduced by start_subfile. */
|
||
if (!(cu->language == language_c
|
||
&& COMPUNIT_FILETABS (cust)->language != language_unknown))
|
||
COMPUNIT_FILETABS (cust)->language = cu->language;
|
||
|
||
/* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
|
||
produce DW_AT_location with location lists but it can be possibly
|
||
invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
|
||
there were bugs in prologue debug info, fixed later in GCC-4.5
|
||
by "unwind info for epilogues" patch (which is not directly related).
|
||
|
||
For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
|
||
needed, it would be wrong due to missing DW_AT_producer there.
|
||
|
||
Still one can confuse GDB by using non-standard GCC compilation
|
||
options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
|
||
*/
|
||
if (cu->has_loclist && gcc_4_minor >= 5)
|
||
cust->locations_valid = 1;
|
||
|
||
if (gcc_4_minor >= 5)
|
||
cust->epilogue_unwind_valid = 1;
|
||
|
||
cust->call_site_htab = cu->call_site_htab;
|
||
}
|
||
|
||
if (dwarf2_per_objfile->using_index)
|
||
per_cu->v.quick->compunit_symtab = cust;
|
||
else
|
||
{
|
||
struct partial_symtab *pst = per_cu->v.psymtab;
|
||
pst->compunit_symtab = cust;
|
||
pst->readin = 1;
|
||
}
|
||
|
||
/* Push it for inclusion processing later. */
|
||
VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
|
||
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
/* Generate full symbol information for type unit PER_CU, whose DIEs have
|
||
already been loaded into memory. */
|
||
|
||
static void
|
||
process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
|
||
enum language pretend_language)
|
||
{
|
||
struct dwarf2_cu *cu = per_cu->cu;
|
||
struct objfile *objfile = per_cu->objfile;
|
||
struct compunit_symtab *cust;
|
||
struct cleanup *back_to, *delayed_list_cleanup;
|
||
struct signatured_type *sig_type;
|
||
|
||
gdb_assert (per_cu->is_debug_types);
|
||
sig_type = (struct signatured_type *) per_cu;
|
||
|
||
buildsym_init ();
|
||
back_to = make_cleanup (really_free_pendings, NULL);
|
||
delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
|
||
|
||
cu->list_in_scope = &file_symbols;
|
||
|
||
cu->language = pretend_language;
|
||
cu->language_defn = language_def (cu->language);
|
||
|
||
/* The symbol tables are set up in read_type_unit_scope. */
|
||
process_die (cu->dies, cu);
|
||
|
||
/* For now fudge the Go package. */
|
||
if (cu->language == language_go)
|
||
fixup_go_packaging (cu);
|
||
|
||
/* Now that we have processed all the DIEs in the CU, all the types
|
||
should be complete, and it should now be safe to compute all of the
|
||
physnames. */
|
||
compute_delayed_physnames (cu);
|
||
do_cleanups (delayed_list_cleanup);
|
||
|
||
/* TUs share symbol tables.
|
||
If this is the first TU to use this symtab, complete the construction
|
||
of it with end_expandable_symtab. Otherwise, complete the addition of
|
||
this TU's symbols to the existing symtab. */
|
||
if (sig_type->type_unit_group->compunit_symtab == NULL)
|
||
{
|
||
cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
|
||
sig_type->type_unit_group->compunit_symtab = cust;
|
||
|
||
if (cust != NULL)
|
||
{
|
||
/* Set symtab language to language from DW_AT_language. If the
|
||
compilation is from a C file generated by language preprocessors,
|
||
do not set the language if it was already deduced by
|
||
start_subfile. */
|
||
if (!(cu->language == language_c
|
||
&& COMPUNIT_FILETABS (cust)->language != language_c))
|
||
COMPUNIT_FILETABS (cust)->language = cu->language;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
augment_type_symtab ();
|
||
cust = sig_type->type_unit_group->compunit_symtab;
|
||
}
|
||
|
||
if (dwarf2_per_objfile->using_index)
|
||
per_cu->v.quick->compunit_symtab = cust;
|
||
else
|
||
{
|
||
struct partial_symtab *pst = per_cu->v.psymtab;
|
||
pst->compunit_symtab = cust;
|
||
pst->readin = 1;
|
||
}
|
||
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
/* Process an imported unit DIE. */
|
||
|
||
static void
|
||
process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
/* For now we don't handle imported units in type units. */
|
||
if (cu->per_cu->is_debug_types)
|
||
{
|
||
error (_("Dwarf Error: DW_TAG_imported_unit is not"
|
||
" supported in type units [in module %s]"),
|
||
objfile_name (cu->objfile));
|
||
}
|
||
|
||
attr = dwarf2_attr (die, DW_AT_import, cu);
|
||
if (attr != NULL)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
sect_offset offset;
|
||
int is_dwz;
|
||
|
||
offset = dwarf2_get_ref_die_offset (attr);
|
||
is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
|
||
per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
|
||
|
||
/* If necessary, add it to the queue and load its DIEs. */
|
||
if (maybe_queue_comp_unit (cu, per_cu, cu->language))
|
||
load_full_comp_unit (per_cu, cu->language);
|
||
|
||
VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
|
||
per_cu);
|
||
}
|
||
}
|
||
|
||
/* Reset the in_process bit of a die. */
|
||
|
||
static void
|
||
reset_die_in_process (void *arg)
|
||
{
|
||
struct die_info *die = (struct die_info *) arg;
|
||
|
||
die->in_process = 0;
|
||
}
|
||
|
||
/* Process a die and its children. */
|
||
|
||
static void
|
||
process_die (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct cleanup *in_process;
|
||
|
||
/* We should only be processing those not already in process. */
|
||
gdb_assert (!die->in_process);
|
||
|
||
die->in_process = 1;
|
||
in_process = make_cleanup (reset_die_in_process,die);
|
||
|
||
switch (die->tag)
|
||
{
|
||
case DW_TAG_padding:
|
||
break;
|
||
case DW_TAG_compile_unit:
|
||
case DW_TAG_partial_unit:
|
||
read_file_scope (die, cu);
|
||
break;
|
||
case DW_TAG_type_unit:
|
||
read_type_unit_scope (die, cu);
|
||
break;
|
||
case DW_TAG_subprogram:
|
||
case DW_TAG_inlined_subroutine:
|
||
read_func_scope (die, cu);
|
||
break;
|
||
case DW_TAG_lexical_block:
|
||
case DW_TAG_try_block:
|
||
case DW_TAG_catch_block:
|
||
read_lexical_block_scope (die, cu);
|
||
break;
|
||
case DW_TAG_GNU_call_site:
|
||
read_call_site_scope (die, cu);
|
||
break;
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_structure_type:
|
||
case DW_TAG_union_type:
|
||
process_structure_scope (die, cu);
|
||
break;
|
||
case DW_TAG_enumeration_type:
|
||
process_enumeration_scope (die, cu);
|
||
break;
|
||
|
||
/* These dies have a type, but processing them does not create
|
||
a symbol or recurse to process the children. Therefore we can
|
||
read them on-demand through read_type_die. */
|
||
case DW_TAG_subroutine_type:
|
||
case DW_TAG_set_type:
|
||
case DW_TAG_array_type:
|
||
case DW_TAG_pointer_type:
|
||
case DW_TAG_ptr_to_member_type:
|
||
case DW_TAG_reference_type:
|
||
case DW_TAG_string_type:
|
||
break;
|
||
|
||
case DW_TAG_base_type:
|
||
case DW_TAG_subrange_type:
|
||
case DW_TAG_typedef:
|
||
/* Add a typedef symbol for the type definition, if it has a
|
||
DW_AT_name. */
|
||
new_symbol (die, read_type_die (die, cu), cu);
|
||
break;
|
||
case DW_TAG_common_block:
|
||
read_common_block (die, cu);
|
||
break;
|
||
case DW_TAG_common_inclusion:
|
||
break;
|
||
case DW_TAG_namespace:
|
||
cu->processing_has_namespace_info = 1;
|
||
read_namespace (die, cu);
|
||
break;
|
||
case DW_TAG_module:
|
||
cu->processing_has_namespace_info = 1;
|
||
read_module (die, cu);
|
||
break;
|
||
case DW_TAG_imported_declaration:
|
||
cu->processing_has_namespace_info = 1;
|
||
if (read_namespace_alias (die, cu))
|
||
break;
|
||
/* The declaration is not a global namespace alias: fall through. */
|
||
case DW_TAG_imported_module:
|
||
cu->processing_has_namespace_info = 1;
|
||
if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
|
||
|| cu->language != language_fortran))
|
||
complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
|
||
dwarf_tag_name (die->tag));
|
||
read_import_statement (die, cu);
|
||
break;
|
||
|
||
case DW_TAG_imported_unit:
|
||
process_imported_unit_die (die, cu);
|
||
break;
|
||
|
||
default:
|
||
new_symbol (die, NULL, cu);
|
||
break;
|
||
}
|
||
|
||
do_cleanups (in_process);
|
||
}
|
||
|
||
/* DWARF name computation. */
|
||
|
||
/* A helper function for dwarf2_compute_name which determines whether DIE
|
||
needs to have the name of the scope prepended to the name listed in the
|
||
die. */
|
||
|
||
static int
|
||
die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
switch (die->tag)
|
||
{
|
||
case DW_TAG_namespace:
|
||
case DW_TAG_typedef:
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_structure_type:
|
||
case DW_TAG_union_type:
|
||
case DW_TAG_enumeration_type:
|
||
case DW_TAG_enumerator:
|
||
case DW_TAG_subprogram:
|
||
case DW_TAG_inlined_subroutine:
|
||
case DW_TAG_member:
|
||
case DW_TAG_imported_declaration:
|
||
return 1;
|
||
|
||
case DW_TAG_variable:
|
||
case DW_TAG_constant:
|
||
/* We only need to prefix "globally" visible variables. These include
|
||
any variable marked with DW_AT_external or any variable that
|
||
lives in a namespace. [Variables in anonymous namespaces
|
||
require prefixing, but they are not DW_AT_external.] */
|
||
|
||
if (dwarf2_attr (die, DW_AT_specification, cu))
|
||
{
|
||
struct dwarf2_cu *spec_cu = cu;
|
||
|
||
return die_needs_namespace (die_specification (die, &spec_cu),
|
||
spec_cu);
|
||
}
|
||
|
||
attr = dwarf2_attr (die, DW_AT_external, cu);
|
||
if (attr == NULL && die->parent->tag != DW_TAG_namespace
|
||
&& die->parent->tag != DW_TAG_module)
|
||
return 0;
|
||
/* A variable in a lexical block of some kind does not need a
|
||
namespace, even though in C++ such variables may be external
|
||
and have a mangled name. */
|
||
if (die->parent->tag == DW_TAG_lexical_block
|
||
|| die->parent->tag == DW_TAG_try_block
|
||
|| die->parent->tag == DW_TAG_catch_block
|
||
|| die->parent->tag == DW_TAG_subprogram)
|
||
return 0;
|
||
return 1;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Retrieve the last character from a mem_file. */
|
||
|
||
static void
|
||
do_ui_file_peek_last (void *object, const char *buffer, long length)
|
||
{
|
||
char *last_char_p = (char *) object;
|
||
|
||
if (length > 0)
|
||
*last_char_p = buffer[length - 1];
|
||
}
|
||
|
||
/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
|
||
compute the physname for the object, which include a method's:
|
||
- formal parameters (C++/Java),
|
||
- receiver type (Go),
|
||
- return type (Java).
|
||
|
||
The term "physname" is a bit confusing.
|
||
For C++, for example, it is the demangled name.
|
||
For Go, for example, it's the mangled name.
|
||
|
||
For Ada, return the DIE's linkage name rather than the fully qualified
|
||
name. PHYSNAME is ignored..
|
||
|
||
The result is allocated on the objfile_obstack and canonicalized. */
|
||
|
||
static const char *
|
||
dwarf2_compute_name (const char *name,
|
||
struct die_info *die, struct dwarf2_cu *cu,
|
||
int physname)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
|
||
if (name == NULL)
|
||
name = dwarf2_name (die, cu);
|
||
|
||
/* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
|
||
but otherwise compute it by typename_concat inside GDB.
|
||
FIXME: Actually this is not really true, or at least not always true.
|
||
It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
|
||
Fortran names because there is no mangling standard. So new_symbol_full
|
||
will set the demangled name to the result of dwarf2_full_name, and it is
|
||
the demangled name that GDB uses if it exists. */
|
||
if (cu->language == language_ada
|
||
|| (cu->language == language_fortran && physname))
|
||
{
|
||
/* For Ada unit, we prefer the linkage name over the name, as
|
||
the former contains the exported name, which the user expects
|
||
to be able to reference. Ideally, we want the user to be able
|
||
to reference this entity using either natural or linkage name,
|
||
but we haven't started looking at this enhancement yet. */
|
||
const char *linkage_name;
|
||
|
||
linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
|
||
if (linkage_name == NULL)
|
||
linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
|
||
if (linkage_name != NULL)
|
||
return linkage_name;
|
||
}
|
||
|
||
/* These are the only languages we know how to qualify names in. */
|
||
if (name != NULL
|
||
&& (cu->language == language_cplus || cu->language == language_java
|
||
|| cu->language == language_fortran || cu->language == language_d
|
||
|| cu->language == language_rust))
|
||
{
|
||
if (die_needs_namespace (die, cu))
|
||
{
|
||
long length;
|
||
const char *prefix;
|
||
struct ui_file *buf;
|
||
char *intermediate_name;
|
||
const char *canonical_name = NULL;
|
||
|
||
prefix = determine_prefix (die, cu);
|
||
buf = mem_fileopen ();
|
||
if (*prefix != '\0')
|
||
{
|
||
char *prefixed_name = typename_concat (NULL, prefix, name,
|
||
physname, cu);
|
||
|
||
fputs_unfiltered (prefixed_name, buf);
|
||
xfree (prefixed_name);
|
||
}
|
||
else
|
||
fputs_unfiltered (name, buf);
|
||
|
||
/* Template parameters may be specified in the DIE's DW_AT_name, or
|
||
as children with DW_TAG_template_type_param or
|
||
DW_TAG_value_type_param. If the latter, add them to the name
|
||
here. If the name already has template parameters, then
|
||
skip this step; some versions of GCC emit both, and
|
||
it is more efficient to use the pre-computed name.
|
||
|
||
Something to keep in mind about this process: it is very
|
||
unlikely, or in some cases downright impossible, to produce
|
||
something that will match the mangled name of a function.
|
||
If the definition of the function has the same debug info,
|
||
we should be able to match up with it anyway. But fallbacks
|
||
using the minimal symbol, for instance to find a method
|
||
implemented in a stripped copy of libstdc++, will not work.
|
||
If we do not have debug info for the definition, we will have to
|
||
match them up some other way.
|
||
|
||
When we do name matching there is a related problem with function
|
||
templates; two instantiated function templates are allowed to
|
||
differ only by their return types, which we do not add here. */
|
||
|
||
if (cu->language == language_cplus && strchr (name, '<') == NULL)
|
||
{
|
||
struct attribute *attr;
|
||
struct die_info *child;
|
||
int first = 1;
|
||
|
||
die->building_fullname = 1;
|
||
|
||
for (child = die->child; child != NULL; child = child->sibling)
|
||
{
|
||
struct type *type;
|
||
LONGEST value;
|
||
const gdb_byte *bytes;
|
||
struct dwarf2_locexpr_baton *baton;
|
||
struct value *v;
|
||
|
||
if (child->tag != DW_TAG_template_type_param
|
||
&& child->tag != DW_TAG_template_value_param)
|
||
continue;
|
||
|
||
if (first)
|
||
{
|
||
fputs_unfiltered ("<", buf);
|
||
first = 0;
|
||
}
|
||
else
|
||
fputs_unfiltered (", ", buf);
|
||
|
||
attr = dwarf2_attr (child, DW_AT_type, cu);
|
||
if (attr == NULL)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("template parameter missing DW_AT_type"));
|
||
fputs_unfiltered ("UNKNOWN_TYPE", buf);
|
||
continue;
|
||
}
|
||
type = die_type (child, cu);
|
||
|
||
if (child->tag == DW_TAG_template_type_param)
|
||
{
|
||
c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
|
||
continue;
|
||
}
|
||
|
||
attr = dwarf2_attr (child, DW_AT_const_value, cu);
|
||
if (attr == NULL)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("template parameter missing "
|
||
"DW_AT_const_value"));
|
||
fputs_unfiltered ("UNKNOWN_VALUE", buf);
|
||
continue;
|
||
}
|
||
|
||
dwarf2_const_value_attr (attr, type, name,
|
||
&cu->comp_unit_obstack, cu,
|
||
&value, &bytes, &baton);
|
||
|
||
if (TYPE_NOSIGN (type))
|
||
/* GDB prints characters as NUMBER 'CHAR'. If that's
|
||
changed, this can use value_print instead. */
|
||
c_printchar (value, type, buf);
|
||
else
|
||
{
|
||
struct value_print_options opts;
|
||
|
||
if (baton != NULL)
|
||
v = dwarf2_evaluate_loc_desc (type, NULL,
|
||
baton->data,
|
||
baton->size,
|
||
baton->per_cu);
|
||
else if (bytes != NULL)
|
||
{
|
||
v = allocate_value (type);
|
||
memcpy (value_contents_writeable (v), bytes,
|
||
TYPE_LENGTH (type));
|
||
}
|
||
else
|
||
v = value_from_longest (type, value);
|
||
|
||
/* Specify decimal so that we do not depend on
|
||
the radix. */
|
||
get_formatted_print_options (&opts, 'd');
|
||
opts.raw = 1;
|
||
value_print (v, buf, &opts);
|
||
release_value (v);
|
||
value_free (v);
|
||
}
|
||
}
|
||
|
||
die->building_fullname = 0;
|
||
|
||
if (!first)
|
||
{
|
||
/* Close the argument list, with a space if necessary
|
||
(nested templates). */
|
||
char last_char = '\0';
|
||
ui_file_put (buf, do_ui_file_peek_last, &last_char);
|
||
if (last_char == '>')
|
||
fputs_unfiltered (" >", buf);
|
||
else
|
||
fputs_unfiltered (">", buf);
|
||
}
|
||
}
|
||
|
||
/* For Java and C++ methods, append formal parameter type
|
||
information, if PHYSNAME. */
|
||
|
||
if (physname && die->tag == DW_TAG_subprogram
|
||
&& (cu->language == language_cplus
|
||
|| cu->language == language_java))
|
||
{
|
||
struct type *type = read_type_die (die, cu);
|
||
|
||
c_type_print_args (type, buf, 1, cu->language,
|
||
&type_print_raw_options);
|
||
|
||
if (cu->language == language_java)
|
||
{
|
||
/* For java, we must append the return type to method
|
||
names. */
|
||
if (die->tag == DW_TAG_subprogram)
|
||
java_print_type (TYPE_TARGET_TYPE (type), "", buf,
|
||
0, 0, &type_print_raw_options);
|
||
}
|
||
else if (cu->language == language_cplus)
|
||
{
|
||
/* Assume that an artificial first parameter is
|
||
"this", but do not crash if it is not. RealView
|
||
marks unnamed (and thus unused) parameters as
|
||
artificial; there is no way to differentiate
|
||
the two cases. */
|
||
if (TYPE_NFIELDS (type) > 0
|
||
&& TYPE_FIELD_ARTIFICIAL (type, 0)
|
||
&& TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
|
||
&& TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
|
||
0))))
|
||
fputs_unfiltered (" const", buf);
|
||
}
|
||
}
|
||
|
||
intermediate_name = ui_file_xstrdup (buf, &length);
|
||
ui_file_delete (buf);
|
||
|
||
if (cu->language == language_cplus)
|
||
canonical_name
|
||
= dwarf2_canonicalize_name (intermediate_name, cu,
|
||
&objfile->per_bfd->storage_obstack);
|
||
|
||
/* If we only computed INTERMEDIATE_NAME, or if
|
||
INTERMEDIATE_NAME is already canonical, then we need to
|
||
copy it to the appropriate obstack. */
|
||
if (canonical_name == NULL || canonical_name == intermediate_name)
|
||
name = ((const char *)
|
||
obstack_copy0 (&objfile->per_bfd->storage_obstack,
|
||
intermediate_name,
|
||
strlen (intermediate_name)));
|
||
else
|
||
name = canonical_name;
|
||
|
||
xfree (intermediate_name);
|
||
}
|
||
}
|
||
|
||
return name;
|
||
}
|
||
|
||
/* Return the fully qualified name of DIE, based on its DW_AT_name.
|
||
If scope qualifiers are appropriate they will be added. The result
|
||
will be allocated on the storage_obstack, or NULL if the DIE does
|
||
not have a name. NAME may either be from a previous call to
|
||
dwarf2_name or NULL.
|
||
|
||
The output string will be canonicalized (if C++/Java). */
|
||
|
||
static const char *
|
||
dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
return dwarf2_compute_name (name, die, cu, 0);
|
||
}
|
||
|
||
/* Construct a physname for the given DIE in CU. NAME may either be
|
||
from a previous call to dwarf2_name or NULL. The result will be
|
||
allocated on the objfile_objstack or NULL if the DIE does not have a
|
||
name.
|
||
|
||
The output string will be canonicalized (if C++/Java). */
|
||
|
||
static const char *
|
||
dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
const char *retval, *mangled = NULL, *canon = NULL;
|
||
struct cleanup *back_to;
|
||
int need_copy = 1;
|
||
|
||
/* In this case dwarf2_compute_name is just a shortcut not building anything
|
||
on its own. */
|
||
if (!die_needs_namespace (die, cu))
|
||
return dwarf2_compute_name (name, die, cu, 1);
|
||
|
||
back_to = make_cleanup (null_cleanup, NULL);
|
||
|
||
mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
|
||
if (mangled == NULL)
|
||
mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
|
||
|
||
/* DW_AT_linkage_name is missing in some cases - depend on what GDB
|
||
has computed. */
|
||
if (mangled != NULL)
|
||
{
|
||
char *demangled;
|
||
|
||
/* Use DMGL_RET_DROP for C++ template functions to suppress their return
|
||
type. It is easier for GDB users to search for such functions as
|
||
`name(params)' than `long name(params)'. In such case the minimal
|
||
symbol names do not match the full symbol names but for template
|
||
functions there is never a need to look up their definition from their
|
||
declaration so the only disadvantage remains the minimal symbol
|
||
variant `long name(params)' does not have the proper inferior type.
|
||
*/
|
||
|
||
if (cu->language == language_go)
|
||
{
|
||
/* This is a lie, but we already lie to the caller new_symbol_full.
|
||
new_symbol_full assumes we return the mangled name.
|
||
This just undoes that lie until things are cleaned up. */
|
||
demangled = NULL;
|
||
}
|
||
else
|
||
{
|
||
demangled = gdb_demangle (mangled,
|
||
(DMGL_PARAMS | DMGL_ANSI
|
||
| (cu->language == language_java
|
||
? DMGL_JAVA | DMGL_RET_POSTFIX
|
||
: DMGL_RET_DROP)));
|
||
}
|
||
if (demangled)
|
||
{
|
||
make_cleanup (xfree, demangled);
|
||
canon = demangled;
|
||
}
|
||
else
|
||
{
|
||
canon = mangled;
|
||
need_copy = 0;
|
||
}
|
||
}
|
||
|
||
if (canon == NULL || check_physname)
|
||
{
|
||
const char *physname = dwarf2_compute_name (name, die, cu, 1);
|
||
|
||
if (canon != NULL && strcmp (physname, canon) != 0)
|
||
{
|
||
/* It may not mean a bug in GDB. The compiler could also
|
||
compute DW_AT_linkage_name incorrectly. But in such case
|
||
GDB would need to be bug-to-bug compatible. */
|
||
|
||
complaint (&symfile_complaints,
|
||
_("Computed physname <%s> does not match demangled <%s> "
|
||
"(from linkage <%s>) - DIE at 0x%x [in module %s]"),
|
||
physname, canon, mangled, die->offset.sect_off,
|
||
objfile_name (objfile));
|
||
|
||
/* Prefer DW_AT_linkage_name (in the CANON form) - when it
|
||
is available here - over computed PHYSNAME. It is safer
|
||
against both buggy GDB and buggy compilers. */
|
||
|
||
retval = canon;
|
||
}
|
||
else
|
||
{
|
||
retval = physname;
|
||
need_copy = 0;
|
||
}
|
||
}
|
||
else
|
||
retval = canon;
|
||
|
||
if (need_copy)
|
||
retval = ((const char *)
|
||
obstack_copy0 (&objfile->per_bfd->storage_obstack,
|
||
retval, strlen (retval)));
|
||
|
||
do_cleanups (back_to);
|
||
return retval;
|
||
}
|
||
|
||
/* Inspect DIE in CU for a namespace alias. If one exists, record
|
||
a new symbol for it.
|
||
|
||
Returns 1 if a namespace alias was recorded, 0 otherwise. */
|
||
|
||
static int
|
||
read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
/* If the die does not have a name, this is not a namespace
|
||
alias. */
|
||
attr = dwarf2_attr (die, DW_AT_name, cu);
|
||
if (attr != NULL)
|
||
{
|
||
int num;
|
||
struct die_info *d = die;
|
||
struct dwarf2_cu *imported_cu = cu;
|
||
|
||
/* If the compiler has nested DW_AT_imported_declaration DIEs,
|
||
keep inspecting DIEs until we hit the underlying import. */
|
||
#define MAX_NESTED_IMPORTED_DECLARATIONS 100
|
||
for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
|
||
{
|
||
attr = dwarf2_attr (d, DW_AT_import, cu);
|
||
if (attr == NULL)
|
||
break;
|
||
|
||
d = follow_die_ref (d, attr, &imported_cu);
|
||
if (d->tag != DW_TAG_imported_declaration)
|
||
break;
|
||
}
|
||
|
||
if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("DIE at 0x%x has too many recursively imported "
|
||
"declarations"), d->offset.sect_off);
|
||
return 0;
|
||
}
|
||
|
||
if (attr != NULL)
|
||
{
|
||
struct type *type;
|
||
sect_offset offset = dwarf2_get_ref_die_offset (attr);
|
||
|
||
type = get_die_type_at_offset (offset, cu->per_cu);
|
||
if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
|
||
{
|
||
/* This declaration is a global namespace alias. Add
|
||
a symbol for it whose type is the aliased namespace. */
|
||
new_symbol (die, type, cu);
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the using directives repository (global or local?) to use in the
|
||
current context for LANGUAGE.
|
||
|
||
For Ada, imported declarations can materialize renamings, which *may* be
|
||
global. However it is impossible (for now?) in DWARF to distinguish
|
||
"external" imported declarations and "static" ones. As all imported
|
||
declarations seem to be static in all other languages, make them all CU-wide
|
||
global only in Ada. */
|
||
|
||
static struct using_direct **
|
||
using_directives (enum language language)
|
||
{
|
||
if (language == language_ada && context_stack_depth == 0)
|
||
return &global_using_directives;
|
||
else
|
||
return &local_using_directives;
|
||
}
|
||
|
||
/* Read the import statement specified by the given die and record it. */
|
||
|
||
static void
|
||
read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct attribute *import_attr;
|
||
struct die_info *imported_die, *child_die;
|
||
struct dwarf2_cu *imported_cu;
|
||
const char *imported_name;
|
||
const char *imported_name_prefix;
|
||
const char *canonical_name;
|
||
const char *import_alias;
|
||
const char *imported_declaration = NULL;
|
||
const char *import_prefix;
|
||
VEC (const_char_ptr) *excludes = NULL;
|
||
struct cleanup *cleanups;
|
||
|
||
import_attr = dwarf2_attr (die, DW_AT_import, cu);
|
||
if (import_attr == NULL)
|
||
{
|
||
complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
|
||
dwarf_tag_name (die->tag));
|
||
return;
|
||
}
|
||
|
||
imported_cu = cu;
|
||
imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
|
||
imported_name = dwarf2_name (imported_die, imported_cu);
|
||
if (imported_name == NULL)
|
||
{
|
||
/* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
|
||
|
||
The import in the following code:
|
||
namespace A
|
||
{
|
||
typedef int B;
|
||
}
|
||
|
||
int main ()
|
||
{
|
||
using A::B;
|
||
B b;
|
||
return b;
|
||
}
|
||
|
||
...
|
||
<2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
|
||
<52> DW_AT_decl_file : 1
|
||
<53> DW_AT_decl_line : 6
|
||
<54> DW_AT_import : <0x75>
|
||
<2><58>: Abbrev Number: 4 (DW_TAG_typedef)
|
||
<59> DW_AT_name : B
|
||
<5b> DW_AT_decl_file : 1
|
||
<5c> DW_AT_decl_line : 2
|
||
<5d> DW_AT_type : <0x6e>
|
||
...
|
||
<1><75>: Abbrev Number: 7 (DW_TAG_base_type)
|
||
<76> DW_AT_byte_size : 4
|
||
<77> DW_AT_encoding : 5 (signed)
|
||
|
||
imports the wrong die ( 0x75 instead of 0x58 ).
|
||
This case will be ignored until the gcc bug is fixed. */
|
||
return;
|
||
}
|
||
|
||
/* Figure out the local name after import. */
|
||
import_alias = dwarf2_name (die, cu);
|
||
|
||
/* Figure out where the statement is being imported to. */
|
||
import_prefix = determine_prefix (die, cu);
|
||
|
||
/* Figure out what the scope of the imported die is and prepend it
|
||
to the name of the imported die. */
|
||
imported_name_prefix = determine_prefix (imported_die, imported_cu);
|
||
|
||
if (imported_die->tag != DW_TAG_namespace
|
||
&& imported_die->tag != DW_TAG_module)
|
||
{
|
||
imported_declaration = imported_name;
|
||
canonical_name = imported_name_prefix;
|
||
}
|
||
else if (strlen (imported_name_prefix) > 0)
|
||
canonical_name = obconcat (&objfile->objfile_obstack,
|
||
imported_name_prefix,
|
||
(cu->language == language_d ? "." : "::"),
|
||
imported_name, (char *) NULL);
|
||
else
|
||
canonical_name = imported_name;
|
||
|
||
cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
|
||
|
||
if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
|
||
for (child_die = die->child; child_die && child_die->tag;
|
||
child_die = sibling_die (child_die))
|
||
{
|
||
/* DWARF-4: A Fortran use statement with a “rename list” may be
|
||
represented by an imported module entry with an import attribute
|
||
referring to the module and owned entries corresponding to those
|
||
entities that are renamed as part of being imported. */
|
||
|
||
if (child_die->tag != DW_TAG_imported_declaration)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("child DW_TAG_imported_declaration expected "
|
||
"- DIE at 0x%x [in module %s]"),
|
||
child_die->offset.sect_off, objfile_name (objfile));
|
||
continue;
|
||
}
|
||
|
||
import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
|
||
if (import_attr == NULL)
|
||
{
|
||
complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
|
||
dwarf_tag_name (child_die->tag));
|
||
continue;
|
||
}
|
||
|
||
imported_cu = cu;
|
||
imported_die = follow_die_ref_or_sig (child_die, import_attr,
|
||
&imported_cu);
|
||
imported_name = dwarf2_name (imported_die, imported_cu);
|
||
if (imported_name == NULL)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("child DW_TAG_imported_declaration has unknown "
|
||
"imported name - DIE at 0x%x [in module %s]"),
|
||
child_die->offset.sect_off, objfile_name (objfile));
|
||
continue;
|
||
}
|
||
|
||
VEC_safe_push (const_char_ptr, excludes, imported_name);
|
||
|
||
process_die (child_die, cu);
|
||
}
|
||
|
||
add_using_directive (using_directives (cu->language),
|
||
import_prefix,
|
||
canonical_name,
|
||
import_alias,
|
||
imported_declaration,
|
||
excludes,
|
||
0,
|
||
&objfile->objfile_obstack);
|
||
|
||
do_cleanups (cleanups);
|
||
}
|
||
|
||
/* Cleanup function for handle_DW_AT_stmt_list. */
|
||
|
||
static void
|
||
free_cu_line_header (void *arg)
|
||
{
|
||
struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
|
||
|
||
free_line_header (cu->line_header);
|
||
cu->line_header = NULL;
|
||
}
|
||
|
||
/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
|
||
directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
|
||
this, it was first present in GCC release 4.3.0. */
|
||
|
||
static int
|
||
producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
|
||
{
|
||
if (!cu->checked_producer)
|
||
check_producer (cu);
|
||
|
||
return cu->producer_is_gcc_lt_4_3;
|
||
}
|
||
|
||
static void
|
||
find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
|
||
const char **name, const char **comp_dir)
|
||
{
|
||
/* Find the filename. Do not use dwarf2_name here, since the filename
|
||
is not a source language identifier. */
|
||
*name = dwarf2_string_attr (die, DW_AT_name, cu);
|
||
*comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
|
||
|
||
if (*comp_dir == NULL
|
||
&& producer_is_gcc_lt_4_3 (cu) && *name != NULL
|
||
&& IS_ABSOLUTE_PATH (*name))
|
||
{
|
||
char *d = ldirname (*name);
|
||
|
||
*comp_dir = d;
|
||
if (d != NULL)
|
||
make_cleanup (xfree, d);
|
||
}
|
||
if (*comp_dir != NULL)
|
||
{
|
||
/* Irix 6.2 native cc prepends <machine>.: to the compilation
|
||
directory, get rid of it. */
|
||
const char *cp = strchr (*comp_dir, ':');
|
||
|
||
if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
|
||
*comp_dir = cp + 1;
|
||
}
|
||
|
||
if (*name == NULL)
|
||
*name = "<unknown>";
|
||
}
|
||
|
||
/* Handle DW_AT_stmt_list for a compilation unit.
|
||
DIE is the DW_TAG_compile_unit die for CU.
|
||
COMP_DIR is the compilation directory. LOWPC is passed to
|
||
dwarf_decode_lines. See dwarf_decode_lines comments about it. */
|
||
|
||
static void
|
||
handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
|
||
const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
struct attribute *attr;
|
||
unsigned int line_offset;
|
||
struct line_header line_header_local;
|
||
hashval_t line_header_local_hash;
|
||
unsigned u;
|
||
void **slot;
|
||
int decode_mapping;
|
||
|
||
gdb_assert (! cu->per_cu->is_debug_types);
|
||
|
||
attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
|
||
if (attr == NULL)
|
||
return;
|
||
|
||
line_offset = DW_UNSND (attr);
|
||
|
||
/* The line header hash table is only created if needed (it exists to
|
||
prevent redundant reading of the line table for partial_units).
|
||
If we're given a partial_unit, we'll need it. If we're given a
|
||
compile_unit, then use the line header hash table if it's already
|
||
created, but don't create one just yet. */
|
||
|
||
if (dwarf2_per_objfile->line_header_hash == NULL
|
||
&& die->tag == DW_TAG_partial_unit)
|
||
{
|
||
dwarf2_per_objfile->line_header_hash
|
||
= htab_create_alloc_ex (127, line_header_hash_voidp,
|
||
line_header_eq_voidp,
|
||
free_line_header_voidp,
|
||
&objfile->objfile_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
}
|
||
|
||
line_header_local.offset.sect_off = line_offset;
|
||
line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
|
||
line_header_local_hash = line_header_hash (&line_header_local);
|
||
if (dwarf2_per_objfile->line_header_hash != NULL)
|
||
{
|
||
slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
|
||
&line_header_local,
|
||
line_header_local_hash, NO_INSERT);
|
||
|
||
/* For DW_TAG_compile_unit we need info like symtab::linetable which
|
||
is not present in *SLOT (since if there is something in *SLOT then
|
||
it will be for a partial_unit). */
|
||
if (die->tag == DW_TAG_partial_unit && slot != NULL)
|
||
{
|
||
gdb_assert (*slot != NULL);
|
||
cu->line_header = (struct line_header *) *slot;
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* dwarf_decode_line_header does not yet provide sufficient information.
|
||
We always have to call also dwarf_decode_lines for it. */
|
||
cu->line_header = dwarf_decode_line_header (line_offset, cu);
|
||
if (cu->line_header == NULL)
|
||
return;
|
||
|
||
if (dwarf2_per_objfile->line_header_hash == NULL)
|
||
slot = NULL;
|
||
else
|
||
{
|
||
slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
|
||
&line_header_local,
|
||
line_header_local_hash, INSERT);
|
||
gdb_assert (slot != NULL);
|
||
}
|
||
if (slot != NULL && *slot == NULL)
|
||
{
|
||
/* This newly decoded line number information unit will be owned
|
||
by line_header_hash hash table. */
|
||
*slot = cu->line_header;
|
||
}
|
||
else
|
||
{
|
||
/* We cannot free any current entry in (*slot) as that struct line_header
|
||
may be already used by multiple CUs. Create only temporary decoded
|
||
line_header for this CU - it may happen at most once for each line
|
||
number information unit. And if we're not using line_header_hash
|
||
then this is what we want as well. */
|
||
gdb_assert (die->tag != DW_TAG_partial_unit);
|
||
make_cleanup (free_cu_line_header, cu);
|
||
}
|
||
decode_mapping = (die->tag != DW_TAG_partial_unit);
|
||
dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
|
||
decode_mapping);
|
||
}
|
||
|
||
/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
|
||
|
||
static void
|
||
read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
struct cleanup *back_to = make_cleanup (null_cleanup, 0);
|
||
CORE_ADDR lowpc = ((CORE_ADDR) -1);
|
||
CORE_ADDR highpc = ((CORE_ADDR) 0);
|
||
struct attribute *attr;
|
||
const char *name = NULL;
|
||
const char *comp_dir = NULL;
|
||
struct die_info *child_die;
|
||
CORE_ADDR baseaddr;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
get_scope_pc_bounds (die, &lowpc, &highpc, cu);
|
||
|
||
/* If we didn't find a lowpc, set it to highpc to avoid complaints
|
||
from finish_block. */
|
||
if (lowpc == ((CORE_ADDR) -1))
|
||
lowpc = highpc;
|
||
lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
|
||
|
||
find_file_and_directory (die, cu, &name, &comp_dir);
|
||
|
||
prepare_one_comp_unit (cu, die, cu->language);
|
||
|
||
/* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
|
||
standardised yet. As a workaround for the language detection we fall
|
||
back to the DW_AT_producer string. */
|
||
if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
|
||
cu->language = language_opencl;
|
||
|
||
/* Similar hack for Go. */
|
||
if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
|
||
set_cu_language (DW_LANG_Go, cu);
|
||
|
||
dwarf2_start_symtab (cu, name, comp_dir, lowpc);
|
||
|
||
/* Decode line number information if present. We do this before
|
||
processing child DIEs, so that the line header table is available
|
||
for DW_AT_decl_file. */
|
||
handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
|
||
|
||
/* Process all dies in compilation unit. */
|
||
if (die->child != NULL)
|
||
{
|
||
child_die = die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
process_die (child_die, cu);
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
}
|
||
|
||
/* Decode macro information, if present. Dwarf 2 macro information
|
||
refers to information in the line number info statement program
|
||
header, so we can only read it if we've read the header
|
||
successfully. */
|
||
attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
|
||
if (attr && cu->line_header)
|
||
{
|
||
if (dwarf2_attr (die, DW_AT_macro_info, cu))
|
||
complaint (&symfile_complaints,
|
||
_("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
|
||
|
||
dwarf_decode_macros (cu, DW_UNSND (attr), 1);
|
||
}
|
||
else
|
||
{
|
||
attr = dwarf2_attr (die, DW_AT_macro_info, cu);
|
||
if (attr && cu->line_header)
|
||
{
|
||
unsigned int macro_offset = DW_UNSND (attr);
|
||
|
||
dwarf_decode_macros (cu, macro_offset, 0);
|
||
}
|
||
}
|
||
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
|
||
Create the set of symtabs used by this TU, or if this TU is sharing
|
||
symtabs with another TU and the symtabs have already been created
|
||
then restore those symtabs in the line header.
|
||
We don't need the pc/line-number mapping for type units. */
|
||
|
||
static void
|
||
setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu = cu->per_cu;
|
||
struct type_unit_group *tu_group;
|
||
int first_time;
|
||
struct line_header *lh;
|
||
struct attribute *attr;
|
||
unsigned int i, line_offset;
|
||
struct signatured_type *sig_type;
|
||
|
||
gdb_assert (per_cu->is_debug_types);
|
||
sig_type = (struct signatured_type *) per_cu;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
|
||
|
||
/* If we're using .gdb_index (includes -readnow) then
|
||
per_cu->type_unit_group may not have been set up yet. */
|
||
if (sig_type->type_unit_group == NULL)
|
||
sig_type->type_unit_group = get_type_unit_group (cu, attr);
|
||
tu_group = sig_type->type_unit_group;
|
||
|
||
/* If we've already processed this stmt_list there's no real need to
|
||
do it again, we could fake it and just recreate the part we need
|
||
(file name,index -> symtab mapping). If data shows this optimization
|
||
is useful we can do it then. */
|
||
first_time = tu_group->compunit_symtab == NULL;
|
||
|
||
/* We have to handle the case of both a missing DW_AT_stmt_list or bad
|
||
debug info. */
|
||
lh = NULL;
|
||
if (attr != NULL)
|
||
{
|
||
line_offset = DW_UNSND (attr);
|
||
lh = dwarf_decode_line_header (line_offset, cu);
|
||
}
|
||
if (lh == NULL)
|
||
{
|
||
if (first_time)
|
||
dwarf2_start_symtab (cu, "", NULL, 0);
|
||
else
|
||
{
|
||
gdb_assert (tu_group->symtabs == NULL);
|
||
restart_symtab (tu_group->compunit_symtab, "", 0);
|
||
}
|
||
return;
|
||
}
|
||
|
||
cu->line_header = lh;
|
||
make_cleanup (free_cu_line_header, cu);
|
||
|
||
if (first_time)
|
||
{
|
||
struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
|
||
|
||
/* Note: We don't assign tu_group->compunit_symtab yet because we're
|
||
still initializing it, and our caller (a few levels up)
|
||
process_full_type_unit still needs to know if this is the first
|
||
time. */
|
||
|
||
tu_group->num_symtabs = lh->num_file_names;
|
||
tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
|
||
|
||
for (i = 0; i < lh->num_file_names; ++i)
|
||
{
|
||
const char *dir = NULL;
|
||
struct file_entry *fe = &lh->file_names[i];
|
||
|
||
if (fe->dir_index && lh->include_dirs != NULL)
|
||
dir = lh->include_dirs[fe->dir_index - 1];
|
||
dwarf2_start_subfile (fe->name, dir);
|
||
|
||
if (current_subfile->symtab == NULL)
|
||
{
|
||
/* NOTE: start_subfile will recognize when it's been passed
|
||
a file it has already seen. So we can't assume there's a
|
||
simple mapping from lh->file_names to subfiles, plus
|
||
lh->file_names may contain dups. */
|
||
current_subfile->symtab
|
||
= allocate_symtab (cust, current_subfile->name);
|
||
}
|
||
|
||
fe->symtab = current_subfile->symtab;
|
||
tu_group->symtabs[i] = fe->symtab;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
restart_symtab (tu_group->compunit_symtab, "", 0);
|
||
|
||
for (i = 0; i < lh->num_file_names; ++i)
|
||
{
|
||
struct file_entry *fe = &lh->file_names[i];
|
||
|
||
fe->symtab = tu_group->symtabs[i];
|
||
}
|
||
}
|
||
|
||
/* The main symtab is allocated last. Type units don't have DW_AT_name
|
||
so they don't have a "real" (so to speak) symtab anyway.
|
||
There is later code that will assign the main symtab to all symbols
|
||
that don't have one. We need to handle the case of a symbol with a
|
||
missing symtab (DW_AT_decl_file) anyway. */
|
||
}
|
||
|
||
/* Process DW_TAG_type_unit.
|
||
For TUs we want to skip the first top level sibling if it's not the
|
||
actual type being defined by this TU. In this case the first top
|
||
level sibling is there to provide context only. */
|
||
|
||
static void
|
||
read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct die_info *child_die;
|
||
|
||
prepare_one_comp_unit (cu, die, language_minimal);
|
||
|
||
/* Initialize (or reinitialize) the machinery for building symtabs.
|
||
We do this before processing child DIEs, so that the line header table
|
||
is available for DW_AT_decl_file. */
|
||
setup_type_unit_groups (die, cu);
|
||
|
||
if (die->child != NULL)
|
||
{
|
||
child_die = die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
process_die (child_die, cu);
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* DWO/DWP files.
|
||
|
||
http://gcc.gnu.org/wiki/DebugFission
|
||
http://gcc.gnu.org/wiki/DebugFissionDWP
|
||
|
||
To simplify handling of both DWO files ("object" files with the DWARF info)
|
||
and DWP files (a file with the DWOs packaged up into one file), we treat
|
||
DWP files as having a collection of virtual DWO files. */
|
||
|
||
static hashval_t
|
||
hash_dwo_file (const void *item)
|
||
{
|
||
const struct dwo_file *dwo_file = (const struct dwo_file *) item;
|
||
hashval_t hash;
|
||
|
||
hash = htab_hash_string (dwo_file->dwo_name);
|
||
if (dwo_file->comp_dir != NULL)
|
||
hash += htab_hash_string (dwo_file->comp_dir);
|
||
return hash;
|
||
}
|
||
|
||
static int
|
||
eq_dwo_file (const void *item_lhs, const void *item_rhs)
|
||
{
|
||
const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
|
||
const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
|
||
|
||
if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
|
||
return 0;
|
||
if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
|
||
return lhs->comp_dir == rhs->comp_dir;
|
||
return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
|
||
}
|
||
|
||
/* Allocate a hash table for DWO files. */
|
||
|
||
static htab_t
|
||
allocate_dwo_file_hash_table (void)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
|
||
return htab_create_alloc_ex (41,
|
||
hash_dwo_file,
|
||
eq_dwo_file,
|
||
NULL,
|
||
&objfile->objfile_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
}
|
||
|
||
/* Lookup DWO file DWO_NAME. */
|
||
|
||
static void **
|
||
lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
|
||
{
|
||
struct dwo_file find_entry;
|
||
void **slot;
|
||
|
||
if (dwarf2_per_objfile->dwo_files == NULL)
|
||
dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
|
||
|
||
memset (&find_entry, 0, sizeof (find_entry));
|
||
find_entry.dwo_name = dwo_name;
|
||
find_entry.comp_dir = comp_dir;
|
||
slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
|
||
|
||
return slot;
|
||
}
|
||
|
||
static hashval_t
|
||
hash_dwo_unit (const void *item)
|
||
{
|
||
const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
|
||
|
||
/* This drops the top 32 bits of the id, but is ok for a hash. */
|
||
return dwo_unit->signature;
|
||
}
|
||
|
||
static int
|
||
eq_dwo_unit (const void *item_lhs, const void *item_rhs)
|
||
{
|
||
const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
|
||
const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
|
||
|
||
/* The signature is assumed to be unique within the DWO file.
|
||
So while object file CU dwo_id's always have the value zero,
|
||
that's OK, assuming each object file DWO file has only one CU,
|
||
and that's the rule for now. */
|
||
return lhs->signature == rhs->signature;
|
||
}
|
||
|
||
/* Allocate a hash table for DWO CUs,TUs.
|
||
There is one of these tables for each of CUs,TUs for each DWO file. */
|
||
|
||
static htab_t
|
||
allocate_dwo_unit_table (struct objfile *objfile)
|
||
{
|
||
/* Start out with a pretty small number.
|
||
Generally DWO files contain only one CU and maybe some TUs. */
|
||
return htab_create_alloc_ex (3,
|
||
hash_dwo_unit,
|
||
eq_dwo_unit,
|
||
NULL,
|
||
&objfile->objfile_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
}
|
||
|
||
/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
|
||
|
||
struct create_dwo_cu_data
|
||
{
|
||
struct dwo_file *dwo_file;
|
||
struct dwo_unit dwo_unit;
|
||
};
|
||
|
||
/* die_reader_func for create_dwo_cu. */
|
||
|
||
static void
|
||
create_dwo_cu_reader (const struct die_reader_specs *reader,
|
||
const gdb_byte *info_ptr,
|
||
struct die_info *comp_unit_die,
|
||
int has_children,
|
||
void *datap)
|
||
{
|
||
struct dwarf2_cu *cu = reader->cu;
|
||
sect_offset offset = cu->per_cu->offset;
|
||
struct dwarf2_section_info *section = cu->per_cu->section;
|
||
struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
|
||
struct dwo_file *dwo_file = data->dwo_file;
|
||
struct dwo_unit *dwo_unit = &data->dwo_unit;
|
||
struct attribute *attr;
|
||
|
||
attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
|
||
if (attr == NULL)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Dwarf Error: debug entry at offset 0x%x is missing"
|
||
" its dwo_id [in module %s]"),
|
||
offset.sect_off, dwo_file->dwo_name);
|
||
return;
|
||
}
|
||
|
||
dwo_unit->dwo_file = dwo_file;
|
||
dwo_unit->signature = DW_UNSND (attr);
|
||
dwo_unit->section = section;
|
||
dwo_unit->offset = offset;
|
||
dwo_unit->length = cu->per_cu->length;
|
||
|
||
if (dwarf_read_debug)
|
||
fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
|
||
offset.sect_off, hex_string (dwo_unit->signature));
|
||
}
|
||
|
||
/* Create the dwo_unit for the lone CU in DWO_FILE.
|
||
Note: This function processes DWO files only, not DWP files. */
|
||
|
||
static struct dwo_unit *
|
||
create_dwo_cu (struct dwo_file *dwo_file)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
struct dwarf2_section_info *section = &dwo_file->sections.info;
|
||
const gdb_byte *info_ptr, *end_ptr;
|
||
struct create_dwo_cu_data create_dwo_cu_data;
|
||
struct dwo_unit *dwo_unit;
|
||
|
||
dwarf2_read_section (objfile, section);
|
||
info_ptr = section->buffer;
|
||
|
||
if (info_ptr == NULL)
|
||
return NULL;
|
||
|
||
if (dwarf_read_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
|
||
get_section_name (section),
|
||
get_section_file_name (section));
|
||
}
|
||
|
||
create_dwo_cu_data.dwo_file = dwo_file;
|
||
dwo_unit = NULL;
|
||
|
||
end_ptr = info_ptr + section->size;
|
||
while (info_ptr < end_ptr)
|
||
{
|
||
struct dwarf2_per_cu_data per_cu;
|
||
|
||
memset (&create_dwo_cu_data.dwo_unit, 0,
|
||
sizeof (create_dwo_cu_data.dwo_unit));
|
||
memset (&per_cu, 0, sizeof (per_cu));
|
||
per_cu.objfile = objfile;
|
||
per_cu.is_debug_types = 0;
|
||
per_cu.offset.sect_off = info_ptr - section->buffer;
|
||
per_cu.section = section;
|
||
|
||
init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
|
||
create_dwo_cu_reader,
|
||
&create_dwo_cu_data);
|
||
|
||
if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
|
||
{
|
||
/* If we've already found one, complain. We only support one
|
||
because having more than one requires hacking the dwo_name of
|
||
each to match, which is highly unlikely to happen. */
|
||
if (dwo_unit != NULL)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Multiple CUs in DWO file %s [in module %s]"),
|
||
dwo_file->dwo_name, objfile_name (objfile));
|
||
break;
|
||
}
|
||
|
||
dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
|
||
*dwo_unit = create_dwo_cu_data.dwo_unit;
|
||
}
|
||
|
||
info_ptr += per_cu.length;
|
||
}
|
||
|
||
return dwo_unit;
|
||
}
|
||
|
||
/* DWP file .debug_{cu,tu}_index section format:
|
||
[ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
|
||
|
||
DWP Version 1:
|
||
|
||
Both index sections have the same format, and serve to map a 64-bit
|
||
signature to a set of section numbers. Each section begins with a header,
|
||
followed by a hash table of 64-bit signatures, a parallel table of 32-bit
|
||
indexes, and a pool of 32-bit section numbers. The index sections will be
|
||
aligned at 8-byte boundaries in the file.
|
||
|
||
The index section header consists of:
|
||
|
||
V, 32 bit version number
|
||
-, 32 bits unused
|
||
N, 32 bit number of compilation units or type units in the index
|
||
M, 32 bit number of slots in the hash table
|
||
|
||
Numbers are recorded using the byte order of the application binary.
|
||
|
||
The hash table begins at offset 16 in the section, and consists of an array
|
||
of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
|
||
order of the application binary). Unused slots in the hash table are 0.
|
||
(We rely on the extreme unlikeliness of a signature being exactly 0.)
|
||
|
||
The parallel table begins immediately after the hash table
|
||
(at offset 16 + 8 * M from the beginning of the section), and consists of an
|
||
array of 32-bit indexes (using the byte order of the application binary),
|
||
corresponding 1-1 with slots in the hash table. Each entry in the parallel
|
||
table contains a 32-bit index into the pool of section numbers. For unused
|
||
hash table slots, the corresponding entry in the parallel table will be 0.
|
||
|
||
The pool of section numbers begins immediately following the hash table
|
||
(at offset 16 + 12 * M from the beginning of the section). The pool of
|
||
section numbers consists of an array of 32-bit words (using the byte order
|
||
of the application binary). Each item in the array is indexed starting
|
||
from 0. The hash table entry provides the index of the first section
|
||
number in the set. Additional section numbers in the set follow, and the
|
||
set is terminated by a 0 entry (section number 0 is not used in ELF).
|
||
|
||
In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
|
||
section must be the first entry in the set, and the .debug_abbrev.dwo must
|
||
be the second entry. Other members of the set may follow in any order.
|
||
|
||
---
|
||
|
||
DWP Version 2:
|
||
|
||
DWP Version 2 combines all the .debug_info, etc. sections into one,
|
||
and the entries in the index tables are now offsets into these sections.
|
||
CU offsets begin at 0. TU offsets begin at the size of the .debug_info
|
||
section.
|
||
|
||
Index Section Contents:
|
||
Header
|
||
Hash Table of Signatures dwp_hash_table.hash_table
|
||
Parallel Table of Indices dwp_hash_table.unit_table
|
||
Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
|
||
Table of Section Sizes dwp_hash_table.v2.sizes
|
||
|
||
The index section header consists of:
|
||
|
||
V, 32 bit version number
|
||
L, 32 bit number of columns in the table of section offsets
|
||
N, 32 bit number of compilation units or type units in the index
|
||
M, 32 bit number of slots in the hash table
|
||
|
||
Numbers are recorded using the byte order of the application binary.
|
||
|
||
The hash table has the same format as version 1.
|
||
The parallel table of indices has the same format as version 1,
|
||
except that the entries are origin-1 indices into the table of sections
|
||
offsets and the table of section sizes.
|
||
|
||
The table of offsets begins immediately following the parallel table
|
||
(at offset 16 + 12 * M from the beginning of the section). The table is
|
||
a two-dimensional array of 32-bit words (using the byte order of the
|
||
application binary), with L columns and N+1 rows, in row-major order.
|
||
Each row in the array is indexed starting from 0. The first row provides
|
||
a key to the remaining rows: each column in this row provides an identifier
|
||
for a debug section, and the offsets in the same column of subsequent rows
|
||
refer to that section. The section identifiers are:
|
||
|
||
DW_SECT_INFO 1 .debug_info.dwo
|
||
DW_SECT_TYPES 2 .debug_types.dwo
|
||
DW_SECT_ABBREV 3 .debug_abbrev.dwo
|
||
DW_SECT_LINE 4 .debug_line.dwo
|
||
DW_SECT_LOC 5 .debug_loc.dwo
|
||
DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
|
||
DW_SECT_MACINFO 7 .debug_macinfo.dwo
|
||
DW_SECT_MACRO 8 .debug_macro.dwo
|
||
|
||
The offsets provided by the CU and TU index sections are the base offsets
|
||
for the contributions made by each CU or TU to the corresponding section
|
||
in the package file. Each CU and TU header contains an abbrev_offset
|
||
field, used to find the abbreviations table for that CU or TU within the
|
||
contribution to the .debug_abbrev.dwo section for that CU or TU, and should
|
||
be interpreted as relative to the base offset given in the index section.
|
||
Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
|
||
should be interpreted as relative to the base offset for .debug_line.dwo,
|
||
and offsets into other debug sections obtained from DWARF attributes should
|
||
also be interpreted as relative to the corresponding base offset.
|
||
|
||
The table of sizes begins immediately following the table of offsets.
|
||
Like the table of offsets, it is a two-dimensional array of 32-bit words,
|
||
with L columns and N rows, in row-major order. Each row in the array is
|
||
indexed starting from 1 (row 0 is shared by the two tables).
|
||
|
||
---
|
||
|
||
Hash table lookup is handled the same in version 1 and 2:
|
||
|
||
We assume that N and M will not exceed 2^32 - 1.
|
||
The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
|
||
|
||
Given a 64-bit compilation unit signature or a type signature S, an entry
|
||
in the hash table is located as follows:
|
||
|
||
1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
|
||
the low-order k bits all set to 1.
|
||
|
||
2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
|
||
|
||
3) If the hash table entry at index H matches the signature, use that
|
||
entry. If the hash table entry at index H is unused (all zeroes),
|
||
terminate the search: the signature is not present in the table.
|
||
|
||
4) Let H = (H + H') modulo M. Repeat at Step 3.
|
||
|
||
Because M > N and H' and M are relatively prime, the search is guaranteed
|
||
to stop at an unused slot or find the match. */
|
||
|
||
/* Create a hash table to map DWO IDs to their CU/TU entry in
|
||
.debug_{info,types}.dwo in DWP_FILE.
|
||
Returns NULL if there isn't one.
|
||
Note: This function processes DWP files only, not DWO files. */
|
||
|
||
static struct dwp_hash_table *
|
||
create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
bfd *dbfd = dwp_file->dbfd;
|
||
const gdb_byte *index_ptr, *index_end;
|
||
struct dwarf2_section_info *index;
|
||
uint32_t version, nr_columns, nr_units, nr_slots;
|
||
struct dwp_hash_table *htab;
|
||
|
||
if (is_debug_types)
|
||
index = &dwp_file->sections.tu_index;
|
||
else
|
||
index = &dwp_file->sections.cu_index;
|
||
|
||
if (dwarf2_section_empty_p (index))
|
||
return NULL;
|
||
dwarf2_read_section (objfile, index);
|
||
|
||
index_ptr = index->buffer;
|
||
index_end = index_ptr + index->size;
|
||
|
||
version = read_4_bytes (dbfd, index_ptr);
|
||
index_ptr += 4;
|
||
if (version == 2)
|
||
nr_columns = read_4_bytes (dbfd, index_ptr);
|
||
else
|
||
nr_columns = 0;
|
||
index_ptr += 4;
|
||
nr_units = read_4_bytes (dbfd, index_ptr);
|
||
index_ptr += 4;
|
||
nr_slots = read_4_bytes (dbfd, index_ptr);
|
||
index_ptr += 4;
|
||
|
||
if (version != 1 && version != 2)
|
||
{
|
||
error (_("Dwarf Error: unsupported DWP file version (%s)"
|
||
" [in module %s]"),
|
||
pulongest (version), dwp_file->name);
|
||
}
|
||
if (nr_slots != (nr_slots & -nr_slots))
|
||
{
|
||
error (_("Dwarf Error: number of slots in DWP hash table (%s)"
|
||
" is not power of 2 [in module %s]"),
|
||
pulongest (nr_slots), dwp_file->name);
|
||
}
|
||
|
||
htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
|
||
htab->version = version;
|
||
htab->nr_columns = nr_columns;
|
||
htab->nr_units = nr_units;
|
||
htab->nr_slots = nr_slots;
|
||
htab->hash_table = index_ptr;
|
||
htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
|
||
|
||
/* Exit early if the table is empty. */
|
||
if (nr_slots == 0 || nr_units == 0
|
||
|| (version == 2 && nr_columns == 0))
|
||
{
|
||
/* All must be zero. */
|
||
if (nr_slots != 0 || nr_units != 0
|
||
|| (version == 2 && nr_columns != 0))
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Empty DWP but nr_slots,nr_units,nr_columns not"
|
||
" all zero [in modules %s]"),
|
||
dwp_file->name);
|
||
}
|
||
return htab;
|
||
}
|
||
|
||
if (version == 1)
|
||
{
|
||
htab->section_pool.v1.indices =
|
||
htab->unit_table + sizeof (uint32_t) * nr_slots;
|
||
/* It's harder to decide whether the section is too small in v1.
|
||
V1 is deprecated anyway so we punt. */
|
||
}
|
||
else
|
||
{
|
||
const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
|
||
int *ids = htab->section_pool.v2.section_ids;
|
||
/* Reverse map for error checking. */
|
||
int ids_seen[DW_SECT_MAX + 1];
|
||
int i;
|
||
|
||
if (nr_columns < 2)
|
||
{
|
||
error (_("Dwarf Error: bad DWP hash table, too few columns"
|
||
" in section table [in module %s]"),
|
||
dwp_file->name);
|
||
}
|
||
if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
|
||
{
|
||
error (_("Dwarf Error: bad DWP hash table, too many columns"
|
||
" in section table [in module %s]"),
|
||
dwp_file->name);
|
||
}
|
||
memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
|
||
memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
|
||
for (i = 0; i < nr_columns; ++i)
|
||
{
|
||
int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
|
||
|
||
if (id < DW_SECT_MIN || id > DW_SECT_MAX)
|
||
{
|
||
error (_("Dwarf Error: bad DWP hash table, bad section id %d"
|
||
" in section table [in module %s]"),
|
||
id, dwp_file->name);
|
||
}
|
||
if (ids_seen[id] != -1)
|
||
{
|
||
error (_("Dwarf Error: bad DWP hash table, duplicate section"
|
||
" id %d in section table [in module %s]"),
|
||
id, dwp_file->name);
|
||
}
|
||
ids_seen[id] = i;
|
||
ids[i] = id;
|
||
}
|
||
/* Must have exactly one info or types section. */
|
||
if (((ids_seen[DW_SECT_INFO] != -1)
|
||
+ (ids_seen[DW_SECT_TYPES] != -1))
|
||
!= 1)
|
||
{
|
||
error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
|
||
" DWO info/types section [in module %s]"),
|
||
dwp_file->name);
|
||
}
|
||
/* Must have an abbrev section. */
|
||
if (ids_seen[DW_SECT_ABBREV] == -1)
|
||
{
|
||
error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
|
||
" section [in module %s]"),
|
||
dwp_file->name);
|
||
}
|
||
htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
|
||
htab->section_pool.v2.sizes =
|
||
htab->section_pool.v2.offsets + (sizeof (uint32_t)
|
||
* nr_units * nr_columns);
|
||
if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
|
||
* nr_units * nr_columns))
|
||
> index_end)
|
||
{
|
||
error (_("Dwarf Error: DWP index section is corrupt (too small)"
|
||
" [in module %s]"),
|
||
dwp_file->name);
|
||
}
|
||
}
|
||
|
||
return htab;
|
||
}
|
||
|
||
/* Update SECTIONS with the data from SECTP.
|
||
|
||
This function is like the other "locate" section routines that are
|
||
passed to bfd_map_over_sections, but in this context the sections to
|
||
read comes from the DWP V1 hash table, not the full ELF section table.
|
||
|
||
The result is non-zero for success, or zero if an error was found. */
|
||
|
||
static int
|
||
locate_v1_virtual_dwo_sections (asection *sectp,
|
||
struct virtual_v1_dwo_sections *sections)
|
||
{
|
||
const struct dwop_section_names *names = &dwop_section_names;
|
||
|
||
if (section_is_p (sectp->name, &names->abbrev_dwo))
|
||
{
|
||
/* There can be only one. */
|
||
if (sections->abbrev.s.section != NULL)
|
||
return 0;
|
||
sections->abbrev.s.section = sectp;
|
||
sections->abbrev.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->info_dwo)
|
||
|| section_is_p (sectp->name, &names->types_dwo))
|
||
{
|
||
/* There can be only one. */
|
||
if (sections->info_or_types.s.section != NULL)
|
||
return 0;
|
||
sections->info_or_types.s.section = sectp;
|
||
sections->info_or_types.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->line_dwo))
|
||
{
|
||
/* There can be only one. */
|
||
if (sections->line.s.section != NULL)
|
||
return 0;
|
||
sections->line.s.section = sectp;
|
||
sections->line.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->loc_dwo))
|
||
{
|
||
/* There can be only one. */
|
||
if (sections->loc.s.section != NULL)
|
||
return 0;
|
||
sections->loc.s.section = sectp;
|
||
sections->loc.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->macinfo_dwo))
|
||
{
|
||
/* There can be only one. */
|
||
if (sections->macinfo.s.section != NULL)
|
||
return 0;
|
||
sections->macinfo.s.section = sectp;
|
||
sections->macinfo.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->macro_dwo))
|
||
{
|
||
/* There can be only one. */
|
||
if (sections->macro.s.section != NULL)
|
||
return 0;
|
||
sections->macro.s.section = sectp;
|
||
sections->macro.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->str_offsets_dwo))
|
||
{
|
||
/* There can be only one. */
|
||
if (sections->str_offsets.s.section != NULL)
|
||
return 0;
|
||
sections->str_offsets.s.section = sectp;
|
||
sections->str_offsets.size = bfd_get_section_size (sectp);
|
||
}
|
||
else
|
||
{
|
||
/* No other kind of section is valid. */
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
|
||
UNIT_INDEX is the index of the DWO unit in the DWP hash table.
