d48cc9dd6f
Paul Brook <paul@codesourcery.com> * c-typeprint.c (c_type_print_base): Skip artificial fields. Use get_vptr_fieldno to skip the vtable pointer. * dwarf2read.c (dwarf2_add_field): Set FIELD_ARTIFICIAL on artificial fields. (dwarf2_add_member_fn): Complain about virtual member functions without DW_AT_vtable_elem_location and force TYPE_CPLUS_DYNAMIC. * gdbtypes.c (get_vptr_fieldno): Update comment. * gdbtypes.h (struct cplus_struct_type): Add is_dynamic. (TYPE_CPLUS_DYNAMIC): New macro. * gnu-v3-abi.c (gnuv3_dynamic_class): New. (gnuv3_get_vtable): Rewrite to use gnuv3_dynamic_class. Move higher. (gnuv3_rtti_type, gnuv3_get_virtual_fn, gnuv3_baseclass_offset): Use gnuv3_get_vtable. * varobj.c (cplus_class_num_children, cplus_describe_child): Skip artificial fields. Use get_vptr_fieldno to skip the vtable pointer.
3487 lines
102 KiB
C
3487 lines
102 KiB
C
/* Support routines for manipulating internal types for GDB.
|
||
|
||
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
|
||
2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
||
|
||
Contributed by Cygnus Support, using pieces from other GDB modules.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "gdb_string.h"
|
||
#include "bfd.h"
|
||
#include "symtab.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "gdbtypes.h"
|
||
#include "expression.h"
|
||
#include "language.h"
|
||
#include "target.h"
|
||
#include "value.h"
|
||
#include "demangle.h"
|
||
#include "complaints.h"
|
||
#include "gdbcmd.h"
|
||
#include "wrapper.h"
|
||
#include "cp-abi.h"
|
||
#include "gdb_assert.h"
|
||
#include "hashtab.h"
|
||
|
||
|
||
/* Floatformat pairs. */
|
||
const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_ieee_single_big,
|
||
&floatformat_ieee_single_little
|
||
};
|
||
const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_ieee_double_big,
|
||
&floatformat_ieee_double_little
|
||
};
|
||
const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_ieee_double_big,
|
||
&floatformat_ieee_double_littlebyte_bigword
|
||
};
|
||
const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_i387_ext,
|
||
&floatformat_i387_ext
|
||
};
|
||
const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_m68881_ext,
|
||
&floatformat_m68881_ext
|
||
};
|
||
const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_arm_ext_big,
|
||
&floatformat_arm_ext_littlebyte_bigword
|
||
};
|
||
const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_ia64_spill_big,
|
||
&floatformat_ia64_spill_little
|
||
};
|
||
const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_ia64_quad_big,
|
||
&floatformat_ia64_quad_little
|
||
};
|
||
const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_vax_f,
|
||
&floatformat_vax_f
|
||
};
|
||
const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_vax_d,
|
||
&floatformat_vax_d
|
||
};
|
||
const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_ibm_long_double,
|
||
&floatformat_ibm_long_double
|
||
};
|
||
|
||
|
||
int opaque_type_resolution = 1;
|
||
static void
|
||
show_opaque_type_resolution (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
fprintf_filtered (file, _("\
|
||
Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
int overload_debug = 0;
|
||
static void
|
||
show_overload_debug (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
struct extra
|
||
{
|
||
char str[128];
|
||
int len;
|
||
}; /* Maximum extension is 128! FIXME */
|
||
|
||
static void print_bit_vector (B_TYPE *, int);
|
||
static void print_arg_types (struct field *, int, int);
|
||
static void dump_fn_fieldlists (struct type *, int);
|
||
static void print_cplus_stuff (struct type *, int);
|
||
|
||
|
||
/* Allocate a new OBJFILE-associated type structure and fill it
|
||
with some defaults. Space for the type structure is allocated
|
||
on the objfile's objfile_obstack. */
|
||
|
||
struct type *
|
||
alloc_type (struct objfile *objfile)
|
||
{
|
||
struct type *type;
|
||
|
||
gdb_assert (objfile != NULL);
|
||
|
||
/* Alloc the structure and start off with all fields zeroed. */
|
||
type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
|
||
TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
|
||
struct main_type);
|
||
OBJSTAT (objfile, n_types++);
|
||
|
||
TYPE_OBJFILE_OWNED (type) = 1;
|
||
TYPE_OWNER (type).objfile = objfile;
|
||
|
||
/* Initialize the fields that might not be zero. */
|
||
|
||
TYPE_CODE (type) = TYPE_CODE_UNDEF;
|
||
TYPE_VPTR_FIELDNO (type) = -1;
|
||
TYPE_CHAIN (type) = type; /* Chain back to itself. */
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Allocate a new GDBARCH-associated type structure and fill it
|
||
with some defaults. Space for the type structure is allocated
|
||
on the heap. */
|
||
|
||
struct type *
|
||
alloc_type_arch (struct gdbarch *gdbarch)
|
||
{
|
||
struct type *type;
|
||
|
||
gdb_assert (gdbarch != NULL);
|
||
|
||
/* Alloc the structure and start off with all fields zeroed. */
|
||
|
||
type = XZALLOC (struct type);
|
||
TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
|
||
|
||
TYPE_OBJFILE_OWNED (type) = 0;
|
||
TYPE_OWNER (type).gdbarch = gdbarch;
|
||
|
||
/* Initialize the fields that might not be zero. */
|
||
|
||
TYPE_CODE (type) = TYPE_CODE_UNDEF;
|
||
TYPE_VPTR_FIELDNO (type) = -1;
|
||
TYPE_CHAIN (type) = type; /* Chain back to itself. */
|
||
|
||
return type;
|
||
}
|
||
|
||
/* If TYPE is objfile-associated, allocate a new type structure
|
||
associated with the same objfile. If TYPE is gdbarch-associated,
|
||
allocate a new type structure associated with the same gdbarch. */
|
||
|
||
struct type *
|
||
alloc_type_copy (const struct type *type)
|
||
{
|
||
if (TYPE_OBJFILE_OWNED (type))
|
||
return alloc_type (TYPE_OWNER (type).objfile);
|
||
else
|
||
return alloc_type_arch (TYPE_OWNER (type).gdbarch);
|
||
}
|
||
|
||
/* If TYPE is gdbarch-associated, return that architecture.
|
||
If TYPE is objfile-associated, return that objfile's architecture. */
|
||
|
||
struct gdbarch *
|
||
get_type_arch (const struct type *type)
|
||
{
|
||
if (TYPE_OBJFILE_OWNED (type))
|
||
return get_objfile_arch (TYPE_OWNER (type).objfile);
|
||
else
|
||
return TYPE_OWNER (type).gdbarch;
|
||
}
|
||
|
||
|
||
/* Alloc a new type instance structure, fill it with some defaults,
|
||
and point it at OLDTYPE. Allocate the new type instance from the
|
||
same place as OLDTYPE. */
|
||
|
||
static struct type *
|
||
alloc_type_instance (struct type *oldtype)
|
||
{
|
||
struct type *type;
|
||
|
||
/* Allocate the structure. */
|
||
|
||
if (! TYPE_OBJFILE_OWNED (oldtype))
|
||
type = XZALLOC (struct type);
|
||
else
|
||
type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
|
||
struct type);
|
||
|
||
TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
|
||
|
||
TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Clear all remnants of the previous type at TYPE, in preparation for
|
||
replacing it with something else. Preserve owner information. */
|
||
static void
|
||
smash_type (struct type *type)
|
||
{
|
||
int objfile_owned = TYPE_OBJFILE_OWNED (type);
|
||
union type_owner owner = TYPE_OWNER (type);
|
||
|
||
memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
|
||
|
||
/* Restore owner information. */
|
||
TYPE_OBJFILE_OWNED (type) = objfile_owned;
|
||
TYPE_OWNER (type) = owner;
|
||
|
||
/* For now, delete the rings. */
|
||
TYPE_CHAIN (type) = type;
|
||
|
||
/* For now, leave the pointer/reference types alone. */
|
||
}
|
||
|
||
/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
|
||
to a pointer to memory where the pointer type should be stored.
|
||
If *TYPEPTR is zero, update it to point to the pointer type we return.
|
||
We allocate new memory if needed. */
|
||
|
||
struct type *
|
||
make_pointer_type (struct type *type, struct type **typeptr)
|
||
{
|
||
struct type *ntype; /* New type */
|
||
struct type *chain;
|
||
|
||
ntype = TYPE_POINTER_TYPE (type);
|
||
|
||
if (ntype)
|
||
{
|
||
if (typeptr == 0)
|
||
return ntype; /* Don't care about alloc,
|
||
and have new type. */
|
||
else if (*typeptr == 0)
|
||
{
|
||
*typeptr = ntype; /* Tracking alloc, and have new type. */
|
||
return ntype;
|
||
}
|
||
}
|
||
|
||
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
|
||
{
|
||
ntype = alloc_type_copy (type);
|
||
if (typeptr)
|
||
*typeptr = ntype;
|
||
}
|
||
else /* We have storage, but need to reset it. */
|
||
{
|
||
ntype = *typeptr;
|
||
chain = TYPE_CHAIN (ntype);
|
||
smash_type (ntype);
|
||
TYPE_CHAIN (ntype) = chain;
|
||
}
|
||
|
||
TYPE_TARGET_TYPE (ntype) = type;
|
||
TYPE_POINTER_TYPE (type) = ntype;
|
||
|
||
/* FIXME! Assume the machine has only one representation for
|
||
pointers! */
|
||
|
||
TYPE_LENGTH (ntype)
|
||
= gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
|
||
TYPE_CODE (ntype) = TYPE_CODE_PTR;
|
||
|
||
/* Mark pointers as unsigned. The target converts between pointers
|
||
and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
|
||
gdbarch_address_to_pointer. */
|
||
TYPE_UNSIGNED (ntype) = 1;
|
||
|
||
if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
|
||
TYPE_POINTER_TYPE (type) = ntype;
|
||
|
||
/* Update the length of all the other variants of this type. */
|
||
chain = TYPE_CHAIN (ntype);
|
||
while (chain != ntype)
|
||
{
|
||
TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
|
||
chain = TYPE_CHAIN (chain);
|
||
}
|
||
|
||
return ntype;
|
||
}
|
||
|
||
/* Given a type TYPE, return a type of pointers to that type.
|
||
May need to construct such a type if this is the first use. */
|
||
|
||
struct type *
|
||
lookup_pointer_type (struct type *type)
|
||
{
|
||
return make_pointer_type (type, (struct type **) 0);
|
||
}
|
||
|
||
/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
|
||
points to a pointer to memory where the reference type should be
|
||
stored. If *TYPEPTR is zero, update it to point to the reference
|
||
type we return. We allocate new memory if needed. */
|
||
|
||
struct type *
|
||
make_reference_type (struct type *type, struct type **typeptr)
|
||
{
|
||
struct type *ntype; /* New type */
|
||
struct type *chain;
|
||
|
||
ntype = TYPE_REFERENCE_TYPE (type);
|
||
|
||
if (ntype)
|
||
{
|
||
if (typeptr == 0)
|
||
return ntype; /* Don't care about alloc,
|
||
and have new type. */
|
||
else if (*typeptr == 0)
|
||
{
|
||
*typeptr = ntype; /* Tracking alloc, and have new type. */
|
||
return ntype;
|
||
}
|
||
}
|
||
|
||
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
|
||
{
|
||
ntype = alloc_type_copy (type);
|
||
if (typeptr)
|
||
*typeptr = ntype;
|
||
}
|
||
else /* We have storage, but need to reset it. */
|
||
{
|
||
ntype = *typeptr;
|
||
chain = TYPE_CHAIN (ntype);
|
||
smash_type (ntype);
|
||
TYPE_CHAIN (ntype) = chain;
|
||
}
|
||
|
||
TYPE_TARGET_TYPE (ntype) = type;
|
||
TYPE_REFERENCE_TYPE (type) = ntype;
|
||
|
||
/* FIXME! Assume the machine has only one representation for
|
||
references, and that it matches the (only) representation for
|
||
pointers! */
|
||
|
||
TYPE_LENGTH (ntype) =
|
||
gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
|
||
TYPE_CODE (ntype) = TYPE_CODE_REF;
|
||
|
||
if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
|
||
TYPE_REFERENCE_TYPE (type) = ntype;
|
||
|
||
/* Update the length of all the other variants of this type. */
|
||
chain = TYPE_CHAIN (ntype);
|
||
while (chain != ntype)
|
||
{
|
||
TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
|
||
chain = TYPE_CHAIN (chain);
|
||
}
|
||
|
||
return ntype;
|
||
}
|
||
|
||
/* Same as above, but caller doesn't care about memory allocation
|
||
details. */
|
||
|
||
struct type *
|
||
lookup_reference_type (struct type *type)
|
||
{
|
||
return make_reference_type (type, (struct type **) 0);
|
||
}
|
||
|
||
/* Lookup a function type that returns type TYPE. TYPEPTR, if
|
||
nonzero, points to a pointer to memory where the function type
|
||
should be stored. If *TYPEPTR is zero, update it to point to the
|
||
function type we return. We allocate new memory if needed. */
|
||
|
||
struct type *
|
||
make_function_type (struct type *type, struct type **typeptr)
|
||
{
|
||
struct type *ntype; /* New type */
|
||
|
||
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
|
||
{
|
||
ntype = alloc_type_copy (type);
|
||
if (typeptr)
|
||
*typeptr = ntype;
|
||
}
|
||
else /* We have storage, but need to reset it. */
|
||
{
|
||
ntype = *typeptr;
|
||
smash_type (ntype);
|
||
}
|
||
|
||
TYPE_TARGET_TYPE (ntype) = type;
|
||
|
||
TYPE_LENGTH (ntype) = 1;
|
||
TYPE_CODE (ntype) = TYPE_CODE_FUNC;
|
||
|
||
return ntype;
|
||
}
|
||
|
||
|
||
/* Given a type TYPE, return a type of functions that return that type.
|
||
May need to construct such a type if this is the first use. */
|
||
|
||
struct type *
|
||
lookup_function_type (struct type *type)
|
||
{
|
||
return make_function_type (type, (struct type **) 0);
|
||
}
|
||
|
||
/* Identify address space identifier by name --
|
||
return the integer flag defined in gdbtypes.h. */
|
||
extern int
|
||
address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
|
||
{
|
||
int type_flags;
|
||
/* Check for known address space delimiters. */
|
||
if (!strcmp (space_identifier, "code"))
|
||
return TYPE_INSTANCE_FLAG_CODE_SPACE;
|
||
else if (!strcmp (space_identifier, "data"))
|
||
return TYPE_INSTANCE_FLAG_DATA_SPACE;
|
||
else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
|
||
&& gdbarch_address_class_name_to_type_flags (gdbarch,
|
||
space_identifier,
|
||
&type_flags))
|
||
return type_flags;
|
||
else
|
||
error (_("Unknown address space specifier: \"%s\""), space_identifier);
|
||
}
|
||
|
||
/* Identify address space identifier by integer flag as defined in
|
||
gdbtypes.h -- return the string version of the adress space name. */
|
||
|
||
const char *
|
||
address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
|
||
{
|
||
if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
|
||
return "code";
|
||
else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
|
||
return "data";
|
||
else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
|
||
&& gdbarch_address_class_type_flags_to_name_p (gdbarch))
|
||
return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
|
||
|
||
If STORAGE is non-NULL, create the new type instance there.
