2363 lines
75 KiB
C
2363 lines
75 KiB
C
/* Target-dependent code for Renesas Super-H, for GDB.
|
|
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
|
|
Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
/*
|
|
Contributed by Steve Chamberlain
|
|
sac@cygnus.com
|
|
*/
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "frame-base.h"
|
|
#include "frame-unwind.h"
|
|
#include "dwarf2-frame.h"
|
|
#include "symtab.h"
|
|
#include "symfile.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbcore.h"
|
|
#include "value.h"
|
|
#include "dis-asm.h"
|
|
#include "inferior.h"
|
|
#include "gdb_string.h"
|
|
#include "gdb_assert.h"
|
|
#include "arch-utils.h"
|
|
#include "floatformat.h"
|
|
#include "regcache.h"
|
|
#include "doublest.h"
|
|
#include "osabi.h"
|
|
|
|
#include "sh-tdep.h"
|
|
|
|
#include "elf-bfd.h"
|
|
#include "solib-svr4.h"
|
|
|
|
/* sh flags */
|
|
#include "elf/sh.h"
|
|
/* registers numbers shared with the simulator */
|
|
#include "gdb/sim-sh.h"
|
|
|
|
static void (*sh_show_regs) (void);
|
|
|
|
#define SH_NUM_REGS 59
|
|
|
|
struct sh_frame_cache
|
|
{
|
|
/* Base address. */
|
|
CORE_ADDR base;
|
|
LONGEST sp_offset;
|
|
CORE_ADDR pc;
|
|
|
|
/* Flag showing that a frame has been created in the prologue code. */
|
|
int uses_fp;
|
|
|
|
/* Saved registers. */
|
|
CORE_ADDR saved_regs[SH_NUM_REGS];
|
|
CORE_ADDR saved_sp;
|
|
};
|
|
|
|
static const char *
|
|
sh_generic_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"fpul", "fpscr",
|
|
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
|
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
|
"ssr", "spc",
|
|
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
|
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static const char *
|
|
sh_sh_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static const char *
|
|
sh_sh3_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"ssr", "spc",
|
|
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
|
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static const char *
|
|
sh_sh3e_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"fpul", "fpscr",
|
|
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
|
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
|
"ssr", "spc",
|
|
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
|
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static const char *
|
|
sh_sh2e_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"fpul", "fpscr",
|
|
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
|
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
|
"", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static const char *
|
|
sh_sh_dsp_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"", "dsr",
|
|
"a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
|
|
"y0", "y1", "", "", "", "", "", "mod",
|
|
"", "",
|
|
"rs", "re", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static const char *
|
|
sh_sh3_dsp_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"", "dsr",
|
|
"a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
|
|
"y0", "y1", "", "", "", "", "", "mod",
|
|
"ssr", "spc",
|
|
"rs", "re", "", "", "", "", "", "",
|
|
"r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b"
|
|
"", "", "", "", "", "", "", "",
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static const char *
|
|
sh_sh4_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] = {
|
|
/* general registers 0-15 */
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
/* 16 - 22 */
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
/* 23, 24 */
|
|
"fpul", "fpscr",
|
|
/* floating point registers 25 - 40 */
|
|
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
|
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
|
/* 41, 42 */
|
|
"ssr", "spc",
|
|
/* bank 0 43 - 50 */
|
|
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
|
/* bank 1 51 - 58 */
|
|
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
|
/* double precision (pseudo) 59 - 66 */
|
|
"dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
|
|
/* vectors (pseudo) 67 - 70 */
|
|
"fv0", "fv4", "fv8", "fv12",
|
|
/* FIXME: missing XF 71 - 86 */
|
|
/* FIXME: missing XD 87 - 94 */
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static const char *
|
|
sh_sh4_nofpu_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] = {
|
|
/* general registers 0-15 */
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
/* 16 - 22 */
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
/* 23, 24 */
|
|
"", "",
|
|
/* floating point registers 25 - 40 -- not for nofpu target */
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
/* 41, 42 */
|
|
"ssr", "spc",
|
|
/* bank 0 43 - 50 */
|
|
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
|
/* bank 1 51 - 58 */
|
|
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
|
/* double precision (pseudo) 59 - 66 -- not for nofpu target */
|
|
"", "", "", "", "", "", "", "",
|
|
/* vectors (pseudo) 67 - 70 -- not for nofpu target */
|
|
"", "", "", "",
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static const char *
|
|
sh_sh4al_dsp_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
|
"", "dsr",
|
|
"a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
|
|
"y0", "y1", "", "", "", "", "", "mod",
|
|
"ssr", "spc",
|
|
"rs", "re", "", "", "", "", "", "",
|
|
"r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b"
|
|
"", "", "", "", "", "", "", "",
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
static const unsigned char *
|
|
sh_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
|
|
{
|
|
/* 0xc3c3 is trapa #c3, and it works in big and little endian modes */
|
|
static unsigned char breakpoint[] = { 0xc3, 0xc3 };
|
|
|
|
*lenptr = sizeof (breakpoint);
|
|
return breakpoint;
|
|
}
|
|
|
|
/* Prologue looks like
|
|
mov.l r14,@-r15
|
|
sts.l pr,@-r15
|
|
mov.l <regs>,@-r15
|
|
sub <room_for_loca_vars>,r15
|
|
mov r15,r14
|
|
|
|
Actually it can be more complicated than this but that's it, basically.
|
|
*/
|
|
|
|
#define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
|
|
#define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
|
|
|
|
/* STS.L PR,@-r15 0100111100100010
|
|
r15-4-->r15, PR-->(r15) */
|
|
#define IS_STS(x) ((x) == 0x4f22)
|
|
|
|
/* MOV.L Rm,@-r15 00101111mmmm0110
|
|
r15-4-->r15, Rm-->(R15) */
|
|
#define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
|
|
|
|
/* MOV r15,r14 0110111011110011
|
|
r15-->r14 */
|
|
#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
|
|
|
|
/* ADD #imm,r15 01111111iiiiiiii
|
|
r15+imm-->r15 */
|
|
#define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
|
|
|
|
#define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
|
|
#define IS_SHLL_R3(x) ((x) == 0x4300)
|
|
|
|
/* ADD r3,r15 0011111100111100
|
|
r15+r3-->r15 */
|
|
#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
|
|
|
|
/* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
|
|
FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
|
|
FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
|
|
/* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
|
|
make this entirely clear. */
|
|
/* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
|
|
#define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
|
|
|
|
/* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
|
|
#define IS_MOV_ARG_TO_REG(x) \
|
|
(((x) & 0xf00f) == 0x6003 && \
|
|
((x) & 0x00f0) >= 0x0040 && \
|
|
((x) & 0x00f0) <= 0x0070)
|
|
/* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
|
|
#define IS_MOV_ARG_TO_IND_R14(x) \
|
|
(((x) & 0xff0f) == 0x2e02 && \
|
|
((x) & 0x00f0) >= 0x0040 && \
|
|
((x) & 0x00f0) <= 0x0070)
|
|
/* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
|
|
#define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
|
|
(((x) & 0xff00) == 0x1e00 && \
|
|
((x) & 0x00f0) >= 0x0040 && \
|
|
((x) & 0x00f0) <= 0x0070)
|
|
|
|
/* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
|
|
#define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
|
|
/* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
|
|
#define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
|
|
/* SUB Rn,R15 00111111nnnn1000 */
|
|
#define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
|
|
|
|
#define FPSCR_SZ (1 << 20)
|
|
|
|
/* The following instructions are used for epilogue testing. */
|
|
#define IS_RESTORE_FP(x) ((x) == 0x6ef6)
|
|
#define IS_RTS(x) ((x) == 0x000b)
|
|
#define IS_LDS(x) ((x) == 0x4f26)
|
|
#define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
|
|
#define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
|
|
#define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
|
|
|
|
/* Disassemble an instruction. */
|
|
static int
|
|
gdb_print_insn_sh (bfd_vma memaddr, disassemble_info * info)
|
|
{
|
|
info->endian = TARGET_BYTE_ORDER;
|
|
return print_insn_sh (memaddr, info);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
sh_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
|
|
struct sh_frame_cache *cache)
|
|
{
|
|
ULONGEST inst;
|
|
CORE_ADDR opc;
|
|
int offset;
|
|
int sav_offset = 0;
|
|
int r3_val = 0;
|
|
int reg, sav_reg = -1;
|
|
|
|
if (pc >= current_pc)
|
|
return current_pc;
|
|
|
|
cache->uses_fp = 0;
|
|
for (opc = pc + (2 * 28); pc < opc; pc += 2)
|
|
{
|
|
inst = read_memory_unsigned_integer (pc, 2);
|
|
/* See where the registers will be saved to */
|
|
if (IS_PUSH (inst))
|
|
{
|
|
cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
|
|
cache->sp_offset += 4;
|
|
}
|
|
else if (IS_STS (inst))