|
||
COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
|
||
This is for DWP version 1 files. */
|
||
|
||
static struct dwo_unit *
|
||
create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
|
||
uint32_t unit_index,
|
||
const char *comp_dir,
|
||
ULONGEST signature, int is_debug_types)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
const struct dwp_hash_table *dwp_htab =
|
||
is_debug_types ? dwp_file->tus : dwp_file->cus;
|
||
bfd *dbfd = dwp_file->dbfd;
|
||
const char *kind = is_debug_types ? "TU" : "CU";
|
||
struct dwo_file *dwo_file;
|
||
struct dwo_unit *dwo_unit;
|
||
struct virtual_v1_dwo_sections sections;
|
||
void **dwo_file_slot;
|
||
char *virtual_dwo_name;
|
||
struct cleanup *cleanups;
|
||
int i;
|
||
|
||
gdb_assert (dwp_file->version == 1);
|
||
|
||
if (dwarf_read_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
|
||
kind,
|
||
pulongest (unit_index), hex_string (signature),
|
||
dwp_file->name);
|
||
}
|
||
|
||
/* Fetch the sections of this DWO unit.
|
||
Put a limit on the number of sections we look for so that bad data
|
||
doesn't cause us to loop forever. */
|
||
|
||
#define MAX_NR_V1_DWO_SECTIONS \
|
||
(1 /* .debug_info or .debug_types */ \
|
||
+ 1 /* .debug_abbrev */ \
|
||
+ 1 /* .debug_line */ \
|
||
+ 1 /* .debug_loc */ \
|
||
+ 1 /* .debug_str_offsets */ \
|
||
+ 1 /* .debug_macro or .debug_macinfo */ \
|
||
+ 1 /* trailing zero */)
|
||
|
||
memset (§ions, 0, sizeof (sections));
|
||
cleanups = make_cleanup (null_cleanup, 0);
|
||
|
||
for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
|
||
{
|
||
asection *sectp;
|
||
uint32_t section_nr =
|
||
read_4_bytes (dbfd,
|
||
dwp_htab->section_pool.v1.indices
|
||
+ (unit_index + i) * sizeof (uint32_t));
|
||
|
||
if (section_nr == 0)
|
||
break;
|
||
if (section_nr >= dwp_file->num_sections)
|
||
{
|
||
error (_("Dwarf Error: bad DWP hash table, section number too large"
|
||
" [in module %s]"),
|
||
dwp_file->name);
|
||
}
|
||
|
||
sectp = dwp_file->elf_sections[section_nr];
|
||
if (! locate_v1_virtual_dwo_sections (sectp, §ions))
|
||
{
|
||
error (_("Dwarf Error: bad DWP hash table, invalid section found"
|
||
" [in module %s]"),
|
||
dwp_file->name);
|
||
}
|
||
}
|
||
|
||
if (i < 2
|
||
|| dwarf2_section_empty_p (§ions.info_or_types)
|
||
|| dwarf2_section_empty_p (§ions.abbrev))
|
||
{
|
||
error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
|
||
" [in module %s]"),
|
||
dwp_file->name);
|
||
}
|
||
if (i == MAX_NR_V1_DWO_SECTIONS)
|
||
{
|
||
error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
|
||
" [in module %s]"),
|
||
dwp_file->name);
|
||
}
|
||
|
||
/* It's easier for the rest of the code if we fake a struct dwo_file and
|
||
have dwo_unit "live" in that. At least for now.
|
||
|
||
The DWP file can be made up of a random collection of CUs and TUs.
|
||
However, for each CU + set of TUs that came from the same original DWO
|
||
file, we can combine them back into a virtual DWO file to save space
|
||
(fewer struct dwo_file objects to allocate). Remember that for really
|
||
large apps there can be on the order of 8K CUs and 200K TUs, or more. */
|
||
|
||
virtual_dwo_name =
|
||
xstrprintf ("virtual-dwo/%d-%d-%d-%d",
|
||
get_section_id (§ions.abbrev),
|
||
get_section_id (§ions.line),
|
||
get_section_id (§ions.loc),
|
||
get_section_id (§ions.str_offsets));
|
||
make_cleanup (xfree, virtual_dwo_name);
|
||
/* Can we use an existing virtual DWO file? */
|
||
dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
|
||
/* Create one if necessary. */
|
||
if (*dwo_file_slot == NULL)
|
||
{
|
||
if (dwarf_read_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
|
||
virtual_dwo_name);
|
||
}
|
||
dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
|
||
dwo_file->dwo_name
|
||
= (const char *) obstack_copy0 (&objfile->objfile_obstack,
|
||
virtual_dwo_name,
|
||
strlen (virtual_dwo_name));
|
||
dwo_file->comp_dir = comp_dir;
|
||
dwo_file->sections.abbrev = sections.abbrev;
|
||
dwo_file->sections.line = sections.line;
|
||
dwo_file->sections.loc = sections.loc;
|
||
dwo_file->sections.macinfo = sections.macinfo;
|
||
dwo_file->sections.macro = sections.macro;
|
||
dwo_file->sections.str_offsets = sections.str_offsets;
|
||
/* The "str" section is global to the entire DWP file. */
|
||
dwo_file->sections.str = dwp_file->sections.str;
|
||
/* The info or types section is assigned below to dwo_unit,
|
||
there's no need to record it in dwo_file.
|
||
Also, we can't simply record type sections in dwo_file because
|
||
we record a pointer into the vector in dwo_unit. As we collect more
|
||
types we'll grow the vector and eventually have to reallocate space
|
||
for it, invalidating all copies of pointers into the previous
|
||
contents. */
|
||
*dwo_file_slot = dwo_file;
|
||
}
|
||
else
|
||
{
|
||
if (dwarf_read_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
|
||
virtual_dwo_name);
|
||
}
|
||
dwo_file = (struct dwo_file *) *dwo_file_slot;
|
||
}
|
||
do_cleanups (cleanups);
|
||
|
||
dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
|
||
dwo_unit->dwo_file = dwo_file;
|
||
dwo_unit->signature = signature;
|
||
dwo_unit->section =
|
||
XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
|
||
*dwo_unit->section = sections.info_or_types;
|
||
/* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
|
||
|
||
return dwo_unit;
|
||
}
|
||
|
||
/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
|
||
Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
|
||
piece within that section used by a TU/CU, return a virtual section
|
||
of just that piece. */
|
||
|
||
static struct dwarf2_section_info
|
||
create_dwp_v2_section (struct dwarf2_section_info *section,
|
||
bfd_size_type offset, bfd_size_type size)
|
||
{
|
||
struct dwarf2_section_info result;
|
||
asection *sectp;
|
||
|
||
gdb_assert (section != NULL);
|
||
gdb_assert (!section->is_virtual);
|
||
|
||
memset (&result, 0, sizeof (result));
|
||
result.s.containing_section = section;
|
||
result.is_virtual = 1;
|
||
|
||
if (size == 0)
|
||
return result;
|
||
|
||
sectp = get_section_bfd_section (section);
|
||
|
||
/* Flag an error if the piece denoted by OFFSET,SIZE is outside the
|
||
bounds of the real section. This is a pretty-rare event, so just
|
||
flag an error (easier) instead of a warning and trying to cope. */
|
||
if (sectp == NULL
|
||
|| offset + size > bfd_get_section_size (sectp))
|
||
{
|
||
bfd *abfd = sectp->owner;
|
||
|
||
error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
|
||
" in section %s [in module %s]"),
|
||
sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
|
||
objfile_name (dwarf2_per_objfile->objfile));
|
||
}
|
||
|
||
result.virtual_offset = offset;
|
||
result.size = size;
|
||
return result;
|
||
}
|
||
|
||
/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
|
||
UNIT_INDEX is the index of the DWO unit in the DWP hash table.
|
||
COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
|
||
This is for DWP version 2 files. */
|
||
|
||
static struct dwo_unit *
|
||
create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
|
||
uint32_t unit_index,
|
||
const char *comp_dir,
|
||
ULONGEST signature, int is_debug_types)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
const struct dwp_hash_table *dwp_htab =
|
||
is_debug_types ? dwp_file->tus : dwp_file->cus;
|
||
bfd *dbfd = dwp_file->dbfd;
|
||
const char *kind = is_debug_types ? "TU" : "CU";
|
||
struct dwo_file *dwo_file;
|
||
struct dwo_unit *dwo_unit;
|
||
struct virtual_v2_dwo_sections sections;
|
||
void **dwo_file_slot;
|
||
char *virtual_dwo_name;
|
||
struct cleanup *cleanups;
|
||
int i;
|
||
|
||
gdb_assert (dwp_file->version == 2);
|
||
|
||
if (dwarf_read_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
|
||
kind,
|
||
pulongest (unit_index), hex_string (signature),
|
||
dwp_file->name);
|
||
}
|
||
|
||
/* Fetch the section offsets of this DWO unit. */
|
||
|
||
memset (§ions, 0, sizeof (sections));
|
||
cleanups = make_cleanup (null_cleanup, 0);
|
||
|
||
for (i = 0; i < dwp_htab->nr_columns; ++i)
|
||
{
|
||
uint32_t offset = read_4_bytes (dbfd,
|
||
dwp_htab->section_pool.v2.offsets
|
||
+ (((unit_index - 1) * dwp_htab->nr_columns
|
||
+ i)
|
||
* sizeof (uint32_t)));
|
||
uint32_t size = read_4_bytes (dbfd,
|
||
dwp_htab->section_pool.v2.sizes
|
||
+ (((unit_index - 1) * dwp_htab->nr_columns
|
||
+ i)
|
||
* sizeof (uint32_t)));
|
||
|
||
switch (dwp_htab->section_pool.v2.section_ids[i])
|
||
{
|
||
case DW_SECT_INFO:
|
||
case DW_SECT_TYPES:
|
||
sections.info_or_types_offset = offset;
|
||
sections.info_or_types_size = size;
|
||
break;
|
||
case DW_SECT_ABBREV:
|
||
sections.abbrev_offset = offset;
|
||
sections.abbrev_size = size;
|
||
break;
|
||
case DW_SECT_LINE:
|
||
sections.line_offset = offset;
|
||
sections.line_size = size;
|
||
break;
|
||
case DW_SECT_LOC:
|
||
sections.loc_offset = offset;
|
||
sections.loc_size = size;
|
||
break;
|
||
case DW_SECT_STR_OFFSETS:
|
||
sections.str_offsets_offset = offset;
|
||
sections.str_offsets_size = size;
|
||
break;
|
||
case DW_SECT_MACINFO:
|
||
sections.macinfo_offset = offset;
|
||
sections.macinfo_size = size;
|
||
break;
|
||
case DW_SECT_MACRO:
|
||
sections.macro_offset = offset;
|
||
sections.macro_size = size;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* It's easier for the rest of the code if we fake a struct dwo_file and
|
||
have dwo_unit "live" in that. At least for now.
|
||
|
||
The DWP file can be made up of a random collection of CUs and TUs.
|
||
However, for each CU + set of TUs that came from the same original DWO
|
||
file, we can combine them back into a virtual DWO file to save space
|
||
(fewer struct dwo_file objects to allocate). Remember that for really
|
||
large apps there can be on the order of 8K CUs and 200K TUs, or more. */
|
||
|
||
virtual_dwo_name =
|
||
xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
|
||
(long) (sections.abbrev_size ? sections.abbrev_offset : 0),
|
||
(long) (sections.line_size ? sections.line_offset : 0),
|
||
(long) (sections.loc_size ? sections.loc_offset : 0),
|
||
(long) (sections.str_offsets_size
|
||
? sections.str_offsets_offset : 0));
|
||
make_cleanup (xfree, virtual_dwo_name);
|
||
/* Can we use an existing virtual DWO file? */
|
||
dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
|
||
/* Create one if necessary. */
|
||
if (*dwo_file_slot == NULL)
|
||
{
|
||
if (dwarf_read_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
|
||
virtual_dwo_name);
|
||
}
|
||
dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
|
||
dwo_file->dwo_name
|
||
= (const char *) obstack_copy0 (&objfile->objfile_obstack,
|
||
virtual_dwo_name,
|
||
strlen (virtual_dwo_name));
|
||
dwo_file->comp_dir = comp_dir;
|
||
dwo_file->sections.abbrev =
|
||
create_dwp_v2_section (&dwp_file->sections.abbrev,
|
||
sections.abbrev_offset, sections.abbrev_size);
|
||
dwo_file->sections.line =
|
||
create_dwp_v2_section (&dwp_file->sections.line,
|
||
sections.line_offset, sections.line_size);
|
||
dwo_file->sections.loc =
|
||
create_dwp_v2_section (&dwp_file->sections.loc,
|
||
sections.loc_offset, sections.loc_size);
|
||
dwo_file->sections.macinfo =
|
||
create_dwp_v2_section (&dwp_file->sections.macinfo,
|
||
sections.macinfo_offset, sections.macinfo_size);
|
||
dwo_file->sections.macro =
|
||
create_dwp_v2_section (&dwp_file->sections.macro,
|
||
sections.macro_offset, sections.macro_size);
|
||
dwo_file->sections.str_offsets =
|
||
create_dwp_v2_section (&dwp_file->sections.str_offsets,
|
||
sections.str_offsets_offset,
|
||
sections.str_offsets_size);
|
||
/* The "str" section is global to the entire DWP file. */
|
||
dwo_file->sections.str = dwp_file->sections.str;
|
||
/* The info or types section is assigned below to dwo_unit,
|
||
there's no need to record it in dwo_file.
|
||
Also, we can't simply record type sections in dwo_file because
|
||
we record a pointer into the vector in dwo_unit. As we collect more
|
||
types we'll grow the vector and eventually have to reallocate space
|
||
for it, invalidating all copies of pointers into the previous
|
||
contents. */
|
||
*dwo_file_slot = dwo_file;
|
||
}
|
||
else
|
||
{
|
||
if (dwarf_read_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
|
||
virtual_dwo_name);
|
||
}
|
||
dwo_file = (struct dwo_file *) *dwo_file_slot;
|
||
}
|
||
do_cleanups (cleanups);
|
||
|
||
dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
|
||
dwo_unit->dwo_file = dwo_file;
|
||
dwo_unit->signature = signature;
|
||
dwo_unit->section =
|
||
XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
|
||
*dwo_unit->section = create_dwp_v2_section (is_debug_types
|
||
? &dwp_file->sections.types
|
||
: &dwp_file->sections.info,
|
||
sections.info_or_types_offset,
|
||
sections.info_or_types_size);
|
||
/* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
|
||
|
||
return dwo_unit;
|
||
}
|
||
|
||
/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
|
||
Returns NULL if the signature isn't found. */
|
||
|
||
static struct dwo_unit *
|
||
lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
|
||
ULONGEST signature, int is_debug_types)
|
||
{
|
||
const struct dwp_hash_table *dwp_htab =
|
||
is_debug_types ? dwp_file->tus : dwp_file->cus;
|
||
bfd *dbfd = dwp_file->dbfd;
|
||
uint32_t mask = dwp_htab->nr_slots - 1;
|
||
uint32_t hash = signature & mask;
|
||
uint32_t hash2 = ((signature >> 32) & mask) | 1;
|
||
unsigned int i;
|
||
void **slot;
|
||
struct dwo_unit find_dwo_cu;
|
||
|
||
memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
|
||
find_dwo_cu.signature = signature;
|
||
slot = htab_find_slot (is_debug_types
|
||
? dwp_file->loaded_tus
|
||
: dwp_file->loaded_cus,
|
||
&find_dwo_cu, INSERT);
|
||
|
||
if (*slot != NULL)
|
||
return (struct dwo_unit *) *slot;
|
||
|
||
/* Use a for loop so that we don't loop forever on bad debug info. */
|
||
for (i = 0; i < dwp_htab->nr_slots; ++i)
|
||
{
|
||
ULONGEST signature_in_table;
|
||
|
||
signature_in_table =
|
||
read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
|
||
if (signature_in_table == signature)
|
||
{
|
||
uint32_t unit_index =
|
||
read_4_bytes (dbfd,
|
||
dwp_htab->unit_table + hash * sizeof (uint32_t));
|
||
|
||
if (dwp_file->version == 1)
|
||
{
|
||
*slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
|
||
comp_dir, signature,
|
||
is_debug_types);
|
||
}
|
||
else
|
||
{
|
||
*slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
|
||
comp_dir, signature,
|
||
is_debug_types);
|
||
}
|
||
return (struct dwo_unit *) *slot;
|
||
}
|
||
if (signature_in_table == 0)
|
||
return NULL;
|
||
hash = (hash + hash2) & mask;
|
||
}
|
||
|
||
error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
|
||
" [in module %s]"),
|
||
dwp_file->name);
|
||
}
|
||
|
||
/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
|
||
Open the file specified by FILE_NAME and hand it off to BFD for
|
||
preliminary analysis. Return a newly initialized bfd *, which
|
||
includes a canonicalized copy of FILE_NAME.
|
||
If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
|
||
SEARCH_CWD is true if the current directory is to be searched.
|
||
It will be searched before debug-file-directory.
|
||
If successful, the file is added to the bfd include table of the
|
||
objfile's bfd (see gdb_bfd_record_inclusion).
|
||
If unable to find/open the file, return NULL.
|
||
NOTE: This function is derived from symfile_bfd_open. */
|
||
|
||
static bfd *
|
||
try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
|
||
{
|
||
bfd *sym_bfd;
|
||
int desc, flags;
|
||
char *absolute_name;
|
||
/* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
|
||
FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
|
||
to debug_file_directory. */
|
||
char *search_path;
|
||
static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
|
||
|
||
if (search_cwd)
|
||
{
|
||
if (*debug_file_directory != '\0')
|
||
search_path = concat (".", dirname_separator_string,
|
||
debug_file_directory, (char *) NULL);
|
||
else
|
||
search_path = xstrdup (".");
|
||
}
|
||
else
|
||
search_path = xstrdup (debug_file_directory);
|
||
|
||
flags = OPF_RETURN_REALPATH;
|
||
if (is_dwp)
|
||
flags |= OPF_SEARCH_IN_PATH;
|
||
desc = openp (search_path, flags, file_name,
|
||
O_RDONLY | O_BINARY, &absolute_name);
|
||
xfree (search_path);
|
||
if (desc < 0)
|
||
return NULL;
|
||
|
||
sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
|
||
xfree (absolute_name);
|
||
if (sym_bfd == NULL)
|
||
return NULL;
|
||
bfd_set_cacheable (sym_bfd, 1);
|
||
|
||
if (!bfd_check_format (sym_bfd, bfd_object))
|
||
{
|
||
gdb_bfd_unref (sym_bfd); /* This also closes desc. */
|
||
return NULL;
|
||
}
|
||
|
||
/* Success. Record the bfd as having been included by the objfile's bfd.
|
||
This is important because things like demangled_names_hash lives in the
|
||
objfile's per_bfd space and may have references to things like symbol
|
||
names that live in the DWO/DWP file's per_bfd space. PR 16426. */
|
||
gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
|
||
|
||
return sym_bfd;
|
||
}
|
||
|
||
/* Try to open DWO file FILE_NAME.
|
||
COMP_DIR is the DW_AT_comp_dir attribute.
|
||
The result is the bfd handle of the file.
|
||
If there is a problem finding or opening the file, return NULL.
|
||
Upon success, the canonicalized path of the file is stored in the bfd,
|
||
same as symfile_bfd_open. */
|
||
|
||
static bfd *
|
||
open_dwo_file (const char *file_name, const char *comp_dir)
|
||
{
|
||
bfd *abfd;
|
||
|
||
if (IS_ABSOLUTE_PATH (file_name))
|
||
return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
|
||
|
||
/* Before trying the search path, try DWO_NAME in COMP_DIR. */
|
||
|
||
if (comp_dir != NULL)
|
||
{
|
||
char *path_to_try = concat (comp_dir, SLASH_STRING,
|
||
file_name, (char *) NULL);
|
||
|
||
/* NOTE: If comp_dir is a relative path, this will also try the
|
||
search path, which seems useful. */
|
||
abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
|
||
xfree (path_to_try);
|
||
if (abfd != NULL)
|
||
return abfd;
|
||
}
|
||
|
||
/* That didn't work, try debug-file-directory, which, despite its name,
|
||
is a list of paths. */
|
||
|
||
if (*debug_file_directory == '\0')
|
||
return NULL;
|
||
|
||
return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
|
||
}
|
||
|
||
/* This function is mapped across the sections and remembers the offset and
|
||
size of each of the DWO debugging sections we are interested in. */
|
||
|
||
static void
|
||
dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
|
||
{
|
||
struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
|
||
const struct dwop_section_names *names = &dwop_section_names;
|
||
|
||
if (section_is_p (sectp->name, &names->abbrev_dwo))
|
||
{
|
||
dwo_sections->abbrev.s.section = sectp;
|
||
dwo_sections->abbrev.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->info_dwo))
|
||
{
|
||
dwo_sections->info.s.section = sectp;
|
||
dwo_sections->info.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->line_dwo))
|
||
{
|
||
dwo_sections->line.s.section = sectp;
|
||
dwo_sections->line.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->loc_dwo))
|
||
{
|
||
dwo_sections->loc.s.section = sectp;
|
||
dwo_sections->loc.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->macinfo_dwo))
|
||
{
|
||
dwo_sections->macinfo.s.section = sectp;
|
||
dwo_sections->macinfo.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->macro_dwo))
|
||
{
|
||
dwo_sections->macro.s.section = sectp;
|
||
dwo_sections->macro.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->str_dwo))
|
||
{
|
||
dwo_sections->str.s.section = sectp;
|
||
dwo_sections->str.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->str_offsets_dwo))
|
||
{
|
||
dwo_sections->str_offsets.s.section = sectp;
|
||
dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->types_dwo))
|
||
{
|
||
struct dwarf2_section_info type_section;
|
||
|
||
memset (&type_section, 0, sizeof (type_section));
|
||
type_section.s.section = sectp;
|
||
type_section.size = bfd_get_section_size (sectp);
|
||
VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
|
||
&type_section);
|
||
}
|
||
}
|
||
|
||
/* Initialize the use of the DWO file specified by DWO_NAME and referenced
|
||
by PER_CU. This is for the non-DWP case.
|
||
The result is NULL if DWO_NAME can't be found. */
|
||
|
||
static struct dwo_file *
|
||
open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
|
||
const char *dwo_name, const char *comp_dir)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
struct dwo_file *dwo_file;
|
||
bfd *dbfd;
|
||
struct cleanup *cleanups;
|
||
|
||
dbfd = open_dwo_file (dwo_name, comp_dir);
|
||
if (dbfd == NULL)
|
||
{
|
||
if (dwarf_read_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
|
||
return NULL;
|
||
}
|
||
dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
|
||
dwo_file->dwo_name = dwo_name;
|
||
dwo_file->comp_dir = comp_dir;
|
||
dwo_file->dbfd = dbfd;
|
||
|
||
cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
|
||
|
||
bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
|
||
|
||
dwo_file->cu = create_dwo_cu (dwo_file);
|
||
|
||
dwo_file->tus = create_debug_types_hash_table (dwo_file,
|
||
dwo_file->sections.types);
|
||
|
||
discard_cleanups (cleanups);
|
||
|
||
if (dwarf_read_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
|
||
|
||
return dwo_file;
|
||
}
|
||
|
||
/* This function is mapped across the sections and remembers the offset and
|
||
size of each of the DWP debugging sections common to version 1 and 2 that
|
||
we are interested in. */
|
||
|
||
static void
|
||
dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
|
||
void *dwp_file_ptr)
|
||
{
|
||
struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
|
||
const struct dwop_section_names *names = &dwop_section_names;
|
||
unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
|
||
|
||
/* Record the ELF section number for later lookup: this is what the
|
||
.debug_cu_index,.debug_tu_index tables use in DWP V1. */
|
||
gdb_assert (elf_section_nr < dwp_file->num_sections);
|
||
dwp_file->elf_sections[elf_section_nr] = sectp;
|
||
|
||
/* Look for specific sections that we need. */
|
||
if (section_is_p (sectp->name, &names->str_dwo))
|
||
{
|
||
dwp_file->sections.str.s.section = sectp;
|
||
dwp_file->sections.str.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->cu_index))
|
||
{
|
||
dwp_file->sections.cu_index.s.section = sectp;
|
||
dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->tu_index))
|
||
{
|
||
dwp_file->sections.tu_index.s.section = sectp;
|
||
dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
|
||
}
|
||
}
|
||
|
||
/* This function is mapped across the sections and remembers the offset and
|
||
size of each of the DWP version 2 debugging sections that we are interested
|
||
in. This is split into a separate function because we don't know if we
|
||
have version 1 or 2 until we parse the cu_index/tu_index sections. */
|
||
|
||
static void
|
||
dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
|
||
{
|
||
struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
|
||
const struct dwop_section_names *names = &dwop_section_names;
|
||
unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
|
||
|
||
/* Record the ELF section number for later lookup: this is what the
|
||
.debug_cu_index,.debug_tu_index tables use in DWP V1. */
|
||
gdb_assert (elf_section_nr < dwp_file->num_sections);
|
||
dwp_file->elf_sections[elf_section_nr] = sectp;
|
||
|
||
/* Look for specific sections that we need. */
|
||
if (section_is_p (sectp->name, &names->abbrev_dwo))
|
||
{
|
||
dwp_file->sections.abbrev.s.section = sectp;
|
||
dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->info_dwo))
|
||
{
|
||
dwp_file->sections.info.s.section = sectp;
|
||
dwp_file->sections.info.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->line_dwo))
|
||
{
|
||
dwp_file->sections.line.s.section = sectp;
|
||
dwp_file->sections.line.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->loc_dwo))
|
||
{
|
||
dwp_file->sections.loc.s.section = sectp;
|
||
dwp_file->sections.loc.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->macinfo_dwo))
|
||
{
|
||
dwp_file->sections.macinfo.s.section = sectp;
|
||
dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->macro_dwo))
|
||
{
|
||
dwp_file->sections.macro.s.section = sectp;
|
||
dwp_file->sections.macro.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->str_offsets_dwo))
|
||
{
|
||
dwp_file->sections.str_offsets.s.section = sectp;
|
||
dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
|
||
}
|
||
else if (section_is_p (sectp->name, &names->types_dwo))
|
||
{
|
||
dwp_file->sections.types.s.section = sectp;
|
||
dwp_file->sections.types.size = bfd_get_section_size (sectp);
|
||
}
|
||
}
|
||
|
||
/* Hash function for dwp_file loaded CUs/TUs. */
|
||
|
||
static hashval_t
|
||
hash_dwp_loaded_cutus (const void *item)
|
||
{
|
||
const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
|
||
|
||
/* This drops the top 32 bits of the signature, but is ok for a hash. */
|
||
return dwo_unit->signature;
|
||
}
|
||
|
||
/* Equality function for dwp_file loaded CUs/TUs. */
|
||
|
||
static int
|
||
eq_dwp_loaded_cutus (const void *a, const void *b)
|
||
{
|
||
const struct dwo_unit *dua = (const struct dwo_unit *) a;
|
||
const struct dwo_unit *dub = (const struct dwo_unit *) b;
|
||
|
||
return dua->signature == dub->signature;
|
||
}
|
||
|
||
/* Allocate a hash table for dwp_file loaded CUs/TUs. */
|
||
|
||
static htab_t
|
||
allocate_dwp_loaded_cutus_table (struct objfile *objfile)
|
||
{
|
||
return htab_create_alloc_ex (3,
|
||
hash_dwp_loaded_cutus,
|
||
eq_dwp_loaded_cutus,
|
||
NULL,
|
||
&objfile->objfile_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
}
|
||
|
||
/* Try to open DWP file FILE_NAME.
|
||
The result is the bfd handle of the file.
|
||
If there is a problem finding or opening the file, return NULL.
|
||
Upon success, the canonicalized path of the file is stored in the bfd,
|
||
same as symfile_bfd_open. */
|
||
|
||
static bfd *
|
||
open_dwp_file (const char *file_name)
|
||
{
|
||
bfd *abfd;
|
||
|
||
abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
|
||
if (abfd != NULL)
|
||
return abfd;
|
||
|
||
/* Work around upstream bug 15652.
|
||
http://sourceware.org/bugzilla/show_bug.cgi?id=15652
|
||
[Whether that's a "bug" is debatable, but it is getting in our way.]
|
||
We have no real idea where the dwp file is, because gdb's realpath-ing
|
||
of the executable's path may have discarded the needed info.
|
||
[IWBN if the dwp file name was recorded in the executable, akin to
|
||
.gnu_debuglink, but that doesn't exist yet.]
|
||
Strip the directory from FILE_NAME and search again. */
|
||
if (*debug_file_directory != '\0')
|
||
{
|
||
/* Don't implicitly search the current directory here.
|
||
If the user wants to search "." to handle this case,
|
||
it must be added to debug-file-directory. */
|
||
return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
|
||
0 /*search_cwd*/);
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Initialize the use of the DWP file for the current objfile.
|
||
By convention the name of the DWP file is ${objfile}.dwp.
|
||
The result is NULL if it can't be found. */
|
||
|
||
static struct dwp_file *
|
||
open_and_init_dwp_file (void)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
struct dwp_file *dwp_file;
|
||
char *dwp_name;
|
||
bfd *dbfd;
|
||
struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
|
||
|
||
/* Try to find first .dwp for the binary file before any symbolic links
|
||
resolving. */
|
||
|
||
/* If the objfile is a debug file, find the name of the real binary
|
||
file and get the name of dwp file from there. */
|
||
if (objfile->separate_debug_objfile_backlink != NULL)
|
||
{
|
||
struct objfile *backlink = objfile->separate_debug_objfile_backlink;
|
||
const char *backlink_basename = lbasename (backlink->original_name);
|
||
char *debug_dirname = ldirname (objfile->original_name);
|
||
|
||
make_cleanup (xfree, debug_dirname);
|
||
dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
|
||
SLASH_STRING, backlink_basename);
|
||
}
|
||
else
|
||
dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
|
||
make_cleanup (xfree, dwp_name);
|
||
|
||
dbfd = open_dwp_file (dwp_name);
|
||
if (dbfd == NULL
|
||
&& strcmp (objfile->original_name, objfile_name (objfile)) != 0)
|
||
{
|
||
/* Try to find .dwp for the binary file after gdb_realpath resolving. */
|
||
dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
|
||
make_cleanup (xfree, dwp_name);
|
||
dbfd = open_dwp_file (dwp_name);
|
||
}
|
||
|
||
if (dbfd == NULL)
|
||
{
|
||
if (dwarf_read_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
|
||
do_cleanups (cleanups);
|
||
return NULL;
|
||
}
|
||
dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
|
||
dwp_file->name = bfd_get_filename (dbfd);
|
||
dwp_file->dbfd = dbfd;
|
||
do_cleanups (cleanups);
|
||
|
||
/* +1: section 0 is unused */
|
||
dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
|
||
dwp_file->elf_sections =
|
||
OBSTACK_CALLOC (&objfile->objfile_obstack,
|
||
dwp_file->num_sections, asection *);
|
||
|
||
bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
|
||
|
||
dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
|
||
|
||
dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
|
||
|
||
/* The DWP file version is stored in the hash table. Oh well. */
|
||
if (dwp_file->cus->version != dwp_file->tus->version)
|
||
{
|
||
/* Technically speaking, we should try to limp along, but this is
|
||
pretty bizarre. We use pulongest here because that's the established
|
||
portability solution (e.g, we cannot use %u for uint32_t). */
|
||
error (_("Dwarf Error: DWP file CU version %s doesn't match"
|
||
" TU version %s [in DWP file %s]"),
|
||
pulongest (dwp_file->cus->version),
|
||
pulongest (dwp_file->tus->version), dwp_name);
|
||
}
|
||
dwp_file->version = dwp_file->cus->version;
|
||
|
||
if (dwp_file->version == 2)
|
||
bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
|
||
|
||
dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
|
||
dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
|
||
|
||
if (dwarf_read_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
" %s CUs, %s TUs\n",
|
||
pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
|
||
pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
|
||
}
|
||
|
||
return dwp_file;
|
||
}
|
||
|
||
/* Wrapper around open_and_init_dwp_file, only open it once. */
|
||
|
||
static struct dwp_file *
|
||
get_dwp_file (void)
|
||
{
|
||
if (! dwarf2_per_objfile->dwp_checked)
|
||
{
|
||
dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
|
||
dwarf2_per_objfile->dwp_checked = 1;
|
||
}
|
||
return dwarf2_per_objfile->dwp_file;
|
||
}
|
||
|
||
/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
|
||
Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
|
||
or in the DWP file for the objfile, referenced by THIS_UNIT.
|
||
If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
|
||
IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
|
||
|
||
This is called, for example, when wanting to read a variable with a
|
||
complex location. Therefore we don't want to do file i/o for every call.
|
||
Therefore we don't want to look for a DWO file on every call.
|
||
Therefore we first see if we've already seen SIGNATURE in a DWP file,
|
||
then we check if we've already seen DWO_NAME, and only THEN do we check
|
||
for a DWO file.
|
||
|
||
The result is a pointer to the dwo_unit object or NULL if we didn't find it
|
||
(dwo_id mismatch or couldn't find the DWO/DWP file). */
|
||
|
||
static struct dwo_unit *
|
||
lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
|
||
const char *dwo_name, const char *comp_dir,
|
||
ULONGEST signature, int is_debug_types)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
const char *kind = is_debug_types ? "TU" : "CU";
|
||
void **dwo_file_slot;
|
||
struct dwo_file *dwo_file;
|
||
struct dwp_file *dwp_file;
|
||
|
||
/* First see if there's a DWP file.
|
||
If we have a DWP file but didn't find the DWO inside it, don't
|
||
look for the original DWO file. It makes gdb behave differently
|
||
depending on whether one is debugging in the build tree. */
|
||
|
||
dwp_file = get_dwp_file ();
|
||
if (dwp_file != NULL)
|
||
{
|
||
const struct dwp_hash_table *dwp_htab =
|
||
is_debug_types ? dwp_file->tus : dwp_file->cus;
|
||
|
||
if (dwp_htab != NULL)
|
||
{
|
||
struct dwo_unit *dwo_cutu =
|
||
lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
|
||
signature, is_debug_types);
|
||
|
||
if (dwo_cutu != NULL)
|
||
{
|
||
if (dwarf_read_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"Virtual DWO %s %s found: @%s\n",
|
||
kind, hex_string (signature),
|
||
host_address_to_string (dwo_cutu));
|
||
}
|
||
return dwo_cutu;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* No DWP file, look for the DWO file. */
|
||
|
||
dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
|
||
if (*dwo_file_slot == NULL)
|
||
{
|
||
/* Read in the file and build a table of the CUs/TUs it contains. */
|
||
*dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
|
||
}
|
||
/* NOTE: This will be NULL if unable to open the file. */
|
||
dwo_file = (struct dwo_file *) *dwo_file_slot;
|
||
|
||
if (dwo_file != NULL)
|
||
{
|
||
struct dwo_unit *dwo_cutu = NULL;
|
||
|
||
if (is_debug_types && dwo_file->tus)
|
||
{
|
||
struct dwo_unit find_dwo_cutu;
|
||
|
||
memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
|
||
find_dwo_cutu.signature = signature;
|
||
dwo_cutu
|
||
= (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
|
||
}
|
||
else if (!is_debug_types && dwo_file->cu)
|
||
{
|
||
if (signature == dwo_file->cu->signature)
|
||
dwo_cutu = dwo_file->cu;
|
||
}
|
||
|
||
if (dwo_cutu != NULL)
|
||
{
|
||
if (dwarf_read_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
|
||
kind, dwo_name, hex_string (signature),
|
||
host_address_to_string (dwo_cutu));
|
||
}
|
||
return dwo_cutu;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* We didn't find it. This could mean a dwo_id mismatch, or
|
||
someone deleted the DWO/DWP file, or the search path isn't set up
|
||
correctly to find the file. */
|
||
|
||
if (dwarf_read_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
|
||
kind, dwo_name, hex_string (signature));
|
||
}
|
||
|
||
/* This is a warning and not a complaint because it can be caused by
|
||
pilot error (e.g., user accidentally deleting the DWO). */
|
||
{
|
||
/* Print the name of the DWP file if we looked there, helps the user
|
||
better diagnose the problem. */
|
||
char *dwp_text = NULL;
|
||
struct cleanup *cleanups;
|
||
|
||
if (dwp_file != NULL)
|
||
dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
|
||
cleanups = make_cleanup (xfree, dwp_text);
|
||
|
||
warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
|
||
" [in module %s]"),
|
||
kind, dwo_name, hex_string (signature),
|
||
dwp_text != NULL ? dwp_text : "",
|
||
this_unit->is_debug_types ? "TU" : "CU",
|
||
this_unit->offset.sect_off, objfile_name (objfile));
|
||
|
||
do_cleanups (cleanups);
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
|
||
See lookup_dwo_cutu_unit for details. */
|
||
|
||
static struct dwo_unit *
|
||
lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
|
||
const char *dwo_name, const char *comp_dir,
|
||
ULONGEST signature)
|
||
{
|
||
return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
|
||
}
|
||
|
||
/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
|
||
See lookup_dwo_cutu_unit for details. */
|
||
|
||
static struct dwo_unit *
|
||
lookup_dwo_type_unit (struct signatured_type *this_tu,
|
||
const char *dwo_name, const char *comp_dir)
|
||
{
|
||
return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
|
||
}
|
||
|
||
/* Traversal function for queue_and_load_all_dwo_tus. */
|
||
|
||
static int
|
||
queue_and_load_dwo_tu (void **slot, void *info)
|
||
{
|
||
struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
|
||
struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
|
||
ULONGEST signature = dwo_unit->signature;
|
||
struct signatured_type *sig_type =
|
||
lookup_dwo_signatured_type (per_cu->cu, signature);
|
||
|
||
if (sig_type != NULL)
|
||
{
|
||
struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
|
||
|
||
/* We pass NULL for DEPENDENT_CU because we don't yet know if there's
|
||
a real dependency of PER_CU on SIG_TYPE. That is detected later
|
||
while processing PER_CU. */
|
||
if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
|
||
load_full_type_unit (sig_cu);
|
||
VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Queue all TUs contained in the DWO of PER_CU to be read in.
|
||
The DWO may have the only definition of the type, though it may not be
|
||
referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
|
||
http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
|
||
|
||
static void
|
||
queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
struct dwo_unit *dwo_unit;
|
||
struct dwo_file *dwo_file;
|
||
|
||
gdb_assert (!per_cu->is_debug_types);
|
||
gdb_assert (get_dwp_file () == NULL);
|
||
gdb_assert (per_cu->cu != NULL);
|
||
|
||
dwo_unit = per_cu->cu->dwo_unit;
|
||
gdb_assert (dwo_unit != NULL);
|
||
|
||
dwo_file = dwo_unit->dwo_file;
|
||
if (dwo_file->tus != NULL)
|
||
htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
|
||
}
|
||
|
||
/* Free all resources associated with DWO_FILE.
|
||
Close the DWO file and munmap the sections.
|
||
All memory should be on the objfile obstack. */
|
||
|
||
static void
|
||
free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
|
||
{
|
||
|
||
/* Note: dbfd is NULL for virtual DWO files. */
|
||
gdb_bfd_unref (dwo_file->dbfd);
|
||
|
||
VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
|
||
}
|
||
|
||
/* Wrapper for free_dwo_file for use in cleanups. */
|
||
|
||
static void
|
||
free_dwo_file_cleanup (void *arg)
|
||
{
|
||
struct dwo_file *dwo_file = (struct dwo_file *) arg;
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
|
||
free_dwo_file (dwo_file, objfile);
|
||
}
|
||
|
||
/* Traversal function for free_dwo_files. */
|
||
|
||
static int
|
||
free_dwo_file_from_slot (void **slot, void *info)
|
||
{
|
||
struct dwo_file *dwo_file = (struct dwo_file *) *slot;
|
||
struct objfile *objfile = (struct objfile *) info;
|
||
|
||
free_dwo_file (dwo_file, objfile);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Free all resources associated with DWO_FILES. */
|
||
|
||
static void
|
||
free_dwo_files (htab_t dwo_files, struct objfile *objfile)
|
||
{
|
||
htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
|
||
}
|
||
|
||
/* Read in various DIEs. */
|
||
|
||
/* qsort helper for inherit_abstract_dies. */
|
||
|
||
static int
|
||
unsigned_int_compar (const void *ap, const void *bp)
|
||
{
|
||
unsigned int a = *(unsigned int *) ap;
|
||
unsigned int b = *(unsigned int *) bp;
|
||
|
||
return (a > b) - (b > a);
|
||
}
|
||
|
||
/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
|
||
Inherit only the children of the DW_AT_abstract_origin DIE not being
|
||
already referenced by DW_AT_abstract_origin from the children of the
|
||
current DIE. */
|
||
|
||
static void
|
||
inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct die_info *child_die;
|
||
unsigned die_children_count;
|
||
/* CU offsets which were referenced by children of the current DIE. */
|
||
sect_offset *offsets;
|
||
sect_offset *offsets_end, *offsetp;
|
||
/* Parent of DIE - referenced by DW_AT_abstract_origin. */
|
||
struct die_info *origin_die;
|
||
/* Iterator of the ORIGIN_DIE children. */
|
||
struct die_info *origin_child_die;
|
||
struct cleanup *cleanups;
|
||
struct attribute *attr;
|
||
struct dwarf2_cu *origin_cu;
|
||
struct pending **origin_previous_list_in_scope;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
|
||
if (!attr)
|
||
return;
|
||
|
||
/* Note that following die references may follow to a die in a
|
||
different cu. */
|
||
|
||
origin_cu = cu;
|
||
origin_die = follow_die_ref (die, attr, &origin_cu);
|
||
|
||
/* We're inheriting ORIGIN's children into the scope we'd put DIE's
|
||
symbols in. */
|
||
origin_previous_list_in_scope = origin_cu->list_in_scope;
|
||
origin_cu->list_in_scope = cu->list_in_scope;
|
||
|
||
if (die->tag != origin_die->tag
|
||
&& !(die->tag == DW_TAG_inlined_subroutine
|
||
&& origin_die->tag == DW_TAG_subprogram))
|
||
complaint (&symfile_complaints,
|
||
_("DIE 0x%x and its abstract origin 0x%x have different tags"),
|
||
die->offset.sect_off, origin_die->offset.sect_off);
|
||
|
||
child_die = die->child;
|
||
die_children_count = 0;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
child_die = sibling_die (child_die);
|
||
die_children_count++;
|
||
}
|
||
offsets = XNEWVEC (sect_offset, die_children_count);
|
||
cleanups = make_cleanup (xfree, offsets);
|
||
|
||
offsets_end = offsets;
|
||
for (child_die = die->child;
|
||
child_die && child_die->tag;
|
||
child_die = sibling_die (child_die))
|
||
{
|
||
struct die_info *child_origin_die;
|
||
struct dwarf2_cu *child_origin_cu;
|
||
|
||
/* We are trying to process concrete instance entries:
|
||
DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
|
||
it's not relevant to our analysis here. i.e. detecting DIEs that are
|
||
present in the abstract instance but not referenced in the concrete
|
||
one. */
|
||
if (child_die->tag == DW_TAG_GNU_call_site)
|
||
continue;
|
||
|
||
/* For each CHILD_DIE, find the corresponding child of
|
||
ORIGIN_DIE. If there is more than one layer of
|
||
DW_AT_abstract_origin, follow them all; there shouldn't be,
|
||
but GCC versions at least through 4.4 generate this (GCC PR
|
||
40573). */
|
||
child_origin_die = child_die;
|
||
child_origin_cu = cu;
|
||
while (1)
|
||
{
|
||
attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
|
||
child_origin_cu);
|
||
if (attr == NULL)
|
||
break;
|
||
child_origin_die = follow_die_ref (child_origin_die, attr,
|
||
&child_origin_cu);
|
||
}
|
||
|
||
/* According to DWARF3 3.3.8.2 #3 new entries without their abstract
|
||
counterpart may exist. */
|
||
if (child_origin_die != child_die)
|
||
{
|
||
if (child_die->tag != child_origin_die->tag
|
||
&& !(child_die->tag == DW_TAG_inlined_subroutine
|
||
&& child_origin_die->tag == DW_TAG_subprogram))
|
||
complaint (&symfile_complaints,
|
||
_("Child DIE 0x%x and its abstract origin 0x%x have "
|
||
"different tags"), child_die->offset.sect_off,
|
||
child_origin_die->offset.sect_off);
|
||
if (child_origin_die->parent != origin_die)
|
||
complaint (&symfile_complaints,
|
||
_("Child DIE 0x%x and its abstract origin 0x%x have "
|
||
"different parents"), child_die->offset.sect_off,
|
||
child_origin_die->offset.sect_off);
|
||
else
|
||
*offsets_end++ = child_origin_die->offset;
|
||
}
|
||
}
|
||
qsort (offsets, offsets_end - offsets, sizeof (*offsets),
|
||
unsigned_int_compar);
|
||
for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
|
||
if (offsetp[-1].sect_off == offsetp->sect_off)
|
||
complaint (&symfile_complaints,
|
||
_("Multiple children of DIE 0x%x refer "
|
||
"to DIE 0x%x as their abstract origin"),
|
||
die->offset.sect_off, offsetp->sect_off);
|
||
|
||
offsetp = offsets;
|
||
origin_child_die = origin_die->child;
|
||
while (origin_child_die && origin_child_die->tag)
|
||
{
|
||
/* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
|
||
while (offsetp < offsets_end
|
||
&& offsetp->sect_off < origin_child_die->offset.sect_off)
|
||
offsetp++;
|
||
if (offsetp >= offsets_end
|
||
|| offsetp->sect_off > origin_child_die->offset.sect_off)
|
||
{
|
||
/* Found that ORIGIN_CHILD_DIE is really not referenced.
|
||
Check whether we're already processing ORIGIN_CHILD_DIE.
|
||
This can happen with mutually referenced abstract_origins.
|
||
PR 16581. */
|
||
if (!origin_child_die->in_process)
|
||
process_die (origin_child_die, origin_cu);
|
||
}
|
||
origin_child_die = sibling_die (origin_child_die);
|
||
}
|
||
origin_cu->list_in_scope = origin_previous_list_in_scope;
|
||
|
||
do_cleanups (cleanups);
|
||
}
|
||
|
||
static void
|
||
read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
struct context_stack *newobj;
|
||
CORE_ADDR lowpc;
|
||
CORE_ADDR highpc;
|
||
struct die_info *child_die;
|
||
struct attribute *attr, *call_line, *call_file;
|
||
const char *name;
|
||
CORE_ADDR baseaddr;
|
||
struct block *block;
|
||
int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
|
||
VEC (symbolp) *template_args = NULL;
|
||
struct template_symbol *templ_func = NULL;
|
||
|
||
if (inlined_func)
|
||
{
|
||
/* If we do not have call site information, we can't show the
|
||
caller of this inlined function. That's too confusing, so
|
||
only use the scope for local variables. */
|
||
call_line = dwarf2_attr (die, DW_AT_call_line, cu);
|
||
call_file = dwarf2_attr (die, DW_AT_call_file, cu);
|
||
if (call_line == NULL || call_file == NULL)
|
||
{
|
||
read_lexical_block_scope (die, cu);
|
||
return;
|
||
}
|
||
}
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
name = dwarf2_name (die, cu);
|
||
|
||
/* Ignore functions with missing or empty names. These are actually
|
||
illegal according to the DWARF standard. */
|
||
if (name == NULL)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("missing name for subprogram DIE at %d"),
|
||
die->offset.sect_off);
|
||
return;
|
||
}
|
||
|
||
/* Ignore functions with missing or invalid low and high pc attributes. */
|
||
if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
|
||
<= PC_BOUNDS_INVALID)
|
||
{
|
||
attr = dwarf2_attr (die, DW_AT_external, cu);
|
||
if (!attr || !DW_UNSND (attr))
|
||
complaint (&symfile_complaints,
|
||
_("cannot get low and high bounds "
|
||
"for subprogram DIE at %d"),
|
||
die->offset.sect_off);
|
||
return;
|
||
}
|
||
|
||
lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
|
||
highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
|
||
|
||
/* If we have any template arguments, then we must allocate a
|
||
different sort of symbol. */
|
||
for (child_die = die->child; child_die; child_die = sibling_die (child_die))
|
||
{
|
||
if (child_die->tag == DW_TAG_template_type_param
|
||
|| child_die->tag == DW_TAG_template_value_param)
|
||
{
|
||
templ_func = allocate_template_symbol (objfile);
|
||
templ_func->base.is_cplus_template_function = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
newobj = push_context (0, lowpc);
|
||
newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
|
||
(struct symbol *) templ_func);
|
||
|
||
/* If there is a location expression for DW_AT_frame_base, record
|
||
it. */
|
||
attr = dwarf2_attr (die, DW_AT_frame_base, cu);
|
||
if (attr)
|
||
dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
|
||
|
||
/* If there is a location for the static link, record it. */
|
||
newobj->static_link = NULL;
|
||
attr = dwarf2_attr (die, DW_AT_static_link, cu);
|
||
if (attr)
|
||
{
|
||
newobj->static_link
|
||
= XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
|
||
attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
|
||
}
|
||
|
||
cu->list_in_scope = &local_symbols;
|
||
|
||
if (die->child != NULL)
|
||
{
|
||
child_die = die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
if (child_die->tag == DW_TAG_template_type_param
|
||
|| child_die->tag == DW_TAG_template_value_param)
|
||
{
|
||
struct symbol *arg = new_symbol (child_die, NULL, cu);
|
||
|
||
if (arg != NULL)
|
||
VEC_safe_push (symbolp, template_args, arg);
|
||
}
|
||
else
|
||
process_die (child_die, cu);
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
}
|
||
|
||
inherit_abstract_dies (die, cu);
|
||
|
||
/* If we have a DW_AT_specification, we might need to import using
|
||
directives from the context of the specification DIE. See the
|
||
comment in determine_prefix. */
|
||
if (cu->language == language_cplus
|
||
&& dwarf2_attr (die, DW_AT_specification, cu))
|
||
{
|
||
struct dwarf2_cu *spec_cu = cu;
|
||
struct die_info *spec_die = die_specification (die, &spec_cu);
|
||
|
||
while (spec_die)
|
||
{
|
||
child_die = spec_die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
if (child_die->tag == DW_TAG_imported_module)
|
||
process_die (child_die, spec_cu);
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
|
||
/* In some cases, GCC generates specification DIEs that
|
||
themselves contain DW_AT_specification attributes. */
|
||
spec_die = die_specification (spec_die, &spec_cu);
|
||
}
|
||
}
|
||
|
||
newobj = pop_context ();
|
||
/* Make a block for the local symbols within. */
|
||
block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
|
||
newobj->static_link, lowpc, highpc);
|
||
|
||
/* For C++, set the block's scope. */
|
||
if ((cu->language == language_cplus
|
||
|| cu->language == language_fortran
|
||
|| cu->language == language_d
|
||
|| cu->language == language_rust)
|
||
&& cu->processing_has_namespace_info)
|
||
block_set_scope (block, determine_prefix (die, cu),
|
||
&objfile->objfile_obstack);
|
||
|
||
/* If we have address ranges, record them. */
|
||
dwarf2_record_block_ranges (die, block, baseaddr, cu);
|
||
|
||
gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
|
||
|
||
/* Attach template arguments to function. */
|
||
if (! VEC_empty (symbolp, template_args))
|
||
{
|
||
gdb_assert (templ_func != NULL);
|
||
|
||
templ_func->n_template_arguments = VEC_length (symbolp, template_args);
|
||
templ_func->template_arguments
|
||
= XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
|
||
templ_func->n_template_arguments);
|
||
memcpy (templ_func->template_arguments,
|
||
VEC_address (symbolp, template_args),
|
||
(templ_func->n_template_arguments * sizeof (struct symbol *)));
|
||
VEC_free (symbolp, template_args);
|
||
}
|
||
|
||
/* In C++, we can have functions nested inside functions (e.g., when
|
||
a function declares a class that has methods). This means that
|
||
when we finish processing a function scope, we may need to go
|
||
back to building a containing block's symbol lists. */
|
||
local_symbols = newobj->locals;
|
||
local_using_directives = newobj->local_using_directives;
|
||
|
||
/* If we've finished processing a top-level function, subsequent
|
||
symbols go in the file symbol list. */
|
||
if (outermost_context_p ())
|
||
cu->list_in_scope = &file_symbols;
|
||
}
|
||
|
||
/* Process all the DIES contained within a lexical block scope. Start
|
||
a new scope, process the dies, and then close the scope. */
|
||
|
||
static void
|
||
read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
struct context_stack *newobj;
|
||
CORE_ADDR lowpc, highpc;
|
||
struct die_info *child_die;
|
||
CORE_ADDR baseaddr;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
/* Ignore blocks with missing or invalid low and high pc attributes. */
|
||
/* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
|
||
as multiple lexical blocks? Handling children in a sane way would
|
||
be nasty. Might be easier to properly extend generic blocks to
|
||
describe ranges. */
|
||
switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
|
||
{
|
||
case PC_BOUNDS_NOT_PRESENT:
|
||
/* DW_TAG_lexical_block has no attributes, process its children as if
|
||
there was no wrapping by that DW_TAG_lexical_block.
|
||
GCC does no longer produces such DWARF since GCC r224161. */
|
||
for (child_die = die->child;
|
||
child_die != NULL && child_die->tag;
|
||
child_die = sibling_die (child_die))
|
||
process_die (child_die, cu);
|
||
return;
|
||
case PC_BOUNDS_INVALID:
|
||
return;
|
||
}
|
||
lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
|
||
highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
|
||
|
||
push_context (0, lowpc);
|
||
if (die->child != NULL)
|
||
{
|
||
child_die = die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
process_die (child_die, cu);
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
}
|
||
inherit_abstract_dies (die, cu);
|
||
newobj = pop_context ();
|
||
|
||
if (local_symbols != NULL || local_using_directives != NULL)
|
||
{
|
||
struct block *block
|
||
= finish_block (0, &local_symbols, newobj->old_blocks, NULL,
|
||
newobj->start_addr, highpc);
|
||
|
||
/* Note that recording ranges after traversing children, as we
|
||
do here, means that recording a parent's ranges entails
|
||
walking across all its children's ranges as they appear in
|
||
the address map, which is quadratic behavior.
|
||
|
||
It would be nicer to record the parent's ranges before
|
||
traversing its children, simply overriding whatever you find
|
||
there. But since we don't even decide whether to create a
|
||
block until after we've traversed its children, that's hard
|
||
to do. */
|
||
dwarf2_record_block_ranges (die, block, baseaddr, cu);
|
||
}
|
||
local_symbols = newobj->locals;
|
||
local_using_directives = newobj->local_using_directives;
|
||
}
|
||
|
||
/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
|
||
|
||
static void
|
||
read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
CORE_ADDR pc, baseaddr;
|
||
struct attribute *attr;
|
||
struct call_site *call_site, call_site_local;
|
||
void **slot;
|
||
int nparams;
|
||
struct die_info *child_die;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
attr = dwarf2_attr (die, DW_AT_low_pc, cu);
|
||
if (!attr)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
|
||
"DIE 0x%x [in module %s]"),
|
||
die->offset.sect_off, objfile_name (objfile));
|
||
return;
|
||
}
|
||
pc = attr_value_as_address (attr) + baseaddr;
|
||
pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
|
||
|
||
if (cu->call_site_htab == NULL)
|
||
cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
|
||
NULL, &objfile->objfile_obstack,
|
||
hashtab_obstack_allocate, NULL);
|
||
call_site_local.pc = pc;
|
||
slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
|
||
if (*slot != NULL)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Duplicate PC %s for DW_TAG_GNU_call_site "
|
||
"DIE 0x%x [in module %s]"),
|
||
paddress (gdbarch, pc), die->offset.sect_off,
|
||
objfile_name (objfile));
|
||
return;
|
||
}
|
||
|
||
/* Count parameters at the caller. */
|
||
|
||
nparams = 0;
|
||
for (child_die = die->child; child_die && child_die->tag;
|
||
child_die = sibling_die (child_die))
|
||
{
|
||
if (child_die->tag != DW_TAG_GNU_call_site_parameter)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Tag %d is not DW_TAG_GNU_call_site_parameter in "
|
||
"DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
|
||
child_die->tag, child_die->offset.sect_off,
|
||
objfile_name (objfile));
|
||
continue;
|
||
}
|
||
|
||
nparams++;
|
||
}
|
||
|
||
call_site
|
||
= ((struct call_site *)
|
||
obstack_alloc (&objfile->objfile_obstack,
|
||
sizeof (*call_site)
|
||
+ (sizeof (*call_site->parameter) * (nparams - 1))));
|
||
*slot = call_site;
|
||
memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
|
||
call_site->pc = pc;
|
||
|
||
if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
|
||
{
|
||
struct die_info *func_die;
|
||
|
||
/* Skip also over DW_TAG_inlined_subroutine. */
|
||
for (func_die = die->parent;
|
||
func_die && func_die->tag != DW_TAG_subprogram
|
||
&& func_die->tag != DW_TAG_subroutine_type;
|
||
func_die = func_die->parent);
|
||
|
||
/* DW_AT_GNU_all_call_sites is a superset
|
||
of DW_AT_GNU_all_tail_call_sites. */
|
||
if (func_die
|
||
&& !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
|
||
&& !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
|
||
{
|
||
/* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
|
||
not complete. But keep CALL_SITE for look ups via call_site_htab,
|
||
both the initial caller containing the real return address PC and
|
||
the final callee containing the current PC of a chain of tail
|
||
calls do not need to have the tail call list complete. But any
|
||
function candidate for a virtual tail call frame searched via
|
||
TYPE_TAIL_CALL_LIST must have the tail call list complete to be
|
||
determined unambiguously. */
|
||
}
|
||
else
|
||
{
|
||
struct type *func_type = NULL;
|
||
|
||
if (func_die)
|
||
func_type = get_die_type (func_die, cu);
|
||
if (func_type != NULL)
|
||
{
|
||
gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
|
||
|
||
/* Enlist this call site to the function. */
|
||
call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
|
||
TYPE_TAIL_CALL_LIST (func_type) = call_site;
|
||
}
|
||
else
|
||
complaint (&symfile_complaints,
|
||
_("Cannot find function owning DW_TAG_GNU_call_site "
|
||
"DIE 0x%x [in module %s]"),
|
||
die->offset.sect_off, objfile_name (objfile));
|
||
}
|
||
}
|
||
|
||
attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
|
||
if (attr == NULL)
|
||
attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
|
||
SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
|
||
if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
|
||
/* Keep NULL DWARF_BLOCK. */;
|
||
else if (attr_form_is_block (attr))
|
||
{
|
||
struct dwarf2_locexpr_baton *dlbaton;
|
||
|
||
dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
|
||
dlbaton->data = DW_BLOCK (attr)->data;
|
||
dlbaton->size = DW_BLOCK (attr)->size;
|
||
dlbaton->per_cu = cu->per_cu;
|
||
|
||
SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
|
||
}
|
||
else if (attr_form_is_ref (attr))
|
||
{
|
||
struct dwarf2_cu *target_cu = cu;
|
||
struct die_info *target_die;
|
||
|
||
target_die = follow_die_ref (die, attr, &target_cu);
|
||
gdb_assert (target_cu->objfile == objfile);
|
||
if (die_is_declaration (target_die, target_cu))
|
||
{
|
||
const char *target_physname;
|
||
|
||
/* Prefer the mangled name; otherwise compute the demangled one. */
|
||
target_physname = dwarf2_string_attr (target_die,
|
||
DW_AT_linkage_name,
|
||
target_cu);
|
||
if (target_physname == NULL)
|
||
target_physname = dwarf2_string_attr (target_die,
|
||
DW_AT_MIPS_linkage_name,
|
||
target_cu);
|
||
if (target_physname == NULL)
|
||
target_physname = dwarf2_physname (NULL, target_die, target_cu);
|
||
if (target_physname == NULL)
|
||
complaint (&symfile_complaints,
|
||
_("DW_AT_GNU_call_site_target target DIE has invalid "
|
||
"physname, for referencing DIE 0x%x [in module %s]"),
|
||
die->offset.sect_off, objfile_name (objfile));
|
||
else
|
||
SET_FIELD_PHYSNAME (call_site->target, target_physname);
|
||
}
|
||
else
|
||
{
|
||
CORE_ADDR lowpc;
|
||
|
||
/* DW_AT_entry_pc should be preferred. */
|
||
if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
|
||
<= PC_BOUNDS_INVALID)
|
||
complaint (&symfile_complaints,
|
||
_("DW_AT_GNU_call_site_target target DIE has invalid "
|
||
"low pc, for referencing DIE 0x%x [in module %s]"),
|
||
die->offset.sect_off, objfile_name (objfile));
|
||
else
|
||
{
|
||
lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
|
||
SET_FIELD_PHYSADDR (call_site->target, lowpc);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
complaint (&symfile_complaints,
|
||
_("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
|
||
"block nor reference, for DIE 0x%x [in module %s]"),
|
||
die->offset.sect_off, objfile_name (objfile));
|
||
|
||
call_site->per_cu = cu->per_cu;
|
||
|
||
for (child_die = die->child;
|
||
child_die && child_die->tag;
|
||
child_die = sibling_die (child_die))
|
||
{
|
||
struct call_site_parameter *parameter;
|
||
struct attribute *loc, *origin;
|
||
|
||
if (child_die->tag != DW_TAG_GNU_call_site_parameter)
|
||
{
|
||
/* Already printed the complaint above. */
|
||
continue;
|
||
}
|
||
|
||
gdb_assert (call_site->parameter_count < nparams);
|
||
parameter = &call_site->parameter[call_site->parameter_count];
|
||
|
||
/* DW_AT_location specifies the register number or DW_AT_abstract_origin
|
||
specifies DW_TAG_formal_parameter. Value of the data assumed for the
|
||
register is contained in DW_AT_GNU_call_site_value. */
|
||
|
||
loc = dwarf2_attr (child_die, DW_AT_location, cu);
|
||
origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
|
||
if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
|
||
{
|
||
sect_offset offset;
|
||
|
||
parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
|
||
offset = dwarf2_get_ref_die_offset (origin);
|
||
if (!offset_in_cu_p (&cu->header, offset))
|
||
{
|
||
/* As DW_OP_GNU_parameter_ref uses CU-relative offset this
|
||
binding can be done only inside one CU. Such referenced DIE
|
||
therefore cannot be even moved to DW_TAG_partial_unit. */
|
||
complaint (&symfile_complaints,
|
||
_("DW_AT_abstract_origin offset is not in CU for "
|
||
"DW_TAG_GNU_call_site child DIE 0x%x "
|
||
"[in module %s]"),
|
||
child_die->offset.sect_off, objfile_name (objfile));
|
||
continue;
|
||
}
|
||
parameter->u.param_offset.cu_off = (offset.sect_off
|
||
- cu->header.offset.sect_off);
|
||
}
|
||
else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("No DW_FORM_block* DW_AT_location for "
|
||
"DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
|
||
child_die->offset.sect_off, objfile_name (objfile));
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
|
||
(DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
|
||
if (parameter->u.dwarf_reg != -1)
|
||
parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
|
||
else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
|
||
&DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
|
||
¶meter->u.fb_offset))
|
||
parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
|
||
else
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Only single DW_OP_reg or DW_OP_fbreg is supported "
|
||
"for DW_FORM_block* DW_AT_location is supported for "
|
||
"DW_TAG_GNU_call_site child DIE 0x%x "
|
||
"[in module %s]"),
|
||
child_die->offset.sect_off, objfile_name (objfile));
|
||
continue;
|
||
}
|
||
}
|
||
|
||
attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
|
||
if (!attr_form_is_block (attr))
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("No DW_FORM_block* DW_AT_GNU_call_site_value for "
|
||
"DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
|
||
child_die->offset.sect_off, objfile_name (objfile));
|
||
continue;
|
||
}
|
||
parameter->value = DW_BLOCK (attr)->data;
|
||
parameter->value_size = DW_BLOCK (attr)->size;
|
||
|
||
/* Parameters are not pre-cleared by memset above. */
|
||
parameter->data_value = NULL;
|
||
parameter->data_value_size = 0;
|
||
call_site->parameter_count++;
|
||
|
||
attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
|
||
if (attr)
|
||
{
|
||
if (!attr_form_is_block (attr))
|
||
complaint (&symfile_complaints,
|
||
_("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
|
||
"DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
|
||
child_die->offset.sect_off, objfile_name (objfile));
|
||
else
|
||
{
|
||
parameter->data_value = DW_BLOCK (attr)->data;
|
||
parameter->data_value_size = DW_BLOCK (attr)->size;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
|
||
Return 1 if the attributes are present and valid, otherwise, return 0.