|
||
STORAGE must be in the same obstack as TYPE. */
|
||
|
||
static struct type *
|
||
make_qualified_type (struct type *type, int new_flags,
|
||
struct type *storage)
|
||
{
|
||
struct type *ntype;
|
||
|
||
ntype = type;
|
||
do
|
||
{
|
||
if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
|
||
return ntype;
|
||
ntype = TYPE_CHAIN (ntype);
|
||
}
|
||
while (ntype != type);
|
||
|
||
/* Create a new type instance. */
|
||
if (storage == NULL)
|
||
ntype = alloc_type_instance (type);
|
||
else
|
||
{
|
||
/* If STORAGE was provided, it had better be in the same objfile
|
||
as TYPE. Otherwise, we can't link it into TYPE's cv chain:
|
||
if one objfile is freed and the other kept, we'd have
|
||
dangling pointers. */
|
||
gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
|
||
|
||
ntype = storage;
|
||
TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
|
||
TYPE_CHAIN (ntype) = ntype;
|
||
}
|
||
|
||
/* Pointers or references to the original type are not relevant to
|
||
the new type. */
|
||
TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
|
||
TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
|
||
|
||
/* Chain the new qualified type to the old type. */
|
||
TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
|
||
TYPE_CHAIN (type) = ntype;
|
||
|
||
/* Now set the instance flags and return the new type. */
|
||
TYPE_INSTANCE_FLAGS (ntype) = new_flags;
|
||
|
||
/* Set length of new type to that of the original type. */
|
||
TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
|
||
|
||
return ntype;
|
||
}
|
||
|
||
/* Make an address-space-delimited variant of a type -- a type that
|
||
is identical to the one supplied except that it has an address
|
||
space attribute attached to it (such as "code" or "data").
|
||
|
||
The space attributes "code" and "data" are for Harvard
|
||
architectures. The address space attributes are for architectures
|
||
which have alternately sized pointers or pointers with alternate
|
||
representations. */
|
||
|
||
struct type *
|
||
make_type_with_address_space (struct type *type, int space_flag)
|
||
{
|
||
struct type *ntype;
|
||
int new_flags = ((TYPE_INSTANCE_FLAGS (type)
|
||
& ~(TYPE_INSTANCE_FLAG_CODE_SPACE
|
||
| TYPE_INSTANCE_FLAG_DATA_SPACE
|
||
| TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
|
||
| space_flag);
|
||
|
||
return make_qualified_type (type, new_flags, NULL);
|
||
}
|
||
|
||
/* Make a "c-v" variant of a type -- a type that is identical to the
|
||
one supplied except that it may have const or volatile attributes
|
||
CNST is a flag for setting the const attribute
|
||
VOLTL is a flag for setting the volatile attribute
|
||
TYPE is the base type whose variant we are creating.
|
||
|
||
If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
|
||
storage to hold the new qualified type; *TYPEPTR and TYPE must be
|
||
in the same objfile. Otherwise, allocate fresh memory for the new
|
||
type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
|
||
new type we construct. */
|
||
struct type *
|
||
make_cv_type (int cnst, int voltl,
|
||
struct type *type,
|
||
struct type **typeptr)
|
||
{
|
||
struct type *ntype; /* New type */
|
||
struct type *tmp_type = type; /* tmp type */
|
||
struct objfile *objfile;
|
||
|
||
int new_flags = (TYPE_INSTANCE_FLAGS (type)
|
||
& ~(TYPE_INSTANCE_FLAG_CONST | TYPE_INSTANCE_FLAG_VOLATILE));
|
||
|
||
if (cnst)
|
||
new_flags |= TYPE_INSTANCE_FLAG_CONST;
|
||
|
||
if (voltl)
|
||
new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
|
||
|
||
if (typeptr && *typeptr != NULL)
|
||
{
|
||
/* TYPE and *TYPEPTR must be in the same objfile. We can't have
|
||
a C-V variant chain that threads across objfiles: if one
|
||
objfile gets freed, then the other has a broken C-V chain.
|
||
|
||
This code used to try to copy over the main type from TYPE to
|
||
*TYPEPTR if they were in different objfiles, but that's
|
||
wrong, too: TYPE may have a field list or member function
|
||
lists, which refer to types of their own, etc. etc. The
|
||
whole shebang would need to be copied over recursively; you
|
||
can't have inter-objfile pointers. The only thing to do is
|
||
to leave stub types as stub types, and look them up afresh by
|
||
name each time you encounter them. */
|
||
gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
|
||
}
|
||
|
||
ntype = make_qualified_type (type, new_flags,
|
||
typeptr ? *typeptr : NULL);
|
||
|
||
if (typeptr != NULL)
|
||
*typeptr = ntype;
|
||
|
||
return ntype;
|
||
}
|
||
|
||
/* Replace the contents of ntype with the type *type. This changes the
|
||
contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
|
||
the changes are propogated to all types in the TYPE_CHAIN.
|
||
|
||
In order to build recursive types, it's inevitable that we'll need
|
||
to update types in place --- but this sort of indiscriminate
|
||
smashing is ugly, and needs to be replaced with something more
|
||
controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
|
||
clear if more steps are needed. */
|
||
void
|
||
replace_type (struct type *ntype, struct type *type)
|
||
{
|
||
struct type *chain;
|
||
|
||
/* These two types had better be in the same objfile. Otherwise,
|
||
the assignment of one type's main type structure to the other
|
||
will produce a type with references to objects (names; field
|
||
lists; etc.) allocated on an objfile other than its own. */
|
||
gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
|
||
|
||
*TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
|
||
|
||
/* The type length is not a part of the main type. Update it for
|
||
each type on the variant chain. */
|
||
chain = ntype;
|
||
do
|
||
{
|
||
/* Assert that this element of the chain has no address-class bits
|
||
set in its flags. Such type variants might have type lengths
|
||
which are supposed to be different from the non-address-class
|
||
variants. This assertion shouldn't ever be triggered because
|
||
symbol readers which do construct address-class variants don't
|
||
call replace_type(). */
|
||
gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
|
||
|
||
TYPE_LENGTH (chain) = TYPE_LENGTH (type);
|
||
chain = TYPE_CHAIN (chain);
|
||
}
|
||
while (ntype != chain);
|
||
|
||
/* Assert that the two types have equivalent instance qualifiers.
|
||
This should be true for at least all of our debug readers. */
|
||
gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
|
||
}
|
||
|
||
/* Implement direct support for MEMBER_TYPE in GNU C++.
|
||
May need to construct such a type if this is the first use.
|
||
The TYPE is the type of the member. The DOMAIN is the type
|
||
of the aggregate that the member belongs to. */
|
||
|
||
struct type *
|
||
lookup_memberptr_type (struct type *type, struct type *domain)
|
||
{
|
||
struct type *mtype;
|
||
|
||
mtype = alloc_type_copy (type);
|
||
smash_to_memberptr_type (mtype, domain, type);
|
||
return mtype;
|
||
}
|
||
|
||
/* Return a pointer-to-method type, for a method of type TO_TYPE. */
|
||
|
||
struct type *
|
||
lookup_methodptr_type (struct type *to_type)
|
||
{
|
||
struct type *mtype;
|
||
|
||
mtype = alloc_type_copy (to_type);
|
||
TYPE_TARGET_TYPE (mtype) = to_type;
|
||
TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
|
||
TYPE_LENGTH (mtype) = cplus_method_ptr_size (to_type);
|
||
TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
|
||
return mtype;
|
||
}
|
||
|
||
/* Allocate a stub method whose return type is TYPE. This apparently
|
||
happens for speed of symbol reading, since parsing out the
|
||
arguments to the method is cpu-intensive, the way we are doing it.
|
||
So, we will fill in arguments later. This always returns a fresh
|
||
type. */
|
||
|
||
struct type *
|
||
allocate_stub_method (struct type *type)
|
||
{
|
||
struct type *mtype;
|
||
|
||
mtype = alloc_type_copy (type);
|
||
TYPE_CODE (mtype) = TYPE_CODE_METHOD;
|
||
TYPE_LENGTH (mtype) = 1;
|
||
TYPE_STUB (mtype) = 1;
|
||
TYPE_TARGET_TYPE (mtype) = type;
|
||
/* _DOMAIN_TYPE (mtype) = unknown yet */
|
||
return mtype;
|
||
}
|
||
|
||
/* Create a range type using either a blank type supplied in
|
||
RESULT_TYPE, or creating a new type, inheriting the objfile from
|
||
INDEX_TYPE.
|
||
|
||
Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
|
||
to HIGH_BOUND, inclusive.
|
||
|
||
FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
|
||
sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
|
||
|
||
struct type *
|
||
create_range_type (struct type *result_type, struct type *index_type,
|
||
int low_bound, int high_bound)
|
||
{
|
||
if (result_type == NULL)
|
||
result_type = alloc_type_copy (index_type);
|
||
TYPE_CODE (result_type) = TYPE_CODE_RANGE;
|
||
TYPE_TARGET_TYPE (result_type) = index_type;
|
||
if (TYPE_STUB (index_type))
|
||
TYPE_TARGET_STUB (result_type) = 1;
|
||
else
|
||
TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
|
||
TYPE_NFIELDS (result_type) = 2;
|
||
TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type,
|
||
TYPE_NFIELDS (result_type)
|
||
* sizeof (struct field));
|
||
TYPE_LOW_BOUND (result_type) = low_bound;
|
||
TYPE_HIGH_BOUND (result_type) = high_bound;
|
||
|
||
if (low_bound >= 0)
|
||
TYPE_UNSIGNED (result_type) = 1;
|
||
|
||
return result_type;
|
||
}
|
||
|
||
/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
|
||
TYPE. Return 1 if type is a range type, 0 if it is discrete (and
|
||
bounds will fit in LONGEST), or -1 otherwise. */
|
||
|
||
int
|
||
get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
|
||
{
|
||
CHECK_TYPEDEF (type);
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_RANGE:
|
||
*lowp = TYPE_LOW_BOUND (type);
|
||
*highp = TYPE_HIGH_BOUND (type);
|
||
return 1;
|
||
case TYPE_CODE_ENUM:
|
||
if (TYPE_NFIELDS (type) > 0)
|
||
{
|
||
/* The enums may not be sorted by value, so search all
|
||
entries */
|
||
int i;
|
||
|
||
*lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
|
||
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
||
{
|
||
if (TYPE_FIELD_BITPOS (type, i) < *lowp)
|
||
*lowp = TYPE_FIELD_BITPOS (type, i);
|
||
if (TYPE_FIELD_BITPOS (type, i) > *highp)
|
||
*highp = TYPE_FIELD_BITPOS (type, i);
|
||
}
|
||
|
||
/* Set unsigned indicator if warranted. */
|
||
if (*lowp >= 0)
|
||
{
|
||
TYPE_UNSIGNED (type) = 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
*lowp = 0;
|
||
*highp = -1;
|
||
}
|
||
return 0;
|
||
case TYPE_CODE_BOOL:
|
||
*lowp = 0;
|
||
*highp = 1;
|
||
return 0;
|
||
case TYPE_CODE_INT:
|
||
if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
|
||
return -1;
|
||
if (!TYPE_UNSIGNED (type))
|
||
{
|
||
*lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
|
||
*highp = -*lowp - 1;
|
||
return 0;
|
||
}
|
||
/* ... fall through for unsigned ints ... */
|
||
case TYPE_CODE_CHAR:
|
||
*lowp = 0;
|
||
/* This round-about calculation is to avoid shifting by
|
||
TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
|
||
if TYPE_LENGTH (type) == sizeof (LONGEST). */
|
||
*highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
|
||
*highp = (*highp - 1) | *highp;
|
||
return 0;
|
||
default:
|
||
return -1;
|
||
}
|
||
}
|
||
|
||
/* Create an array type using either a blank type supplied in
|
||
RESULT_TYPE, or creating a new type, inheriting the objfile from
|
||
RANGE_TYPE.
|
||
|
||
Elements will be of type ELEMENT_TYPE, the indices will be of type
|
||
RANGE_TYPE.
|
||
|
||
FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
|
||
sure it is TYPE_CODE_UNDEF before we bash it into an array
|
||
type? */
|
||
|
||
struct type *
|
||
create_array_type (struct type *result_type,
|
||
struct type *element_type,
|
||
struct type *range_type)
|
||
{
|
||
LONGEST low_bound, high_bound;
|
||
|
||
if (result_type == NULL)
|
||
result_type = alloc_type_copy (range_type);
|
||
|
||
TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
|
||
TYPE_TARGET_TYPE (result_type) = element_type;
|
||
if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
|
||
low_bound = high_bound = 0;
|
||
CHECK_TYPEDEF (element_type);
|
||
/* Be careful when setting the array length. Ada arrays can be
|
||
empty arrays with the high_bound being smaller than the low_bound.
|
||
In such cases, the array length should be zero. */
|
||
if (high_bound < low_bound)
|
||
TYPE_LENGTH (result_type) = 0;
|
||
else
|
||
TYPE_LENGTH (result_type) =
|
||
TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
|
||
TYPE_NFIELDS (result_type) = 1;
|
||
TYPE_FIELDS (result_type) =
|
||
(struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
|
||
TYPE_INDEX_TYPE (result_type) = range_type;
|
||
TYPE_VPTR_FIELDNO (result_type) = -1;
|
||
|
||
/* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
|
||
if (TYPE_LENGTH (result_type) == 0)
|
||
TYPE_TARGET_STUB (result_type) = 1;
|
||
|
||
return result_type;
|
||
}
|
||
|
||
struct type *
|
||
lookup_array_range_type (struct type *element_type,
|
||
int low_bound, int high_bound)
|
||
{
|
||
struct gdbarch *gdbarch = get_type_arch (element_type);
|
||
struct type *index_type = builtin_type (gdbarch)->builtin_int;
|
||
struct type *range_type
|
||
= create_range_type (NULL, index_type, low_bound, high_bound);
|
||
return create_array_type (NULL, element_type, range_type);
|
||
}
|
||
|
||
/* Create a string type using either a blank type supplied in
|
||
RESULT_TYPE, or creating a new type. String types are similar
|
||
enough to array of char types that we can use create_array_type to
|
||
build the basic type and then bash it into a string type.
|
||
|
||
For fixed length strings, the range type contains 0 as the lower
|
||
bound and the length of the string minus one as the upper bound.