|
|
{
|
|
cache->saved_regs[PR_REGNUM] = cache->sp_offset;
|
|
cache->sp_offset += 4;
|
|
}
|
|
else if (IS_MOV_R3 (inst))
|
|
{
|
|
r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
|
|
}
|
|
else if (IS_SHLL_R3 (inst))
|
|
{
|
|
r3_val <<= 1;
|
|
}
|
|
else if (IS_ADD_R3SP (inst))
|
|
{
|
|
cache->sp_offset += -r3_val;
|
|
}
|
|
else if (IS_ADD_IMM_SP (inst))
|
|
{
|
|
offset = ((inst & 0xff) ^ 0x80) - 0x80;
|
|
cache->sp_offset -= offset;
|
|
}
|
|
else if (IS_MOVW_PCREL_TO_REG (inst))
|
|
{
|
|
if (sav_reg < 0)
|
|
{
|
|
reg = GET_TARGET_REG (inst);
|
|
if (reg < 14)
|
|
{
|
|
sav_reg = reg;
|
|
offset = (((inst & 0xff) ^ 0x80) - 0x80) << 1;
|
|
sav_offset =
|
|
read_memory_integer (((pc + 4) & ~3) + offset, 2);
|
|
}
|
|
}
|
|
}
|
|
else if (IS_MOVL_PCREL_TO_REG (inst))
|
|
{
|
|
if (sav_reg < 0)
|
|
{
|
|
reg = (inst & 0x0f00) >> 8;
|
|
if (reg < 14)
|
|
{
|
|
sav_reg = reg;
|
|
offset = (((inst & 0xff) ^ 0x80) - 0x80) << 1;
|
|
sav_offset =
|
|
read_memory_integer (((pc + 4) & ~3) + offset, 4);
|
|
}
|
|
}
|
|
}
|
|
else if (IS_SUB_REG_FROM_SP (inst))
|
|
{
|
|
reg = GET_SOURCE_REG (inst);
|
|
if (sav_reg > 0 && reg == sav_reg)
|
|
{
|
|
sav_reg = -1;
|
|
}
|
|
cache->sp_offset += sav_offset;
|
|
}
|
|
else if (IS_FPUSH (inst))
|
|
{
|
|
if (read_register (FPSCR_REGNUM) & FPSCR_SZ)
|
|
{
|
|
cache->sp_offset += 8;
|
|
}
|
|
else
|
|
{
|
|
cache->sp_offset += 4;
|
|
}
|
|
}
|
|
else if (IS_MOV_SP_FP (inst))
|
|
{
|
|
if (!cache->uses_fp)
|
|
cache->uses_fp = 1;
|
|
/* At this point, only allow argument register moves to other
|
|
registers or argument register moves to @(X,fp) which are
|
|
moving the register arguments onto the stack area allocated
|
|
by a former add somenumber to SP call. Don't allow moving
|
|
to an fp indirect address above fp + cache->sp_offset. */
|
|
pc += 2;
|
|
for (opc = pc + 12; pc < opc; pc += 2)
|
|
{
|
|
inst = read_memory_integer (pc, 2);
|
|
if (IS_MOV_ARG_TO_IND_R14 (inst))
|
|
{
|
|
reg = GET_SOURCE_REG (inst);
|
|
if (cache->sp_offset > 0)
|
|
cache->saved_regs[reg] = cache->sp_offset;
|
|
}
|
|
else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
|
|
{
|
|
reg = GET_SOURCE_REG (inst);
|
|
offset = (inst & 0xf) * 4;
|
|
if (cache->sp_offset > offset)
|
|
cache->saved_regs[reg] = cache->sp_offset - offset;
|
|
}
|
|
else if (IS_MOV_ARG_TO_REG (inst))
|
|
continue;
|
|
else
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
#if 0 /* This used to just stop when it found an instruction that
|
|
was not considered part of the prologue. Now, we just
|
|
keep going looking for likely instructions. */
|
|
else
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
return pc;
|
|
}
|
|
|
|
/* Skip any prologue before the guts of a function */
|
|
|
|
/* Skip the prologue using the debug information. If this fails we'll
|
|
fall back on the 'guess' method below. */
|
|
static CORE_ADDR
|
|
after_prologue (CORE_ADDR pc)
|
|
{
|
|
struct symtab_and_line sal;
|
|
CORE_ADDR func_addr, func_end;
|
|
|
|
/* If we can not find the symbol in the partial symbol table, then
|
|
there is no hope we can determine the function's start address
|
|
with this code. */
|
|
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
return 0;
|
|
|
|
/* Get the line associated with FUNC_ADDR. */
|
|
sal = find_pc_line (func_addr, 0);
|
|
|
|
/* There are only two cases to consider. First, the end of the source line
|
|
is within the function bounds. In that case we return the end of the
|
|
source line. Second is the end of the source line extends beyond the
|
|
bounds of the current function. We need to use the slow code to
|
|
examine instructions in that case. */
|
|
if (sal.end < func_end)
|
|
return sal.end;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
sh_skip_prologue (CORE_ADDR start_pc)
|
|
{
|
|
CORE_ADDR pc;
|
|
struct sh_frame_cache cache;
|
|
|
|
/* See if we can determine the end of the prologue via the symbol table.
|
|
If so, then return either PC, or the PC after the prologue, whichever
|
|
is greater. */
|
|
pc = after_prologue (start_pc);
|
|
|
|
/* If after_prologue returned a useful address, then use it. Else
|
|
fall back on the instruction skipping code. */
|
|
if (pc)
|
|
return max (pc, start_pc);
|
|
|
|
cache.sp_offset = -4;
|
|
pc = sh_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
|
|
if (!cache.uses_fp)
|
|
return start_pc;
|
|
|
|
return pc;
|
|
}
|
|
|
|
/* The ABI says:
|
|
|
|
Aggregate types not bigger than 8 bytes that have the same size and
|
|
alignment as one of the integer scalar types are returned in the
|
|
same registers as the integer type they match.
|
|
|
|
For example, a 2-byte aligned structure with size 2 bytes has the
|
|
same size and alignment as a short int, and will be returned in R0.
|
|
A 4-byte aligned structure with size 8 bytes has the same size and
|
|
alignment as a long long int, and will be returned in R0 and R1.
|
|
|
|
When an aggregate type is returned in R0 and R1, R0 contains the
|
|
first four bytes of the aggregate, and R1 contains the
|
|
remainder. If the size of the aggregate type is not a multiple of 4
|
|
bytes, the aggregate is tail-padded up to a multiple of 4
|
|
bytes. The value of the padding is undefined. For little-endian
|
|
targets the padding will appear at the most significant end of the
|
|
last element, for big-endian targets the padding appears at the
|
|
least significant end of the last element.
|
|
|
|
All other aggregate types are returned by address. The caller
|
|
function passes the address of an area large enough to hold the
|
|
aggregate value in R2. The called function stores the result in
|
|
this location.
|
|
|
|
To reiterate, structs smaller than 8 bytes could also be returned
|
|
in memory, if they don't pass the "same size and alignment as an
|
|
integer type" rule.
|
|
|
|
For example, in
|
|
|
|
struct s { char c[3]; } wibble;
|
|
struct s foo(void) { return wibble; }
|
|
|
|
the return value from foo() will be in memory, not
|
|
in R0, because there is no 3-byte integer type.
|
|
|
|
Similarly, in
|
|
|
|
struct s { char c[2]; } wibble;
|
|
struct s foo(void) { return wibble; }
|
|
|
|
because a struct containing two chars has alignment 1, that matches
|
|
type char, but size 2, that matches type short. There's no integer
|
|
type that has alignment 1 and size 2, so the struct is returned in
|
|
memory.
|
|
|
|
*/
|
|
|
|
static int
|
|
sh_use_struct_convention (int gcc_p, struct type *type)
|
|
{
|
|
int len = TYPE_LENGTH (type);
|
|
int nelem = TYPE_NFIELDS (type);
|
|
|
|
/* Non-power of 2 length types and types bigger than 8 bytes (which don't
|
|
fit in two registers anyway) use struct convention. */
|
|
if (len != 1 && len != 2 && len != 4 && len != 8)
|
|
return 1;
|
|
|
|
/* Scalar types and aggregate types with exactly one field are aligned
|
|
by definition. They are returned in registers. */
|
|
if (nelem <= 1)
|
|
return 0;
|
|
|
|
/* If the first field in the aggregate has the same length as the entire
|
|
aggregate type, the type is returned in registers. */
|
|
if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
|
|
return 0;
|
|
|
|
/* If the size of the aggregate is 8 bytes and the first field is
|
|
of size 4 bytes its alignment is equal to long long's alignment,
|
|
so it's returned in registers. */
|
|
if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
|
|
return 0;
|
|
|
|
/* Otherwise use struct convention. */
|
|
return 1;
|
|
}
|
|
|
|
/* Extract from an array REGBUF containing the (raw) register state
|
|
the address in which a function should return its structure value,
|
|
as a CORE_ADDR (or an expression that can be used as one). */
|
|
static CORE_ADDR
|
|
sh_extract_struct_value_address (struct regcache *regcache)
|
|
{
|
|
ULONGEST addr;
|
|
|
|
regcache_cooked_read_unsigned (regcache, STRUCT_RETURN_REGNUM, &addr);
|
|
return addr;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
|
|
{
|
|
return sp & ~3;
|
|
}
|
|
|
|
/* Function: push_dummy_call (formerly push_arguments)
|
|
Setup the function arguments for calling a function in the inferior.
|
|
|
|
On the Renesas SH architecture, there are four registers (R4 to R7)
|
|
which are dedicated for passing function arguments. Up to the first
|
|
four arguments (depending on size) may go into these registers.
|
|
The rest go on the stack.
|
|
|
|
MVS: Except on SH variants that have floating point registers.
|
|
In that case, float and double arguments are passed in the same
|
|
manner, but using FP registers instead of GP registers.
|
|
|
|
Arguments that are smaller than 4 bytes will still take up a whole
|
|
register or a whole 32-bit word on the stack, and will be
|
|
right-justified in the register or the stack word. This includes
|
|
chars, shorts, and small aggregate types.
|
|
|
|
Arguments that are larger than 4 bytes may be split between two or
|
|
more registers. If there are not enough registers free, an argument
|
|
may be passed partly in a register (or registers), and partly on the
|
|
stack. This includes doubles, long longs, and larger aggregates.
|
|
As far as I know, there is no upper limit to the size of aggregates
|
|
that will be passed in this way; in other words, the convention of
|
|
passing a pointer to a large aggregate instead of a copy is not used.
|
|
|
|
MVS: The above appears to be true for the SH variants that do not
|
|
have an FPU, however those that have an FPU appear to copy the
|
|
aggregate argument onto the stack (and not place it in registers)
|
|
if it is larger than 16 bytes (four GP registers).
