binutils-gdb/gas/config/tc-h8300.c
Klee Dienes a720f7bca7 2002-11-19 Klee Dienes <kdienes@apple.com>
* config/tc-h8300.c (struct h8_instruction): New type, used to
        wrap h8_opcodes with length, noperands, idx, and size fields
        (computed at run-time).
        (h8_instructions): New variable.
        (md_begin): Allocate the storage for h8_instructions.  Fill
        h8_instructions with pointers to the appropriate opcode and the
        correct value for the additional fields.
        (clever_message): Update to use h8_instructions instead of
        h8_opcodes.
        (build_bytes): Ditto.
        (get_specific): Ditto.
        (md_assemble): Ditto.
2002-11-19 22:56:42 +00:00

1699 lines
36 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* tc-h8300.c -- Assemble code for the Hitachi H8/300
Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 2000,
2001, 2002 Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* Written By Steve Chamberlain <sac@cygnus.com>. */
#include <stdio.h>
#include "as.h"
#include "subsegs.h"
#include "bfd.h"
#define DEFINE_TABLE
#define h8_opcodes ops
#include "opcode/h8300.h"
#include "safe-ctype.h"
#ifdef OBJ_ELF
#include "elf/h8.h"
#endif
const char comment_chars[] = ";";
const char line_comment_chars[] = "#";
const char line_separator_chars[] = "";
void cons PARAMS ((int));
void sbranch PARAMS ((int));
void h8300hmode PARAMS ((int));
void h8300smode PARAMS ((int));
static void pint PARAMS ((int));
int Hmode;
int Smode;
#define PSIZE (Hmode ? L_32 : L_16)
#define DMODE (L_16)
#define DSYMMODE (Hmode ? L_24 : L_16)
int bsize = L_8; /* default branch displacement */
struct h8_instruction
{
int length;
int noperands;
int idx;
int size;
const struct h8_opcode *opcode;
};
struct h8_instruction *h8_instructions;
void
h8300hmode (arg)
int arg ATTRIBUTE_UNUSED;
{
Hmode = 1;
Smode = 0;
#ifdef BFD_ASSEMBLER
if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300h))
as_warn (_("could not set architecture and machine"));
#endif
}
void
h8300smode (arg)
int arg ATTRIBUTE_UNUSED;
{
Smode = 1;
Hmode = 1;
#ifdef BFD_ASSEMBLER
if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300s))
as_warn (_("could not set architecture and machine"));
#endif
}
void
sbranch (size)
int size;
{
bsize = size;
}
static void
pint (arg)
int arg ATTRIBUTE_UNUSED;
{
cons (Hmode ? 4 : 2);
}
/* This table describes all the machine specific pseudo-ops the assembler
has to support. The fields are:
pseudo-op name without dot
function to call to execute this pseudo-op
Integer arg to pass to the function. */
const pseudo_typeS md_pseudo_table[] =
{
{"h8300h", h8300hmode, 0},
{"h8300s", h8300smode, 0},
{"sbranch", sbranch, L_8},
{"lbranch", sbranch, L_16},
{"int", pint, 0},
{"data.b", cons, 1},
{"data.w", cons, 2},
{"data.l", cons, 4},
{"form", listing_psize, 0},
{"heading", listing_title, 0},
{"import", s_ignore, 0},
{"page", listing_eject, 0},
{"program", s_ignore, 0},
{0, 0, 0}
};
const int md_reloc_size;
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant
As in 0f12.456
or 0d1.2345e12. */
const char FLT_CHARS[] = "rRsSfFdDxXpP";
static struct hash_control *opcode_hash_control; /* Opcode mnemonics. */
/* This function is called once, at assembler startup time. This
should set up all the tables, etc. that the MD part of the assembler
needs. */
void
md_begin ()
{
unsigned int nopcodes;
const struct h8_opcode *p;
struct h8_instruction *pi;
char prev_buffer[100];
int idx = 0;
#ifdef BFD_ASSEMBLER
if (!bfd_set_arch_mach (stdoutput, bfd_arch_h8300, bfd_mach_h8300))
as_warn (_("could not set architecture and machine"));
#endif
opcode_hash_control = hash_new ();
prev_buffer[0] = 0;
nopcodes = sizeof (h8_opcodes) / sizeof (struct h8_opcode);
h8_instructions = (struct h8_instruction *)
xmalloc (nopcodes * sizeof (struct h8_instruction));
for (p = h8_opcodes, pi = h8_instructions; p->name; p++, pi++)
{
/* Strip off any . part when inserting the opcode and only enter
unique codes into the hash table. */
char *src = p->name;
unsigned int len = strlen (src);
char *dst = malloc (len + 1);
char *buffer = dst;
pi->size = 0;
while (*src)
{
if (*src == '.')