|
||
|
||
FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
|
||
sure it is TYPE_CODE_UNDEF before we bash it into a string
|
||
type? */
|
||
|
||
struct type *
|
||
create_string_type (struct type *result_type,
|
||
struct type *string_char_type,
|
||
struct type *range_type)
|
||
{
|
||
result_type = create_array_type (result_type,
|
||
string_char_type,
|
||
range_type);
|
||
TYPE_CODE (result_type) = TYPE_CODE_STRING;
|
||
return result_type;
|
||
}
|
||
|
||
struct type *
|
||
lookup_string_range_type (struct type *string_char_type,
|
||
int low_bound, int high_bound)
|
||
{
|
||
struct type *result_type;
|
||
result_type = lookup_array_range_type (string_char_type,
|
||
low_bound, high_bound);
|
||
TYPE_CODE (result_type) = TYPE_CODE_STRING;
|
||
return result_type;
|
||
}
|
||
|
||
struct type *
|
||
create_set_type (struct type *result_type, struct type *domain_type)
|
||
{
|
||
if (result_type == NULL)
|
||
result_type = alloc_type_copy (domain_type);
|
||
|
||
TYPE_CODE (result_type) = TYPE_CODE_SET;
|
||
TYPE_NFIELDS (result_type) = 1;
|
||
TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
|
||
|
||
if (!TYPE_STUB (domain_type))
|
||
{
|
||
LONGEST low_bound, high_bound, bit_length;
|
||
if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
|
||
low_bound = high_bound = 0;
|
||
bit_length = high_bound - low_bound + 1;
|
||
TYPE_LENGTH (result_type)
|
||
= (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
|
||
if (low_bound >= 0)
|
||
TYPE_UNSIGNED (result_type) = 1;
|
||
}
|
||
TYPE_FIELD_TYPE (result_type, 0) = domain_type;
|
||
|
||
return result_type;
|
||
}
|
||
|
||
/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
|
||
and any array types nested inside it. */
|
||
|
||
void
|
||
make_vector_type (struct type *array_type)
|
||
{
|
||
struct type *inner_array, *elt_type;
|
||
int flags;
|
||
|
||
/* Find the innermost array type, in case the array is
|
||
multi-dimensional. */
|
||
inner_array = array_type;
|
||
while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
|
||
inner_array = TYPE_TARGET_TYPE (inner_array);
|
||
|
||
elt_type = TYPE_TARGET_TYPE (inner_array);
|
||
if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
|
||
{
|
||
flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
|
||
elt_type = make_qualified_type (elt_type, flags, NULL);
|
||
TYPE_TARGET_TYPE (inner_array) = elt_type;
|
||
}
|
||
|
||
TYPE_VECTOR (array_type) = 1;
|
||
}
|
||
|
||
struct type *
|
||
init_vector_type (struct type *elt_type, int n)
|
||
{
|
||
struct type *array_type;
|
||
array_type = lookup_array_range_type (elt_type, 0, n - 1);
|
||
make_vector_type (array_type);
|
||
return array_type;
|
||
}
|
||
|
||
/* Smash TYPE to be a type of pointers to members of DOMAIN with type
|
||
TO_TYPE. A member pointer is a wierd thing -- it amounts to a
|
||
typed offset into a struct, e.g. "an int at offset 8". A MEMBER
|
||
TYPE doesn't include the offset (that's the value of the MEMBER
|
||
itself), but does include the structure type into which it points
|
||
(for some reason).
|
||
|
||
When "smashing" the type, we preserve the objfile that the old type
|
||
pointed to, since we aren't changing where the type is actually
|
||
allocated. */
|
||
|
||
void
|
||
smash_to_memberptr_type (struct type *type, struct type *domain,
|
||
struct type *to_type)
|
||
{
|
||
smash_type (type);
|
||
TYPE_TARGET_TYPE (type) = to_type;
|
||
TYPE_DOMAIN_TYPE (type) = domain;
|
||
/* Assume that a data member pointer is the same size as a normal
|
||
pointer. */
|
||
TYPE_LENGTH (type)
|
||
= gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
|
||
TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
|
||
}
|
||
|
||
/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
|
||
METHOD just means `function that gets an extra "this" argument'.
|
||
|
||
When "smashing" the type, we preserve the objfile that the old type
|
||
pointed to, since we aren't changing where the type is actually
|
||
allocated. */
|
||
|
||
void
|
||
smash_to_method_type (struct type *type, struct type *domain,
|
||
struct type *to_type, struct field *args,
|
||
int nargs, int varargs)
|
||
{
|
||
smash_type (type);
|
||
TYPE_TARGET_TYPE (type) = to_type;
|
||
TYPE_DOMAIN_TYPE (type) = domain;
|
||
TYPE_FIELDS (type) = args;
|
||
TYPE_NFIELDS (type) = nargs;
|
||
if (varargs)
|
||
TYPE_VARARGS (type) = 1;
|
||
TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
|
||
TYPE_CODE (type) = TYPE_CODE_METHOD;
|
||
}
|
||
|
||
/* Return a typename for a struct/union/enum type without "struct ",
|
||
"union ", or "enum ". If the type has a NULL name, return NULL. */
|
||
|
||
char *
|
||
type_name_no_tag (const struct type *type)
|
||
{
|
||
if (TYPE_TAG_NAME (type) != NULL)
|
||
return TYPE_TAG_NAME (type);
|
||
|
||
/* Is there code which expects this to return the name if there is
|
||
no tag name? My guess is that this is mainly used for C++ in
|
||
cases where the two will always be the same. */
|
||
return TYPE_NAME (type);
|
||
}
|
||
|
||
/* Lookup a typedef or primitive type named NAME, visible in lexical
|
||
block BLOCK. If NOERR is nonzero, return zero if NAME is not
|
||
suitably defined. */
|
||
|
||
struct type *
|
||
lookup_typename (const struct language_defn *language,
|
||
struct gdbarch *gdbarch, char *name,
|
||
struct block *block, int noerr)
|
||
{
|
||
struct symbol *sym;
|
||
struct type *tmp;
|
||
|
||
sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
|
||
if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
|
||
{
|
||
tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
|
||
if (tmp)
|
||
{
|
||
return tmp;
|
||
}
|
||
else if (!tmp && noerr)
|
||
{
|
||
return NULL;
|
||
}
|
||
else
|
||
{
|
||
error (_("No type named %s."), name);
|
||
}
|
||
}
|
||
return (SYMBOL_TYPE (sym));
|
||
}
|
||
|
||
struct type *
|
||
lookup_unsigned_typename (const struct language_defn *language,
|
||
struct gdbarch *gdbarch, char *name)
|
||
{
|
||
char *uns = alloca (strlen (name) + 10);
|
||
|
||
strcpy (uns, "unsigned ");
|
||
strcpy (uns + 9, name);
|
||
return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
|
||
}
|
||
|
||
struct type *
|
||
lookup_signed_typename (const struct language_defn *language,
|
||
struct gdbarch *gdbarch, char *name)
|
||
{
|
||
struct type *t;
|
||
char *uns = alloca (strlen (name) + 8);
|
||
|
||
strcpy (uns, "signed ");
|
||
strcpy (uns + 7, name);
|
||
t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
|
||
/* If we don't find "signed FOO" just try again with plain "FOO". */
|
||
if (t != NULL)
|
||
return t;
|
||
return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
|
||
}
|
||
|
||
/* Lookup a structure type named "struct NAME",
|
||
visible in lexical block BLOCK. */
|
||
|
||
struct type *
|
||
lookup_struct (char *name, struct block *block)
|
||
{
|
||
struct symbol *sym;
|
||
|
||
sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
|
||
|
||
if (sym == NULL)
|
||
{
|
||
error (_("No struct type named %s."), name);
|
||
}
|
||
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
|
||
{
|
||
error (_("This context has class, union or enum %s, not a struct."),
|
||
name);
|
||
}
|
||
return (SYMBOL_TYPE (sym));
|
||
}
|
||
|
||
/* Lookup a union type named "union NAME",
|
||
visible in lexical block BLOCK. */
|
||
|
||
struct type *
|
||
lookup_union (char *name, struct block *block)
|
||
{
|
||
struct symbol *sym;
|
||
struct type *t;
|
||
|
||
sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
|
||
|
||
if (sym == NULL)
|
||
error (_("No union type named %s."), name);
|
||
|
||
t = SYMBOL_TYPE (sym);
|
||
|
||
if (TYPE_CODE (t) == TYPE_CODE_UNION)
|
||
return t;
|
||
|
||
/* C++ unions may come out with TYPE_CODE_CLASS, but we look at
|
||
* a further "declared_type" field to discover it is really a union.
|
||
*/
|
||
if (HAVE_CPLUS_STRUCT (t))
|
||
if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
|
||
return t;
|
||
|
||
/* If we get here, it's not a union. */
|
||
error (_("This context has class, struct or enum %s, not a union."),
|
||
name);
|
||
}
|
||
|
||
|
||
/* Lookup an enum type named "enum NAME",
|
||
visible in lexical block BLOCK. */
|
||
|
||
struct type *
|
||
lookup_enum (char *name, struct block *block)
|
||
{
|
||
struct symbol *sym;
|
||
|
||
sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
|
||
if (sym == NULL)
|
||
{
|
||
error (_("No enum type named %s."), name);
|
||
}
|
||
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
|
||
{
|
||
error (_("This context has class, struct or union %s, not an enum."),
|
||
name);
|
||
}
|
||
return (SYMBOL_TYPE (sym));
|
||
}
|
||
|
||
/* Lookup a template type named "template NAME<TYPE>",
|
||
visible in lexical block BLOCK. */
|
||
|
||
struct type *
|
||
lookup_template_type (char *name, struct type *type,
|
||
struct block *block)
|
||
{
|
||
struct symbol *sym;
|
||
char *nam = (char *)
|
||
alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
|
||
strcpy (nam, name);
|
||
strcat (nam, "<");
|
||
strcat (nam, TYPE_NAME (type));
|
||
strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
|
||
|
||
sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
|
||
|
||
if (sym == NULL)
|
||
{
|
||
error (_("No template type named %s."), name);
|
||
}
|
||
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
|
||
{
|
||
error (_("This context has class, union or enum %s, not a struct."),
|
||
name);
|
||
}
|
||
return (SYMBOL_TYPE (sym));
|
||
}
|
||
|
||
/* Given a type TYPE, lookup the type of the component of type named
|
||
NAME.
|
||
|
||
TYPE can be either a struct or union, or a pointer or reference to
|
||
a struct or union. If it is a pointer or reference, its target
|
||
type is automatically used. Thus '.' and '->' are interchangable,
|
||
as specified for the definitions of the expression element types
|
||
STRUCTOP_STRUCT and STRUCTOP_PTR.
|
||
|
||
If NOERR is nonzero, return zero if NAME is not suitably defined.
|
||
If NAME is the name of a baseclass type, return that type. */
|
||
|
||
struct type *
|
||
lookup_struct_elt_type (struct type *type, char *name, int noerr)
|
||
{
|
||
int i;
|
||
|
||
for (;;)
|
||
{
|
||
CHECK_TYPEDEF (type);
|
||
if (TYPE_CODE (type) != TYPE_CODE_PTR
|
||
&& TYPE_CODE (type) != TYPE_CODE_REF)
|
||
break;
|
||
type = TYPE_TARGET_TYPE (type);
|
||
}
|
||
|
||
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (type) != TYPE_CODE_UNION)
|
||
{
|
||
target_terminal_ours ();
|
||
gdb_flush (gdb_stdout);
|
||
fprintf_unfiltered (gdb_stderr, "Type ");
|
||
type_print (type, "", gdb_stderr, -1);
|
||
error (_(" is not a structure or union type."));
|
||
}
|
||
|
||
#if 0
|
||
/* FIXME: This change put in by Michael seems incorrect for the case
|
||
where the structure tag name is the same as the member name.
|
||
I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
|
||
foo; } bell;" Disabled by fnf. */
|
||
{
|
||
char *typename;
|
||
|
||
typename = type_name_no_tag (type);
|
||
if (typename != NULL && strcmp (typename, name) == 0)
|
||
return type;
|
||
}
|
||
#endif
|
||
|
||
for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
|
||
{
|
||
char *t_field_name = TYPE_FIELD_NAME (type, i);
|
||
|
||
if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
|
||
{
|
||
return TYPE_FIELD_TYPE (type, i);
|
||
}
|
||
}
|
||
|
||
/* OK, it's not in this class. Recursively check the baseclasses. */
|
||
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
|
||
{
|
||
struct type *t;
|
||
|
||
t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
|
||
if (t != NULL)
|
||
{
|
||
return t;
|
||
}
|
||
}
|
||
|
||
if (noerr)
|
||
{
|
||
return NULL;
|
||
}
|
||
|
||
target_terminal_ours ();
|
||
gdb_flush (gdb_stdout);
|
||
fprintf_unfiltered (gdb_stderr, "Type ");
|
||
type_print (type, "", gdb_stderr, -1);
|
||
fprintf_unfiltered (gdb_stderr, " has no component named ");
|
||
fputs_filtered (name, gdb_stderr);
|
||
error (("."));
|
||
return (struct type *) -1; /* For lint */
|
||
}
|
||
|
||
/* Lookup the vptr basetype/fieldno values for TYPE.
|
||
If found store vptr_basetype in *BASETYPEP if non-NULL, and return
|
||
vptr_fieldno. Also, if found and basetype is from the same objfile,
|
||
cache the results.
|
||
If not found, return -1 and ignore BASETYPEP.
|
||
Callers should be aware that in some cases (for example,
|
||
the type or one of its baseclasses is a stub type and we are
|
||
debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
|
||
this function will not be able to find the
|
||
virtual function table pointer, and vptr_fieldno will remain -1 and
|
||
vptr_basetype will remain NULL or incomplete. */
|
||
|
||
int
|
||
get_vptr_fieldno (struct type *type, struct type **basetypep)
|
||
{
|
||
CHECK_TYPEDEF (type);
|
||
|
||
if (TYPE_VPTR_FIELDNO (type) < 0)
|
||
{
|
||
int i;
|
||
|
||
/* We must start at zero in case the first (and only) baseclass
|
||
is virtual (and hence we cannot share the table pointer). */
|
||
for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
|
||
{
|
||
struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
|
||
int fieldno;
|
||
struct type *basetype;
|
||
|
||
fieldno = get_vptr_fieldno (baseclass, &basetype);
|
||
if (fieldno >= 0)
|
||
{
|
||
/* If the type comes from a different objfile we can't cache
|
||
it, it may have a different lifetime. PR 2384 */
|
||
if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
|
||
{
|
||
TYPE_VPTR_FIELDNO (type) = fieldno;
|
||
TYPE_VPTR_BASETYPE (type) = basetype;
|
||
}
|
||
if (basetypep)
|
||
*basetypep = basetype;
|
||
return fieldno;
|
||
}
|
||
}
|
||
|
||
/* Not found. */
|
||
return -1;
|
||
}
|
||
else
|
||
{
|
||
if (basetypep)
|
||
*basetypep = TYPE_VPTR_BASETYPE (type);
|
||
return TYPE_VPTR_FIELDNO (type);
|
||
}
|
||
}
|
||
|
||
static void
|
||
stub_noname_complaint (void)
|
||
{
|
||
complaint (&symfile_complaints, _("stub type has NULL name"));
|
||
}
|
||
|
||
/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
|
||
|
||
If this is a stubbed struct (i.e. declared as struct foo *), see if
|
||
we can find a full definition in some other file. If so, copy this
|
||
definition, so we can use it in future. There used to be a comment
|
||
(but not any code) that if we don't find a full definition, we'd
|
||
set a flag so we don't spend time in the future checking the same
|
||
type. That would be a mistake, though--we might load in more
|
||
symbols which contain a full definition for the type.