|
|
|
|
An exceptional case exists for struct arguments (and possibly other
|
|
aggregates such as arrays) if the size is larger than 4 bytes but
|
|
not a multiple of 4 bytes. In this case the argument is never split
|
|
between the registers and the stack, but instead is copied in its
|
|
entirety onto the stack, AND also copied into as many registers as
|
|
there is room for. In other words, space in registers permitting,
|
|
two copies of the same argument are passed in. As far as I can tell,
|
|
only the one on the stack is used, although that may be a function
|
|
of the level of compiler optimization. I suspect this is a compiler
|
|
bug. Arguments of these odd sizes are left-justified within the
|
|
word (as opposed to arguments smaller than 4 bytes, which are
|
|
right-justified).
|
|
|
|
If the function is to return an aggregate type such as a struct, it
|
|
is either returned in the normal return value register R0 (if its
|
|
size is no greater than one byte), or else the caller must allocate
|
|
space into which the callee will copy the return value (if the size
|
|
is greater than one byte). In this case, a pointer to the return
|
|
value location is passed into the callee in register R2, which does
|
|
not displace any of the other arguments passed in via registers R4
|
|
to R7. */
|
|
|
|
/* Helper function to justify value in register according to endianess. */
|
|
static char *
|
|
sh_justify_value_in_reg (struct value *val, int len)
|
|
{
|
|
static char valbuf[4];
|
|
|
|
memset (valbuf, 0, sizeof (valbuf));
|
|
if (len < 4)
|
|
{
|
|
/* value gets right-justified in the register or stack word */
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
memcpy (valbuf + (4 - len), (char *) VALUE_CONTENTS (val), len);
|
|
else
|
|
memcpy (valbuf, (char *) VALUE_CONTENTS (val), len);
|
|
return valbuf;
|
|
}
|
|
return (char *) VALUE_CONTENTS (val);
|
|
}
|
|
|
|
/* Helper function to eval number of bytes to allocate on stack. */
|
|
static CORE_ADDR
|
|
sh_stack_allocsize (int nargs, struct value **args)
|
|
{
|
|
int stack_alloc = 0;
|
|
while (nargs-- > 0)
|
|
stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[nargs])) + 3) & ~3);
|
|
return stack_alloc;
|
|
}
|
|
|
|
/* Helper functions for getting the float arguments right. Registers usage
|
|
depends on the ABI and the endianess. The comments should enlighten how
|
|
it's intended to work. */
|
|
|
|
/* This array stores which of the float arg registers are already in use. */
|
|
static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
|
|
|
|
/* This function just resets the above array to "no reg used so far". */
|
|
static void
|
|
sh_init_flt_argreg (void)
|
|
{
|
|
memset (flt_argreg_array, 0, sizeof flt_argreg_array);
|
|
}
|
|
|
|
/* This function returns the next register to use for float arg passing.
|
|
It returns either a valid value between FLOAT_ARG0_REGNUM and
|
|
FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
|
|
FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
|
|
|
|
Note that register number 0 in flt_argreg_array corresponds with the
|
|
real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
|
|
29) the parity of the register number is preserved, which is important
|
|
for the double register passing test (see the "argreg & 1" test below). */
|
|
static int
|
|
sh_next_flt_argreg (int len)
|
|
{
|
|
int argreg;
|
|
|
|
/* First search for the next free register. */
|
|
for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
|
|
++argreg)
|
|
if (!flt_argreg_array[argreg])
|
|
break;
|
|
|
|
/* No register left? */
|
|
if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
|
|
return FLOAT_ARGLAST_REGNUM + 1;
|
|
|
|
if (len == 8)
|
|
{
|
|
/* Doubles are always starting in a even register number. */
|
|
if (argreg & 1)
|
|
{
|
|
flt_argreg_array[argreg] = 1;
|
|
|
|
++argreg;
|
|
|
|
/* No register left? */
|
|
if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
|
|
return FLOAT_ARGLAST_REGNUM + 1;
|
|
}
|
|
/* Also mark the next register as used. */
|
|
flt_argreg_array[argreg + 1] = 1;
|
|
}
|
|
else if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
|
|
{
|
|
/* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
|
|
if (!flt_argreg_array[argreg + 1])
|
|
++argreg;
|
|
}
|
|
flt_argreg_array[argreg] = 1;
|
|
return FLOAT_ARG0_REGNUM + argreg;
|
|
}
|
|
|
|
/* Helper function which figures out, if a type is treated like a float type.
|
|
|
|
The FPU ABIs have a special way how to treat types as float types.
|
|
Structures with exactly one member, which is of type float or double, are
|
|
treated exactly as the base types float or double:
|
|
|
|
struct sf {
|
|
float f;
|
|
};
|
|
|
|
struct sd {
|
|
double d;
|
|
};
|
|
|
|
are handled the same way as just
|
|
|
|
float f;
|
|
|
|
double d;
|
|
|
|
As a result, arguments of these struct types are pushed into floating point
|
|
registers exactly as floats or doubles, using the same decision algorithm.
|
|
|
|
The same is valid if these types are used as function return types. The
|
|
above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
|
|
or even using struct convention as it is for other structs. */
|
|
|
|
static int
|
|
sh_treat_as_flt_p (struct type *type)
|
|
{
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
/* Ordinary float types are obviously treated as float. */
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
return 1;
|
|
/* Otherwise non-struct types are not treated as float. */
|
|
if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
|
|
return 0;
|
|
/* Otherwise structs with more than one memeber are not treated as float. */
|
|
if (TYPE_NFIELDS (type) != 1)
|
|
return 0;
|
|
/* Otherwise if the type of that member is float, the whole type is
|
|
treated as float. */
|
|
if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
|
|
return 1;
|
|
/* Otherwise it's not treated as float. */
|
|
return 0;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
|
|
CORE_ADDR func_addr,
|
|
struct regcache *regcache,
|
|
CORE_ADDR bp_addr, int nargs,
|
|
struct value **args,
|
|
CORE_ADDR sp, int struct_return,
|
|
CORE_ADDR struct_addr)
|
|
{
|
|
int stack_offset = 0;
|
|
int argreg = ARG0_REGNUM;
|
|
int flt_argreg = 0;
|
|
int argnum;
|
|
struct type *type;
|
|
CORE_ADDR regval;
|
|
char *val;
|
|
int len, reg_size = 0;
|
|
int pass_on_stack = 0;
|
|
int treat_as_flt;
|
|
|
|
/* first force sp to a 4-byte alignment */
|
|
sp = sh_frame_align (gdbarch, sp);
|
|
|
|
if (struct_return)
|
|
regcache_cooked_write_unsigned (regcache,
|
|
STRUCT_RETURN_REGNUM, struct_addr);
|
|
|
|
/* make room on stack for args */
|
|
sp -= sh_stack_allocsize (nargs, args);
|
|
|
|
/* Initialize float argument mechanism. */
|
|
sh_init_flt_argreg ();
|
|
|
|
/* Now load as many as possible of the first arguments into
|
|
registers, and push the rest onto the stack. There are 16 bytes
|
|
in four registers available. Loop thru args from first to last. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
type = VALUE_TYPE (args[argnum]);
|
|
len = TYPE_LENGTH (type);
|
|
val = sh_justify_value_in_reg (args[argnum], len);
|
|
|
|
/* Some decisions have to be made how various types are handled.