|
||
If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
|
||
|
||
static int
|
||
dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
|
||
CORE_ADDR *high_return, struct dwarf2_cu *cu,
|
||
struct partial_symtab *ranges_pst)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
struct comp_unit_head *cu_header = &cu->header;
|
||
bfd *obfd = objfile->obfd;
|
||
unsigned int addr_size = cu_header->addr_size;
|
||
CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
|
||
/* Base address selection entry. */
|
||
CORE_ADDR base;
|
||
int found_base;
|
||
unsigned int dummy;
|
||
const gdb_byte *buffer;
|
||
int low_set;
|
||
CORE_ADDR low = 0;
|
||
CORE_ADDR high = 0;
|
||
CORE_ADDR baseaddr;
|
||
|
||
found_base = cu->base_known;
|
||
base = cu->base_address;
|
||
|
||
dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
|
||
if (offset >= dwarf2_per_objfile->ranges.size)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Offset %d out of bounds for DW_AT_ranges attribute"),
|
||
offset);
|
||
return 0;
|
||
}
|
||
buffer = dwarf2_per_objfile->ranges.buffer + offset;
|
||
|
||
low_set = 0;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
while (1)
|
||
{
|
||
CORE_ADDR range_beginning, range_end;
|
||
|
||
range_beginning = read_address (obfd, buffer, cu, &dummy);
|
||
buffer += addr_size;
|
||
range_end = read_address (obfd, buffer, cu, &dummy);
|
||
buffer += addr_size;
|
||
offset += 2 * addr_size;
|
||
|
||
/* An end of list marker is a pair of zero addresses. */
|
||
if (range_beginning == 0 && range_end == 0)
|
||
/* Found the end of list entry. */
|
||
break;
|
||
|
||
/* Each base address selection entry is a pair of 2 values.
|
||
The first is the largest possible address, the second is
|
||
the base address. Check for a base address here. */
|
||
if ((range_beginning & mask) == mask)
|
||
{
|
||
/* If we found the largest possible address, then we already
|
||
have the base address in range_end. */
|
||
base = range_end;
|
||
found_base = 1;
|
||
continue;
|
||
}
|
||
|
||
if (!found_base)
|
||
{
|
||
/* We have no valid base address for the ranges
|
||
data. */
|
||
complaint (&symfile_complaints,
|
||
_("Invalid .debug_ranges data (no base address)"));
|
||
return 0;
|
||
}
|
||
|
||
if (range_beginning > range_end)
|
||
{
|
||
/* Inverted range entries are invalid. */
|
||
complaint (&symfile_complaints,
|
||
_("Invalid .debug_ranges data (inverted range)"));
|
||
return 0;
|
||
}
|
||
|
||
/* Empty range entries have no effect. */
|
||
if (range_beginning == range_end)
|
||
continue;
|
||
|
||
range_beginning += base;
|
||
range_end += base;
|
||
|
||
/* A not-uncommon case of bad debug info.
|
||
Don't pollute the addrmap with bad data. */
|
||
if (range_beginning + baseaddr == 0
|
||
&& !dwarf2_per_objfile->has_section_at_zero)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_(".debug_ranges entry has start address of zero"
|
||
" [in module %s]"), objfile_name (objfile));
|
||
continue;
|
||
}
|
||
|
||
if (ranges_pst != NULL)
|
||
{
|
||
CORE_ADDR lowpc;
|
||
CORE_ADDR highpc;
|
||
|
||
lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
|
||
range_beginning + baseaddr);
|
||
highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
|
||
range_end + baseaddr);
|
||
addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
|
||
ranges_pst);
|
||
}
|
||
|
||
/* FIXME: This is recording everything as a low-high
|
||
segment of consecutive addresses. We should have a
|
||
data structure for discontiguous block ranges
|
||
instead. */
|
||
if (! low_set)
|
||
{
|
||
low = range_beginning;
|
||
high = range_end;
|
||
low_set = 1;
|
||
}
|
||
else
|
||
{
|
||
if (range_beginning < low)
|
||
low = range_beginning;
|
||
if (range_end > high)
|
||
high = range_end;
|
||
}
|
||
}
|
||
|
||
if (! low_set)
|
||
/* If the first entry is an end-of-list marker, the range
|
||
describes an empty scope, i.e. no instructions. */
|
||
return 0;
|
||
|
||
if (low_return)
|
||
*low_return = low;
|
||
if (high_return)
|
||
*high_return = high;
|
||
return 1;
|
||
}
|
||
|
||
/* Get low and high pc attributes from a die. See enum pc_bounds_kind
|
||
definition for the return value. *LOWPC and *HIGHPC are set iff
|
||
neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
|
||
|
||
static enum pc_bounds_kind
|
||
dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
|
||
CORE_ADDR *highpc, struct dwarf2_cu *cu,
|
||
struct partial_symtab *pst)
|
||
{
|
||
struct attribute *attr;
|
||
struct attribute *attr_high;
|
||
CORE_ADDR low = 0;
|
||
CORE_ADDR high = 0;
|
||
enum pc_bounds_kind ret;
|
||
|
||
attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
|
||
if (attr_high)
|
||
{
|
||
attr = dwarf2_attr (die, DW_AT_low_pc, cu);
|
||
if (attr)
|
||
{
|
||
low = attr_value_as_address (attr);
|
||
high = attr_value_as_address (attr_high);
|
||
if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
|
||
high += low;
|
||
}
|
||
else
|
||
/* Found high w/o low attribute. */
|
||
return PC_BOUNDS_INVALID;
|
||
|
||
/* Found consecutive range of addresses. */
|
||
ret = PC_BOUNDS_HIGH_LOW;
|
||
}
|
||
else
|
||
{
|
||
attr = dwarf2_attr (die, DW_AT_ranges, cu);
|
||
if (attr != NULL)
|
||
{
|
||
/* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
|
||
We take advantage of the fact that DW_AT_ranges does not appear
|
||
in DW_TAG_compile_unit of DWO files. */
|
||
int need_ranges_base = die->tag != DW_TAG_compile_unit;
|
||
unsigned int ranges_offset = (DW_UNSND (attr)
|
||
+ (need_ranges_base
|
||
? cu->ranges_base
|
||
: 0));
|
||
|
||
/* Value of the DW_AT_ranges attribute is the offset in the
|
||
.debug_ranges section. */
|
||
if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
|
||
return PC_BOUNDS_INVALID;
|
||
/* Found discontinuous range of addresses. */
|
||
ret = PC_BOUNDS_RANGES;
|
||
}
|
||
else
|
||
return PC_BOUNDS_NOT_PRESENT;
|
||
}
|
||
|
||
/* read_partial_die has also the strict LOW < HIGH requirement. */
|
||
if (high <= low)
|
||
return PC_BOUNDS_INVALID;
|
||
|
||
/* When using the GNU linker, .gnu.linkonce. sections are used to
|
||
eliminate duplicate copies of functions and vtables and such.
|
||
The linker will arbitrarily choose one and discard the others.
|
||
The AT_*_pc values for such functions refer to local labels in
|
||
these sections. If the section from that file was discarded, the
|
||
labels are not in the output, so the relocs get a value of 0.
|
||
If this is a discarded function, mark the pc bounds as invalid,
|
||
so that GDB will ignore it. */
|
||
if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
|
||
return PC_BOUNDS_INVALID;
|
||
|
||
*lowpc = low;
|
||
if (highpc)
|
||
*highpc = high;
|
||
return ret;
|
||
}
|
||
|
||
/* Assuming that DIE represents a subprogram DIE or a lexical block, get
|
||
its low and high PC addresses. Do nothing if these addresses could not
|
||
be determined. Otherwise, set LOWPC to the low address if it is smaller,
|
||
and HIGHPC to the high address if greater than HIGHPC. */
|
||
|
||
static void
|
||
dwarf2_get_subprogram_pc_bounds (struct die_info *die,
|
||
CORE_ADDR *lowpc, CORE_ADDR *highpc,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
CORE_ADDR low, high;
|
||
struct die_info *child = die->child;
|
||
|
||
if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
|
||
{
|
||
*lowpc = min (*lowpc, low);
|
||
*highpc = max (*highpc, high);
|
||
}
|
||
|
||
/* If the language does not allow nested subprograms (either inside
|
||
subprograms or lexical blocks), we're done. */
|
||
if (cu->language != language_ada)
|
||
return;
|
||
|
||
/* Check all the children of the given DIE. If it contains nested
|
||
subprograms, then check their pc bounds. Likewise, we need to
|
||
check lexical blocks as well, as they may also contain subprogram
|
||
definitions. */
|
||
while (child && child->tag)
|
||
{
|
||
if (child->tag == DW_TAG_subprogram
|
||
|| child->tag == DW_TAG_lexical_block)
|
||
dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
|
||
child = sibling_die (child);
|
||
}
|
||
}
|
||
|
||
/* Get the low and high pc's represented by the scope DIE, and store
|
||
them in *LOWPC and *HIGHPC. If the correct values can't be
|
||
determined, set *LOWPC to -1 and *HIGHPC to 0. */
|
||
|
||
static void
|
||
get_scope_pc_bounds (struct die_info *die,
|
||
CORE_ADDR *lowpc, CORE_ADDR *highpc,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
CORE_ADDR best_low = (CORE_ADDR) -1;
|
||
CORE_ADDR best_high = (CORE_ADDR) 0;
|
||
CORE_ADDR current_low, current_high;
|
||
|
||
if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL)
|
||
>= PC_BOUNDS_RANGES)
|
||
{
|
||
best_low = current_low;
|
||
best_high = current_high;
|
||
}
|
||
else
|
||
{
|
||
struct die_info *child = die->child;
|
||
|
||
while (child && child->tag)
|
||
{
|
||
switch (child->tag) {
|
||
case DW_TAG_subprogram:
|
||
dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
|
||
break;
|
||
case DW_TAG_namespace:
|
||
case DW_TAG_module:
|
||
/* FIXME: carlton/2004-01-16: Should we do this for
|
||
DW_TAG_class_type/DW_TAG_structure_type, too? I think
|
||
that current GCC's always emit the DIEs corresponding
|
||
to definitions of methods of classes as children of a
|
||
DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
|
||
the DIEs giving the declarations, which could be
|
||
anywhere). But I don't see any reason why the
|
||
standards says that they have to be there. */
|
||
get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
|
||
|
||
if (current_low != ((CORE_ADDR) -1))
|
||
{
|
||
best_low = min (best_low, current_low);
|
||
best_high = max (best_high, current_high);
|
||
}
|
||
break;
|
||
default:
|
||
/* Ignore. */
|
||
break;
|
||
}
|
||
|
||
child = sibling_die (child);
|
||
}
|
||
}
|
||
|
||
*lowpc = best_low;
|
||
*highpc = best_high;
|
||
}
|
||
|
||
/* Record the address ranges for BLOCK, offset by BASEADDR, as given
|
||
in DIE. */
|
||
|
||
static void
|
||
dwarf2_record_block_ranges (struct die_info *die, struct block *block,
|
||
CORE_ADDR baseaddr, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
struct attribute *attr;
|
||
struct attribute *attr_high;
|
||
|
||
attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
|
||
if (attr_high)
|
||
{
|
||
attr = dwarf2_attr (die, DW_AT_low_pc, cu);
|
||
if (attr)
|
||
{
|
||
CORE_ADDR low = attr_value_as_address (attr);
|
||
CORE_ADDR high = attr_value_as_address (attr_high);
|
||
|
||
if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
|
||
high += low;
|
||
|
||
low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
|
||
high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
|
||
record_block_range (block, low, high - 1);
|
||
}
|
||
}
|
||
|
||
attr = dwarf2_attr (die, DW_AT_ranges, cu);
|
||
if (attr)
|
||
{
|
||
bfd *obfd = objfile->obfd;
|
||
/* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
|
||
We take advantage of the fact that DW_AT_ranges does not appear
|
||
in DW_TAG_compile_unit of DWO files. */
|
||
int need_ranges_base = die->tag != DW_TAG_compile_unit;
|
||
|
||
/* The value of the DW_AT_ranges attribute is the offset of the
|
||
address range list in the .debug_ranges section. */
|
||
unsigned long offset = (DW_UNSND (attr)
|
||
+ (need_ranges_base ? cu->ranges_base : 0));
|
||
const gdb_byte *buffer;
|
||
|
||
/* For some target architectures, but not others, the
|
||
read_address function sign-extends the addresses it returns.
|
||
To recognize base address selection entries, we need a
|
||
mask. */
|
||
unsigned int addr_size = cu->header.addr_size;
|
||
CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
|
||
|
||
/* The base address, to which the next pair is relative. Note
|
||
that this 'base' is a DWARF concept: most entries in a range
|
||
list are relative, to reduce the number of relocs against the
|
||
debugging information. This is separate from this function's
|
||
'baseaddr' argument, which GDB uses to relocate debugging
|
||
information from a shared library based on the address at
|
||
which the library was loaded. */
|
||
CORE_ADDR base = cu->base_address;
|
||
int base_known = cu->base_known;
|
||
|
||
dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
|
||
if (offset >= dwarf2_per_objfile->ranges.size)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Offset %lu out of bounds for DW_AT_ranges attribute"),
|
||
offset);
|
||
return;
|
||
}
|
||
buffer = dwarf2_per_objfile->ranges.buffer + offset;
|
||
|
||
for (;;)
|
||
{
|
||
unsigned int bytes_read;
|
||
CORE_ADDR start, end;
|
||
|
||
start = read_address (obfd, buffer, cu, &bytes_read);
|
||
buffer += bytes_read;
|
||
end = read_address (obfd, buffer, cu, &bytes_read);
|
||
buffer += bytes_read;
|
||
|
||
/* Did we find the end of the range list? */
|
||
if (start == 0 && end == 0)
|
||
break;
|
||
|
||
/* Did we find a base address selection entry? */
|
||
else if ((start & base_select_mask) == base_select_mask)
|
||
{
|
||
base = end;
|
||
base_known = 1;
|
||
}
|
||
|
||
/* We found an ordinary address range. */
|
||
else
|
||
{
|
||
if (!base_known)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Invalid .debug_ranges data "
|
||
"(no base address)"));
|
||
return;
|
||
}
|
||
|
||
if (start > end)
|
||
{
|
||
/* Inverted range entries are invalid. */
|
||
complaint (&symfile_complaints,
|
||
_("Invalid .debug_ranges data "
|
||
"(inverted range)"));
|
||
return;
|
||
}
|
||
|
||
/* Empty range entries have no effect. */
|
||
if (start == end)
|
||
continue;
|
||
|
||
start += base + baseaddr;
|
||
end += base + baseaddr;
|
||
|
||
/* A not-uncommon case of bad debug info.
|
||
Don't pollute the addrmap with bad data. */
|
||
if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_(".debug_ranges entry has start address of zero"
|
||
" [in module %s]"), objfile_name (objfile));
|
||
continue;
|
||
}
|
||
|
||
start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
|
||
end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
|
||
record_block_range (block, start, end - 1);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check whether the producer field indicates either of GCC < 4.6, or the
|
||
Intel C/C++ compiler, and cache the result in CU. */
|
||
|
||
static void
|
||
check_producer (struct dwarf2_cu *cu)
|
||
{
|
||
int major, minor;
|
||
|
||
if (cu->producer == NULL)
|
||
{
|
||
/* For unknown compilers expect their behavior is DWARF version
|
||
compliant.
|
||
|
||
GCC started to support .debug_types sections by -gdwarf-4 since
|
||
gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
|
||
for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
|
||
combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
|
||
interpreted incorrectly by GDB now - GCC PR debug/48229. */
|
||
}
|
||
else if (producer_is_gcc (cu->producer, &major, &minor))
|
||
{
|
||
cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
|
||
cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
|
||
}
|
||
else if (startswith (cu->producer, "Intel(R) C"))
|
||
cu->producer_is_icc = 1;
|
||
else
|
||
{
|
||
/* For other non-GCC compilers, expect their behavior is DWARF version
|
||
compliant. */
|
||
}
|
||
|
||
cu->checked_producer = 1;
|
||
}
|
||
|
||
/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
|
||
to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
|
||
during 4.6.0 experimental. */
|
||
|
||
static int
|
||
producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
|
||
{
|
||
if (!cu->checked_producer)
|
||
check_producer (cu);
|
||
|
||
return cu->producer_is_gxx_lt_4_6;
|
||
}
|
||
|
||
/* Return the default accessibility type if it is not overriden by
|
||
DW_AT_accessibility. */
|
||
|
||
static enum dwarf_access_attribute
|
||
dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
|
||
{
|
||
/* The default DWARF 2 accessibility for members is public, the default
|
||
accessibility for inheritance is private. */
|
||
|
||
if (die->tag != DW_TAG_inheritance)
|
||
return DW_ACCESS_public;
|
||
else
|
||
return DW_ACCESS_private;
|
||
}
|
||
else
|
||
{
|
||
/* DWARF 3+ defines the default accessibility a different way. The same
|
||
rules apply now for DW_TAG_inheritance as for the members and it only
|
||
depends on the container kind. */
|
||
|
||
if (die->parent->tag == DW_TAG_class_type)
|
||
return DW_ACCESS_private;
|
||
else
|
||
return DW_ACCESS_public;
|
||
}
|
||
}
|
||
|
||
/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
|
||
offset. If the attribute was not found return 0, otherwise return
|
||
1. If it was found but could not properly be handled, set *OFFSET
|
||
to 0. */
|
||
|
||
static int
|
||
handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
|
||
LONGEST *offset)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
|
||
if (attr != NULL)
|
||
{
|
||
*offset = 0;
|
||
|
||
/* Note that we do not check for a section offset first here.
|
||
This is because DW_AT_data_member_location is new in DWARF 4,
|
||
so if we see it, we can assume that a constant form is really
|
||
a constant and not a section offset. */
|
||
if (attr_form_is_constant (attr))
|
||
*offset = dwarf2_get_attr_constant_value (attr, 0);
|
||
else if (attr_form_is_section_offset (attr))
|
||
dwarf2_complex_location_expr_complaint ();
|
||
else if (attr_form_is_block (attr))
|
||
*offset = decode_locdesc (DW_BLOCK (attr), cu);
|
||
else
|
||
dwarf2_complex_location_expr_complaint ();
|
||
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Add an aggregate field to the field list. */
|
||
|
||
static void
|
||
dwarf2_add_field (struct field_info *fip, struct die_info *die,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
struct nextfield *new_field;
|
||
struct attribute *attr;
|
||
struct field *fp;
|
||
const char *fieldname = "";
|
||
|
||
/* Allocate a new field list entry and link it in. */
|
||
new_field = XNEW (struct nextfield);
|
||
make_cleanup (xfree, new_field);
|
||
memset (new_field, 0, sizeof (struct nextfield));
|
||
|
||
if (die->tag == DW_TAG_inheritance)
|
||
{
|
||
new_field->next = fip->baseclasses;
|
||
fip->baseclasses = new_field;
|
||
}
|
||
else
|
||
{
|
||
new_field->next = fip->fields;
|
||
fip->fields = new_field;
|
||
}
|
||
fip->nfields++;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_accessibility, cu);
|
||
if (attr)
|
||
new_field->accessibility = DW_UNSND (attr);
|
||
else
|
||
new_field->accessibility = dwarf2_default_access_attribute (die, cu);
|
||
if (new_field->accessibility != DW_ACCESS_public)
|
||
fip->non_public_fields = 1;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_virtuality, cu);
|
||
if (attr)
|
||
new_field->virtuality = DW_UNSND (attr);
|
||
else
|
||
new_field->virtuality = DW_VIRTUALITY_none;
|
||
|
||
fp = &new_field->field;
|
||
|
||
if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
|
||
{
|
||
LONGEST offset;
|
||
|
||
/* Data member other than a C++ static data member. */
|
||
|
||
/* Get type of field. */
|
||
fp->type = die_type (die, cu);
|
||
|
||
SET_FIELD_BITPOS (*fp, 0);
|
||
|
||
/* Get bit size of field (zero if none). */
|
||
attr = dwarf2_attr (die, DW_AT_bit_size, cu);
|
||
if (attr)
|
||
{
|
||
FIELD_BITSIZE (*fp) = DW_UNSND (attr);
|
||
}
|
||
else
|
||
{
|
||
FIELD_BITSIZE (*fp) = 0;
|
||
}
|
||
|
||
/* Get bit offset of field. */
|
||
if (handle_data_member_location (die, cu, &offset))
|
||
SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
|
||
attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
|
||
if (attr)
|
||
{
|
||
if (gdbarch_bits_big_endian (gdbarch))
|
||
{
|
||
/* For big endian bits, the DW_AT_bit_offset gives the
|
||
additional bit offset from the MSB of the containing
|
||
anonymous object to the MSB of the field. We don't
|
||
have to do anything special since we don't need to
|
||
know the size of the anonymous object. */
|
||
SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
|
||
}
|
||
else
|
||
{
|
||
/* For little endian bits, compute the bit offset to the
|
||
MSB of the anonymous object, subtract off the number of
|
||
bits from the MSB of the field to the MSB of the
|
||
object, and then subtract off the number of bits of
|
||
the field itself. The result is the bit offset of
|
||
the LSB of the field. */
|
||
int anonymous_size;
|
||
int bit_offset = DW_UNSND (attr);
|
||
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
{
|
||
/* The size of the anonymous object containing
|
||
the bit field is explicit, so use the
|
||
indicated size (in bytes). */
|
||
anonymous_size = DW_UNSND (attr);
|
||
}
|
||
else
|
||
{
|
||
/* The size of the anonymous object containing
|
||
the bit field must be inferred from the type
|
||
attribute of the data member containing the
|
||
bit field. */
|
||
anonymous_size = TYPE_LENGTH (fp->type);
|
||
}
|
||
SET_FIELD_BITPOS (*fp,
|
||
(FIELD_BITPOS (*fp)
|
||
+ anonymous_size * bits_per_byte
|
||
- bit_offset - FIELD_BITSIZE (*fp)));
|
||
}
|
||
}
|
||
|
||
/* Get name of field. */
|
||
fieldname = dwarf2_name (die, cu);
|
||
if (fieldname == NULL)
|
||
fieldname = "";
|
||
|
||
/* The name is already allocated along with this objfile, so we don't
|
||
need to duplicate it for the type. */
|
||
fp->name = fieldname;
|
||
|
||
/* Change accessibility for artificial fields (e.g. virtual table
|
||
pointer or virtual base class pointer) to private. */
|
||
if (dwarf2_attr (die, DW_AT_artificial, cu))
|
||
{
|
||
FIELD_ARTIFICIAL (*fp) = 1;
|
||
new_field->accessibility = DW_ACCESS_private;
|
||
fip->non_public_fields = 1;
|
||
}
|
||
}
|
||
else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
|
||
{
|
||
/* C++ static member. */
|
||
|
||
/* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
|
||
is a declaration, but all versions of G++ as of this writing
|
||
(so through at least 3.2.1) incorrectly generate
|
||
DW_TAG_variable tags. */
|
||
|
||
const char *physname;
|
||
|
||
/* Get name of field. */
|
||
fieldname = dwarf2_name (die, cu);
|
||
if (fieldname == NULL)
|
||
return;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_const_value, cu);
|
||
if (attr
|
||
/* Only create a symbol if this is an external value.
|
||
new_symbol checks this and puts the value in the global symbol
|
||
table, which we want. If it is not external, new_symbol
|
||
will try to put the value in cu->list_in_scope which is wrong. */
|
||
&& dwarf2_flag_true_p (die, DW_AT_external, cu))
|
||
{
|
||
/* A static const member, not much different than an enum as far as
|
||
we're concerned, except that we can support more types. */
|
||
new_symbol (die, NULL, cu);
|
||
}
|
||
|
||
/* Get physical name. */
|
||
physname = dwarf2_physname (fieldname, die, cu);
|
||
|
||
/* The name is already allocated along with this objfile, so we don't
|
||
need to duplicate it for the type. */
|
||
SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
|
||
FIELD_TYPE (*fp) = die_type (die, cu);
|
||
FIELD_NAME (*fp) = fieldname;
|
||
}
|
||
else if (die->tag == DW_TAG_inheritance)
|
||
{
|
||
LONGEST offset;
|
||
|
||
/* C++ base class field. */
|
||
if (handle_data_member_location (die, cu, &offset))
|
||
SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
|
||
FIELD_BITSIZE (*fp) = 0;
|
||
FIELD_TYPE (*fp) = die_type (die, cu);
|
||
FIELD_NAME (*fp) = type_name_no_tag (fp->type);
|
||
fip->nbaseclasses++;
|
||
}
|
||
}
|
||
|
||
/* Add a typedef defined in the scope of the FIP's class. */
|
||
|
||
static void
|
||
dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct typedef_field_list *new_field;
|
||
struct typedef_field *fp;
|
||
|
||
/* Allocate a new field list entry and link it in. */
|
||
new_field = XCNEW (struct typedef_field_list);
|
||
make_cleanup (xfree, new_field);
|
||
|
||
gdb_assert (die->tag == DW_TAG_typedef);
|
||
|
||
fp = &new_field->field;
|
||
|
||
/* Get name of field. */
|
||
fp->name = dwarf2_name (die, cu);
|
||
if (fp->name == NULL)
|
||
return;
|
||
|
||
fp->type = read_type_die (die, cu);
|
||
|
||
new_field->next = fip->typedef_field_list;
|
||
fip->typedef_field_list = new_field;
|
||
fip->typedef_field_list_count++;
|
||
}
|
||
|
||
/* Create the vector of fields, and attach it to the type. */
|
||
|
||
static void
|
||
dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
int nfields = fip->nfields;
|
||
|
||
/* Record the field count, allocate space for the array of fields,
|
||
and create blank accessibility bitfields if necessary. */
|
||
TYPE_NFIELDS (type) = nfields;
|
||
TYPE_FIELDS (type) = (struct field *)
|
||
TYPE_ALLOC (type, sizeof (struct field) * nfields);
|
||
memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
|
||
|
||
if (fip->non_public_fields && cu->language != language_ada)
|
||
{
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
|
||
TYPE_FIELD_PRIVATE_BITS (type) =
|
||
(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
|
||
B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
|
||
|
||
TYPE_FIELD_PROTECTED_BITS (type) =
|
||
(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
|
||
B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
|
||
|
||
TYPE_FIELD_IGNORE_BITS (type) =
|
||
(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
|
||
B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
|
||
}
|
||
|
||
/* If the type has baseclasses, allocate and clear a bit vector for
|
||
TYPE_FIELD_VIRTUAL_BITS. */
|
||
if (fip->nbaseclasses && cu->language != language_ada)
|
||
{
|
||
int num_bytes = B_BYTES (fip->nbaseclasses);
|
||
unsigned char *pointer;
|
||
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
|
||
TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
|
||
B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
|
||
TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
|
||
}
|
||
|
||
/* Copy the saved-up fields into the field vector. Start from the head of
|
||
the list, adding to the tail of the field array, so that they end up in
|
||
the same order in the array in which they were added to the list. */
|
||
while (nfields-- > 0)
|
||
{
|
||
struct nextfield *fieldp;
|
||
|
||
if (fip->fields)
|
||
{
|
||
fieldp = fip->fields;
|
||
fip->fields = fieldp->next;
|
||
}
|
||
else
|
||
{
|
||
fieldp = fip->baseclasses;
|
||
fip->baseclasses = fieldp->next;
|
||
}
|
||
|
||
TYPE_FIELD (type, nfields) = fieldp->field;
|
||
switch (fieldp->accessibility)
|
||
{
|
||
case DW_ACCESS_private:
|
||
if (cu->language != language_ada)
|
||
SET_TYPE_FIELD_PRIVATE (type, nfields);
|
||
break;
|
||
|
||
case DW_ACCESS_protected:
|
||
if (cu->language != language_ada)
|
||
SET_TYPE_FIELD_PROTECTED (type, nfields);
|
||
break;
|
||
|
||
case DW_ACCESS_public:
|
||
break;
|
||
|
||
default:
|
||
/* Unknown accessibility. Complain and treat it as public. */
|
||
{
|
||
complaint (&symfile_complaints, _("unsupported accessibility %d"),
|
||
fieldp->accessibility);
|
||
}
|
||
break;
|
||
}
|
||
if (nfields < fip->nbaseclasses)
|
||
{
|
||
switch (fieldp->virtuality)
|
||
{
|
||
case DW_VIRTUALITY_virtual:
|
||
case DW_VIRTUALITY_pure_virtual:
|
||
if (cu->language == language_ada)
|
||
error (_("unexpected virtuality in component of Ada type"));
|
||
SET_TYPE_FIELD_VIRTUAL (type, nfields);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return true if this member function is a constructor, false
|
||
otherwise. */
|
||
|
||
static int
|
||
dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
const char *fieldname;
|
||
const char *type_name;
|
||
int len;
|
||
|
||
if (die->parent == NULL)
|
||
return 0;
|
||
|
||
if (die->parent->tag != DW_TAG_structure_type
|
||
&& die->parent->tag != DW_TAG_union_type
|
||
&& die->parent->tag != DW_TAG_class_type)
|
||
return 0;
|
||
|
||
fieldname = dwarf2_name (die, cu);
|
||
type_name = dwarf2_name (die->parent, cu);
|
||
if (fieldname == NULL || type_name == NULL)
|
||
return 0;
|
||
|
||
len = strlen (fieldname);
|
||
return (strncmp (fieldname, type_name, len) == 0
|
||
&& (type_name[len] == '\0' || type_name[len] == '<'));
|
||
}
|
||
|
||
/* Add a member function to the proper fieldlist. */
|
||
|
||
static void
|
||
dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
|
||
struct type *type, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct attribute *attr;
|
||
struct fnfieldlist *flp;
|
||
int i;
|
||
struct fn_field *fnp;
|
||
const char *fieldname;
|
||
struct nextfnfield *new_fnfield;
|
||
struct type *this_type;
|
||
enum dwarf_access_attribute accessibility;
|
||
|
||
if (cu->language == language_ada)
|
||
error (_("unexpected member function in Ada type"));
|
||
|
||
/* Get name of member function. */
|
||
fieldname = dwarf2_name (die, cu);
|
||
if (fieldname == NULL)
|
||
return;
|
||
|
||
/* Look up member function name in fieldlist. */
|
||
for (i = 0; i < fip->nfnfields; i++)
|
||
{
|
||
if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
|
||
break;
|
||
}
|
||
|
||
/* Create new list element if necessary. */
|
||
if (i < fip->nfnfields)
|
||
flp = &fip->fnfieldlists[i];
|
||
else
|
||
{
|
||
if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
|
||
{
|
||
fip->fnfieldlists = (struct fnfieldlist *)
|
||
xrealloc (fip->fnfieldlists,
|
||
(fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
|
||
* sizeof (struct fnfieldlist));
|
||
if (fip->nfnfields == 0)
|
||
make_cleanup (free_current_contents, &fip->fnfieldlists);
|
||
}
|
||
flp = &fip->fnfieldlists[fip->nfnfields];
|
||
flp->name = fieldname;
|
||
flp->length = 0;
|
||
flp->head = NULL;
|
||
i = fip->nfnfields++;
|
||
}
|
||
|
||
/* Create a new member function field and chain it to the field list
|
||
entry. */
|
||
new_fnfield = XNEW (struct nextfnfield);
|
||
make_cleanup (xfree, new_fnfield);
|
||
memset (new_fnfield, 0, sizeof (struct nextfnfield));
|
||
new_fnfield->next = flp->head;
|
||
flp->head = new_fnfield;
|
||
flp->length++;
|
||
|
||
/* Fill in the member function field info. */
|
||
fnp = &new_fnfield->fnfield;
|
||
|
||
/* Delay processing of the physname until later. */
|
||
if (cu->language == language_cplus || cu->language == language_java)
|
||
{
|
||
add_to_method_list (type, i, flp->length - 1, fieldname,
|
||
die, cu);
|
||
}
|
||
else
|
||
{
|
||
const char *physname = dwarf2_physname (fieldname, die, cu);
|
||
fnp->physname = physname ? physname : "";
|
||
}
|
||
|
||
fnp->type = alloc_type (objfile);
|
||
this_type = read_type_die (die, cu);
|
||
if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
|
||
{
|
||
int nparams = TYPE_NFIELDS (this_type);
|
||
|
||
/* TYPE is the domain of this method, and THIS_TYPE is the type
|
||
of the method itself (TYPE_CODE_METHOD). */
|
||
smash_to_method_type (fnp->type, type,
|
||
TYPE_TARGET_TYPE (this_type),
|
||
TYPE_FIELDS (this_type),
|
||
TYPE_NFIELDS (this_type),
|
||
TYPE_VARARGS (this_type));
|
||
|
||
/* Handle static member functions.
|
||
Dwarf2 has no clean way to discern C++ static and non-static
|
||
member functions. G++ helps GDB by marking the first
|
||
parameter for non-static member functions (which is the this
|
||
pointer) as artificial. We obtain this information from
|
||
read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
|
||
if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
|
||
fnp->voffset = VOFFSET_STATIC;
|
||
}
|
||
else
|
||
complaint (&symfile_complaints, _("member function type missing for '%s'"),
|
||
dwarf2_full_name (fieldname, die, cu));
|
||
|
||
/* Get fcontext from DW_AT_containing_type if present. */
|
||
if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
|
||
fnp->fcontext = die_containing_type (die, cu);
|
||
|
||
/* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
|
||
is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
|
||
|
||
/* Get accessibility. */
|
||
attr = dwarf2_attr (die, DW_AT_accessibility, cu);
|
||
if (attr)
|
||
accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
|
||
else
|
||
accessibility = dwarf2_default_access_attribute (die, cu);
|
||
switch (accessibility)
|
||
{
|
||
case DW_ACCESS_private:
|
||
fnp->is_private = 1;
|
||
break;
|
||
case DW_ACCESS_protected:
|
||
fnp->is_protected = 1;
|
||
break;
|
||
}
|
||
|
||
/* Check for artificial methods. */
|
||
attr = dwarf2_attr (die, DW_AT_artificial, cu);
|
||
if (attr && DW_UNSND (attr) != 0)
|
||
fnp->is_artificial = 1;
|
||
|
||
fnp->is_constructor = dwarf2_is_constructor (die, cu);
|
||
|
||
/* Get index in virtual function table if it is a virtual member
|
||
function. For older versions of GCC, this is an offset in the
|
||
appropriate virtual table, as specified by DW_AT_containing_type.
|
||
For everyone else, it is an expression to be evaluated relative
|
||
to the object address. */
|
||
|
||
attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
|
||
if (attr)
|
||
{
|
||
if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
|
||
{
|
||
if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
|
||
{
|
||
/* Old-style GCC. */
|
||
fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
|
||
}
|
||
else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
|
||
|| (DW_BLOCK (attr)->size > 1
|
||
&& DW_BLOCK (attr)->data[0] == DW_OP_deref_size
|
||
&& DW_BLOCK (attr)->data[1] == cu->header.addr_size))
|
||
{
|
||
fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
|
||
if ((fnp->voffset % cu->header.addr_size) != 0)
|
||
dwarf2_complex_location_expr_complaint ();
|
||
else
|
||
fnp->voffset /= cu->header.addr_size;
|
||
fnp->voffset += 2;
|
||
}
|
||
else
|
||
dwarf2_complex_location_expr_complaint ();
|
||
|
||
if (!fnp->fcontext)
|
||
{
|
||
/* If there is no `this' field and no DW_AT_containing_type,
|
||
we cannot actually find a base class context for the
|
||
vtable! */
|
||
if (TYPE_NFIELDS (this_type) == 0
|
||
|| !TYPE_FIELD_ARTIFICIAL (this_type, 0))
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("cannot determine context for virtual member "
|
||
"function \"%s\" (offset %d)"),
|
||
fieldname, die->offset.sect_off);
|
||
}
|
||
else
|
||
{
|
||
fnp->fcontext
|
||
= TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
|
||
}
|
||
}
|
||
}
|
||
else if (attr_form_is_section_offset (attr))
|
||
{
|
||
dwarf2_complex_location_expr_complaint ();
|
||
}
|
||
else
|
||
{
|
||
dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
|
||
fieldname);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
attr = dwarf2_attr (die, DW_AT_virtuality, cu);
|
||
if (attr && DW_UNSND (attr))
|
||
{
|
||
/* GCC does this, as of 2008-08-25; PR debug/37237. */
|
||
complaint (&symfile_complaints,
|
||
_("Member function \"%s\" (offset %d) is virtual "
|
||
"but the vtable offset is not specified"),
|
||
fieldname, die->offset.sect_off);
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
TYPE_CPLUS_DYNAMIC (type) = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Create the vector of member function fields, and attach it to the type. */
|
||
|
||
static void
|
||
dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct fnfieldlist *flp;
|
||
int i;
|
||
|
||
if (cu->language == language_ada)
|
||
error (_("unexpected member functions in Ada type"));
|
||
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
|
||
TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
|
||
|
||
for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
|
||
{
|
||
struct nextfnfield *nfp = flp->head;
|
||
struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
|
||
int k;
|
||
|
||
TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
|
||
TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
|
||
fn_flp->fn_fields = (struct fn_field *)
|
||
TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
|
||
for (k = flp->length; (k--, nfp); nfp = nfp->next)
|
||
fn_flp->fn_fields[k] = nfp->fnfield;
|
||
}
|
||
|
||
TYPE_NFN_FIELDS (type) = fip->nfnfields;
|
||
}
|
||
|
||
/* Returns non-zero if NAME is the name of a vtable member in CU's
|
||
language, zero otherwise. */
|
||
static int
|
||
is_vtable_name (const char *name, struct dwarf2_cu *cu)
|
||
{
|
||
static const char vptr[] = "_vptr";
|
||
static const char vtable[] = "vtable";
|
||
|
||
/* Look for the C++ and Java forms of the vtable. */
|
||
if ((cu->language == language_java
|
||
&& startswith (name, vtable))
|
||
|| (startswith (name, vptr)
|
||
&& is_cplus_marker (name[sizeof (vptr) - 1])))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* GCC outputs unnamed structures that are really pointers to member
|
||
functions, with the ABI-specified layout. If TYPE describes
|
||
such a structure, smash it into a member function type.
|
||
|
||
GCC shouldn't do this; it should just output pointer to member DIEs.
|
||
This is GCC PR debug/28767. */
|
||
|
||
static void
|
||
quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
|
||
{
|
||
struct type *pfn_type, *self_type, *new_type;
|
||
|
||
/* Check for a structure with no name and two children. */
|
||
if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
|
||
return;
|
||
|
||
/* Check for __pfn and __delta members. */
|
||
if (TYPE_FIELD_NAME (type, 0) == NULL
|
||
|| strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
|
||
|| TYPE_FIELD_NAME (type, 1) == NULL
|
||
|| strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
|
||
return;
|
||
|
||
/* Find the type of the method. */
|
||
pfn_type = TYPE_FIELD_TYPE (type, 0);
|
||
if (pfn_type == NULL
|
||
|| TYPE_CODE (pfn_type) != TYPE_CODE_PTR
|
||
|| TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
|
||
return;
|
||
|
||
/* Look for the "this" argument. */
|
||
pfn_type = TYPE_TARGET_TYPE (pfn_type);
|
||
if (TYPE_NFIELDS (pfn_type) == 0
|
||
/* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
|
||
|| TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
|
||
return;
|
||
|
||
self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
|
||
new_type = alloc_type (objfile);
|
||
smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
|
||
TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
|
||
TYPE_VARARGS (pfn_type));
|
||
smash_to_methodptr_type (type, new_type);
|
||
}
|
||
|
||
/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
|
||
(icc). */
|
||
|
||
static int
|
||
producer_is_icc (struct dwarf2_cu *cu)
|
||
{
|
||
if (!cu->checked_producer)
|
||
check_producer (cu);
|
||
|
||
return cu->producer_is_icc;
|
||
}
|
||
|
||
/* Called when we find the DIE that starts a structure or union scope
|
||
(definition) to create a type for the structure or union. Fill in
|
||
the type's name and general properties; the members will not be
|
||
processed until process_structure_scope. A symbol table entry for
|
||
the type will also not be done until process_structure_scope (assuming
|
||
the type has a name).
|
||
|
||
NOTE: we need to call these functions regardless of whether or not the
|
||
DIE has a DW_AT_name attribute, since it might be an anonymous
|
||
structure or union. This gets the type entered into our set of
|
||
user defined types. */
|
||
|
||
static struct type *
|
||
read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct type *type;
|
||
struct attribute *attr;
|
||
const char *name;
|
||
|
||
/* If the definition of this type lives in .debug_types, read that type.
|
||
Don't follow DW_AT_specification though, that will take us back up
|
||
the chain and we want to go down. */
|
||
attr = dwarf2_attr_no_follow (die, DW_AT_signature);
|
||
if (attr)
|
||
{
|
||
type = get_DW_AT_signature_type (die, attr, cu);
|
||
|
||
/* The type's CU may not be the same as CU.
|
||
Ensure TYPE is recorded with CU in die_type_hash. */
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
type = alloc_type (objfile);
|
||
INIT_CPLUS_SPECIFIC (type);
|
||
|
||
name = dwarf2_name (die, cu);
|
||
if (name != NULL)
|
||
{
|
||
if (cu->language == language_cplus
|
||
|| cu->language == language_java
|
||
|| cu->language == language_d
|
||
|| cu->language == language_rust)
|
||
{
|
||
const char *full_name = dwarf2_full_name (name, die, cu);
|
||
|
||
/* dwarf2_full_name might have already finished building the DIE's
|
||
type. If so, there is no need to continue. */
|
||
if (get_die_type (die, cu) != NULL)
|
||
return get_die_type (die, cu);
|
||
|
||
TYPE_TAG_NAME (type) = full_name;
|
||
if (die->tag == DW_TAG_structure_type
|
||
|| die->tag == DW_TAG_class_type)
|
||
TYPE_NAME (type) = TYPE_TAG_NAME (type);
|
||
}
|
||
else
|
||
{
|
||
/* The name is already allocated along with this objfile, so
|
||
we don't need to duplicate it for the type. */
|
||
TYPE_TAG_NAME (type) = name;
|
||
if (die->tag == DW_TAG_class_type)
|
||
TYPE_NAME (type) = TYPE_TAG_NAME (type);
|
||
}
|
||
}
|
||
|
||
if (die->tag == DW_TAG_structure_type)
|
||
{
|
||
TYPE_CODE (type) = TYPE_CODE_STRUCT;
|
||
}
|
||
else if (die->tag == DW_TAG_union_type)
|
||
{
|
||
TYPE_CODE (type) = TYPE_CODE_UNION;
|
||
}
|
||
else
|
||
{
|
||
TYPE_CODE (type) = TYPE_CODE_STRUCT;
|
||
}
|
||
|
||
if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
|
||
TYPE_DECLARED_CLASS (type) = 1;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
{
|
||
if (attr_form_is_constant (attr))
|
||
TYPE_LENGTH (type) = DW_UNSND (attr);
|
||
else
|
||
{
|
||
/* For the moment, dynamic type sizes are not supported
|
||
by GDB's struct type. The actual size is determined
|
||
on-demand when resolving the type of a given object,
|
||
so set the type's length to zero for now. Otherwise,
|
||
we record an expression as the length, and that expression
|
||
could lead to a very large value, which could eventually
|
||
lead to us trying to allocate that much memory when creating
|
||
a value of that type. */
|
||
TYPE_LENGTH (type) = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
TYPE_LENGTH (type) = 0;
|
||
}
|
||
|
||
if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
|
||
{
|
||
/* ICC does not output the required DW_AT_declaration
|
||
on incomplete types, but gives them a size of zero. */
|
||
TYPE_STUB (type) = 1;
|
||
}
|
||
else
|
||
TYPE_STUB_SUPPORTED (type) = 1;
|
||
|
||
if (die_is_declaration (die, cu))
|
||
TYPE_STUB (type) = 1;
|
||
else if (attr == NULL && die->child == NULL
|
||
&& producer_is_realview (cu->producer))
|
||
/* RealView does not output the required DW_AT_declaration
|
||
on incomplete types. */
|
||
TYPE_STUB (type) = 1;
|
||
|
||
/* We need to add the type field to the die immediately so we don't
|
||
infinitely recurse when dealing with pointers to the structure
|
||
type within the structure itself. */
|
||
set_die_type (die, type, cu);
|
||
|
||
/* set_die_type should be already done. */
|
||
set_descriptive_type (type, die, cu);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Finish creating a structure or union type, including filling in
|
||
its members and creating a symbol for it. */
|
||
|
||
static void
|
||
process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct die_info *child_die;
|
||
struct type *type;
|
||
|
||
type = get_die_type (die, cu);
|
||
if (type == NULL)
|
||
type = read_structure_type (die, cu);
|
||
|
||
if (die->child != NULL && ! die_is_declaration (die, cu))
|
||
{
|
||
struct field_info fi;
|
||
VEC (symbolp) *template_args = NULL;
|
||
struct cleanup *back_to = make_cleanup (null_cleanup, 0);
|
||
|
||
memset (&fi, 0, sizeof (struct field_info));
|
||
|
||
child_die = die->child;
|
||
|
||
while (child_die && child_die->tag)
|
||
{
|
||
if (child_die->tag == DW_TAG_member
|
||
|| child_die->tag == DW_TAG_variable)
|
||
{
|
||
/* NOTE: carlton/2002-11-05: A C++ static data member
|
||
should be a DW_TAG_member that is a declaration, but
|
||
all versions of G++ as of this writing (so through at
|
||
least 3.2.1) incorrectly generate DW_TAG_variable
|
||
tags for them instead. */
|
||
dwarf2_add_field (&fi, child_die, cu);
|
||
}
|
||
else if (child_die->tag == DW_TAG_subprogram)
|
||
{
|
||
/* C++ member function. */
|
||
dwarf2_add_member_fn (&fi, child_die, type, cu);
|
||
}
|
||
else if (child_die->tag == DW_TAG_inheritance)
|
||
{
|
||
/* C++ base class field. */
|
||
dwarf2_add_field (&fi, child_die, cu);
|
||
}
|
||
else if (child_die->tag == DW_TAG_typedef)
|
||
dwarf2_add_typedef (&fi, child_die, cu);
|
||
else if (child_die->tag == DW_TAG_template_type_param
|
||
|| child_die->tag == DW_TAG_template_value_param)
|
||
{
|
||
struct symbol *arg = new_symbol (child_die, NULL, cu);
|
||
|
||
if (arg != NULL)
|
||
VEC_safe_push (symbolp, template_args, arg);
|
||
}
|
||
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
|
||
/* Attach template arguments to type. */
|
||
if (! VEC_empty (symbolp, template_args))
|
||
{
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
TYPE_N_TEMPLATE_ARGUMENTS (type)
|
||
= VEC_length (symbolp, template_args);
|
||
TYPE_TEMPLATE_ARGUMENTS (type)
|
||
= XOBNEWVEC (&objfile->objfile_obstack,
|
||
struct symbol *,
|
||
TYPE_N_TEMPLATE_ARGUMENTS (type));
|
||
memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
|
||
VEC_address (symbolp, template_args),
|
||
(TYPE_N_TEMPLATE_ARGUMENTS (type)
|
||
* sizeof (struct symbol *)));
|
||
VEC_free (symbolp, template_args);
|
||
}
|
||
|
||
/* Attach fields and member functions to the type. */
|
||
if (fi.nfields)
|
||
dwarf2_attach_fields_to_type (&fi, type, cu);
|
||
if (fi.nfnfields)
|
||
{
|
||
dwarf2_attach_fn_fields_to_type (&fi, type, cu);
|
||
|
||
/* Get the type which refers to the base class (possibly this
|
||
class itself) which contains the vtable pointer for the current
|
||
class from the DW_AT_containing_type attribute. This use of
|
||
DW_AT_containing_type is a GNU extension. */
|
||
|
||
if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
|
||
{
|
||
struct type *t = die_containing_type (die, cu);
|
||
|
||
set_type_vptr_basetype (type, t);
|
||
if (type == t)
|
||
{
|
||
int i;
|
||
|
||
/* Our own class provides vtbl ptr. */
|
||
for (i = TYPE_NFIELDS (t) - 1;
|
||
i >= TYPE_N_BASECLASSES (t);
|
||
--i)
|
||
{
|
||
const char *fieldname = TYPE_FIELD_NAME (t, i);
|
||
|
||
if (is_vtable_name (fieldname, cu))
|
||
{
|
||
set_type_vptr_fieldno (type, i);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Complain if virtual function table field not found. */
|
||
if (i < TYPE_N_BASECLASSES (t))
|
||
complaint (&symfile_complaints,
|
||
_("virtual function table pointer "
|
||
"not found when defining class '%s'"),
|
||
TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
|
||
"");
|
||
}
|
||
else
|
||
{
|
||
set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
|
||
}
|
||
}
|
||
else if (cu->producer
|
||
&& startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
|
||
{
|
||
/* The IBM XLC compiler does not provide direct indication
|
||
of the containing type, but the vtable pointer is
|
||
always named __vfp. */
|
||
|
||
int i;
|
||
|
||
for (i = TYPE_NFIELDS (type) - 1;
|
||
i >= TYPE_N_BASECLASSES (type);
|
||
--i)
|
||
{
|
||
if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
|
||
{
|
||
set_type_vptr_fieldno (type, i);
|
||
set_type_vptr_basetype (type, type);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Copy fi.typedef_field_list linked list elements content into the
|
||
allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
|
||
if (fi.typedef_field_list)
|
||
{
|
||
int i = fi.typedef_field_list_count;
|
||
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
TYPE_TYPEDEF_FIELD_ARRAY (type)
|
||
= ((struct typedef_field *)
|
||
TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
|
||
TYPE_TYPEDEF_FIELD_COUNT (type) = i;
|
||
|
||
/* Reverse the list order to keep the debug info elements order. */
|
||
while (--i >= 0)
|
||
{
|
||
struct typedef_field *dest, *src;
|
||
|
||
dest = &TYPE_TYPEDEF_FIELD (type, i);
|
||
src = &fi.typedef_field_list->field;
|
||
fi.typedef_field_list = fi.typedef_field_list->next;
|
||
*dest = *src;
|
||
}
|
||
}
|
||
|
||
do_cleanups (back_to);
|
||
|
||
if (HAVE_CPLUS_STRUCT (type))
|
||
TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
|
||
}
|
||
|
||
quirk_gcc_member_function_pointer (type, objfile);
|
||
|
||
/* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
|
||
snapshots) has been known to create a die giving a declaration
|
||
for a class that has, as a child, a die giving a definition for a
|
||
nested class. So we have to process our children even if the
|
||
current die is a declaration. Normally, of course, a declaration
|
||
won't have any children at all. */
|
||
|
||
child_die = die->child;
|
||
|
||
while (child_die != NULL && child_die->tag)
|
||
{
|
||
if (child_die->tag == DW_TAG_member
|
||
|| child_die->tag == DW_TAG_variable
|
||
|| child_die->tag == DW_TAG_inheritance
|
||
|| child_die->tag == DW_TAG_template_value_param
|
||
|| child_die->tag == DW_TAG_template_type_param)
|
||
{
|
||
/* Do nothing. */
|
||
}
|
||
else
|
||
process_die (child_die, cu);
|
||
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
|
||
/* Do not consider external references. According to the DWARF standard,
|
||
these DIEs are identified by the fact that they have no byte_size
|
||
attribute, and a declaration attribute. */
|
||
if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
|
||
|| !die_is_declaration (die, cu))
|
||
new_symbol (die, type, cu);
|
||
}
|
||
|
||
/* Assuming DIE is an enumeration type, and TYPE is its associated type,
|
||
update TYPE using some information only available in DIE's children. */
|
||
|
||
static void
|
||
update_enumeration_type_from_children (struct die_info *die,
|
||
struct type *type,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct obstack obstack;
|
||
struct die_info *child_die;
|
||
int unsigned_enum = 1;
|
||
int flag_enum = 1;
|
||
ULONGEST mask = 0;
|
||
struct cleanup *old_chain;
|
||
|
||
obstack_init (&obstack);
|
||
old_chain = make_cleanup_obstack_free (&obstack);
|
||
|
||
for (child_die = die->child;
|
||
child_die != NULL && child_die->tag;
|
||
child_die = sibling_die (child_die))
|
||
{
|
||
struct attribute *attr;
|
||
LONGEST value;
|
||
const gdb_byte *bytes;
|
||
struct dwarf2_locexpr_baton *baton;
|
||
const char *name;
|
||
|
||
if (child_die->tag != DW_TAG_enumerator)
|
||
continue;
|
||
|
||
attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
|
||
if (attr == NULL)
|
||
continue;
|
||
|
||
name = dwarf2_name (child_die, cu);
|
||
if (name == NULL)
|
||
name = "<anonymous enumerator>";
|
||
|
||
dwarf2_const_value_attr (attr, type, name, &obstack, cu,
|
||
&value, &bytes, &baton);
|
||
if (value < 0)
|
||
{
|
||
unsigned_enum = 0;
|
||
flag_enum = 0;
|
||
}
|
||
else if ((mask & value) != 0)
|
||
flag_enum = 0;
|
||
else
|
||
mask |= value;
|
||
|
||
/* If we already know that the enum type is neither unsigned, nor
|
||
a flag type, no need to look at the rest of the enumerates. */
|
||
if (!unsigned_enum && !flag_enum)
|
||
break;
|
||
}
|
||
|
||
if (unsigned_enum)
|
||
TYPE_UNSIGNED (type) = 1;
|
||
if (flag_enum)
|
||
TYPE_FLAG_ENUM (type) = 1;
|
||
|
||
do_cleanups (old_chain);
|
||
}
|
||
|
||
/* Given a DW_AT_enumeration_type die, set its type. We do not
|
||
complete the type's fields yet, or create any symbols. */
|
||
|
||
static struct type *
|
||
read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct type *type;
|
||
struct attribute *attr;
|
||
const char *name;
|
||
|
||
/* If the definition of this type lives in .debug_types, read that type.
|
||
Don't follow DW_AT_specification though, that will take us back up
|
||
the chain and we want to go down. */
|
||
attr = dwarf2_attr_no_follow (die, DW_AT_signature);
|
||
if (attr)
|
||
{
|
||
type = get_DW_AT_signature_type (die, attr, cu);
|
||
|
||
/* The type's CU may not be the same as CU.
|
||
Ensure TYPE is recorded with CU in die_type_hash. */
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
type = alloc_type (objfile);
|
||
|
||
TYPE_CODE (type) = TYPE_CODE_ENUM;
|
||
name = dwarf2_full_name (NULL, die, cu);
|
||
if (name != NULL)
|
||
TYPE_TAG_NAME (type) = name;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_type, cu);
|
||
if (attr != NULL)
|
||
{
|
||
struct type *underlying_type = die_type (die, cu);
|
||
|
||
TYPE_TARGET_TYPE (type) = underlying_type;
|
||
}
|
||
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
{
|
||
TYPE_LENGTH (type) = DW_UNSND (attr);
|
||
}
|
||
else
|
||
{
|
||
TYPE_LENGTH (type) = 0;
|
||
}
|
||
|
||
/* The enumeration DIE can be incomplete. In Ada, any type can be
|
||
declared as private in the package spec, and then defined only
|
||
inside the package body. Such types are known as Taft Amendment
|
||
Types. When another package uses such a type, an incomplete DIE
|
||
may be generated by the compiler. */
|
||
if (die_is_declaration (die, cu))
|
||
TYPE_STUB (type) = 1;
|
||
|
||
/* Finish the creation of this type by using the enum's children.
|
||
We must call this even when the underlying type has been provided
|
||
so that we can determine if we're looking at a "flag" enum. */
|
||
update_enumeration_type_from_children (die, type, cu);
|
||
|
||
/* If this type has an underlying type that is not a stub, then we
|
||
may use its attributes. We always use the "unsigned" attribute
|
||
in this situation, because ordinarily we guess whether the type
|
||
is unsigned -- but the guess can be wrong and the underlying type
|
||
can tell us the reality. However, we defer to a local size
|
||
attribute if one exists, because this lets the compiler override
|
||
the underlying type if needed. */
|
||
if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
|
||
{
|
||
TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
|
||
if (TYPE_LENGTH (type) == 0)
|
||
TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
|
||
}
|
||
|
||
TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
|
||
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
/* Given a pointer to a die which begins an enumeration, process all
|
||
the dies that define the members of the enumeration, and create the
|
||
symbol for the enumeration type.
|
||
|
||
NOTE: We reverse the order of the element list. */
|
||
|
||
static void
|
||
process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *this_type;
|
||
|
||
this_type = get_die_type (die, cu);
|
||
if (this_type == NULL)
|
||
this_type = read_enumeration_type (die, cu);
|
||
|
||
if (die->child != NULL)
|
||
{
|
||
struct die_info *child_die;
|
||
struct symbol *sym;
|
||
struct field *fields = NULL;
|
||
int num_fields = 0;
|
||
const char *name;
|
||
|
||
child_die = die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
if (child_die->tag != DW_TAG_enumerator)
|
||
{
|
||
process_die (child_die, cu);
|
||
}
|
||
else
|
||
{
|
||
name = dwarf2_name (child_die, cu);
|
||
if (name)
|
||
{
|
||
sym = new_symbol (child_die, this_type, cu);
|
||
|
||
if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
|
||
{
|
||
fields = (struct field *)
|
||
xrealloc (fields,
|
||
(num_fields + DW_FIELD_ALLOC_CHUNK)
|
||
* sizeof (struct field));
|
||
}
|
||
|
||
FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
|
||
FIELD_TYPE (fields[num_fields]) = NULL;
|
||
SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
|
||
FIELD_BITSIZE (fields[num_fields]) = 0;
|
||
|
||
num_fields++;
|
||
}
|
||
}
|
||
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
|
||
if (num_fields)
|
||
{
|
||
TYPE_NFIELDS (this_type) = num_fields;
|
||
TYPE_FIELDS (this_type) = (struct field *)
|
||
TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
|
||
memcpy (TYPE_FIELDS (this_type), fields,
|
||
sizeof (struct field) * num_fields);
|
||
xfree (fields);
|
||
}
|
||
}
|
||
|
||
/* If we are reading an enum from a .debug_types unit, and the enum
|
||
is a declaration, and the enum is not the signatured type in the
|
||
unit, then we do not want to add a symbol for it. Adding a
|
||
symbol would in some cases obscure the true definition of the
|
||
enum, giving users an incomplete type when the definition is
|
||
actually available. Note that we do not want to do this for all
|
||
enums which are just declarations, because C++0x allows forward
|
||
enum declarations. */
|
||
if (cu->per_cu->is_debug_types
|
||
&& die_is_declaration (die, cu))
|
||
{
|
||
struct signatured_type *sig_type;
|
||
|
||
sig_type = (struct signatured_type *) cu->per_cu;
|
||
gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
|
||
if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
|
||
return;
|
||
}
|
||
|
||
new_symbol (die, this_type, cu);
|
||
}
|
||
|
||
/* Extract all information from a DW_TAG_array_type DIE and put it in
|
||
the DIE's type field. For now, this only handles one dimensional
|
||
arrays. */
|
||
|
||
static struct type *
|
||
read_array_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct die_info *child_die;
|
||
struct type *type;
|
||
struct type *element_type, *range_type, *index_type;
|
||
struct type **range_types = NULL;
|
||
struct attribute *attr;
|
||
int ndim = 0;
|
||
struct cleanup *back_to;
|
||
const char *name;
|
||
unsigned int bit_stride = 0;
|
||
|
||
element_type = die_type (die, cu);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
type = get_die_type (die, cu);
|
||
if (type)
|
||
return type;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
|
||
if (attr != NULL)
|
||
bit_stride = DW_UNSND (attr) * 8;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
|
||
if (attr != NULL)
|
||
bit_stride = DW_UNSND (attr);
|
||
|
||
/* Irix 6.2 native cc creates array types without children for
|
||
arrays with unspecified length. */
|
||
if (die->child == NULL)
|
||
{
|
||
index_type = objfile_type (objfile)->builtin_int;
|
||
range_type = create_static_range_type (NULL, index_type, 0, -1);
|
||
type = create_array_type_with_stride (NULL, element_type, range_type,
|
||
bit_stride);
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
back_to = make_cleanup (null_cleanup, NULL);
|
||
child_die = die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
if (child_die->tag == DW_TAG_subrange_type)
|
||
{
|
||
struct type *child_type = read_type_die (child_die, cu);
|
||
|
||
if (child_type != NULL)
|
||
{
|
||
/* The range type was succesfully read. Save it for the
|
||
array type creation. */
|
||
if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
|
||
{
|
||
range_types = (struct type **)
|
||
xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
|
||
* sizeof (struct type *));
|
||
if (ndim == 0)
|
||
make_cleanup (free_current_contents, &range_types);
|
||
}
|
||
range_types[ndim++] = child_type;
|
||
}
|
||
}
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
|
||
/* Dwarf2 dimensions are output from left to right, create the
|
||
necessary array types in backwards order. */
|
||
|
||
type = element_type;
|
||
|
||
if (read_array_order (die, cu) == DW_ORD_col_major)
|
||
{
|
||
int i = 0;
|
||
|
||
while (i < ndim)
|
||
type = create_array_type_with_stride (NULL, type, range_types[i++],
|
||
bit_stride);
|
||
}
|
||
else
|
||
{
|
||
while (ndim-- > 0)
|
||
type = create_array_type_with_stride (NULL, type, range_types[ndim],
|
||
bit_stride);
|
||
}
|
||
|
||
/* Understand Dwarf2 support for vector types (like they occur on
|
||
the PowerPC w/ AltiVec). Gcc just adds another attribute to the
|
||
array type. This is not part of the Dwarf2/3 standard yet, but a
|
||
custom vendor extension. The main difference between a regular
|
||
array and the vector variant is that vectors are passed by value
|
||
to functions. */
|
||
attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
|
||
if (attr)
|
||
make_vector_type (type);
|
||
|
||
/* The DIE may have DW_AT_byte_size set. For example an OpenCL
|
||
implementation may choose to implement triple vectors using this
|
||
attribute. */
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
{
|
||
if (DW_UNSND (attr) >= TYPE_LENGTH (type))
|
||
TYPE_LENGTH (type) = DW_UNSND (attr);
|
||
else
|
||
complaint (&symfile_complaints,
|
||
_("DW_AT_byte_size for array type smaller "
|
||
"than the total size of elements"));
|
||
}
|
||
|
||
name = dwarf2_name (die, cu);
|
||
if (name)
|
||
TYPE_NAME (type) = name;
|
||
|
||
/* Install the type in the die. */
|
||
set_die_type (die, type, cu);
|
||
|
||
/* set_die_type should be already done. */
|
||
set_descriptive_type (type, die, cu);
|
||
|
||
do_cleanups (back_to);
|
||
|
||
return type;
|
||
}
|
||
|
||
static enum dwarf_array_dim_ordering
|
||
read_array_order (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_ordering, cu);
|
||
|
||
if (attr)
|
||
return (enum dwarf_array_dim_ordering) DW_SND (attr);
|
||
|
||
/* GNU F77 is a special case, as at 08/2004 array type info is the
|
||
opposite order to the dwarf2 specification, but data is still
|
||
laid out as per normal fortran.
|
||
|
||
FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
|
||
version checking. */
|
||
|
||
if (cu->language == language_fortran
|
||
&& cu->producer && strstr (cu->producer, "GNU F77"))
|
||
{
|
||
return DW_ORD_row_major;
|
||
}
|
||
|
||
switch (cu->language_defn->la_array_ordering)
|
||
{
|
||
case array_column_major:
|
||
return DW_ORD_col_major;
|
||
case array_row_major:
|
||
default:
|
||
return DW_ORD_row_major;
|
||
};
|
||
}
|
||
|
||
/* Extract all information from a DW_TAG_set_type DIE and put it in
|
||
the DIE's type field. */
|
||
|
||
static struct type *
|
||
read_set_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *domain_type, *set_type;
|
||
struct attribute *attr;
|
||
|
||
domain_type = die_type (die, cu);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
set_type = get_die_type (die, cu);
|
||
if (set_type)
|
||
return set_type;
|
||
|
||
set_type = create_set_type (NULL, domain_type);
|
||
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
TYPE_LENGTH (set_type) = DW_UNSND (attr);
|
||
|
||
return set_die_type (die, set_type, cu);
|
||
}
|
||
|
||
/* A helper for read_common_block that creates a locexpr baton.