|
||
|
||
This used to be coded as a macro, but I don't think it is called
|
||
often enough to merit such treatment. */
|
||
|
||
/* Find the real type of TYPE. This function returns the real type,
|
||
after removing all layers of typedefs and completing opaque or stub
|
||
types. Completion changes the TYPE argument, but stripping of
|
||
typedefs does not. */
|
||
|
||
struct type *
|
||
check_typedef (struct type *type)
|
||
{
|
||
struct type *orig_type = type;
|
||
int is_const, is_volatile;
|
||
|
||
gdb_assert (type);
|
||
|
||
while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
|
||
{
|
||
if (!TYPE_TARGET_TYPE (type))
|
||
{
|
||
char *name;
|
||
struct symbol *sym;
|
||
|
||
/* It is dangerous to call lookup_symbol if we are currently
|
||
reading a symtab. Infinite recursion is one danger. */
|
||
if (currently_reading_symtab)
|
||
return type;
|
||
|
||
name = type_name_no_tag (type);
|
||
/* FIXME: shouldn't we separately check the TYPE_NAME and
|
||
the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
|
||
VAR_DOMAIN as appropriate? (this code was written before
|
||
TYPE_NAME and TYPE_TAG_NAME were separate). */
|
||
if (name == NULL)
|
||
{
|
||
stub_noname_complaint ();
|
||
return type;
|
||
}
|
||
sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
|
||
if (sym)
|
||
TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
|
||
else /* TYPE_CODE_UNDEF */
|
||
TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
|
||
}
|
||
type = TYPE_TARGET_TYPE (type);
|
||
}
|
||
|
||
is_const = TYPE_CONST (type);
|
||
is_volatile = TYPE_VOLATILE (type);
|
||
|
||
/* If this is a struct/class/union with no fields, then check
|
||
whether a full definition exists somewhere else. This is for
|
||
systems where a type definition with no fields is issued for such
|
||
types, instead of identifying them as stub types in the first
|
||
place. */
|
||
|
||
if (TYPE_IS_OPAQUE (type)
|
||
&& opaque_type_resolution
|
||
&& !currently_reading_symtab)
|
||
{
|
||
char *name = type_name_no_tag (type);
|
||
struct type *newtype;
|
||
if (name == NULL)
|
||
{
|
||
stub_noname_complaint ();
|
||
return type;
|
||
}
|
||
newtype = lookup_transparent_type (name);
|
||
|
||
if (newtype)
|
||
{
|
||
/* If the resolved type and the stub are in the same
|
||
objfile, then replace the stub type with the real deal.
|
||
But if they're in separate objfiles, leave the stub
|
||
alone; we'll just look up the transparent type every time
|
||
we call check_typedef. We can't create pointers between
|
||
types allocated to different objfiles, since they may
|
||
have different lifetimes. Trying to copy NEWTYPE over to
|
||
TYPE's objfile is pointless, too, since you'll have to
|
||
move over any other types NEWTYPE refers to, which could
|
||
be an unbounded amount of stuff. */
|
||
if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
|
||
make_cv_type (is_const, is_volatile, newtype, &type);
|
||
else
|
||
type = newtype;
|
||
}
|
||
}
|
||
/* Otherwise, rely on the stub flag being set for opaque/stubbed
|
||
types. */
|
||
else if (TYPE_STUB (type) && !currently_reading_symtab)
|
||
{
|
||
char *name = type_name_no_tag (type);
|
||
/* FIXME: shouldn't we separately check the TYPE_NAME and the
|
||
TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
|
||
as appropriate? (this code was written before TYPE_NAME and
|
||
TYPE_TAG_NAME were separate). */
|
||
struct symbol *sym;
|
||
if (name == NULL)
|
||
{
|
||
stub_noname_complaint ();
|
||
return type;
|
||
}
|
||
sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
|
||
if (sym)
|
||
{
|
||
/* Same as above for opaque types, we can replace the stub
|
||
with the complete type only if they are int the same
|
||
objfile. */
|
||
if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
|
||
make_cv_type (is_const, is_volatile,
|
||
SYMBOL_TYPE (sym), &type);
|
||
else
|
||
type = SYMBOL_TYPE (sym);
|
||
}
|
||
}
|
||
|
||
if (TYPE_TARGET_STUB (type))
|
||
{
|
||
struct type *range_type;
|
||
struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
|
||
|
||
if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
|
||
{
|
||
/* Empty. */
|
||
}
|
||
else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
|
||
&& TYPE_NFIELDS (type) == 1
|
||
&& (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
|
||
== TYPE_CODE_RANGE))
|
||
{
|
||
/* Now recompute the length of the array type, based on its
|
||
number of elements and the target type's length.
|
||
Watch out for Ada null Ada arrays where the high bound
|
||
is smaller than the low bound. */
|
||
const int low_bound = TYPE_LOW_BOUND (range_type);
|
||
const int high_bound = TYPE_HIGH_BOUND (range_type);
|
||
int nb_elements;
|
||
|
||
if (high_bound < low_bound)
|
||
nb_elements = 0;
|
||
else
|
||
nb_elements = high_bound - low_bound + 1;
|
||
|
||
TYPE_LENGTH (type) = nb_elements * TYPE_LENGTH (target_type);
|
||
TYPE_TARGET_STUB (type) = 0;
|
||
}
|
||
else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
|
||
{
|
||
TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
|
||
TYPE_TARGET_STUB (type) = 0;
|
||
}
|
||
}
|
||
/* Cache TYPE_LENGTH for future use. */
|
||
TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
|
||
return type;
|
||
}
|
||
|
||
/* Parse a type expression in the string [P..P+LENGTH). If an error
|
||
occurs, silently return a void type. */
|
||
|
||
static struct type *
|
||
safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
|
||
{
|
||
struct ui_file *saved_gdb_stderr;
|
||
struct type *type;
|
||
|
||
/* Suppress error messages. */
|
||
saved_gdb_stderr = gdb_stderr;
|
||
gdb_stderr = ui_file_new ();
|
||
|
||
/* Call parse_and_eval_type() without fear of longjmp()s. */
|
||
if (!gdb_parse_and_eval_type (p, length, &type))
|
||
type = builtin_type (gdbarch)->builtin_void;
|
||
|
||
/* Stop suppressing error messages. */
|
||
ui_file_delete (gdb_stderr);
|
||
gdb_stderr = saved_gdb_stderr;
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Ugly hack to convert method stubs into method types.
|
||
|
||
He ain't kiddin'. This demangles the name of the method into a
|
||
string including argument types, parses out each argument type,
|
||
generates a string casting a zero to that type, evaluates the
|
||
string, and stuffs the resulting type into an argtype vector!!!
|
||
Then it knows the type of the whole function (including argument
|
||
types for overloading), which info used to be in the stab's but was
|
||
removed to hack back the space required for them. */
|
||
|
||
static void
|
||
check_stub_method (struct type *type, int method_id, int signature_id)
|
||
{
|
||
struct gdbarch *gdbarch = get_type_arch (type);
|
||
struct fn_field *f;
|
||
char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
|
||
char *demangled_name = cplus_demangle (mangled_name,
|
||
DMGL_PARAMS | DMGL_ANSI);
|
||
char *argtypetext, *p;
|
||
int depth = 0, argcount = 1;
|
||
struct field *argtypes;
|
||
struct type *mtype;
|
||
|
||
/* Make sure we got back a function string that we can use. */
|
||
if (demangled_name)
|
||
p = strchr (demangled_name, '(');
|
||
else
|
||
p = NULL;
|
||
|
||
if (demangled_name == NULL || p == NULL)
|
||
error (_("Internal: Cannot demangle mangled name `%s'."),
|
||
mangled_name);
|
||
|
||
/* Now, read in the parameters that define this type. */
|
||
p += 1;
|
||
argtypetext = p;
|
||
while (*p)
|
||
{
|
||
if (*p == '(' || *p == '<')
|
||
{
|
||
depth += 1;
|
||
}
|
||
else if (*p == ')' || *p == '>')
|
||
{
|
||
depth -= 1;
|
||
}
|
||
else if (*p == ',' && depth == 0)
|
||
{
|
||
argcount += 1;
|
||
}
|
||
|
||
p += 1;
|
||
}
|
||
|
||
/* If we read one argument and it was ``void'', don't count it. */
|
||
if (strncmp (argtypetext, "(void)", 6) == 0)
|
||
argcount -= 1;
|
||
|
||
/* We need one extra slot, for the THIS pointer. */
|
||
|
||
argtypes = (struct field *)
|
||
TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
|
||
p = argtypetext;
|
||
|
||
/* Add THIS pointer for non-static methods. */
|
||
f = TYPE_FN_FIELDLIST1 (type, method_id);
|
||
if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
|
||
argcount = 0;
|
||
else
|
||
{
|
||
argtypes[0].type = lookup_pointer_type (type);
|
||
argcount = 1;
|
||
}
|
||
|
||
if (*p != ')') /* () means no args, skip while */
|
||
{
|
||
depth = 0;
|
||
while (*p)
|
||
{
|
||
if (depth <= 0 && (*p == ',' || *p == ')'))
|
||
{
|
||
/* Avoid parsing of ellipsis, they will be handled below.
|
||
Also avoid ``void'' as above. */
|
||
if (strncmp (argtypetext, "...", p - argtypetext) != 0
|
||
&& strncmp (argtypetext, "void", p - argtypetext) != 0)
|
||
{
|
||
argtypes[argcount].type =
|
||
safe_parse_type (gdbarch, argtypetext, p - argtypetext);
|
||
argcount += 1;
|
||
}
|
||
argtypetext = p + 1;
|
||
}
|
||
|
||
if (*p == '(' || *p == '<')
|
||
{
|
||
depth += 1;
|
||
}
|
||
else if (*p == ')' || *p == '>')
|
||
{
|
||
depth -= 1;
|
||
}
|
||
|
||
p += 1;
|
||
}
|
||
}
|
||
|
||
TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
|
||
|
||
/* Now update the old "stub" type into a real type. */
|
||
mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
|
||
TYPE_DOMAIN_TYPE (mtype) = type;
|
||
TYPE_FIELDS (mtype) = argtypes;
|
||
TYPE_NFIELDS (mtype) = argcount;
|
||
TYPE_STUB (mtype) = 0;
|
||
TYPE_FN_FIELD_STUB (f, signature_id) = 0;
|
||
if (p[-2] == '.')
|
||
TYPE_VARARGS (mtype) = 1;
|
||
|
||
xfree (demangled_name);
|
||
}
|
||
|
||
/* This is the external interface to check_stub_method, above. This
|
||
function unstubs all of the signatures for TYPE's METHOD_ID method
|
||
name. After calling this function TYPE_FN_FIELD_STUB will be
|
||
cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
|
||
correct.
|
||
|
||
This function unfortunately can not die until stabs do. */
|
||
|
||
void
|
||
check_stub_method_group (struct type *type, int method_id)
|
||
{
|
||
int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
|
||
struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
|
||
int j, found_stub = 0;
|
||
|
||
for (j = 0; j < len; j++)
|
||
if (TYPE_FN_FIELD_STUB (f, j))
|
||
{
|
||
found_stub = 1;
|
||
check_stub_method (type, method_id, j);
|
||
}
|
||
|
||
/* GNU v3 methods with incorrect names were corrected when we read
|
||
in type information, because it was cheaper to do it then. The
|
||
only GNU v2 methods with incorrect method names are operators and
|
||
destructors; destructors were also corrected when we read in type
|
||
information.
|
||
|
||
Therefore the only thing we need to handle here are v2 operator
|
||
names. */
|
||
if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
|
||
{
|
||
int ret;
|
||
char dem_opname[256];
|
||
|
||
ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
|
||
method_id),
|
||
dem_opname, DMGL_ANSI);
|
||
if (!ret)
|
||
ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
|
||
method_id),
|
||
dem_opname, 0);
|
||
if (ret)
|
||
TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
|
||
}
|
||
}
|
||
|
||
const struct cplus_struct_type cplus_struct_default;
|
||
|
||
void
|
||
allocate_cplus_struct_type (struct type *type)
|
||
{
|
||
if (!HAVE_CPLUS_STRUCT (type))
|
||
{
|
||
TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
|
||
TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
|
||
*(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
|
||
}
|
||
}
|
||
|
||
/* Helper function to initialize the standard scalar types.