|
|
This also differs in different ABIs. */
|
|
pass_on_stack = 0;
|
|
|
|
/* Find out the next register to use for a floating point value. */
|
|
treat_as_flt = sh_treat_as_flt_p (type);
|
|
if (treat_as_flt)
|
|
flt_argreg = sh_next_flt_argreg (len);
|
|
/* In contrast to non-FPU CPUs, arguments are never split between
|
|
registers and stack. If an argument doesn't fit in the remaining
|
|
registers it's always pushed entirely on the stack. */
|
|
else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
|
|
pass_on_stack = 1;
|
|
|
|
while (len > 0)
|
|
{
|
|
if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
|
|
|| (!treat_as_flt && (argreg > ARGLAST_REGNUM
|
|
|| pass_on_stack)))
|
|
{
|
|
/* The data goes entirely on the stack, 4-byte aligned. */
|
|
reg_size = (len + 3) & ~3;
|
|
write_memory (sp + stack_offset, val, reg_size);
|
|
stack_offset += reg_size;
|
|
}
|
|
else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
|
|
{
|
|
/* Argument goes in a float argument register. */
|
|
reg_size = register_size (gdbarch, flt_argreg);
|
|
regval = extract_unsigned_integer (val, reg_size);
|
|
/* In little endian mode, float types taking two registers
|
|
(doubles on sh4, long doubles on sh2e, sh3e and sh4) must
|
|
be stored swapped in the argument registers. The below
|
|
code first writes the first 32 bits in the next but one
|
|
register, increments the val and len values accordingly
|
|
and then proceeds as normal by writing the second 32 bits
|
|
into the next register. */
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE
|
|
&& TYPE_LENGTH (type) == 2 * reg_size)
|
|
{
|
|
regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
|
|
regval);
|
|
val += reg_size;
|
|
len -= reg_size;
|
|
regval = extract_unsigned_integer (val, reg_size);
|
|
}
|
|
regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
|
|
}
|
|
else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
|
|
{
|
|
/* there's room in a register */
|
|
reg_size = register_size (gdbarch, argreg);
|
|
regval = extract_unsigned_integer (val, reg_size);
|
|
regcache_cooked_write_unsigned (regcache, argreg++, regval);
|
|
}
|
|
/* Store the value one register at a time or in one step on stack. */
|
|
len -= reg_size;
|
|
val += reg_size;
|
|
}
|
|
}
|
|
|
|
/* Store return address. */
|
|
regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
|
|
|
|
/* Update stack pointer. */
|
|
regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
|
|
|
|
return sp;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
|
|
CORE_ADDR func_addr,
|
|
struct regcache *regcache,
|
|
CORE_ADDR bp_addr,
|
|
int nargs, struct value **args,
|
|
CORE_ADDR sp, int struct_return,
|
|
CORE_ADDR struct_addr)
|
|
{
|
|
int stack_offset = 0;
|
|
int argreg = ARG0_REGNUM;
|
|
int argnum;
|
|
struct type *type;
|
|
CORE_ADDR regval;
|
|
char *val;
|
|
int len, reg_size;
|
|
|
|
/* first force sp to a 4-byte alignment */
|
|
sp = sh_frame_align (gdbarch, sp);
|
|
|
|
if (struct_return)
|
|
regcache_cooked_write_unsigned (regcache,
|
|
STRUCT_RETURN_REGNUM, struct_addr);
|
|
|
|
/* make room on stack for args */
|
|
sp -= sh_stack_allocsize (nargs, args);
|
|
|
|
/* Now load as many as possible of the first arguments into
|
|
registers, and push the rest onto the stack. There are 16 bytes
|
|
in four registers available. Loop thru args from first to last. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
type = VALUE_TYPE (args[argnum]);
|
|
len = TYPE_LENGTH (type);
|
|
val = sh_justify_value_in_reg (args[argnum], len);
|
|
|
|
while (len > 0)
|
|
{
|
|
if (argreg > ARGLAST_REGNUM)
|
|
{
|
|
/* The remainder of the data goes entirely on the stack,
|
|
4-byte aligned. */
|
|
reg_size = (len + 3) & ~3;
|
|
write_memory (sp + stack_offset, val, reg_size);
|
|
stack_offset += reg_size;
|
|
}
|
|
else if (argreg <= ARGLAST_REGNUM)
|
|
{
|
|
/* there's room in a register */
|
|
reg_size = register_size (gdbarch, argreg);
|
|
regval = extract_unsigned_integer (val, reg_size);
|
|
regcache_cooked_write_unsigned (regcache, argreg++, regval);
|
|
}
|
|
/* Store the value reg_size bytes at a time. This means that things
|
|
larger than reg_size bytes may go partly in registers and partly
|
|
on the stack. */
|
|
len -= reg_size;
|
|
val += reg_size;
|
|
}
|
|
}
|
|
|
|
/* Store return address. */
|
|
regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
|
|
|
|
/* Update stack pointer. */
|
|
regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
|
|
|
|
return sp;
|
|
}
|
|
|
|
/* Find a function's return value in the appropriate registers (in
|
|
regbuf), and copy it into valbuf. Extract from an array REGBUF
|
|
containing the (raw) register state a function return value of type
|
|
TYPE, and copy that, in virtual format, into VALBUF. */
|
|
static void
|
|
sh_default_extract_return_value (struct type *type, struct regcache *regcache,
|
|
void *valbuf)
|
|
{
|
|
int len = TYPE_LENGTH (type);
|
|
int return_register = R0_REGNUM;
|
|
int offset;
|
|
|
|
if (len <= 4)
|
|
{
|
|
ULONGEST c;
|
|
|
|
regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
|
|
store_unsigned_integer (valbuf, len, c);
|
|
}
|
|
else if (len == 8)
|
|
{
|
|
int i, regnum = R0_REGNUM;
|
|
for (i = 0; i < len; i += 4)
|
|
regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
|
|
}
|
|
else
|
|
error ("bad size for return value");
|
|
}
|
|
|
|
static void
|
|
sh3e_sh4_extract_return_value (struct type *type, struct regcache *regcache,
|
|
void *valbuf)
|
|
{
|
|
if (sh_treat_as_flt_p (type))
|
|
{
|
|
int len = TYPE_LENGTH (type);
|
|
int i, regnum = FP0_REGNUM;
|
|
for (i = 0; i < len; i += 4)
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
|
|
regcache_raw_read (regcache, regnum++, (char *) valbuf + len - 4 - i);
|
|
else
|
|
regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
|
|
}
|
|
else
|
|
sh_default_extract_return_value (type, regcache, valbuf);
|
|
}
|
|
|
|
/* Write into appropriate registers a function return value
|
|
of type TYPE, given in virtual format.
|
|
If the architecture is sh4 or sh3e, store a function's return value
|
|
in the R0 general register or in the FP0 floating point register,
|
|
depending on the type of the return value. In all the other cases
|
|
the result is stored in r0, left-justified. */
|
|
static void
|
|
sh_default_store_return_value (struct type *type, struct regcache *regcache,
|
|
const void *valbuf)
|
|
{
|
|
ULONGEST val;
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
if (len <= 4)
|
|
{
|
|
val = extract_unsigned_integer (valbuf, len);
|
|
regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
|
|
}
|
|
else
|
|
{
|
|
int i, regnum = R0_REGNUM;
|
|
for (i = 0; i < len; i += 4)
|
|
regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
|
|
}
|
|
}
|
|
|
|
static void
|
|
sh3e_sh4_store_return_value (struct type *type, struct regcache *regcache,
|
|
const void *valbuf)
|
|
{
|
|
if (sh_treat_as_flt_p (type))
|
|
{
|
|
int len = TYPE_LENGTH (type);
|
|
int i, regnum = FP0_REGNUM;
|
|
for (i = 0; i < len; i += 4)
|
|
regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
|
|
}
|
|
else
|
|
sh_default_store_return_value (type, regcache, valbuf);
|
|
}
|
|
|
|
/* Print the registers in a form similar to the E7000 */
|
|
|
|
static void
|
|
sh_generic_show_regs (void)
|
|
{
|
|
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
|
paddr (read_register (PC_REGNUM)),
|
|
(long) read_register (SR_REGNUM),
|
|
(long) read_register (PR_REGNUM),
|
|
(long) read_register (MACH_REGNUM),
|
|
(long) read_register (MACL_REGNUM));
|
|
|
|
printf_filtered ("GBR=%08lx VBR=%08lx",
|
|
(long) read_register (GBR_REGNUM),
|
|
(long) read_register (VBR_REGNUM));
|
|
|
|
printf_filtered
|
|
("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (0), (long) read_register (1),
|
|
(long) read_register (2), (long) read_register (3),
|
|
(long) read_register (4), (long) read_register (5),
|
|
(long) read_register (6), (long) read_register (7));
|
|
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (8), (long) read_register (9),
|
|
(long) read_register (10), (long) read_register (11),
|
|
(long) read_register (12), (long) read_register (13),
|
|
(long) read_register (14), (long) read_register (15));
|
|
}
|
|
|
|
static void
|
|
sh3_show_regs (void)
|
|
{
|
|
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
|
paddr (read_register (PC_REGNUM)),
|
|
(long) read_register (SR_REGNUM),
|
|
(long) read_register (PR_REGNUM),
|
|
(long) read_register (MACH_REGNUM),
|
|
(long) read_register (MACL_REGNUM));
|
|
|
|
printf_filtered ("GBR=%08lx VBR=%08lx",
|
|
(long) read_register (GBR_REGNUM),
|
|
(long) read_register (VBR_REGNUM));
|
|
printf_filtered (" SSR=%08lx SPC=%08lx",
|
|
(long) read_register (SSR_REGNUM),
|
|
(long) read_register (SPC_REGNUM));
|
|
|
|
printf_filtered
|
|
("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (0), (long) read_register (1),
|
|
(long) read_register (2), (long) read_register (3),
|
|
(long) read_register (4), (long) read_register (5),
|
|
(long) read_register (6), (long) read_register (7));
|
|
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (8), (long) read_register (9),
|
|
(long) read_register (10), (long) read_register (11),
|
|
(long) read_register (12), (long) read_register (13),
|
|
(long) read_register (14), (long) read_register (15));
|
|
}
|
|
|
|
|
|
static void
|
|
sh2e_show_regs (void)
|
|
{
|
|
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
|
paddr (read_register (PC_REGNUM)),
|
|
(long) read_register (SR_REGNUM),
|
|
(long) read_register (PR_REGNUM),
|
|
(long) read_register (MACH_REGNUM),
|
|
(long) read_register (MACL_REGNUM));
|
|
|
|
printf_filtered ("GBR=%08lx VBR=%08lx",
|
|
(long) read_register (GBR_REGNUM),
|
|
(long) read_register (VBR_REGNUM));
|
|
printf_filtered (" FPUL=%08lx FPSCR=%08lx",
|
|
(long) read_register (FPUL_REGNUM),
|
|
(long) read_register (FPSCR_REGNUM));
|
|
|
|
printf_filtered
|
|
("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (0), (long) read_register (1),
|
|
(long) read_register (2), (long) read_register (3),
|
|
(long) read_register (4), (long) read_register (5),
|
|
(long) read_register (6), (long) read_register (7));
|
|
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (8), (long) read_register (9),
|
|
(long) read_register (10), (long) read_register (11),
|
|
(long) read_register (12), (long) read_register (13),
|
|
(long) read_register (14), (long) read_register (15));
|
|
|
|
printf_filtered (("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 0), (long) read_register (FP0_REGNUM + 1), (long) read_register (FP0_REGNUM + 2), (long) read_register (FP0_REGNUM + 3), (long) read_register (FP0_REGNUM + 4), (long) read_register (FP0_REGNUM + 5), (long) read_register (FP0_REGNUM + 6), (long) read_register (FP0_REGNUM + 7));
|
|
printf_filtered (("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 8), (long) read_register (FP0_REGNUM + 9), (long) read_register (FP0_REGNUM + 10), (long) read_register (FP0_REGNUM + 11), (long) read_register (FP0_REGNUM + 12), (long) read_register (FP0_REGNUM + 13), (long) read_register (FP0_REGNUM + 14), (long) read_register (FP0_REGNUM + 15));