|
||
SYM is the symbol which we are marking as computed.
|
||
COMMON_DIE is the DIE for the common block.
|
||
COMMON_LOC is the location expression attribute for the common
|
||
block itself.
|
||
MEMBER_LOC is the location expression attribute for the particular
|
||
member of the common block that we are processing.
|
||
CU is the CU from which the above come. */
|
||
|
||
static void
|
||
mark_common_block_symbol_computed (struct symbol *sym,
|
||
struct die_info *common_die,
|
||
struct attribute *common_loc,
|
||
struct attribute *member_loc,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
struct dwarf2_locexpr_baton *baton;
|
||
gdb_byte *ptr;
|
||
unsigned int cu_off;
|
||
enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
|
||
LONGEST offset = 0;
|
||
|
||
gdb_assert (common_loc && member_loc);
|
||
gdb_assert (attr_form_is_block (common_loc));
|
||
gdb_assert (attr_form_is_block (member_loc)
|
||
|| attr_form_is_constant (member_loc));
|
||
|
||
baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
|
||
baton->per_cu = cu->per_cu;
|
||
gdb_assert (baton->per_cu);
|
||
|
||
baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
|
||
|
||
if (attr_form_is_constant (member_loc))
|
||
{
|
||
offset = dwarf2_get_attr_constant_value (member_loc, 0);
|
||
baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
|
||
}
|
||
else
|
||
baton->size += DW_BLOCK (member_loc)->size;
|
||
|
||
ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
|
||
baton->data = ptr;
|
||
|
||
*ptr++ = DW_OP_call4;
|
||
cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
|
||
store_unsigned_integer (ptr, 4, byte_order, cu_off);
|
||
ptr += 4;
|
||
|
||
if (attr_form_is_constant (member_loc))
|
||
{
|
||
*ptr++ = DW_OP_addr;
|
||
store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
|
||
ptr += cu->header.addr_size;
|
||
}
|
||
else
|
||
{
|
||
/* We have to copy the data here, because DW_OP_call4 will only
|
||
use a DW_AT_location attribute. */
|
||
memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
|
||
ptr += DW_BLOCK (member_loc)->size;
|
||
}
|
||
|
||
*ptr++ = DW_OP_plus;
|
||
gdb_assert (ptr - baton->data == baton->size);
|
||
|
||
SYMBOL_LOCATION_BATON (sym) = baton;
|
||
SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
|
||
}
|
||
|
||
/* Create appropriate locally-scoped variables for all the
|
||
DW_TAG_common_block entries. Also create a struct common_block
|
||
listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
|
||
is used to sepate the common blocks name namespace from regular
|
||
variable names. */
|
||
|
||
static void
|
||
read_common_block (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_location, cu);
|
||
if (attr)
|
||
{
|
||
/* Support the .debug_loc offsets. */
|
||
if (attr_form_is_block (attr))
|
||
{
|
||
/* Ok. */
|
||
}
|
||
else if (attr_form_is_section_offset (attr))
|
||
{
|
||
dwarf2_complex_location_expr_complaint ();
|
||
attr = NULL;
|
||
}
|
||
else
|
||
{
|
||
dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
|
||
"common block member");
|
||
attr = NULL;
|
||
}
|
||
}
|
||
|
||
if (die->child != NULL)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct die_info *child_die;
|
||
size_t n_entries = 0, size;
|
||
struct common_block *common_block;
|
||
struct symbol *sym;
|
||
|
||
for (child_die = die->child;
|
||
child_die && child_die->tag;
|
||
child_die = sibling_die (child_die))
|
||
++n_entries;
|
||
|
||
size = (sizeof (struct common_block)
|
||
+ (n_entries - 1) * sizeof (struct symbol *));
|
||
common_block
|
||
= (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
|
||
size);
|
||
memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
|
||
common_block->n_entries = 0;
|
||
|
||
for (child_die = die->child;
|
||
child_die && child_die->tag;
|
||
child_die = sibling_die (child_die))
|
||
{
|
||
/* Create the symbol in the DW_TAG_common_block block in the current
|
||
symbol scope. */
|
||
sym = new_symbol (child_die, NULL, cu);
|
||
if (sym != NULL)
|
||
{
|
||
struct attribute *member_loc;
|
||
|
||
common_block->contents[common_block->n_entries++] = sym;
|
||
|
||
member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
|
||
cu);
|
||
if (member_loc)
|
||
{
|
||
/* GDB has handled this for a long time, but it is
|
||
not specified by DWARF. It seems to have been
|
||
emitted by gfortran at least as recently as:
|
||
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
|
||
complaint (&symfile_complaints,
|
||
_("Variable in common block has "
|
||
"DW_AT_data_member_location "
|
||
"- DIE at 0x%x [in module %s]"),
|
||
child_die->offset.sect_off,
|
||
objfile_name (cu->objfile));
|
||
|
||
if (attr_form_is_section_offset (member_loc))
|
||
dwarf2_complex_location_expr_complaint ();
|
||
else if (attr_form_is_constant (member_loc)
|
||
|| attr_form_is_block (member_loc))
|
||
{
|
||
if (attr)
|
||
mark_common_block_symbol_computed (sym, die, attr,
|
||
member_loc, cu);
|
||
}
|
||
else
|
||
dwarf2_complex_location_expr_complaint ();
|
||
}
|
||
}
|
||
}
|
||
|
||
sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
|
||
SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
|
||
}
|
||
}
|
||
|
||
/* Create a type for a C++ namespace. */
|
||
|
||
static struct type *
|
||
read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
const char *previous_prefix, *name;
|
||
int is_anonymous;
|
||
struct type *type;
|
||
|
||
/* For extensions, reuse the type of the original namespace. */
|
||
if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
|
||
{
|
||
struct die_info *ext_die;
|
||
struct dwarf2_cu *ext_cu = cu;
|
||
|
||
ext_die = dwarf2_extension (die, &ext_cu);
|
||
type = read_type_die (ext_die, ext_cu);
|
||
|
||
/* EXT_CU may not be the same as CU.
|
||
Ensure TYPE is recorded with CU in die_type_hash. */
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
name = namespace_name (die, &is_anonymous, cu);
|
||
|
||
/* Now build the name of the current namespace. */
|
||
|
||
previous_prefix = determine_prefix (die, cu);
|
||
if (previous_prefix[0] != '\0')
|
||
name = typename_concat (&objfile->objfile_obstack,
|
||
previous_prefix, name, 0, cu);
|
||
|
||
/* Create the type. */
|
||
type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
|
||
objfile);
|
||
TYPE_NAME (type) = name;
|
||
TYPE_TAG_NAME (type) = TYPE_NAME (type);
|
||
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
/* Read a namespace scope. */
|
||
|
||
static void
|
||
read_namespace (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
int is_anonymous;
|
||
|
||
/* Add a symbol associated to this if we haven't seen the namespace
|
||
before. Also, add a using directive if it's an anonymous
|
||
namespace. */
|
||
|
||
if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
|
||
{
|
||
struct type *type;
|
||
|
||
type = read_type_die (die, cu);
|
||
new_symbol (die, type, cu);
|
||
|
||
namespace_name (die, &is_anonymous, cu);
|
||
if (is_anonymous)
|
||
{
|
||
const char *previous_prefix = determine_prefix (die, cu);
|
||
|
||
add_using_directive (using_directives (cu->language),
|
||
previous_prefix, TYPE_NAME (type), NULL,
|
||
NULL, NULL, 0, &objfile->objfile_obstack);
|
||
}
|
||
}
|
||
|
||
if (die->child != NULL)
|
||
{
|
||
struct die_info *child_die = die->child;
|
||
|
||
while (child_die && child_die->tag)
|
||
{
|
||
process_die (child_die, cu);
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Read a Fortran module as type. This DIE can be only a declaration used for
|
||
imported module. Still we need that type as local Fortran "use ... only"
|
||
declaration imports depend on the created type in determine_prefix. */
|
||
|
||
static struct type *
|
||
read_module_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
const char *module_name;
|
||
struct type *type;
|
||
|
||
module_name = dwarf2_name (die, cu);
|
||
if (!module_name)
|
||
complaint (&symfile_complaints,
|
||
_("DW_TAG_module has no name, offset 0x%x"),
|
||
die->offset.sect_off);
|
||
type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
|
||
|
||
/* determine_prefix uses TYPE_TAG_NAME. */
|
||
TYPE_TAG_NAME (type) = TYPE_NAME (type);
|
||
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
/* Read a Fortran module. */
|
||
|
||
static void
|
||
read_module (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct die_info *child_die = die->child;
|
||
struct type *type;
|
||
|
||
type = read_type_die (die, cu);
|
||
new_symbol (die, type, cu);
|
||
|
||
while (child_die && child_die->tag)
|
||
{
|
||
process_die (child_die, cu);
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
}
|
||
|
||
/* Return the name of the namespace represented by DIE. Set
|
||
*IS_ANONYMOUS to tell whether or not the namespace is an anonymous
|
||
namespace. */
|
||
|
||
static const char *
|
||
namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
|
||
{
|
||
struct die_info *current_die;
|
||
const char *name = NULL;
|
||
|
||
/* Loop through the extensions until we find a name. */
|
||
|
||
for (current_die = die;
|
||
current_die != NULL;
|
||
current_die = dwarf2_extension (die, &cu))
|
||
{
|
||
/* We don't use dwarf2_name here so that we can detect the absence
|
||
of a name -> anonymous namespace. */
|
||
name = dwarf2_string_attr (die, DW_AT_name, cu);
|
||
|
||
if (name != NULL)
|
||
break;
|
||
}
|
||
|
||
/* Is it an anonymous namespace? */
|
||
|
||
*is_anonymous = (name == NULL);
|
||
if (*is_anonymous)
|
||
name = CP_ANONYMOUS_NAMESPACE_STR;
|
||
|
||
return name;
|
||
}
|
||
|
||
/* Extract all information from a DW_TAG_pointer_type DIE and add to
|
||
the user defined type vector. */
|
||
|
||
static struct type *
|
||
read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
|
||
struct comp_unit_head *cu_header = &cu->header;
|
||
struct type *type;
|
||
struct attribute *attr_byte_size;
|
||
struct attribute *attr_address_class;
|
||
int byte_size, addr_class;
|
||
struct type *target_type;
|
||
|
||
target_type = die_type (die, cu);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
type = get_die_type (die, cu);
|
||
if (type)
|
||
return type;
|
||
|
||
type = lookup_pointer_type (target_type);
|
||
|
||
attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr_byte_size)
|
||
byte_size = DW_UNSND (attr_byte_size);
|
||
else
|
||
byte_size = cu_header->addr_size;
|
||
|
||
attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
|
||
if (attr_address_class)
|
||
addr_class = DW_UNSND (attr_address_class);
|
||
else
|
||
addr_class = DW_ADDR_none;
|
||
|
||
/* If the pointer size or address class is different than the
|
||
default, create a type variant marked as such and set the
|
||
length accordingly. */
|
||
if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
|
||
{
|
||
if (gdbarch_address_class_type_flags_p (gdbarch))
|
||
{
|
||
int type_flags;
|
||
|
||
type_flags = gdbarch_address_class_type_flags
|
||
(gdbarch, byte_size, addr_class);
|
||
gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
|
||
== 0);
|
||
type = make_type_with_address_space (type, type_flags);
|
||
}
|
||
else if (TYPE_LENGTH (type) != byte_size)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("invalid pointer size %d"), byte_size);
|
||
}
|
||
else
|
||
{
|
||
/* Should we also complain about unhandled address classes? */
|
||
}
|
||
}
|
||
|
||
TYPE_LENGTH (type) = byte_size;
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
|
||
the user defined type vector. */
|
||
|
||
static struct type *
|
||
read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *type;
|
||
struct type *to_type;
|
||
struct type *domain;
|
||
|
||
to_type = die_type (die, cu);
|
||
domain = die_containing_type (die, cu);
|
||
|
||
/* The calls above may have already set the type for this DIE. */
|
||
type = get_die_type (die, cu);
|
||
if (type)
|
||
return type;
|
||
|
||
if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
|
||
type = lookup_methodptr_type (to_type);
|
||
else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
|
||
{
|
||
struct type *new_type = alloc_type (cu->objfile);
|
||
|
||
smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
|
||
TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
|
||
TYPE_VARARGS (to_type));
|
||
type = lookup_methodptr_type (new_type);
|
||
}
|
||
else
|
||
type = lookup_memberptr_type (to_type, domain);
|
||
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
/* Extract all information from a DW_TAG_reference_type DIE and add to
|
||
the user defined type vector. */
|
||
|
||
static struct type *
|
||
read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct comp_unit_head *cu_header = &cu->header;
|
||
struct type *type, *target_type;
|
||
struct attribute *attr;
|
||
|
||
target_type = die_type (die, cu);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
type = get_die_type (die, cu);
|
||
if (type)
|
||
return type;
|
||
|
||
type = lookup_reference_type (target_type);
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
{
|
||
TYPE_LENGTH (type) = DW_UNSND (attr);
|
||
}
|
||
else
|
||
{
|
||
TYPE_LENGTH (type) = cu_header->addr_size;
|
||
}
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
/* Add the given cv-qualifiers to the element type of the array. GCC
|
||
outputs DWARF type qualifiers that apply to an array, not the
|
||
element type. But GDB relies on the array element type to carry
|
||
the cv-qualifiers. This mimics section 6.7.3 of the C99
|
||
specification. */
|
||
|
||
static struct type *
|
||
add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
|
||
struct type *base_type, int cnst, int voltl)
|
||
{
|
||
struct type *el_type, *inner_array;
|
||
|
||
base_type = copy_type (base_type);
|
||
inner_array = base_type;
|
||
|
||
while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
|
||
{
|
||
TYPE_TARGET_TYPE (inner_array) =
|
||
copy_type (TYPE_TARGET_TYPE (inner_array));
|
||
inner_array = TYPE_TARGET_TYPE (inner_array);
|
||
}
|
||
|
||
el_type = TYPE_TARGET_TYPE (inner_array);
|
||
cnst |= TYPE_CONST (el_type);
|
||
voltl |= TYPE_VOLATILE (el_type);
|
||
TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
|
||
|
||
return set_die_type (die, base_type, cu);
|
||
}
|
||
|
||
static struct type *
|
||
read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *base_type, *cv_type;
|
||
|
||
base_type = die_type (die, cu);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
cv_type = get_die_type (die, cu);
|
||
if (cv_type)
|
||
return cv_type;
|
||
|
||
/* In case the const qualifier is applied to an array type, the element type
|
||
is so qualified, not the array type (section 6.7.3 of C99). */
|
||
if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
|
||
return add_array_cv_type (die, cu, base_type, 1, 0);
|
||
|
||
cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
|
||
return set_die_type (die, cv_type, cu);
|
||
}
|
||
|
||
static struct type *
|
||
read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *base_type, *cv_type;
|
||
|
||
base_type = die_type (die, cu);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
cv_type = get_die_type (die, cu);
|
||
if (cv_type)
|
||
return cv_type;
|
||
|
||
/* In case the volatile qualifier is applied to an array type, the
|
||
element type is so qualified, not the array type (section 6.7.3
|
||
of C99). */
|
||
if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
|
||
return add_array_cv_type (die, cu, base_type, 0, 1);
|
||
|
||
cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
|
||
return set_die_type (die, cv_type, cu);
|
||
}
|
||
|
||
/* Handle DW_TAG_restrict_type. */
|
||
|
||
static struct type *
|
||
read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *base_type, *cv_type;
|
||
|
||
base_type = die_type (die, cu);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
cv_type = get_die_type (die, cu);
|
||
if (cv_type)
|
||
return cv_type;
|
||
|
||
cv_type = make_restrict_type (base_type);
|
||
return set_die_type (die, cv_type, cu);
|
||
}
|
||
|
||
/* Handle DW_TAG_atomic_type. */
|
||
|
||
static struct type *
|
||
read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *base_type, *cv_type;
|
||
|
||
base_type = die_type (die, cu);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
cv_type = get_die_type (die, cu);
|
||
if (cv_type)
|
||
return cv_type;
|
||
|
||
cv_type = make_atomic_type (base_type);
|
||
return set_die_type (die, cv_type, cu);
|
||
}
|
||
|
||
/* Extract all information from a DW_TAG_string_type DIE and add to
|
||
the user defined type vector. It isn't really a user defined type,
|
||
but it behaves like one, with other DIE's using an AT_user_def_type
|
||
attribute to reference it. */
|
||
|
||
static struct type *
|
||
read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
struct type *type, *range_type, *index_type, *char_type;
|
||
struct attribute *attr;
|
||
unsigned int length;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_string_length, cu);
|
||
if (attr)
|
||
{
|
||
length = DW_UNSND (attr);
|
||
}
|
||
else
|
||
{
|
||
/* Check for the DW_AT_byte_size attribute. */
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
{
|
||
length = DW_UNSND (attr);
|
||
}
|
||
else
|
||
{
|
||
length = 1;
|
||
}
|
||
}
|
||
|
||
index_type = objfile_type (objfile)->builtin_int;
|
||
range_type = create_static_range_type (NULL, index_type, 1, length);
|
||
char_type = language_string_char_type (cu->language_defn, gdbarch);
|
||
type = create_string_type (NULL, char_type, range_type);
|
||
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
/* Assuming that DIE corresponds to a function, returns nonzero
|
||
if the function is prototyped. */
|
||
|
||
static int
|
||
prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_prototyped, cu);
|
||
if (attr && (DW_UNSND (attr) != 0))
|
||
return 1;
|
||
|
||
/* The DWARF standard implies that the DW_AT_prototyped attribute
|
||
is only meaninful for C, but the concept also extends to other
|
||
languages that allow unprototyped functions (Eg: Objective C).
|
||
For all other languages, assume that functions are always
|
||
prototyped. */
|
||
if (cu->language != language_c
|
||
&& cu->language != language_objc
|
||
&& cu->language != language_opencl)
|
||
return 1;
|
||
|
||
/* RealView does not emit DW_AT_prototyped. We can not distinguish
|
||
prototyped and unprototyped functions; default to prototyped,
|
||
since that is more common in modern code (and RealView warns
|
||
about unprototyped functions). */
|
||
if (producer_is_realview (cu->producer))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Handle DIES due to C code like:
|
||
|
||
struct foo
|
||
{
|
||
int (*funcp)(int a, long l);
|
||
int b;
|
||
};
|
||
|
||
('funcp' generates a DW_TAG_subroutine_type DIE). */
|
||
|
||
static struct type *
|
||
read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct type *type; /* Type that this function returns. */
|
||
struct type *ftype; /* Function that returns above type. */
|
||
struct attribute *attr;
|
||
|
||
type = die_type (die, cu);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
ftype = get_die_type (die, cu);
|
||
if (ftype)
|
||
return ftype;
|
||
|
||
ftype = lookup_function_type (type);
|
||
|
||
if (prototyped_function_p (die, cu))
|
||
TYPE_PROTOTYPED (ftype) = 1;
|
||
|
||
/* Store the calling convention in the type if it's available in
|
||
the subroutine die. Otherwise set the calling convention to
|
||
the default value DW_CC_normal. */
|
||
attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
|
||
if (attr)
|
||
TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
|
||
else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
|
||
TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
|
||
else
|
||
TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
|
||
|
||
/* Record whether the function returns normally to its caller or not
|
||
if the DWARF producer set that information. */
|
||
attr = dwarf2_attr (die, DW_AT_noreturn, cu);
|
||
if (attr && (DW_UNSND (attr) != 0))
|
||
TYPE_NO_RETURN (ftype) = 1;
|
||
|
||
/* We need to add the subroutine type to the die immediately so
|
||
we don't infinitely recurse when dealing with parameters
|
||
declared as the same subroutine type. */
|
||
set_die_type (die, ftype, cu);
|
||
|
||
if (die->child != NULL)
|
||
{
|
||
struct type *void_type = objfile_type (objfile)->builtin_void;
|
||
struct die_info *child_die;
|
||
int nparams, iparams;
|
||
|
||
/* Count the number of parameters.
|
||
FIXME: GDB currently ignores vararg functions, but knows about
|
||
vararg member functions. */
|
||
nparams = 0;
|
||
child_die = die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
if (child_die->tag == DW_TAG_formal_parameter)
|
||
nparams++;
|
||
else if (child_die->tag == DW_TAG_unspecified_parameters)
|
||
TYPE_VARARGS (ftype) = 1;
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
|
||
/* Allocate storage for parameters and fill them in. */
|
||
TYPE_NFIELDS (ftype) = nparams;
|
||
TYPE_FIELDS (ftype) = (struct field *)
|
||
TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
|
||
|
||
/* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
|
||
even if we error out during the parameters reading below. */
|
||
for (iparams = 0; iparams < nparams; iparams++)
|
||
TYPE_FIELD_TYPE (ftype, iparams) = void_type;
|
||
|
||
iparams = 0;
|
||
child_die = die->child;
|
||
while (child_die && child_die->tag)
|
||
{
|
||
if (child_die->tag == DW_TAG_formal_parameter)
|
||
{
|
||
struct type *arg_type;
|
||
|
||
/* DWARF version 2 has no clean way to discern C++
|
||
static and non-static member functions. G++ helps
|
||
GDB by marking the first parameter for non-static
|
||
member functions (which is the this pointer) as
|
||
artificial. We pass this information to
|
||
dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
|
||
|
||
DWARF version 3 added DW_AT_object_pointer, which GCC
|
||
4.5 does not yet generate. */
|
||
attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
|
||
if (attr)
|
||
TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
|
||
else
|
||
{
|
||
TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
|
||
|
||
/* GCC/43521: In java, the formal parameter
|
||
"this" is sometimes not marked with DW_AT_artificial. */
|
||
if (cu->language == language_java)
|
||
{
|
||
const char *name = dwarf2_name (child_die, cu);
|
||
|
||
if (name && !strcmp (name, "this"))
|
||
TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
|
||
}
|
||
}
|
||
arg_type = die_type (child_die, cu);
|
||
|
||
/* RealView does not mark THIS as const, which the testsuite
|
||
expects. GCC marks THIS as const in method definitions,
|
||
but not in the class specifications (GCC PR 43053). */
|
||
if (cu->language == language_cplus && !TYPE_CONST (arg_type)
|
||
&& TYPE_FIELD_ARTIFICIAL (ftype, iparams))
|
||
{
|
||
int is_this = 0;
|
||
struct dwarf2_cu *arg_cu = cu;
|
||
const char *name = dwarf2_name (child_die, cu);
|
||
|
||
attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
|
||
if (attr)
|
||
{
|
||
/* If the compiler emits this, use it. */
|
||
if (follow_die_ref (die, attr, &arg_cu) == child_die)
|
||
is_this = 1;
|
||
}
|
||
else if (name && strcmp (name, "this") == 0)
|
||
/* Function definitions will have the argument names. */
|
||
is_this = 1;
|
||
else if (name == NULL && iparams == 0)
|
||
/* Declarations may not have the names, so like
|
||
elsewhere in GDB, assume an artificial first
|
||
argument is "this". */
|
||
is_this = 1;
|
||
|
||
if (is_this)
|
||
arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
|
||
arg_type, 0);
|
||
}
|
||
|
||
TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
|
||
iparams++;
|
||
}
|
||
child_die = sibling_die (child_die);
|
||
}
|
||
}
|
||
|
||
return ftype;
|
||
}
|
||
|
||
static struct type *
|
||
read_typedef (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
const char *name = NULL;
|
||
struct type *this_type, *target_type;
|
||
|
||
name = dwarf2_full_name (NULL, die, cu);
|
||
this_type = init_type (TYPE_CODE_TYPEDEF, 0,
|
||
TYPE_FLAG_TARGET_STUB, NULL, objfile);
|
||
TYPE_NAME (this_type) = name;
|
||
set_die_type (die, this_type, cu);
|
||
target_type = die_type (die, cu);
|
||
if (target_type != this_type)
|
||
TYPE_TARGET_TYPE (this_type) = target_type;
|
||
else
|
||
{
|
||
/* Self-referential typedefs are, it seems, not allowed by the DWARF
|
||
spec and cause infinite loops in GDB. */
|
||
complaint (&symfile_complaints,
|
||
_("Self-referential DW_TAG_typedef "
|
||
"- DIE at 0x%x [in module %s]"),
|
||
die->offset.sect_off, objfile_name (objfile));
|
||
TYPE_TARGET_TYPE (this_type) = NULL;
|
||
}
|
||
return this_type;
|
||
}
|
||
|
||
/* Find a representation of a given base type and install
|
||
it in the TYPE field of the die. */
|
||
|
||
static struct type *
|
||
read_base_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct type *type;
|
||
struct attribute *attr;
|
||
int encoding = 0, size = 0;
|
||
const char *name;
|
||
enum type_code code = TYPE_CODE_INT;
|
||
int type_flags = 0;
|
||
struct type *target_type = NULL;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_encoding, cu);
|
||
if (attr)
|
||
{
|
||
encoding = DW_UNSND (attr);
|
||
}
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
{
|
||
size = DW_UNSND (attr);
|
||
}
|
||
name = dwarf2_name (die, cu);
|
||
if (!name)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("DW_AT_name missing from DW_TAG_base_type"));
|
||
}
|
||
|
||
switch (encoding)
|
||
{
|
||
case DW_ATE_address:
|
||
/* Turn DW_ATE_address into a void * pointer. */
|
||
code = TYPE_CODE_PTR;
|
||
type_flags |= TYPE_FLAG_UNSIGNED;
|
||
target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
|
||
break;
|
||
case DW_ATE_boolean:
|
||
code = TYPE_CODE_BOOL;
|
||
type_flags |= TYPE_FLAG_UNSIGNED;
|
||
break;
|
||
case DW_ATE_complex_float:
|
||
code = TYPE_CODE_COMPLEX;
|
||
target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
|
||
break;
|
||
case DW_ATE_decimal_float:
|
||
code = TYPE_CODE_DECFLOAT;
|
||
break;
|
||
case DW_ATE_float:
|
||
code = TYPE_CODE_FLT;
|
||
break;
|
||
case DW_ATE_signed:
|
||
break;
|
||
case DW_ATE_unsigned:
|
||
type_flags |= TYPE_FLAG_UNSIGNED;
|
||
if (cu->language == language_fortran
|
||
&& name
|
||
&& startswith (name, "character("))
|
||
code = TYPE_CODE_CHAR;
|
||
break;
|
||
case DW_ATE_signed_char:
|
||
if (cu->language == language_ada || cu->language == language_m2
|
||
|| cu->language == language_pascal
|
||
|| cu->language == language_fortran)
|
||
code = TYPE_CODE_CHAR;
|
||
break;
|
||
case DW_ATE_unsigned_char:
|
||
if (cu->language == language_ada || cu->language == language_m2
|
||
|| cu->language == language_pascal
|
||
|| cu->language == language_fortran
|
||
|| cu->language == language_rust)
|
||
code = TYPE_CODE_CHAR;
|
||
type_flags |= TYPE_FLAG_UNSIGNED;
|
||
break;
|
||
case DW_ATE_UTF:
|
||
/* We just treat this as an integer and then recognize the
|
||
type by name elsewhere. */
|
||
break;
|
||
|
||
default:
|
||
complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
|
||
dwarf_type_encoding_name (encoding));
|
||
break;
|
||
}
|
||
|
||
type = init_type (code, size, type_flags, NULL, objfile);
|
||
TYPE_NAME (type) = name;
|
||
TYPE_TARGET_TYPE (type) = target_type;
|
||
|
||
if (name && strcmp (name, "char") == 0)
|
||
TYPE_NOSIGN (type) = 1;
|
||
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
/* Parse dwarf attribute if it's a block, reference or constant and put the
|
||
resulting value of the attribute into struct bound_prop.
|
||
Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
|
||
|
||
static int
|
||
attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
|
||
struct dwarf2_cu *cu, struct dynamic_prop *prop)
|
||
{
|
||
struct dwarf2_property_baton *baton;
|
||
struct obstack *obstack = &cu->objfile->objfile_obstack;
|
||
|
||
if (attr == NULL || prop == NULL)
|
||
return 0;
|
||
|
||
if (attr_form_is_block (attr))
|
||
{
|
||
baton = XOBNEW (obstack, struct dwarf2_property_baton);
|
||
baton->referenced_type = NULL;
|
||
baton->locexpr.per_cu = cu->per_cu;
|
||
baton->locexpr.size = DW_BLOCK (attr)->size;
|
||
baton->locexpr.data = DW_BLOCK (attr)->data;
|
||
prop->data.baton = baton;
|
||
prop->kind = PROP_LOCEXPR;
|
||
gdb_assert (prop->data.baton != NULL);
|
||
}
|
||
else if (attr_form_is_ref (attr))
|
||
{
|
||
struct dwarf2_cu *target_cu = cu;
|
||
struct die_info *target_die;
|
||
struct attribute *target_attr;
|
||
|
||
target_die = follow_die_ref (die, attr, &target_cu);
|
||
target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
|
||
if (target_attr == NULL)
|
||
target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
|
||
target_cu);
|
||
if (target_attr == NULL)
|
||
return 0;
|
||
|
||
switch (target_attr->name)
|
||
{
|
||
case DW_AT_location:
|
||
if (attr_form_is_section_offset (target_attr))
|
||
{
|
||
baton = XOBNEW (obstack, struct dwarf2_property_baton);
|
||
baton->referenced_type = die_type (target_die, target_cu);
|
||
fill_in_loclist_baton (cu, &baton->loclist, target_attr);
|
||
prop->data.baton = baton;
|
||
prop->kind = PROP_LOCLIST;
|
||
gdb_assert (prop->data.baton != NULL);
|
||
}
|
||
else if (attr_form_is_block (target_attr))
|
||
{
|
||
baton = XOBNEW (obstack, struct dwarf2_property_baton);
|
||
baton->referenced_type = die_type (target_die, target_cu);
|
||
baton->locexpr.per_cu = cu->per_cu;
|
||
baton->locexpr.size = DW_BLOCK (target_attr)->size;
|
||
baton->locexpr.data = DW_BLOCK (target_attr)->data;
|
||
prop->data.baton = baton;
|
||
prop->kind = PROP_LOCEXPR;
|
||
gdb_assert (prop->data.baton != NULL);
|
||
}
|
||
else
|
||
{
|
||
dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
|
||
"dynamic property");
|
||
return 0;
|
||
}
|
||
break;
|
||
case DW_AT_data_member_location:
|
||
{
|
||
LONGEST offset;
|
||
|
||
if (!handle_data_member_location (target_die, target_cu,
|
||
&offset))
|
||
return 0;
|
||
|
||
baton = XOBNEW (obstack, struct dwarf2_property_baton);
|
||
baton->referenced_type = read_type_die (target_die->parent,
|
||
target_cu);
|
||
baton->offset_info.offset = offset;
|
||
baton->offset_info.type = die_type (target_die, target_cu);
|
||
prop->data.baton = baton;
|
||
prop->kind = PROP_ADDR_OFFSET;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
else if (attr_form_is_constant (attr))
|
||
{
|
||
prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
|
||
prop->kind = PROP_CONST;
|
||
}
|
||
else
|
||
{
|
||
dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
|
||
dwarf2_name (die, cu));
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Read the given DW_AT_subrange DIE. */
|
||
|
||
static struct type *
|
||
read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *base_type, *orig_base_type;
|
||
struct type *range_type;
|
||
struct attribute *attr;
|
||
struct dynamic_prop low, high;
|
||
int low_default_is_valid;
|
||
int high_bound_is_count = 0;
|
||
const char *name;
|
||
LONGEST negative_mask;
|
||
|
||
orig_base_type = die_type (die, cu);
|
||
/* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
|
||
whereas the real type might be. So, we use ORIG_BASE_TYPE when
|
||
creating the range type, but we use the result of check_typedef
|
||
when examining properties of the type. */
|
||
base_type = check_typedef (orig_base_type);
|
||
|
||
/* The die_type call above may have already set the type for this DIE. */
|
||
range_type = get_die_type (die, cu);
|
||
if (range_type)
|
||
return range_type;
|
||
|
||
low.kind = PROP_CONST;
|
||
high.kind = PROP_CONST;
|
||
high.data.const_val = 0;
|
||
|
||
/* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
|
||
omitting DW_AT_lower_bound. */
|
||
switch (cu->language)
|
||
{
|
||
case language_c:
|
||
case language_cplus:
|
||
low.data.const_val = 0;
|
||
low_default_is_valid = 1;
|
||
break;
|
||
case language_fortran:
|
||
low.data.const_val = 1;
|
||
low_default_is_valid = 1;
|
||
break;
|
||
case language_d:
|
||
case language_java:
|
||
case language_objc:
|
||
case language_rust:
|
||
low.data.const_val = 0;
|
||
low_default_is_valid = (cu->header.version >= 4);
|
||
break;
|
||
case language_ada:
|
||
case language_m2:
|
||
case language_pascal:
|
||
low.data.const_val = 1;
|
||
low_default_is_valid = (cu->header.version >= 4);
|
||
break;
|
||
default:
|
||
low.data.const_val = 0;
|
||
low_default_is_valid = 0;
|
||
break;
|
||
}
|
||
|
||
attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
|
||
if (attr)
|
||
attr_to_dynamic_prop (attr, die, cu, &low);
|
||
else if (!low_default_is_valid)
|
||
complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
|
||
"- DIE at 0x%x [in module %s]"),
|
||
die->offset.sect_off, objfile_name (cu->objfile));
|
||
|
||
attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
|
||
if (!attr_to_dynamic_prop (attr, die, cu, &high))
|
||
{
|
||
attr = dwarf2_attr (die, DW_AT_count, cu);
|
||
if (attr_to_dynamic_prop (attr, die, cu, &high))
|
||
{
|
||
/* If bounds are constant do the final calculation here. */
|
||
if (low.kind == PROP_CONST && high.kind == PROP_CONST)
|
||
high.data.const_val = low.data.const_val + high.data.const_val - 1;
|
||
else
|
||
high_bound_is_count = 1;
|
||
}
|
||
}
|
||
|
||
/* Dwarf-2 specifications explicitly allows to create subrange types
|
||
without specifying a base type.
|
||
In that case, the base type must be set to the type of
|
||
the lower bound, upper bound or count, in that order, if any of these
|
||
three attributes references an object that has a type.
|
||
If no base type is found, the Dwarf-2 specifications say that
|
||
a signed integer type of size equal to the size of an address should
|
||
be used.
|
||
For the following C code: `extern char gdb_int [];'
|
||
GCC produces an empty range DIE.
|
||
FIXME: muller/2010-05-28: Possible references to object for low bound,
|
||
high bound or count are not yet handled by this code. */
|
||
if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
int addr_size = gdbarch_addr_bit (gdbarch) /8;
|
||
struct type *int_type = objfile_type (objfile)->builtin_int;
|
||
|
||
/* Test "int", "long int", and "long long int" objfile types,
|
||
and select the first one having a size above or equal to the
|
||
architecture address size. */
|
||
if (int_type && TYPE_LENGTH (int_type) >= addr_size)
|
||
base_type = int_type;
|
||
else
|
||
{
|
||
int_type = objfile_type (objfile)->builtin_long;
|
||
if (int_type && TYPE_LENGTH (int_type) >= addr_size)
|
||
base_type = int_type;
|
||
else
|
||
{
|
||
int_type = objfile_type (objfile)->builtin_long_long;
|
||
if (int_type && TYPE_LENGTH (int_type) >= addr_size)
|
||
base_type = int_type;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Normally, the DWARF producers are expected to use a signed
|
||
constant form (Eg. DW_FORM_sdata) to express negative bounds.
|
||
But this is unfortunately not always the case, as witnessed
|
||
with GCC, for instance, where the ambiguous DW_FORM_dataN form
|
||
is used instead. To work around that ambiguity, we treat
|
||
the bounds as signed, and thus sign-extend their values, when
|
||
the base type is signed. */
|
||
negative_mask =
|
||
-((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
|
||
if (low.kind == PROP_CONST
|
||
&& !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
|
||
low.data.const_val |= negative_mask;
|
||
if (high.kind == PROP_CONST
|
||
&& !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
|
||
high.data.const_val |= negative_mask;
|
||
|
||
range_type = create_range_type (NULL, orig_base_type, &low, &high);
|
||
|
||
if (high_bound_is_count)
|
||
TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
|
||
|
||
/* Ada expects an empty array on no boundary attributes. */
|
||
if (attr == NULL && cu->language != language_ada)
|
||
TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
|
||
|
||
name = dwarf2_name (die, cu);
|
||
if (name)
|
||
TYPE_NAME (range_type) = name;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_byte_size, cu);
|
||
if (attr)
|
||
TYPE_LENGTH (range_type) = DW_UNSND (attr);
|
||
|
||
set_die_type (die, range_type, cu);
|
||
|
||
/* set_die_type should be already done. */
|
||
set_descriptive_type (range_type, die, cu);
|
||
|
||
return range_type;
|
||
}
|
||
|
||
static struct type *
|
||
read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *type;
|
||
|
||
/* For now, we only support the C meaning of an unspecified type: void. */
|
||
|
||
type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
|
||
TYPE_NAME (type) = dwarf2_name (die, cu);
|
||
|
||
return set_die_type (die, type, cu);
|
||
}
|
||
|
||
/* Read a single die and all its descendents. Set the die's sibling
|
||
field to NULL; set other fields in the die correctly, and set all
|
||
of the descendents' fields correctly. Set *NEW_INFO_PTR to the
|
||
location of the info_ptr after reading all of those dies. PARENT
|
||
is the parent of the die in question. */
|
||
|
||
static struct die_info *
|
||
read_die_and_children (const struct die_reader_specs *reader,
|
||
const gdb_byte *info_ptr,
|
||
const gdb_byte **new_info_ptr,
|
||
struct die_info *parent)
|
||
{
|
||
struct die_info *die;
|
||
const gdb_byte *cur_ptr;
|
||
int has_children;
|
||
|
||
cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
|
||
if (die == NULL)
|
||
{
|
||
*new_info_ptr = cur_ptr;
|
||
return NULL;
|
||
}
|
||
store_in_ref_table (die, reader->cu);
|
||
|
||
if (has_children)
|
||
die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
|
||
else
|
||
{
|
||
die->child = NULL;
|
||
*new_info_ptr = cur_ptr;
|
||
}
|
||
|
||
die->sibling = NULL;
|
||
die->parent = parent;
|
||
return die;
|
||
}
|
||
|
||
/* Read a die, all of its descendents, and all of its siblings; set
|
||
all of the fields of all of the dies correctly. Arguments are as
|
||
in read_die_and_children. */
|
||
|
||
static struct die_info *
|
||
read_die_and_siblings_1 (const struct die_reader_specs *reader,
|
||
const gdb_byte *info_ptr,
|
||
const gdb_byte **new_info_ptr,
|
||
struct die_info *parent)
|
||
{
|
||
struct die_info *first_die, *last_sibling;
|
||
const gdb_byte *cur_ptr;
|
||
|
||
cur_ptr = info_ptr;
|
||
first_die = last_sibling = NULL;
|
||
|
||
while (1)
|
||
{
|
||
struct die_info *die
|
||
= read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
|
||
|
||
if (die == NULL)
|
||
{
|
||
*new_info_ptr = cur_ptr;
|
||
return first_die;
|
||
}
|
||
|
||
if (!first_die)
|
||
first_die = die;
|
||
else
|
||
last_sibling->sibling = die;
|
||
|
||
last_sibling = die;
|
||
}
|
||
}
|
||
|
||
/* Read a die, all of its descendents, and all of its siblings; set
|
||
all of the fields of all of the dies correctly. Arguments are as
|
||
in read_die_and_children.
|
||
This the main entry point for reading a DIE and all its children. */
|
||
|
||
static struct die_info *
|
||
read_die_and_siblings (const struct die_reader_specs *reader,
|
||
const gdb_byte *info_ptr,
|
||
const gdb_byte **new_info_ptr,
|
||
struct die_info *parent)
|
||
{
|
||
struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
|
||
new_info_ptr, parent);
|
||
|
||
if (dwarf_die_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"Read die from %s@0x%x of %s:\n",
|
||
get_section_name (reader->die_section),
|
||
(unsigned) (info_ptr - reader->die_section->buffer),
|
||
bfd_get_filename (reader->abfd));
|
||
dump_die (die, dwarf_die_debug);
|
||
}
|
||
|
||
return die;
|
||
}
|
||
|
||
/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
|
||
attributes.
|
||
The caller is responsible for filling in the extra attributes
|
||
and updating (*DIEP)->num_attrs.
|
||
Set DIEP to point to a newly allocated die with its information,
|
||
except for its child, sibling, and parent fields.
|
||
Set HAS_CHILDREN to tell whether the die has children or not. */
|
||
|
||
static const gdb_byte *
|
||
read_full_die_1 (const struct die_reader_specs *reader,
|
||
struct die_info **diep, const gdb_byte *info_ptr,
|
||
int *has_children, int num_extra_attrs)
|
||
{
|
||
unsigned int abbrev_number, bytes_read, i;
|
||
sect_offset offset;
|
||
struct abbrev_info *abbrev;
|
||
struct die_info *die;
|
||
struct dwarf2_cu *cu = reader->cu;
|
||
bfd *abfd = reader->abfd;
|
||
|
||
offset.sect_off = info_ptr - reader->buffer;
|
||
abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
if (!abbrev_number)
|
||
{
|
||
*diep = NULL;
|
||
*has_children = 0;
|
||
return info_ptr;
|
||
}
|
||
|
||
abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
|
||
if (!abbrev)
|
||
error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
|
||
abbrev_number,
|
||
bfd_get_filename (abfd));
|
||
|
||
die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
|
||
die->offset = offset;
|
||
die->tag = abbrev->tag;
|
||
die->abbrev = abbrev_number;
|
||
|
||
/* Make the result usable.
|
||
The caller needs to update num_attrs after adding the extra
|
||
attributes. */
|
||
die->num_attrs = abbrev->num_attrs;
|
||
|
||
for (i = 0; i < abbrev->num_attrs; ++i)
|
||
info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
|
||
info_ptr);
|
||
|
||
*diep = die;
|
||
*has_children = abbrev->has_children;
|
||
return info_ptr;
|
||
}
|
||
|
||
/* Read a die and all its attributes.
|
||
Set DIEP to point to a newly allocated die with its information,
|
||
except for its child, sibling, and parent fields.
|
||
Set HAS_CHILDREN to tell whether the die has children or not. */
|
||
|
||
static const gdb_byte *
|
||
read_full_die (const struct die_reader_specs *reader,
|
||
struct die_info **diep, const gdb_byte *info_ptr,
|
||
int *has_children)
|
||
{
|
||
const gdb_byte *result;
|
||
|
||
result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
|
||
|
||
if (dwarf_die_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"Read die from %s@0x%x of %s:\n",
|
||
get_section_name (reader->die_section),
|
||
(unsigned) (info_ptr - reader->die_section->buffer),
|
||
bfd_get_filename (reader->abfd));
|
||
dump_die (*diep, dwarf_die_debug);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Abbreviation tables.
|
||
|
||
In DWARF version 2, the description of the debugging information is
|
||
stored in a separate .debug_abbrev section. Before we read any
|
||
dies from a section we read in all abbreviations and install them
|
||
in a hash table. */
|
||
|
||
/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
|
||
|
||
static struct abbrev_info *
|
||
abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
|
||
{
|
||
struct abbrev_info *abbrev;
|
||
|
||
abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
|
||
memset (abbrev, 0, sizeof (struct abbrev_info));
|
||
|
||
return abbrev;
|
||
}
|
||
|
||
/* Add an abbreviation to the table. */
|
||
|
||
static void
|
||
abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
|
||
unsigned int abbrev_number,
|
||
struct abbrev_info *abbrev)
|
||
{
|
||
unsigned int hash_number;
|
||
|
||
hash_number = abbrev_number % ABBREV_HASH_SIZE;
|
||
abbrev->next = abbrev_table->abbrevs[hash_number];
|
||
abbrev_table->abbrevs[hash_number] = abbrev;
|
||
}
|
||
|
||
/* Look up an abbrev in the table.
|
||
Returns NULL if the abbrev is not found. */
|
||
|
||
static struct abbrev_info *
|
||
abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
|
||
unsigned int abbrev_number)
|
||
{
|
||
unsigned int hash_number;
|
||
struct abbrev_info *abbrev;
|
||
|
||
hash_number = abbrev_number % ABBREV_HASH_SIZE;
|
||
abbrev = abbrev_table->abbrevs[hash_number];
|
||
|
||
while (abbrev)
|
||
{
|
||
if (abbrev->number == abbrev_number)
|
||
return abbrev;
|
||
abbrev = abbrev->next;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Read in an abbrev table. */
|
||
|
||
static struct abbrev_table *
|
||
abbrev_table_read_table (struct dwarf2_section_info *section,
|
||
sect_offset offset)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
bfd *abfd = get_section_bfd_owner (section);
|
||
struct abbrev_table *abbrev_table;
|
||
const gdb_byte *abbrev_ptr;
|
||
struct abbrev_info *cur_abbrev;
|
||
unsigned int abbrev_number, bytes_read, abbrev_name;
|
||
unsigned int abbrev_form;
|
||
struct attr_abbrev *cur_attrs;
|
||
unsigned int allocated_attrs;
|
||
|
||
abbrev_table = XNEW (struct abbrev_table);
|
||
abbrev_table->offset = offset;
|
||
obstack_init (&abbrev_table->abbrev_obstack);
|
||
abbrev_table->abbrevs =
|
||
XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
|
||
ABBREV_HASH_SIZE);
|
||
memset (abbrev_table->abbrevs, 0,
|
||
ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
|
||
|
||
dwarf2_read_section (objfile, section);
|
||
abbrev_ptr = section->buffer + offset.sect_off;
|
||
abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
|
||
abbrev_ptr += bytes_read;
|
||
|
||
allocated_attrs = ATTR_ALLOC_CHUNK;
|
||
cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
|
||
|
||
/* Loop until we reach an abbrev number of 0. */
|
||
while (abbrev_number)
|
||
{
|
||
cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
|
||
|
||
/* read in abbrev header */
|
||
cur_abbrev->number = abbrev_number;
|
||
cur_abbrev->tag
|
||
= (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
|
||
abbrev_ptr += bytes_read;
|
||
cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
|
||
abbrev_ptr += 1;
|
||
|
||
/* now read in declarations */
|
||
abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
|
||
abbrev_ptr += bytes_read;
|
||
abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
|
||
abbrev_ptr += bytes_read;
|
||
while (abbrev_name)
|
||
{
|
||
if (cur_abbrev->num_attrs == allocated_attrs)
|
||
{
|
||
allocated_attrs += ATTR_ALLOC_CHUNK;
|
||
cur_attrs
|
||
= XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
|
||
}
|
||
|
||
cur_attrs[cur_abbrev->num_attrs].name
|
||
= (enum dwarf_attribute) abbrev_name;
|
||
cur_attrs[cur_abbrev->num_attrs++].form
|
||
= (enum dwarf_form) abbrev_form;
|
||
abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
|
||
abbrev_ptr += bytes_read;
|
||
abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
|
||
abbrev_ptr += bytes_read;
|
||
}
|
||
|
||
cur_abbrev->attrs =
|
||
XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
|
||
cur_abbrev->num_attrs);
|
||
memcpy (cur_abbrev->attrs, cur_attrs,
|
||
cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
|
||
|
||
abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
|
||
|
||
/* Get next abbreviation.
|
||
Under Irix6 the abbreviations for a compilation unit are not
|
||
always properly terminated with an abbrev number of 0.
|
||
Exit loop if we encounter an abbreviation which we have
|
||
already read (which means we are about to read the abbreviations
|
||
for the next compile unit) or if the end of the abbreviation
|
||
table is reached. */
|
||
if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
|
||
break;
|
||
abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
|
||
abbrev_ptr += bytes_read;
|
||
if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
|
||
break;
|
||
}
|
||
|
||
xfree (cur_attrs);
|
||
return abbrev_table;
|
||
}
|
||
|
||
/* Free the resources held by ABBREV_TABLE. */
|
||
|
||
static void
|
||
abbrev_table_free (struct abbrev_table *abbrev_table)
|
||
{
|
||
obstack_free (&abbrev_table->abbrev_obstack, NULL);
|
||
xfree (abbrev_table);
|
||
}
|
||
|
||
/* Same as abbrev_table_free but as a cleanup.
|
||
We pass in a pointer to the pointer to the table so that we can
|
||
set the pointer to NULL when we're done. It also simplifies
|
||
build_type_psymtabs_1. */
|
||
|
||
static void
|
||
abbrev_table_free_cleanup (void *table_ptr)
|
||
{
|
||
struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
|
||
|
||
if (*abbrev_table_ptr != NULL)
|
||
abbrev_table_free (*abbrev_table_ptr);
|
||
*abbrev_table_ptr = NULL;
|
||
}
|
||
|
||
/* Read the abbrev table for CU from ABBREV_SECTION. */
|
||
|
||
static void
|
||
dwarf2_read_abbrevs (struct dwarf2_cu *cu,
|
||
struct dwarf2_section_info *abbrev_section)
|
||
{
|
||
cu->abbrev_table =
|
||
abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
|
||
}
|
||
|
||
/* Release the memory used by the abbrev table for a compilation unit. */
|
||
|
||
static void
|
||
dwarf2_free_abbrev_table (void *ptr_to_cu)
|
||
{
|
||
struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
|
||
|
||
if (cu->abbrev_table != NULL)
|
||
abbrev_table_free (cu->abbrev_table);
|
||
/* Set this to NULL so that we SEGV if we try to read it later,
|
||
and also because free_comp_unit verifies this is NULL. */
|
||
cu->abbrev_table = NULL;
|
||
}
|
||
|
||
/* Returns nonzero if TAG represents a type that we might generate a partial
|
||
symbol for. */
|
||
|
||
static int
|
||
is_type_tag_for_partial (int tag)
|
||
{
|
||
switch (tag)
|
||
{
|
||
#if 0
|
||
/* Some types that would be reasonable to generate partial symbols for,
|
||
that we don't at present. */
|
||
case DW_TAG_array_type:
|
||
case DW_TAG_file_type:
|
||
case DW_TAG_ptr_to_member_type:
|
||
case DW_TAG_set_type:
|
||
case DW_TAG_string_type:
|
||
case DW_TAG_subroutine_type:
|
||
#endif
|
||
case DW_TAG_base_type:
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_enumeration_type:
|
||
case DW_TAG_structure_type:
|
||
case DW_TAG_subrange_type:
|
||
case DW_TAG_typedef:
|
||
case DW_TAG_union_type:
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Load all DIEs that are interesting for partial symbols into memory. */
|
||
|
||
static struct partial_die_info *
|
||
load_partial_dies (const struct die_reader_specs *reader,
|
||
const gdb_byte *info_ptr, int building_psymtab)
|
||
{
|
||
struct dwarf2_cu *cu = reader->cu;
|
||
struct objfile *objfile = cu->objfile;
|
||
struct partial_die_info *part_die;
|
||
struct partial_die_info *parent_die, *last_die, *first_die = NULL;
|
||
struct abbrev_info *abbrev;
|
||
unsigned int bytes_read;
|
||
unsigned int load_all = 0;
|
||
int nesting_level = 1;
|
||
|
||
parent_die = NULL;
|
||
last_die = NULL;
|
||
|
||
gdb_assert (cu->per_cu != NULL);
|
||
if (cu->per_cu->load_all_dies)
|
||
load_all = 1;
|
||
|
||
cu->partial_dies
|
||
= htab_create_alloc_ex (cu->header.length / 12,
|
||
partial_die_hash,
|
||
partial_die_eq,
|
||
NULL,
|
||
&cu->comp_unit_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
|
||
part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
|
||
|
||
while (1)
|
||
{
|
||
abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
|
||
|
||
/* A NULL abbrev means the end of a series of children. */
|
||
if (abbrev == NULL)
|
||
{
|
||
if (--nesting_level == 0)
|
||
{
|
||
/* PART_DIE was probably the last thing allocated on the
|
||
comp_unit_obstack, so we could call obstack_free
|
||
here. We don't do that because the waste is small,
|
||
and will be cleaned up when we're done with this
|
||
compilation unit. This way, we're also more robust
|
||
against other users of the comp_unit_obstack. */
|
||
return first_die;
|
||
}
|
||
info_ptr += bytes_read;
|
||
last_die = parent_die;
|
||
parent_die = parent_die->die_parent;
|
||
continue;
|
||
}
|
||
|
||
/* Check for template arguments. We never save these; if
|
||
they're seen, we just mark the parent, and go on our way. */
|
||
if (parent_die != NULL
|
||
&& cu->language == language_cplus
|
||
&& (abbrev->tag == DW_TAG_template_type_param
|
||
|| abbrev->tag == DW_TAG_template_value_param))
|
||
{
|
||
parent_die->has_template_arguments = 1;
|
||
|
||
if (!load_all)
|
||
{
|
||
/* We don't need a partial DIE for the template argument. */
|
||
info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* We only recurse into c++ subprograms looking for template arguments.
|
||
Skip their other children. */
|
||
if (!load_all
|
||
&& cu->language == language_cplus
|
||
&& parent_die != NULL
|
||
&& parent_die->tag == DW_TAG_subprogram)
|
||
{
|
||
info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
|
||
continue;
|
||
}
|
||
|
||
/* Check whether this DIE is interesting enough to save. Normally
|
||
we would not be interested in members here, but there may be
|
||
later variables referencing them via DW_AT_specification (for
|
||
static members). */
|
||
if (!load_all
|
||
&& !is_type_tag_for_partial (abbrev->tag)
|
||
&& abbrev->tag != DW_TAG_constant
|
||
&& abbrev->tag != DW_TAG_enumerator
|
||
&& abbrev->tag != DW_TAG_subprogram
|
||
&& abbrev->tag != DW_TAG_lexical_block
|
||
&& abbrev->tag != DW_TAG_variable
|
||
&& abbrev->tag != DW_TAG_namespace
|
||
&& abbrev->tag != DW_TAG_module
|
||
&& abbrev->tag != DW_TAG_member
|
||
&& abbrev->tag != DW_TAG_imported_unit
|
||
&& abbrev->tag != DW_TAG_imported_declaration)
|
||
{
|
||
/* Otherwise we skip to the next sibling, if any. */
|
||
info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
|
||
continue;
|
||
}
|
||
|
||
info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
|
||
info_ptr);
|
||
|
||
/* This two-pass algorithm for processing partial symbols has a
|
||
high cost in cache pressure. Thus, handle some simple cases
|
||
here which cover the majority of C partial symbols. DIEs
|
||
which neither have specification tags in them, nor could have
|
||
specification tags elsewhere pointing at them, can simply be
|
||
processed and discarded.
|
||
|
||
This segment is also optional; scan_partial_symbols and
|
||
add_partial_symbol will handle these DIEs if we chain
|
||
them in normally. When compilers which do not emit large
|
||
quantities of duplicate debug information are more common,
|
||
this code can probably be removed. */
|
||
|
||
/* Any complete simple types at the top level (pretty much all
|
||
of them, for a language without namespaces), can be processed
|
||
directly. */
|
||
if (parent_die == NULL
|
||
&& part_die->has_specification == 0
|
||
&& part_die->is_declaration == 0
|
||
&& ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
|
||
|| part_die->tag == DW_TAG_base_type
|
||
|| part_die->tag == DW_TAG_subrange_type))
|
||
{
|
||
if (building_psymtab && part_die->name != NULL)
|
||
add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
|
||
VAR_DOMAIN, LOC_TYPEDEF,
|
||
&objfile->static_psymbols,
|
||
0, cu->language, objfile);
|
||
info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
|
||
continue;
|
||
}
|
||
|
||
/* The exception for DW_TAG_typedef with has_children above is
|
||
a workaround of GCC PR debug/47510. In the case of this complaint
|
||
type_name_no_tag_or_error will error on such types later.
|
||
|
||
GDB skipped children of DW_TAG_typedef by the shortcut above and then
|
||
it could not find the child DIEs referenced later, this is checked
|
||
above. In correct DWARF DW_TAG_typedef should have no children. */
|
||
|
||
if (part_die->tag == DW_TAG_typedef && part_die->has_children)
|
||
complaint (&symfile_complaints,
|
||
_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
|
||
"- DIE at 0x%x [in module %s]"),
|
||
part_die->offset.sect_off, objfile_name (objfile));
|
||
|
||
/* If we're at the second level, and we're an enumerator, and
|
||
our parent has no specification (meaning possibly lives in a
|
||
namespace elsewhere), then we can add the partial symbol now
|
||
instead of queueing it. */
|
||
if (part_die->tag == DW_TAG_enumerator
|
||
&& parent_die != NULL
|
||
&& parent_die->die_parent == NULL
|
||
&& parent_die->tag == DW_TAG_enumeration_type
|
||
&& parent_die->has_specification == 0)
|
||
{
|
||
if (part_die->name == NULL)
|
||
complaint (&symfile_complaints,
|
||
_("malformed enumerator DIE ignored"));
|
||
else if (building_psymtab)
|
||
add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
|
||
VAR_DOMAIN, LOC_CONST,
|
||
(cu->language == language_cplus
|
||
|| cu->language == language_java)
|
||
? &objfile->global_psymbols
|
||
: &objfile->static_psymbols,
|
||
0, cu->language, objfile);
|
||
|
||
info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
|
||
continue;
|
||
}
|
||
|
||
/* We'll save this DIE so link it in. */
|
||
part_die->die_parent = parent_die;
|
||
part_die->die_sibling = NULL;
|
||
part_die->die_child = NULL;
|
||
|
||
if (last_die && last_die == parent_die)
|
||
last_die->die_child = part_die;
|
||
else if (last_die)
|
||
last_die->die_sibling = part_die;
|
||
|
||
last_die = part_die;
|
||
|
||
if (first_die == NULL)
|
||
first_die = part_die;
|
||
|
||
/* Maybe add the DIE to the hash table. Not all DIEs that we
|
||
find interesting need to be in the hash table, because we
|
||
also have the parent/sibling/child chains; only those that we
|
||
might refer to by offset later during partial symbol reading.
|
||
|
||
For now this means things that might have be the target of a
|
||
DW_AT_specification, DW_AT_abstract_origin, or
|
||
DW_AT_extension. DW_AT_extension will refer only to
|
||
namespaces; DW_AT_abstract_origin refers to functions (and
|
||
many things under the function DIE, but we do not recurse
|
||
into function DIEs during partial symbol reading) and
|
||
possibly variables as well; DW_AT_specification refers to
|
||
declarations. Declarations ought to have the DW_AT_declaration
|
||
flag. It happens that GCC forgets to put it in sometimes, but
|
||
only for functions, not for types.
|
||
|
||
Adding more things than necessary to the hash table is harmless
|
||
except for the performance cost. Adding too few will result in
|
||
wasted time in find_partial_die, when we reread the compilation
|
||
unit with load_all_dies set. */
|
||
|
||
if (load_all
|
||
|| abbrev->tag == DW_TAG_constant
|
||
|| abbrev->tag == DW_TAG_subprogram
|
||
|| abbrev->tag == DW_TAG_variable
|
||
|| abbrev->tag == DW_TAG_namespace
|
||
|| part_die->is_declaration)
|
||
{
|
||
void **slot;
|
||
|
||
slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
|
||
part_die->offset.sect_off, INSERT);
|
||
*slot = part_die;
|
||
}
|
||
|
||
part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
|
||
|
||
/* For some DIEs we want to follow their children (if any). For C
|
||
we have no reason to follow the children of structures; for other
|
||
languages we have to, so that we can get at method physnames
|
||
to infer fully qualified class names, for DW_AT_specification,
|
||
and for C++ template arguments. For C++, we also look one level
|
||
inside functions to find template arguments (if the name of the
|
||
function does not already contain the template arguments).
|
||
|
||
For Ada, we need to scan the children of subprograms and lexical
|
||
blocks as well because Ada allows the definition of nested
|
||
entities that could be interesting for the debugger, such as
|
||
nested subprograms for instance. */
|
||
if (last_die->has_children
|
||
&& (load_all
|
||
|| last_die->tag == DW_TAG_namespace
|
||
|| last_die->tag == DW_TAG_module
|
||
|| last_die->tag == DW_TAG_enumeration_type
|
||
|| (cu->language == language_cplus
|
||
&& last_die->tag == DW_TAG_subprogram
|
||
&& (last_die->name == NULL
|
||
|| strchr (last_die->name, '<') == NULL))
|
||
|| (cu->language != language_c
|
||
&& (last_die->tag == DW_TAG_class_type
|
||
|| last_die->tag == DW_TAG_interface_type
|
||
|| last_die->tag == DW_TAG_structure_type
|
||
|| last_die->tag == DW_TAG_union_type))
|
||
|| (cu->language == language_ada
|
||
&& (last_die->tag == DW_TAG_subprogram
|
||
|| last_die->tag == DW_TAG_lexical_block))))
|
||
{
|
||
nesting_level++;
|
||
parent_die = last_die;
|
||
continue;
|
||
}
|
||
|
||
/* Otherwise we skip to the next sibling, if any. */
|
||
info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
|
||
|
||
/* Back to the top, do it again. */
|
||
}
|
||
}
|
||
|
||
/* Read a minimal amount of information into the minimal die structure. */
|
||
|
||
static const gdb_byte *
|
||
read_partial_die (const struct die_reader_specs *reader,
|
||
struct partial_die_info *part_die,
|
||
struct abbrev_info *abbrev, unsigned int abbrev_len,
|
||
const gdb_byte *info_ptr)
|
||
{
|
||
struct dwarf2_cu *cu = reader->cu;
|
||
struct objfile *objfile = cu->objfile;
|
||
const gdb_byte *buffer = reader->buffer;
|
||
unsigned int i;
|
||
struct attribute attr;
|
||
int has_low_pc_attr = 0;
|
||
int has_high_pc_attr = 0;
|
||
int high_pc_relative = 0;
|
||
|
||
memset (part_die, 0, sizeof (struct partial_die_info));
|
||
|
||
part_die->offset.sect_off = info_ptr - buffer;
|
||
|
||
info_ptr += abbrev_len;
|
||
|
||
if (abbrev == NULL)
|
||
return info_ptr;
|
||
|
||
part_die->tag = abbrev->tag;
|
||
part_die->has_children = abbrev->has_children;
|
||
|
||
for (i = 0; i < abbrev->num_attrs; ++i)
|
||
{
|
||
info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
|
||
|
||
/* Store the data if it is of an attribute we want to keep in a
|
||
partial symbol table. */
|
||
switch (attr.name)
|
||
{
|
||
case DW_AT_name:
|
||
switch (part_die->tag)
|
||
{
|
||
case DW_TAG_compile_unit:
|
||
case DW_TAG_partial_unit:
|
||
case DW_TAG_type_unit:
|
||
/* Compilation units have a DW_AT_name that is a filename, not
|
||
a source language identifier. */
|
||
case DW_TAG_enumeration_type:
|
||
case DW_TAG_enumerator:
|
||
/* These tags always have simple identifiers already; no need
|
||
to canonicalize them. */
|
||
part_die->name = DW_STRING (&attr);
|
||
break;
|
||
default:
|
||
part_die->name
|
||
= dwarf2_canonicalize_name (DW_STRING (&attr), cu,
|
||
&objfile->per_bfd->storage_obstack);
|
||
break;
|
||
}
|
||
break;
|
||
case DW_AT_linkage_name:
|
||
case DW_AT_MIPS_linkage_name:
|
||
/* Note that both forms of linkage name might appear. We
|
||
assume they will be the same, and we only store the last
|
||
one we see. */
|
||
if (cu->language == language_ada)
|
||
part_die->name = DW_STRING (&attr);
|
||
part_die->linkage_name = DW_STRING (&attr);
|
||
break;
|
||
case DW_AT_low_pc:
|
||
has_low_pc_attr = 1;
|
||
part_die->lowpc = attr_value_as_address (&attr);
|
||
break;
|
||
case DW_AT_high_pc:
|
||
has_high_pc_attr = 1;
|
||
part_die->highpc = attr_value_as_address (&attr);
|
||
if (cu->header.version >= 4 && attr_form_is_constant (&attr))
|
||
high_pc_relative = 1;
|
||
break;
|
||
case DW_AT_location:
|
||
/* Support the .debug_loc offsets. */
|
||
if (attr_form_is_block (&attr))
|
||
{
|
||
part_die->d.locdesc = DW_BLOCK (&attr);
|
||
}
|
||
else if (attr_form_is_section_offset (&attr))
|
||
{
|
||
dwarf2_complex_location_expr_complaint ();
|
||
}
|
||
else
|
||
{
|
||
dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
|
||
"partial symbol information");
|
||
}
|
||
break;
|
||
case DW_AT_external:
|
||
part_die->is_external = DW_UNSND (&attr);
|
||
break;
|
||
case DW_AT_declaration:
|
||
part_die->is_declaration = DW_UNSND (&attr);
|
||
break;
|
||
case DW_AT_type:
|
||
part_die->has_type = 1;
|
||
break;
|
||
case DW_AT_abstract_origin:
|
||
case DW_AT_specification:
|
||
case DW_AT_extension:
|
||
part_die->has_specification = 1;
|
||
part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
|
||
part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
|
||
|| cu->per_cu->is_dwz);
|
||
break;
|
||
case DW_AT_sibling:
|
||
/* Ignore absolute siblings, they might point outside of
|
||
the current compile unit. */
|
||
if (attr.form == DW_FORM_ref_addr)
|
||
complaint (&symfile_complaints,
|
||
_("ignoring absolute DW_AT_sibling"));
|
||
else
|
||
{
|
||
unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
|
||
const gdb_byte *sibling_ptr = buffer + off;
|
||
|
||
if (sibling_ptr < info_ptr)
|
||
complaint (&symfile_complaints,
|
||
_("DW_AT_sibling points backwards"));
|
||
else if (sibling_ptr > reader->buffer_end)
|
||
dwarf2_section_buffer_overflow_complaint (reader->die_section);
|
||
else
|
||
part_die->sibling = sibling_ptr;
|
||
}
|
||
break;
|
||
case DW_AT_byte_size:
|
||
part_die->has_byte_size = 1;
|
||
break;
|
||
case DW_AT_const_value:
|
||
part_die->has_const_value = 1;
|
||
break;
|
||
case DW_AT_calling_convention:
|
||
/* DWARF doesn't provide a way to identify a program's source-level
|
||
entry point. DW_AT_calling_convention attributes are only meant
|
||
to describe functions' calling conventions.