{
src++;
pi->size = *src;
break;
}
*dst++ = *src++;
}
*dst++ = 0;
if (strcmp (buffer, prev_buffer))
{
hash_insert (opcode_hash_control, buffer, (char *) pi);
strcpy (prev_buffer, buffer);
idx++;
}
pi->idx = idx;
/* Find the number of operands. */
pi->noperands = 0;
while (p->args.nib[pi->noperands] != E)
pi->noperands++;
/* Find the length of the opcode in bytes. */
pi->length = 0;
while (p->data.nib[pi->length * 2] != E)
pi->length++;
pi->opcode = p;
}
/* Add entry for the NULL vector terminator. */
pi->length = 0;
pi->noperands = 0;
pi->idx = 0;
pi->size = 0;
pi->opcode = p;
linkrelax = 1;
}
struct h8_exp
{
char *e_beg;
char *e_end;
expressionS e_exp;
};
int dispreg;
int opsize; /* Set when a register size is seen. */
struct h8_op
{
op_type mode;
unsigned reg;
expressionS exp;
};
static void clever_message PARAMS ((const struct h8_instruction *, struct h8_op *));
static void build_bytes PARAMS ((const struct h8_instruction *, struct h8_op *));
static void do_a_fix_imm PARAMS ((int, struct h8_op *, int));
static void check_operand PARAMS ((struct h8_op *, unsigned int, char *));
static const struct h8_instruction * get_specific PARAMS ((const struct h8_instruction *, struct h8_op *, int));
static char * get_operands PARAMS ((unsigned, char *, struct h8_op *));
static void get_operand PARAMS ((char **, struct h8_op *, unsigned, int));
static char * skip_colonthing PARAMS ((char *, expressionS *, int *));
static char * parse_exp PARAMS ((char *, expressionS *));
static int parse_reg PARAMS ((char *, op_type *, unsigned *, int));
char * colonmod24 PARAMS ((struct h8_op *, char *));
/*
parse operands
WREG r0,r1,r2,r3,r4,r5,r6,r7,fp,sp
r0l,r0h,..r7l,r7h
@WREG
@WREG+
@-WREG
#const
ccr
*/
/* Try to parse a reg name. Return the number of chars consumed. */
static int
parse_reg (src, mode, reg, direction)
char *src;
op_type *mode;
unsigned int *reg;
int direction;
{
char *end;
int len;
/* Cribbed from get_symbol_end. */
if (!is_name_beginner (*src) || *src == '\001')
return 0;
end = src + 1;
while (is_part_of_name (*end) || *end == '\001')
end++;
len = end - src;
if (len == 2 && src[0] == 's' && src[1] == 'p')
{
*mode = PSIZE | REG | direction;
*reg = 7;
return len;
}
if (len == 3 && src[0] == 'c' && src[1] == 'c' && src[2] == 'r')
{
*mode = CCR;
*reg = 0;
return len;
}
if (len == 3 && src[0] == 'e' && src[1] == 'x' && src[2] == 'r')
{
*mode = EXR;
*reg = 0;
return len;
}
if (len == 2 && src[0] == 'f' && src[1] == 'p')
{
*mode = PSIZE | REG | direction;
*reg = 6;
return len;
}
if (len == 3 && src[0] == 'e' && src[1] == 'r'
&& src[2] >= '0' && src[2] <= '7')
{
*mode = L_32 | REG | direction;
*reg = src[2] - '0';
if (!Hmode)
as_warn (_("Reg not valid for H8/300"));
return len;
}
if (len == 2 && src[0] == 'e' && src[1] >= '0' && src[1] <= '7')
{
*mode = L_16 | REG | direction;
*reg = src[1] - '0' + 8;
if (!Hmode)
as_warn (_("Reg not valid for H8/300"));
return len;
}
if (src[0] == 'r')
{
if (src[1] >= '0' && src[1] <= '7')
{
if (len == 3 && src[2] == 'l')
{
*mode = L_8 | REG | direction;
*reg = (src[1] - '0') + 8;
return len;
}
if (len == 3 && src[2] == 'h')
{
*mode = L_8 | REG | direction;
*reg = (src[1] - '0');
return len;
}
if (len == 2)
{
*mode = L_16 | REG | direction;
*reg = (src[1] - '0');
return len;
}
}
}
return 0;
}
static char *
parse_exp (s, op)
char *s;
expressionS *op;
{
char *save = input_line_pointer;