|
|
}
|
|
|
|
static void
|
|
sh3e_show_regs (void)
|
|
{
|
|
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
|
paddr (read_register (PC_REGNUM)),
|
|
(long) read_register (SR_REGNUM),
|
|
(long) read_register (PR_REGNUM),
|
|
(long) read_register (MACH_REGNUM),
|
|
(long) read_register (MACL_REGNUM));
|
|
|
|
printf_filtered ("GBR=%08lx VBR=%08lx",
|
|
(long) read_register (GBR_REGNUM),
|
|
(long) read_register (VBR_REGNUM));
|
|
printf_filtered (" SSR=%08lx SPC=%08lx",
|
|
(long) read_register (SSR_REGNUM),
|
|
(long) read_register (SPC_REGNUM));
|
|
printf_filtered (" FPUL=%08lx FPSCR=%08lx",
|
|
(long) read_register (FPUL_REGNUM),
|
|
(long) read_register (FPSCR_REGNUM));
|
|
|
|
printf_filtered
|
|
("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (0), (long) read_register (1),
|
|
(long) read_register (2), (long) read_register (3),
|
|
(long) read_register (4), (long) read_register (5),
|
|
(long) read_register (6), (long) read_register (7));
|
|
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (8), (long) read_register (9),
|
|
(long) read_register (10), (long) read_register (11),
|
|
(long) read_register (12), (long) read_register (13),
|
|
(long) read_register (14), (long) read_register (15));
|
|
|
|
printf_filtered (("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 0), (long) read_register (FP0_REGNUM + 1), (long) read_register (FP0_REGNUM + 2), (long) read_register (FP0_REGNUM + 3), (long) read_register (FP0_REGNUM + 4), (long) read_register (FP0_REGNUM + 5), (long) read_register (FP0_REGNUM + 6), (long) read_register (FP0_REGNUM + 7));
|
|
printf_filtered (("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 8), (long) read_register (FP0_REGNUM + 9), (long) read_register (FP0_REGNUM + 10), (long) read_register (FP0_REGNUM + 11), (long) read_register (FP0_REGNUM + 12), (long) read_register (FP0_REGNUM + 13), (long) read_register (FP0_REGNUM + 14), (long) read_register (FP0_REGNUM + 15));
|
|
}
|
|
|
|
static void
|
|
sh3_dsp_show_regs (void)
|
|
{
|
|
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
|
paddr (read_register (PC_REGNUM)),
|
|
(long) read_register (SR_REGNUM),
|
|
(long) read_register (PR_REGNUM),
|
|
(long) read_register (MACH_REGNUM),
|
|
(long) read_register (MACL_REGNUM));
|
|
|
|
printf_filtered ("GBR=%08lx VBR=%08lx",
|
|
(long) read_register (GBR_REGNUM),
|
|
(long) read_register (VBR_REGNUM));
|
|
|
|
printf_filtered (" SSR=%08lx SPC=%08lx",
|
|
(long) read_register (SSR_REGNUM),
|
|
(long) read_register (SPC_REGNUM));
|
|
|
|
printf_filtered (" DSR=%08lx", (long) read_register (DSR_REGNUM));
|
|
|
|
printf_filtered
|
|
("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (0), (long) read_register (1),
|
|
(long) read_register (2), (long) read_register (3),
|
|
(long) read_register (4), (long) read_register (5),
|
|
(long) read_register (6), (long) read_register (7));
|
|
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (8), (long) read_register (9),
|
|
(long) read_register (10), (long) read_register (11),
|
|
(long) read_register (12), (long) read_register (13),
|
|
(long) read_register (14), (long) read_register (15));
|
|
|
|
printf_filtered
|
|
("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
|
|
(long) read_register (A0G_REGNUM) & 0xff,
|
|
(long) read_register (A0_REGNUM), (long) read_register (M0_REGNUM),
|
|
(long) read_register (X0_REGNUM), (long) read_register (Y0_REGNUM),
|
|
(long) read_register (RS_REGNUM), (long) read_register (MOD_REGNUM));
|
|
printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
|
|
(long) read_register (A1G_REGNUM) & 0xff,
|
|
(long) read_register (A1_REGNUM),
|
|
(long) read_register (M1_REGNUM),
|
|
(long) read_register (X1_REGNUM),
|
|
(long) read_register (Y1_REGNUM),
|
|
(long) read_register (RE_REGNUM));
|
|
}
|
|
|
|
static void
|
|
sh4_show_regs (void)
|
|
{
|
|
int pr = read_register (FPSCR_REGNUM) & 0x80000;
|
|
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
|
paddr (read_register (PC_REGNUM)),
|
|
(long) read_register (SR_REGNUM),
|
|
(long) read_register (PR_REGNUM),
|
|
(long) read_register (MACH_REGNUM),
|
|
(long) read_register (MACL_REGNUM));
|
|
|
|
printf_filtered ("GBR=%08lx VBR=%08lx",
|
|
(long) read_register (GBR_REGNUM),
|
|
(long) read_register (VBR_REGNUM));
|
|
printf_filtered (" SSR=%08lx SPC=%08lx",
|
|
(long) read_register (SSR_REGNUM),
|
|
(long) read_register (SPC_REGNUM));
|
|
printf_filtered (" FPUL=%08lx FPSCR=%08lx",
|
|
(long) read_register (FPUL_REGNUM),
|
|
(long) read_register (FPSCR_REGNUM));
|
|
|
|
printf_filtered
|
|
("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (0), (long) read_register (1),
|
|
(long) read_register (2), (long) read_register (3),
|
|
(long) read_register (4), (long) read_register (5),
|
|
(long) read_register (6), (long) read_register (7));
|
|
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (8), (long) read_register (9),
|
|
(long) read_register (10), (long) read_register (11),
|
|
(long) read_register (12), (long) read_register (13),
|
|
(long) read_register (14), (long) read_register (15));
|
|
|
|
printf_filtered ((pr
|
|
? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
|
|
:
|
|
"FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
|
|
(long) read_register (FP0_REGNUM + 0),
|
|
(long) read_register (FP0_REGNUM + 1),
|
|
(long) read_register (FP0_REGNUM + 2),
|
|
(long) read_register (FP0_REGNUM + 3),
|
|
(long) read_register (FP0_REGNUM + 4),
|
|
(long) read_register (FP0_REGNUM + 5),
|
|
(long) read_register (FP0_REGNUM + 6),
|
|
(long) read_register (FP0_REGNUM + 7));
|
|
printf_filtered ((pr ?
|
|
"DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n" :
|
|
"FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
|
|
(long) read_register (FP0_REGNUM + 8),
|
|
(long) read_register (FP0_REGNUM + 9),
|
|
(long) read_register (FP0_REGNUM + 10),
|
|
(long) read_register (FP0_REGNUM + 11),
|
|
(long) read_register (FP0_REGNUM + 12),
|
|
(long) read_register (FP0_REGNUM + 13),
|
|
(long) read_register (FP0_REGNUM + 14),
|
|
(long) read_register (FP0_REGNUM + 15));
|
|
}
|
|
|
|
static void
|
|
sh4_nofpu_show_regs (void)
|
|
{
|
|
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
|
paddr (read_register (PC_REGNUM)),
|
|
(long) read_register (SR_REGNUM),
|
|
(long) read_register (PR_REGNUM),
|
|
(long) read_register (MACH_REGNUM),
|
|
(long) read_register (MACL_REGNUM));
|
|
|
|
printf_filtered ("GBR=%08lx VBR=%08lx",
|
|
(long) read_register (GBR_REGNUM),
|
|
(long) read_register (VBR_REGNUM));
|
|
printf_filtered (" SSR=%08lx SPC=%08lx",
|
|
(long) read_register (SSR_REGNUM),
|
|
(long) read_register (SPC_REGNUM));
|
|
|
|
printf_filtered
|
|
("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (0), (long) read_register (1),
|
|
(long) read_register (2), (long) read_register (3),
|
|
(long) read_register (4), (long) read_register (5),
|
|
(long) read_register (6), (long) read_register (7));
|
|
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (8), (long) read_register (9),
|
|
(long) read_register (10), (long) read_register (11),
|
|
(long) read_register (12), (long) read_register (13),
|
|
(long) read_register (14), (long) read_register (15));
|
|
}
|
|
|
|
static void
|
|
sh_dsp_show_regs (void)
|
|
{
|
|
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
|
paddr (read_register (PC_REGNUM)),
|
|
(long) read_register (SR_REGNUM),
|
|
(long) read_register (PR_REGNUM),
|
|
(long) read_register (MACH_REGNUM),
|
|
(long) read_register (MACL_REGNUM));
|
|
|
|
printf_filtered ("GBR=%08lx VBR=%08lx",
|
|
(long) read_register (GBR_REGNUM),
|
|
(long) read_register (VBR_REGNUM));
|
|
|
|
printf_filtered (" DSR=%08lx", (long) read_register (DSR_REGNUM));
|
|
|
|
printf_filtered
|
|
("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (0), (long) read_register (1),
|
|
(long) read_register (2), (long) read_register (3),
|
|
(long) read_register (4), (long) read_register (5),
|
|
(long) read_register (6), (long) read_register (7));
|
|
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
(long) read_register (8), (long) read_register (9),
|
|
(long) read_register (10), (long) read_register (11),
|
|
(long) read_register (12), (long) read_register (13),
|
|
(long) read_register (14), (long) read_register (15));
|
|
|
|
printf_filtered
|
|
("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
|
|
(long) read_register (A0G_REGNUM) & 0xff,
|
|
(long) read_register (A0_REGNUM), (long) read_register (M0_REGNUM),
|
|
(long) read_register (X0_REGNUM), (long) read_register (Y0_REGNUM),
|
|
(long) read_register (RS_REGNUM), (long) read_register (MOD_REGNUM));
|
|
printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
|
|
(long) read_register (A1G_REGNUM) & 0xff,
|
|
(long) read_register (A1_REGNUM),
|
|
(long) read_register (M1_REGNUM),
|
|
(long) read_register (X1_REGNUM),
|
|
(long) read_register (Y1_REGNUM),
|
|
(long) read_register (RE_REGNUM));
|
|
}
|
|
|
|
static void
|
|
sh_show_regs_command (char *args, int from_tty)
|
|
{
|
|
if (sh_show_regs)
|
|
(*sh_show_regs) ();
|
|
}
|
|
|
|
/* Return the GDB type object for the "standard" data type
|
|
of data in register N. */
|
|
static struct type *
|
|
sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
if ((reg_nr >= FP0_REGNUM
|
|
&& (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
|
|
return builtin_type_float;
|
|
else
|
|
return builtin_type_int;
|
|
}
|
|
|
|
static struct type *
|
|
sh_sh4_build_float_register_type (int high)
|
|
{
|
|
struct type *temp;
|
|
|
|
temp = create_range_type (NULL, builtin_type_int, 0, high);
|
|
return create_array_type (NULL, builtin_type_float, temp);
|
|
}
|
|
|
|
static struct type *
|
|
sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
if ((reg_nr >= FP0_REGNUM
|
|
&& (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
|
|
return builtin_type_float;
|
|
else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
|
|
return builtin_type_double;
|
|
else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
|
|
return sh_sh4_build_float_register_type (3);
|
|
else
|
|
return builtin_type_int;
|
|
}
|
|
|
|
static struct type *
|
|
sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
return builtin_type_int;
|
|
}
|
|
|
|
/* On the sh4, the DRi pseudo registers are problematic if the target
|
|
is little endian. When the user writes one of those registers, for
|
|
instance with 'ser var $dr0=1', we want the double to be stored
|
|
like this:
|
|
fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
|
|
fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
|
|
|
|
This corresponds to little endian byte order & big endian word
|
|
order. However if we let gdb write the register w/o conversion, it
|
|
will write fr0 and fr1 this way:
|
|
fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
|
|
fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
|
|
because it will consider fr0 and fr1 as a single LE stretch of memory.