|
||
|
||
However, because it's a necessary piece of information in
|
||
Fortran, and because DW_CC_program is the only piece of debugging
|
||
information whose definition refers to a 'main program' at all,
|
||
several compilers have begun marking Fortran main programs with
|
||
DW_CC_program --- even when those functions use the standard
|
||
calling conventions.
|
||
|
||
So until DWARF specifies a way to provide this information and
|
||
compilers pick up the new representation, we'll support this
|
||
practice. */
|
||
if (DW_UNSND (&attr) == DW_CC_program
|
||
&& cu->language == language_fortran
|
||
&& part_die->name != NULL)
|
||
set_objfile_main_name (objfile, part_die->name, language_fortran);
|
||
break;
|
||
case DW_AT_inline:
|
||
if (DW_UNSND (&attr) == DW_INL_inlined
|
||
|| DW_UNSND (&attr) == DW_INL_declared_inlined)
|
||
part_die->may_be_inlined = 1;
|
||
break;
|
||
|
||
case DW_AT_import:
|
||
if (part_die->tag == DW_TAG_imported_unit)
|
||
{
|
||
part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
|
||
part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
|
||
|| cu->per_cu->is_dwz);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (high_pc_relative)
|
||
part_die->highpc += part_die->lowpc;
|
||
|
||
if (has_low_pc_attr && has_high_pc_attr)
|
||
{
|
||
/* When using the GNU linker, .gnu.linkonce. sections are used to
|
||
eliminate duplicate copies of functions and vtables and such.
|
||
The linker will arbitrarily choose one and discard the others.
|
||
The AT_*_pc values for such functions refer to local labels in
|
||
these sections. If the section from that file was discarded, the
|
||
labels are not in the output, so the relocs get a value of 0.
|
||
If this is a discarded function, mark the pc bounds as invalid,
|
||
so that GDB will ignore it. */
|
||
if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
|
||
{
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
|
||
complaint (&symfile_complaints,
|
||
_("DW_AT_low_pc %s is zero "
|
||
"for DIE at 0x%x [in module %s]"),
|
||
paddress (gdbarch, part_die->lowpc),
|
||
part_die->offset.sect_off, objfile_name (objfile));
|
||
}
|
||
/* dwarf2_get_pc_bounds has also the strict low < high requirement. */
|
||
else if (part_die->lowpc >= part_die->highpc)
|
||
{
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
|
||
complaint (&symfile_complaints,
|
||
_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
|
||
"for DIE at 0x%x [in module %s]"),
|
||
paddress (gdbarch, part_die->lowpc),
|
||
paddress (gdbarch, part_die->highpc),
|
||
part_die->offset.sect_off, objfile_name (objfile));
|
||
}
|
||
else
|
||
part_die->has_pc_info = 1;
|
||
}
|
||
|
||
return info_ptr;
|
||
}
|
||
|
||
/* Find a cached partial DIE at OFFSET in CU. */
|
||
|
||
static struct partial_die_info *
|
||
find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
|
||
{
|
||
struct partial_die_info *lookup_die = NULL;
|
||
struct partial_die_info part_die;
|
||
|
||
part_die.offset = offset;
|
||
lookup_die = ((struct partial_die_info *)
|
||
htab_find_with_hash (cu->partial_dies, &part_die,
|
||
offset.sect_off));
|
||
|
||
return lookup_die;
|
||
}
|
||
|
||
/* Find a partial DIE at OFFSET, which may or may not be in CU,
|
||
except in the case of .debug_types DIEs which do not reference
|
||
outside their CU (they do however referencing other types via
|
||
DW_FORM_ref_sig8). */
|
||
|
||
static struct partial_die_info *
|
||
find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct dwarf2_per_cu_data *per_cu = NULL;
|
||
struct partial_die_info *pd = NULL;
|
||
|
||
if (offset_in_dwz == cu->per_cu->is_dwz
|
||
&& offset_in_cu_p (&cu->header, offset))
|
||
{
|
||
pd = find_partial_die_in_comp_unit (offset, cu);
|
||
if (pd != NULL)
|
||
return pd;
|
||
/* We missed recording what we needed.
|
||
Load all dies and try again. */
|
||
per_cu = cu->per_cu;
|
||
}
|
||
else
|
||
{
|
||
/* TUs don't reference other CUs/TUs (except via type signatures). */
|
||
if (cu->per_cu->is_debug_types)
|
||
{
|
||
error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
|
||
" external reference to offset 0x%lx [in module %s].\n"),
|
||
(long) cu->header.offset.sect_off, (long) offset.sect_off,
|
||
bfd_get_filename (objfile->obfd));
|
||
}
|
||
per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
|
||
objfile);
|
||
|
||
if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
|
||
load_partial_comp_unit (per_cu);
|
||
|
||
per_cu->cu->last_used = 0;
|
||
pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
|
||
}
|
||
|
||
/* If we didn't find it, and not all dies have been loaded,
|
||
load them all and try again. */
|
||
|
||
if (pd == NULL && per_cu->load_all_dies == 0)
|
||
{
|
||
per_cu->load_all_dies = 1;
|
||
|
||
/* This is nasty. When we reread the DIEs, somewhere up the call chain
|
||
THIS_CU->cu may already be in use. So we can't just free it and
|
||
replace its DIEs with the ones we read in. Instead, we leave those
|
||
DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
|
||
and clobber THIS_CU->cu->partial_dies with the hash table for the new
|
||
set. */
|
||
load_partial_comp_unit (per_cu);
|
||
|
||
pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
|
||
}
|
||
|
||
if (pd == NULL)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("could not find partial DIE 0x%x "
|
||
"in cache [from module %s]\n"),
|
||
offset.sect_off, bfd_get_filename (objfile->obfd));
|
||
return pd;
|
||
}
|
||
|
||
/* See if we can figure out if the class lives in a namespace. We do
|
||
this by looking for a member function; its demangled name will
|
||
contain namespace info, if there is any. */
|
||
|
||
static void
|
||
guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
/* NOTE: carlton/2003-10-07: Getting the info this way changes
|
||
what template types look like, because the demangler
|
||
frequently doesn't give the same name as the debug info. We
|
||
could fix this by only using the demangled name to get the
|
||
prefix (but see comment in read_structure_type). */
|
||
|
||
struct partial_die_info *real_pdi;
|
||
struct partial_die_info *child_pdi;
|
||
|
||
/* If this DIE (this DIE's specification, if any) has a parent, then
|
||
we should not do this. We'll prepend the parent's fully qualified
|
||
name when we create the partial symbol. */
|
||
|
||
real_pdi = struct_pdi;
|
||
while (real_pdi->has_specification)
|
||
real_pdi = find_partial_die (real_pdi->spec_offset,
|
||
real_pdi->spec_is_dwz, cu);
|
||
|
||
if (real_pdi->die_parent != NULL)
|
||
return;
|
||
|
||
for (child_pdi = struct_pdi->die_child;
|
||
child_pdi != NULL;
|
||
child_pdi = child_pdi->die_sibling)
|
||
{
|
||
if (child_pdi->tag == DW_TAG_subprogram
|
||
&& child_pdi->linkage_name != NULL)
|
||
{
|
||
char *actual_class_name
|
||
= language_class_name_from_physname (cu->language_defn,
|
||
child_pdi->linkage_name);
|
||
if (actual_class_name != NULL)
|
||
{
|
||
struct_pdi->name
|
||
= ((const char *)
|
||
obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
|
||
actual_class_name,
|
||
strlen (actual_class_name)));
|
||
xfree (actual_class_name);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Adjust PART_DIE before generating a symbol for it. This function
|
||
may set the is_external flag or change the DIE's name. */
|
||
|
||
static void
|
||
fixup_partial_die (struct partial_die_info *part_die,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
/* Once we've fixed up a die, there's no point in doing so again.
|
||
This also avoids a memory leak if we were to call
|
||
guess_partial_die_structure_name multiple times. */
|
||
if (part_die->fixup_called)
|
||
return;
|
||
|
||
/* If we found a reference attribute and the DIE has no name, try
|
||
to find a name in the referred to DIE. */
|
||
|
||
if (part_die->name == NULL && part_die->has_specification)
|
||
{
|
||
struct partial_die_info *spec_die;
|
||
|
||
spec_die = find_partial_die (part_die->spec_offset,
|
||
part_die->spec_is_dwz, cu);
|
||
|
||
fixup_partial_die (spec_die, cu);
|
||
|
||
if (spec_die->name)
|
||
{
|
||
part_die->name = spec_die->name;
|
||
|
||
/* Copy DW_AT_external attribute if it is set. */
|
||
if (spec_die->is_external)
|
||
part_die->is_external = spec_die->is_external;
|
||
}
|
||
}
|
||
|
||
/* Set default names for some unnamed DIEs. */
|
||
|
||
if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
|
||
part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
|
||
|
||
/* If there is no parent die to provide a namespace, and there are
|
||
children, see if we can determine the namespace from their linkage
|
||
name. */
|
||
if (cu->language == language_cplus
|
||
&& !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
|
||
&& part_die->die_parent == NULL
|
||
&& part_die->has_children
|
||
&& (part_die->tag == DW_TAG_class_type
|
||
|| part_die->tag == DW_TAG_structure_type
|
||
|| part_die->tag == DW_TAG_union_type))
|
||
guess_partial_die_structure_name (part_die, cu);
|
||
|
||
/* GCC might emit a nameless struct or union that has a linkage
|
||
name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
|
||
if (part_die->name == NULL
|
||
&& (part_die->tag == DW_TAG_class_type
|
||
|| part_die->tag == DW_TAG_interface_type
|
||
|| part_die->tag == DW_TAG_structure_type
|
||
|| part_die->tag == DW_TAG_union_type)
|
||
&& part_die->linkage_name != NULL)
|
||
{
|
||
char *demangled;
|
||
|
||
demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
|
||
if (demangled)
|
||
{
|
||
const char *base;
|
||
|
||
/* Strip any leading namespaces/classes, keep only the base name.
|
||
DW_AT_name for named DIEs does not contain the prefixes. */
|
||
base = strrchr (demangled, ':');
|
||
if (base && base > demangled && base[-1] == ':')
|
||
base++;
|
||
else
|
||
base = demangled;
|
||
|
||
part_die->name
|
||
= ((const char *)
|
||
obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
|
||
base, strlen (base)));
|
||
xfree (demangled);
|
||
}
|
||
}
|
||
|
||
part_die->fixup_called = 1;
|
||
}
|
||
|
||
/* Read an attribute value described by an attribute form. */
|
||
|
||
static const gdb_byte *
|
||
read_attribute_value (const struct die_reader_specs *reader,
|
||
struct attribute *attr, unsigned form,
|
||
const gdb_byte *info_ptr)
|
||
{
|
||
struct dwarf2_cu *cu = reader->cu;
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
bfd *abfd = reader->abfd;
|
||
struct comp_unit_head *cu_header = &cu->header;
|
||
unsigned int bytes_read;
|
||
struct dwarf_block *blk;
|
||
|
||
attr->form = (enum dwarf_form) form;
|
||
switch (form)
|
||
{
|
||
case DW_FORM_ref_addr:
|
||
if (cu->header.version == 2)
|
||
DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
|
||
else
|
||
DW_UNSND (attr) = read_offset (abfd, info_ptr,
|
||
&cu->header, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_GNU_ref_alt:
|
||
DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_addr:
|
||
DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
|
||
DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_block2:
|
||
blk = dwarf_alloc_block (cu);
|
||
blk->size = read_2_bytes (abfd, info_ptr);
|
||
info_ptr += 2;
|
||
blk->data = read_n_bytes (abfd, info_ptr, blk->size);
|
||
info_ptr += blk->size;
|
||
DW_BLOCK (attr) = blk;
|
||
break;
|
||
case DW_FORM_block4:
|
||
blk = dwarf_alloc_block (cu);
|
||
blk->size = read_4_bytes (abfd, info_ptr);
|
||
info_ptr += 4;
|
||
blk->data = read_n_bytes (abfd, info_ptr, blk->size);
|
||
info_ptr += blk->size;
|
||
DW_BLOCK (attr) = blk;
|
||
break;
|
||
case DW_FORM_data2:
|
||
DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
|
||
info_ptr += 2;
|
||
break;
|
||
case DW_FORM_data4:
|
||
DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
|
||
info_ptr += 4;
|
||
break;
|
||
case DW_FORM_data8:
|
||
DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
|
||
info_ptr += 8;
|
||
break;
|
||
case DW_FORM_sec_offset:
|
||
DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_string:
|
||
DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
|
||
DW_STRING_IS_CANONICAL (attr) = 0;
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_strp:
|
||
if (!cu->per_cu->is_dwz)
|
||
{
|
||
DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
|
||
&bytes_read);
|
||
DW_STRING_IS_CANONICAL (attr) = 0;
|
||
info_ptr += bytes_read;
|
||
break;
|
||
}
|
||
/* FALLTHROUGH */
|
||
case DW_FORM_GNU_strp_alt:
|
||
{
|
||
struct dwz_file *dwz = dwarf2_get_dwz_file ();
|
||
LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
|
||
&bytes_read);
|
||
|
||
DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
|
||
DW_STRING_IS_CANONICAL (attr) = 0;
|
||
info_ptr += bytes_read;
|
||
}
|
||
break;
|
||
case DW_FORM_exprloc:
|
||
case DW_FORM_block:
|
||
blk = dwarf_alloc_block (cu);
|
||
blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
blk->data = read_n_bytes (abfd, info_ptr, blk->size);
|
||
info_ptr += blk->size;
|
||
DW_BLOCK (attr) = blk;
|
||
break;
|
||
case DW_FORM_block1:
|
||
blk = dwarf_alloc_block (cu);
|
||
blk->size = read_1_byte (abfd, info_ptr);
|
||
info_ptr += 1;
|
||
blk->data = read_n_bytes (abfd, info_ptr, blk->size);
|
||
info_ptr += blk->size;
|
||
DW_BLOCK (attr) = blk;
|
||
break;
|
||
case DW_FORM_data1:
|
||
DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
|
||
info_ptr += 1;
|
||
break;
|
||
case DW_FORM_flag:
|
||
DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
|
||
info_ptr += 1;
|
||
break;
|
||
case DW_FORM_flag_present:
|
||
DW_UNSND (attr) = 1;
|
||
break;
|
||
case DW_FORM_sdata:
|
||
DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_udata:
|
||
DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_ref1:
|
||
DW_UNSND (attr) = (cu->header.offset.sect_off
|
||
+ read_1_byte (abfd, info_ptr));
|
||
info_ptr += 1;
|
||
break;
|
||
case DW_FORM_ref2:
|
||
DW_UNSND (attr) = (cu->header.offset.sect_off
|
||
+ read_2_bytes (abfd, info_ptr));
|
||
info_ptr += 2;
|
||
break;
|
||
case DW_FORM_ref4:
|
||
DW_UNSND (attr) = (cu->header.offset.sect_off
|
||
+ read_4_bytes (abfd, info_ptr));
|
||
info_ptr += 4;
|
||
break;
|
||
case DW_FORM_ref8:
|
||
DW_UNSND (attr) = (cu->header.offset.sect_off
|
||
+ read_8_bytes (abfd, info_ptr));
|
||
info_ptr += 8;
|
||
break;
|
||
case DW_FORM_ref_sig8:
|
||
DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
|
||
info_ptr += 8;
|
||
break;
|
||
case DW_FORM_ref_udata:
|
||
DW_UNSND (attr) = (cu->header.offset.sect_off
|
||
+ read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_indirect:
|
||
form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
info_ptr = read_attribute_value (reader, attr, form, info_ptr);
|
||
break;
|
||
case DW_FORM_GNU_addr_index:
|
||
if (reader->dwo_file == NULL)
|
||
{
|
||
/* For now flag a hard error.
|
||
Later we can turn this into a complaint. */
|
||
error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
|
||
dwarf_form_name (form),
|
||
bfd_get_filename (abfd));
|
||
}
|
||
DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
|
||
info_ptr += bytes_read;
|
||
break;
|
||
case DW_FORM_GNU_str_index:
|
||
if (reader->dwo_file == NULL)
|
||
{
|
||
/* For now flag a hard error.
|
||
Later we can turn this into a complaint if warranted. */
|
||
error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
|
||
dwarf_form_name (form),
|
||
bfd_get_filename (abfd));
|
||
}
|
||
{
|
||
ULONGEST str_index =
|
||
read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
|
||
|
||
DW_STRING (attr) = read_str_index (reader, str_index);
|
||
DW_STRING_IS_CANONICAL (attr) = 0;
|
||
info_ptr += bytes_read;
|
||
}
|
||
break;
|
||
default:
|
||
error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
|
||
dwarf_form_name (form),
|
||
bfd_get_filename (abfd));
|
||
}
|
||
|
||
/* Super hack. */
|
||
if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
|
||
attr->form = DW_FORM_GNU_ref_alt;
|
||
|
||
/* We have seen instances where the compiler tried to emit a byte
|
||
size attribute of -1 which ended up being encoded as an unsigned
|
||
0xffffffff. Although 0xffffffff is technically a valid size value,
|
||
an object of this size seems pretty unlikely so we can relatively
|
||
safely treat these cases as if the size attribute was invalid and
|
||
treat them as zero by default. */
|
||
if (attr->name == DW_AT_byte_size
|
||
&& form == DW_FORM_data4
|
||
&& DW_UNSND (attr) >= 0xffffffff)
|
||
{
|
||
complaint
|
||
(&symfile_complaints,
|
||
_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
|
||
hex_string (DW_UNSND (attr)));
|
||
DW_UNSND (attr) = 0;
|
||
}
|
||
|
||
return info_ptr;
|
||
}
|
||
|
||
/* Read an attribute described by an abbreviated attribute. */
|
||
|
||
static const gdb_byte *
|
||
read_attribute (const struct die_reader_specs *reader,
|
||
struct attribute *attr, struct attr_abbrev *abbrev,
|
||
const gdb_byte *info_ptr)
|
||
{
|
||
attr->name = abbrev->name;
|
||
return read_attribute_value (reader, attr, abbrev->form, info_ptr);
|
||
}
|
||
|
||
/* Read dwarf information from a buffer. */
|
||
|
||
static unsigned int
|
||
read_1_byte (bfd *abfd, const gdb_byte *buf)
|
||
{
|
||
return bfd_get_8 (abfd, buf);
|
||
}
|
||
|
||
static int
|
||
read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
|
||
{
|
||
return bfd_get_signed_8 (abfd, buf);
|
||
}
|
||
|
||
static unsigned int
|
||
read_2_bytes (bfd *abfd, const gdb_byte *buf)
|
||
{
|
||
return bfd_get_16 (abfd, buf);
|
||
}
|
||
|
||
static int
|
||
read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
|
||
{
|
||
return bfd_get_signed_16 (abfd, buf);
|
||
}
|
||
|
||
static unsigned int
|
||
read_4_bytes (bfd *abfd, const gdb_byte *buf)
|
||
{
|
||
return bfd_get_32 (abfd, buf);
|
||
}
|
||
|
||
static int
|
||
read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
|
||
{
|
||
return bfd_get_signed_32 (abfd, buf);
|
||
}
|
||
|
||
static ULONGEST
|
||
read_8_bytes (bfd *abfd, const gdb_byte *buf)
|
||
{
|
||
return bfd_get_64 (abfd, buf);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
|
||
unsigned int *bytes_read)
|
||
{
|
||
struct comp_unit_head *cu_header = &cu->header;
|
||
CORE_ADDR retval = 0;
|
||
|
||
if (cu_header->signed_addr_p)
|
||
{
|
||
switch (cu_header->addr_size)
|
||
{
|
||
case 2:
|
||
retval = bfd_get_signed_16 (abfd, buf);
|
||
break;
|
||
case 4:
|
||
retval = bfd_get_signed_32 (abfd, buf);
|
||
break;
|
||
case 8:
|
||
retval = bfd_get_signed_64 (abfd, buf);
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("read_address: bad switch, signed [in module %s]"),
|
||
bfd_get_filename (abfd));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
switch (cu_header->addr_size)
|
||
{
|
||
case 2:
|
||
retval = bfd_get_16 (abfd, buf);
|
||
break;
|
||
case 4:
|
||
retval = bfd_get_32 (abfd, buf);
|
||
break;
|
||
case 8:
|
||
retval = bfd_get_64 (abfd, buf);
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("read_address: bad switch, "
|
||
"unsigned [in module %s]"),
|
||
bfd_get_filename (abfd));
|
||
}
|
||
}
|
||
|
||
*bytes_read = cu_header->addr_size;
|
||
return retval;
|
||
}
|
||
|
||
/* Read the initial length from a section. The (draft) DWARF 3
|
||
specification allows the initial length to take up either 4 bytes
|
||
or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
|
||
bytes describe the length and all offsets will be 8 bytes in length
|
||
instead of 4.
|
||
|
||
An older, non-standard 64-bit format is also handled by this
|
||
function. The older format in question stores the initial length
|
||
as an 8-byte quantity without an escape value. Lengths greater
|
||
than 2^32 aren't very common which means that the initial 4 bytes
|
||
is almost always zero. Since a length value of zero doesn't make
|
||
sense for the 32-bit format, this initial zero can be considered to
|
||
be an escape value which indicates the presence of the older 64-bit
|
||
format. As written, the code can't detect (old format) lengths
|
||
greater than 4GB. If it becomes necessary to handle lengths
|
||
somewhat larger than 4GB, we could allow other small values (such
|
||
as the non-sensical values of 1, 2, and 3) to also be used as
|
||
escape values indicating the presence of the old format.
|
||
|
||
The value returned via bytes_read should be used to increment the
|
||
relevant pointer after calling read_initial_length().
|
||
|
||
[ Note: read_initial_length() and read_offset() are based on the
|
||
document entitled "DWARF Debugging Information Format", revision
|
||
3, draft 8, dated November 19, 2001. This document was obtained
|
||
from:
|
||
|
||
http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
|
||
|
||
This document is only a draft and is subject to change. (So beware.)
|
||
|
||
Details regarding the older, non-standard 64-bit format were
|
||
determined empirically by examining 64-bit ELF files produced by
|
||
the SGI toolchain on an IRIX 6.5 machine.
|
||
|
||
- Kevin, July 16, 2002
|
||
] */
|
||
|
||
static LONGEST
|
||
read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
|
||
{
|
||
LONGEST length = bfd_get_32 (abfd, buf);
|
||
|
||
if (length == 0xffffffff)
|
||
{
|
||
length = bfd_get_64 (abfd, buf + 4);
|
||
*bytes_read = 12;
|
||
}
|
||
else if (length == 0)
|
||
{
|
||
/* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
|
||
length = bfd_get_64 (abfd, buf);
|
||
*bytes_read = 8;
|
||
}
|
||
else
|
||
{
|
||
*bytes_read = 4;
|
||
}
|
||
|
||
return length;
|
||
}
|
||
|
||
/* Cover function for read_initial_length.
|
||
Returns the length of the object at BUF, and stores the size of the
|
||
initial length in *BYTES_READ and stores the size that offsets will be in
|
||
*OFFSET_SIZE.
|
||
If the initial length size is not equivalent to that specified in
|
||
CU_HEADER then issue a complaint.
|
||
This is useful when reading non-comp-unit headers. */
|
||
|
||
static LONGEST
|
||
read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
|
||
const struct comp_unit_head *cu_header,
|
||
unsigned int *bytes_read,
|
||
unsigned int *offset_size)
|
||
{
|
||
LONGEST length = read_initial_length (abfd, buf, bytes_read);
|
||
|
||
gdb_assert (cu_header->initial_length_size == 4
|
||
|| cu_header->initial_length_size == 8
|
||
|| cu_header->initial_length_size == 12);
|
||
|
||
if (cu_header->initial_length_size != *bytes_read)
|
||
complaint (&symfile_complaints,
|
||
_("intermixed 32-bit and 64-bit DWARF sections"));
|
||
|
||
*offset_size = (*bytes_read == 4) ? 4 : 8;
|
||
return length;
|
||
}
|
||
|
||
/* Read an offset from the data stream. The size of the offset is
|
||
given by cu_header->offset_size. */
|
||
|
||
static LONGEST
|
||
read_offset (bfd *abfd, const gdb_byte *buf,
|
||
const struct comp_unit_head *cu_header,
|
||
unsigned int *bytes_read)
|
||
{
|
||
LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
|
||
|
||
*bytes_read = cu_header->offset_size;
|
||
return offset;
|
||
}
|
||
|
||
/* Read an offset from the data stream. */
|
||
|
||
static LONGEST
|
||
read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
|
||
{
|
||
LONGEST retval = 0;
|
||
|
||
switch (offset_size)
|
||
{
|
||
case 4:
|
||
retval = bfd_get_32 (abfd, buf);
|
||
break;
|
||
case 8:
|
||
retval = bfd_get_64 (abfd, buf);
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("read_offset_1: bad switch [in module %s]"),
|
||
bfd_get_filename (abfd));
|
||
}
|
||
|
||
return retval;
|
||
}
|
||
|
||
static const gdb_byte *
|
||
read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
|
||
{
|
||
/* If the size of a host char is 8 bits, we can return a pointer
|
||
to the buffer, otherwise we have to copy the data to a buffer
|
||
allocated on the temporary obstack. */
|
||
gdb_assert (HOST_CHAR_BIT == 8);
|
||
return buf;
|
||
}
|
||
|
||
static const char *
|
||
read_direct_string (bfd *abfd, const gdb_byte *buf,
|
||
unsigned int *bytes_read_ptr)
|
||
{
|
||
/* If the size of a host char is 8 bits, we can return a pointer
|
||
to the string, otherwise we have to copy the string to a buffer
|
||
allocated on the temporary obstack. */
|
||
gdb_assert (HOST_CHAR_BIT == 8);
|
||
if (*buf == '\0')
|
||
{
|
||
*bytes_read_ptr = 1;
|
||
return NULL;
|
||
}
|
||
*bytes_read_ptr = strlen ((const char *) buf) + 1;
|
||
return (const char *) buf;
|
||
}
|
||
|
||
static const char *
|
||
read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
|
||
{
|
||
dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
|
||
if (dwarf2_per_objfile->str.buffer == NULL)
|
||
error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
|
||
bfd_get_filename (abfd));
|
||
if (str_offset >= dwarf2_per_objfile->str.size)
|
||
error (_("DW_FORM_strp pointing outside of "
|
||
".debug_str section [in module %s]"),
|
||
bfd_get_filename (abfd));
|
||
gdb_assert (HOST_CHAR_BIT == 8);
|
||
if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
|
||
return NULL;
|
||
return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
|
||
}
|
||
|
||
/* Read a string at offset STR_OFFSET in the .debug_str section from
|
||
the .dwz file DWZ. Throw an error if the offset is too large. If
|
||
the string consists of a single NUL byte, return NULL; otherwise
|
||
return a pointer to the string. */
|
||
|
||
static const char *
|
||
read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
|
||
{
|
||
dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
|
||
|
||
if (dwz->str.buffer == NULL)
|
||
error (_("DW_FORM_GNU_strp_alt used without .debug_str "
|
||
"section [in module %s]"),
|
||
bfd_get_filename (dwz->dwz_bfd));
|
||
if (str_offset >= dwz->str.size)
|
||
error (_("DW_FORM_GNU_strp_alt pointing outside of "
|
||
".debug_str section [in module %s]"),
|
||
bfd_get_filename (dwz->dwz_bfd));
|
||
gdb_assert (HOST_CHAR_BIT == 8);
|
||
if (dwz->str.buffer[str_offset] == '\0')
|
||
return NULL;
|
||
return (const char *) (dwz->str.buffer + str_offset);
|
||
}
|
||
|
||
static const char *
|
||
read_indirect_string (bfd *abfd, const gdb_byte *buf,
|
||
const struct comp_unit_head *cu_header,
|
||
unsigned int *bytes_read_ptr)
|
||
{
|
||
LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
|
||
|
||
return read_indirect_string_at_offset (abfd, str_offset);
|
||
}
|
||
|
||
static ULONGEST
|
||
read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
|
||
unsigned int *bytes_read_ptr)
|
||
{
|
||
ULONGEST result;
|
||
unsigned int num_read;
|
||
int shift;
|
||
unsigned char byte;
|
||
|
||
result = 0;
|
||
shift = 0;
|
||
num_read = 0;
|
||
while (1)
|
||
{
|
||
byte = bfd_get_8 (abfd, buf);
|
||
buf++;
|
||
num_read++;
|
||
result |= ((ULONGEST) (byte & 127) << shift);
|
||
if ((byte & 128) == 0)
|
||
{
|
||
break;
|
||
}
|
||
shift += 7;
|
||
}
|
||
*bytes_read_ptr = num_read;
|
||
return result;
|
||
}
|
||
|
||
static LONGEST
|
||
read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
|
||
unsigned int *bytes_read_ptr)
|
||
{
|
||
LONGEST result;
|
||
int shift, num_read;
|
||
unsigned char byte;
|
||
|
||
result = 0;
|
||
shift = 0;
|
||
num_read = 0;
|
||
while (1)
|
||
{
|
||
byte = bfd_get_8 (abfd, buf);
|
||
buf++;
|
||
num_read++;
|
||
result |= ((LONGEST) (byte & 127) << shift);
|
||
shift += 7;
|
||
if ((byte & 128) == 0)
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
if ((shift < 8 * sizeof (result)) && (byte & 0x40))
|
||
result |= -(((LONGEST) 1) << shift);
|
||
*bytes_read_ptr = num_read;
|
||
return result;
|
||
}
|
||
|
||
/* Given index ADDR_INDEX in .debug_addr, fetch the value.
|
||
ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
|
||
ADDR_SIZE is the size of addresses from the CU header. */
|
||
|
||
static CORE_ADDR
|
||
read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
bfd *abfd = objfile->obfd;
|
||
const gdb_byte *info_ptr;
|
||
|
||
dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
|
||
if (dwarf2_per_objfile->addr.buffer == NULL)
|
||
error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
|
||
objfile_name (objfile));
|
||
if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
|
||
error (_("DW_FORM_addr_index pointing outside of "
|
||
".debug_addr section [in module %s]"),
|
||
objfile_name (objfile));
|
||
info_ptr = (dwarf2_per_objfile->addr.buffer
|
||
+ addr_base + addr_index * addr_size);
|
||
if (addr_size == 4)
|
||
return bfd_get_32 (abfd, info_ptr);
|
||
else
|
||
return bfd_get_64 (abfd, info_ptr);
|
||
}
|
||
|
||
/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
|
||
|
||
static CORE_ADDR
|
||
read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
|
||
{
|
||
return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
|
||
}
|
||
|
||
/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
|
||
|
||
static CORE_ADDR
|
||
read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
|
||
unsigned int *bytes_read)
|
||
{
|
||
bfd *abfd = cu->objfile->obfd;
|
||
unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
|
||
|
||
return read_addr_index (cu, addr_index);
|
||
}
|
||
|
||
/* Data structure to pass results from dwarf2_read_addr_index_reader
|
||
back to dwarf2_read_addr_index. */
|
||
|
||
struct dwarf2_read_addr_index_data
|
||
{
|
||
ULONGEST addr_base;
|
||
int addr_size;
|
||
};
|
||
|
||
/* die_reader_func for dwarf2_read_addr_index. */
|
||
|
||
static void
|
||
dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
|
||
const gdb_byte *info_ptr,
|
||
struct die_info *comp_unit_die,
|
||
int has_children,
|
||
void *data)
|
||
{
|
||
struct dwarf2_cu *cu = reader->cu;
|
||
struct dwarf2_read_addr_index_data *aidata =
|
||
(struct dwarf2_read_addr_index_data *) data;
|
||
|
||
aidata->addr_base = cu->addr_base;
|
||
aidata->addr_size = cu->header.addr_size;
|
||
}
|
||
|
||
/* Given an index in .debug_addr, fetch the value.
|
||
NOTE: This can be called during dwarf expression evaluation,
|
||
long after the debug information has been read, and thus per_cu->cu
|
||
may no longer exist. */
|
||
|
||
CORE_ADDR
|
||
dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
|
||
unsigned int addr_index)
|
||
{
|
||
struct objfile *objfile = per_cu->objfile;
|
||
struct dwarf2_cu *cu = per_cu->cu;
|
||
ULONGEST addr_base;
|
||
int addr_size;
|
||
|
||
/* This is intended to be called from outside this file. */
|
||
dw2_setup (objfile);
|
||
|
||
/* We need addr_base and addr_size.
|
||
If we don't have PER_CU->cu, we have to get it.
|
||
Nasty, but the alternative is storing the needed info in PER_CU,
|
||
which at this point doesn't seem justified: it's not clear how frequently
|
||
it would get used and it would increase the size of every PER_CU.
|
||
Entry points like dwarf2_per_cu_addr_size do a similar thing
|
||
so we're not in uncharted territory here.
|
||
Alas we need to be a bit more complicated as addr_base is contained
|
||
in the DIE.
|
||
|
||
We don't need to read the entire CU(/TU).
|
||
We just need the header and top level die.
|
||
|
||
IWBN to use the aging mechanism to let us lazily later discard the CU.
|
||
For now we skip this optimization. */
|
||
|
||
if (cu != NULL)
|
||
{
|
||
addr_base = cu->addr_base;
|
||
addr_size = cu->header.addr_size;
|
||
}
|
||
else
|
||
{
|
||
struct dwarf2_read_addr_index_data aidata;
|
||
|
||
/* Note: We can't use init_cutu_and_read_dies_simple here,
|
||
we need addr_base. */
|
||
init_cutu_and_read_dies (per_cu, NULL, 0, 0,
|
||
dwarf2_read_addr_index_reader, &aidata);
|
||
addr_base = aidata.addr_base;
|
||
addr_size = aidata.addr_size;
|
||
}
|
||
|
||
return read_addr_index_1 (addr_index, addr_base, addr_size);
|
||
}
|
||
|
||
/* Given a DW_FORM_GNU_str_index, fetch the string.
|
||
This is only used by the Fission support. */
|
||
|
||
static const char *
|
||
read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
const char *objf_name = objfile_name (objfile);
|
||
bfd *abfd = objfile->obfd;
|
||
struct dwarf2_cu *cu = reader->cu;
|
||
struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
|
||
struct dwarf2_section_info *str_offsets_section =
|
||
&reader->dwo_file->sections.str_offsets;
|
||
const gdb_byte *info_ptr;
|
||
ULONGEST str_offset;
|
||
static const char form_name[] = "DW_FORM_GNU_str_index";
|
||
|
||
dwarf2_read_section (objfile, str_section);
|
||
dwarf2_read_section (objfile, str_offsets_section);
|
||
if (str_section->buffer == NULL)
|
||
error (_("%s used without .debug_str.dwo section"
|
||
" in CU at offset 0x%lx [in module %s]"),
|
||
form_name, (long) cu->header.offset.sect_off, objf_name);
|
||
if (str_offsets_section->buffer == NULL)
|
||
error (_("%s used without .debug_str_offsets.dwo section"
|
||
" in CU at offset 0x%lx [in module %s]"),
|
||
form_name, (long) cu->header.offset.sect_off, objf_name);
|
||
if (str_index * cu->header.offset_size >= str_offsets_section->size)
|
||
error (_("%s pointing outside of .debug_str_offsets.dwo"
|
||
" section in CU at offset 0x%lx [in module %s]"),
|
||
form_name, (long) cu->header.offset.sect_off, objf_name);
|
||
info_ptr = (str_offsets_section->buffer
|
||
+ str_index * cu->header.offset_size);
|
||
if (cu->header.offset_size == 4)
|
||
str_offset = bfd_get_32 (abfd, info_ptr);
|
||
else
|
||
str_offset = bfd_get_64 (abfd, info_ptr);
|
||
if (str_offset >= str_section->size)
|
||
error (_("Offset from %s pointing outside of"
|
||
" .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
|
||
form_name, (long) cu->header.offset.sect_off, objf_name);
|
||
return (const char *) (str_section->buffer + str_offset);
|
||
}
|
||
|
||
/* Return the length of an LEB128 number in BUF. */
|
||
|
||
static int
|
||
leb128_size (const gdb_byte *buf)
|
||
{
|
||
const gdb_byte *begin = buf;
|
||
gdb_byte byte;
|
||
|
||
while (1)
|
||
{
|
||
byte = *buf++;
|
||
if ((byte & 128) == 0)
|
||
return buf - begin;
|
||
}
|
||
}
|
||
|
||
static void
|
||
set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
|
||
{
|
||
switch (lang)
|
||
{
|
||
case DW_LANG_C89:
|
||
case DW_LANG_C99:
|
||
case DW_LANG_C11:
|
||
case DW_LANG_C:
|
||
case DW_LANG_UPC:
|
||
cu->language = language_c;
|
||
break;
|
||
case DW_LANG_C_plus_plus:
|
||
case DW_LANG_C_plus_plus_11:
|
||
case DW_LANG_C_plus_plus_14:
|
||
cu->language = language_cplus;
|
||
break;
|
||
case DW_LANG_D:
|
||
cu->language = language_d;
|
||
break;
|
||
case DW_LANG_Fortran77:
|
||
case DW_LANG_Fortran90:
|
||
case DW_LANG_Fortran95:
|
||
case DW_LANG_Fortran03:
|
||
case DW_LANG_Fortran08:
|
||
cu->language = language_fortran;
|
||
break;
|
||
case DW_LANG_Go:
|
||
cu->language = language_go;
|
||
break;
|
||
case DW_LANG_Mips_Assembler:
|
||
cu->language = language_asm;
|
||
break;
|
||
case DW_LANG_Java:
|
||
cu->language = language_java;
|
||
break;
|
||
case DW_LANG_Ada83:
|
||
case DW_LANG_Ada95:
|
||
cu->language = language_ada;
|
||
break;
|
||
case DW_LANG_Modula2:
|
||
cu->language = language_m2;
|
||
break;
|
||
case DW_LANG_Pascal83:
|
||
cu->language = language_pascal;
|
||
break;
|
||
case DW_LANG_ObjC:
|
||
cu->language = language_objc;
|
||
break;
|
||
case DW_LANG_Rust:
|
||
case DW_LANG_Rust_old:
|
||
cu->language = language_rust;
|
||
break;
|
||
case DW_LANG_Cobol74:
|
||
case DW_LANG_Cobol85:
|
||
default:
|
||
cu->language = language_minimal;
|
||
break;
|
||
}
|
||
cu->language_defn = language_def (cu->language);
|
||
}
|
||
|
||
/* Return the named attribute or NULL if not there. */
|
||
|
||
static struct attribute *
|
||
dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
|
||
{
|
||
for (;;)
|
||
{
|
||
unsigned int i;
|
||
struct attribute *spec = NULL;
|
||
|
||
for (i = 0; i < die->num_attrs; ++i)
|
||
{
|
||
if (die->attrs[i].name == name)
|
||
return &die->attrs[i];
|
||
if (die->attrs[i].name == DW_AT_specification
|
||
|| die->attrs[i].name == DW_AT_abstract_origin)
|
||
spec = &die->attrs[i];
|
||
}
|
||
|
||
if (!spec)
|
||
break;
|
||
|
||
die = follow_die_ref (die, spec, &cu);
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the named attribute or NULL if not there,
|
||
but do not follow DW_AT_specification, etc.
|
||
This is for use in contexts where we're reading .debug_types dies.
|
||
Following DW_AT_specification, DW_AT_abstract_origin will take us
|
||
back up the chain, and we want to go down. */
|
||
|
||
static struct attribute *
|
||
dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < die->num_attrs; ++i)
|
||
if (die->attrs[i].name == name)
|
||
return &die->attrs[i];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the string associated with a string-typed attribute, or NULL if it
|
||
is either not found or is of an incorrect type. */
|
||
|
||
static const char *
|
||
dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *attr;
|
||
const char *str = NULL;
|
||
|
||
attr = dwarf2_attr (die, name, cu);
|
||
|
||
if (attr != NULL)
|
||
{
|
||
if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
|
||
|| attr->form == DW_FORM_GNU_strp_alt)
|
||
str = DW_STRING (attr);
|
||
else
|
||
complaint (&symfile_complaints,
|
||
_("string type expected for attribute %s for "
|
||
"DIE at 0x%x in module %s"),
|
||
dwarf_attr_name (name), die->offset.sect_off,
|
||
objfile_name (cu->objfile));
|
||
}
|
||
|
||
return str;
|
||
}
|
||
|
||
/* Return non-zero iff the attribute NAME is defined for the given DIE,
|
||
and holds a non-zero value. This function should only be used for
|
||
DW_FORM_flag or DW_FORM_flag_present attributes. */
|
||
|
||
static int
|
||
dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *attr = dwarf2_attr (die, name, cu);
|
||
|
||
return (attr && DW_UNSND (attr));
|
||
}
|
||
|
||
static int
|
||
die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
/* A DIE is a declaration if it has a DW_AT_declaration attribute
|
||
which value is non-zero. However, we have to be careful with
|
||
DIEs having a DW_AT_specification attribute, because dwarf2_attr()
|
||
(via dwarf2_flag_true_p) follows this attribute. So we may
|
||
end up accidently finding a declaration attribute that belongs
|
||
to a different DIE referenced by the specification attribute,
|
||
even though the given DIE does not have a declaration attribute. */
|
||
return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
|
||
&& dwarf2_attr (die, DW_AT_specification, cu) == NULL);
|
||
}
|
||
|
||
/* Return the die giving the specification for DIE, if there is
|
||
one. *SPEC_CU is the CU containing DIE on input, and the CU
|
||
containing the return value on output. If there is no
|
||
specification, but there is an abstract origin, that is
|
||
returned. */
|
||
|
||
static struct die_info *
|
||
die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
|
||
{
|
||
struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
|
||
*spec_cu);
|
||
|
||
if (spec_attr == NULL)
|
||
spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
|
||
|
||
if (spec_attr == NULL)
|
||
return NULL;
|
||
else
|
||
return follow_die_ref (die, spec_attr, spec_cu);
|
||
}
|
||
|
||
/* Free the line_header structure *LH, and any arrays and strings it
|
||
refers to.
|
||
NOTE: This is also used as a "cleanup" function. */
|
||
|
||
static void
|
||
free_line_header (struct line_header *lh)
|
||
{
|
||
if (lh->standard_opcode_lengths)
|
||
xfree (lh->standard_opcode_lengths);
|
||
|
||
/* Remember that all the lh->file_names[i].name pointers are
|
||
pointers into debug_line_buffer, and don't need to be freed. */
|
||
if (lh->file_names)
|
||
xfree (lh->file_names);
|
||
|
||
/* Similarly for the include directory names. */
|
||
if (lh->include_dirs)
|
||
xfree (lh->include_dirs);
|
||
|
||
xfree (lh);
|
||
}
|
||
|
||
/* Stub for free_line_header to match void * callback types. */
|
||
|
||
static void
|
||
free_line_header_voidp (void *arg)
|
||
{
|
||
struct line_header *lh = (struct line_header *) arg;
|
||
|
||
free_line_header (lh);
|
||
}
|
||
|
||
/* Add an entry to LH's include directory table. */
|
||
|
||
static void
|
||
add_include_dir (struct line_header *lh, const char *include_dir)
|
||
{
|
||
if (dwarf_line_debug >= 2)
|
||
fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
|
||
lh->num_include_dirs + 1, include_dir);
|
||
|
||
/* Grow the array if necessary. */
|
||
if (lh->include_dirs_size == 0)
|
||
{
|
||
lh->include_dirs_size = 1; /* for testing */
|
||
lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
|
||
}
|
||
else if (lh->num_include_dirs >= lh->include_dirs_size)
|
||
{
|
||
lh->include_dirs_size *= 2;
|
||
lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
|
||
lh->include_dirs_size);
|
||
}
|
||
|
||
lh->include_dirs[lh->num_include_dirs++] = include_dir;
|
||
}
|
||
|
||
/* Add an entry to LH's file name table. */
|
||
|
||
static void
|
||
add_file_name (struct line_header *lh,
|
||
const char *name,
|
||
unsigned int dir_index,
|
||
unsigned int mod_time,
|
||
unsigned int length)
|
||
{
|
||
struct file_entry *fe;
|
||
|
||
if (dwarf_line_debug >= 2)
|
||
fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
|
||
lh->num_file_names + 1, name);
|
||
|
||
/* Grow the array if necessary. */
|
||
if (lh->file_names_size == 0)
|
||
{
|
||
lh->file_names_size = 1; /* for testing */
|
||
lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
|
||
}
|
||
else if (lh->num_file_names >= lh->file_names_size)
|
||
{
|
||
lh->file_names_size *= 2;
|
||
lh->file_names
|
||
= XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
|
||
}
|
||
|
||
fe = &lh->file_names[lh->num_file_names++];
|
||
fe->name = name;
|
||
fe->dir_index = dir_index;
|
||
fe->mod_time = mod_time;
|
||
fe->length = length;
|
||
fe->included_p = 0;
|
||
fe->symtab = NULL;
|
||
}
|
||
|
||
/* A convenience function to find the proper .debug_line section for a CU. */
|
||
|
||
static struct dwarf2_section_info *
|
||
get_debug_line_section (struct dwarf2_cu *cu)
|
||
{
|
||
struct dwarf2_section_info *section;
|
||
|
||
/* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
|
||
DWO file. */
|
||
if (cu->dwo_unit && cu->per_cu->is_debug_types)
|
||
section = &cu->dwo_unit->dwo_file->sections.line;
|
||
else if (cu->per_cu->is_dwz)
|
||
{
|
||
struct dwz_file *dwz = dwarf2_get_dwz_file ();
|
||
|
||
section = &dwz->line;
|
||
}
|
||
else
|
||
section = &dwarf2_per_objfile->line;
|
||
|
||
return section;
|
||
}
|
||
|
||
/* Read the statement program header starting at OFFSET in
|
||
.debug_line, or .debug_line.dwo. Return a pointer
|
||
to a struct line_header, allocated using xmalloc.
|
||
Returns NULL if there is a problem reading the header, e.g., if it
|
||
has a version we don't understand.
|
||
|
||
NOTE: the strings in the include directory and file name tables of
|
||
the returned object point into the dwarf line section buffer,
|
||
and must not be freed. */
|
||
|
||
static struct line_header *
|
||
dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
|
||
{
|
||
struct cleanup *back_to;
|
||
struct line_header *lh;
|
||
const gdb_byte *line_ptr;
|
||
unsigned int bytes_read, offset_size;
|
||
int i;
|
||
const char *cur_dir, *cur_file;
|
||
struct dwarf2_section_info *section;
|
||
bfd *abfd;
|
||
|
||
section = get_debug_line_section (cu);
|
||
dwarf2_read_section (dwarf2_per_objfile->objfile, section);
|
||
if (section->buffer == NULL)
|
||
{
|
||
if (cu->dwo_unit && cu->per_cu->is_debug_types)
|
||
complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
|
||
else
|
||
complaint (&symfile_complaints, _("missing .debug_line section"));
|
||
return 0;
|
||
}
|
||
|
||
/* We can't do this until we know the section is non-empty.
|
||
Only then do we know we have such a section. */
|
||
abfd = get_section_bfd_owner (section);
|
||
|
||
/* Make sure that at least there's room for the total_length field.
|
||
That could be 12 bytes long, but we're just going to fudge that. */
|
||
if (offset + 4 >= section->size)
|
||
{
|
||
dwarf2_statement_list_fits_in_line_number_section_complaint ();
|
||
return 0;
|
||
}
|
||
|
||
lh = XNEW (struct line_header);
|
||
memset (lh, 0, sizeof (*lh));
|
||
back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
|
||
(void *) lh);
|
||
|
||
lh->offset.sect_off = offset;
|
||
lh->offset_in_dwz = cu->per_cu->is_dwz;
|
||
|
||
line_ptr = section->buffer + offset;
|
||
|
||
/* Read in the header. */
|
||
lh->total_length =
|
||
read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
|
||
&bytes_read, &offset_size);
|
||
line_ptr += bytes_read;
|
||
if (line_ptr + lh->total_length > (section->buffer + section->size))
|
||
{
|
||
dwarf2_statement_list_fits_in_line_number_section_complaint ();
|
||
do_cleanups (back_to);
|
||
return 0;
|
||
}
|
||
lh->statement_program_end = line_ptr + lh->total_length;
|
||
lh->version = read_2_bytes (abfd, line_ptr);
|
||
line_ptr += 2;
|
||
if (lh->version > 4)
|
||
{
|
||
/* This is a version we don't understand. The format could have
|
||
changed in ways we don't handle properly so just punt. */
|
||
complaint (&symfile_complaints,
|
||
_("unsupported version in .debug_line section"));
|
||
return NULL;
|
||
}
|
||
lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
|
||
line_ptr += offset_size;
|
||
lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
if (lh->version >= 4)
|
||
{
|
||
lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
}
|
||
else
|
||
lh->maximum_ops_per_instruction = 1;
|
||
|
||
if (lh->maximum_ops_per_instruction == 0)
|
||
{
|
||
lh->maximum_ops_per_instruction = 1;
|
||
complaint (&symfile_complaints,
|
||
_("invalid maximum_ops_per_instruction "
|
||
"in `.debug_line' section"));
|
||
}
|
||
|
||
lh->default_is_stmt = read_1_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
lh->line_base = read_1_signed_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
lh->line_range = read_1_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
lh->opcode_base = read_1_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
|
||
|
||
lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
|
||
for (i = 1; i < lh->opcode_base; ++i)
|
||
{
|
||
lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
}
|
||
|
||
/* Read directory table. */
|
||
while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
|
||
{
|
||
line_ptr += bytes_read;
|
||
add_include_dir (lh, cur_dir);
|
||
}
|
||
line_ptr += bytes_read;
|
||
|
||
/* Read file name table. */
|
||
while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
|
||
{
|
||
unsigned int dir_index, mod_time, length;
|
||
|
||
line_ptr += bytes_read;
|
||
dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
|
||
add_file_name (lh, cur_file, dir_index, mod_time, length);
|
||
}
|
||
line_ptr += bytes_read;
|
||
lh->statement_program_start = line_ptr;
|
||
|
||
if (line_ptr > (section->buffer + section->size))
|
||
complaint (&symfile_complaints,
|
||
_("line number info header doesn't "
|
||
"fit in `.debug_line' section"));
|
||
|
||
discard_cleanups (back_to);
|
||
return lh;
|
||
}
|
||
|
||
/* Subroutine of dwarf_decode_lines to simplify it.
|
||
Return the file name of the psymtab for included file FILE_INDEX
|
||
in line header LH of PST.
|
||
COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
|
||
If space for the result is malloc'd, it will be freed by a cleanup.
|
||
Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
|
||
|
||
The function creates dangling cleanup registration. */
|
||
|
||
static const char *
|
||
psymtab_include_file_name (const struct line_header *lh, int file_index,
|
||
const struct partial_symtab *pst,
|
||
const char *comp_dir)
|
||
{
|
||
const struct file_entry fe = lh->file_names [file_index];
|
||
const char *include_name = fe.name;
|
||
const char *include_name_to_compare = include_name;
|
||
const char *dir_name = NULL;
|
||
const char *pst_filename;
|
||
char *copied_name = NULL;
|
||
int file_is_pst;
|
||
|
||
if (fe.dir_index && lh->include_dirs != NULL)
|
||
dir_name = lh->include_dirs[fe.dir_index - 1];
|
||
|
||
if (!IS_ABSOLUTE_PATH (include_name)
|
||
&& (dir_name != NULL || comp_dir != NULL))
|
||
{
|
||
/* Avoid creating a duplicate psymtab for PST.
|
||
We do this by comparing INCLUDE_NAME and PST_FILENAME.
|
||
Before we do the comparison, however, we need to account
|
||
for DIR_NAME and COMP_DIR.
|
||
First prepend dir_name (if non-NULL). If we still don't
|
||
have an absolute path prepend comp_dir (if non-NULL).
|
||
However, the directory we record in the include-file's
|
||
psymtab does not contain COMP_DIR (to match the
|
||
corresponding symtab(s)).
|
||
|
||
Example:
|
||
|
||
bash$ cd /tmp
|
||
bash$ gcc -g ./hello.c
|
||
include_name = "hello.c"
|
||
dir_name = "."
|
||
DW_AT_comp_dir = comp_dir = "/tmp"
|
||
DW_AT_name = "./hello.c"
|
||
|
||
*/
|
||
|
||
if (dir_name != NULL)
|
||
{
|
||
char *tem = concat (dir_name, SLASH_STRING,
|
||
include_name, (char *)NULL);
|
||
|
||
make_cleanup (xfree, tem);
|
||
include_name = tem;
|
||
include_name_to_compare = include_name;
|
||
}
|
||
if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
|
||
{
|
||
char *tem = concat (comp_dir, SLASH_STRING,
|
||
include_name, (char *)NULL);
|
||
|
||
make_cleanup (xfree, tem);
|
||
include_name_to_compare = tem;
|
||
}
|
||
}
|
||
|
||
pst_filename = pst->filename;
|
||
if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
|
||
{
|
||
copied_name = concat (pst->dirname, SLASH_STRING,
|
||
pst_filename, (char *)NULL);
|
||
pst_filename = copied_name;
|
||
}
|
||
|
||
file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
|
||
|
||
if (copied_name != NULL)
|
||
xfree (copied_name);
|
||
|
||
if (file_is_pst)
|
||
return NULL;
|
||
return include_name;
|
||
}
|
||
|
||
/* State machine to track the state of the line number program. */
|
||
|
||
typedef struct
|
||
{
|
||
/* These are part of the standard DWARF line number state machine. */
|
||
|
||
unsigned char op_index;
|
||
unsigned int file;
|
||
unsigned int line;
|
||
CORE_ADDR address;
|
||
int is_stmt;
|
||
unsigned int discriminator;
|
||
|
||
/* Additional bits of state we need to track. */
|
||
|
||
/* The last file that we called dwarf2_start_subfile for.
|
||
This is only used for TLLs. */
|
||
unsigned int last_file;
|
||
/* The last file a line number was recorded for. */
|
||
struct subfile *last_subfile;
|
||
|
||
/* The function to call to record a line. */
|
||
record_line_ftype *record_line;
|
||
|
||
/* The last line number that was recorded, used to coalesce
|
||
consecutive entries for the same line. This can happen, for
|
||
example, when discriminators are present. PR 17276. */
|
||
unsigned int last_line;
|
||
int line_has_non_zero_discriminator;
|
||
} lnp_state_machine;
|
||
|
||
/* There's a lot of static state to pass to dwarf_record_line.
|
||
This keeps it all together. */
|
||
|
||
typedef struct
|
||
{
|
||
/* The gdbarch. */
|
||
struct gdbarch *gdbarch;
|
||
|
||
/* The line number header. */
|
||
struct line_header *line_header;
|
||
|
||
/* Non-zero if we're recording lines.
|
||
Otherwise we're building partial symtabs and are just interested in
|
||
finding include files mentioned by the line number program. */
|
||
int record_lines_p;
|
||
} lnp_reader_state;
|
||
|
||
/* Ignore this record_line request. */
|
||
|
||
static void
|
||
noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
|
||
{
|
||
return;
|
||
}
|
||
|
||
/* Return non-zero if we should add LINE to the line number table.
|
||
LINE is the line to add, LAST_LINE is the last line that was added,
|
||
LAST_SUBFILE is the subfile for LAST_LINE.
|
||
LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
|
||
had a non-zero discriminator.
|
||
|
||
We have to be careful in the presence of discriminators.
|
||
E.g., for this line:
|
||
|
||
for (i = 0; i < 100000; i++);
|
||
|
||
clang can emit four line number entries for that one line,
|
||
each with a different discriminator.
|
||
See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
|
||
|
||
However, we want gdb to coalesce all four entries into one.
|
||
Otherwise the user could stepi into the middle of the line and
|
||
gdb would get confused about whether the pc really was in the
|
||
middle of the line.
|
||
|
||
Things are further complicated by the fact that two consecutive
|
||
line number entries for the same line is a heuristic used by gcc
|
||
to denote the end of the prologue. So we can't just discard duplicate
|
||
entries, we have to be selective about it. The heuristic we use is
|
||
that we only collapse consecutive entries for the same line if at least
|
||
one of those entries has a non-zero discriminator. PR 17276.
|
||
|
||
Note: Addresses in the line number state machine can never go backwards
|
||
within one sequence, thus this coalescing is ok. */
|
||
|
||
static int
|
||
dwarf_record_line_p (unsigned int line, unsigned int last_line,
|
||
int line_has_non_zero_discriminator,
|
||
struct subfile *last_subfile)
|
||
{
|
||
if (current_subfile != last_subfile)
|
||
return 1;
|
||
if (line != last_line)
|
||
return 1;
|
||
/* Same line for the same file that we've seen already.
|
||
As a last check, for pr 17276, only record the line if the line
|
||
has never had a non-zero discriminator. */
|
||
if (!line_has_non_zero_discriminator)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
|
||
in the line table of subfile SUBFILE. */
|
||
|
||
static void
|
||
dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
|
||
unsigned int line, CORE_ADDR address,
|
||
record_line_ftype p_record_line)
|
||
{
|
||
CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
|
||
|
||
if (dwarf_line_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"Recording line %u, file %s, address %s\n",
|
||
line, lbasename (subfile->name),
|
||
paddress (gdbarch, address));
|
||
}
|
||
|
||
(*p_record_line) (subfile, line, addr);
|
||
}
|
||
|
||
/* Subroutine of dwarf_decode_lines_1 to simplify it.
|
||
Mark the end of a set of line number records.
|
||
The arguments are the same as for dwarf_record_line_1.
|
||
If SUBFILE is NULL the request is ignored. */
|
||
|
||
static void
|
||
dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
|
||
CORE_ADDR address, record_line_ftype p_record_line)
|
||
{
|
||
if (subfile == NULL)
|
||
return;
|
||
|
||
if (dwarf_line_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"Finishing current line, file %s, address %s\n",
|
||
lbasename (subfile->name),
|
||
paddress (gdbarch, address));
|
||
}
|
||
|
||
dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
|
||
}
|
||
|
||
/* Record the line in STATE.
|
||
END_SEQUENCE is non-zero if we're processing the end of a sequence. */
|
||
|
||
static void
|
||
dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
|
||
int end_sequence)
|
||
{
|
||
const struct line_header *lh = reader->line_header;
|
||
unsigned int file, line, discriminator;
|
||
int is_stmt;
|
||
|
||
file = state->file;
|
||
line = state->line;
|
||
is_stmt = state->is_stmt;
|
||
discriminator = state->discriminator;
|
||
|
||
if (dwarf_line_debug)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"Processing actual line %u: file %u,"
|
||
" address %s, is_stmt %u, discrim %u\n",
|
||
line, file,
|
||
paddress (reader->gdbarch, state->address),
|
||
is_stmt, discriminator);
|
||
}
|
||
|
||
if (file == 0 || file - 1 >= lh->num_file_names)
|
||
dwarf2_debug_line_missing_file_complaint ();
|
||
/* For now we ignore lines not starting on an instruction boundary.
|
||
But not when processing end_sequence for compatibility with the
|
||
previous version of the code. */
|
||
else if (state->op_index == 0 || end_sequence)
|
||
{
|
||
lh->file_names[file - 1].included_p = 1;
|
||
if (reader->record_lines_p && is_stmt)
|
||
{
|
||
if (state->last_subfile != current_subfile || end_sequence)
|
||
{
|
||
dwarf_finish_line (reader->gdbarch, state->last_subfile,
|
||
state->address, state->record_line);
|
||
}
|
||
|
||
if (!end_sequence)
|
||
{
|
||
if (dwarf_record_line_p (line, state->last_line,
|
||
state->line_has_non_zero_discriminator,
|
||
state->last_subfile))
|
||
{
|
||
dwarf_record_line_1 (reader->gdbarch, current_subfile,
|
||
line, state->address,
|
||
state->record_line);
|
||
}
|
||
state->last_subfile = current_subfile;
|
||
state->last_line = line;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Initialize STATE for the start of a line number program. */
|
||
|
||
static void
|
||
init_lnp_state_machine (lnp_state_machine *state,
|
||
const lnp_reader_state *reader)
|
||
{
|
||
memset (state, 0, sizeof (*state));
|
||
|
||
/* Just starting, there is no "last file". */
|
||
state->last_file = 0;
|
||
state->last_subfile = NULL;
|
||
|
||
state->record_line = record_line;
|
||
|
||
state->last_line = 0;
|
||
state->line_has_non_zero_discriminator = 0;
|
||
|
||
/* Initialize these according to the DWARF spec. */
|
||
state->op_index = 0;
|
||
state->file = 1;
|
||
state->line = 1;
|
||
/* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
|
||
was a line entry for it so that the backend has a chance to adjust it
|
||
and also record it in case it needs it. This is currently used by MIPS
|
||
code, cf. `mips_adjust_dwarf2_line'. */
|
||
state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
|
||
state->is_stmt = reader->line_header->default_is_stmt;
|
||
state->discriminator = 0;
|
||
}
|
||
|
||
/* Check address and if invalid nop-out the rest of the lines in this
|
||
sequence. */
|
||
|
||
static void
|
||
check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
|
||
const gdb_byte *line_ptr,
|
||
CORE_ADDR lowpc, CORE_ADDR address)
|
||
{
|
||
/* If address < lowpc then it's not a usable value, it's outside the
|
||
pc range of the CU. However, we restrict the test to only address
|
||
values of zero to preserve GDB's previous behaviour which is to
|
||
handle the specific case of a function being GC'd by the linker. */
|
||
|
||
if (address == 0 && address < lowpc)
|
||
{
|
||
/* This line table is for a function which has been
|
||
GCd by the linker. Ignore it. PR gdb/12528 */
|
||
|
||
struct objfile *objfile = cu->objfile;
|
||
long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
|
||
|
||
complaint (&symfile_complaints,
|
||
_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
|
||
line_offset, objfile_name (objfile));
|
||
state->record_line = noop_record_line;
|
||
/* Note: sm.record_line is left as noop_record_line
|
||
until we see DW_LNE_end_sequence. */
|
||
}
|
||
}
|
||
|
||
/* Subroutine of dwarf_decode_lines to simplify it.
|
||
Process the line number information in LH.