char *new;
input_line_pointer = s;
expression (op);
if (op->X_op == O_absent)
as_bad (_("missing operand"));
new = input_line_pointer;
input_line_pointer = save;
return new;
}
static char *
skip_colonthing (ptr, exp, mode)
char *ptr;
expressionS *exp ATTRIBUTE_UNUSED;
int *mode;
{
if (*ptr == ':')
{
ptr++;
*mode &= ~SIZE;
if (*ptr == '8')
{
ptr++;
/* ff fill any 8 bit quantity. */
/* exp->X_add_number -= 0x100; */
*mode |= L_8;
}
else
{
if (*ptr == '2')
{
*mode |= L_24;
}
else if (*ptr == '3')
{
*mode |= L_32;
}
else if (*ptr == '1')
{
*mode |= L_16;
}
while (ISDIGIT (*ptr))
ptr++;
}
}
return ptr;
}
/* The many forms of operand:
Rn Register direct
@Rn Register indirect
@(exp[:16], Rn) Register indirect with displacement
@Rn+
@-Rn
@aa:8 absolute 8 bit
@aa:16 absolute 16 bit
@aa absolute 16 bit
#xx[:size] immediate data
@(exp:[8], pc) pc rel
@@aa[:8] memory indirect. */
char *
colonmod24 (op, src)
struct h8_op *op;
char *src;
{
int mode = 0;
src = skip_colonthing (src, &op->exp, &mode);
if (!mode)
{
/* Choose a default mode. */
if (op->exp.X_add_number < -32768
|| op->exp.X_add_number > 32767)
{
if (Hmode)
mode = L_24;
else
mode = L_16;
}
else if (op->exp.X_add_symbol
|| op->exp.X_op_symbol)
mode = DSYMMODE;
else
mode = DMODE;
}
op->mode |= mode;
return src;
}
static void
get_operand (ptr, op, dst, direction)
char **ptr;
struct h8_op *op;
unsigned int dst ATTRIBUTE_UNUSED;
int direction;
{
char *src = *ptr;
op_type mode;
unsigned int num;
unsigned int len;
op->mode = E;
/* Check for '(' and ')' for instructions ldm and stm. */
if (src[0] == '(' && src[8] == ')')
++ src;
/* Gross. Gross. ldm and stm have a format not easily handled
by get_operand. We deal with it explicitly here. */
if (src[0] == 'e' && src[1] == 'r' && ISDIGIT (src[2])
&& src[3] == '-' && src[4] == 'e' && src[5] == 'r' && ISDIGIT (src[6]))
{
int low, high;
low = src[2] - '0';
high = src[6] - '0';
if (high < low)
as_bad (_("Invalid register list for ldm/stm\n"));
if (low % 2)
as_bad (_("Invalid register list for ldm/stm\n"));
if (high - low > 3)
as_bad (_("Invalid register list for ldm/stm\n"));
if (high - low != 1
&& low % 4)
as_bad (_("Invalid register list for ldm/stm\n"));
/* Even sicker. We encode two registers into op->reg. One
for the low register to save, the other for the high
register to save; we also set the high bit in op->reg
so we know this is "very special". */
op->reg = 0x80000000 | (high << 8) | low;
op->mode = REG;
if (src[7] == ')')
*ptr = src + 8;
else
*ptr = src + 7;
return;
}
len = parse_reg (src, &op->mode, &op->reg, direction);
if (len)
{
*ptr = src + len;
return;
}
if (*src == '@')
{
src++;
if (*src == '@')
{
src++;
src = parse_exp (src, &op->exp);
src = skip_colonthing (src, &op->exp, &op->mode);
*ptr = src;
op->mode = MEMIND;
return;
}
if (*src == '-')
{
src++;
len = parse_reg (src, &mode, &num, direction);
if (len == 0)
{
/* Oops, not a reg after all, must be ordinary exp. */
src--;
/* Must be a symbol. */
op->mode = ABS | PSIZE | direction;
*ptr = skip_colonthing (parse_exp (src, &op->exp),
&op->exp, &op->mode);
return;
}
if ((mode & SIZE) != PSIZE)
as_bad (_("Wrong size pointer register for architecture."));
op->mode = RDDEC;
op->reg = num;
*ptr = src + len;
return;
}
if (*src == '(')
{
/* Disp. */
src++;
/* Start off assuming a 16 bit offset. */
src = parse_exp (src, &op->exp);
src = colonmod24 (op, src);
if (*src == ')')