|
||
|
||
If NAME is non-NULL, then we make a copy of the string pointed
|
||
to by name in the objfile_obstack for that objfile, and initialize
|
||
the type name to that copy. There are places (mipsread.c in particular),
|
||
where init_type is called with a NULL value for NAME). */
|
||
|
||
struct type *
|
||
init_type (enum type_code code, int length, int flags,
|
||
char *name, struct objfile *objfile)
|
||
{
|
||
struct type *type;
|
||
|
||
type = alloc_type (objfile);
|
||
TYPE_CODE (type) = code;
|
||
TYPE_LENGTH (type) = length;
|
||
|
||
gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
|
||
if (flags & TYPE_FLAG_UNSIGNED)
|
||
TYPE_UNSIGNED (type) = 1;
|
||
if (flags & TYPE_FLAG_NOSIGN)
|
||
TYPE_NOSIGN (type) = 1;
|
||
if (flags & TYPE_FLAG_STUB)
|
||
TYPE_STUB (type) = 1;
|
||
if (flags & TYPE_FLAG_TARGET_STUB)
|
||
TYPE_TARGET_STUB (type) = 1;
|
||
if (flags & TYPE_FLAG_STATIC)
|
||
TYPE_STATIC (type) = 1;
|
||
if (flags & TYPE_FLAG_PROTOTYPED)
|
||
TYPE_PROTOTYPED (type) = 1;
|
||
if (flags & TYPE_FLAG_INCOMPLETE)
|
||
TYPE_INCOMPLETE (type) = 1;
|
||
if (flags & TYPE_FLAG_VARARGS)
|
||
TYPE_VARARGS (type) = 1;
|
||
if (flags & TYPE_FLAG_VECTOR)
|
||
TYPE_VECTOR (type) = 1;
|
||
if (flags & TYPE_FLAG_STUB_SUPPORTED)
|
||
TYPE_STUB_SUPPORTED (type) = 1;
|
||
if (flags & TYPE_FLAG_NOTTEXT)
|
||
TYPE_NOTTEXT (type) = 1;
|
||
if (flags & TYPE_FLAG_FIXED_INSTANCE)
|
||
TYPE_FIXED_INSTANCE (type) = 1;
|
||
|
||
if (name)
|
||
TYPE_NAME (type) = obsavestring (name, strlen (name),
|
||
&objfile->objfile_obstack);
|
||
|
||
/* C++ fancies. */
|
||
|
||
if (name && strcmp (name, "char") == 0)
|
||
TYPE_NOSIGN (type) = 1;
|
||
|
||
if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
|
||
|| code == TYPE_CODE_NAMESPACE)
|
||
{
|
||
INIT_CPLUS_SPECIFIC (type);
|
||
}
|
||
return type;
|
||
}
|
||
|
||
int
|
||
can_dereference (struct type *t)
|
||
{
|
||
/* FIXME: Should we return true for references as well as
|
||
pointers? */
|
||
CHECK_TYPEDEF (t);
|
||
return
|
||
(t != NULL
|
||
&& TYPE_CODE (t) == TYPE_CODE_PTR
|
||
&& TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
|
||
}
|
||
|
||
int
|
||
is_integral_type (struct type *t)
|
||
{
|
||
CHECK_TYPEDEF (t);
|
||
return
|
||
((t != NULL)
|
||
&& ((TYPE_CODE (t) == TYPE_CODE_INT)
|
||
|| (TYPE_CODE (t) == TYPE_CODE_ENUM)
|
||
|| (TYPE_CODE (t) == TYPE_CODE_FLAGS)
|
||
|| (TYPE_CODE (t) == TYPE_CODE_CHAR)
|
||
|| (TYPE_CODE (t) == TYPE_CODE_RANGE)
|
||
|| (TYPE_CODE (t) == TYPE_CODE_BOOL)));
|
||
}
|
||
|
||
/* Check whether BASE is an ancestor or base class or DCLASS
|
||
Return 1 if so, and 0 if not.
|
||
Note: callers may want to check for identity of the types before
|
||
calling this function -- identical types are considered to satisfy
|
||
the ancestor relationship even if they're identical. */
|
||
|
||
int
|
||
is_ancestor (struct type *base, struct type *dclass)
|
||
{
|
||
int i;
|
||
|
||
CHECK_TYPEDEF (base);
|
||
CHECK_TYPEDEF (dclass);
|
||
|
||
if (base == dclass)
|
||
return 1;
|
||
if (TYPE_NAME (base) && TYPE_NAME (dclass)
|
||
&& !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
|
||
return 1;
|
||
|
||
for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
|
||
if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
|
||
/* Functions for overload resolution begin here */
|
||
|
||
/* Compare two badness vectors A and B and return the result.
|
||
0 => A and B are identical
|
||
1 => A and B are incomparable
|
||
2 => A is better than B
|
||
3 => A is worse than B */
|
||
|
||
int
|
||
compare_badness (struct badness_vector *a, struct badness_vector *b)
|
||
{
|
||
int i;
|
||
int tmp;
|
||
short found_pos = 0; /* any positives in c? */
|
||
short found_neg = 0; /* any negatives in c? */
|
||
|
||
/* differing lengths => incomparable */
|
||
if (a->length != b->length)
|
||
return 1;
|
||
|
||
/* Subtract b from a */
|
||
for (i = 0; i < a->length; i++)
|
||
{
|
||
tmp = a->rank[i] - b->rank[i];
|
||
if (tmp > 0)
|
||
found_pos = 1;
|
||
else if (tmp < 0)
|
||
found_neg = 1;
|
||
}
|
||
|
||
if (found_pos)
|
||
{
|
||
if (found_neg)
|
||
return 1; /* incomparable */
|
||
else
|
||
return 3; /* A > B */
|
||
}
|
||
else
|
||
/* no positives */
|
||
{
|
||
if (found_neg)
|
||
return 2; /* A < B */
|
||
else
|
||
return 0; /* A == B */
|
||
}
|
||
}
|
||
|
||
/* Rank a function by comparing its parameter types (PARMS, length
|
||
NPARMS), to the types of an argument list (ARGS, length NARGS).
|
||
Return a pointer to a badness vector. This has NARGS + 1
|
||
entries. */
|
||
|
||
struct badness_vector *
|
||
rank_function (struct type **parms, int nparms,
|
||
struct type **args, int nargs)
|
||
{
|
||
int i;
|
||
struct badness_vector *bv;
|
||
int min_len = nparms < nargs ? nparms : nargs;
|
||
|
||
bv = xmalloc (sizeof (struct badness_vector));
|
||
bv->length = nargs + 1; /* add 1 for the length-match rank */
|
||
bv->rank = xmalloc ((nargs + 1) * sizeof (int));
|
||
|
||
/* First compare the lengths of the supplied lists.
|
||
If there is a mismatch, set it to a high value. */
|
||
|
||
/* pai/1997-06-03 FIXME: when we have debug info about default
|
||
arguments and ellipsis parameter lists, we should consider those
|
||
and rank the length-match more finely. */
|
||
|
||
LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
|
||
|
||
/* Now rank all the parameters of the candidate function */
|
||
for (i = 1; i <= min_len; i++)
|
||
bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
|
||
|
||
/* If more arguments than parameters, add dummy entries */
|
||
for (i = min_len + 1; i <= nargs; i++)
|
||
bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
|
||
|
||
return bv;
|
||
}
|
||
|
||
/* Compare the names of two integer types, assuming that any sign
|
||
qualifiers have been checked already. We do it this way because
|
||
there may be an "int" in the name of one of the types. */
|
||
|
||
static int
|
||
integer_types_same_name_p (const char *first, const char *second)
|
||
{
|
||
int first_p, second_p;
|
||
|
||
/* If both are shorts, return 1; if neither is a short, keep
|
||
checking. */
|
||
first_p = (strstr (first, "short") != NULL);
|
||
second_p = (strstr (second, "short") != NULL);
|
||
if (first_p && second_p)
|
||
return 1;
|
||
if (first_p || second_p)
|
||
return 0;
|
||
|
||
/* Likewise for long. */
|
||
first_p = (strstr (first, "long") != NULL);
|
||
second_p = (strstr (second, "long") != NULL);
|
||
if (first_p && second_p)
|
||
return 1;
|
||
if (first_p || second_p)
|
||
return 0;
|
||
|
||
/* Likewise for char. */
|
||
first_p = (strstr (first, "char") != NULL);
|
||
second_p = (strstr (second, "char") != NULL);
|
||
if (first_p && second_p)
|
||
return 1;
|
||
if (first_p || second_p)
|
||
return 0;
|
||
|
||
/* They must both be ints. */
|
||
return 1;
|
||
}
|
||
|
||
/* Compare one type (PARM) for compatibility with another (ARG).
|
||
* PARM is intended to be the parameter type of a function; and
|
||
* ARG is the supplied argument's type. This function tests if
|
||
* the latter can be converted to the former.
|
||
*
|
||
* Return 0 if they are identical types;
|
||
* Otherwise, return an integer which corresponds to how compatible
|
||
* PARM is to ARG. The higher the return value, the worse the match.
|
||
* Generally the "bad" conversions are all uniformly assigned a 100. */
|
||
|
||
int
|
||
rank_one_type (struct type *parm, struct type *arg)
|
||
{
|
||
/* Identical type pointers. */
|
||
/* However, this still doesn't catch all cases of same type for arg
|
||
and param. The reason is that builtin types are different from
|
||
the same ones constructed from the object. */
|
||
if (parm == arg)
|
||
return 0;
|
||
|
||
/* Resolve typedefs */
|
||
if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
|
||
parm = check_typedef (parm);
|
||
if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
|
||
arg = check_typedef (arg);
|
||
|
||
/*
|
||
Well, damnit, if the names are exactly the same, I'll say they
|
||
are exactly the same. This happens when we generate method
|
||
stubs. The types won't point to the same address, but they
|
||
really are the same.
|
||
*/
|
||
|
||
if (TYPE_NAME (parm) && TYPE_NAME (arg)
|
||
&& !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
|
||
return 0;
|
||
|
||
/* Check if identical after resolving typedefs. */
|
||
if (parm == arg)
|
||
return 0;
|
||
|
||
/* See through references, since we can almost make non-references
|
||
references. */
|
||
if (TYPE_CODE (arg) == TYPE_CODE_REF)
|
||
return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
|
||
+ REFERENCE_CONVERSION_BADNESS);
|
||
if (TYPE_CODE (parm) == TYPE_CODE_REF)
|
||
return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
|
||
+ REFERENCE_CONVERSION_BADNESS);
|
||
if (overload_debug)
|
||
/* Debugging only. */
|
||
fprintf_filtered (gdb_stderr,
|
||
"------ Arg is %s [%d], parm is %s [%d]\n",
|
||
TYPE_NAME (arg), TYPE_CODE (arg),
|
||
TYPE_NAME (parm), TYPE_CODE (parm));
|
||
|
||
/* x -> y means arg of type x being supplied for parameter of type y */
|
||
|
||
switch (TYPE_CODE (parm))
|
||
{
|
||
case TYPE_CODE_PTR:
|
||
switch (TYPE_CODE (arg))
|
||
{
|
||
case TYPE_CODE_PTR:
|
||
if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID
|
||
&& TYPE_CODE (TYPE_TARGET_TYPE (arg)) != TYPE_CODE_VOID)
|
||
return VOID_PTR_CONVERSION_BADNESS;
|
||
else
|
||
return rank_one_type (TYPE_TARGET_TYPE (parm),
|
||
TYPE_TARGET_TYPE (arg));
|
||
case TYPE_CODE_ARRAY:
|
||
return rank_one_type (TYPE_TARGET_TYPE (parm),
|
||
TYPE_TARGET_TYPE (arg));
|
||
case TYPE_CODE_FUNC:
|
||
return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_FLAGS:
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_BOOL:
|
||
return POINTER_CONVERSION_BADNESS;
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
case TYPE_CODE_ARRAY:
|
||
switch (TYPE_CODE (arg))
|
||
{
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_ARRAY:
|
||
return rank_one_type (TYPE_TARGET_TYPE (parm),
|
||
TYPE_TARGET_TYPE (arg));
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
case TYPE_CODE_FUNC:
|
||
switch (TYPE_CODE (arg))
|
||
{
|
||
case TYPE_CODE_PTR: /* funcptr -> func */
|
||
return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
case TYPE_CODE_INT:
|
||
switch (TYPE_CODE (arg))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
|
||
{
|
||
/* Deal with signed, unsigned, and plain chars and
|
||
signed and unsigned ints. */
|
||
if (TYPE_NOSIGN (parm))
|
||
{
|
||
/* This case only for character types */
|
||
if (TYPE_NOSIGN (arg))
|
||
return 0; /* plain char -> plain char */
|
||
else /* signed/unsigned char -> plain char */
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
}
|
||
else if (TYPE_UNSIGNED (parm))
|
||
{
|
||
if (TYPE_UNSIGNED (arg))
|
||
{
|
||
/* unsigned int -> unsigned int, or
|
||
unsigned long -> unsigned long */
|
||
if (integer_types_same_name_p (TYPE_NAME (parm),
|
||
TYPE_NAME (arg)))
|
||
return 0;
|
||
else if (integer_types_same_name_p (TYPE_NAME (arg),
|
||
"int")
|
||
&& integer_types_same_name_p (TYPE_NAME (parm),
|
||
"long"))
|
||
return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
|
||
else
|
||
return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
|
||
}
|
||
else
|
||
{
|
||
if (integer_types_same_name_p (TYPE_NAME (arg),
|
||
"long")
|
||
&& integer_types_same_name_p (TYPE_NAME (parm),
|
||
"int"))
|
||
return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
|
||
else
|
||
return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
|
||
}
|
||
}
|
||
else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
|
||
{
|
||
if (integer_types_same_name_p (TYPE_NAME (parm),
|
||
TYPE_NAME (arg)))
|
||
return 0;
|
||
else if (integer_types_same_name_p (TYPE_NAME (arg),
|
||
"int")
|
||
&& integer_types_same_name_p (TYPE_NAME (parm),
|
||
"long"))
|
||
return INTEGER_PROMOTION_BADNESS;
|
||
else
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
}
|
||
else
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
}
|
||
else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
|
||
return INTEGER_PROMOTION_BADNESS;
|
||
else
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_FLAGS:
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_BOOL:
|
||
return INTEGER_PROMOTION_BADNESS;
|
||
case TYPE_CODE_FLT:
|
||
return INT_FLOAT_CONVERSION_BADNESS;
|
||
case TYPE_CODE_PTR:
|
||
return NS_POINTER_CONVERSION_BADNESS;
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
break;
|
||
case TYPE_CODE_ENUM:
|
||
switch (TYPE_CODE (arg))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_BOOL:
|
||
case TYPE_CODE_ENUM:
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
case TYPE_CODE_FLT:
|
||
return INT_FLOAT_CONVERSION_BADNESS;
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
break;
|
||
case TYPE_CODE_CHAR:
|
||
switch (TYPE_CODE (arg))
|
||
{
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_BOOL:
|
||
case TYPE_CODE_ENUM:
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
case TYPE_CODE_FLT:
|
||
return INT_FLOAT_CONVERSION_BADNESS;
|
||
case TYPE_CODE_INT:
|
||
if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
|
||
return INTEGER_PROMOTION_BADNESS;
|
||
/* >>> !! else fall through !! <<< */
|
||
case TYPE_CODE_CHAR:
|
||
/* Deal with signed, unsigned, and plain chars for C++ and
|
||
with int cases falling through from previous case. */
|
||
if (TYPE_NOSIGN (parm))
|
||
{
|
||
if (TYPE_NOSIGN (arg))
|
||
return 0;
|
||
else
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
}
|
||
else if (TYPE_UNSIGNED (parm))
|
||
{
|
||
if (TYPE_UNSIGNED (arg))
|
||
return 0;
|
||
else
|
||
return INTEGER_PROMOTION_BADNESS;
|
||
}
|
||
else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
|
||
return 0;
|
||
else
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
break;
|
||
case TYPE_CODE_RANGE:
|
||
switch (TYPE_CODE (arg))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_BOOL:
|
||