|
||
If DECODE_FOR_PST_P is non-zero, all we do is process the line number
|
||
program in order to set included_p for every referenced header. */
|
||
|
||
static void
|
||
dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
|
||
const int decode_for_pst_p, CORE_ADDR lowpc)
|
||
{
|
||
const gdb_byte *line_ptr, *extended_end;
|
||
const gdb_byte *line_end;
|
||
unsigned int bytes_read, extended_len;
|
||
unsigned char op_code, extended_op;
|
||
CORE_ADDR baseaddr;
|
||
struct objfile *objfile = cu->objfile;
|
||
bfd *abfd = objfile->obfd;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
/* Non-zero if we're recording line info (as opposed to building partial
|
||
symtabs). */
|
||
int record_lines_p = !decode_for_pst_p;
|
||
/* A collection of things we need to pass to dwarf_record_line. */
|
||
lnp_reader_state reader_state;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
line_ptr = lh->statement_program_start;
|
||
line_end = lh->statement_program_end;
|
||
|
||
reader_state.gdbarch = gdbarch;
|
||
reader_state.line_header = lh;
|
||
reader_state.record_lines_p = record_lines_p;
|
||
|
||
/* Read the statement sequences until there's nothing left. */
|
||
while (line_ptr < line_end)
|
||
{
|
||
/* The DWARF line number program state machine. */
|
||
lnp_state_machine state_machine;
|
||
int end_sequence = 0;
|
||
|
||
/* Reset the state machine at the start of each sequence. */
|
||
init_lnp_state_machine (&state_machine, &reader_state);
|
||
|
||
if (record_lines_p && lh->num_file_names >= state_machine.file)
|
||
{
|
||
/* Start a subfile for the current file of the state machine. */
|
||
/* lh->include_dirs and lh->file_names are 0-based, but the
|
||
directory and file name numbers in the statement program
|
||
are 1-based. */
|
||
struct file_entry *fe = &lh->file_names[state_machine.file - 1];
|
||
const char *dir = NULL;
|
||
|
||
if (fe->dir_index && lh->include_dirs != NULL)
|
||
dir = lh->include_dirs[fe->dir_index - 1];
|
||
|
||
dwarf2_start_subfile (fe->name, dir);
|
||
}
|
||
|
||
/* Decode the table. */
|
||
while (line_ptr < line_end && !end_sequence)
|
||
{
|
||
op_code = read_1_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
|
||
if (op_code >= lh->opcode_base)
|
||
{
|
||
/* Special opcode. */
|
||
unsigned char adj_opcode;
|
||
CORE_ADDR addr_adj;
|
||
int line_delta;
|
||
|
||
adj_opcode = op_code - lh->opcode_base;
|
||
addr_adj = (((state_machine.op_index
|
||
+ (adj_opcode / lh->line_range))
|
||
/ lh->maximum_ops_per_instruction)
|
||
* lh->minimum_instruction_length);
|
||
state_machine.address
|
||
+= gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
|
||
state_machine.op_index = ((state_machine.op_index
|
||
+ (adj_opcode / lh->line_range))
|
||
% lh->maximum_ops_per_instruction);
|
||
line_delta = lh->line_base + (adj_opcode % lh->line_range);
|
||
state_machine.line += line_delta;
|
||
if (line_delta != 0)
|
||
state_machine.line_has_non_zero_discriminator
|
||
= state_machine.discriminator != 0;
|
||
|
||
dwarf_record_line (&reader_state, &state_machine, 0);
|
||
state_machine.discriminator = 0;
|
||
}
|
||
else switch (op_code)
|
||
{
|
||
case DW_LNS_extended_op:
|
||
extended_len = read_unsigned_leb128 (abfd, line_ptr,
|
||
&bytes_read);
|
||
line_ptr += bytes_read;
|
||
extended_end = line_ptr + extended_len;
|
||
extended_op = read_1_byte (abfd, line_ptr);
|
||
line_ptr += 1;
|
||
switch (extended_op)
|
||
{
|
||
case DW_LNE_end_sequence:
|
||
state_machine.record_line = record_line;
|
||
end_sequence = 1;
|
||
break;
|
||
case DW_LNE_set_address:
|
||
{
|
||
CORE_ADDR address
|
||
= read_address (abfd, line_ptr, cu, &bytes_read);
|
||
|
||
line_ptr += bytes_read;
|
||
check_line_address (cu, &state_machine, line_ptr,
|
||
lowpc, address);
|
||
state_machine.op_index = 0;
|
||
address += baseaddr;
|
||
state_machine.address
|
||
= gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
|
||
}
|
||
break;
|
||
case DW_LNE_define_file:
|
||
{
|
||
const char *cur_file;
|
||
unsigned int dir_index, mod_time, length;
|
||
|
||
cur_file = read_direct_string (abfd, line_ptr,
|
||
&bytes_read);
|
||
line_ptr += bytes_read;
|
||
dir_index =
|
||
read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
mod_time =
|
||
read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
length =
|
||
read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
add_file_name (lh, cur_file, dir_index, mod_time, length);
|
||
}
|
||
break;
|
||
case DW_LNE_set_discriminator:
|
||
/* The discriminator is not interesting to the debugger;
|
||
just ignore it. We still need to check its value though:
|
||
if there are consecutive entries for the same
|
||
(non-prologue) line we want to coalesce them.
|
||
PR 17276. */
|
||
state_machine.discriminator
|
||
= read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
state_machine.line_has_non_zero_discriminator
|
||
|= state_machine.discriminator != 0;
|
||
line_ptr += bytes_read;
|
||
break;
|
||
default:
|
||
complaint (&symfile_complaints,
|
||
_("mangled .debug_line section"));
|
||
return;
|
||
}
|
||
/* Make sure that we parsed the extended op correctly. If e.g.
|
||
we expected a different address size than the producer used,
|
||
we may have read the wrong number of bytes. */
|
||
if (line_ptr != extended_end)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("mangled .debug_line section"));
|
||
return;
|
||
}
|
||
break;
|
||
case DW_LNS_copy:
|
||
dwarf_record_line (&reader_state, &state_machine, 0);
|
||
state_machine.discriminator = 0;
|
||
break;
|
||
case DW_LNS_advance_pc:
|
||
{
|
||
CORE_ADDR adjust
|
||
= read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
CORE_ADDR addr_adj;
|
||
|
||
addr_adj = (((state_machine.op_index + adjust)
|
||
/ lh->maximum_ops_per_instruction)
|
||
* lh->minimum_instruction_length);
|
||
state_machine.address
|
||
+= gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
|
||
state_machine.op_index = ((state_machine.op_index + adjust)
|
||
% lh->maximum_ops_per_instruction);
|
||
line_ptr += bytes_read;
|
||
}
|
||
break;
|
||
case DW_LNS_advance_line:
|
||
{
|
||
int line_delta
|
||
= read_signed_leb128 (abfd, line_ptr, &bytes_read);
|
||
|
||
state_machine.line += line_delta;
|
||
if (line_delta != 0)
|
||
state_machine.line_has_non_zero_discriminator
|
||
= state_machine.discriminator != 0;
|
||
line_ptr += bytes_read;
|
||
}
|
||
break;
|
||
case DW_LNS_set_file:
|
||
{
|
||
/* The arrays lh->include_dirs and lh->file_names are
|
||
0-based, but the directory and file name numbers in
|
||
the statement program are 1-based. */
|
||
struct file_entry *fe;
|
||
const char *dir = NULL;
|
||
|
||
state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
|
||
&bytes_read);
|
||
line_ptr += bytes_read;
|
||
if (state_machine.file == 0
|
||
|| state_machine.file - 1 >= lh->num_file_names)
|
||
dwarf2_debug_line_missing_file_complaint ();
|
||
else
|
||
{
|
||
fe = &lh->file_names[state_machine.file - 1];
|
||
if (fe->dir_index && lh->include_dirs != NULL)
|
||
dir = lh->include_dirs[fe->dir_index - 1];
|
||
if (record_lines_p)
|
||
{
|
||
state_machine.last_subfile = current_subfile;
|
||
state_machine.line_has_non_zero_discriminator
|
||
= state_machine.discriminator != 0;
|
||
dwarf2_start_subfile (fe->name, dir);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
case DW_LNS_set_column:
|
||
(void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
break;
|
||
case DW_LNS_negate_stmt:
|
||
state_machine.is_stmt = (!state_machine.is_stmt);
|
||
break;
|
||
case DW_LNS_set_basic_block:
|
||
break;
|
||
/* Add to the address register of the state machine the
|
||
address increment value corresponding to special opcode
|
||
255. I.e., this value is scaled by the minimum
|
||
instruction length since special opcode 255 would have
|
||
scaled the increment. */
|
||
case DW_LNS_const_add_pc:
|
||
{
|
||
CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
|
||
CORE_ADDR addr_adj;
|
||
|
||
addr_adj = (((state_machine.op_index + adjust)
|
||
/ lh->maximum_ops_per_instruction)
|
||
* lh->minimum_instruction_length);
|
||
state_machine.address
|
||
+= gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
|
||
state_machine.op_index = ((state_machine.op_index + adjust)
|
||
% lh->maximum_ops_per_instruction);
|
||
}
|
||
break;
|
||
case DW_LNS_fixed_advance_pc:
|
||
{
|
||
CORE_ADDR addr_adj;
|
||
|
||
addr_adj = read_2_bytes (abfd, line_ptr);
|
||
state_machine.address
|
||
+= gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
|
||
state_machine.op_index = 0;
|
||
line_ptr += 2;
|
||
}
|
||
break;
|
||
default:
|
||
{
|
||
/* Unknown standard opcode, ignore it. */
|
||
int i;
|
||
|
||
for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
|
||
{
|
||
(void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
|
||
line_ptr += bytes_read;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!end_sequence)
|
||
dwarf2_debug_line_missing_end_sequence_complaint ();
|
||
|
||
/* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
|
||
in which case we still finish recording the last line). */
|
||
dwarf_record_line (&reader_state, &state_machine, 1);
|
||
}
|
||
}
|
||
|
||
/* Decode the Line Number Program (LNP) for the given line_header
|
||
structure and CU. The actual information extracted and the type
|
||
of structures created from the LNP depends on the value of PST.
|
||
|
||
1. If PST is NULL, then this procedure uses the data from the program
|
||
to create all necessary symbol tables, and their linetables.
|
||
|
||
2. If PST is not NULL, this procedure reads the program to determine
|
||
the list of files included by the unit represented by PST, and
|
||
builds all the associated partial symbol tables.
|
||
|
||
COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
|
||
It is used for relative paths in the line table.
|
||
NOTE: When processing partial symtabs (pst != NULL),
|
||
comp_dir == pst->dirname.
|
||
|
||
NOTE: It is important that psymtabs have the same file name (via strcmp)
|
||
as the corresponding symtab. Since COMP_DIR is not used in the name of the
|
||
symtab we don't use it in the name of the psymtabs we create.
|
||
E.g. expand_line_sal requires this when finding psymtabs to expand.
|
||
A good testcase for this is mb-inline.exp.
|
||
|
||
LOWPC is the lowest address in CU (or 0 if not known).
|
||
|
||
Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
|
||
for its PC<->lines mapping information. Otherwise only the filename
|
||
table is read in. */
|
||
|
||
static void
|
||
dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
|
||
struct dwarf2_cu *cu, struct partial_symtab *pst,
|
||
CORE_ADDR lowpc, int decode_mapping)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
const int decode_for_pst_p = (pst != NULL);
|
||
|
||
if (decode_mapping)
|
||
dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
|
||
|
||
if (decode_for_pst_p)
|
||
{
|
||
int file_index;
|
||
|
||
/* Now that we're done scanning the Line Header Program, we can
|
||
create the psymtab of each included file. */
|
||
for (file_index = 0; file_index < lh->num_file_names; file_index++)
|
||
if (lh->file_names[file_index].included_p == 1)
|
||
{
|
||
const char *include_name =
|
||
psymtab_include_file_name (lh, file_index, pst, comp_dir);
|
||
if (include_name != NULL)
|
||
dwarf2_create_include_psymtab (include_name, pst, objfile);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Make sure a symtab is created for every file, even files
|
||
which contain only variables (i.e. no code with associated
|
||
line numbers). */
|
||
struct compunit_symtab *cust = buildsym_compunit_symtab ();
|
||
int i;
|
||
|
||
for (i = 0; i < lh->num_file_names; i++)
|
||
{
|
||
const char *dir = NULL;
|
||
struct file_entry *fe;
|
||
|
||
fe = &lh->file_names[i];
|
||
if (fe->dir_index && lh->include_dirs != NULL)
|
||
dir = lh->include_dirs[fe->dir_index - 1];
|
||
dwarf2_start_subfile (fe->name, dir);
|
||
|
||
if (current_subfile->symtab == NULL)
|
||
{
|
||
current_subfile->symtab
|
||
= allocate_symtab (cust, current_subfile->name);
|
||
}
|
||
fe->symtab = current_subfile->symtab;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Start a subfile for DWARF. FILENAME is the name of the file and
|
||
DIRNAME the name of the source directory which contains FILENAME
|
||
or NULL if not known.
|
||
This routine tries to keep line numbers from identical absolute and
|
||
relative file names in a common subfile.
|
||
|
||
Using the `list' example from the GDB testsuite, which resides in
|
||
/srcdir and compiling it with Irix6.2 cc in /compdir using a filename
|
||
of /srcdir/list0.c yields the following debugging information for list0.c:
|
||
|
||
DW_AT_name: /srcdir/list0.c
|
||
DW_AT_comp_dir: /compdir
|
||
files.files[0].name: list0.h
|
||
files.files[0].dir: /srcdir
|
||
files.files[1].name: list0.c
|
||
files.files[1].dir: /srcdir
|
||
|
||
The line number information for list0.c has to end up in a single
|
||
subfile, so that `break /srcdir/list0.c:1' works as expected.
|
||
start_subfile will ensure that this happens provided that we pass the
|
||
concatenation of files.files[1].dir and files.files[1].name as the
|
||
subfile's name. */
|
||
|
||
static void
|
||
dwarf2_start_subfile (const char *filename, const char *dirname)
|
||
{
|
||
char *copy = NULL;
|
||
|
||
/* In order not to lose the line information directory,
|
||
we concatenate it to the filename when it makes sense.
|
||
Note that the Dwarf3 standard says (speaking of filenames in line
|
||
information): ``The directory index is ignored for file names
|
||
that represent full path names''. Thus ignoring dirname in the
|
||
`else' branch below isn't an issue. */
|
||
|
||
if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
|
||
{
|
||
copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
|
||
filename = copy;
|
||
}
|
||
|
||
start_subfile (filename);
|
||
|
||
if (copy != NULL)
|
||
xfree (copy);
|
||
}
|
||
|
||
/* Start a symtab for DWARF.
|
||
NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
|
||
|
||
static struct compunit_symtab *
|
||
dwarf2_start_symtab (struct dwarf2_cu *cu,
|
||
const char *name, const char *comp_dir, CORE_ADDR low_pc)
|
||
{
|
||
struct compunit_symtab *cust
|
||
= start_symtab (cu->objfile, name, comp_dir, low_pc);
|
||
|
||
record_debugformat ("DWARF 2");
|
||
record_producer (cu->producer);
|
||
|
||
/* We assume that we're processing GCC output. */
|
||
processing_gcc_compilation = 2;
|
||
|
||
cu->processing_has_namespace_info = 0;
|
||
|
||
return cust;
|
||
}
|
||
|
||
static void
|
||
var_decode_location (struct attribute *attr, struct symbol *sym,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct comp_unit_head *cu_header = &cu->header;
|
||
|
||
/* NOTE drow/2003-01-30: There used to be a comment and some special
|
||
code here to turn a symbol with DW_AT_external and a
|
||
SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
|
||
necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
|
||
with some versions of binutils) where shared libraries could have
|
||
relocations against symbols in their debug information - the
|
||
minimal symbol would have the right address, but the debug info
|
||
would not. It's no longer necessary, because we will explicitly
|
||
apply relocations when we read in the debug information now. */
|
||
|
||
/* A DW_AT_location attribute with no contents indicates that a
|
||
variable has been optimized away. */
|
||
if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
|
||
{
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
|
||
return;
|
||
}
|
||
|
||
/* Handle one degenerate form of location expression specially, to
|
||
preserve GDB's previous behavior when section offsets are
|
||
specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
|
||
then mark this symbol as LOC_STATIC. */
|
||
|
||
if (attr_form_is_block (attr)
|
||
&& ((DW_BLOCK (attr)->data[0] == DW_OP_addr
|
||
&& DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
|
||
|| (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
|
||
&& (DW_BLOCK (attr)->size
|
||
== 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
|
||
{
|
||
unsigned int dummy;
|
||
|
||
if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
|
||
SYMBOL_VALUE_ADDRESS (sym) =
|
||
read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
|
||
else
|
||
SYMBOL_VALUE_ADDRESS (sym) =
|
||
read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
|
||
fixup_symbol_section (sym, objfile);
|
||
SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
|
||
SYMBOL_SECTION (sym));
|
||
return;
|
||
}
|
||
|
||
/* NOTE drow/2002-01-30: It might be worthwhile to have a static
|
||
expression evaluator, and use LOC_COMPUTED only when necessary
|
||
(i.e. when the value of a register or memory location is
|
||
referenced, or a thread-local block, etc.). Then again, it might
|
||
not be worthwhile. I'm assuming that it isn't unless performance
|
||
or memory numbers show me otherwise. */
|
||
|
||
dwarf2_symbol_mark_computed (attr, sym, cu, 0);
|
||
|
||
if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
|
||
cu->has_loclist = 1;
|
||
}
|
||
|
||
/* Given a pointer to a DWARF information entry, figure out if we need
|
||
to make a symbol table entry for it, and if so, create a new entry
|
||
and return a pointer to it.
|
||
If TYPE is NULL, determine symbol type from the die, otherwise
|
||
used the passed type.
|
||
If SPACE is not NULL, use it to hold the new symbol. If it is
|
||
NULL, allocate a new symbol on the objfile's obstack. */
|
||
|
||
static struct symbol *
|
||
new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
|
||
struct symbol *space)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
||
struct symbol *sym = NULL;
|
||
const char *name;
|
||
struct attribute *attr = NULL;
|
||
struct attribute *attr2 = NULL;
|
||
CORE_ADDR baseaddr;
|
||
struct pending **list_to_add = NULL;
|
||
|
||
int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
name = dwarf2_name (die, cu);
|
||
if (name)
|
||
{
|
||
const char *linkagename;
|
||
int suppress_add = 0;
|
||
|
||
if (space)
|
||
sym = space;
|
||
else
|
||
sym = allocate_symbol (objfile);
|
||
OBJSTAT (objfile, n_syms++);
|
||
|
||
/* Cache this symbol's name and the name's demangled form (if any). */
|
||
SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
|
||
linkagename = dwarf2_physname (name, die, cu);
|
||
SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
|
||
|
||
/* Fortran does not have mangling standard and the mangling does differ
|
||
between gfortran, iFort etc. */
|
||
if (cu->language == language_fortran
|
||
&& symbol_get_demangled_name (&(sym->ginfo)) == NULL)
|
||
symbol_set_demangled_name (&(sym->ginfo),
|
||
dwarf2_full_name (name, die, cu),
|
||
NULL);
|
||
|
||
/* Default assumptions.
|
||
Use the passed type or decode it from the die. */
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
|
||
if (type != NULL)
|
||
SYMBOL_TYPE (sym) = type;
|
||
else
|
||
SYMBOL_TYPE (sym) = die_type (die, cu);
|
||
attr = dwarf2_attr (die,
|
||
inlined_func ? DW_AT_call_line : DW_AT_decl_line,
|
||
cu);
|
||
if (attr)
|
||
{
|
||
SYMBOL_LINE (sym) = DW_UNSND (attr);
|
||
}
|
||
|
||
attr = dwarf2_attr (die,
|
||
inlined_func ? DW_AT_call_file : DW_AT_decl_file,
|
||
cu);
|
||
if (attr)
|
||
{
|
||
int file_index = DW_UNSND (attr);
|
||
|
||
if (cu->line_header == NULL
|
||
|| file_index > cu->line_header->num_file_names)
|
||
complaint (&symfile_complaints,
|
||
_("file index out of range"));
|
||
else if (file_index > 0)
|
||
{
|
||
struct file_entry *fe;
|
||
|
||
fe = &cu->line_header->file_names[file_index - 1];
|
||
symbol_set_symtab (sym, fe->symtab);
|
||
}
|
||
}
|
||
|
||
switch (die->tag)
|
||
{
|
||
case DW_TAG_label:
|
||
attr = dwarf2_attr (die, DW_AT_low_pc, cu);
|
||
if (attr)
|
||
{
|
||
CORE_ADDR addr;
|
||
|
||
addr = attr_value_as_address (attr);
|
||
addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
|
||
SYMBOL_VALUE_ADDRESS (sym) = addr;
|
||
}
|
||
SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
|
||
SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
|
||
add_symbol_to_list (sym, cu->list_in_scope);
|
||
break;
|
||
case DW_TAG_subprogram:
|
||
/* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
|
||
finish_block. */
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
|
||
attr2 = dwarf2_attr (die, DW_AT_external, cu);
|
||
if ((attr2 && (DW_UNSND (attr2) != 0))
|
||
|| cu->language == language_ada)
|
||
{
|
||
/* Subprograms marked external are stored as a global symbol.
|
||
Ada subprograms, whether marked external or not, are always
|
||
stored as a global symbol, because we want to be able to
|
||
access them globally. For instance, we want to be able
|
||
to break on a nested subprogram without having to
|
||
specify the context. */
|
||
list_to_add = &global_symbols;
|
||
}
|
||
else
|
||
{
|
||
list_to_add = cu->list_in_scope;
|
||
}
|
||
break;
|
||
case DW_TAG_inlined_subroutine:
|
||
/* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
|
||
finish_block. */
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
|
||
SYMBOL_INLINED (sym) = 1;
|
||
list_to_add = cu->list_in_scope;
|
||
break;
|
||
case DW_TAG_template_value_param:
|
||
suppress_add = 1;
|
||
/* Fall through. */
|
||
case DW_TAG_constant:
|
||
case DW_TAG_variable:
|
||
case DW_TAG_member:
|
||
/* Compilation with minimal debug info may result in
|
||
variables with missing type entries. Change the
|
||
misleading `void' type to something sensible. */
|
||
if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
|
||
SYMBOL_TYPE (sym)
|
||
= objfile_type (objfile)->nodebug_data_symbol;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_const_value, cu);
|
||
/* In the case of DW_TAG_member, we should only be called for
|
||
static const members. */
|
||
if (die->tag == DW_TAG_member)
|
||
{
|
||
/* dwarf2_add_field uses die_is_declaration,
|
||
so we do the same. */
|
||
gdb_assert (die_is_declaration (die, cu));
|
||
gdb_assert (attr);
|
||
}
|
||
if (attr)
|
||
{
|
||
dwarf2_const_value (attr, sym, cu);
|
||
attr2 = dwarf2_attr (die, DW_AT_external, cu);
|
||
if (!suppress_add)
|
||
{
|
||
if (attr2 && (DW_UNSND (attr2) != 0))
|
||
list_to_add = &global_symbols;
|
||
else
|
||
list_to_add = cu->list_in_scope;
|
||
}
|
||
break;
|
||
}
|
||
attr = dwarf2_attr (die, DW_AT_location, cu);
|
||
if (attr)
|
||
{
|
||
var_decode_location (attr, sym, cu);
|
||
attr2 = dwarf2_attr (die, DW_AT_external, cu);
|
||
|
||
/* Fortran explicitly imports any global symbols to the local
|
||
scope by DW_TAG_common_block. */
|
||
if (cu->language == language_fortran && die->parent
|
||
&& die->parent->tag == DW_TAG_common_block)
|
||
attr2 = NULL;
|
||
|
||
if (SYMBOL_CLASS (sym) == LOC_STATIC
|
||
&& SYMBOL_VALUE_ADDRESS (sym) == 0
|
||
&& !dwarf2_per_objfile->has_section_at_zero)
|
||
{
|
||
/* When a static variable is eliminated by the linker,
|
||
the corresponding debug information is not stripped
|
||
out, but the variable address is set to null;
|
||
do not add such variables into symbol table. */
|
||
}
|
||
else if (attr2 && (DW_UNSND (attr2) != 0))
|
||
{
|
||
/* Workaround gfortran PR debug/40040 - it uses
|
||
DW_AT_location for variables in -fPIC libraries which may
|
||
get overriden by other libraries/executable and get
|
||
a different address. Resolve it by the minimal symbol
|
||
which may come from inferior's executable using copy
|
||
relocation. Make this workaround only for gfortran as for
|
||
other compilers GDB cannot guess the minimal symbol
|
||
Fortran mangling kind. */
|
||
if (cu->language == language_fortran && die->parent
|
||
&& die->parent->tag == DW_TAG_module
|
||
&& cu->producer
|
||
&& startswith (cu->producer, "GNU Fortran"))
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
|
||
|
||
/* A variable with DW_AT_external is never static,
|
||
but it may be block-scoped. */
|
||
list_to_add = (cu->list_in_scope == &file_symbols
|
||
? &global_symbols : cu->list_in_scope);
|
||
}
|
||
else
|
||
list_to_add = cu->list_in_scope;
|
||
}
|
||
else
|
||
{
|
||
/* We do not know the address of this symbol.
|
||
If it is an external symbol and we have type information
|
||
for it, enter the symbol as a LOC_UNRESOLVED symbol.
|
||
The address of the variable will then be determined from
|
||
the minimal symbol table whenever the variable is
|
||
referenced. */
|
||
attr2 = dwarf2_attr (die, DW_AT_external, cu);
|
||
|
||
/* Fortran explicitly imports any global symbols to the local
|
||
scope by DW_TAG_common_block. */
|
||
if (cu->language == language_fortran && die->parent
|
||
&& die->parent->tag == DW_TAG_common_block)
|
||
{
|
||
/* SYMBOL_CLASS doesn't matter here because
|
||
read_common_block is going to reset it. */
|
||
if (!suppress_add)
|
||
list_to_add = cu->list_in_scope;
|
||
}
|
||
else if (attr2 && (DW_UNSND (attr2) != 0)
|
||
&& dwarf2_attr (die, DW_AT_type, cu) != NULL)
|
||
{
|
||
/* A variable with DW_AT_external is never static, but it
|
||
may be block-scoped. */
|
||
list_to_add = (cu->list_in_scope == &file_symbols
|
||
? &global_symbols : cu->list_in_scope);
|
||
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
|
||
}
|
||
else if (!die_is_declaration (die, cu))
|
||
{
|
||
/* Use the default LOC_OPTIMIZED_OUT class. */
|
||
gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
|
||
if (!suppress_add)
|
||
list_to_add = cu->list_in_scope;
|
||
}
|
||
}
|
||
break;
|
||
case DW_TAG_formal_parameter:
|
||
/* If we are inside a function, mark this as an argument. If
|
||
not, we might be looking at an argument to an inlined function
|
||
when we do not have enough information to show inlined frames;
|
||
pretend it's a local variable in that case so that the user can
|
||
still see it. */
|
||
if (context_stack_depth > 0
|
||
&& context_stack[context_stack_depth - 1].name != NULL)
|
||
SYMBOL_IS_ARGUMENT (sym) = 1;
|
||
attr = dwarf2_attr (die, DW_AT_location, cu);
|
||
if (attr)
|
||
{
|
||
var_decode_location (attr, sym, cu);
|
||
}
|
||
attr = dwarf2_attr (die, DW_AT_const_value, cu);
|
||
if (attr)
|
||
{
|
||
dwarf2_const_value (attr, sym, cu);
|
||
}
|
||
|
||
list_to_add = cu->list_in_scope;
|
||
break;
|
||
case DW_TAG_unspecified_parameters:
|
||
/* From varargs functions; gdb doesn't seem to have any
|
||
interest in this information, so just ignore it for now.
|
||
(FIXME?) */
|
||
break;
|
||
case DW_TAG_template_type_param:
|
||
suppress_add = 1;
|
||
/* Fall through. */
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_structure_type:
|
||
case DW_TAG_union_type:
|
||
case DW_TAG_set_type:
|
||
case DW_TAG_enumeration_type:
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
|
||
SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
|
||
|
||
{
|
||
/* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
|
||
really ever be static objects: otherwise, if you try
|
||
to, say, break of a class's method and you're in a file
|
||
which doesn't mention that class, it won't work unless
|
||
the check for all static symbols in lookup_symbol_aux
|
||
saves you. See the OtherFileClass tests in
|
||
gdb.c++/namespace.exp. */
|
||
|
||
if (!suppress_add)
|
||
{
|
||
list_to_add = (cu->list_in_scope == &file_symbols
|
||
&& (cu->language == language_cplus
|
||
|| cu->language == language_java)
|
||
? &global_symbols : cu->list_in_scope);
|
||
|
||
/* The semantics of C++ state that "struct foo {
|
||
... }" also defines a typedef for "foo". A Java
|
||
class declaration also defines a typedef for the
|
||
class. */
|
||
if (cu->language == language_cplus
|
||
|| cu->language == language_java
|
||
|| cu->language == language_ada
|
||
|| cu->language == language_d
|
||
|| cu->language == language_rust)
|
||
{
|
||
/* The symbol's name is already allocated along
|
||
with this objfile, so we don't need to
|
||
duplicate it for the type. */
|
||
if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
|
||
TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
case DW_TAG_typedef:
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
list_to_add = cu->list_in_scope;
|
||
break;
|
||
case DW_TAG_base_type:
|
||
case DW_TAG_subrange_type:
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
|
||
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
|
||
list_to_add = cu->list_in_scope;
|
||
break;
|
||
case DW_TAG_enumerator:
|
||
attr = dwarf2_attr (die, DW_AT_const_value, cu);
|
||
if (attr)
|
||
{
|
||
dwarf2_const_value (attr, sym, cu);
|
||
}
|
||
{
|
||
/* NOTE: carlton/2003-11-10: See comment above in the
|
||
DW_TAG_class_type, etc. block. */
|
||
|
||
list_to_add = (cu->list_in_scope == &file_symbols
|
||
&& (cu->language == language_cplus
|
||
|| cu->language == language_java)
|
||
? &global_symbols : cu->list_in_scope);
|
||
}
|
||
break;
|
||
case DW_TAG_imported_declaration:
|
||
case DW_TAG_namespace:
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
|
||
list_to_add = &global_symbols;
|
||
break;
|
||
case DW_TAG_module:
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
|
||
SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
|
||
list_to_add = &global_symbols;
|
||
break;
|
||
case DW_TAG_common_block:
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
|
||
SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
|
||
add_symbol_to_list (sym, cu->list_in_scope);
|
||
break;
|
||
default:
|
||
/* Not a tag we recognize. Hopefully we aren't processing
|
||
trash data, but since we must specifically ignore things
|
||
we don't recognize, there is nothing else we should do at
|
||
this point. */
|
||
complaint (&symfile_complaints, _("unsupported tag: '%s'"),
|
||
dwarf_tag_name (die->tag));
|
||
break;
|
||
}
|
||
|
||
if (suppress_add)
|
||
{
|
||
sym->hash_next = objfile->template_symbols;
|
||
objfile->template_symbols = sym;
|
||
list_to_add = NULL;
|
||
}
|
||
|
||
if (list_to_add != NULL)
|
||
add_symbol_to_list (sym, list_to_add);
|
||
|
||
/* For the benefit of old versions of GCC, check for anonymous
|
||
namespaces based on the demangled name. */
|
||
if (!cu->processing_has_namespace_info
|
||
&& cu->language == language_cplus)
|
||
cp_scan_for_anonymous_namespaces (sym, objfile);
|
||
}
|
||
return (sym);
|
||
}
|
||
|
||
/* A wrapper for new_symbol_full that always allocates a new symbol. */
|
||
|
||
static struct symbol *
|
||
new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
|
||
{
|
||
return new_symbol_full (die, type, cu, NULL);
|
||
}
|
||
|
||
/* Given an attr with a DW_FORM_dataN value in host byte order,
|
||
zero-extend it as appropriate for the symbol's type. The DWARF
|
||
standard (v4) is not entirely clear about the meaning of using
|
||
DW_FORM_dataN for a constant with a signed type, where the type is
|
||
wider than the data. The conclusion of a discussion on the DWARF
|
||
list was that this is unspecified. We choose to always zero-extend
|
||
because that is the interpretation long in use by GCC. */
|
||
|
||
static gdb_byte *
|
||
dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
|
||
struct dwarf2_cu *cu, LONGEST *value, int bits)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
|
||
BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
|
||
LONGEST l = DW_UNSND (attr);
|
||
|
||
if (bits < sizeof (*value) * 8)
|
||
{
|
||
l &= ((LONGEST) 1 << bits) - 1;
|
||
*value = l;
|
||
}
|
||
else if (bits == sizeof (*value) * 8)
|
||
*value = l;
|
||
else
|
||
{
|
||
gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
|
||
store_unsigned_integer (bytes, bits / 8, byte_order, l);
|
||
return bytes;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Read a constant value from an attribute. Either set *VALUE, or if
|
||
the value does not fit in *VALUE, set *BYTES - either already
|
||
allocated on the objfile obstack, or newly allocated on OBSTACK,
|
||
or, set *BATON, if we translated the constant to a location
|
||
expression. */
|
||
|
||
static void
|
||
dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
|
||
const char *name, struct obstack *obstack,
|
||
struct dwarf2_cu *cu,
|
||
LONGEST *value, const gdb_byte **bytes,
|
||
struct dwarf2_locexpr_baton **baton)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct comp_unit_head *cu_header = &cu->header;
|
||
struct dwarf_block *blk;
|
||
enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
|
||
BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
|
||
|
||
*value = 0;
|
||
*bytes = NULL;
|
||
*baton = NULL;
|
||
|
||
switch (attr->form)
|
||
{
|
||
case DW_FORM_addr:
|
||
case DW_FORM_GNU_addr_index:
|
||
{
|
||
gdb_byte *data;
|
||
|
||
if (TYPE_LENGTH (type) != cu_header->addr_size)
|
||
dwarf2_const_value_length_mismatch_complaint (name,
|
||
cu_header->addr_size,
|
||
TYPE_LENGTH (type));
|
||
/* Symbols of this form are reasonably rare, so we just
|
||
piggyback on the existing location code rather than writing
|
||
a new implementation of symbol_computed_ops. */
|
||
*baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
|
||
(*baton)->per_cu = cu->per_cu;
|
||
gdb_assert ((*baton)->per_cu);
|
||
|
||
(*baton)->size = 2 + cu_header->addr_size;
|
||
data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
|
||
(*baton)->data = data;
|
||
|
||
data[0] = DW_OP_addr;
|
||
store_unsigned_integer (&data[1], cu_header->addr_size,
|
||
byte_order, DW_ADDR (attr));
|
||
data[cu_header->addr_size + 1] = DW_OP_stack_value;
|
||
}
|
||
break;
|
||
case DW_FORM_string:
|
||
case DW_FORM_strp:
|
||
case DW_FORM_GNU_str_index:
|
||
case DW_FORM_GNU_strp_alt:
|
||
/* DW_STRING is already allocated on the objfile obstack, point
|
||
directly to it. */
|
||
*bytes = (const gdb_byte *) DW_STRING (attr);
|
||
break;
|
||
case DW_FORM_block1:
|
||
case DW_FORM_block2:
|
||
case DW_FORM_block4:
|
||
case DW_FORM_block:
|
||
case DW_FORM_exprloc:
|
||
blk = DW_BLOCK (attr);
|
||
if (TYPE_LENGTH (type) != blk->size)
|
||
dwarf2_const_value_length_mismatch_complaint (name, blk->size,
|
||
TYPE_LENGTH (type));
|
||
*bytes = blk->data;
|
||
break;
|
||
|
||
/* The DW_AT_const_value attributes are supposed to carry the
|
||
symbol's value "represented as it would be on the target
|
||
architecture." By the time we get here, it's already been
|
||
converted to host endianness, so we just need to sign- or
|
||
zero-extend it as appropriate. */
|
||
case DW_FORM_data1:
|
||
*bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
|
||
break;
|
||
case DW_FORM_data2:
|
||
*bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
|
||
break;
|
||
case DW_FORM_data4:
|
||
*bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
|
||
break;
|
||
case DW_FORM_data8:
|
||
*bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
|
||
break;
|
||
|
||
case DW_FORM_sdata:
|
||
*value = DW_SND (attr);
|
||
break;
|
||
|
||
case DW_FORM_udata:
|
||
*value = DW_UNSND (attr);
|
||
break;
|
||
|
||
default:
|
||
complaint (&symfile_complaints,
|
||
_("unsupported const value attribute form: '%s'"),
|
||
dwarf_form_name (attr->form));
|
||
*value = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
/* Copy constant value from an attribute to a symbol. */
|
||
|
||
static void
|
||
dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
LONGEST value;
|
||
const gdb_byte *bytes;
|
||
struct dwarf2_locexpr_baton *baton;
|
||
|
||
dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
|
||
SYMBOL_PRINT_NAME (sym),
|
||
&objfile->objfile_obstack, cu,
|
||
&value, &bytes, &baton);
|
||
|
||
if (baton != NULL)
|
||
{
|
||
SYMBOL_LOCATION_BATON (sym) = baton;
|
||
SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
|
||
}
|
||
else if (bytes != NULL)
|
||
{
|
||
SYMBOL_VALUE_BYTES (sym) = bytes;
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
|
||
}
|
||
else
|
||
{
|
||
SYMBOL_VALUE (sym) = value;
|
||
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
|
||
}
|
||
}
|
||
|
||
/* Return the type of the die in question using its DW_AT_type attribute. */
|
||
|
||
static struct type *
|
||
die_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *type_attr;
|
||
|
||
type_attr = dwarf2_attr (die, DW_AT_type, cu);
|
||
if (!type_attr)
|
||
{
|
||
/* A missing DW_AT_type represents a void type. */
|
||
return objfile_type (cu->objfile)->builtin_void;
|
||
}
|
||
|
||
return lookup_die_type (die, type_attr, cu);
|
||
}
|
||
|
||
/* True iff CU's producer generates GNAT Ada auxiliary information
|
||
that allows to find parallel types through that information instead
|
||
of having to do expensive parallel lookups by type name. */
|
||
|
||
static int
|
||
need_gnat_info (struct dwarf2_cu *cu)
|
||
{
|
||
/* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
|
||
of GNAT produces this auxiliary information, without any indication
|
||
that it is produced. Part of enhancing the FSF version of GNAT
|
||
to produce that information will be to put in place an indicator
|
||
that we can use in order to determine whether the descriptive type
|
||
info is available or not. One suggestion that has been made is
|
||
to use a new attribute, attached to the CU die. For now, assume
|
||
that the descriptive type info is not available. */
|
||
return 0;
|
||
}
|
||
|
||
/* Return the auxiliary type of the die in question using its
|
||
DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
|
||
attribute is not present. */
|
||
|
||
static struct type *
|
||
die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *type_attr;
|
||
|
||
type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
|
||
if (!type_attr)
|
||
return NULL;
|
||
|
||
return lookup_die_type (die, type_attr, cu);
|
||
}
|
||
|
||
/* If DIE has a descriptive_type attribute, then set the TYPE's
|
||
descriptive type accordingly. */
|
||
|
||
static void
|
||
set_descriptive_type (struct type *type, struct die_info *die,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct type *descriptive_type = die_descriptive_type (die, cu);
|
||
|
||
if (descriptive_type)
|
||
{
|
||
ALLOCATE_GNAT_AUX_TYPE (type);
|
||
TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
|
||
}
|
||
}
|
||
|
||
/* Return the containing type of the die in question using its
|
||
DW_AT_containing_type attribute. */
|
||
|
||
static struct type *
|
||
die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *type_attr;
|
||
|
||
type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
|
||
if (!type_attr)
|
||
error (_("Dwarf Error: Problem turning containing type into gdb type "
|
||
"[in module %s]"), objfile_name (cu->objfile));
|
||
|
||
return lookup_die_type (die, type_attr, cu);
|
||
}
|
||
|
||
/* Return an error marker type to use for the ill formed type in DIE/CU. */
|
||
|
||
static struct type *
|
||
build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
char *message, *saved;
|
||
|
||
message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
|
||
objfile_name (objfile),
|
||
cu->header.offset.sect_off,
|
||
die->offset.sect_off);
|
||
saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
|
||
message, strlen (message));
|
||
xfree (message);
|
||
|
||
return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
|
||
}
|
||
|
||
/* Look up the type of DIE in CU using its type attribute ATTR.
|
||
ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
|
||
DW_AT_containing_type.
|
||
If there is no type substitute an error marker. */
|
||
|
||
static struct type *
|
||
lookup_die_type (struct die_info *die, const struct attribute *attr,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
struct type *this_type;
|
||
|
||
gdb_assert (attr->name == DW_AT_type
|
||
|| attr->name == DW_AT_GNAT_descriptive_type
|
||
|| attr->name == DW_AT_containing_type);
|
||
|
||
/* First see if we have it cached. */
|
||
|
||
if (attr->form == DW_FORM_GNU_ref_alt)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
sect_offset offset = dwarf2_get_ref_die_offset (attr);
|
||
|
||
per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
|
||
this_type = get_die_type_at_offset (offset, per_cu);
|
||
}
|
||
else if (attr_form_is_ref (attr))
|
||
{
|
||
sect_offset offset = dwarf2_get_ref_die_offset (attr);
|
||
|
||
this_type = get_die_type_at_offset (offset, cu->per_cu);
|
||
}
|
||
else if (attr->form == DW_FORM_ref_sig8)
|
||
{
|
||
ULONGEST signature = DW_SIGNATURE (attr);
|
||
|
||
return get_signatured_type (die, signature, cu);
|
||
}
|
||
else
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Dwarf Error: Bad type attribute %s in DIE"
|
||
" at 0x%x [in module %s]"),
|
||
dwarf_attr_name (attr->name), die->offset.sect_off,
|
||
objfile_name (objfile));
|
||
return build_error_marker_type (cu, die);
|
||
}
|
||
|
||
/* If not cached we need to read it in. */
|
||
|
||
if (this_type == NULL)
|
||
{
|
||
struct die_info *type_die = NULL;
|
||
struct dwarf2_cu *type_cu = cu;
|
||
|
||
if (attr_form_is_ref (attr))
|
||
type_die = follow_die_ref (die, attr, &type_cu);
|
||
if (type_die == NULL)
|
||
return build_error_marker_type (cu, die);
|
||
/* If we find the type now, it's probably because the type came
|
||
from an inter-CU reference and the type's CU got expanded before
|
||
ours. */
|
||
this_type = read_type_die (type_die, type_cu);
|
||
}
|
||
|
||
/* If we still don't have a type use an error marker. */
|
||
|
||
if (this_type == NULL)
|
||
return build_error_marker_type (cu, die);
|
||
|
||
return this_type;
|
||
}
|
||
|
||
/* Return the type in DIE, CU.
|
||
Returns NULL for invalid types.
|
||
|
||
This first does a lookup in die_type_hash,
|
||
and only reads the die in if necessary.
|
||
|
||
NOTE: This can be called when reading in partial or full symbols. */
|
||
|
||
static struct type *
|
||
read_type_die (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *this_type;
|
||
|
||
this_type = get_die_type (die, cu);
|
||
if (this_type)
|
||
return this_type;
|
||
|
||
return read_type_die_1 (die, cu);
|
||
}
|
||
|
||
/* Read the type in DIE, CU.
|
||
Returns NULL for invalid types. */
|
||
|
||
static struct type *
|
||
read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct type *this_type = NULL;
|
||
|
||
switch (die->tag)
|
||
{
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_structure_type:
|
||
case DW_TAG_union_type:
|
||
this_type = read_structure_type (die, cu);
|
||
break;
|
||
case DW_TAG_enumeration_type:
|
||
this_type = read_enumeration_type (die, cu);
|
||
break;
|
||
case DW_TAG_subprogram:
|
||
case DW_TAG_subroutine_type:
|
||
case DW_TAG_inlined_subroutine:
|
||
this_type = read_subroutine_type (die, cu);
|
||
break;
|
||
case DW_TAG_array_type:
|
||
this_type = read_array_type (die, cu);
|
||
break;
|
||
case DW_TAG_set_type:
|
||
this_type = read_set_type (die, cu);
|
||
break;
|
||
case DW_TAG_pointer_type:
|
||
this_type = read_tag_pointer_type (die, cu);
|
||
break;
|
||
case DW_TAG_ptr_to_member_type:
|
||
this_type = read_tag_ptr_to_member_type (die, cu);
|
||
break;
|
||
case DW_TAG_reference_type:
|
||
this_type = read_tag_reference_type (die, cu);
|
||
break;
|
||
case DW_TAG_const_type:
|
||
this_type = read_tag_const_type (die, cu);
|
||
break;
|
||
case DW_TAG_volatile_type:
|
||
this_type = read_tag_volatile_type (die, cu);
|
||
break;
|
||
case DW_TAG_restrict_type:
|
||
this_type = read_tag_restrict_type (die, cu);
|
||
break;
|
||
case DW_TAG_string_type:
|
||
this_type = read_tag_string_type (die, cu);
|
||
break;
|
||
case DW_TAG_typedef:
|
||
this_type = read_typedef (die, cu);
|
||
break;
|
||
case DW_TAG_subrange_type:
|
||
this_type = read_subrange_type (die, cu);
|
||
break;
|
||
case DW_TAG_base_type:
|
||
this_type = read_base_type (die, cu);
|
||
break;
|
||
case DW_TAG_unspecified_type:
|
||
this_type = read_unspecified_type (die, cu);
|
||
break;
|
||
case DW_TAG_namespace:
|
||
this_type = read_namespace_type (die, cu);
|
||
break;
|
||
case DW_TAG_module:
|
||
this_type = read_module_type (die, cu);
|
||
break;
|
||
case DW_TAG_atomic_type:
|
||
this_type = read_tag_atomic_type (die, cu);
|
||
break;
|
||
default:
|
||
complaint (&symfile_complaints,
|
||
_("unexpected tag in read_type_die: '%s'"),
|
||
dwarf_tag_name (die->tag));
|
||
break;
|
||
}
|
||
|
||
return this_type;
|
||
}
|
||
|
||
/* See if we can figure out if the class lives in a namespace. We do
|
||
this by looking for a member function; its demangled name will
|
||
contain namespace info, if there is any.
|
||
Return the computed name or NULL.
|
||
Space for the result is allocated on the objfile's obstack.
|
||
This is the full-die version of guess_partial_die_structure_name.
|
||
In this case we know DIE has no useful parent. */
|
||
|
||
static char *
|
||
guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct die_info *spec_die;
|
||
struct dwarf2_cu *spec_cu;
|
||
struct die_info *child;
|
||
|
||
spec_cu = cu;
|
||
spec_die = die_specification (die, &spec_cu);
|
||
if (spec_die != NULL)
|
||
{
|
||
die = spec_die;
|
||
cu = spec_cu;
|
||
}
|
||
|
||
for (child = die->child;
|
||
child != NULL;
|
||
child = child->sibling)
|
||
{
|
||
if (child->tag == DW_TAG_subprogram)
|
||
{
|
||
const char *linkage_name;
|
||
|
||
linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
|
||
if (linkage_name == NULL)
|
||
linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
|
||
cu);
|
||
if (linkage_name != NULL)
|
||
{
|
||
char *actual_name
|
||
= language_class_name_from_physname (cu->language_defn,
|
||
linkage_name);
|
||
char *name = NULL;
|
||
|
||
if (actual_name != NULL)
|
||
{
|
||
const char *die_name = dwarf2_name (die, cu);
|
||
|
||
if (die_name != NULL
|
||
&& strcmp (die_name, actual_name) != 0)
|
||
{
|
||
/* Strip off the class name from the full name.
|
||
We want the prefix. */
|
||
int die_name_len = strlen (die_name);
|
||
int actual_name_len = strlen (actual_name);
|
||
|
||
/* Test for '::' as a sanity check. */
|
||
if (actual_name_len > die_name_len + 2
|
||
&& actual_name[actual_name_len
|
||
- die_name_len - 1] == ':')
|
||
name = (char *) obstack_copy0 (
|
||
&cu->objfile->per_bfd->storage_obstack,
|
||
actual_name, actual_name_len - die_name_len - 2);
|
||
}
|
||
}
|
||
xfree (actual_name);
|
||
return name;
|
||
}
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* GCC might emit a nameless typedef that has a linkage name. Determine the
|
||
prefix part in such case. See
|
||
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
|
||
|
||
static char *
|
||
anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *attr;
|
||
const char *base;
|
||
|
||
if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
|
||
&& die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
|
||
return NULL;
|
||
|
||
if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
|
||
return NULL;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
|
||
if (attr == NULL)
|
||
attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
|
||
if (attr == NULL || DW_STRING (attr) == NULL)
|
||
return NULL;
|
||
|
||
/* dwarf2_name had to be already called. */
|
||
gdb_assert (DW_STRING_IS_CANONICAL (attr));
|
||
|
||
/* Strip the base name, keep any leading namespaces/classes. */
|
||
base = strrchr (DW_STRING (attr), ':');
|
||
if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
|
||
return "";
|
||
|
||
return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
|
||
DW_STRING (attr),
|
||
&base[-1] - DW_STRING (attr));
|
||
}
|
||
|
||
/* Return the name of the namespace/class that DIE is defined within,
|
||
or "" if we can't tell. The caller should not xfree the result.
|
||
|
||
For example, if we're within the method foo() in the following
|
||
code:
|
||
|
||
namespace N {
|
||
class C {
|
||
void foo () {
|
||
}
|
||
};
|
||
}
|
||
|
||
then determine_prefix on foo's die will return "N::C". */
|
||
|
||
static const char *
|
||
determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct die_info *parent, *spec_die;
|
||
struct dwarf2_cu *spec_cu;
|
||
struct type *parent_type;
|
||
char *retval;
|
||
|
||
if (cu->language != language_cplus && cu->language != language_java
|
||
&& cu->language != language_fortran && cu->language != language_d
|
||
&& cu->language != language_rust)
|
||
return "";
|
||
|
||
retval = anonymous_struct_prefix (die, cu);
|
||
if (retval)
|
||
return retval;
|
||
|
||
/* We have to be careful in the presence of DW_AT_specification.
|
||
For example, with GCC 3.4, given the code
|
||
|
||
namespace N {
|
||
void foo() {
|
||
// Definition of N::foo.
|
||
}
|
||
}
|
||
|
||
then we'll have a tree of DIEs like this:
|
||
|
||
1: DW_TAG_compile_unit
|
||
2: DW_TAG_namespace // N
|
||
3: DW_TAG_subprogram // declaration of N::foo
|
||
4: DW_TAG_subprogram // definition of N::foo
|
||
DW_AT_specification // refers to die #3
|
||
|
||
Thus, when processing die #4, we have to pretend that we're in
|
||
the context of its DW_AT_specification, namely the contex of die
|
||
#3. */
|
||
spec_cu = cu;
|
||
spec_die = die_specification (die, &spec_cu);
|
||
if (spec_die == NULL)
|
||
parent = die->parent;
|
||
else
|
||
{
|
||
parent = spec_die->parent;
|
||
cu = spec_cu;
|
||
}
|
||
|
||
if (parent == NULL)
|
||
return "";
|
||
else if (parent->building_fullname)
|
||
{
|
||
const char *name;
|
||
const char *parent_name;
|
||
|
||
/* It has been seen on RealView 2.2 built binaries,
|
||
DW_TAG_template_type_param types actually _defined_ as
|
||
children of the parent class:
|
||
|
||
enum E {};
|
||
template class <class Enum> Class{};
|
||
Class<enum E> class_e;
|
||
|
||
1: DW_TAG_class_type (Class)
|
||
2: DW_TAG_enumeration_type (E)
|
||
3: DW_TAG_enumerator (enum1:0)
|
||
3: DW_TAG_enumerator (enum2:1)
|
||
...
|
||
2: DW_TAG_template_type_param
|
||
DW_AT_type DW_FORM_ref_udata (E)
|
||
|
||
Besides being broken debug info, it can put GDB into an
|
||
infinite loop. Consider:
|
||
|
||
When we're building the full name for Class<E>, we'll start
|
||
at Class, and go look over its template type parameters,
|
||
finding E. We'll then try to build the full name of E, and
|
||
reach here. We're now trying to build the full name of E,
|
||
and look over the parent DIE for containing scope. In the
|
||
broken case, if we followed the parent DIE of E, we'd again
|
||
find Class, and once again go look at its template type
|
||
arguments, etc., etc. Simply don't consider such parent die
|
||
as source-level parent of this die (it can't be, the language
|
||
doesn't allow it), and break the loop here. */
|
||
name = dwarf2_name (die, cu);
|
||
parent_name = dwarf2_name (parent, cu);
|
||
complaint (&symfile_complaints,
|
||
_("template param type '%s' defined within parent '%s'"),
|
||
name ? name : "<unknown>",
|
||
parent_name ? parent_name : "<unknown>");
|
||
return "";
|
||
}
|
||
else
|
||
switch (parent->tag)
|
||
{
|
||
case DW_TAG_namespace:
|
||
parent_type = read_type_die (parent, cu);
|
||
/* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
|
||
DW_TAG_namespace DIEs with a name of "::" for the global namespace.
|
||
Work around this problem here. */
|
||
if (cu->language == language_cplus
|
||
&& strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
|
||
return "";
|
||
/* We give a name to even anonymous namespaces. */
|
||
return TYPE_TAG_NAME (parent_type);
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_structure_type:
|
||
case DW_TAG_union_type:
|
||
case DW_TAG_module:
|
||
parent_type = read_type_die (parent, cu);
|
||
if (TYPE_TAG_NAME (parent_type) != NULL)
|
||
return TYPE_TAG_NAME (parent_type);
|
||
else
|
||
/* An anonymous structure is only allowed non-static data
|
||
members; no typedefs, no member functions, et cetera.
|
||
So it does not need a prefix. */
|
||
return "";
|
||
case DW_TAG_compile_unit:
|
||
case DW_TAG_partial_unit:
|
||
/* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
|
||
if (cu->language == language_cplus
|
||
&& !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
|
||
&& die->child != NULL
|
||
&& (die->tag == DW_TAG_class_type
|
||
|| die->tag == DW_TAG_structure_type
|
||
|| die->tag == DW_TAG_union_type))
|
||
{
|
||
char *name = guess_full_die_structure_name (die, cu);
|
||
if (name != NULL)
|
||
return name;
|
||
}
|
||
return "";
|
||
case DW_TAG_enumeration_type:
|
||
parent_type = read_type_die (parent, cu);
|
||
if (TYPE_DECLARED_CLASS (parent_type))
|
||
{
|
||
if (TYPE_TAG_NAME (parent_type) != NULL)
|
||
return TYPE_TAG_NAME (parent_type);
|
||
return "";
|
||
}
|
||
/* Fall through. */
|
||
default:
|
||
return determine_prefix (parent, cu);
|
||
}
|
||
}
|
||
|
||
/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
|
||
with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
|
||
simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
|
||
an obconcat, otherwise allocate storage for the result. The CU argument is
|
||
used to determine the language and hence, the appropriate separator. */
|
||
|
||
#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
|
||
|
||
static char *
|
||
typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
|
||
int physname, struct dwarf2_cu *cu)
|
||
{
|
||
const char *lead = "";
|
||
const char *sep;
|
||
|
||
if (suffix == NULL || suffix[0] == '\0'
|
||
|| prefix == NULL || prefix[0] == '\0')
|
||
sep = "";
|
||
else if (cu->language == language_java)
|
||
sep = ".";
|
||
else if (cu->language == language_d)
|
||
{
|
||
/* For D, the 'main' function could be defined in any module, but it
|
||
should never be prefixed. */
|
||
if (strcmp (suffix, "D main") == 0)
|
||
{
|
||
prefix = "";
|
||
sep = "";
|
||
}
|
||
else
|
||
sep = ".";
|
||
}
|
||
else if (cu->language == language_fortran && physname)
|
||
{
|
||
/* This is gfortran specific mangling. Normally DW_AT_linkage_name or
|
||
DW_AT_MIPS_linkage_name is preferred and used instead. */
|
||
|
||
lead = "__";
|
||
sep = "_MOD_";
|
||
}
|
||
else
|
||
sep = "::";
|
||
|
||
if (prefix == NULL)
|
||
prefix = "";
|
||
if (suffix == NULL)
|
||
suffix = "";
|
||
|
||
if (obs == NULL)
|
||
{
|
||
char *retval
|
||
= ((char *)
|
||
xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
|
||
|
||
strcpy (retval, lead);
|
||
strcat (retval, prefix);
|
||
strcat (retval, sep);
|
||
strcat (retval, suffix);
|
||
return retval;
|
||
}
|
||
else
|
||
{
|
||
/* We have an obstack. */
|
||
return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
|
||
}
|
||
}
|
||
|
||
/* Return sibling of die, NULL if no sibling. */
|
||
|
||
static struct die_info *
|
||
sibling_die (struct die_info *die)
|
||
{
|
||
return die->sibling;
|
||
}
|
||
|
||
/* Get name of a die, return NULL if not found. */
|
||
|
||
static const char *
|
||
dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
|
||
struct obstack *obstack)
|
||
{
|
||
if (name && cu->language == language_cplus)
|
||
{
|
||
char *canon_name = cp_canonicalize_string (name);
|
||
|
||
if (canon_name != NULL)
|
||
{
|
||
if (strcmp (canon_name, name) != 0)
|
||
name = (const char *) obstack_copy0 (obstack, canon_name,
|
||
strlen (canon_name));
|
||
xfree (canon_name);
|
||
}
|
||
}
|
||
|
||
return name;
|
||
}
|
||
|
||
/* Get name of a die, return NULL if not found.
|
||
Anonymous namespaces are converted to their magic string. */
|
||
|
||
static const char *
|
||
dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_name, cu);
|
||
if ((!attr || !DW_STRING (attr))
|
||
&& die->tag != DW_TAG_namespace
|
||
&& die->tag != DW_TAG_class_type
|
||
&& die->tag != DW_TAG_interface_type
|
||
&& die->tag != DW_TAG_structure_type
|
||
&& die->tag != DW_TAG_union_type)
|
||
return NULL;
|
||
|
||
switch (die->tag)
|
||
{
|
||
case DW_TAG_compile_unit:
|
||
case DW_TAG_partial_unit:
|
||
/* Compilation units have a DW_AT_name that is a filename, not
|
||
a source language identifier. */
|
||
case DW_TAG_enumeration_type:
|
||
case DW_TAG_enumerator:
|
||
/* These tags always have simple identifiers already; no need
|
||
to canonicalize them. */
|
||
return DW_STRING (attr);
|
||
|
||
case DW_TAG_namespace:
|
||
if (attr != NULL && DW_STRING (attr) != NULL)
|
||
return DW_STRING (attr);
|
||
return CP_ANONYMOUS_NAMESPACE_STR;
|
||
|
||
case DW_TAG_subprogram:
|
||
/* Java constructors will all be named "<init>", so return
|
||
the class name when we see this special case. */
|
||
if (cu->language == language_java
|
||
&& DW_STRING (attr) != NULL
|
||
&& strcmp (DW_STRING (attr), "<init>") == 0)
|
||
{
|
||
struct dwarf2_cu *spec_cu = cu;
|
||
struct die_info *spec_die;
|
||
|
||
/* GCJ will output '<init>' for Java constructor names.
|
||
For this special case, return the name of the parent class. */
|
||
|
||
/* GCJ may output subprogram DIEs with AT_specification set.
|
||
If so, use the name of the specified DIE. */
|
||
spec_die = die_specification (die, &spec_cu);
|
||
if (spec_die != NULL)
|
||
return dwarf2_name (spec_die, spec_cu);
|
||
|
||
do
|
||
{
|
||
die = die->parent;
|
||
if (die->tag == DW_TAG_class_type)
|
||
return dwarf2_name (die, cu);
|
||
}
|
||
while (die->tag != DW_TAG_compile_unit
|
||
&& die->tag != DW_TAG_partial_unit);
|
||
}
|
||
break;
|
||
|
||
case DW_TAG_class_type:
|
||
case DW_TAG_interface_type:
|
||
case DW_TAG_structure_type:
|
||
case DW_TAG_union_type:
|
||
/* Some GCC versions emit spurious DW_AT_name attributes for unnamed
|
||
structures or unions. These were of the form "._%d" in GCC 4.1,
|
||
or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
|
||
and GCC 4.4. We work around this problem by ignoring these. */
|
||
if (attr && DW_STRING (attr)
|
||
&& (startswith (DW_STRING (attr), "._")
|
||
|| startswith (DW_STRING (attr), "<anonymous")))
|
||
return NULL;
|
||
|
||
/* GCC might emit a nameless typedef that has a linkage name. See
|
||
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
|
||
if (!attr || DW_STRING (attr) == NULL)
|
||
{
|
||
char *demangled = NULL;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
|
||
if (attr == NULL)
|
||
attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
|
||
|
||
if (attr == NULL || DW_STRING (attr) == NULL)
|
||
return NULL;
|
||
|
||
/* Avoid demangling DW_STRING (attr) the second time on a second
|
||
call for the same DIE. */
|
||
if (!DW_STRING_IS_CANONICAL (attr))
|
||
demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
|
||
|
||
if (demangled)
|
||
{
|
||
const char *base;
|
||
|
||
/* FIXME: we already did this for the partial symbol... */
|
||
DW_STRING (attr)
|
||
= ((const char *)
|
||
obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
|
||
demangled, strlen (demangled)));
|
||
DW_STRING_IS_CANONICAL (attr) = 1;
|
||
xfree (demangled);
|
||
|
||
/* Strip any leading namespaces/classes, keep only the base name.