{
src++;
op->mode |= ABS | direction;
*ptr = src;
return;
}
if (*src != ',')
{
as_bad (_("expected @(exp, reg16)"));
return;
}
src++;
len = parse_reg (src, &mode, &op->reg, direction);
if (len == 0 || !(mode & REG))
{
as_bad (_("expected @(exp, reg16)"));
return;
}
op->mode |= DISP | direction;
dispreg = op->reg;
src += len;
src = skip_colonthing (src, &op->exp, &op->mode);
if (*src != ')' && '(')
{
as_bad (_("expected @(exp, reg16)"));
return;
}
*ptr = src + 1;
return;
}
len = parse_reg (src, &mode, &num, direction);
if (len)
{
src += len;
if (*src == '+')
{
src++;
if ((mode & SIZE) != PSIZE)
as_bad (_("Wrong size pointer register for architecture."));
op->mode = RSINC;
op->reg = num;
*ptr = src;
return;
}
if ((mode & SIZE) != PSIZE)
as_bad (_("Wrong size pointer register for architecture."));
op->mode = direction | IND | PSIZE;
op->reg = num;
*ptr = src;
return;
}
else
{
/* must be a symbol */
op->mode = ABS | direction;
src = parse_exp (src, &op->exp);
*ptr = colonmod24 (op, src);
return;
}
}
if (*src == '#')
{
src++;
op->mode = IMM;
src = parse_exp (src, &op->exp);
*ptr = skip_colonthing (src, &op->exp, &op->mode);
return;
}
else if (strncmp (src, "mach", 4) == 0
|| strncmp (src, "macl", 4) == 0)
{
op->reg = src[3] == 'l';
op->mode = MACREG;
*ptr = src + 4;
return;
}
else
{
src = parse_exp (src, &op->exp);
/* Trailing ':' size ? */
if (*src == ':')
{
if (src[1] == '1' && src[2] == '6')
{
op->mode = PCREL | L_16;
src += 3;
}
else if (src[1] == '8')
{
op->mode = PCREL | L_8;
src += 2;
}
else
as_bad (_("expect :8 or :16 here"));
}
else
op->mode = PCREL | bsize;
*ptr = src;
}
}
static char *
get_operands (noperands, op_end, operand)
unsigned int noperands;
char *op_end;
struct h8_op *operand;
{
char *ptr = op_end;
switch (noperands)
{
case 0:
operand[0].mode = 0;
operand[1].mode = 0;
break;
case 1:
ptr++;
get_operand (&ptr, operand + 0, 0, SRC);
if (*ptr == ',')
{
ptr++;
get_operand (&ptr, operand + 1, 1, DST);
}
else
{
operand[1].mode = 0;
}
break;
case 2:
ptr++;
get_operand (&ptr, operand + 0, 0, SRC);
if (*ptr == ',')
ptr++;
get_operand (&ptr, operand + 1, 1, DST);
break;
default:
abort ();
}
return ptr;
}
/* Passed a pointer to a list of opcodes which use different
addressing modes, return the opcode which matches the opcodes
provided. */
static const struct h8_instruction *
get_specific (instruction, operands, size)
const struct h8_instruction *instruction;
struct h8_op *operands;
int size;
{
const struct h8_instruction *this_try = instruction;
int found = 0;
int this_index = instruction->idx;
/* There's only one ldm/stm and it's easier to just
get out quick for them. */
if (strcmp (instruction->opcode->name, "stm.l") == 0
|| strcmp (instruction->opcode->name, "ldm.l") == 0)
return this_try;
while (this_index == instruction->idx && !found)
{
found = 1;
this_try = instruction++;
if (this_try->noperands == 0)
{
int this_size;
this_size = this_try->opcode->how & SN;
if (this_size != size && (this_size != SB || size != SN))
found = 0;
}
else
{
int i;
for (i = 0; i < this_try->noperands && found; i++)
{
op_type op = this_try->opcode->args.nib[i];
int x = operands[i].mode;
if ((op & (DISP | REG)) == (DISP | REG)
&& ((x & (DISP | REG)) == (DISP | REG)))
{
dispreg = operands[i].reg;
}
else if (op & REG)
{
if (!(x & REG))
found = 0;
if (x & L_P)
x = (x & ~L_P) | (Hmode ? L_32 : L_16);
if (op & L_P)