|
|
|
|
To achieve what we want we must force gdb to store things in
|
|
floatformat_ieee_double_littlebyte_bigword (which is defined in
|
|
include/floatformat.h and libiberty/floatformat.c.
|
|
|
|
In case the target is big endian, there is no problem, the
|
|
raw bytes will look like:
|
|
fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
|
|
fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
|
|
|
|
The other pseudo registers (the FVs) also don't pose a problem
|
|
because they are stored as 4 individual FP elements. */
|
|
|
|
static void
|
|
sh_sh4_register_convert_to_virtual (int regnum, struct type *type,
|
|
char *from, char *to)
|
|
{
|
|
if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
|
|
{
|
|
DOUBLEST val;
|
|
floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
|
|
from, &val);
|
|
store_typed_floating (to, type, val);
|
|
}
|
|
else
|
|
error
|
|
("sh_register_convert_to_virtual called with non DR register number");
|
|
}
|
|
|
|
static void
|
|
sh_sh4_register_convert_to_raw (struct type *type, int regnum,
|
|
const void *from, void *to)
|
|
{
|
|
if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
|
|
{
|
|
DOUBLEST val = extract_typed_floating (from, type);
|
|
floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
|
|
&val, to);
|
|
}
|
|
else
|
|
error ("sh_register_convert_to_raw called with non DR register number");
|
|
}
|
|
|
|
/* For vectors of 4 floating point registers. */
|
|
static int
|
|
fv_reg_base_num (int fv_regnum)
|
|
{
|
|
int fp_regnum;
|
|
|
|
fp_regnum = FP0_REGNUM + (fv_regnum - FV0_REGNUM) * 4;
|
|
return fp_regnum;
|
|
}
|
|
|
|
/* For double precision floating point registers, i.e 2 fp regs.*/
|
|
static int
|
|
dr_reg_base_num (int dr_regnum)
|
|
{
|
|
int fp_regnum;
|
|
|
|
fp_regnum = FP0_REGNUM + (dr_regnum - DR0_REGNUM) * 2;
|
|
return fp_regnum;
|
|
}
|
|
|
|
static void
|
|
sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int reg_nr, void *buffer)
|
|
{
|
|
int base_regnum, portion;
|
|
char temp_buffer[MAX_REGISTER_SIZE];
|
|
|
|
if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
|
|
{
|
|
base_regnum = dr_reg_base_num (reg_nr);
|
|
|
|
/* Build the value in the provided buffer. */
|
|
/* Read the real regs for which this one is an alias. */
|
|
for (portion = 0; portion < 2; portion++)
|
|
regcache_raw_read (regcache, base_regnum + portion,
|
|
(temp_buffer
|
|
+ register_size (gdbarch,
|
|
base_regnum) * portion));
|
|
/* We must pay attention to the endiannes. */
|
|
sh_sh4_register_convert_to_virtual (reg_nr,
|
|
gdbarch_register_type (gdbarch,
|
|
reg_nr),
|
|
temp_buffer, buffer);
|
|
}
|
|
else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
|
|
{
|
|
base_regnum = fv_reg_base_num (reg_nr);
|
|
|
|
/* Read the real regs for which this one is an alias. */
|
|
for (portion = 0; portion < 4; portion++)
|
|
regcache_raw_read (regcache, base_regnum + portion,
|
|
((char *) buffer
|
|
+ register_size (gdbarch,
|
|
base_regnum) * portion));
|
|
}
|
|
}
|
|
|
|
static void
|
|
sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int reg_nr, const void *buffer)
|
|
{
|
|
int base_regnum, portion;
|
|
char temp_buffer[MAX_REGISTER_SIZE];
|
|
|
|
if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
|
|
{
|
|
base_regnum = dr_reg_base_num (reg_nr);
|
|
|
|
/* We must pay attention to the endiannes. */
|
|
sh_sh4_register_convert_to_raw (gdbarch_register_type (gdbarch, reg_nr),
|
|
reg_nr, buffer, temp_buffer);
|
|
|
|
/* Write the real regs for which this one is an alias. */
|
|
for (portion = 0; portion < 2; portion++)
|
|
regcache_raw_write (regcache, base_regnum + portion,
|
|
(temp_buffer
|
|
+ register_size (gdbarch,
|
|
base_regnum) * portion));
|
|
}
|
|
else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
|
|
{
|
|
base_regnum = fv_reg_base_num (reg_nr);
|
|
|
|
/* Write the real regs for which this one is an alias. */
|
|
for (portion = 0; portion < 4; portion++)
|
|
regcache_raw_write (regcache, base_regnum + portion,
|
|
((char *) buffer
|
|
+ register_size (gdbarch,
|
|
base_regnum) * portion));
|
|
}
|
|
}
|
|
|
|
/* Floating point vector of 4 float registers. */
|
|
static void
|
|
do_fv_register_info (struct gdbarch *gdbarch, struct ui_file *file,
|
|
int fv_regnum)
|
|
{
|
|
int first_fp_reg_num = fv_reg_base_num (fv_regnum);
|
|
fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
|
|
fv_regnum - FV0_REGNUM,
|
|
(int) read_register (first_fp_reg_num),
|
|
(int) read_register (first_fp_reg_num + 1),
|
|
(int) read_register (first_fp_reg_num + 2),
|
|
(int) read_register (first_fp_reg_num + 3));
|
|
}
|
|
|
|
/* Double precision registers. */
|
|
static void
|
|
do_dr_register_info (struct gdbarch *gdbarch, struct ui_file *file,
|
|
int dr_regnum)
|
|
{
|
|
int first_fp_reg_num = dr_reg_base_num (dr_regnum);
|
|
|
|
fprintf_filtered (file, "dr%d\t0x%08x%08x\n",
|
|
dr_regnum - DR0_REGNUM,
|
|
(int) read_register (first_fp_reg_num),
|
|
(int) read_register (first_fp_reg_num + 1));
|
|
}
|
|
|
|
static void
|
|
sh_print_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
|
|
int regnum)
|
|
{
|
|
if (regnum < NUM_REGS || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
|
|
internal_error (__FILE__, __LINE__,
|
|
"Invalid pseudo register number %d\n", regnum);
|
|
else if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
|
|
do_dr_register_info (gdbarch, file, regnum);
|
|
else if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
|
|
do_fv_register_info (gdbarch, file, regnum);
|
|
}
|
|
|
|
static void
|
|
sh_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
|
|
{ /* do values for FP (float) regs */
|
|
char *raw_buffer;
|
|
double flt; /* double extracted from raw hex data */
|
|
int inv;
|
|
int j;
|
|
|
|
/* Allocate space for the float. */
|
|
raw_buffer = (char *) alloca (register_size (gdbarch, FP0_REGNUM));
|
|
|
|
/* Get the data in raw format. */
|
|
if (!frame_register_read (get_selected_frame (), regnum, raw_buffer))
|
|
error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
|
|
|
|
/* Get the register as a number */
|
|
flt = unpack_double (builtin_type_float, raw_buffer, &inv);
|
|
|
|
/* Print the name and some spaces. */
|
|
fputs_filtered (REGISTER_NAME (regnum), file);
|
|
print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
|
|
|
|
/* Print the value. */
|
|
if (inv)
|
|
fprintf_filtered (file, "<invalid float>");
|
|
else
|
|
fprintf_filtered (file, "%-10.9g", flt);
|
|
|
|
/* Print the fp register as hex. */
|
|
fprintf_filtered (file, "\t(raw 0x");
|
|
for (j = 0; j < register_size (gdbarch, regnum); j++)
|
|
{
|
|
int idx = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
|
|
? j
|
|
: register_size (gdbarch, regnum) - 1 - j);
|
|
fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[idx]);
|
|
}
|
|
fprintf_filtered (file, ")");
|
|
fprintf_filtered (file, "\n");
|
|
}
|
|
|
|
static void
|
|
sh_do_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
|
|
{
|
|
char raw_buffer[MAX_REGISTER_SIZE];
|
|
|
|
fputs_filtered (REGISTER_NAME (regnum), file);
|
|
print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
|
|
|
|
/* Get the data in raw format. */
|
|
if (!frame_register_read (get_selected_frame (), regnum, raw_buffer))
|
|
fprintf_filtered (file, "*value not available*\n");
|
|
|
|
val_print (gdbarch_register_type (gdbarch, regnum), raw_buffer, 0, 0,
|
|
file, 'x', 1, 0, Val_pretty_default);
|
|
fprintf_filtered (file, "\t");
|
|
val_print (gdbarch_register_type (gdbarch, regnum), raw_buffer, 0, 0,
|
|
file, 0, 1, 0, Val_pretty_default);
|
|
fprintf_filtered (file, "\n");
|
|
}
|
|
|
|
static void
|
|
sh_print_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
|
|
{
|
|
if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
|
|
internal_error (__FILE__, __LINE__,
|
|
"Invalid register number %d\n", regnum);
|
|
|
|
else if (regnum >= 0 && regnum < NUM_REGS)
|
|
{
|
|
if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
|
|
TYPE_CODE_FLT)
|
|
sh_do_fp_register (gdbarch, file, regnum); /* FP regs */
|
|
else
|
|
sh_do_register (gdbarch, file, regnum); /* All other regs */
|
|
}
|
|
|
|
else if (regnum < NUM_REGS + NUM_PSEUDO_REGS)
|
|
{
|
|
sh_print_pseudo_register (gdbarch, file, regnum);