|
||
DW_AT_name for named DIEs does not contain the prefixes. */
|
||
base = strrchr (DW_STRING (attr), ':');
|
||
if (base && base > DW_STRING (attr) && base[-1] == ':')
|
||
return &base[1];
|
||
else
|
||
return DW_STRING (attr);
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (!DW_STRING_IS_CANONICAL (attr))
|
||
{
|
||
DW_STRING (attr)
|
||
= dwarf2_canonicalize_name (DW_STRING (attr), cu,
|
||
&cu->objfile->per_bfd->storage_obstack);
|
||
DW_STRING_IS_CANONICAL (attr) = 1;
|
||
}
|
||
return DW_STRING (attr);
|
||
}
|
||
|
||
/* Return the die that this die in an extension of, or NULL if there
|
||
is none. *EXT_CU is the CU containing DIE on input, and the CU
|
||
containing the return value on output. */
|
||
|
||
static struct die_info *
|
||
dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
|
||
if (attr == NULL)
|
||
return NULL;
|
||
|
||
return follow_die_ref (die, attr, ext_cu);
|
||
}
|
||
|
||
/* Convert a DIE tag into its string name. */
|
||
|
||
static const char *
|
||
dwarf_tag_name (unsigned tag)
|
||
{
|
||
const char *name = get_DW_TAG_name (tag);
|
||
|
||
if (name == NULL)
|
||
return "DW_TAG_<unknown>";
|
||
|
||
return name;
|
||
}
|
||
|
||
/* Convert a DWARF attribute code into its string name. */
|
||
|
||
static const char *
|
||
dwarf_attr_name (unsigned attr)
|
||
{
|
||
const char *name;
|
||
|
||
#ifdef MIPS /* collides with DW_AT_HP_block_index */
|
||
if (attr == DW_AT_MIPS_fde)
|
||
return "DW_AT_MIPS_fde";
|
||
#else
|
||
if (attr == DW_AT_HP_block_index)
|
||
return "DW_AT_HP_block_index";
|
||
#endif
|
||
|
||
name = get_DW_AT_name (attr);
|
||
|
||
if (name == NULL)
|
||
return "DW_AT_<unknown>";
|
||
|
||
return name;
|
||
}
|
||
|
||
/* Convert a DWARF value form code into its string name. */
|
||
|
||
static const char *
|
||
dwarf_form_name (unsigned form)
|
||
{
|
||
const char *name = get_DW_FORM_name (form);
|
||
|
||
if (name == NULL)
|
||
return "DW_FORM_<unknown>";
|
||
|
||
return name;
|
||
}
|
||
|
||
static char *
|
||
dwarf_bool_name (unsigned mybool)
|
||
{
|
||
if (mybool)
|
||
return "TRUE";
|
||
else
|
||
return "FALSE";
|
||
}
|
||
|
||
/* Convert a DWARF type code into its string name. */
|
||
|
||
static const char *
|
||
dwarf_type_encoding_name (unsigned enc)
|
||
{
|
||
const char *name = get_DW_ATE_name (enc);
|
||
|
||
if (name == NULL)
|
||
return "DW_ATE_<unknown>";
|
||
|
||
return name;
|
||
}
|
||
|
||
static void
|
||
dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
|
||
{
|
||
unsigned int i;
|
||
|
||
print_spaces (indent, f);
|
||
fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
|
||
dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
|
||
|
||
if (die->parent != NULL)
|
||
{
|
||
print_spaces (indent, f);
|
||
fprintf_unfiltered (f, " parent at offset: 0x%x\n",
|
||
die->parent->offset.sect_off);
|
||
}
|
||
|
||
print_spaces (indent, f);
|
||
fprintf_unfiltered (f, " has children: %s\n",
|
||
dwarf_bool_name (die->child != NULL));
|
||
|
||
print_spaces (indent, f);
|
||
fprintf_unfiltered (f, " attributes:\n");
|
||
|
||
for (i = 0; i < die->num_attrs; ++i)
|
||
{
|
||
print_spaces (indent, f);
|
||
fprintf_unfiltered (f, " %s (%s) ",
|
||
dwarf_attr_name (die->attrs[i].name),
|
||
dwarf_form_name (die->attrs[i].form));
|
||
|
||
switch (die->attrs[i].form)
|
||
{
|
||
case DW_FORM_addr:
|
||
case DW_FORM_GNU_addr_index:
|
||
fprintf_unfiltered (f, "address: ");
|
||
fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
|
||
break;
|
||
case DW_FORM_block2:
|
||
case DW_FORM_block4:
|
||
case DW_FORM_block:
|
||
case DW_FORM_block1:
|
||
fprintf_unfiltered (f, "block: size %s",
|
||
pulongest (DW_BLOCK (&die->attrs[i])->size));
|
||
break;
|
||
case DW_FORM_exprloc:
|
||
fprintf_unfiltered (f, "expression: size %s",
|
||
pulongest (DW_BLOCK (&die->attrs[i])->size));
|
||
break;
|
||
case DW_FORM_ref_addr:
|
||
fprintf_unfiltered (f, "ref address: ");
|
||
fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
|
||
break;
|
||
case DW_FORM_GNU_ref_alt:
|
||
fprintf_unfiltered (f, "alt ref address: ");
|
||
fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
|
||
break;
|
||
case DW_FORM_ref1:
|
||
case DW_FORM_ref2:
|
||
case DW_FORM_ref4:
|
||
case DW_FORM_ref8:
|
||
case DW_FORM_ref_udata:
|
||
fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
|
||
(long) (DW_UNSND (&die->attrs[i])));
|
||
break;
|
||
case DW_FORM_data1:
|
||
case DW_FORM_data2:
|
||
case DW_FORM_data4:
|
||
case DW_FORM_data8:
|
||
case DW_FORM_udata:
|
||
case DW_FORM_sdata:
|
||
fprintf_unfiltered (f, "constant: %s",
|
||
pulongest (DW_UNSND (&die->attrs[i])));
|
||
break;
|
||
case DW_FORM_sec_offset:
|
||
fprintf_unfiltered (f, "section offset: %s",
|
||
pulongest (DW_UNSND (&die->attrs[i])));
|
||
break;
|
||
case DW_FORM_ref_sig8:
|
||
fprintf_unfiltered (f, "signature: %s",
|
||
hex_string (DW_SIGNATURE (&die->attrs[i])));
|
||
break;
|
||
case DW_FORM_string:
|
||
case DW_FORM_strp:
|
||
case DW_FORM_GNU_str_index:
|
||
case DW_FORM_GNU_strp_alt:
|
||
fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
|
||
DW_STRING (&die->attrs[i])
|
||
? DW_STRING (&die->attrs[i]) : "",
|
||
DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
|
||
break;
|
||
case DW_FORM_flag:
|
||
if (DW_UNSND (&die->attrs[i]))
|
||
fprintf_unfiltered (f, "flag: TRUE");
|
||
else
|
||
fprintf_unfiltered (f, "flag: FALSE");
|
||
break;
|
||
case DW_FORM_flag_present:
|
||
fprintf_unfiltered (f, "flag: TRUE");
|
||
break;
|
||
case DW_FORM_indirect:
|
||
/* The reader will have reduced the indirect form to
|
||
the "base form" so this form should not occur. */
|
||
fprintf_unfiltered (f,
|
||
"unexpected attribute form: DW_FORM_indirect");
|
||
break;
|
||
default:
|
||
fprintf_unfiltered (f, "unsupported attribute form: %d.",
|
||
die->attrs[i].form);
|
||
break;
|
||
}
|
||
fprintf_unfiltered (f, "\n");
|
||
}
|
||
}
|
||
|
||
static void
|
||
dump_die_for_error (struct die_info *die)
|
||
{
|
||
dump_die_shallow (gdb_stderr, 0, die);
|
||
}
|
||
|
||
static void
|
||
dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
|
||
{
|
||
int indent = level * 4;
|
||
|
||
gdb_assert (die != NULL);
|
||
|
||
if (level >= max_level)
|
||
return;
|
||
|
||
dump_die_shallow (f, indent, die);
|
||
|
||
if (die->child != NULL)
|
||
{
|
||
print_spaces (indent, f);
|
||
fprintf_unfiltered (f, " Children:");
|
||
if (level + 1 < max_level)
|
||
{
|
||
fprintf_unfiltered (f, "\n");
|
||
dump_die_1 (f, level + 1, max_level, die->child);
|
||
}
|
||
else
|
||
{
|
||
fprintf_unfiltered (f,
|
||
" [not printed, max nesting level reached]\n");
|
||
}
|
||
}
|
||
|
||
if (die->sibling != NULL && level > 0)
|
||
{
|
||
dump_die_1 (f, level, max_level, die->sibling);
|
||
}
|
||
}
|
||
|
||
/* This is called from the pdie macro in gdbinit.in.
|
||
It's not static so gcc will keep a copy callable from gdb. */
|
||
|
||
void
|
||
dump_die (struct die_info *die, int max_level)
|
||
{
|
||
dump_die_1 (gdb_stdlog, 0, max_level, die);
|
||
}
|
||
|
||
static void
|
||
store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
void **slot;
|
||
|
||
slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
|
||
INSERT);
|
||
|
||
*slot = die;
|
||
}
|
||
|
||
/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
|
||
required kind. */
|
||
|
||
static sect_offset
|
||
dwarf2_get_ref_die_offset (const struct attribute *attr)
|
||
{
|
||
sect_offset retval = { DW_UNSND (attr) };
|
||
|
||
if (attr_form_is_ref (attr))
|
||
return retval;
|
||
|
||
retval.sect_off = 0;
|
||
complaint (&symfile_complaints,
|
||
_("unsupported die ref attribute form: '%s'"),
|
||
dwarf_form_name (attr->form));
|
||
return retval;
|
||
}
|
||
|
||
/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
|
||
* the value held by the attribute is not constant. */
|
||
|
||
static LONGEST
|
||
dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
|
||
{
|
||
if (attr->form == DW_FORM_sdata)
|
||
return DW_SND (attr);
|
||
else if (attr->form == DW_FORM_udata
|
||
|| attr->form == DW_FORM_data1
|
||
|| attr->form == DW_FORM_data2
|
||
|| attr->form == DW_FORM_data4
|
||
|| attr->form == DW_FORM_data8)
|
||
return DW_UNSND (attr);
|
||
else
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Attribute value is not a constant (%s)"),
|
||
dwarf_form_name (attr->form));
|
||
return default_value;
|
||
}
|
||
}
|
||
|
||
/* Follow reference or signature attribute ATTR of SRC_DIE.
|
||
On entry *REF_CU is the CU of SRC_DIE.
|
||
On exit *REF_CU is the CU of the result. */
|
||
|
||
static struct die_info *
|
||
follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
|
||
struct dwarf2_cu **ref_cu)
|
||
{
|
||
struct die_info *die;
|
||
|
||
if (attr_form_is_ref (attr))
|
||
die = follow_die_ref (src_die, attr, ref_cu);
|
||
else if (attr->form == DW_FORM_ref_sig8)
|
||
die = follow_die_sig (src_die, attr, ref_cu);
|
||
else
|
||
{
|
||
dump_die_for_error (src_die);
|
||
error (_("Dwarf Error: Expected reference attribute [in module %s]"),
|
||
objfile_name ((*ref_cu)->objfile));
|
||
}
|
||
|
||
return die;
|
||
}
|
||
|
||
/* Follow reference OFFSET.
|
||
On entry *REF_CU is the CU of the source die referencing OFFSET.
|
||
On exit *REF_CU is the CU of the result.
|
||
Returns NULL if OFFSET is invalid. */
|
||
|
||
static struct die_info *
|
||
follow_die_offset (sect_offset offset, int offset_in_dwz,
|
||
struct dwarf2_cu **ref_cu)
|
||
{
|
||
struct die_info temp_die;
|
||
struct dwarf2_cu *target_cu, *cu = *ref_cu;
|
||
|
||
gdb_assert (cu->per_cu != NULL);
|
||
|
||
target_cu = cu;
|
||
|
||
if (cu->per_cu->is_debug_types)
|
||
{
|
||
/* .debug_types CUs cannot reference anything outside their CU.
|
||
If they need to, they have to reference a signatured type via
|
||
DW_FORM_ref_sig8. */
|
||
if (! offset_in_cu_p (&cu->header, offset))
|
||
return NULL;
|
||
}
|
||
else if (offset_in_dwz != cu->per_cu->is_dwz
|
||
|| ! offset_in_cu_p (&cu->header, offset))
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
|
||
per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
|
||
cu->objfile);
|
||
|
||
/* If necessary, add it to the queue and load its DIEs. */
|
||
if (maybe_queue_comp_unit (cu, per_cu, cu->language))
|
||
load_full_comp_unit (per_cu, cu->language);
|
||
|
||
target_cu = per_cu->cu;
|
||
}
|
||
else if (cu->dies == NULL)
|
||
{
|
||
/* We're loading full DIEs during partial symbol reading. */
|
||
gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
|
||
load_full_comp_unit (cu->per_cu, language_minimal);
|
||
}
|
||
|
||
*ref_cu = target_cu;
|
||
temp_die.offset = offset;
|
||
return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
|
||
&temp_die, offset.sect_off);
|
||
}
|
||
|
||
/* Follow reference attribute ATTR of SRC_DIE.
|
||
On entry *REF_CU is the CU of SRC_DIE.
|
||
On exit *REF_CU is the CU of the result. */
|
||
|
||
static struct die_info *
|
||
follow_die_ref (struct die_info *src_die, const struct attribute *attr,
|
||
struct dwarf2_cu **ref_cu)
|
||
{
|
||
sect_offset offset = dwarf2_get_ref_die_offset (attr);
|
||
struct dwarf2_cu *cu = *ref_cu;
|
||
struct die_info *die;
|
||
|
||
die = follow_die_offset (offset,
|
||
(attr->form == DW_FORM_GNU_ref_alt
|
||
|| cu->per_cu->is_dwz),
|
||
ref_cu);
|
||
if (!die)
|
||
error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
|
||
"at 0x%x [in module %s]"),
|
||
offset.sect_off, src_die->offset.sect_off,
|
||
objfile_name (cu->objfile));
|
||
|
||
return die;
|
||
}
|
||
|
||
/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
|
||
Returned value is intended for DW_OP_call*. Returned
|
||
dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
|
||
|
||
struct dwarf2_locexpr_baton
|
||
dwarf2_fetch_die_loc_sect_off (sect_offset offset,
|
||
struct dwarf2_per_cu_data *per_cu,
|
||
CORE_ADDR (*get_frame_pc) (void *baton),
|
||
void *baton)
|
||
{
|
||
struct dwarf2_cu *cu;
|
||
struct die_info *die;
|
||
struct attribute *attr;
|
||
struct dwarf2_locexpr_baton retval;
|
||
|
||
dw2_setup (per_cu->objfile);
|
||
|
||
if (per_cu->cu == NULL)
|
||
load_cu (per_cu);
|
||
cu = per_cu->cu;
|
||
if (cu == NULL)
|
||
{
|
||
/* We shouldn't get here for a dummy CU, but don't crash on the user.
|
||
Instead just throw an error, not much else we can do. */
|
||
error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
|
||
offset.sect_off, objfile_name (per_cu->objfile));
|
||
}
|
||
|
||
die = follow_die_offset (offset, per_cu->is_dwz, &cu);
|
||
if (!die)
|
||
error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
|
||
offset.sect_off, objfile_name (per_cu->objfile));
|
||
|
||
attr = dwarf2_attr (die, DW_AT_location, cu);
|
||
if (!attr)
|
||
{
|
||
/* DWARF: "If there is no such attribute, then there is no effect.".
|
||
DATA is ignored if SIZE is 0. */
|
||
|
||
retval.data = NULL;
|
||
retval.size = 0;
|
||
}
|
||
else if (attr_form_is_section_offset (attr))
|
||
{
|
||
struct dwarf2_loclist_baton loclist_baton;
|
||
CORE_ADDR pc = (*get_frame_pc) (baton);
|
||
size_t size;
|
||
|
||
fill_in_loclist_baton (cu, &loclist_baton, attr);
|
||
|
||
retval.data = dwarf2_find_location_expression (&loclist_baton,
|
||
&size, pc);
|
||
retval.size = size;
|
||
}
|
||
else
|
||
{
|
||
if (!attr_form_is_block (attr))
|
||
error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
|
||
"is neither DW_FORM_block* nor DW_FORM_exprloc"),
|
||
offset.sect_off, objfile_name (per_cu->objfile));
|
||
|
||
retval.data = DW_BLOCK (attr)->data;
|
||
retval.size = DW_BLOCK (attr)->size;
|
||
}
|
||
retval.per_cu = cu->per_cu;
|
||
|
||
age_cached_comp_units ();
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
|
||
offset. */
|
||
|
||
struct dwarf2_locexpr_baton
|
||
dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
|
||
struct dwarf2_per_cu_data *per_cu,
|
||
CORE_ADDR (*get_frame_pc) (void *baton),
|
||
void *baton)
|
||
{
|
||
sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
|
||
|
||
return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
|
||
}
|
||
|
||
/* Write a constant of a given type as target-ordered bytes into
|
||
OBSTACK. */
|
||
|
||
static const gdb_byte *
|
||
write_constant_as_bytes (struct obstack *obstack,
|
||
enum bfd_endian byte_order,
|
||
struct type *type,
|
||
ULONGEST value,
|
||
LONGEST *len)
|
||
{
|
||
gdb_byte *result;
|
||
|
||
*len = TYPE_LENGTH (type);
|
||
result = (gdb_byte *) obstack_alloc (obstack, *len);
|
||
store_unsigned_integer (result, *len, byte_order, value);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
|
||
pointer to the constant bytes and set LEN to the length of the
|
||
data. If memory is needed, allocate it on OBSTACK. If the DIE
|
||
does not have a DW_AT_const_value, return NULL. */
|
||
|
||
const gdb_byte *
|
||
dwarf2_fetch_constant_bytes (sect_offset offset,
|
||
struct dwarf2_per_cu_data *per_cu,
|
||
struct obstack *obstack,
|
||
LONGEST *len)
|
||
{
|
||
struct dwarf2_cu *cu;
|
||
struct die_info *die;
|
||
struct attribute *attr;
|
||
const gdb_byte *result = NULL;
|
||
struct type *type;
|
||
LONGEST value;
|
||
enum bfd_endian byte_order;
|
||
|
||
dw2_setup (per_cu->objfile);
|
||
|
||
if (per_cu->cu == NULL)
|
||
load_cu (per_cu);
|
||
cu = per_cu->cu;
|
||
if (cu == NULL)
|
||
{
|
||
/* We shouldn't get here for a dummy CU, but don't crash on the user.
|
||
Instead just throw an error, not much else we can do. */
|
||
error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
|
||
offset.sect_off, objfile_name (per_cu->objfile));
|
||
}
|
||
|
||
die = follow_die_offset (offset, per_cu->is_dwz, &cu);
|
||
if (!die)
|
||
error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
|
||
offset.sect_off, objfile_name (per_cu->objfile));
|
||
|
||
|
||
attr = dwarf2_attr (die, DW_AT_const_value, cu);
|
||
if (attr == NULL)
|
||
return NULL;
|
||
|
||
byte_order = (bfd_big_endian (per_cu->objfile->obfd)
|
||
? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
|
||
|
||
switch (attr->form)
|
||
{
|
||
case DW_FORM_addr:
|
||
case DW_FORM_GNU_addr_index:
|
||
{
|
||
gdb_byte *tem;
|
||
|
||
*len = cu->header.addr_size;
|
||
tem = (gdb_byte *) obstack_alloc (obstack, *len);
|
||
store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
|
||
result = tem;
|
||
}
|
||
break;
|
||
case DW_FORM_string:
|
||
case DW_FORM_strp:
|
||
case DW_FORM_GNU_str_index:
|
||
case DW_FORM_GNU_strp_alt:
|
||
/* DW_STRING is already allocated on the objfile obstack, point
|
||
directly to it. */
|
||
result = (const gdb_byte *) DW_STRING (attr);
|
||
*len = strlen (DW_STRING (attr));
|
||
break;
|
||
case DW_FORM_block1:
|
||
case DW_FORM_block2:
|
||
case DW_FORM_block4:
|
||
case DW_FORM_block:
|
||
case DW_FORM_exprloc:
|
||
result = DW_BLOCK (attr)->data;
|
||
*len = DW_BLOCK (attr)->size;
|
||
break;
|
||
|
||
/* The DW_AT_const_value attributes are supposed to carry the
|
||
symbol's value "represented as it would be on the target
|
||
architecture." By the time we get here, it's already been
|
||
converted to host endianness, so we just need to sign- or
|
||
zero-extend it as appropriate. */
|
||
case DW_FORM_data1:
|
||
type = die_type (die, cu);
|
||
result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
|
||
if (result == NULL)
|
||
result = write_constant_as_bytes (obstack, byte_order,
|
||
type, value, len);
|
||
break;
|
||
case DW_FORM_data2:
|
||
type = die_type (die, cu);
|
||
result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
|
||
if (result == NULL)
|
||
result = write_constant_as_bytes (obstack, byte_order,
|
||
type, value, len);
|
||
break;
|
||
case DW_FORM_data4:
|
||
type = die_type (die, cu);
|
||
result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
|
||
if (result == NULL)
|
||
result = write_constant_as_bytes (obstack, byte_order,
|
||
type, value, len);
|
||
break;
|
||
case DW_FORM_data8:
|
||
type = die_type (die, cu);
|
||
result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
|
||
if (result == NULL)
|
||
result = write_constant_as_bytes (obstack, byte_order,
|
||
type, value, len);
|
||
break;
|
||
|
||
case DW_FORM_sdata:
|
||
type = die_type (die, cu);
|
||
result = write_constant_as_bytes (obstack, byte_order,
|
||
type, DW_SND (attr), len);
|
||
break;
|
||
|
||
case DW_FORM_udata:
|
||
type = die_type (die, cu);
|
||
result = write_constant_as_bytes (obstack, byte_order,
|
||
type, DW_UNSND (attr), len);
|
||
break;
|
||
|
||
default:
|
||
complaint (&symfile_complaints,
|
||
_("unsupported const value attribute form: '%s'"),
|
||
dwarf_form_name (attr->form));
|
||
break;
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Return the type of the DIE at DIE_OFFSET in the CU named by
|
||
PER_CU. */
|
||
|
||
struct type *
|
||
dwarf2_get_die_type (cu_offset die_offset,
|
||
struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
sect_offset die_offset_sect;
|
||
|
||
dw2_setup (per_cu->objfile);
|
||
|
||
die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
|
||
return get_die_type_at_offset (die_offset_sect, per_cu);
|
||
}
|
||
|
||
/* Follow type unit SIG_TYPE referenced by SRC_DIE.
|
||
On entry *REF_CU is the CU of SRC_DIE.
|
||
On exit *REF_CU is the CU of the result.
|
||
Returns NULL if the referenced DIE isn't found. */
|
||
|
||
static struct die_info *
|
||
follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
|
||
struct dwarf2_cu **ref_cu)
|
||
{
|
||
struct die_info temp_die;
|
||
struct dwarf2_cu *sig_cu;
|
||
struct die_info *die;
|
||
|
||
/* While it might be nice to assert sig_type->type == NULL here,
|
||
we can get here for DW_AT_imported_declaration where we need
|
||
the DIE not the type. */
|
||
|
||
/* If necessary, add it to the queue and load its DIEs. */
|
||
|
||
if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
|
||
read_signatured_type (sig_type);
|
||
|
||
sig_cu = sig_type->per_cu.cu;
|
||
gdb_assert (sig_cu != NULL);
|
||
gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
|
||
temp_die.offset = sig_type->type_offset_in_section;
|
||
die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
|
||
temp_die.offset.sect_off);
|
||
if (die)
|
||
{
|
||
/* For .gdb_index version 7 keep track of included TUs.
|
||
http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
|
||
if (dwarf2_per_objfile->index_table != NULL
|
||
&& dwarf2_per_objfile->index_table->version <= 7)
|
||
{
|
||
VEC_safe_push (dwarf2_per_cu_ptr,
|
||
(*ref_cu)->per_cu->imported_symtabs,
|
||
sig_cu->per_cu);
|
||
}
|
||
|
||
*ref_cu = sig_cu;
|
||
return die;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Follow signatured type referenced by ATTR in SRC_DIE.
|
||
On entry *REF_CU is the CU of SRC_DIE.
|
||
On exit *REF_CU is the CU of the result.
|
||
The result is the DIE of the type.
|
||
If the referenced type cannot be found an error is thrown. */
|
||
|
||
static struct die_info *
|
||
follow_die_sig (struct die_info *src_die, const struct attribute *attr,
|
||
struct dwarf2_cu **ref_cu)
|
||
{
|
||
ULONGEST signature = DW_SIGNATURE (attr);
|
||
struct signatured_type *sig_type;
|
||
struct die_info *die;
|
||
|
||
gdb_assert (attr->form == DW_FORM_ref_sig8);
|
||
|
||
sig_type = lookup_signatured_type (*ref_cu, signature);
|
||
/* sig_type will be NULL if the signatured type is missing from
|
||
the debug info. */
|
||
if (sig_type == NULL)
|
||
{
|
||
error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
|
||
" from DIE at 0x%x [in module %s]"),
|
||
hex_string (signature), src_die->offset.sect_off,
|
||
objfile_name ((*ref_cu)->objfile));
|
||
}
|
||
|
||
die = follow_die_sig_1 (src_die, sig_type, ref_cu);
|
||
if (die == NULL)
|
||
{
|
||
dump_die_for_error (src_die);
|
||
error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
|
||
" from DIE at 0x%x [in module %s]"),
|
||
hex_string (signature), src_die->offset.sect_off,
|
||
objfile_name ((*ref_cu)->objfile));
|
||
}
|
||
|
||
return die;
|
||
}
|
||
|
||
/* Get the type specified by SIGNATURE referenced in DIE/CU,
|
||
reading in and processing the type unit if necessary. */
|
||
|
||
static struct type *
|
||
get_signatured_type (struct die_info *die, ULONGEST signature,
|
||
struct dwarf2_cu *cu)
|
||
{
|
||
struct signatured_type *sig_type;
|
||
struct dwarf2_cu *type_cu;
|
||
struct die_info *type_die;
|
||
struct type *type;
|
||
|
||
sig_type = lookup_signatured_type (cu, signature);
|
||
/* sig_type will be NULL if the signatured type is missing from
|
||
the debug info. */
|
||
if (sig_type == NULL)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Dwarf Error: Cannot find signatured DIE %s referenced"
|
||
" from DIE at 0x%x [in module %s]"),
|
||
hex_string (signature), die->offset.sect_off,
|
||
objfile_name (dwarf2_per_objfile->objfile));
|
||
return build_error_marker_type (cu, die);
|
||
}
|
||
|
||
/* If we already know the type we're done. */
|
||
if (sig_type->type != NULL)
|
||
return sig_type->type;
|
||
|
||
type_cu = cu;
|
||
type_die = follow_die_sig_1 (die, sig_type, &type_cu);
|
||
if (type_die != NULL)
|
||
{
|
||
/* N.B. We need to call get_die_type to ensure only one type for this DIE
|
||
is created. This is important, for example, because for c++ classes
|
||
we need TYPE_NAME set which is only done by new_symbol. Blech. */
|
||
type = read_type_die (type_die, type_cu);
|
||
if (type == NULL)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Dwarf Error: Cannot build signatured type %s"
|
||
" referenced from DIE at 0x%x [in module %s]"),
|
||
hex_string (signature), die->offset.sect_off,
|
||
objfile_name (dwarf2_per_objfile->objfile));
|
||
type = build_error_marker_type (cu, die);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Dwarf Error: Problem reading signatured DIE %s referenced"
|
||
" from DIE at 0x%x [in module %s]"),
|
||
hex_string (signature), die->offset.sect_off,
|
||
objfile_name (dwarf2_per_objfile->objfile));
|
||
type = build_error_marker_type (cu, die);
|
||
}
|
||
sig_type->type = type;
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
|
||
reading in and processing the type unit if necessary. */
|
||
|
||
static struct type *
|
||
get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
|
||
struct dwarf2_cu *cu) /* ARI: editCase function */
|
||
{
|
||
/* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
|
||
if (attr_form_is_ref (attr))
|
||
{
|
||
struct dwarf2_cu *type_cu = cu;
|
||
struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
|
||
|
||
return read_type_die (type_die, type_cu);
|
||
}
|
||
else if (attr->form == DW_FORM_ref_sig8)
|
||
{
|
||
return get_signatured_type (die, DW_SIGNATURE (attr), cu);
|
||
}
|
||
else
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
|
||
" at 0x%x [in module %s]"),
|
||
dwarf_form_name (attr->form), die->offset.sect_off,
|
||
objfile_name (dwarf2_per_objfile->objfile));
|
||
return build_error_marker_type (cu, die);
|
||
}
|
||
}
|
||
|
||
/* Load the DIEs associated with type unit PER_CU into memory. */
|
||
|
||
static void
|
||
load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
struct signatured_type *sig_type;
|
||
|
||
/* Caller is responsible for ensuring type_unit_groups don't get here. */
|
||
gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
|
||
|
||
/* We have the per_cu, but we need the signatured_type.
|
||
Fortunately this is an easy translation. */
|
||
gdb_assert (per_cu->is_debug_types);
|
||
sig_type = (struct signatured_type *) per_cu;
|
||
|
||
gdb_assert (per_cu->cu == NULL);
|
||
|
||
read_signatured_type (sig_type);
|
||
|
||
gdb_assert (per_cu->cu != NULL);
|
||
}
|
||
|
||
/* die_reader_func for read_signatured_type.
|
||
This is identical to load_full_comp_unit_reader,
|
||
but is kept separate for now. */
|
||
|
||
static void
|
||
read_signatured_type_reader (const struct die_reader_specs *reader,
|
||
const gdb_byte *info_ptr,
|
||
struct die_info *comp_unit_die,
|
||
int has_children,
|
||
void *data)
|
||
{
|
||
struct dwarf2_cu *cu = reader->cu;
|
||
|
||
gdb_assert (cu->die_hash == NULL);
|
||
cu->die_hash =
|
||
htab_create_alloc_ex (cu->header.length / 12,
|
||
die_hash,
|
||
die_eq,
|
||
NULL,
|
||
&cu->comp_unit_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
|
||
if (has_children)
|
||
comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
|
||
&info_ptr, comp_unit_die);
|
||
cu->dies = comp_unit_die;
|
||
/* comp_unit_die is not stored in die_hash, no need. */
|
||
|
||
/* We try not to read any attributes in this function, because not
|
||
all CUs needed for references have been loaded yet, and symbol
|
||
table processing isn't initialized. But we have to set the CU language,
|
||
or we won't be able to build types correctly.
|
||
Similarly, if we do not read the producer, we can not apply
|
||
producer-specific interpretation. */
|
||
prepare_one_comp_unit (cu, cu->dies, language_minimal);
|
||
}
|
||
|
||
/* Read in a signatured type and build its CU and DIEs.
|
||
If the type is a stub for the real type in a DWO file,
|
||
read in the real type from the DWO file as well. */
|
||
|
||
static void
|
||
read_signatured_type (struct signatured_type *sig_type)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
|
||
|
||
gdb_assert (per_cu->is_debug_types);
|
||
gdb_assert (per_cu->cu == NULL);
|
||
|
||
init_cutu_and_read_dies (per_cu, NULL, 0, 1,
|
||
read_signatured_type_reader, NULL);
|
||
sig_type->per_cu.tu_read = 1;
|
||
}
|
||
|
||
/* Decode simple location descriptions.
|
||
Given a pointer to a dwarf block that defines a location, compute
|
||
the location and return the value.
|
||
|
||
NOTE drow/2003-11-18: This function is called in two situations
|
||
now: for the address of static or global variables (partial symbols
|
||
only) and for offsets into structures which are expected to be
|
||
(more or less) constant. The partial symbol case should go away,
|
||
and only the constant case should remain. That will let this
|
||
function complain more accurately. A few special modes are allowed
|
||
without complaint for global variables (for instance, global
|
||
register values and thread-local values).
|
||
|
||
A location description containing no operations indicates that the
|
||
object is optimized out. The return value is 0 for that case.
|
||
FIXME drow/2003-11-16: No callers check for this case any more; soon all
|
||
callers will only want a very basic result and this can become a
|
||
complaint.
|
||
|
||
Note that stack[0] is unused except as a default error return. */
|
||
|
||
static CORE_ADDR
|
||
decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
|
||
{
|
||
struct objfile *objfile = cu->objfile;
|
||
size_t i;
|
||
size_t size = blk->size;
|
||
const gdb_byte *data = blk->data;
|
||
CORE_ADDR stack[64];
|
||
int stacki;
|
||
unsigned int bytes_read, unsnd;
|
||
gdb_byte op;
|
||
|
||
i = 0;
|
||
stacki = 0;
|
||
stack[stacki] = 0;
|
||
stack[++stacki] = 0;
|
||
|
||
while (i < size)
|
||
{
|
||
op = data[i++];
|
||
switch (op)
|
||
{
|
||
case DW_OP_lit0:
|
||
case DW_OP_lit1:
|
||
case DW_OP_lit2:
|
||
case DW_OP_lit3:
|
||
case DW_OP_lit4:
|
||
case DW_OP_lit5:
|
||
case DW_OP_lit6:
|
||
case DW_OP_lit7:
|
||
case DW_OP_lit8:
|
||
case DW_OP_lit9:
|
||
case DW_OP_lit10:
|
||
case DW_OP_lit11:
|
||
case DW_OP_lit12:
|
||
case DW_OP_lit13:
|
||
case DW_OP_lit14:
|
||
case DW_OP_lit15:
|
||
case DW_OP_lit16:
|
||
case DW_OP_lit17:
|
||
case DW_OP_lit18:
|
||
case DW_OP_lit19:
|
||
case DW_OP_lit20:
|
||
case DW_OP_lit21:
|
||
case DW_OP_lit22:
|
||
case DW_OP_lit23:
|
||
case DW_OP_lit24:
|
||
case DW_OP_lit25:
|
||
case DW_OP_lit26:
|
||
case DW_OP_lit27:
|
||
case DW_OP_lit28:
|
||
case DW_OP_lit29:
|
||
case DW_OP_lit30:
|
||
case DW_OP_lit31:
|
||
stack[++stacki] = op - DW_OP_lit0;
|
||
break;
|
||
|
||
case DW_OP_reg0:
|
||
case DW_OP_reg1:
|
||
case DW_OP_reg2:
|
||
case DW_OP_reg3:
|
||
case DW_OP_reg4:
|
||
case DW_OP_reg5:
|
||
case DW_OP_reg6:
|
||
case DW_OP_reg7:
|
||
case DW_OP_reg8:
|
||
case DW_OP_reg9:
|
||
case DW_OP_reg10:
|
||
case DW_OP_reg11:
|
||
case DW_OP_reg12:
|
||
case DW_OP_reg13:
|
||
case DW_OP_reg14:
|
||
case DW_OP_reg15:
|
||
case DW_OP_reg16:
|
||
case DW_OP_reg17:
|
||
case DW_OP_reg18:
|
||
case DW_OP_reg19:
|
||
case DW_OP_reg20:
|
||
case DW_OP_reg21:
|
||
case DW_OP_reg22:
|
||
case DW_OP_reg23:
|
||
case DW_OP_reg24:
|
||
case DW_OP_reg25:
|
||
case DW_OP_reg26:
|
||
case DW_OP_reg27:
|
||
case DW_OP_reg28:
|
||
case DW_OP_reg29:
|
||
case DW_OP_reg30:
|
||
case DW_OP_reg31:
|
||
stack[++stacki] = op - DW_OP_reg0;
|
||
if (i < size)
|
||
dwarf2_complex_location_expr_complaint ();
|
||
break;
|
||
|
||
case DW_OP_regx:
|
||
unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
|
||
i += bytes_read;
|
||
stack[++stacki] = unsnd;
|
||
if (i < size)
|
||
dwarf2_complex_location_expr_complaint ();
|
||
break;
|
||
|
||
case DW_OP_addr:
|
||
stack[++stacki] = read_address (objfile->obfd, &data[i],
|
||
cu, &bytes_read);
|
||
i += bytes_read;
|
||
break;
|
||
|
||
case DW_OP_const1u:
|
||
stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
|
||
i += 1;
|
||
break;
|
||
|
||
case DW_OP_const1s:
|
||
stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
|
||
i += 1;
|
||
break;
|
||
|
||
case DW_OP_const2u:
|
||
stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
|
||
i += 2;
|
||
break;
|
||
|
||
case DW_OP_const2s:
|
||
stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
|
||
i += 2;
|
||
break;
|
||
|
||
case DW_OP_const4u:
|
||
stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
|
||
i += 4;
|
||
break;
|
||
|
||
case DW_OP_const4s:
|
||
stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
|
||
i += 4;
|
||
break;
|
||
|
||
case DW_OP_const8u:
|
||
stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
|
||
i += 8;
|
||
break;
|
||
|
||
case DW_OP_constu:
|
||
stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
|
||
&bytes_read);
|
||
i += bytes_read;
|
||
break;
|
||
|
||
case DW_OP_consts:
|
||
stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
|
||
i += bytes_read;
|
||
break;
|
||
|
||
case DW_OP_dup:
|
||
stack[stacki + 1] = stack[stacki];
|
||
stacki++;
|
||
break;
|
||
|
||
case DW_OP_plus:
|
||
stack[stacki - 1] += stack[stacki];
|
||
stacki--;
|
||
break;
|
||
|
||
case DW_OP_plus_uconst:
|
||
stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
|
||
&bytes_read);
|
||
i += bytes_read;
|
||
break;
|
||
|
||
case DW_OP_minus:
|
||
stack[stacki - 1] -= stack[stacki];
|
||
stacki--;
|
||
break;
|
||
|
||
case DW_OP_deref:
|
||
/* If we're not the last op, then we definitely can't encode
|
||
this using GDB's address_class enum. This is valid for partial
|
||
global symbols, although the variable's address will be bogus
|
||
in the psymtab. */
|
||
if (i < size)
|
||
dwarf2_complex_location_expr_complaint ();
|
||
break;
|
||
|
||
case DW_OP_GNU_push_tls_address:
|
||
/* The top of the stack has the offset from the beginning
|
||
of the thread control block at which the variable is located. */
|
||
/* Nothing should follow this operator, so the top of stack would
|
||
be returned. */
|
||
/* This is valid for partial global symbols, but the variable's
|
||
address will be bogus in the psymtab. Make it always at least
|
||
non-zero to not look as a variable garbage collected by linker
|
||
which have DW_OP_addr 0. */
|
||
if (i < size)
|
||
dwarf2_complex_location_expr_complaint ();
|
||
stack[stacki]++;
|
||
break;
|
||
|
||
case DW_OP_GNU_uninit:
|
||
break;
|
||
|
||
case DW_OP_GNU_addr_index:
|
||
case DW_OP_GNU_const_index:
|
||
stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
|
||
&bytes_read);
|
||
i += bytes_read;
|
||
break;
|
||
|
||
default:
|
||
{
|
||
const char *name = get_DW_OP_name (op);
|
||
|
||
if (name)
|
||
complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
|
||
name);
|
||
else
|
||
complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
|
||
op);
|
||
}
|
||
|
||
return (stack[stacki]);
|
||
}
|
||
|
||
/* Enforce maximum stack depth of SIZE-1 to avoid writing
|
||
outside of the allocated space. Also enforce minimum>0. */
|
||
if (stacki >= ARRAY_SIZE (stack) - 1)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("location description stack overflow"));
|
||
return 0;
|
||
}
|
||
|
||
if (stacki <= 0)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("location description stack underflow"));
|
||
return 0;
|
||
}
|
||
}
|
||
return (stack[stacki]);
|
||
}
|
||
|
||
/* memory allocation interface */
|
||
|
||
static struct dwarf_block *
|
||
dwarf_alloc_block (struct dwarf2_cu *cu)
|
||
{
|
||
return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
|
||
}
|
||
|
||
static struct die_info *
|
||
dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
|
||
{
|
||
struct die_info *die;
|
||
size_t size = sizeof (struct die_info);
|
||
|
||
if (num_attrs > 1)
|
||
size += (num_attrs - 1) * sizeof (struct attribute);
|
||
|
||
die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
|
||
memset (die, 0, sizeof (struct die_info));
|
||
return (die);
|
||
}
|
||
|
||
|
||
/* Macro support. */
|
||
|
||
/* Return file name relative to the compilation directory of file number I in
|
||
*LH's file name table. The result is allocated using xmalloc; the caller is
|
||
responsible for freeing it. */
|
||
|
||
static char *
|
||
file_file_name (int file, struct line_header *lh)
|
||
{
|
||
/* Is the file number a valid index into the line header's file name
|
||
table? Remember that file numbers start with one, not zero. */
|
||
if (1 <= file && file <= lh->num_file_names)
|
||
{
|
||
struct file_entry *fe = &lh->file_names[file - 1];
|
||
|
||
if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
|
||
|| lh->include_dirs == NULL)
|
||
return xstrdup (fe->name);
|
||
return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
|
||
fe->name, (char *) NULL);
|
||
}
|
||
else
|
||
{
|
||
/* The compiler produced a bogus file number. We can at least
|
||
record the macro definitions made in the file, even if we
|
||
won't be able to find the file by name. */
|
||
char fake_name[80];
|
||
|
||
xsnprintf (fake_name, sizeof (fake_name),
|
||
"<bad macro file number %d>", file);
|
||
|
||
complaint (&symfile_complaints,
|
||
_("bad file number in macro information (%d)"),
|
||
file);
|
||
|
||
return xstrdup (fake_name);
|
||
}
|
||
}
|
||
|
||
/* Return the full name of file number I in *LH's file name table.
|
||
Use COMP_DIR as the name of the current directory of the
|
||
compilation. The result is allocated using xmalloc; the caller is
|
||
responsible for freeing it. */
|
||
static char *
|
||
file_full_name (int file, struct line_header *lh, const char *comp_dir)
|
||
{
|
||
/* Is the file number a valid index into the line header's file name
|
||
table? Remember that file numbers start with one, not zero. */
|
||
if (1 <= file && file <= lh->num_file_names)
|
||
{
|
||
char *relative = file_file_name (file, lh);
|
||
|
||
if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
|
||
return relative;
|
||
return reconcat (relative, comp_dir, SLASH_STRING,
|
||
relative, (char *) NULL);
|
||
}
|
||
else
|
||
return file_file_name (file, lh);
|
||
}
|
||
|
||
|
||
static struct macro_source_file *
|
||
macro_start_file (int file, int line,
|
||
struct macro_source_file *current_file,
|
||
struct line_header *lh)
|
||
{
|
||
/* File name relative to the compilation directory of this source file. */
|
||
char *file_name = file_file_name (file, lh);
|
||
|
||
if (! current_file)
|
||
{
|
||
/* Note: We don't create a macro table for this compilation unit
|
||
at all until we actually get a filename. */
|
||
struct macro_table *macro_table = get_macro_table ();
|
||
|
||
/* If we have no current file, then this must be the start_file
|
||
directive for the compilation unit's main source file. */
|
||
current_file = macro_set_main (macro_table, file_name);
|
||
macro_define_special (macro_table);
|
||
}
|
||
else
|
||
current_file = macro_include (current_file, line, file_name);
|
||
|
||
xfree (file_name);
|
||
|
||
return current_file;
|
||
}
|
||
|
||
|
||
/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
|
||
followed by a null byte. */
|
||
static char *
|
||
copy_string (const char *buf, int len)
|
||
{
|
||
char *s = (char *) xmalloc (len + 1);
|
||
|
||
memcpy (s, buf, len);
|
||
s[len] = '\0';
|
||
return s;
|
||
}
|
||
|
||
|
||
static const char *
|
||
consume_improper_spaces (const char *p, const char *body)
|
||
{
|
||
if (*p == ' ')
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("macro definition contains spaces "
|
||
"in formal argument list:\n`%s'"),
|
||
body);
|
||
|
||
while (*p == ' ')
|
||
p++;
|
||
}
|
||
|
||
return p;
|
||
}
|
||
|
||
|
||
static void
|
||
parse_macro_definition (struct macro_source_file *file, int line,
|
||
const char *body)
|
||
{
|
||
const char *p;
|
||
|
||
/* The body string takes one of two forms. For object-like macro
|
||
definitions, it should be:
|
||
|
||
<macro name> " " <definition>
|
||
|
||
For function-like macro definitions, it should be:
|
||
|
||
<macro name> "() " <definition>
|
||
or
|
||
<macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
|
||
|
||
Spaces may appear only where explicitly indicated, and in the
|
||
<definition>.
|
||
|
||
The Dwarf 2 spec says that an object-like macro's name is always
|
||
followed by a space, but versions of GCC around March 2002 omit
|
||
the space when the macro's definition is the empty string.
|
||
|
||
The Dwarf 2 spec says that there should be no spaces between the
|
||
formal arguments in a function-like macro's formal argument list,
|
||
but versions of GCC around March 2002 include spaces after the
|
||
commas. */
|
||
|
||
|
||
/* Find the extent of the macro name. The macro name is terminated
|
||
by either a space or null character (for an object-like macro) or
|
||
an opening paren (for a function-like macro). */
|
||
for (p = body; *p; p++)
|
||
if (*p == ' ' || *p == '(')
|
||
break;
|
||
|
||
if (*p == ' ' || *p == '\0')
|
||
{
|
||
/* It's an object-like macro. */
|
||
int name_len = p - body;
|
||
char *name = copy_string (body, name_len);
|
||
const char *replacement;
|
||
|
||
if (*p == ' ')
|
||
replacement = body + name_len + 1;
|
||
else
|
||
{
|
||
dwarf2_macro_malformed_definition_complaint (body);
|
||
replacement = body + name_len;
|
||
}
|
||
|
||
macro_define_object (file, line, name, replacement);
|
||
|
||
xfree (name);
|
||
}
|
||
else if (*p == '(')
|
||
{
|
||
/* It's a function-like macro. */
|
||
char *name = copy_string (body, p - body);
|
||
int argc = 0;
|
||
int argv_size = 1;
|
||
char **argv = XNEWVEC (char *, argv_size);
|
||
|
||
p++;
|
||
|
||
p = consume_improper_spaces (p, body);
|
||
|
||
/* Parse the formal argument list. */
|
||
while (*p && *p != ')')
|
||
{
|
||
/* Find the extent of the current argument name. */
|
||
const char *arg_start = p;
|
||
|
||
while (*p && *p != ',' && *p != ')' && *p != ' ')
|
||
p++;
|
||
|
||
if (! *p || p == arg_start)
|
||
dwarf2_macro_malformed_definition_complaint (body);
|
||
else
|
||
{
|
||
/* Make sure argv has room for the new argument. */
|
||
if (argc >= argv_size)
|
||
{
|
||
argv_size *= 2;
|
||
argv = XRESIZEVEC (char *, argv, argv_size);
|
||
}
|
||
|
||
argv[argc++] = copy_string (arg_start, p - arg_start);
|
||
}
|
||
|
||
p = consume_improper_spaces (p, body);
|
||
|
||
/* Consume the comma, if present. */
|
||
if (*p == ',')
|
||
{
|
||
p++;
|
||
|
||
p = consume_improper_spaces (p, body);
|
||
}
|
||
}
|
||
|
||
if (*p == ')')
|
||
{
|
||
p++;
|
||
|
||
if (*p == ' ')
|
||
/* Perfectly formed definition, no complaints. */
|
||
macro_define_function (file, line, name,
|
||
argc, (const char **) argv,
|
||
p + 1);
|
||
else if (*p == '\0')
|
||
{
|
||
/* Complain, but do define it. */
|
||
dwarf2_macro_malformed_definition_complaint (body);
|
||
macro_define_function (file, line, name,
|
||
argc, (const char **) argv,
|
||
p);
|
||
}
|
||
else
|
||
/* Just complain. */
|
||
dwarf2_macro_malformed_definition_complaint (body);
|
||
}
|
||
else
|
||
/* Just complain. */
|
||
dwarf2_macro_malformed_definition_complaint (body);
|
||
|
||
xfree (name);
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < argc; i++)
|
||
xfree (argv[i]);
|
||
}
|
||
xfree (argv);
|
||
}
|
||
else
|
||
dwarf2_macro_malformed_definition_complaint (body);
|
||
}
|
||
|
||
/* Skip some bytes from BYTES according to the form given in FORM.
|
||
Returns the new pointer. */
|
||
|
||
static const gdb_byte *
|
||
skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
|
||
enum dwarf_form form,
|
||
unsigned int offset_size,
|
||
struct dwarf2_section_info *section)
|
||
{
|
||
unsigned int bytes_read;
|
||
|
||
switch (form)
|
||
{
|
||
case DW_FORM_data1:
|
||
case DW_FORM_flag:
|
||
++bytes;
|
||
break;
|
||
|
||
case DW_FORM_data2:
|
||
bytes += 2;
|
||
break;
|
||
|
||
case DW_FORM_data4:
|
||
bytes += 4;
|
||
break;
|
||
|
||
case DW_FORM_data8:
|
||
bytes += 8;
|
||
break;
|
||
|
||
case DW_FORM_string:
|
||
read_direct_string (abfd, bytes, &bytes_read);
|
||
bytes += bytes_read;
|
||
break;
|
||
|
||
case DW_FORM_sec_offset:
|
||
case DW_FORM_strp:
|
||
case DW_FORM_GNU_strp_alt:
|
||
bytes += offset_size;
|
||
break;
|
||
|
||
case DW_FORM_block:
|
||
bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
|
||
bytes += bytes_read;
|
||
break;
|
||
|
||
case DW_FORM_block1:
|
||
bytes += 1 + read_1_byte (abfd, bytes);
|
||
break;
|
||
case DW_FORM_block2:
|
||
bytes += 2 + read_2_bytes (abfd, bytes);
|
||
break;
|
||
case DW_FORM_block4:
|
||
bytes += 4 + read_4_bytes (abfd, bytes);
|
||
break;
|
||
|
||
case DW_FORM_sdata:
|
||
case DW_FORM_udata:
|
||
case DW_FORM_GNU_addr_index:
|
||
case DW_FORM_GNU_str_index:
|
||
bytes = gdb_skip_leb128 (bytes, buffer_end);
|
||
if (bytes == NULL)
|
||
{
|
||
dwarf2_section_buffer_overflow_complaint (section);
|
||
return NULL;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
{
|
||
complain:
|
||
complaint (&symfile_complaints,
|
||
_("invalid form 0x%x in `%s'"),
|
||
form, get_section_name (section));
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
return bytes;
|
||
}
|
||
|
||
/* A helper for dwarf_decode_macros that handles skipping an unknown
|
||
opcode. Returns an updated pointer to the macro data buffer; or,
|
||
on error, issues a complaint and returns NULL. */
|
||
|
||
static const gdb_byte *
|
||
skip_unknown_opcode (unsigned int opcode,
|
||
const gdb_byte **opcode_definitions,
|
||
const gdb_byte *mac_ptr, const gdb_byte *mac_end,
|
||
bfd *abfd,
|
||
unsigned int offset_size,
|
||
struct dwarf2_section_info *section)
|
||
{
|
||
unsigned int bytes_read, i;
|
||
unsigned long arg;
|
||
const gdb_byte *defn;
|
||
|
||
if (opcode_definitions[opcode] == NULL)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("unrecognized DW_MACFINO opcode 0x%x"),
|
||
opcode);
|
||
return NULL;
|
||
}
|
||
|
||
defn = opcode_definitions[opcode];
|
||
arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
|
||
defn += bytes_read;
|
||
|
||
for (i = 0; i < arg; ++i)
|
||
{
|
||
mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
|
||
(enum dwarf_form) defn[i], offset_size,
|
||
section);
|
||
if (mac_ptr == NULL)
|
||
{
|
||
/* skip_form_bytes already issued the complaint. */
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
return mac_ptr;
|
||
}
|
||
|
||
/* A helper function which parses the header of a macro section.
|
||
If the macro section is the extended (for now called "GNU") type,
|
||
then this updates *OFFSET_SIZE. Returns a pointer to just after
|
||
the header, or issues a complaint and returns NULL on error. */
|
||
|
||
static const gdb_byte *
|
||
dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
|
||
bfd *abfd,
|
||
const gdb_byte *mac_ptr,
|
||
unsigned int *offset_size,
|
||
int section_is_gnu)
|
||
{
|
||
memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
|
||
|
||
if (section_is_gnu)
|
||
{
|
||
unsigned int version, flags;
|
||
|
||
version = read_2_bytes (abfd, mac_ptr);
|
||
if (version != 4)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("unrecognized version `%d' in .debug_macro section"),
|
||
version);
|
||
return NULL;
|
||
}
|
||
mac_ptr += 2;
|
||
|
||
flags = read_1_byte (abfd, mac_ptr);
|
||
++mac_ptr;
|
||
*offset_size = (flags & 1) ? 8 : 4;
|
||
|
||
if ((flags & 2) != 0)
|
||
/* We don't need the line table offset. */
|
||
mac_ptr += *offset_size;
|
||
|
||
/* Vendor opcode descriptions. */
|
||
if ((flags & 4) != 0)
|
||
{
|
||
unsigned int i, count;
|
||
|
||
count = read_1_byte (abfd, mac_ptr);
|
||
++mac_ptr;
|
||
for (i = 0; i < count; ++i)
|
||
{
|
||
unsigned int opcode, bytes_read;
|
||
unsigned long arg;
|
||
|
||
opcode = read_1_byte (abfd, mac_ptr);
|
||
++mac_ptr;
|
||
opcode_definitions[opcode] = mac_ptr;
|
||
arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
mac_ptr += arg;
|
||
}
|
||
}
|
||
}
|
||
|
||
return mac_ptr;
|
||
}
|
||
|
||
/* A helper for dwarf_decode_macros that handles the GNU extensions,
|
||
including DW_MACRO_GNU_transparent_include. */
|
||
|
||
static void
|
||
dwarf_decode_macro_bytes (bfd *abfd,
|
||
const gdb_byte *mac_ptr, const gdb_byte *mac_end,
|
||
struct macro_source_file *current_file,
|
||
struct line_header *lh,
|
||
struct dwarf2_section_info *section,
|
||
int section_is_gnu, int section_is_dwz,
|
||
unsigned int offset_size,
|
||
htab_t include_hash)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
enum dwarf_macro_record_type macinfo_type;
|
||
int at_commandline;
|
||
const gdb_byte *opcode_definitions[256];
|
||
|
||
mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
|
||
&offset_size, section_is_gnu);
|
||
if (mac_ptr == NULL)
|
||
{
|
||
/* We already issued a complaint. */
|
||
return;
|
||
}
|
||
|
||
/* Determines if GDB is still before first DW_MACINFO_start_file. If true
|
||
GDB is still reading the definitions from command line. First
|
||
DW_MACINFO_start_file will need to be ignored as it was already executed
|
||
to create CURRENT_FILE for the main source holding also the command line
|
||
definitions. On first met DW_MACINFO_start_file this flag is reset to
|
||
normally execute all the remaining DW_MACINFO_start_file macinfos. */
|
||
|
||
at_commandline = 1;
|
||
|
||
do
|
||
{
|
||
/* Do we at least have room for a macinfo type byte? */
|
||
if (mac_ptr >= mac_end)
|
||
{
|
||
dwarf2_section_buffer_overflow_complaint (section);
|
||
break;
|
||
}
|
||
|
||
macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
|
||
mac_ptr++;
|
||
|
||
/* Note that we rely on the fact that the corresponding GNU and
|
||
DWARF constants are the same. */
|
||
switch (macinfo_type)
|
||
{
|
||
/* A zero macinfo type indicates the end of the macro
|
||
information. */
|
||
case 0:
|
||
break;
|
||
|
||
case DW_MACRO_GNU_define:
|
||
case DW_MACRO_GNU_undef:
|
||
case DW_MACRO_GNU_define_indirect:
|
||
case DW_MACRO_GNU_undef_indirect:
|
||
case DW_MACRO_GNU_define_indirect_alt:
|
||
case DW_MACRO_GNU_undef_indirect_alt:
|
||
{
|
||
unsigned int bytes_read;
|
||
int line;
|
||
const char *body;
|
||
int is_define;
|
||
|
||
line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
|
||
if (macinfo_type == DW_MACRO_GNU_define
|
||
|| macinfo_type == DW_MACRO_GNU_undef)
|
||
{
|
||
body = read_direct_string (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
}
|
||
else
|
||
{
|
||
LONGEST str_offset;
|
||
|
||
str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
|
||
mac_ptr += offset_size;
|
||
|
||
if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
|
||
|| macinfo_type == DW_MACRO_GNU_undef_indirect_alt
|
||
|| section_is_dwz)
|
||
{
|
||
struct dwz_file *dwz = dwarf2_get_dwz_file ();
|
||
|
||
body = read_indirect_string_from_dwz (dwz, str_offset);
|
||
}
|
||
else
|
||
body = read_indirect_string_at_offset (abfd, str_offset);
|
||
}
|
||
|
||
is_define = (macinfo_type == DW_MACRO_GNU_define
|
||
|| macinfo_type == DW_MACRO_GNU_define_indirect
|
||
|| macinfo_type == DW_MACRO_GNU_define_indirect_alt);
|
||
if (! current_file)
|
||
{
|
||
/* DWARF violation as no main source is present. */
|
||
complaint (&symfile_complaints,
|
||
_("debug info with no main source gives macro %s "
|
||
"on line %d: %s"),
|
||
is_define ? _("definition") : _("undefinition"),
|
||
line, body);
|
||
break;
|
||
}
|
||
if ((line == 0 && !at_commandline)
|
||
|| (line != 0 && at_commandline))
|
||
complaint (&symfile_complaints,
|
||
_("debug info gives %s macro %s with %s line %d: %s"),
|
||
at_commandline ? _("command-line") : _("in-file"),
|
||
is_define ? _("definition") : _("undefinition"),
|
||
line == 0 ? _("zero") : _("non-zero"), line, body);
|
||
|
||
if (is_define)
|
||
parse_macro_definition (current_file, line, body);
|
||
else
|
||
{
|
||
gdb_assert (macinfo_type == DW_MACRO_GNU_undef
|
||
|| macinfo_type == DW_MACRO_GNU_undef_indirect
|
||
|| macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
|
||
macro_undef (current_file, line, body);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case DW_MACRO_GNU_start_file:
|
||
{
|
||
unsigned int bytes_read;
|
||
int line, file;
|
||
|
||
line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
|
||
if ((line == 0 && !at_commandline)
|
||
|| (line != 0 && at_commandline))
|
||
complaint (&symfile_complaints,
|
||
_("debug info gives source %d included "
|
||
"from %s at %s line %d"),
|
||
file, at_commandline ? _("command-line") : _("file"),
|
||
line == 0 ? _("zero") : _("non-zero"), line);
|
||
|
||
if (at_commandline)
|
||
{
|
||
/* This DW_MACRO_GNU_start_file was executed in the
|
||
pass one. */
|
||
at_commandline = 0;
|
||
}
|
||
else
|
||
current_file = macro_start_file (file, line, current_file, lh);
|
||
}
|
||
break;
|
||
|
||
case DW_MACRO_GNU_end_file:
|
||
if (! current_file)
|
||
complaint (&symfile_complaints,
|
||
_("macro debug info has an unmatched "
|
||
"`close_file' directive"));
|
||
else
|
||
{
|
||
current_file = current_file->included_by;
|
||
if (! current_file)
|
||
{
|
||
enum dwarf_macro_record_type next_type;
|
||
|
||
/* GCC circa March 2002 doesn't produce the zero
|
||
type byte marking the end of the compilation
|
||
unit. Complain if it's not there, but exit no
|
||
matter what. */
|
||
|
||
/* Do we at least have room for a macinfo type byte? */
|
||
if (mac_ptr >= mac_end)
|
||
{
|
||
dwarf2_section_buffer_overflow_complaint (section);
|
||
return;
|
||
}
|
||
|
||
/* We don't increment mac_ptr here, so this is just
|
||
a look-ahead. */
|
||
next_type
|
||
= (enum dwarf_macro_record_type) read_1_byte (abfd,
|
||
mac_ptr);
|
||
if (next_type != 0)
|
||
complaint (&symfile_complaints,
|
||
_("no terminating 0-type entry for "
|
||
"macros in `.debug_macinfo' section"));
|
||
|
||
return;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case DW_MACRO_GNU_transparent_include:
|
||
case DW_MACRO_GNU_transparent_include_alt:
|
||
{
|
||
LONGEST offset;
|
||
void **slot;
|
||
bfd *include_bfd = abfd;
|
||
struct dwarf2_section_info *include_section = section;
|
||
const gdb_byte *include_mac_end = mac_end;
|
||
int is_dwz = section_is_dwz;
|
||
const gdb_byte *new_mac_ptr;
|
||
|
||
offset = read_offset_1 (abfd, mac_ptr, offset_size);
|
||
mac_ptr += offset_size;
|
||
|
||
if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
|
||
{
|
||
struct dwz_file *dwz = dwarf2_get_dwz_file ();
|
||
|
||
dwarf2_read_section (objfile, &dwz->macro);
|
||
|
||
include_section = &dwz->macro;
|
||
include_bfd = get_section_bfd_owner (include_section);
|
||
include_mac_end = dwz->macro.buffer + dwz->macro.size;
|
||
is_dwz = 1;
|
||
}
|
||
|
||
new_mac_ptr = include_section->buffer + offset;
|
||
slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
|
||
|
||
if (*slot != NULL)
|
||
{
|
||
/* This has actually happened; see
|
||
http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
|
||
complaint (&symfile_complaints,
|
||
_("recursive DW_MACRO_GNU_transparent_include in "
|
||
".debug_macro section"));
|
||
}
|
||
else
|
||
{
|
||
*slot = (void *) new_mac_ptr;
|
||
|
||
dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
|
||
include_mac_end, current_file, lh,
|
||
section, section_is_gnu, is_dwz,
|
||
offset_size, include_hash);
|
||
|
||
htab_remove_elt (include_hash, (void *) new_mac_ptr);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case DW_MACINFO_vendor_ext:
|
||
if (!section_is_gnu)
|
||
{
|
||
unsigned int bytes_read;
|
||
int constant;
|
||
|
||
constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
read_direct_string (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
|
||
/* We don't recognize any vendor extensions. */
|
||
break;
|
||
}
|
||
/* FALLTHROUGH */
|
||
|
||
default:
|
||
mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
|
||
mac_ptr, mac_end, abfd, offset_size,
|
||
section);
|
||
if (mac_ptr == NULL)
|
||
return;
|
||
break;
|
||
}
|
||
} while (macinfo_type != 0);
|
||
}
|
||
|
||
static void
|
||
dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
|
||
int section_is_gnu)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
struct line_header *lh = cu->line_header;
|
||
bfd *abfd;
|
||
const gdb_byte *mac_ptr, *mac_end;
|
||
struct macro_source_file *current_file = 0;
|
||
enum dwarf_macro_record_type macinfo_type;
|
||
unsigned int offset_size = cu->header.offset_size;
|
||
const gdb_byte *opcode_definitions[256];
|
||
struct cleanup *cleanup;
|
||
htab_t include_hash;
|
||
void **slot;
|
||
struct dwarf2_section_info *section;
|
||
const char *section_name;
|
||
|
||
if (cu->dwo_unit != NULL)
|
||
{
|
||
if (section_is_gnu)
|
||
{
|
||
section = &cu->dwo_unit->dwo_file->sections.macro;
|
||
section_name = ".debug_macro.dwo";
|
||
}
|
||
else
|
||
{
|
||
section = &cu->dwo_unit->dwo_file->sections.macinfo;
|
||
section_name = ".debug_macinfo.dwo";
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (section_is_gnu)
|
||
{
|
||
section = &dwarf2_per_objfile->macro;
|
||
section_name = ".debug_macro";
|
||
}
|
||
else
|
||
{
|
||
section = &dwarf2_per_objfile->macinfo;
|
||
section_name = ".debug_macinfo";
|
||
}
|
||
}
|
||
|
||
dwarf2_read_section (objfile, section);
|
||
if (section->buffer == NULL)
|
||
{
|
||
complaint (&symfile_complaints, _("missing %s section"), section_name);
|
||
return;
|
||
}
|
||
abfd = get_section_bfd_owner (section);
|
||
|
||
/* First pass: Find the name of the base filename.
|
||
This filename is needed in order to process all macros whose definition
|
||
(or undefinition) comes from the command line. These macros are defined
|
||
before the first DW_MACINFO_start_file entry, and yet still need to be
|
||
associated to the base file.
|
||
|
||
To determine the base file name, we scan the macro definitions until we
|
||
reach the first DW_MACINFO_start_file entry. We then initialize
|
||
CURRENT_FILE accordingly so that any macro definition found before the
|
||
first DW_MACINFO_start_file can still be associated to the base file. */
|
||
|
||
mac_ptr = section->buffer + offset;
|
||
mac_end = section->buffer + section->size;
|
||
|
||
mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
|
||
&offset_size, section_is_gnu);
|
||
if (mac_ptr == NULL)
|
||
{
|
||
/* We already issued a complaint. */
|
||
return;
|
||
}
|
||
|
||
do
|
||
{
|
||
/* Do we at least have room for a macinfo type byte? */
|
||
if (mac_ptr >= mac_end)
|
||
{
|
||
/* Complaint is printed during the second pass as GDB will probably
|
||
stop the first pass earlier upon finding
|
||
DW_MACINFO_start_file. */
|
||
break;
|
||
}
|
||
|
||
macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
|
||
mac_ptr++;
|
||
|
||
/* Note that we rely on the fact that the corresponding GNU and
|
||
DWARF constants are the same. */
|
||
switch (macinfo_type)
|
||
{
|
||
/* A zero macinfo type indicates the end of the macro
|
||
information. */
|
||
case 0:
|
||
break;
|
||
|
||
case DW_MACRO_GNU_define:
|
||
case DW_MACRO_GNU_undef:
|
||
/* Only skip the data by MAC_PTR. */
|
||
{
|
||
unsigned int bytes_read;
|
||
|
||
read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
read_direct_string (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
}
|
||
break;
|
||
|
||
case DW_MACRO_GNU_start_file:
|
||
{
|
||
unsigned int bytes_read;
|
||
int line, file;
|
||
|
||
line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
|
||
current_file = macro_start_file (file, line, current_file, lh);
|
||
}
|
||
break;
|
||
|
||
case DW_MACRO_GNU_end_file:
|
||
/* No data to skip by MAC_PTR. */
|
||
break;
|
||
|
||
case DW_MACRO_GNU_define_indirect:
|
||
case DW_MACRO_GNU_undef_indirect:
|
||
case DW_MACRO_GNU_define_indirect_alt:
|
||
case DW_MACRO_GNU_undef_indirect_alt:
|
||
{
|
||
unsigned int bytes_read;
|
||
|
||
read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
mac_ptr += offset_size;
|
||
}
|
||
break;
|
||
|
||
case DW_MACRO_GNU_transparent_include:
|
||
case DW_MACRO_GNU_transparent_include_alt:
|
||
/* Note that, according to the spec, a transparent include
|
||
chain cannot call DW_MACRO_GNU_start_file. So, we can just
|
||
skip this opcode. */
|
||
mac_ptr += offset_size;
|
||
break;
|
||
|
||
case DW_MACINFO_vendor_ext:
|
||
/* Only skip the data by MAC_PTR. */
|
||
if (!section_is_gnu)
|
||
{
|
||
unsigned int bytes_read;
|
||
|
||
read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
read_direct_string (abfd, mac_ptr, &bytes_read);
|
||
mac_ptr += bytes_read;
|
||
}
|
||
/* FALLTHROUGH */
|
||
|
||
default:
|
||
mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
|
||
mac_ptr, mac_end, abfd, offset_size,
|
||
section);
|
||
if (mac_ptr == NULL)
|
||
return;
|
||
break;
|
||
}
|
||
} while (macinfo_type != 0 && current_file == NULL);
|
||
|
||
/* Second pass: Process all entries.
|
||
|
||
Use the AT_COMMAND_LINE flag to determine whether we are still processing
|
||
command-line macro definitions/undefinitions. This flag is unset when we
|
||
reach the first DW_MACINFO_start_file entry. */
|
||
|
||
include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
|
||
NULL, xcalloc, xfree);
|
||
cleanup = make_cleanup_htab_delete (include_hash);
|
||
mac_ptr = section->buffer + offset;
|
||
slot = htab_find_slot (include_hash, mac_ptr, INSERT);
|
||
*slot = (void *) mac_ptr;
|
||
dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
|
||
current_file, lh, section,
|
||
section_is_gnu, 0, offset_size, include_hash);
|
||
do_cleanups (cleanup);
|
||
}
|
||
|
||
/* Check if the attribute's form is a DW_FORM_block*
|
||
if so return true else false. */
|
||
|
||
static int
|
||
attr_form_is_block (const struct attribute *attr)
|
||
{
|
||
return (attr == NULL ? 0 :
|
||
attr->form == DW_FORM_block1
|
||
|| attr->form == DW_FORM_block2
|
||
|| attr->form == DW_FORM_block4
|
||
|| attr->form == DW_FORM_block
|
||
|| attr->form == DW_FORM_exprloc);
|
||
}
|
||
|
||
/* Return non-zero if ATTR's value is a section offset --- classes
|
||
lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
|
||
You may use DW_UNSND (attr) to retrieve such offsets.