case TYPE_CODE_ENUM:
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
case TYPE_CODE_FLT:
|
||
return INT_FLOAT_CONVERSION_BADNESS;
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
break;
|
||
case TYPE_CODE_BOOL:
|
||
switch (TYPE_CODE (arg))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_FLT:
|
||
case TYPE_CODE_PTR:
|
||
return BOOLEAN_CONVERSION_BADNESS;
|
||
case TYPE_CODE_BOOL:
|
||
return 0;
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
break;
|
||
case TYPE_CODE_FLT:
|
||
switch (TYPE_CODE (arg))
|
||
{
|
||
case TYPE_CODE_FLT:
|
||
if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
|
||
return FLOAT_PROMOTION_BADNESS;
|
||
else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
|
||
return 0;
|
||
else
|
||
return FLOAT_CONVERSION_BADNESS;
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_BOOL:
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_CHAR:
|
||
return INT_FLOAT_CONVERSION_BADNESS;
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
break;
|
||
case TYPE_CODE_COMPLEX:
|
||
switch (TYPE_CODE (arg))
|
||
{ /* Strictly not needed for C++, but... */
|
||
case TYPE_CODE_FLT:
|
||
return FLOAT_PROMOTION_BADNESS;
|
||
case TYPE_CODE_COMPLEX:
|
||
return 0;
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
break;
|
||
case TYPE_CODE_STRUCT:
|
||
/* currently same as TYPE_CODE_CLASS */
|
||
switch (TYPE_CODE (arg))
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
/* Check for derivation */
|
||
if (is_ancestor (parm, arg))
|
||
return BASE_CONVERSION_BADNESS;
|
||
/* else fall through */
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
break;
|
||
case TYPE_CODE_UNION:
|
||
switch (TYPE_CODE (arg))
|
||
{
|
||
case TYPE_CODE_UNION:
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
break;
|
||
case TYPE_CODE_MEMBERPTR:
|
||
switch (TYPE_CODE (arg))
|
||
{
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
break;
|
||
case TYPE_CODE_METHOD:
|
||
switch (TYPE_CODE (arg))
|
||
{
|
||
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
break;
|
||
case TYPE_CODE_REF:
|
||
switch (TYPE_CODE (arg))
|
||
{
|
||
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
|
||
break;
|
||
case TYPE_CODE_SET:
|
||
switch (TYPE_CODE (arg))
|
||
{
|
||
/* Not in C++ */
|
||
case TYPE_CODE_SET:
|
||
return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
|
||
TYPE_FIELD_TYPE (arg, 0));
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
break;
|
||
case TYPE_CODE_VOID:
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
} /* switch (TYPE_CODE (arg)) */
|
||
}
|
||
|
||
|
||
/* End of functions for overload resolution */
|
||
|
||
static void
|
||
print_bit_vector (B_TYPE *bits, int nbits)
|
||
{
|
||
int bitno;
|
||
|
||
for (bitno = 0; bitno < nbits; bitno++)
|
||
{
|
||
if ((bitno % 8) == 0)
|
||
{
|
||
puts_filtered (" ");
|
||
}
|
||
if (B_TST (bits, bitno))
|
||
printf_filtered (("1"));
|
||
else
|
||
printf_filtered (("0"));
|
||
}
|
||
}
|
||
|
||
/* Note the first arg should be the "this" pointer, we may not want to
|
||
include it since we may get into a infinitely recursive
|
||
situation. */
|
||
|
||
static void
|
||
print_arg_types (struct field *args, int nargs, int spaces)
|
||
{
|
||
if (args != NULL)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
recursive_dump_type (args[i].type, spaces + 2);
|
||
}
|
||
}
|
||
|
||
int
|
||
field_is_static (struct field *f)
|
||
{
|
||
/* "static" fields are the fields whose location is not relative
|
||
to the address of the enclosing struct. It would be nice to
|
||
have a dedicated flag that would be set for static fields when
|
||
the type is being created. But in practice, checking the field
|
||
loc_kind should give us an accurate answer (at least as long as
|
||
we assume that DWARF block locations are not going to be used
|
||
for static fields). FIXME? */
|
||
return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
|
||
|| FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
|
||
}
|
||
|
||
static void
|
||
dump_fn_fieldlists (struct type *type, int spaces)
|
||
{
|
||
int method_idx;
|
||
int overload_idx;
|
||
struct fn_field *f;
|
||
|
||
printfi_filtered (spaces, "fn_fieldlists ");
|
||
gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
|
||
printf_filtered ("\n");
|
||
for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
|
||
{
|
||
f = TYPE_FN_FIELDLIST1 (type, method_idx);
|
||
printfi_filtered (spaces + 2, "[%d] name '%s' (",
|
||
method_idx,
|
||
TYPE_FN_FIELDLIST_NAME (type, method_idx));
|
||
gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
|
||
gdb_stdout);
|
||
printf_filtered (_(") length %d\n"),
|
||
TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
|
||
for (overload_idx = 0;
|
||
overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
|
||
overload_idx++)
|
||
{
|
||
printfi_filtered (spaces + 4, "[%d] physname '%s' (",
|
||
overload_idx,
|
||
TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
|
||
gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
|
||
gdb_stdout);
|
||
printf_filtered (")\n");
|
||
printfi_filtered (spaces + 8, "type ");
|
||
gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
|
||
gdb_stdout);
|
||
printf_filtered ("\n");
|
||
|
||
recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
|
||
spaces + 8 + 2);
|
||
|
||
printfi_filtered (spaces + 8, "args ");
|
||
gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
|
||
gdb_stdout);
|
||
printf_filtered ("\n");
|
||
|
||
print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
|
||
TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
|
||
overload_idx)),
|
||
spaces);
|
||
printfi_filtered (spaces + 8, "fcontext ");
|
||
gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
|
||
gdb_stdout);
|
||
printf_filtered ("\n");
|
||
|
||
printfi_filtered (spaces + 8, "is_const %d\n",
|
||
TYPE_FN_FIELD_CONST (f, overload_idx));
|
||
printfi_filtered (spaces + 8, "is_volatile %d\n",
|
||
TYPE_FN_FIELD_VOLATILE (f, overload_idx));
|
||
printfi_filtered (spaces + 8, "is_private %d\n",
|
||
TYPE_FN_FIELD_PRIVATE (f, overload_idx));
|
||
printfi_filtered (spaces + 8, "is_protected %d\n",
|
||
TYPE_FN_FIELD_PROTECTED (f, overload_idx));
|
||
printfi_filtered (spaces + 8, "is_stub %d\n",
|
||
TYPE_FN_FIELD_STUB (f, overload_idx));
|
||
printfi_filtered (spaces + 8, "voffset %u\n",
|
||
TYPE_FN_FIELD_VOFFSET (f, overload_idx));
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
print_cplus_stuff (struct type *type, int spaces)
|
||
{
|
||
printfi_filtered (spaces, "n_baseclasses %d\n",
|
||
TYPE_N_BASECLASSES (type));
|
||
printfi_filtered (spaces, "nfn_fields %d\n",
|
||
TYPE_NFN_FIELDS (type));
|
||
printfi_filtered (spaces, "nfn_fields_total %d\n",
|
||
TYPE_NFN_FIELDS_TOTAL (type));
|
||
if (TYPE_N_BASECLASSES (type) > 0)
|
||
{
|
||
printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
|
||
TYPE_N_BASECLASSES (type));
|
||
gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
|
||
gdb_stdout);
|
||
printf_filtered (")");
|
||
|
||
print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
|
||
TYPE_N_BASECLASSES (type));
|
||
puts_filtered ("\n");
|
||
}
|
||
if (TYPE_NFIELDS (type) > 0)
|
||
{
|
||
if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
|
||
{
|
||
printfi_filtered (spaces,
|
||
"private_field_bits (%d bits at *",
|
||
TYPE_NFIELDS (type));
|
||
gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
|
||
gdb_stdout);
|
||
printf_filtered (")");
|
||
print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
|
||
TYPE_NFIELDS (type));
|
||
puts_filtered ("\n");
|
||
}
|
||
if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
|
||
{
|
||
printfi_filtered (spaces,
|
||
"protected_field_bits (%d bits at *",
|
||
TYPE_NFIELDS (type));
|
||
gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
|
||
gdb_stdout);
|
||
printf_filtered (")");
|
||
print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
|
||
TYPE_NFIELDS (type));
|
||
puts_filtered ("\n");
|
||
}
|
||
}
|
||
if (TYPE_NFN_FIELDS (type) > 0)
|
||
{
|
||
dump_fn_fieldlists (type, spaces);
|
||
}
|
||
}
|
||
|
||
static struct obstack dont_print_type_obstack;
|
||
|
||
void
|
||
recursive_dump_type (struct type *type, int spaces)
|
||
{
|
||
int idx;
|
||
|
||
if (spaces == 0)
|
||
obstack_begin (&dont_print_type_obstack, 0);
|
||
|
||
if (TYPE_NFIELDS (type) > 0
|
||
|| (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
|
||
{
|
||
struct type **first_dont_print
|
||
= (struct type **) obstack_base (&dont_print_type_obstack);
|
||
|
||
int i = (struct type **)
|
||
obstack_next_free (&dont_print_type_obstack) - first_dont_print;
|
||
|
||
while (--i >= 0)
|
||
{
|
||
if (type == first_dont_print[i])
|
||
{
|
||
printfi_filtered (spaces, "type node ");
|
||
gdb_print_host_address (type, gdb_stdout);
|
||
printf_filtered (_(" <same as already seen type>\n"));
|
||
return;
|
||
}
|
||
}
|
||
|
||
obstack_ptr_grow (&dont_print_type_obstack, type);
|
||
}
|
||
|
||
printfi_filtered (spaces, "type node ");
|
||
gdb_print_host_address (type, gdb_stdout);
|
||
printf_filtered ("\n");
|
||
printfi_filtered (spaces, "name '%s' (",
|
||
TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
|
||
gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
|
||
printf_filtered (")\n");
|
||
printfi_filtered (spaces, "tagname '%s' (",
|
||
TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
|
||
gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
|
||
printf_filtered (")\n");
|
||
printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_UNDEF:
|
||
printf_filtered ("(TYPE_CODE_UNDEF)");
|
||
break;
|
||
case TYPE_CODE_PTR:
|
||
printf_filtered ("(TYPE_CODE_PTR)");
|
||
break;
|
||
case TYPE_CODE_ARRAY:
|
||
printf_filtered ("(TYPE_CODE_ARRAY)");
|
||
break;
|
||
case TYPE_CODE_STRUCT:
|
||
printf_filtered ("(TYPE_CODE_STRUCT)");
|
||
break;
|
||
case TYPE_CODE_UNION:
|
||
printf_filtered ("(TYPE_CODE_UNION)");
|
||
break;
|
||
case TYPE_CODE_ENUM:
|
||
printf_filtered ("(TYPE_CODE_ENUM)");
|
||
break;
|
||
case TYPE_CODE_FLAGS:
|
||
printf_filtered ("(TYPE_CODE_FLAGS)");
|
||
break;
|
||
case TYPE_CODE_FUNC:
|
||
printf_filtered ("(TYPE_CODE_FUNC)");
|
||
break;
|
||
case TYPE_CODE_INT:
|
||
printf_filtered ("(TYPE_CODE_INT)");
|
||
break;
|
||
case TYPE_CODE_FLT:
|
||
printf_filtered ("(TYPE_CODE_FLT)");
|
||
break;
|
||
case TYPE_CODE_VOID:
|
||
printf_filtered ("(TYPE_CODE_VOID)");
|
||
break;
|
||
case TYPE_CODE_SET:
|
||
printf_filtered ("(TYPE_CODE_SET)");
|
||
break;
|
||
case TYPE_CODE_RANGE:
|
||
printf_filtered ("(TYPE_CODE_RANGE)");
|
||
break;
|
||
case TYPE_CODE_STRING:
|
||
printf_filtered ("(TYPE_CODE_STRING)");
|
||
break;
|
||
case TYPE_CODE_BITSTRING:
|
||
printf_filtered ("(TYPE_CODE_BITSTRING)");
|
||
break;
|
||
case TYPE_CODE_ERROR:
|
||
printf_filtered ("(TYPE_CODE_ERROR)");
|
||
break;
|
||
case TYPE_CODE_MEMBERPTR:
|
||
printf_filtered ("(TYPE_CODE_MEMBERPTR)");
|
||
break;
|
||
case TYPE_CODE_METHODPTR:
|
||
printf_filtered ("(TYPE_CODE_METHODPTR)");
|
||
break;
|
||
case TYPE_CODE_METHOD:
|
||
printf_filtered ("(TYPE_CODE_METHOD)");
|
||
break;
|
||
case TYPE_CODE_REF:
|
||
printf_filtered ("(TYPE_CODE_REF)");
|
||
break;
|
||
case TYPE_CODE_CHAR:
|
||
printf_filtered ("(TYPE_CODE_CHAR)");
|
||
break;
|
||
case TYPE_CODE_BOOL:
|
||
printf_filtered ("(TYPE_CODE_BOOL)");
|
||
break;
|
||
case TYPE_CODE_COMPLEX:
|
||
printf_filtered ("(TYPE_CODE_COMPLEX)");
|
||
break;
|
||
case TYPE_CODE_TYPEDEF:
|
||
printf_filtered ("(TYPE_CODE_TYPEDEF)");
|
||
break;
|
||
case TYPE_CODE_TEMPLATE:
|
||
printf_filtered ("(TYPE_CODE_TEMPLATE)");
|
||
break;
|
||
case TYPE_CODE_TEMPLATE_ARG:
|
||
printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
|
||
break;
|
||
case TYPE_CODE_NAMESPACE:
|
||
printf_filtered ("(TYPE_CODE_NAMESPACE)");
|
||
break;
|
||
default:
|
||
printf_filtered ("(UNKNOWN TYPE CODE)");
|
||
break;
|
||
}
|
||
puts_filtered ("\n");
|
||
printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
|
||
if (TYPE_OBJFILE_OWNED (type))
|
||
{
|
||
printfi_filtered (spaces, "objfile ");
|
||
gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
|
||
}
|
||
else
|
||
{
|
||
printfi_filtered (spaces, "gdbarch ");
|
||
gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
|
||
}
|
||
printf_filtered ("\n");
|
||
printfi_filtered (spaces, "target_type ");
|
||
gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
|
||
printf_filtered ("\n");
|
||
if (TYPE_TARGET_TYPE (type) != NULL)
|
||
{
|
||
recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
|
||
}
|
||
printfi_filtered (spaces, "pointer_type ");
|
||
gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
|
||
printf_filtered ("\n");
|
||
printfi_filtered (spaces, "reference_type ");
|
||
gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
|
||
printf_filtered ("\n");
|
||
printfi_filtered (spaces, "type_chain ");
|
||
gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
|
||
printf_filtered ("\n");
|
||
printfi_filtered (spaces, "instance_flags 0x%x",
|
||
TYPE_INSTANCE_FLAGS (type));
|
||
if (TYPE_CONST (type))
|
||
{
|
||
puts_filtered (" TYPE_FLAG_CONST");
|
||
}
|
||
if (TYPE_VOLATILE (type))
|
||
{
|
||
puts_filtered (" TYPE_FLAG_VOLATILE");
|
||
}
|
||
if (TYPE_CODE_SPACE (type))
|
||
{
|
||
puts_filtered (" TYPE_FLAG_CODE_SPACE");
|
||
}
|
||
if (TYPE_DATA_SPACE (type))
|
||
{
|
||
puts_filtered (" TYPE_FLAG_DATA_SPACE");
|
||
}
|
||
if (TYPE_ADDRESS_CLASS_1 (type))
|
||
{
|
||
puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
|
||
}
|
||
if (TYPE_ADDRESS_CLASS_2 (type))
|
||
{
|
||
puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
|
||
}
|
||
puts_filtered ("\n");
|
||
|
||
printfi_filtered (spaces, "flags");
|
||
if (TYPE_UNSIGNED (type))
|
||
{
|
||
puts_filtered (" TYPE_FLAG_UNSIGNED");
|
||
}
|
||
if (TYPE_NOSIGN (type))
|
||
{
|
||
puts_filtered (" TYPE_FLAG_NOSIGN");
|
||
}
|
||
if (TYPE_STUB (type))
|
||
{
|
||
puts_filtered (" TYPE_FLAG_STUB");