|
|
}
|
|
}
|
|
|
|
static void
|
|
sh_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
|
|
struct frame_info *frame, int regnum, int fpregs)
|
|
{
|
|
if (regnum != -1) /* do one specified register */
|
|
{
|
|
if (*(REGISTER_NAME (regnum)) == '\0')
|
|
error ("Not a valid register for the current processor type");
|
|
|
|
sh_print_register (gdbarch, file, regnum);
|
|
}
|
|
else
|
|
/* do all (or most) registers */
|
|
{
|
|
regnum = 0;
|
|
while (regnum < NUM_REGS)
|
|
{
|
|
/* If the register name is empty, it is undefined for this
|
|
processor, so don't display anything. */
|
|
if (REGISTER_NAME (regnum) == NULL
|
|
|| *(REGISTER_NAME (regnum)) == '\0')
|
|
{
|
|
regnum++;
|
|
continue;
|
|
}
|
|
|
|
if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
|
|
TYPE_CODE_FLT)
|
|
{
|
|
if (fpregs)
|
|
{
|
|
/* true for "INFO ALL-REGISTERS" command */
|
|
sh_do_fp_register (gdbarch, file, regnum); /* FP regs */
|
|
regnum++;
|
|
}
|
|
else
|
|
regnum += (FP_LAST_REGNUM - FP0_REGNUM); /* skip FP regs */
|
|
}
|
|
else
|
|
{
|
|
sh_do_register (gdbarch, file, regnum); /* All other regs */
|
|
regnum++;
|
|
}
|
|
}
|
|
|
|
if (fpregs)
|
|
while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
|
|
{
|
|
sh_print_pseudo_register (gdbarch, file, regnum);
|
|
regnum++;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef SVR4_SHARED_LIBS
|
|
|
|
/* Fetch (and possibly build) an appropriate link_map_offsets structure
|
|
for native i386 linux targets using the struct offsets defined in
|
|
link.h (but without actual reference to that file).
|
|
|
|
This makes it possible to access i386-linux shared libraries from
|
|
a gdb that was not built on an i386-linux host (for cross debugging).
|
|
*/
|
|
|
|
struct link_map_offsets *
|
|
sh_linux_svr4_fetch_link_map_offsets (void)
|
|
{
|
|
static struct link_map_offsets lmo;
|
|
static struct link_map_offsets *lmp = 0;
|
|
|
|
if (lmp == 0)
|
|
{
|
|
lmp = &lmo;
|
|
|
|
lmo.r_debug_size = 8; /* 20 not actual size but all we need */
|
|
|
|
lmo.r_map_offset = 4;
|
|
lmo.r_map_size = 4;
|
|
|
|
lmo.link_map_size = 20; /* 552 not actual size but all we need */
|
|
|
|
lmo.l_addr_offset = 0;
|
|
lmo.l_addr_size = 4;
|
|
|
|
lmo.l_name_offset = 4;
|
|
lmo.l_name_size = 4;
|
|
|
|
lmo.l_next_offset = 12;
|
|
lmo.l_next_size = 4;
|
|
|
|
lmo.l_prev_offset = 16;
|
|
lmo.l_prev_size = 4;
|
|
}
|
|
|
|
return lmp;
|
|
}
|
|
#endif /* SVR4_SHARED_LIBS */
|
|
|
|
static int
|
|
sh_dsp_register_sim_regno (int nr)
|
|
{
|
|
if (legacy_register_sim_regno (nr) < 0)
|
|
return legacy_register_sim_regno (nr);
|
|
if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
|
|
return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
|
|
if (nr == MOD_REGNUM)
|
|
return SIM_SH_MOD_REGNUM;
|
|
if (nr == RS_REGNUM)
|
|
return SIM_SH_RS_REGNUM;
|
|
if (nr == RE_REGNUM)
|
|
return SIM_SH_RE_REGNUM;
|
|
if (nr >= R0_BANK_REGNUM && nr <= R7_BANK_REGNUM)
|
|
return nr - R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
|
|
return nr;
|
|
}
|
|
|
|
static struct sh_frame_cache *
|
|
sh_alloc_frame_cache (void)
|
|
{
|
|
struct sh_frame_cache *cache;
|
|
int i;
|
|
|
|
cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
|
|
|
|
/* Base address. */
|
|
cache->base = 0;
|
|
cache->saved_sp = 0;
|
|
cache->sp_offset = 0;
|
|
cache->pc = 0;
|
|
|
|
/* Frameless until proven otherwise. */
|
|
cache->uses_fp = 0;
|
|
|
|
/* Saved registers. We initialize these to -1 since zero is a valid
|
|
offset (that's where fp is supposed to be stored). */
|
|
for (i = 0; i < SH_NUM_REGS; i++)
|
|
{
|
|
cache->saved_regs[i] = -1;
|
|
}
|
|
|
|
return cache;
|
|
}
|
|
|
|
static struct sh_frame_cache *
|
|
sh_frame_cache (struct frame_info *next_frame, void **this_cache)
|
|
{
|
|
struct sh_frame_cache *cache;
|
|
CORE_ADDR current_pc;
|
|
int i;
|
|
|
|
if (*this_cache)
|
|
return *this_cache;
|
|
|
|
cache = sh_alloc_frame_cache ();
|
|
*this_cache = cache;
|
|
|
|
/* In principle, for normal frames, fp holds the frame pointer,
|
|
which holds the base address for the current stack frame.
|
|
However, for functions that don't need it, the frame pointer is
|
|
optional. For these "frameless" functions the frame pointer is
|
|
actually the frame pointer of the calling frame. */
|
|
cache->base = frame_unwind_register_unsigned (next_frame, FP_REGNUM);
|
|
if (cache->base == 0)
|
|
return cache;
|
|
|
|
cache->pc = frame_func_unwind (next_frame);
|
|
current_pc = frame_pc_unwind (next_frame);
|
|
if (cache->pc != 0)
|
|
sh_analyze_prologue (cache->pc, current_pc, cache);
|
|
|
|
if (!cache->uses_fp)
|
|
{
|
|
/* We didn't find a valid frame, which means that CACHE->base
|
|
currently holds the frame pointer for our calling frame. If
|
|
we're at the start of a function, or somewhere half-way its
|
|
prologue, the function's frame probably hasn't been fully
|
|
setup yet. Try to reconstruct the base address for the stack
|
|
frame by looking at the stack pointer. For truly "frameless"
|
|
functions this might work too. */
|
|
cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
|
|
}
|
|
|
|
/* Now that we have the base address for the stack frame we can
|
|
calculate the value of sp in the calling frame. */
|
|
cache->saved_sp = cache->base + cache->sp_offset;
|
|
|
|
/* Adjust all the saved registers such that they contain addresses
|
|
instead of offsets. */
|
|
for (i = 0; i < SH_NUM_REGS; i++)
|
|
if (cache->saved_regs[i] != -1)
|
|
cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
|
|
|
|
return cache;
|
|
}
|
|
|
|
static void
|
|
sh_frame_prev_register (struct frame_info *next_frame, void **this_cache,
|
|
int regnum, int *optimizedp,
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
|
int *realnump, void *valuep)
|
|
{
|
|
struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
|
|
|
|
gdb_assert (regnum >= 0);
|
|
|
|
if (regnum == SP_REGNUM && cache->saved_sp)
|
|
{
|
|
*optimizedp = 0;
|
|
*lvalp = not_lval;
|
|
*addrp = 0;
|
|
*realnump = -1;
|
|
if (valuep)
|
|
{
|
|
/* Store the value. */
|
|
store_unsigned_integer (valuep, 4, cache->saved_sp);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* The PC of the previous frame is stored in the PR register of
|
|
the current frame. Frob regnum so that we pull the value from
|
|
the correct place. */
|
|
if (regnum == PC_REGNUM)
|
|
regnum = PR_REGNUM;
|
|
|
|
if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
|
|
{
|
|
*optimizedp = 0;
|
|
*lvalp = lval_memory;
|
|
*addrp = cache->saved_regs[regnum];
|
|
*realnump = -1;
|
|
if (valuep)
|
|
{
|
|
/* Read the value in from memory. */
|
|
read_memory (*addrp, valuep,
|
|
register_size (current_gdbarch, regnum));
|
|
}
|
|
return;
|
|
}
|
|
|
|
frame_register_unwind (next_frame, regnum,
|
|
optimizedp, lvalp, addrp, realnump, valuep);
|
|
}
|
|
|
|
static void
|
|
sh_frame_this_id (struct frame_info *next_frame, void **this_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
|
|
|
|
/* This marks the outermost frame. */
|
|
if (cache->base == 0)
|
|
return;
|
|
|
|
*this_id = frame_id_build (cache->saved_sp, cache->pc);
|
|
}
|
|
|
|
static const struct frame_unwind sh_frame_unwind = {
|
|
NORMAL_FRAME,
|
|
sh_frame_this_id,
|
|
sh_frame_prev_register
|
|
};
|
|
|
|
static const struct frame_unwind *
|
|
sh_frame_sniffer (struct frame_info *next_frame)
|
|
{
|
|
return &sh_frame_unwind;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_unwind_register_unsigned (next_frame, SP_REGNUM);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
|
|
}
|
|
|
|
static struct frame_id
|
|
sh_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_id_build (sh_unwind_sp (gdbarch, next_frame),
|
|
frame_pc_unwind (next_frame));
|
|
}
|
|
|
|
static CORE_ADDR
|
|
sh_frame_base_address (struct frame_info *next_frame, void **this_cache)
|
|
{
|
|
struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
|
|
|
|
return cache->base;
|
|
}
|
|
|
|
static const struct frame_base sh_frame_base = {
|
|
&sh_frame_unwind,
|
|
sh_frame_base_address,
|
|
sh_frame_base_address,
|
|
sh_frame_base_address
|
|
};
|
|
|
|
/* The epilogue is defined here as the area at the end of a function,
|
|
either on the `ret' instruction itself or after an instruction which