|
||
|
||
Section 7.5.4, "Attribute Encodings", explains that no attribute
|
||
may have a value that belongs to more than one of these classes; it
|
||
would be ambiguous if we did, because we use the same forms for all
|
||
of them. */
|
||
|
||
static int
|
||
attr_form_is_section_offset (const struct attribute *attr)
|
||
{
|
||
return (attr->form == DW_FORM_data4
|
||
|| attr->form == DW_FORM_data8
|
||
|| attr->form == DW_FORM_sec_offset);
|
||
}
|
||
|
||
/* Return non-zero if ATTR's value falls in the 'constant' class, or
|
||
zero otherwise. When this function returns true, you can apply
|
||
dwarf2_get_attr_constant_value to it.
|
||
|
||
However, note that for some attributes you must check
|
||
attr_form_is_section_offset before using this test. DW_FORM_data4
|
||
and DW_FORM_data8 are members of both the constant class, and of
|
||
the classes that contain offsets into other debug sections
|
||
(lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
|
||
that, if an attribute's can be either a constant or one of the
|
||
section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
|
||
taken as section offsets, not constants. */
|
||
|
||
static int
|
||
attr_form_is_constant (const struct attribute *attr)
|
||
{
|
||
switch (attr->form)
|
||
{
|
||
case DW_FORM_sdata:
|
||
case DW_FORM_udata:
|
||
case DW_FORM_data1:
|
||
case DW_FORM_data2:
|
||
case DW_FORM_data4:
|
||
case DW_FORM_data8:
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
|
||
/* DW_ADDR is always stored already as sect_offset; despite for the forms
|
||
besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
|
||
|
||
static int
|
||
attr_form_is_ref (const struct attribute *attr)
|
||
{
|
||
switch (attr->form)
|
||
{
|
||
case DW_FORM_ref_addr:
|
||
case DW_FORM_ref1:
|
||
case DW_FORM_ref2:
|
||
case DW_FORM_ref4:
|
||
case DW_FORM_ref8:
|
||
case DW_FORM_ref_udata:
|
||
case DW_FORM_GNU_ref_alt:
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return the .debug_loc section to use for CU.
|
||
For DWO files use .debug_loc.dwo. */
|
||
|
||
static struct dwarf2_section_info *
|
||
cu_debug_loc_section (struct dwarf2_cu *cu)
|
||
{
|
||
if (cu->dwo_unit)
|
||
return &cu->dwo_unit->dwo_file->sections.loc;
|
||
return &dwarf2_per_objfile->loc;
|
||
}
|
||
|
||
/* A helper function that fills in a dwarf2_loclist_baton. */
|
||
|
||
static void
|
||
fill_in_loclist_baton (struct dwarf2_cu *cu,
|
||
struct dwarf2_loclist_baton *baton,
|
||
const struct attribute *attr)
|
||
{
|
||
struct dwarf2_section_info *section = cu_debug_loc_section (cu);
|
||
|
||
dwarf2_read_section (dwarf2_per_objfile->objfile, section);
|
||
|
||
baton->per_cu = cu->per_cu;
|
||
gdb_assert (baton->per_cu);
|
||
/* We don't know how long the location list is, but make sure we
|
||
don't run off the edge of the section. */
|
||
baton->size = section->size - DW_UNSND (attr);
|
||
baton->data = section->buffer + DW_UNSND (attr);
|
||
baton->base_address = cu->base_address;
|
||
baton->from_dwo = cu->dwo_unit != NULL;
|
||
}
|
||
|
||
static void
|
||
dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
|
||
struct dwarf2_cu *cu, int is_block)
|
||
{
|
||
struct objfile *objfile = dwarf2_per_objfile->objfile;
|
||
struct dwarf2_section_info *section = cu_debug_loc_section (cu);
|
||
|
||
if (attr_form_is_section_offset (attr)
|
||
/* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
|
||
the section. If so, fall through to the complaint in the
|
||
other branch. */
|
||
&& DW_UNSND (attr) < dwarf2_section_size (objfile, section))
|
||
{
|
||
struct dwarf2_loclist_baton *baton;
|
||
|
||
baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
|
||
|
||
fill_in_loclist_baton (cu, baton, attr);
|
||
|
||
if (cu->base_known == 0)
|
||
complaint (&symfile_complaints,
|
||
_("Location list used without "
|
||
"specifying the CU base address."));
|
||
|
||
SYMBOL_ACLASS_INDEX (sym) = (is_block
|
||
? dwarf2_loclist_block_index
|
||
: dwarf2_loclist_index);
|
||
SYMBOL_LOCATION_BATON (sym) = baton;
|
||
}
|
||
else
|
||
{
|
||
struct dwarf2_locexpr_baton *baton;
|
||
|
||
baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
|
||
baton->per_cu = cu->per_cu;
|
||
gdb_assert (baton->per_cu);
|
||
|
||
if (attr_form_is_block (attr))
|
||
{
|
||
/* Note that we're just copying the block's data pointer
|
||
here, not the actual data. We're still pointing into the
|
||
info_buffer for SYM's objfile; right now we never release
|
||
that buffer, but when we do clean up properly this may
|
||
need to change. */
|
||
baton->size = DW_BLOCK (attr)->size;
|
||
baton->data = DW_BLOCK (attr)->data;
|
||
}
|
||
else
|
||
{
|
||
dwarf2_invalid_attrib_class_complaint ("location description",
|
||
SYMBOL_NATURAL_NAME (sym));
|
||
baton->size = 0;
|
||
}
|
||
|
||
SYMBOL_ACLASS_INDEX (sym) = (is_block
|
||
? dwarf2_locexpr_block_index
|
||
: dwarf2_locexpr_index);
|
||
SYMBOL_LOCATION_BATON (sym) = baton;
|
||
}
|
||
}
|
||
|
||
/* Return the OBJFILE associated with the compilation unit CU. If CU
|
||
came from a separate debuginfo file, then the master objfile is
|
||
returned. */
|
||
|
||
struct objfile *
|
||
dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
struct objfile *objfile = per_cu->objfile;
|
||
|
||
/* Return the master objfile, so that we can report and look up the
|
||
correct file containing this variable. */
|
||
if (objfile->separate_debug_objfile_backlink)
|
||
objfile = objfile->separate_debug_objfile_backlink;
|
||
|
||
return objfile;
|
||
}
|
||
|
||
/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
|
||
(CU_HEADERP is unused in such case) or prepare a temporary copy at
|
||
CU_HEADERP first. */
|
||
|
||
static const struct comp_unit_head *
|
||
per_cu_header_read_in (struct comp_unit_head *cu_headerp,
|
||
struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
const gdb_byte *info_ptr;
|
||
|
||
if (per_cu->cu)
|
||
return &per_cu->cu->header;
|
||
|
||
info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
|
||
|
||
memset (cu_headerp, 0, sizeof (*cu_headerp));
|
||
read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
|
||
|
||
return cu_headerp;
|
||
}
|
||
|
||
/* Return the address size given in the compilation unit header for CU. */
|
||
|
||
int
|
||
dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
struct comp_unit_head cu_header_local;
|
||
const struct comp_unit_head *cu_headerp;
|
||
|
||
cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
|
||
|
||
return cu_headerp->addr_size;
|
||
}
|
||
|
||
/* Return the offset size given in the compilation unit header for CU. */
|
||
|
||
int
|
||
dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
struct comp_unit_head cu_header_local;
|
||
const struct comp_unit_head *cu_headerp;
|
||
|
||
cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
|
||
|
||
return cu_headerp->offset_size;
|
||
}
|
||
|
||
/* See its dwarf2loc.h declaration. */
|
||
|
||
int
|
||
dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
struct comp_unit_head cu_header_local;
|
||
const struct comp_unit_head *cu_headerp;
|
||
|
||
cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
|
||
|
||
if (cu_headerp->version == 2)
|
||
return cu_headerp->addr_size;
|
||
else
|
||
return cu_headerp->offset_size;
|
||
}
|
||
|
||
/* Return the text offset of the CU. The returned offset comes from
|
||
this CU's objfile. If this objfile came from a separate debuginfo
|
||
file, then the offset may be different from the corresponding
|
||
offset in the parent objfile. */
|
||
|
||
CORE_ADDR
|
||
dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
struct objfile *objfile = per_cu->objfile;
|
||
|
||
return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
}
|
||
|
||
/* Locate the .debug_info compilation unit from CU's objfile which contains
|
||
the DIE at OFFSET. Raises an error on failure. */
|
||
|
||
static struct dwarf2_per_cu_data *
|
||
dwarf2_find_containing_comp_unit (sect_offset offset,
|
||
unsigned int offset_in_dwz,
|
||
struct objfile *objfile)
|
||
{
|
||
struct dwarf2_per_cu_data *this_cu;
|
||
int low, high;
|
||
const sect_offset *cu_off;
|
||
|
||
low = 0;
|
||
high = dwarf2_per_objfile->n_comp_units - 1;
|
||
while (high > low)
|
||
{
|
||
struct dwarf2_per_cu_data *mid_cu;
|
||
int mid = low + (high - low) / 2;
|
||
|
||
mid_cu = dwarf2_per_objfile->all_comp_units[mid];
|
||
cu_off = &mid_cu->offset;
|
||
if (mid_cu->is_dwz > offset_in_dwz
|
||
|| (mid_cu->is_dwz == offset_in_dwz
|
||
&& cu_off->sect_off >= offset.sect_off))
|
||
high = mid;
|
||
else
|
||
low = mid + 1;
|
||
}
|
||
gdb_assert (low == high);
|
||
this_cu = dwarf2_per_objfile->all_comp_units[low];
|
||
cu_off = &this_cu->offset;
|
||
if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
|
||
{
|
||
if (low == 0 || this_cu->is_dwz != offset_in_dwz)
|
||
error (_("Dwarf Error: could not find partial DIE containing "
|
||
"offset 0x%lx [in module %s]"),
|
||
(long) offset.sect_off, bfd_get_filename (objfile->obfd));
|
||
|
||
gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
|
||
<= offset.sect_off);
|
||
return dwarf2_per_objfile->all_comp_units[low-1];
|
||
}
|
||
else
|
||
{
|
||
this_cu = dwarf2_per_objfile->all_comp_units[low];
|
||
if (low == dwarf2_per_objfile->n_comp_units - 1
|
||
&& offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
|
||
error (_("invalid dwarf2 offset %u"), offset.sect_off);
|
||
gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
|
||
return this_cu;
|
||
}
|
||
}
|
||
|
||
/* Initialize dwarf2_cu CU, owned by PER_CU. */
|
||
|
||
static void
|
||
init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
memset (cu, 0, sizeof (*cu));
|
||
per_cu->cu = cu;
|
||
cu->per_cu = per_cu;
|
||
cu->objfile = per_cu->objfile;
|
||
obstack_init (&cu->comp_unit_obstack);
|
||
}
|
||
|
||
/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
|
||
|
||
static void
|
||
prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
|
||
enum language pretend_language)
|
||
{
|
||
struct attribute *attr;
|
||
|
||
/* Set the language we're debugging. */
|
||
attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
|
||
if (attr)
|
||
set_cu_language (DW_UNSND (attr), cu);
|
||
else
|
||
{
|
||
cu->language = pretend_language;
|
||
cu->language_defn = language_def (cu->language);
|
||
}
|
||
|
||
cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
|
||
}
|
||
|
||
/* Release one cached compilation unit, CU. We unlink it from the tree
|
||
of compilation units, but we don't remove it from the read_in_chain;
|
||
the caller is responsible for that.
|
||
NOTE: DATA is a void * because this function is also used as a
|
||
cleanup routine. */
|
||
|
||
static void
|
||
free_heap_comp_unit (void *data)
|
||
{
|
||
struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
|
||
|
||
gdb_assert (cu->per_cu != NULL);
|
||
cu->per_cu->cu = NULL;
|
||
cu->per_cu = NULL;
|
||
|
||
obstack_free (&cu->comp_unit_obstack, NULL);
|
||
|
||
xfree (cu);
|
||
}
|
||
|
||
/* This cleanup function is passed the address of a dwarf2_cu on the stack
|
||
when we're finished with it. We can't free the pointer itself, but be
|
||
sure to unlink it from the cache. Also release any associated storage. */
|
||
|
||
static void
|
||
free_stack_comp_unit (void *data)
|
||
{
|
||
struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
|
||
|
||
gdb_assert (cu->per_cu != NULL);
|
||
cu->per_cu->cu = NULL;
|
||
cu->per_cu = NULL;
|
||
|
||
obstack_free (&cu->comp_unit_obstack, NULL);
|
||
cu->partial_dies = NULL;
|
||
}
|
||
|
||
/* Free all cached compilation units. */
|
||
|
||
static void
|
||
free_cached_comp_units (void *data)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu, **last_chain;
|
||
|
||
per_cu = dwarf2_per_objfile->read_in_chain;
|
||
last_chain = &dwarf2_per_objfile->read_in_chain;
|
||
while (per_cu != NULL)
|
||
{
|
||
struct dwarf2_per_cu_data *next_cu;
|
||
|
||
next_cu = per_cu->cu->read_in_chain;
|
||
|
||
free_heap_comp_unit (per_cu->cu);
|
||
*last_chain = next_cu;
|
||
|
||
per_cu = next_cu;
|
||
}
|
||
}
|
||
|
||
/* Increase the age counter on each cached compilation unit, and free
|
||
any that are too old. */
|
||
|
||
static void
|
||
age_cached_comp_units (void)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu, **last_chain;
|
||
|
||
dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
|
||
per_cu = dwarf2_per_objfile->read_in_chain;
|
||
while (per_cu != NULL)
|
||
{
|
||
per_cu->cu->last_used ++;
|
||
if (per_cu->cu->last_used <= dwarf_max_cache_age)
|
||
dwarf2_mark (per_cu->cu);
|
||
per_cu = per_cu->cu->read_in_chain;
|
||
}
|
||
|
||
per_cu = dwarf2_per_objfile->read_in_chain;
|
||
last_chain = &dwarf2_per_objfile->read_in_chain;
|
||
while (per_cu != NULL)
|
||
{
|
||
struct dwarf2_per_cu_data *next_cu;
|
||
|
||
next_cu = per_cu->cu->read_in_chain;
|
||
|
||
if (!per_cu->cu->mark)
|
||
{
|
||
free_heap_comp_unit (per_cu->cu);
|
||
*last_chain = next_cu;
|
||
}
|
||
else
|
||
last_chain = &per_cu->cu->read_in_chain;
|
||
|
||
per_cu = next_cu;
|
||
}
|
||
}
|
||
|
||
/* Remove a single compilation unit from the cache. */
|
||
|
||
static void
|
||
free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu, **last_chain;
|
||
|
||
per_cu = dwarf2_per_objfile->read_in_chain;
|
||
last_chain = &dwarf2_per_objfile->read_in_chain;
|
||
while (per_cu != NULL)
|
||
{
|
||
struct dwarf2_per_cu_data *next_cu;
|
||
|
||
next_cu = per_cu->cu->read_in_chain;
|
||
|
||
if (per_cu == target_per_cu)
|
||
{
|
||
free_heap_comp_unit (per_cu->cu);
|
||
per_cu->cu = NULL;
|
||
*last_chain = next_cu;
|
||
break;
|
||
}
|
||
else
|
||
last_chain = &per_cu->cu->read_in_chain;
|
||
|
||
per_cu = next_cu;
|
||
}
|
||
}
|
||
|
||
/* Release all extra memory associated with OBJFILE. */
|
||
|
||
void
|
||
dwarf2_free_objfile (struct objfile *objfile)
|
||
{
|
||
dwarf2_per_objfile
|
||
= (struct dwarf2_per_objfile *) objfile_data (objfile,
|
||
dwarf2_objfile_data_key);
|
||
|
||
if (dwarf2_per_objfile == NULL)
|
||
return;
|
||
|
||
/* Cached DIE trees use xmalloc and the comp_unit_obstack. */
|
||
free_cached_comp_units (NULL);
|
||
|
||
if (dwarf2_per_objfile->quick_file_names_table)
|
||
htab_delete (dwarf2_per_objfile->quick_file_names_table);
|
||
|
||
if (dwarf2_per_objfile->line_header_hash)
|
||
htab_delete (dwarf2_per_objfile->line_header_hash);
|
||
|
||
/* Everything else should be on the objfile obstack. */
|
||
}
|
||
|
||
/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
|
||
We store these in a hash table separate from the DIEs, and preserve them
|
||
when the DIEs are flushed out of cache.
|
||
|
||
The CU "per_cu" pointer is needed because offset alone is not enough to
|
||
uniquely identify the type. A file may have multiple .debug_types sections,
|
||
or the type may come from a DWO file. Furthermore, while it's more logical
|
||
to use per_cu->section+offset, with Fission the section with the data is in
|
||
the DWO file but we don't know that section at the point we need it.
|
||
We have to use something in dwarf2_per_cu_data (or the pointer to it)
|
||
because we can enter the lookup routine, get_die_type_at_offset, from
|
||
outside this file, and thus won't necessarily have PER_CU->cu.
|
||
Fortunately, PER_CU is stable for the life of the objfile. */
|
||
|
||
struct dwarf2_per_cu_offset_and_type
|
||
{
|
||
const struct dwarf2_per_cu_data *per_cu;
|
||
sect_offset offset;
|
||
struct type *type;
|
||
};
|
||
|
||
/* Hash function for a dwarf2_per_cu_offset_and_type. */
|
||
|
||
static hashval_t
|
||
per_cu_offset_and_type_hash (const void *item)
|
||
{
|
||
const struct dwarf2_per_cu_offset_and_type *ofs
|
||
= (const struct dwarf2_per_cu_offset_and_type *) item;
|
||
|
||
return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
|
||
}
|
||
|
||
/* Equality function for a dwarf2_per_cu_offset_and_type. */
|
||
|
||
static int
|
||
per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
|
||
{
|
||
const struct dwarf2_per_cu_offset_and_type *ofs_lhs
|
||
= (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
|
||
const struct dwarf2_per_cu_offset_and_type *ofs_rhs
|
||
= (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
|
||
|
||
return (ofs_lhs->per_cu == ofs_rhs->per_cu
|
||
&& ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
|
||
}
|
||
|
||
/* Set the type associated with DIE to TYPE. Save it in CU's hash
|
||
table if necessary. For convenience, return TYPE.
|
||
|
||
The DIEs reading must have careful ordering to:
|
||
* Not cause infite loops trying to read in DIEs as a prerequisite for
|
||
reading current DIE.
|
||
* Not trying to dereference contents of still incompletely read in types
|
||
while reading in other DIEs.
|
||
* Enable referencing still incompletely read in types just by a pointer to
|
||
the type without accessing its fields.
|
||
|
||
Therefore caller should follow these rules:
|
||
* Try to fetch any prerequisite types we may need to build this DIE type
|
||
before building the type and calling set_die_type.
|
||
* After building type call set_die_type for current DIE as soon as
|
||
possible before fetching more types to complete the current type.
|
||
* Make the type as complete as possible before fetching more types. */
|
||
|
||
static struct type *
|
||
set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
|
||
{
|
||
struct dwarf2_per_cu_offset_and_type **slot, ofs;
|
||
struct objfile *objfile = cu->objfile;
|
||
struct attribute *attr;
|
||
struct dynamic_prop prop;
|
||
|
||
/* For Ada types, make sure that the gnat-specific data is always
|
||
initialized (if not already set). There are a few types where
|
||
we should not be doing so, because the type-specific area is
|
||
already used to hold some other piece of info (eg: TYPE_CODE_FLT
|
||
where the type-specific area is used to store the floatformat).
|
||
But this is not a problem, because the gnat-specific information
|
||
is actually not needed for these types. */
|
||
if (need_gnat_info (cu)
|
||
&& TYPE_CODE (type) != TYPE_CODE_FUNC
|
||
&& TYPE_CODE (type) != TYPE_CODE_FLT
|
||
&& TYPE_CODE (type) != TYPE_CODE_METHODPTR
|
||
&& TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
|
||
&& TYPE_CODE (type) != TYPE_CODE_METHOD
|
||
&& !HAVE_GNAT_AUX_INFO (type))
|
||
INIT_GNAT_SPECIFIC (type);
|
||
|
||
/* Read DW_AT_allocated and set in type. */
|
||
attr = dwarf2_attr (die, DW_AT_allocated, cu);
|
||
if (attr_form_is_block (attr))
|
||
{
|
||
if (attr_to_dynamic_prop (attr, die, cu, &prop))
|
||
add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
|
||
}
|
||
else if (attr != NULL)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
|
||
(attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
|
||
die->offset.sect_off);
|
||
}
|
||
|
||
/* Read DW_AT_associated and set in type. */
|
||
attr = dwarf2_attr (die, DW_AT_associated, cu);
|
||
if (attr_form_is_block (attr))
|
||
{
|
||
if (attr_to_dynamic_prop (attr, die, cu, &prop))
|
||
add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
|
||
}
|
||
else if (attr != NULL)
|
||
{
|
||
complaint (&symfile_complaints,
|
||
_("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
|
||
(attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
|
||
die->offset.sect_off);
|
||
}
|
||
|
||
/* Read DW_AT_data_location and set in type. */
|
||
attr = dwarf2_attr (die, DW_AT_data_location, cu);
|
||
if (attr_to_dynamic_prop (attr, die, cu, &prop))
|
||
add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
|
||
|
||
if (dwarf2_per_objfile->die_type_hash == NULL)
|
||
{
|
||
dwarf2_per_objfile->die_type_hash =
|
||
htab_create_alloc_ex (127,
|
||
per_cu_offset_and_type_hash,
|
||
per_cu_offset_and_type_eq,
|
||
NULL,
|
||
&objfile->objfile_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
}
|
||
|
||
ofs.per_cu = cu->per_cu;
|
||
ofs.offset = die->offset;
|
||
ofs.type = type;
|
||
slot = (struct dwarf2_per_cu_offset_and_type **)
|
||
htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
|
||
if (*slot)
|
||
complaint (&symfile_complaints,
|
||
_("A problem internal to GDB: DIE 0x%x has type already set"),
|
||
die->offset.sect_off);
|
||
*slot = XOBNEW (&objfile->objfile_obstack,
|
||
struct dwarf2_per_cu_offset_and_type);
|
||
**slot = ofs;
|
||
return type;
|
||
}
|
||
|
||
/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
|
||
or return NULL if the die does not have a saved type. */
|
||
|
||
static struct type *
|
||
get_die_type_at_offset (sect_offset offset,
|
||
struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
struct dwarf2_per_cu_offset_and_type *slot, ofs;
|
||
|
||
if (dwarf2_per_objfile->die_type_hash == NULL)
|
||
return NULL;
|
||
|
||
ofs.per_cu = per_cu;
|
||
ofs.offset = offset;
|
||
slot = ((struct dwarf2_per_cu_offset_and_type *)
|
||
htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
|
||
if (slot)
|
||
return slot->type;
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* Look up the type for DIE in CU in die_type_hash,
|
||
or return NULL if DIE does not have a saved type. */
|
||
|
||
static struct type *
|
||
get_die_type (struct die_info *die, struct dwarf2_cu *cu)
|
||
{
|
||
return get_die_type_at_offset (die->offset, cu->per_cu);
|
||
}
|
||
|
||
/* Add a dependence relationship from CU to REF_PER_CU. */
|
||
|
||
static void
|
||
dwarf2_add_dependence (struct dwarf2_cu *cu,
|
||
struct dwarf2_per_cu_data *ref_per_cu)
|
||
{
|
||
void **slot;
|
||
|
||
if (cu->dependencies == NULL)
|
||
cu->dependencies
|
||
= htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
|
||
NULL, &cu->comp_unit_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
|
||
slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
|
||
if (*slot == NULL)
|
||
*slot = ref_per_cu;
|
||
}
|
||
|
||
/* Subroutine of dwarf2_mark to pass to htab_traverse.
|
||
Set the mark field in every compilation unit in the
|
||
cache that we must keep because we are keeping CU. */
|
||
|
||
static int
|
||
dwarf2_mark_helper (void **slot, void *data)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu;
|
||
|
||
per_cu = (struct dwarf2_per_cu_data *) *slot;
|
||
|
||
/* cu->dependencies references may not yet have been ever read if QUIT aborts
|
||
reading of the chain. As such dependencies remain valid it is not much
|
||
useful to track and undo them during QUIT cleanups. */
|
||
if (per_cu->cu == NULL)
|
||
return 1;
|
||
|
||
if (per_cu->cu->mark)
|
||
return 1;
|
||
per_cu->cu->mark = 1;
|
||
|
||
if (per_cu->cu->dependencies != NULL)
|
||
htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Set the mark field in CU and in every other compilation unit in the
|
||
cache that we must keep because we are keeping CU. */
|
||
|
||
static void
|
||
dwarf2_mark (struct dwarf2_cu *cu)
|
||
{
|
||
if (cu->mark)
|
||
return;
|
||
cu->mark = 1;
|
||
if (cu->dependencies != NULL)
|
||
htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
|
||
}
|
||
|
||
static void
|
||
dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
|
||
{
|
||
while (per_cu)
|
||
{
|
||
per_cu->cu->mark = 0;
|
||
per_cu = per_cu->cu->read_in_chain;
|
||
}
|
||
}
|
||
|
||
/* Trivial hash function for partial_die_info: the hash value of a DIE
|
||
is its offset in .debug_info for this objfile. */
|
||
|
||
static hashval_t
|
||
partial_die_hash (const void *item)
|
||
{
|
||
const struct partial_die_info *part_die
|
||
= (const struct partial_die_info *) item;
|
||
|
||
return part_die->offset.sect_off;
|
||
}
|
||
|
||
/* Trivial comparison function for partial_die_info structures: two DIEs
|
||
are equal if they have the same offset. */
|
||
|
||
static int
|
||
partial_die_eq (const void *item_lhs, const void *item_rhs)
|
||
{
|
||
const struct partial_die_info *part_die_lhs
|
||
= (const struct partial_die_info *) item_lhs;
|
||
const struct partial_die_info *part_die_rhs
|
||
= (const struct partial_die_info *) item_rhs;
|
||
|
||
return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
|
||
}
|
||
|
||
static struct cmd_list_element *set_dwarf_cmdlist;
|
||
static struct cmd_list_element *show_dwarf_cmdlist;
|
||
|
||
static void
|
||
set_dwarf_cmd (char *args, int from_tty)
|
||
{
|
||
help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
|
||
gdb_stdout);
|
||
}
|
||
|
||
static void
|
||
show_dwarf_cmd (char *args, int from_tty)
|
||
{
|
||
cmd_show_list (show_dwarf_cmdlist, from_tty, "");
|
||
}
|
||
|
||
/* Free data associated with OBJFILE, if necessary. */
|
||
|
||
static void
|
||
dwarf2_per_objfile_free (struct objfile *objfile, void *d)
|
||
{
|
||
struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
|
||
int ix;
|
||
|
||
/* Make sure we don't accidentally use dwarf2_per_objfile while
|
||
cleaning up. */
|
||
dwarf2_per_objfile = NULL;
|
||
|
||
for (ix = 0; ix < data->n_comp_units; ++ix)
|
||
VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
|
||
|
||
for (ix = 0; ix < data->n_type_units; ++ix)
|
||
VEC_free (dwarf2_per_cu_ptr,
|
||
data->all_type_units[ix]->per_cu.imported_symtabs);
|
||
xfree (data->all_type_units);
|
||
|
||
VEC_free (dwarf2_section_info_def, data->types);
|
||
|
||
if (data->dwo_files)
|
||
free_dwo_files (data->dwo_files, objfile);
|
||
if (data->dwp_file)
|
||
gdb_bfd_unref (data->dwp_file->dbfd);
|
||
|
||
if (data->dwz_file && data->dwz_file->dwz_bfd)
|
||
gdb_bfd_unref (data->dwz_file->dwz_bfd);
|
||
}
|
||
|
||
|
||
/* The "save gdb-index" command. */
|
||
|
||
/* The contents of the hash table we create when building the string
|
||
table. */
|
||
struct strtab_entry
|
||
{
|
||
offset_type offset;
|
||
const char *str;
|
||
};
|
||
|
||
/* Hash function for a strtab_entry.
|
||
|
||
Function is used only during write_hash_table so no index format backward
|
||
compatibility is needed. */
|
||
|
||
static hashval_t
|
||
hash_strtab_entry (const void *e)
|
||
{
|
||
const struct strtab_entry *entry = (const struct strtab_entry *) e;
|
||
return mapped_index_string_hash (INT_MAX, entry->str);
|
||
}
|
||
|
||
/* Equality function for a strtab_entry. */
|
||
|
||
static int
|
||
eq_strtab_entry (const void *a, const void *b)
|
||
{
|
||
const struct strtab_entry *ea = (const struct strtab_entry *) a;
|
||
const struct strtab_entry *eb = (const struct strtab_entry *) b;
|
||
return !strcmp (ea->str, eb->str);
|
||
}
|
||
|
||
/* Create a strtab_entry hash table. */
|
||
|
||
static htab_t
|
||
create_strtab (void)
|
||
{
|
||
return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
|
||
xfree, xcalloc, xfree);
|
||
}
|
||
|
||
/* Add a string to the constant pool. Return the string's offset in
|
||
host order. */
|
||
|
||
static offset_type
|
||
add_string (htab_t table, struct obstack *cpool, const char *str)
|
||
{
|
||
void **slot;
|
||
struct strtab_entry entry;
|
||
struct strtab_entry *result;
|
||
|
||
entry.str = str;
|
||
slot = htab_find_slot (table, &entry, INSERT);
|
||
if (*slot)
|
||
result = (struct strtab_entry *) *slot;
|
||
else
|
||
{
|
||
result = XNEW (struct strtab_entry);
|
||
result->offset = obstack_object_size (cpool);
|
||
result->str = str;
|
||
obstack_grow_str0 (cpool, str);
|
||
*slot = result;
|
||
}
|
||
return result->offset;
|
||
}
|
||
|
||
/* An entry in the symbol table. */
|
||
struct symtab_index_entry
|
||
{
|
||
/* The name of the symbol. */
|
||
const char *name;
|
||
/* The offset of the name in the constant pool. */
|
||
offset_type index_offset;
|
||
/* A sorted vector of the indices of all the CUs that hold an object
|
||
of this name. */
|
||
VEC (offset_type) *cu_indices;
|
||
};
|
||
|
||
/* The symbol table. This is a power-of-2-sized hash table. */
|
||
struct mapped_symtab
|
||
{
|
||
offset_type n_elements;
|
||
offset_type size;
|
||
struct symtab_index_entry **data;
|
||
};
|
||
|
||
/* Hash function for a symtab_index_entry. */
|
||
|
||
static hashval_t
|
||
hash_symtab_entry (const void *e)
|
||
{
|
||
const struct symtab_index_entry *entry
|
||
= (const struct symtab_index_entry *) e;
|
||
return iterative_hash (VEC_address (offset_type, entry->cu_indices),
|
||
sizeof (offset_type) * VEC_length (offset_type,
|
||
entry->cu_indices),
|
||
0);
|
||
}
|
||
|
||
/* Equality function for a symtab_index_entry. */
|
||
|
||
static int
|
||
eq_symtab_entry (const void *a, const void *b)
|
||
{
|
||
const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
|
||
const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
|
||
int len = VEC_length (offset_type, ea->cu_indices);
|
||
if (len != VEC_length (offset_type, eb->cu_indices))
|
||
return 0;
|
||
return !memcmp (VEC_address (offset_type, ea->cu_indices),
|
||
VEC_address (offset_type, eb->cu_indices),
|
||
sizeof (offset_type) * len);
|
||
}
|
||
|
||
/* Destroy a symtab_index_entry. */
|
||
|
||
static void
|
||
delete_symtab_entry (void *p)
|
||
{
|
||
struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
|
||
VEC_free (offset_type, entry->cu_indices);
|
||
xfree (entry);
|
||
}
|
||
|
||
/* Create a hash table holding symtab_index_entry objects. */
|
||
|
||
static htab_t
|
||
create_symbol_hash_table (void)
|
||
{
|
||
return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
|
||
delete_symtab_entry, xcalloc, xfree);
|
||
}
|
||
|
||
/* Create a new mapped symtab object. */
|
||
|
||
static struct mapped_symtab *
|
||
create_mapped_symtab (void)
|
||
{
|
||
struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
|
||
symtab->n_elements = 0;
|
||
symtab->size = 1024;
|
||
symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
|
||
return symtab;
|
||
}
|
||
|
||
/* Destroy a mapped_symtab. */
|
||
|
||
static void
|
||
cleanup_mapped_symtab (void *p)
|
||
{
|
||
struct mapped_symtab *symtab = (struct mapped_symtab *) p;
|
||
/* The contents of the array are freed when the other hash table is
|
||
destroyed. */
|
||
xfree (symtab->data);
|
||
xfree (symtab);
|
||
}
|
||
|
||
/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
|
||
the slot.
|
||
|
||
Function is used only during write_hash_table so no index format backward
|
||
compatibility is needed. */
|
||
|
||
static struct symtab_index_entry **
|
||
find_slot (struct mapped_symtab *symtab, const char *name)
|
||
{
|
||
offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
|
||
|
||
index = hash & (symtab->size - 1);
|
||
step = ((hash * 17) & (symtab->size - 1)) | 1;
|
||
|
||
for (;;)
|
||
{
|
||
if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
|
||
return &symtab->data[index];
|
||
index = (index + step) & (symtab->size - 1);
|
||
}
|
||
}
|
||
|
||
/* Expand SYMTAB's hash table. */
|
||
|
||
static void
|
||
hash_expand (struct mapped_symtab *symtab)
|
||
{
|
||
offset_type old_size = symtab->size;
|
||
offset_type i;
|
||
struct symtab_index_entry **old_entries = symtab->data;
|
||
|
||
symtab->size *= 2;
|
||
symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
|
||
|
||
for (i = 0; i < old_size; ++i)
|
||
{
|
||
if (old_entries[i])
|
||
{
|
||
struct symtab_index_entry **slot = find_slot (symtab,
|
||
old_entries[i]->name);
|
||
*slot = old_entries[i];
|
||
}
|
||
}
|
||
|
||
xfree (old_entries);
|
||
}
|
||
|
||
/* Add an entry to SYMTAB. NAME is the name of the symbol.
|
||
CU_INDEX is the index of the CU in which the symbol appears.
|
||
IS_STATIC is one if the symbol is static, otherwise zero (global). */
|
||
|
||
static void
|
||
add_index_entry (struct mapped_symtab *symtab, const char *name,
|
||
int is_static, gdb_index_symbol_kind kind,
|
||
offset_type cu_index)
|
||
{
|
||
struct symtab_index_entry **slot;
|
||
offset_type cu_index_and_attrs;
|
||
|
||
++symtab->n_elements;
|
||
if (4 * symtab->n_elements / 3 >= symtab->size)
|
||
hash_expand (symtab);
|
||
|
||
slot = find_slot (symtab, name);
|
||
if (!*slot)
|
||
{
|
||
*slot = XNEW (struct symtab_index_entry);
|
||
(*slot)->name = name;
|
||
/* index_offset is set later. */
|
||
(*slot)->cu_indices = NULL;
|
||
}
|
||
|
||
cu_index_and_attrs = 0;
|
||
DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
|
||
DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
|
||
DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
|
||
|
||
/* We don't want to record an index value twice as we want to avoid the
|
||
duplication.
|
||
We process all global symbols and then all static symbols
|
||
(which would allow us to avoid the duplication by only having to check
|
||
the last entry pushed), but a symbol could have multiple kinds in one CU.
|
||
To keep things simple we don't worry about the duplication here and
|
||
sort and uniqufy the list after we've processed all symbols. */
|
||
VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
|
||
}
|
||
|
||
/* qsort helper routine for uniquify_cu_indices. */
|
||
|
||
static int
|
||
offset_type_compare (const void *ap, const void *bp)
|
||
{
|
||
offset_type a = *(offset_type *) ap;
|
||
offset_type b = *(offset_type *) bp;
|
||
|
||
return (a > b) - (b > a);
|
||
}
|
||
|
||
/* Sort and remove duplicates of all symbols' cu_indices lists. */
|
||
|
||
static void
|
||
uniquify_cu_indices (struct mapped_symtab *symtab)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < symtab->size; ++i)
|
||
{
|
||
struct symtab_index_entry *entry = symtab->data[i];
|
||
|
||
if (entry
|
||
&& entry->cu_indices != NULL)
|
||
{
|
||
unsigned int next_to_insert, next_to_check;
|
||
offset_type last_value;
|
||
|
||
qsort (VEC_address (offset_type, entry->cu_indices),
|
||
VEC_length (offset_type, entry->cu_indices),
|
||
sizeof (offset_type), offset_type_compare);
|
||
|
||
last_value = VEC_index (offset_type, entry->cu_indices, 0);
|
||
next_to_insert = 1;
|
||
for (next_to_check = 1;
|
||
next_to_check < VEC_length (offset_type, entry->cu_indices);
|
||
++next_to_check)
|
||
{
|
||
if (VEC_index (offset_type, entry->cu_indices, next_to_check)
|
||
!= last_value)
|
||
{
|
||
last_value = VEC_index (offset_type, entry->cu_indices,
|
||
next_to_check);
|
||
VEC_replace (offset_type, entry->cu_indices, next_to_insert,
|
||
last_value);
|
||
++next_to_insert;
|
||
}
|
||
}
|
||
VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Add a vector of indices to the constant pool. */
|
||
|
||
static offset_type
|
||
add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
|
||
struct symtab_index_entry *entry)
|
||
{
|
||
void **slot;
|
||
|
||
slot = htab_find_slot (symbol_hash_table, entry, INSERT);
|
||
if (!*slot)
|
||
{
|
||
offset_type len = VEC_length (offset_type, entry->cu_indices);
|
||
offset_type val = MAYBE_SWAP (len);
|
||
offset_type iter;
|
||
int i;
|
||
|
||
*slot = entry;
|
||
entry->index_offset = obstack_object_size (cpool);
|
||
|
||
obstack_grow (cpool, &val, sizeof (val));
|
||
for (i = 0;
|
||
VEC_iterate (offset_type, entry->cu_indices, i, iter);
|
||
++i)
|
||
{
|
||
val = MAYBE_SWAP (iter);
|
||
obstack_grow (cpool, &val, sizeof (val));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
struct symtab_index_entry *old_entry
|
||
= (struct symtab_index_entry *) *slot;
|
||
entry->index_offset = old_entry->index_offset;
|
||
entry = old_entry;
|
||
}
|
||
return entry->index_offset;
|
||
}
|
||
|
||
/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
|
||
constant pool entries going into the obstack CPOOL. */
|
||
|
||
static void
|
||
write_hash_table (struct mapped_symtab *symtab,
|
||
struct obstack *output, struct obstack *cpool)
|
||
{
|
||
offset_type i;
|
||
htab_t symbol_hash_table;
|
||
htab_t str_table;
|
||
|
||
symbol_hash_table = create_symbol_hash_table ();
|
||
str_table = create_strtab ();
|
||
|
||
/* We add all the index vectors to the constant pool first, to
|
||
ensure alignment is ok. */
|
||
for (i = 0; i < symtab->size; ++i)
|
||
{
|
||
if (symtab->data[i])
|
||
add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
|
||
}
|
||
|
||
/* Now write out the hash table. */
|
||
for (i = 0; i < symtab->size; ++i)
|
||
{
|
||
offset_type str_off, vec_off;
|
||
|
||
if (symtab->data[i])
|
||
{
|
||
str_off = add_string (str_table, cpool, symtab->data[i]->name);
|
||
vec_off = symtab->data[i]->index_offset;
|
||
}
|
||
else
|
||
{
|
||
/* While 0 is a valid constant pool index, it is not valid
|
||
to have 0 for both offsets. */
|
||
str_off = 0;
|
||
vec_off = 0;
|
||
}
|
||
|
||
str_off = MAYBE_SWAP (str_off);
|
||
vec_off = MAYBE_SWAP (vec_off);
|
||
|
||
obstack_grow (output, &str_off, sizeof (str_off));
|
||
obstack_grow (output, &vec_off, sizeof (vec_off));
|
||
}
|
||
|
||
htab_delete (str_table);
|
||
htab_delete (symbol_hash_table);
|
||
}
|
||
|
||
/* Struct to map psymtab to CU index in the index file. */
|
||
struct psymtab_cu_index_map
|
||
{
|
||
struct partial_symtab *psymtab;
|
||
unsigned int cu_index;
|
||
};
|
||
|
||
static hashval_t
|
||
hash_psymtab_cu_index (const void *item)
|
||
{
|
||
const struct psymtab_cu_index_map *map
|
||
= (const struct psymtab_cu_index_map *) item;
|
||
|
||
return htab_hash_pointer (map->psymtab);
|
||
}
|
||
|
||
static int
|
||
eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
|
||
{
|
||
const struct psymtab_cu_index_map *lhs
|
||
= (const struct psymtab_cu_index_map *) item_lhs;
|
||
const struct psymtab_cu_index_map *rhs
|
||
= (const struct psymtab_cu_index_map *) item_rhs;
|
||
|
||
return lhs->psymtab == rhs->psymtab;
|
||
}
|
||
|
||
/* Helper struct for building the address table. */
|
||
struct addrmap_index_data
|
||
{
|
||
struct objfile *objfile;
|
||
struct obstack *addr_obstack;
|
||
htab_t cu_index_htab;
|
||
|
||
/* Non-zero if the previous_* fields are valid.
|
||
We can't write an entry until we see the next entry (since it is only then
|
||
that we know the end of the entry). */
|
||
int previous_valid;
|
||
/* Index of the CU in the table of all CUs in the index file. */
|
||
unsigned int previous_cu_index;
|
||
/* Start address of the CU. */
|
||
CORE_ADDR previous_cu_start;
|
||
};
|
||
|
||
/* Write an address entry to OBSTACK. */
|
||
|
||
static void
|
||
add_address_entry (struct objfile *objfile, struct obstack *obstack,
|
||
CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
|
||
{
|
||
offset_type cu_index_to_write;
|
||
gdb_byte addr[8];
|
||
CORE_ADDR baseaddr;
|
||
|
||
baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
||
|
||
store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
|
||
obstack_grow (obstack, addr, 8);
|
||
store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
|
||
obstack_grow (obstack, addr, 8);
|
||
cu_index_to_write = MAYBE_SWAP (cu_index);
|
||
obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
|
||
}
|
||
|
||
/* Worker function for traversing an addrmap to build the address table. */
|
||
|
||
static int
|
||
add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
|
||
{
|
||
struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
|
||
struct partial_symtab *pst = (struct partial_symtab *) obj;
|
||
|
||
if (data->previous_valid)
|
||
add_address_entry (data->objfile, data->addr_obstack,
|
||
data->previous_cu_start, start_addr,
|
||
data->previous_cu_index);
|
||
|
||
data->previous_cu_start = start_addr;
|
||
if (pst != NULL)
|
||
{
|
||
struct psymtab_cu_index_map find_map, *map;
|
||
find_map.psymtab = pst;
|
||
map = ((struct psymtab_cu_index_map *)
|
||
htab_find (data->cu_index_htab, &find_map));
|
||
gdb_assert (map != NULL);
|
||
data->previous_cu_index = map->cu_index;
|
||
data->previous_valid = 1;
|
||
}
|
||
else
|
||
data->previous_valid = 0;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Write OBJFILE's address map to OBSTACK.
|
||
CU_INDEX_HTAB is used to map addrmap entries to their CU indices
|
||
in the index file. */
|
||
|
||
static void
|
||
write_address_map (struct objfile *objfile, struct obstack *obstack,
|
||
htab_t cu_index_htab)
|
||
{
|
||
struct addrmap_index_data addrmap_index_data;
|
||
|
||
/* When writing the address table, we have to cope with the fact that
|
||
the addrmap iterator only provides the start of a region; we have to
|
||
wait until the next invocation to get the start of the next region. */
|
||
|
||
addrmap_index_data.objfile = objfile;
|
||
addrmap_index_data.addr_obstack = obstack;
|
||
addrmap_index_data.cu_index_htab = cu_index_htab;
|
||
addrmap_index_data.previous_valid = 0;
|
||
|
||
addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
|
||
&addrmap_index_data);
|
||
|
||
/* It's highly unlikely the last entry (end address = 0xff...ff)
|
||
is valid, but we should still handle it.
|
||
The end address is recorded as the start of the next region, but that
|
||
doesn't work here. To cope we pass 0xff...ff, this is a rare situation
|
||
anyway. */
|
||
if (addrmap_index_data.previous_valid)
|
||
add_address_entry (objfile, obstack,
|
||
addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
|
||
addrmap_index_data.previous_cu_index);
|
||
}
|
||
|
||
/* Return the symbol kind of PSYM. */
|
||
|
||
static gdb_index_symbol_kind
|
||
symbol_kind (struct partial_symbol *psym)
|
||
{
|
||
domain_enum domain = PSYMBOL_DOMAIN (psym);
|
||
enum address_class aclass = PSYMBOL_CLASS (psym);
|
||
|
||
switch (domain)
|
||
{
|
||
case VAR_DOMAIN:
|
||
switch (aclass)
|
||
{
|
||
case LOC_BLOCK:
|
||
return GDB_INDEX_SYMBOL_KIND_FUNCTION;
|
||
case LOC_TYPEDEF:
|
||
return GDB_INDEX_SYMBOL_KIND_TYPE;
|
||
case LOC_COMPUTED:
|
||
case LOC_CONST_BYTES:
|
||
case LOC_OPTIMIZED_OUT:
|
||
case LOC_STATIC:
|
||
return GDB_INDEX_SYMBOL_KIND_VARIABLE;
|
||
case LOC_CONST:
|
||
/* Note: It's currently impossible to recognize psyms as enum values
|
||
short of reading the type info. For now punt. */
|
||
return GDB_INDEX_SYMBOL_KIND_VARIABLE;
|
||
default:
|
||
/* There are other LOC_FOO values that one might want to classify
|
||
as variables, but dwarf2read.c doesn't currently use them. */
|
||
return GDB_INDEX_SYMBOL_KIND_OTHER;
|
||
}
|
||
case STRUCT_DOMAIN:
|
||
return GDB_INDEX_SYMBOL_KIND_TYPE;
|
||
default:
|
||
return GDB_INDEX_SYMBOL_KIND_OTHER;
|
||
}
|
||
}
|
||
|
||
/* Add a list of partial symbols to SYMTAB. */
|
||
|
||
static void
|
||
write_psymbols (struct mapped_symtab *symtab,
|
||
htab_t psyms_seen,
|
||
struct partial_symbol **psymp,
|
||
int count,
|
||
offset_type cu_index,
|
||
int is_static)
|
||
{
|
||
for (; count-- > 0; ++psymp)
|
||
{
|
||
struct partial_symbol *psym = *psymp;
|
||
void **slot;
|
||
|
||
if (SYMBOL_LANGUAGE (psym) == language_ada)
|
||
error (_("Ada is not currently supported by the index"));
|
||
|
||
/* Only add a given psymbol once. */
|
||
slot = htab_find_slot (psyms_seen, psym, INSERT);
|
||
if (!*slot)
|
||
{
|
||
gdb_index_symbol_kind kind = symbol_kind (psym);
|
||
|
||
*slot = psym;
|
||
add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
|
||
is_static, kind, cu_index);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Write the contents of an ("unfinished") obstack to FILE. Throw an
|
||
exception if there is an error. */
|
||
|
||
static void
|
||
write_obstack (FILE *file, struct obstack *obstack)
|
||
{
|
||
if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
|
||
file)
|
||
!= obstack_object_size (obstack))
|
||
error (_("couldn't data write to file"));
|
||
}
|
||
|
||
/* Unlink a file if the argument is not NULL. */
|
||
|
||
static void
|
||
unlink_if_set (void *p)
|
||
{
|
||
char **filename = (char **) p;
|
||
if (*filename)
|
||
unlink (*filename);
|
||
}
|
||
|
||
/* A helper struct used when iterating over debug_types. */
|
||
struct signatured_type_index_data
|
||
{
|
||
struct objfile *objfile;
|
||
struct mapped_symtab *symtab;
|
||
struct obstack *types_list;
|
||
htab_t psyms_seen;
|
||
int cu_index;
|
||
};
|
||
|
||
/* A helper function that writes a single signatured_type to an
|
||
obstack. */
|
||
|
||
static int
|
||
write_one_signatured_type (void **slot, void *d)
|
||
{
|
||
struct signatured_type_index_data *info
|
||
= (struct signatured_type_index_data *) d;
|
||
struct signatured_type *entry = (struct signatured_type *) *slot;
|
||
struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
|
||
gdb_byte val[8];
|
||
|
||
write_psymbols (info->symtab,
|
||
info->psyms_seen,
|
||
info->objfile->global_psymbols.list
|
||
+ psymtab->globals_offset,
|
||
psymtab->n_global_syms, info->cu_index,
|
||
0);
|
||
write_psymbols (info->symtab,
|
||
info->psyms_seen,
|
||
info->objfile->static_psymbols.list
|
||
+ psymtab->statics_offset,
|
||
psymtab->n_static_syms, info->cu_index,
|
||
1);
|
||
|
||
store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
|
||
entry->per_cu.offset.sect_off);
|
||
obstack_grow (info->types_list, val, 8);
|
||
store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
|
||
entry->type_offset_in_tu.cu_off);
|
||
obstack_grow (info->types_list, val, 8);
|
||
store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
|
||
obstack_grow (info->types_list, val, 8);
|
||
|
||
++info->cu_index;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Recurse into all "included" dependencies and write their symbols as
|
||
if they appeared in this psymtab. */
|
||
|
||
static void
|
||
recursively_write_psymbols (struct objfile *objfile,
|
||
struct partial_symtab *psymtab,
|
||
struct mapped_symtab *symtab,
|
||
htab_t psyms_seen,
|
||
offset_type cu_index)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < psymtab->number_of_dependencies; ++i)
|
||
if (psymtab->dependencies[i]->user != NULL)
|
||
recursively_write_psymbols (objfile, psymtab->dependencies[i],
|
||
symtab, psyms_seen, cu_index);
|
||
|
||
write_psymbols (symtab,
|
||
psyms_seen,
|
||
objfile->global_psymbols.list + psymtab->globals_offset,
|
||
psymtab->n_global_syms, cu_index,
|
||
0);
|
||
write_psymbols (symtab,
|
||
psyms_seen,
|
||
objfile->static_psymbols.list + psymtab->statics_offset,
|
||
psymtab->n_static_syms, cu_index,
|
||
1);
|
||
}
|
||
|
||
/* Create an index file for OBJFILE in the directory DIR. */
|
||
|
||
static void
|
||
write_psymtabs_to_index (struct objfile *objfile, const char *dir)
|
||
{
|
||
struct cleanup *cleanup;
|
||
char *filename, *cleanup_filename;
|
||
struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
|
||
struct obstack cu_list, types_cu_list;
|
||
int i;
|
||
FILE *out_file;
|
||
struct mapped_symtab *symtab;
|
||
offset_type val, size_of_contents, total_len;
|
||
struct stat st;
|
||
htab_t psyms_seen;
|
||
htab_t cu_index_htab;
|
||
struct psymtab_cu_index_map *psymtab_cu_index_map;
|
||
|
||
if (dwarf2_per_objfile->using_index)
|
||
error (_("Cannot use an index to create the index"));
|
||
|
||
if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
|
||
error (_("Cannot make an index when the file has multiple .debug_types sections"));
|
||
|
||
if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
|
||
return;
|
||
|
||
if (stat (objfile_name (objfile), &st) < 0)
|
||
perror_with_name (objfile_name (objfile));
|
||
|
||
filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
|
||
INDEX_SUFFIX, (char *) NULL);
|
||
cleanup = make_cleanup (xfree, filename);
|
||
|
||
out_file = gdb_fopen_cloexec (filename, "wb");
|
||
if (!out_file)
|
||
error (_("Can't open `%s' for writing"), filename);
|
||
|
||
cleanup_filename = filename;
|
||
make_cleanup (unlink_if_set, &cleanup_filename);
|
||
|
||
symtab = create_mapped_symtab ();
|
||
make_cleanup (cleanup_mapped_symtab, symtab);
|
||
|
||
obstack_init (&addr_obstack);
|
||
make_cleanup_obstack_free (&addr_obstack);
|
||
|
||
obstack_init (&cu_list);
|
||
make_cleanup_obstack_free (&cu_list);
|
||
|
||
obstack_init (&types_cu_list);
|
||
make_cleanup_obstack_free (&types_cu_list);
|
||
|
||
psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
|
||
NULL, xcalloc, xfree);
|
||
make_cleanup_htab_delete (psyms_seen);
|
||
|
||
/* While we're scanning CU's create a table that maps a psymtab pointer
|
||
(which is what addrmap records) to its index (which is what is recorded
|
||
in the index file). This will later be needed to write the address
|
||
table. */
|
||
cu_index_htab = htab_create_alloc (100,
|
||
hash_psymtab_cu_index,
|
||
eq_psymtab_cu_index,
|
||
NULL, xcalloc, xfree);
|
||
make_cleanup_htab_delete (cu_index_htab);
|
||
psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
|
||
dwarf2_per_objfile->n_comp_units);
|
||
make_cleanup (xfree, psymtab_cu_index_map);
|
||
|
||
/* The CU list is already sorted, so we don't need to do additional
|
||
work here. Also, the debug_types entries do not appear in
|
||
all_comp_units, but only in their own hash table. */
|
||
for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
|
||
{
|
||
struct dwarf2_per_cu_data *per_cu
|
||
= dwarf2_per_objfile->all_comp_units[i];
|
||
struct partial_symtab *psymtab = per_cu->v.psymtab;
|
||
gdb_byte val[8];
|
||
struct psymtab_cu_index_map *map;
|
||
void **slot;
|
||
|
||
/* CU of a shared file from 'dwz -m' may be unused by this main file.
|
||
It may be referenced from a local scope but in such case it does not
|
||
need to be present in .gdb_index. */
|
||
if (psymtab == NULL)
|
||
continue;
|
||
|
||
if (psymtab->user == NULL)
|
||
recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
|
||
|
||
map = &psymtab_cu_index_map[i];
|
||
map->psymtab = psymtab;
|
||
map->cu_index = i;
|
||
slot = htab_find_slot (cu_index_htab, map, INSERT);
|
||
gdb_assert (slot != NULL);
|
||
gdb_assert (*slot == NULL);
|
||
*slot = map;
|
||
|
||
store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
|
||
per_cu->offset.sect_off);
|
||
obstack_grow (&cu_list, val, 8);
|
||
store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
|
||
obstack_grow (&cu_list, val, 8);
|
||
}
|
||
|
||
/* Dump the address map. */
|
||
write_address_map (objfile, &addr_obstack, cu_index_htab);
|
||
|
||
/* Write out the .debug_type entries, if any. */
|
||
if (dwarf2_per_objfile->signatured_types)
|
||
{
|
||
struct signatured_type_index_data sig_data;
|
||
|
||
sig_data.objfile = objfile;
|
||
sig_data.symtab = symtab;
|
||
sig_data.types_list = &types_cu_list;
|
||
sig_data.psyms_seen = psyms_seen;
|
||
sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
|
||
htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
|
||
write_one_signatured_type, &sig_data);
|
||
}
|
||
|
||
/* Now that we've processed all symbols we can shrink their cu_indices
|
||
lists. */
|
||
uniquify_cu_indices (symtab);
|
||
|
||
obstack_init (&constant_pool);
|
||
make_cleanup_obstack_free (&constant_pool);
|
||
obstack_init (&symtab_obstack);
|
||
make_cleanup_obstack_free (&symtab_obstack);
|
||
write_hash_table (symtab, &symtab_obstack, &constant_pool);
|
||
|
||
obstack_init (&contents);
|
||
make_cleanup_obstack_free (&contents);
|
||
size_of_contents = 6 * sizeof (offset_type);
|
||
total_len = size_of_contents;
|
||
|
||
/* The version number. */
|
||
val = MAYBE_SWAP (8);
|
||
obstack_grow (&contents, &val, sizeof (val));
|
||
|
||
/* The offset of the CU list from the start of the file. */
|
||
val = MAYBE_SWAP (total_len);
|
||
obstack_grow (&contents, &val, sizeof (val));
|
||
total_len += obstack_object_size (&cu_list);
|
||
|
||
/* The offset of the types CU list from the start of the file. */
|
||
val = MAYBE_SWAP (total_len);
|
||
obstack_grow (&contents, &val, sizeof (val));
|
||
total_len += obstack_object_size (&types_cu_list);
|
||
|
||
/* The offset of the address table from the start of the file. */
|
||
val = MAYBE_SWAP (total_len);
|
||
obstack_grow (&contents, &val, sizeof (val));
|
||
total_len += obstack_object_size (&addr_obstack);
|
||
|
||
/* The offset of the symbol table from the start of the file. */
|
||
val = MAYBE_SWAP (total_len);
|
||
obstack_grow (&contents, &val, sizeof (val));
|
||
total_len += obstack_object_size (&symtab_obstack);
|
||
|
||
/* The offset of the constant pool from the start of the file. */
|
||
val = MAYBE_SWAP (total_len);
|
||
obstack_grow (&contents, &val, sizeof (val));
|
||
total_len += obstack_object_size (&constant_pool);
|
||
|
||
gdb_assert (obstack_object_size (&contents) == size_of_contents);
|
||
|
||
write_obstack (out_file, &contents);
|
||
write_obstack (out_file, &cu_list);
|
||
write_obstack (out_file, &types_cu_list);
|
||
write_obstack (out_file, &addr_obstack);
|
||
write_obstack (out_file, &symtab_obstack);
|
||
write_obstack (out_file, &constant_pool);
|
||
|
||
fclose (out_file);
|
||
|
||
/* We want to keep the file, so we set cleanup_filename to NULL
|
||
here. See unlink_if_set. */
|
||
cleanup_filename = NULL;
|
||
|
||
do_cleanups (cleanup);
|
||
}
|
||
|
||
/* Implementation of the `save gdb-index' command.
|
||
|
||
Note that the file format used by this command is documented in the
|
||
GDB manual. Any changes here must be documented there. */
|
||
|
||
static void
|
||
save_gdb_index_command (char *arg, int from_tty)
|
||
{
|
||
struct objfile *objfile;
|
||
|
||
if (!arg || !*arg)
|
||
error (_("usage: save gdb-index DIRECTORY"));
|
||
|
||
ALL_OBJFILES (objfile)
|
||
{
|
||
struct stat st;
|
||
|
||
/* If the objfile does not correspond to an actual file, skip it. */
|
||
if (stat (objfile_name (objfile), &st) < 0)
|
||
continue;
|
||
|
||
dwarf2_per_objfile
|
||
= (struct dwarf2_per_objfile *) objfile_data (objfile,
|
||
dwarf2_objfile_data_key);
|
||
if (dwarf2_per_objfile)
|
||
{
|
||
|
||
TRY
|
||
{
|
||
write_psymtabs_to_index (objfile, arg);
|
||
}
|
||
CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
exception_fprintf (gdb_stderr, except,
|
||
_("Error while writing index for `%s': "),
|
||
objfile_name (objfile));
|
||
}
|
||
END_CATCH
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
int dwarf_always_disassemble;
|
||
|
||
static void
|
||
show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Whether to always disassemble "
|
||
"DWARF expressions is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
static void
|
||
show_check_physname (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Whether to check \"physname\" is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
void _initialize_dwarf2_read (void);
|
||
|
||
void
|
||
_initialize_dwarf2_read (void)
|
||
{
|
||
struct cmd_list_element *c;
|
||
|
||
dwarf2_objfile_data_key
|
||
= register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
|
||
|
||
add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
|
||
Set DWARF specific variables.\n\
|
||
Configure DWARF variables such as the cache size"),
|
||
&set_dwarf_cmdlist, "maintenance set dwarf ",
|
||
0/*allow-unknown*/, &maintenance_set_cmdlist);
|
||
|
||
add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
|
||
Show DWARF specific variables\n\
|
||
Show DWARF variables such as the cache size"),
|
||
&show_dwarf_cmdlist, "maintenance show dwarf ",
|
||
0/*allow-unknown*/, &maintenance_show_cmdlist);
|
||
|
||
add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
|
||
&dwarf_max_cache_age, _("\
|
||
Set the upper bound on the age of cached DWARF compilation units."), _("\
|
||
Show the upper bound on the age of cached DWARF compilation units."), _("\
|
||
A higher limit means that cached compilation units will be stored\n\
|
||
in memory longer, and more total memory will be used. Zero disables\n\
|
||
caching, which can slow down startup."),
|
||
NULL,
|
||
show_dwarf_max_cache_age,
|
||
&set_dwarf_cmdlist,
|
||
&show_dwarf_cmdlist);
|
||
|
||
add_setshow_boolean_cmd ("always-disassemble", class_obscure,
|
||
&dwarf_always_disassemble, _("\
|
||
Set whether `info address' always disassembles DWARF expressions."), _("\
|
||
Show whether `info address' always disassembles DWARF expressions."), _("\
|
||
When enabled, DWARF expressions are always printed in an assembly-like\n\
|
||
syntax. When disabled, expressions will be printed in a more\n\
|
||
conversational style, when possible."),
|
||
NULL,
|
||
show_dwarf_always_disassemble,
|
||
&set_dwarf_cmdlist,
|
||
&show_dwarf_cmdlist);
|
||
|
||
add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
|
||
Set debugging of the DWARF reader."), _("\
|
||
Show debugging of the DWARF reader."), _("\
|
||
When enabled (non-zero), debugging messages are printed during DWARF\n\
|
||
reading and symtab expansion. A value of 1 (one) provides basic\n\
|
||
information. A value greater than 1 provides more verbose information."),
|
||
NULL,
|
||
NULL,
|
||
&setdebuglist, &showdebuglist);
|
||
|
||
add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
|
||
Set debugging of the DWARF DIE reader."), _("\
|
||
Show debugging of the DWARF DIE reader."), _("\
|
||
When enabled (non-zero), DIEs are dumped after they are read in.\n\
|
||
The value is the maximum depth to print."),
|
||
NULL,
|
||
NULL,
|
||
&setdebuglist, &showdebuglist);
|
||
|
||
add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
|
||
Set debugging of the dwarf line reader."), _("\
|
||
Show debugging of the dwarf line reader."), _("\
|
||
When enabled (non-zero), line number entries are dumped as they are read in.\n\
|
||
A value of 1 (one) provides basic information.\n\
|
||
A value greater than 1 provides more verbose information."),
|
||
NULL,
|
||
NULL,
|
||
&setdebuglist, &showdebuglist);
|
||
|
||
add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
|
||
Set cross-checking of \"physname\" code against demangler."), _("\
|
||
Show cross-checking of \"physname\" code against demangler."), _("\
|
||
When enabled, GDB's internal \"physname\" code is checked against\n\
|
||
the demangler."),
|
||
NULL, show_check_physname,
|
||
&setdebuglist, &showdebuglist);
|
||
|
||
add_setshow_boolean_cmd ("use-deprecated-index-sections",
|
||
no_class, &use_deprecated_index_sections, _("\
|
||
Set whether to use deprecated gdb_index sections."), _("\
|
||
Show whether to use deprecated gdb_index sections."), _("\
|
||
When enabled, deprecated .gdb_index sections are used anyway.\n\
|
||
Normally they are ignored either because of a missing feature or\n\
|
||
performance issue.\n\
|
||
Warning: This option must be enabled before gdb reads the file."),
|
||
NULL,
|
||
NULL,
|
||
&setlist, &showlist);
|
||
|
||
c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
|
||
_("\
|
||
Save a gdb-index file.\n\
|
||
Usage: save gdb-index DIRECTORY"),
|
||
&save_cmdlist);
|
||
set_cmd_completer (c, filename_completer);
|
||
|
||
dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
|
||
&dwarf2_locexpr_funcs);
|
||
dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
|
||
&dwarf2_loclist_funcs);
|
||
|
||
dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
|
||
&dwarf2_block_frame_base_locexpr_funcs);
|
||
dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
|
||
&dwarf2_block_frame_base_loclist_funcs);
|
||
}
|