|
||
}
|
||
if (TYPE_TARGET_STUB (type))
|
||
{
|
||
puts_filtered (" TYPE_FLAG_TARGET_STUB");
|
||
}
|
||
if (TYPE_STATIC (type))
|
||
{
|
||
puts_filtered (" TYPE_FLAG_STATIC");
|
||
}
|
||
if (TYPE_PROTOTYPED (type))
|
||
{
|
||
puts_filtered (" TYPE_FLAG_PROTOTYPED");
|
||
}
|
||
if (TYPE_INCOMPLETE (type))
|
||
{
|
||
puts_filtered (" TYPE_FLAG_INCOMPLETE");
|
||
}
|
||
if (TYPE_VARARGS (type))
|
||
{
|
||
puts_filtered (" TYPE_FLAG_VARARGS");
|
||
}
|
||
/* This is used for things like AltiVec registers on ppc. Gcc emits
|
||
an attribute for the array type, which tells whether or not we
|
||
have a vector, instead of a regular array. */
|
||
if (TYPE_VECTOR (type))
|
||
{
|
||
puts_filtered (" TYPE_FLAG_VECTOR");
|
||
}
|
||
if (TYPE_FIXED_INSTANCE (type))
|
||
{
|
||
puts_filtered (" TYPE_FIXED_INSTANCE");
|
||
}
|
||
if (TYPE_STUB_SUPPORTED (type))
|
||
{
|
||
puts_filtered (" TYPE_STUB_SUPPORTED");
|
||
}
|
||
if (TYPE_NOTTEXT (type))
|
||
{
|
||
puts_filtered (" TYPE_NOTTEXT");
|
||
}
|
||
puts_filtered ("\n");
|
||
printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
|
||
gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
|
||
puts_filtered ("\n");
|
||
for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
|
||
{
|
||
printfi_filtered (spaces + 2,
|
||
"[%d] bitpos %d bitsize %d type ",
|
||
idx, TYPE_FIELD_BITPOS (type, idx),
|
||
TYPE_FIELD_BITSIZE (type, idx));
|
||
gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
|
||
printf_filtered (" name '%s' (",
|
||
TYPE_FIELD_NAME (type, idx) != NULL
|
||
? TYPE_FIELD_NAME (type, idx)
|
||
: "<NULL>");
|
||
gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
|
||
printf_filtered (")\n");
|
||
if (TYPE_FIELD_TYPE (type, idx) != NULL)
|
||
{
|
||
recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
|
||
}
|
||
}
|
||
printfi_filtered (spaces, "vptr_basetype ");
|
||
gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
|
||
puts_filtered ("\n");
|
||
if (TYPE_VPTR_BASETYPE (type) != NULL)
|
||
{
|
||
recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
|
||
}
|
||
printfi_filtered (spaces, "vptr_fieldno %d\n",
|
||
TYPE_VPTR_FIELDNO (type));
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
printfi_filtered (spaces, "cplus_stuff ");
|
||
gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
|
||
gdb_stdout);
|
||
puts_filtered ("\n");
|
||
print_cplus_stuff (type, spaces);
|
||
break;
|
||
|
||
case TYPE_CODE_FLT:
|
||
printfi_filtered (spaces, "floatformat ");
|
||
if (TYPE_FLOATFORMAT (type) == NULL)
|
||
puts_filtered ("(null)");
|
||
else
|
||
{
|
||
puts_filtered ("{ ");
|
||
if (TYPE_FLOATFORMAT (type)[0] == NULL
|
||
|| TYPE_FLOATFORMAT (type)[0]->name == NULL)
|
||
puts_filtered ("(null)");
|
||
else
|
||
puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
|
||
|
||
puts_filtered (", ");
|
||
if (TYPE_FLOATFORMAT (type)[1] == NULL
|
||
|| TYPE_FLOATFORMAT (type)[1]->name == NULL)
|
||
puts_filtered ("(null)");
|
||
else
|
||
puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
|
||
|
||
puts_filtered (" }");
|
||
}
|
||
puts_filtered ("\n");
|
||
break;
|
||
|
||
default:
|
||
/* We have to pick one of the union types to be able print and
|
||
test the value. Pick cplus_struct_type, even though we know
|
||
it isn't any particular one. */
|
||
printfi_filtered (spaces, "type_specific ");
|
||
gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
|
||
if (TYPE_CPLUS_SPECIFIC (type) != NULL)
|
||
{
|
||
printf_filtered (_(" (unknown data form)"));
|
||
}
|
||
printf_filtered ("\n");
|
||
break;
|
||
|
||
}
|
||
if (spaces == 0)
|
||
obstack_free (&dont_print_type_obstack, NULL);
|
||
}
|
||
|
||
/* Trivial helpers for the libiberty hash table, for mapping one
|
||
type to another. */
|
||
|
||
struct type_pair
|
||
{
|
||
struct type *old, *new;
|
||
};
|
||
|
||
static hashval_t
|
||
type_pair_hash (const void *item)
|
||
{
|
||
const struct type_pair *pair = item;
|
||
return htab_hash_pointer (pair->old);
|
||
}
|
||
|
||
static int
|
||
type_pair_eq (const void *item_lhs, const void *item_rhs)
|
||
{
|
||
const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
|
||
return lhs->old == rhs->old;
|
||
}
|
||
|
||
/* Allocate the hash table used by copy_type_recursive to walk
|
||
types without duplicates. We use OBJFILE's obstack, because
|
||
OBJFILE is about to be deleted. */
|
||
|
||
htab_t
|
||
create_copied_types_hash (struct objfile *objfile)
|
||
{
|
||
return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
|
||
NULL, &objfile->objfile_obstack,
|
||
hashtab_obstack_allocate,
|
||
dummy_obstack_deallocate);
|
||
}
|
||
|
||
/* Recursively copy (deep copy) TYPE, if it is associated with
|
||
OBJFILE. Return a new type allocated using malloc, a saved type if
|
||
we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
|
||
not associated with OBJFILE. */
|
||
|
||
struct type *
|
||
copy_type_recursive (struct objfile *objfile,
|
||
struct type *type,
|
||
htab_t copied_types)
|
||
{
|
||
struct type_pair *stored, pair;
|
||
void **slot;
|
||
struct type *new_type;
|
||
|
||
if (! TYPE_OBJFILE_OWNED (type))
|
||
return type;
|
||
|
||
/* This type shouldn't be pointing to any types in other objfiles;
|
||
if it did, the type might disappear unexpectedly. */
|
||
gdb_assert (TYPE_OBJFILE (type) == objfile);
|
||
|
||
pair.old = type;
|
||
slot = htab_find_slot (copied_types, &pair, INSERT);
|
||
if (*slot != NULL)
|
||
return ((struct type_pair *) *slot)->new;
|
||
|
||
new_type = alloc_type_arch (get_type_arch (type));
|
||
|
||
/* We must add the new type to the hash table immediately, in case
|
||
we encounter this type again during a recursive call below. */
|
||
stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
|
||
stored->old = type;
|
||
stored->new = new_type;
|
||
*slot = stored;
|
||
|
||
/* Copy the common fields of types. For the main type, we simply
|
||
copy the entire thing and then update specific fields as needed. */
|
||
*TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
|
||
TYPE_OBJFILE_OWNED (new_type) = 0;
|
||
TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
|
||
|
||
if (TYPE_NAME (type))
|
||
TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
|
||
if (TYPE_TAG_NAME (type))
|
||
TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
|
||
|
||
TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
|
||
TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
|
||
|
||
/* Copy the fields. */
|
||
if (TYPE_NFIELDS (type))
|
||
{
|
||
int i, nfields;
|
||
|
||
nfields = TYPE_NFIELDS (type);
|
||
TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
|
||
for (i = 0; i < nfields; i++)
|
||
{
|
||
TYPE_FIELD_ARTIFICIAL (new_type, i) =
|
||
TYPE_FIELD_ARTIFICIAL (type, i);
|
||
TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
|
||
if (TYPE_FIELD_TYPE (type, i))
|
||
TYPE_FIELD_TYPE (new_type, i)
|
||
= copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
|
||
copied_types);
|
||
if (TYPE_FIELD_NAME (type, i))
|
||
TYPE_FIELD_NAME (new_type, i) =
|
||
xstrdup (TYPE_FIELD_NAME (type, i));
|
||
switch (TYPE_FIELD_LOC_KIND (type, i))
|
||
{
|
||
case FIELD_LOC_KIND_BITPOS:
|
||
SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
|
||
TYPE_FIELD_BITPOS (type, i));
|
||
break;
|
||
case FIELD_LOC_KIND_PHYSADDR:
|
||
SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
|
||
TYPE_FIELD_STATIC_PHYSADDR (type, i));
|
||
break;
|
||
case FIELD_LOC_KIND_PHYSNAME:
|
||
SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
|
||
xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
|
||
i)));
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("Unexpected type field location kind: %d"),
|
||
TYPE_FIELD_LOC_KIND (type, i));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Copy pointers to other types. */
|
||
if (TYPE_TARGET_TYPE (type))
|
||
TYPE_TARGET_TYPE (new_type) =
|
||
copy_type_recursive (objfile,
|
||
TYPE_TARGET_TYPE (type),
|
||
copied_types);
|
||
if (TYPE_VPTR_BASETYPE (type))
|
||
TYPE_VPTR_BASETYPE (new_type) =
|
||
copy_type_recursive (objfile,
|
||
TYPE_VPTR_BASETYPE (type),
|
||
copied_types);
|
||
/* Maybe copy the type_specific bits.
|
||
|
||
NOTE drow/2005-12-09: We do not copy the C++-specific bits like
|
||
base classes and methods. There's no fundamental reason why we
|
||
can't, but at the moment it is not needed. */
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
|
||
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (type) == TYPE_CODE_UNION
|
||
|| TYPE_CODE (type) == TYPE_CODE_TEMPLATE
|
||
|| TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
|
||
INIT_CPLUS_SPECIFIC (new_type);
|
||
|
||
return new_type;
|
||
}
|
||
|
||
/* Make a copy of the given TYPE, except that the pointer & reference
|
||
types are not preserved.
|
||
|
||
This function assumes that the given type has an associated objfile.
|
||
This objfile is used to allocate the new type. */
|
||
|
||
struct type *
|
||
copy_type (const struct type *type)
|
||
{
|
||
struct type *new_type;
|
||
|
||
gdb_assert (TYPE_OBJFILE_OWNED (type));
|
||
|
||
new_type = alloc_type_copy (type);
|
||
TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
|
||
TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
|
||
memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
|
||
sizeof (struct main_type));
|
||
|
||
return new_type;
|
||
}
|
||
|
||
|
||
/* Helper functions to initialize architecture-specific types. */
|
||
|
||
/* Allocate a type structure associated with GDBARCH and set its
|
||
CODE, LENGTH, and NAME fields. */
|
||
struct type *
|
||
arch_type (struct gdbarch *gdbarch,
|
||
enum type_code code, int length, char *name)
|
||
{
|
||
struct type *type;
|
||
|
||
type = alloc_type_arch (gdbarch);
|
||
TYPE_CODE (type) = code;
|
||
TYPE_LENGTH (type) = length;
|
||
|
||
if (name)
|
||
TYPE_NAME (type) = xstrdup (name);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
|
||
BIT is the type size in bits. If UNSIGNED_P is non-zero, set
|
||
the type's TYPE_UNSIGNED flag. NAME is the type name. */
|
||
struct type *
|
||
arch_integer_type (struct gdbarch *gdbarch,
|
||
int bit, int unsigned_p, char *name)
|
||
{
|
||
struct type *t;
|
||
|
||
t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
|
||
if (unsigned_p)
|
||
TYPE_UNSIGNED (t) = 1;
|
||
if (name && strcmp (name, "char") == 0)
|
||
TYPE_NOSIGN (t) = 1;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
|
||
BIT is the type size in bits. If UNSIGNED_P is non-zero, set
|
||
the type's TYPE_UNSIGNED flag. NAME is the type name. */
|
||
struct type *
|
||
arch_character_type (struct gdbarch *gdbarch,
|
||
int bit, int unsigned_p, char *name)
|
||
{
|
||
struct type *t;
|
||
|
||
t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
|
||
if (unsigned_p)
|
||
TYPE_UNSIGNED (t) = 1;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
|
||
BIT is the type size in bits. If UNSIGNED_P is non-zero, set
|
||
the type's TYPE_UNSIGNED flag. NAME is the type name. */
|
||
struct type *
|
||
arch_boolean_type (struct gdbarch *gdbarch,
|
||
int bit, int unsigned_p, char *name)
|
||
{
|
||
struct type *t;
|
||
|
||
t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
|
||
if (unsigned_p)
|
||
TYPE_UNSIGNED (t) = 1;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
|
||
BIT is the type size in bits; if BIT equals -1, the size is
|
||
determined by the floatformat. NAME is the type name. Set the
|
||
TYPE_FLOATFORMAT from FLOATFORMATS. */
|
||
struct type *
|
||
arch_float_type (struct gdbarch *gdbarch,
|
||
int bit, char *name, const struct floatformat **floatformats)
|
||
{
|
||
struct type *t;
|
||
|
||
if (bit == -1)
|
||
{
|
||
gdb_assert (floatformats != NULL);
|
||
gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
|
||
bit = floatformats[0]->totalsize;
|
||
}
|
||
gdb_assert (bit >= 0);
|
||
|
||
t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
|
||
TYPE_FLOATFORMAT (t) = floatformats;
|
||
return t;
|
||
}
|
||
|
||
/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
|
||
NAME is the type name. TARGET_TYPE is the component float type. */
|
||
struct type *
|
||
arch_complex_type (struct gdbarch *gdbarch,
|
||
char *name, struct type *target_type)
|
||
{
|
||
struct type *t;
|
||
t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
|
||
2 * TYPE_LENGTH (target_type), name);
|
||
TYPE_TARGET_TYPE (t) = target_type;
|
||
return t;
|
||
}
|
||
|
||
/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
|
||
NAME is the type name. LENGTH is the number of flag bits. */
|
||
struct type *
|
||
arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
|
||
{
|
||
int nfields = length * TARGET_CHAR_BIT;
|
||
struct type *type;
|
||
|
||
type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
|
||
TYPE_UNSIGNED (type) = 1;
|
||
TYPE_NFIELDS (type) = nfields;
|
||
TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
|
||
position BITPOS is called NAME. */
|
||
void
|
||
append_flags_type_flag (struct type *type, int bitpos, char *name)
|
||
{
|
||
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
|
||
gdb_assert (bitpos < TYPE_NFIELDS (type));
|
||
gdb_assert (bitpos >= 0);
|
||
|
||
if (name)
|
||
{
|
||
TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
|
||
TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
|
||
}
|
||
else
|
||
{
|
||
/* Don't show this field to the user. */
|
||
TYPE_FIELD_BITPOS (type, bitpos) = -1;
|
||
}
|
||
}
|
||
|
||
/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
|
||
specified by CODE) associated with GDBARCH. NAME is the type name. */
|
||
struct type *
|
||
arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
|
||
{
|
||
struct type *t;
|
||
gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
|
||
t = arch_type (gdbarch, code, 0, NULL);
|
||
TYPE_TAG_NAME (t) = name;
|
||
INIT_CPLUS_SPECIFIC (t);
|
||
return t;
|
||
}
|
||
|
||
/* Add new field with name NAME and type FIELD to composite type T.
