1999-04-26 18:34:20 +00:00

424 lines
9.5 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* fr30 simulator support code
Copyright (C) 1998, 1999 Free Software Foundation, Inc.
Contributed by Cygnus Solutions.
This file is part of the GNU simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#define WANT_CPU
#define WANT_CPU_FR30BF
#include "sim-main.h"
#include "cgen-mem.h"
#include "cgen-ops.h"
/* Convert gdb dedicated register number to actual dr reg number. */
static int
decode_gdb_dr_regnum (int gdb_regnum)
{
switch (gdb_regnum)
{
case TBR_REGNUM : return H_DR_TBR;
case RP_REGNUM : return H_DR_RP;
case SSP_REGNUM : return H_DR_SSP;
case USP_REGNUM : return H_DR_USP;
case MDH_REGNUM : return H_DR_MDH;
case MDL_REGNUM : return H_DR_MDL;
}
abort ();
}
/* The contents of BUF are in target byte order. */
int
fr30bf_fetch_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
{
if (rn < 16)
SETTWI (buf, fr30bf_h_gr_get (current_cpu, rn));
else
switch (rn)
{
case PC_REGNUM :
SETTWI (buf, fr30bf_h_pc_get (current_cpu));
break;
case PS_REGNUM :
SETTWI (buf, fr30bf_h_ps_get (current_cpu));
break;
case TBR_REGNUM :
case RP_REGNUM :
case SSP_REGNUM :
case USP_REGNUM :
case MDH_REGNUM :
case MDL_REGNUM :
SETTWI (buf, fr30bf_h_dr_get (current_cpu,
decode_gdb_dr_regnum (rn)));
break;
default :
return 0;
}
return -1; /*FIXME*/
}
/* The contents of BUF are in target byte order. */
int
fr30bf_store_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
{
if (rn < 16)
fr30bf_h_gr_set (current_cpu, rn, GETTWI (buf));
else
switch (rn)
{
case PC_REGNUM :
fr30bf_h_pc_set (current_cpu, GETTWI (buf));
break;
case PS_REGNUM :
fr30bf_h_ps_set (current_cpu, GETTWI (buf));
break;
case TBR_REGNUM :
case RP_REGNUM :
case SSP_REGNUM :
case USP_REGNUM :
case MDH_REGNUM :
case MDL_REGNUM :
fr30bf_h_dr_set (current_cpu,
decode_gdb_dr_regnum (rn),
GETTWI (buf));
break;
default :
return 0;
}
return -1; /*FIXME*/
}
/* Cover fns to access the ccr bits. */
BI
fr30bf_h_sbit_get_handler (SIM_CPU *current_cpu)
{
return CPU (h_sbit);
}
void
fr30bf_h_sbit_set_handler (SIM_CPU *current_cpu, BI newval)
{
int old_sbit = CPU (h_sbit);
int new_sbit = (newval != 0);
CPU (h_sbit) = new_sbit;
/* When switching stack modes, update the registers. */
if (old_sbit != new_sbit)
{
if (old_sbit)
{
/* Switching user -> system. */
CPU (h_dr[H_DR_USP]) = CPU (h_gr[H_GR_SP]);
CPU (h_gr[H_GR_SP]) = CPU (h_dr[H_DR_SSP]);
}
else
{
/* Switching system -> user. */
CPU (h_dr[H_DR_SSP]) = CPU (h_gr[H_GR_SP]);
CPU (h_gr[H_GR_SP]) = CPU (h_dr[H_DR_USP]);
}
}
/* TODO: r15 interlock */
}
/* Cover fns to access the ccr bits. */
UQI
fr30bf_h_ccr_get_handler (SIM_CPU *current_cpu)
{
int ccr = ( (GET_H_CBIT () << 0)
| (GET_H_VBIT () << 1)
| (GET_H_ZBIT () << 2)
| (GET_H_NBIT () << 3)
| (GET_H_IBIT () << 4)
| (GET_H_SBIT () << 5));
return ccr;
}
void
fr30bf_h_ccr_set_handler (SIM_CPU *current_cpu, UQI newval)
{
int ccr = newval & 0x3f;
SET_H_CBIT ((ccr & 1) != 0);
SET_H_VBIT ((ccr & 2) != 0);
SET_H_ZBIT ((ccr & 4) != 0);
SET_H_NBIT ((ccr & 8) != 0);
SET_H_IBIT ((ccr & 0x10) != 0);
SET_H_SBIT ((ccr & 0x20) != 0);
}
/* Cover fns to access the scr bits. */
UQI
fr30bf_h_scr_get_handler (SIM_CPU *current_cpu)
{
int scr = ( (GET_H_TBIT () << 0)
| (GET_H_D0BIT () << 1)
| (GET_H_D1BIT () << 2));
return scr;
}
void
fr30bf_h_scr_set_handler (SIM_CPU *current_cpu, UQI newval)
{
int scr = newval & 7;
SET_H_TBIT ((scr & 1) != 0);
SET_H_D0BIT ((scr & 2) != 0);
SET_H_D1BIT ((scr & 4) != 0);
}
/* Cover fns to access the ilm bits. */
UQI
fr30bf_h_ilm_get_handler (SIM_CPU *current_cpu)
{
return CPU (h_ilm);
}
void
fr30bf_h_ilm_set_handler (SIM_CPU *current_cpu, UQI newval)
{
int ilm = newval & 0x1f;
int current_ilm = CPU (h_ilm);
/* We can only set new ilm values < 16 if the current ilm is < 16. Otherwise
we add 16 to the value we are given. */
if (current_ilm >= 16 && ilm < 16)
ilm += 16;
CPU (h_ilm) = ilm;
}
/* Cover fns to access the ps register. */
USI
fr30bf_h_ps_get_handler (SIM_CPU *current_cpu)
{
int ccr = GET_H_CCR ();
int scr = GET_H_SCR ();
int ilm = GET_H_ILM ();
return ccr | (scr << 8) | (ilm << 16);
}