|
|
destroys the function's stack frame. */
|
|
static int
|
|
sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR func_addr = 0, func_end = 0;
|
|
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
{
|
|
ULONGEST inst;
|
|
/* The sh epilogue is max. 14 bytes long. Give another 14 bytes
|
|
for a nop and some fixed data (e.g. big offsets) which are
|
|
unfortunately also treated as part of the function (which
|
|
means, they are below func_end. */
|
|
CORE_ADDR addr = func_end - 28;
|
|
if (addr < func_addr + 4)
|
|
addr = func_addr + 4;
|
|
if (pc < addr)
|
|
return 0;
|
|
|
|
/* First search forward until hitting an rts. */
|
|
while (addr < func_end
|
|
&& !IS_RTS (read_memory_unsigned_integer (addr, 2)))
|
|
addr += 2;
|
|
if (addr >= func_end)
|
|
return 0;
|
|
|
|
/* At this point we should find a mov.l @r15+,r14 instruction,
|
|
either before or after the rts. If not, then the function has
|
|
probably no "normal" epilogue and we bail out here. */
|
|
inst = read_memory_unsigned_integer (addr - 2, 2);
|
|
if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2)))
|
|
addr -= 2;
|
|
else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2)))
|
|
return 0;
|
|
|
|
/* Step over possible lds.l @r15+,pr. */
|
|
inst = read_memory_unsigned_integer (addr - 2, 2);
|
|
if (IS_LDS (inst))
|
|
{
|
|
addr -= 2;
|
|
inst = read_memory_unsigned_integer (addr - 2, 2);
|
|
}
|
|
|
|
/* Step over possible mov r14,r15. */
|
|
if (IS_MOV_FP_SP (inst))
|
|
{
|
|
addr -= 2;
|
|
inst = read_memory_unsigned_integer (addr - 2, 2);
|
|
}
|
|
|
|
/* Now check for FP adjustments, using add #imm,r14 or add rX, r14
|
|
instructions. */
|
|
while (addr > func_addr + 4
|
|
&& (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
|
|
{
|
|
addr -= 2;
|
|
inst = read_memory_unsigned_integer (addr - 2, 2);
|
|
}
|
|
|
|
if (pc >= addr)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static gdbarch_init_ftype sh_gdbarch_init;
|
|
|
|
static struct gdbarch *
|
|
sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
|
|
sh_show_regs = sh_generic_show_regs;
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_sh2e:
|
|
sh_show_regs = sh2e_show_regs;
|
|
break;
|
|
case bfd_mach_sh_dsp:
|
|
sh_show_regs = sh_dsp_show_regs;
|
|
break;
|
|
|
|
case bfd_mach_sh3:
|
|
sh_show_regs = sh3_show_regs;
|
|
break;
|
|
|
|
case bfd_mach_sh3e:
|
|
sh_show_regs = sh3e_show_regs;
|
|
break;
|
|
|
|
case bfd_mach_sh3_dsp:
|
|
case bfd_mach_sh4al_dsp:
|
|
sh_show_regs = sh3_dsp_show_regs;
|
|
break;
|
|
|
|
case bfd_mach_sh4:
|
|
case bfd_mach_sh4a:
|
|
sh_show_regs = sh4_show_regs;
|
|
break;
|
|
|
|
case bfd_mach_sh4_nofpu:
|
|
case bfd_mach_sh4a_nofpu:
|
|
sh_show_regs = sh4_nofpu_show_regs;
|
|
break;
|
|
|
|
case bfd_mach_sh5:
|
|
sh_show_regs = sh64_show_regs;
|
|
/* SH5 is handled entirely in sh64-tdep.c */
|
|
return sh64_gdbarch_init (info, arches);
|
|
}
|
|
|
|
/* If there is already a candidate, use it. */
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
if (arches != NULL)
|
|
return arches->gdbarch;
|
|
|
|
/* None found, create a new architecture from the information
|
|
provided. */
|
|
gdbarch = gdbarch_alloc (&info, NULL);
|
|
|
|
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
|
|
set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
|
|
set_gdbarch_sp_regnum (gdbarch, 15);
|
|
set_gdbarch_pc_regnum (gdbarch, 16);
|
|
set_gdbarch_fp0_regnum (gdbarch, -1);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, 0);
|
|
|
|
set_gdbarch_register_type (gdbarch, sh_default_register_type);
|
|
|
|
set_gdbarch_print_registers_info (gdbarch, sh_print_registers_info);
|
|
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
|
|
set_gdbarch_use_struct_convention (gdbarch, sh_use_struct_convention);
|
|
|
|
set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh);
|
|
set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
|
|
|
|
set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
|
|
|
|
set_gdbarch_store_return_value (gdbarch, sh_default_store_return_value);
|
|
set_gdbarch_extract_return_value (gdbarch, sh_default_extract_return_value);
|
|
set_gdbarch_extract_struct_value_address (gdbarch,
|
|
sh_extract_struct_value_address);
|
|
|
|
set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
|
|
|
set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
|
|
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
|
set_gdbarch_frameless_function_invocation (gdbarch,
|
|
frameless_look_for_prologue);
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
|
|
|
set_gdbarch_frame_align (gdbarch, sh_frame_align);
|
|
set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
|
|
set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
|
|
set_gdbarch_unwind_dummy_id (gdbarch, sh_unwind_dummy_id);
|
|
frame_base_set_default (gdbarch, &sh_frame_base);
|
|
|
|
set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
|
|
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_sh:
|
|
set_gdbarch_register_name (gdbarch, sh_sh_register_name);
|
|
break;
|
|
|
|
case bfd_mach_sh2:
|
|
set_gdbarch_register_name (gdbarch, sh_sh_register_name);
|
|
break;
|
|
|
|
case bfd_mach_sh2e:
|
|
/* doubles on sh2e and sh3e are actually 4 byte. */
|
|
set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
|
|
set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
|
|
set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
|
|
set_gdbarch_fp0_regnum (gdbarch, 25);
|
|
set_gdbarch_store_return_value (gdbarch, sh3e_sh4_store_return_value);
|
|
set_gdbarch_extract_return_value (gdbarch,
|
|
sh3e_sh4_extract_return_value);
|
|
set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
|
|
break;
|
|
|
|
case bfd_mach_sh_dsp:
|
|
set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
|
|
set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
|
|
break;
|
|
|
|
case bfd_mach_sh3:
|
|
set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
|
|
break;
|
|
|
|
case bfd_mach_sh3e:
|
|
/* doubles on sh2e and sh3e are actually 4 byte. */
|
|
set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
|
|
set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
|
|
set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
|
|
set_gdbarch_fp0_regnum (gdbarch, 25);
|
|
set_gdbarch_store_return_value (gdbarch, sh3e_sh4_store_return_value);
|
|
set_gdbarch_extract_return_value (gdbarch,
|
|
sh3e_sh4_extract_return_value);
|
|
set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
|
|
break;
|
|
|
|
case bfd_mach_sh3_dsp:
|
|
set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
|
|
set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
|
|
break;
|
|
|
|
case bfd_mach_sh4:
|
|
case bfd_mach_sh4a:
|
|
set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
|
|
set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
|
|
set_gdbarch_fp0_regnum (gdbarch, 25);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, 12);
|
|
set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
|
|
set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
|
|
set_gdbarch_store_return_value (gdbarch, sh3e_sh4_store_return_value);
|
|
set_gdbarch_extract_return_value (gdbarch,
|
|
sh3e_sh4_extract_return_value);
|
|
set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
|
|
break;
|
|
|
|
case bfd_mach_sh4_nofpu:
|
|
case bfd_mach_sh4a_nofpu:
|
|
set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
|
|
break;
|
|
|
|
case bfd_mach_sh4al_dsp:
|
|
set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
|
|
set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
|
|
break;
|
|
|
|
default:
|
|
set_gdbarch_register_name (gdbarch, sh_generic_register_name);
|
|
break;
|
|
}
|
|
|
|
/* Hook in ABI-specific overrides, if they have been registered. */
|
|
gdbarch_init_osabi (info, gdbarch);
|
|
|
|
frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
|
|
frame_unwind_append_sniffer (gdbarch, sh_frame_sniffer);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
|
|
|
|
void
|
|
_initialize_sh_tdep (void)
|
|
{
|
|
struct cmd_list_element *c;
|
|
|
|
gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
|
|
|
|
add_com ("regs", class_vars, sh_show_regs_command, "Print all registers");
|
|
}
|