|
||
ALIGNMENT (if non-zero) specifies the minimum field alignment. */
|
||
void
|
||
append_composite_type_field_aligned (struct type *t, char *name,
|
||
struct type *field, int alignment)
|
||
{
|
||
struct field *f;
|
||
TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
|
||
TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
|
||
sizeof (struct field) * TYPE_NFIELDS (t));
|
||
f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
|
||
memset (f, 0, sizeof f[0]);
|
||
FIELD_TYPE (f[0]) = field;
|
||
FIELD_NAME (f[0]) = name;
|
||
if (TYPE_CODE (t) == TYPE_CODE_UNION)
|
||
{
|
||
if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
|
||
TYPE_LENGTH (t) = TYPE_LENGTH (field);
|
||
}
|
||
else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
|
||
{
|
||
TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
|
||
if (TYPE_NFIELDS (t) > 1)
|
||
{
|
||
FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
|
||
+ (TYPE_LENGTH (FIELD_TYPE (f[-1]))
|
||
* TARGET_CHAR_BIT));
|
||
|
||
if (alignment)
|
||
{
|
||
int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
|
||
if (left)
|
||
{
|
||
FIELD_BITPOS (f[0]) += left;
|
||
TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Add new field with name NAME and type FIELD to composite type T. */
|
||
void
|
||
append_composite_type_field (struct type *t, char *name,
|
||
struct type *field)
|
||
{
|
||
append_composite_type_field_aligned (t, name, field, 0);
|
||
}
|
||
|
||
|
||
static struct gdbarch_data *gdbtypes_data;
|
||
|
||
const struct builtin_type *
|
||
builtin_type (struct gdbarch *gdbarch)
|
||
{
|
||
return gdbarch_data (gdbarch, gdbtypes_data);
|
||
}
|
||
|
||
static void *
|
||
gdbtypes_post_init (struct gdbarch *gdbarch)
|
||
{
|
||
struct builtin_type *builtin_type
|
||
= GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
|
||
|
||
/* Basic types. */
|
||
builtin_type->builtin_void
|
||
= arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
|
||
builtin_type->builtin_char
|
||
= arch_integer_type (gdbarch, TARGET_CHAR_BIT,
|
||
!gdbarch_char_signed (gdbarch), "char");
|
||
builtin_type->builtin_signed_char
|
||
= arch_integer_type (gdbarch, TARGET_CHAR_BIT,
|
||
0, "signed char");
|
||
builtin_type->builtin_unsigned_char
|
||
= arch_integer_type (gdbarch, TARGET_CHAR_BIT,
|
||
1, "unsigned char");
|
||
builtin_type->builtin_short
|
||
= arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
|
||
0, "short");
|
||
builtin_type->builtin_unsigned_short
|
||
= arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
|
||
1, "unsigned short");
|
||
builtin_type->builtin_int
|
||
= arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
|
||
0, "int");
|
||
builtin_type->builtin_unsigned_int
|
||
= arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
|
||
1, "unsigned int");
|
||
builtin_type->builtin_long
|
||
= arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
|
||
0, "long");
|
||
builtin_type->builtin_unsigned_long
|
||
= arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
|
||
1, "unsigned long");
|
||
builtin_type->builtin_long_long
|
||
= arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
|
||
0, "long long");
|
||
builtin_type->builtin_unsigned_long_long
|
||
= arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
|
||
1, "unsigned long long");
|
||
builtin_type->builtin_float
|
||
= arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
|
||
"float", gdbarch_float_format (gdbarch));
|
||
builtin_type->builtin_double
|
||
= arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
|
||
"double", gdbarch_double_format (gdbarch));
|
||
builtin_type->builtin_long_double
|
||
= arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
|
||
"long double", gdbarch_long_double_format (gdbarch));
|
||
builtin_type->builtin_complex
|
||
= arch_complex_type (gdbarch, "complex",
|
||
builtin_type->builtin_float);
|
||
builtin_type->builtin_double_complex
|
||
= arch_complex_type (gdbarch, "double complex",
|
||
builtin_type->builtin_double);
|
||
builtin_type->builtin_string
|
||
= arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
|
||
builtin_type->builtin_bool
|
||
= arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
|
||
|
||
/* The following three are about decimal floating point types, which
|
||
are 32-bits, 64-bits and 128-bits respectively. */
|
||
builtin_type->builtin_decfloat
|
||
= arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
|
||
builtin_type->builtin_decdouble
|
||
= arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
|
||
builtin_type->builtin_declong
|
||
= arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
|
||
|
||
/* "True" character types. */
|
||
builtin_type->builtin_true_char
|
||
= arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
|
||
builtin_type->builtin_true_unsigned_char
|
||
= arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
|
||
|
||
/* Fixed-size integer types. */
|
||
builtin_type->builtin_int0
|
||
= arch_integer_type (gdbarch, 0, 0, "int0_t");
|
||
builtin_type->builtin_int8
|
||
= arch_integer_type (gdbarch, 8, 0, "int8_t");
|
||
builtin_type->builtin_uint8
|
||
= arch_integer_type (gdbarch, 8, 1, "uint8_t");
|
||
builtin_type->builtin_int16
|
||
= arch_integer_type (gdbarch, 16, 0, "int16_t");
|
||
builtin_type->builtin_uint16
|
||
= arch_integer_type (gdbarch, 16, 1, "uint16_t");
|
||
builtin_type->builtin_int32
|
||
= arch_integer_type (gdbarch, 32, 0, "int32_t");
|
||
builtin_type->builtin_uint32
|
||
= arch_integer_type (gdbarch, 32, 1, "uint32_t");
|
||
builtin_type->builtin_int64
|
||
= arch_integer_type (gdbarch, 64, 0, "int64_t");
|
||
builtin_type->builtin_uint64
|
||
= arch_integer_type (gdbarch, 64, 1, "uint64_t");
|
||
builtin_type->builtin_int128
|
||
= arch_integer_type (gdbarch, 128, 0, "int128_t");
|
||
builtin_type->builtin_uint128
|
||
= arch_integer_type (gdbarch, 128, 1, "uint128_t");
|
||
TYPE_NOTTEXT (builtin_type->builtin_int8) = 1;
|
||
TYPE_NOTTEXT (builtin_type->builtin_uint8) = 1;
|
||
|
||
/* Default data/code pointer types. */
|
||
builtin_type->builtin_data_ptr
|
||
= lookup_pointer_type (builtin_type->builtin_void);
|
||
builtin_type->builtin_func_ptr
|
||
= lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
|
||
|
||
/* This type represents a GDB internal function. */
|
||
builtin_type->internal_fn
|
||
= arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
|
||
"<internal function>");
|
||
|
||
return builtin_type;
|
||
}
|
||
|
||
|
||
/* This set of objfile-based types is intended to be used by symbol
|
||
readers as basic types. */
|
||
|
||
static const struct objfile_data *objfile_type_data;
|
||
|
||
const struct objfile_type *
|
||
objfile_type (struct objfile *objfile)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
struct objfile_type *objfile_type
|
||
= objfile_data (objfile, objfile_type_data);
|
||
|
||
if (objfile_type)
|
||
return objfile_type;
|
||
|
||
objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
|
||
1, struct objfile_type);
|
||
|
||
/* Use the objfile architecture to determine basic type properties. */
|
||
gdbarch = get_objfile_arch (objfile);
|
||
|
||
/* Basic types. */
|
||
objfile_type->builtin_void
|
||
= init_type (TYPE_CODE_VOID, 1,
|
||
0,
|
||
"void", objfile);
|
||
|
||
objfile_type->builtin_char
|
||
= init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
|
||
(TYPE_FLAG_NOSIGN
|
||
| (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
|
||
"char", objfile);
|
||
objfile_type->builtin_signed_char
|
||
= init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
|
||
0,
|
||
"signed char", objfile);
|
||
objfile_type->builtin_unsigned_char
|
||
= init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
|
||
TYPE_FLAG_UNSIGNED,
|
||
"unsigned char", objfile);
|
||
objfile_type->builtin_short
|
||
= init_type (TYPE_CODE_INT,
|
||
gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
|
||
0, "short", objfile);
|
||
objfile_type->builtin_unsigned_short
|
||
= init_type (TYPE_CODE_INT,
|
||
gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
|
||
TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
|
||
objfile_type->builtin_int
|
||
= init_type (TYPE_CODE_INT,
|
||
gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
|
||
0, "int", objfile);
|
||
objfile_type->builtin_unsigned_int
|
||
= init_type (TYPE_CODE_INT,
|
||
gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
|
||
TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
|
||
objfile_type->builtin_long
|
||
= init_type (TYPE_CODE_INT,
|
||
gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
|
||
0, "long", objfile);
|
||
objfile_type->builtin_unsigned_long
|
||
= init_type (TYPE_CODE_INT,
|
||
gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
|
||
TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
|
||
objfile_type->builtin_long_long
|
||
= init_type (TYPE_CODE_INT,
|
||
gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
|
||
0, "long long", objfile);
|
||
objfile_type->builtin_unsigned_long_long
|
||
= init_type (TYPE_CODE_INT,
|
||
gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
|
||
TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
|
||
|
||
objfile_type->builtin_float
|
||
= init_type (TYPE_CODE_FLT,
|
||
gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
|
||
0, "float", objfile);
|
||
TYPE_FLOATFORMAT (objfile_type->builtin_float)
|
||
= gdbarch_float_format (gdbarch);
|
||
objfile_type->builtin_double
|
||
= init_type (TYPE_CODE_FLT,
|
||
gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
|
||
0, "double", objfile);
|
||
TYPE_FLOATFORMAT (objfile_type->builtin_double)
|
||
= gdbarch_double_format (gdbarch);
|
||
objfile_type->builtin_long_double
|
||
= init_type (TYPE_CODE_FLT,
|
||
gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
|
||
0, "long double", objfile);
|
||
TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
|
||
= gdbarch_long_double_format (gdbarch);
|
||
|
||
/* This type represents a type that was unrecognized in symbol read-in. */
|
||
objfile_type->builtin_error
|
||
= init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
|
||
|
||
/* The following set of types is used for symbols with no
|
||
debug information. */
|
||
objfile_type->nodebug_text_symbol
|
||
= init_type (TYPE_CODE_FUNC, 1, 0,
|
||
"<text variable, no debug info>", objfile);
|
||
TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
|
||
= objfile_type->builtin_int;
|
||
objfile_type->nodebug_data_symbol
|
||
= init_type (TYPE_CODE_INT,
|
||
gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
|
||
"<data variable, no debug info>", objfile);
|
||
objfile_type->nodebug_unknown_symbol
|
||
= init_type (TYPE_CODE_INT, 1, 0,
|
||
"<variable (not text or data), no debug info>", objfile);
|
||
objfile_type->nodebug_tls_symbol
|
||
= init_type (TYPE_CODE_INT,
|
||
gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
|
||
"<thread local variable, no debug info>", objfile);
|
||
|
||
/* NOTE: on some targets, addresses and pointers are not necessarily
|
||
the same --- for example, on the D10V, pointers are 16 bits long,
|
||
but addresses are 32 bits long. See doc/gdbint.texinfo,
|
||
``Pointers Are Not Always Addresses''.
|
||
|
||
The upshot is:
|
||
- gdb's `struct type' always describes the target's
|
||
representation.
|
||
- gdb's `struct value' objects should always hold values in
|
||
target form.
|
||
- gdb's CORE_ADDR values are addresses in the unified virtual
|
||
address space that the assembler and linker work with. Thus,
|
||
since target_read_memory takes a CORE_ADDR as an argument, it
|
||
can access any memory on the target, even if the processor has
|
||
separate code and data address spaces.
|
||
|
||
So, for example:
|
||
- If v is a value holding a D10V code pointer, its contents are
|
||
in target form: a big-endian address left-shifted two bits.
|
||
- If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
|
||
sizeof (void *) == 2 on the target.
|
||
|
||
In this context, objfile_type->builtin_core_addr is a bit odd:
|
||
it's a target type for a value the target will never see. It's
|
||
only used to hold the values of (typeless) linker symbols, which
|
||
are indeed in the unified virtual address space. */
|
||
|
||
objfile_type->builtin_core_addr
|
||
= init_type (TYPE_CODE_INT,
|
||
gdbarch_addr_bit (gdbarch) / 8,
|
||
TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
|
||
|
||
set_objfile_data (objfile, objfile_type_data, objfile_type);
|
||
return objfile_type;
|
||
}
|
||
|
||
|
||
extern void _initialize_gdbtypes (void);
|
||
void
|
||
_initialize_gdbtypes (void)
|
||
{
|
||
gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
|
||
objfile_type_data = register_objfile_data ();
|
||
|
||
add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
|
||
Set debugging of C++ overloading."), _("\
|
||
Show debugging of C++ overloading."), _("\
|
||
When enabled, ranking of the functions is displayed."),
|
||
NULL,
|
||
show_overload_debug,
|
||
&setdebuglist, &showdebuglist);
|
||
|
||
/* Add user knob for controlling resolution of opaque types. */
|
||
add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
|
||
&opaque_type_resolution, _("\
|
||
Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
|
||
Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
|
||
NULL,
|
||
show_opaque_type_resolution,
|
||
&setlist, &showlist);
|
||
}
|