void
fr30bf_h_ps_set_handler (SIM_CPU *current_cpu, USI newval)
{
int ccr = newval & 0xff;
int scr = (newval >> 8) & 7;
int ilm = (newval >> 16) & 0x1f;
SET_H_CCR (ccr);
SET_H_SCR (scr);
SET_H_ILM (ilm);
}
/* Cover fns to access the dedicated registers. */
SI
fr30bf_h_dr_get_handler (SIM_CPU *current_cpu, UINT dr)
{
switch (dr)
{
case H_DR_SSP :
if (! GET_H_SBIT ())
return GET_H_GR (H_GR_SP);
else
return CPU (h_dr[H_DR_SSP]);
case H_DR_USP :
if (GET_H_SBIT ())
return GET_H_GR (H_GR_SP);
else
return CPU (h_dr[H_DR_USP]);
case H_DR_TBR :
case H_DR_RP :
case H_DR_MDH :
case H_DR_MDL :
return CPU (h_dr[dr]);
}
return 0;
}
void
fr30bf_h_dr_set_handler (SIM_CPU *current_cpu, UINT dr, SI newval)
{
switch (dr)
{
case H_DR_SSP :
if (! GET_H_SBIT ())
SET_H_GR (H_GR_SP, newval);
else
CPU (h_dr[H_DR_SSP]) = newval;
break;
case H_DR_USP :
if (GET_H_SBIT ())
SET_H_GR (H_GR_SP, newval);
else
CPU (h_dr[H_DR_USP]) = newval;
break;
case H_DR_TBR :
case H_DR_RP :
case H_DR_MDH :
case H_DR_MDL :
CPU (h_dr[dr]) = newval;
break;
}
}
#if WITH_PROFILE_MODEL_P
/* FIXME: Some of these should be inline or macros. Later. */
/* Initialize cycle counting for an insn.
FIRST_P is non-zero if this is the first insn in a set of parallel
insns. */
void
fr30bf_model_insn_before (SIM_CPU *cpu, int first_p)
{
MODEL_FR30_1_DATA *d = CPU_MODEL_DATA (cpu);
d->load_regs_pending = 0;
}
/* Record the cycles computed for an insn.
LAST_P is non-zero if this is the last insn in a set of parallel insns,
and we update the total cycle count.
CYCLES is the cycle count of the insn. */
void
fr30bf_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
{
PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
MODEL_FR30_1_DATA *d = CPU_MODEL_DATA (cpu);
PROFILE_MODEL_TOTAL_CYCLES (p) += cycles;
PROFILE_MODEL_CUR_INSN_CYCLES (p) = cycles;
d->load_regs = d->load_regs_pending;
}
static INLINE int
check_load_stall (SIM_CPU *cpu, int regno)
{
const MODEL_FR30_1_DATA *d = CPU_MODEL_DATA (cpu);
UINT load_regs = d->load_regs;
if (regno != -1
&& (load_regs & (1 << regno)) != 0)
{
PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
++ PROFILE_MODEL_LOAD_STALL_CYCLES (p);
if (TRACE_INSN_P (cpu))
cgen_trace_printf (cpu, " ; Load stall.");
return 1;
}
else
return 0;
}
int
fr30bf_model_fr30_1_u_exec (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_Ri, INT in_Rj, INT out_Ri)
{
int cycles = idesc->timing->units[unit_num].done;
cycles += check_load_stall (cpu, in_Ri);
cycles += check_load_stall (cpu, in_Rj);
return cycles;
}
int
fr30bf_model_fr30_1_u_cti (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_Ri)
{
PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
/* (1 << 1): The pc is the 2nd element in inputs, outputs.
??? can be cleaned up */
int taken_p = (referenced & (1 << 1)) != 0;
int cycles = idesc->timing->units[unit_num].done;
int delay_slot_p = CGEN_ATTR_VALUE (NULL, idesc->attrs, CGEN_INSN_DELAY_SLOT);
cycles += check_load_stall (cpu, in_Ri);
if (taken_p)
{
/* ??? Handling cti's without delay slots this way will run afoul of
accurate system simulation. Later. */
if (! delay_slot_p)
{
++cycles;
++PROFILE_MODEL_CTI_STALL_CYCLES (p);
}
++PROFILE_MODEL_TAKEN_COUNT (p);
}
else
++PROFILE_MODEL_UNTAKEN_COUNT (p);
return cycles;
}
int
fr30bf_model_fr30_1_u_load (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_Rj, INT out_Ri)
{
MODEL_FR30_1_DATA *d = CPU_MODEL_DATA (cpu);
int cycles = idesc->timing->units[unit_num].done;
d->load_regs_pending |= 1 << out_Ri;
cycles += check_load_stall (cpu, in_Rj);
return cycles;
}
int
fr30bf_model_fr30_1_u_store (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT in_Ri, INT in_Rj)
{
int cycles = idesc->timing->units[unit_num].done;
cycles += check_load_stall (cpu, in_Ri);
cycles += check_load_stall (cpu, in_Rj);
return cycles;
}
int
fr30bf_model_fr30_1_u_ldm (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT reglist)
{
return idesc->timing->units[unit_num].done;
}
int
fr30bf_model_fr30_1_u_stm (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT reglist)
{
return idesc->timing->units[unit_num].done;
}
#endif /* WITH_PROFILE_MODEL_P */