op = (op & ~L_P) | (Hmode ? L_32 : L_16);
opsize = op & SIZE;
/* The size of the reg is v important. */
if ((op & SIZE) != (x & SIZE))
found = 0;
}
else if ((op & ABSJMP) && (x & ABS))
{
operands[i].mode &= ~ABS;
operands[i].mode |= ABSJMP;
/* But it may not be 24 bits long. */
if (!Hmode)
{
operands[i].mode &= ~SIZE;
operands[i].mode |= L_16;
}
}
else if ((op & (KBIT | DBIT)) && (x & IMM))
{
/* This is ok if the immediate value is sensible. */
}
else if (op & PCREL)
{
/* The size of the displacement is important. */
if ((op & SIZE) != (x & SIZE))
found = 0;
}
else if ((op & (DISP | IMM | ABS))
&& (op & (DISP | IMM | ABS)) == (x & (DISP | IMM | ABS)))
{
/* Promote a L_24 to L_32 if it makes us match. */
if ((x & L_24) && (op & L_32))
{
x &= ~L_24;
x |= L_32;
}
/* Promote an L8 to L_16 if it makes us match. */
if (op & ABS && op & L_8 && op & DISP)
{
if (x & L_16)
found = 1;
}
else if ((x & SIZE) != 0
&& ((op & SIZE) != (x & SIZE)))
found = 0;
}
else if ((op & MACREG) != (x & MACREG))
{
found = 0;
}
else if ((op & MODE) != (x & MODE))
{
found = 0;
}
}
}
}
if (found)
return this_try;
else
return 0;
}
static void
check_operand (operand, width, string)
struct h8_op *operand;
unsigned int width;
char *string;
{
if (operand->exp.X_add_symbol == 0
&& operand->exp.X_op_symbol == 0)
{
/* No symbol involved, let's look at offset, it's dangerous if
any of the high bits are not 0 or ff's, find out by oring or
anding with the width and seeing if the answer is 0 or all
fs. */
if ((operand->exp.X_add_number & ~width) != 0 &&
(operand->exp.X_add_number | width) != (unsigned)(~0))
{
if (width == 255
&& (operand->exp.X_add_number & 0xff00) == 0xff00)
{
/* Just ignore this one - which happens when trying to
fit a 16 bit address truncated into an 8 bit address
of something like bset. */
}
else if (strcmp (string, "@") == 0
&& width == 0xffff
&& (operand->exp.X_add_number & 0xff8000) == 0xff8000)
{
/* Just ignore this one - which happens when trying to
fit a 24 bit address truncated into a 16 bit address
of something like mov.w. */
}
else
{
as_warn (_("operand %s0x%lx out of range."), string,
(unsigned long) operand->exp.X_add_number);
}
}
}
}
/* RELAXMODE has one of 3 values:
0 Output a "normal" reloc, no relaxing possible for this insn/reloc
1 Output a relaxable 24bit absolute mov.w address relocation
(may relax into a 16bit absolute address).
2 Output a relaxable 16/24 absolute mov.b address relocation
(may relax into an 8bit absolute address). */
static void
do_a_fix_imm (offset, operand, relaxmode)
int offset;
struct h8_op *operand;
int relaxmode;
{
int idx;
int size;
int where;
char *t = operand->mode & IMM ? "#" : "@";
if (operand->exp.X_add_symbol == 0)
{
char *bytes = frag_now->fr_literal + offset;
switch (operand->mode & SIZE)
{
case L_2:
check_operand (operand, 0x3, t);
bytes[0] |= (operand->exp.X_add_number) << 4;
break;
case L_3:
check_operand (operand, 0x7, t);
bytes[0] |= (operand->exp.X_add_number) << 4;
break;
case L_8:
check_operand (operand, 0xff, t);
bytes[0] = operand->exp.X_add_number;
break;
case L_16:
check_operand (operand, 0xffff, t);
bytes[0] = operand->exp.X_add_number >> 8;
bytes[1] = operand->exp.X_add_number >> 0;
break;
case L_24:
check_operand (operand, 0xffffff, t);
bytes[0] = operand->exp.X_add_number >> 16;
bytes[1] = operand->exp.X_add_number >> 8;
bytes[2] = operand->exp.X_add_number >> 0;
break;
case L_32:
/* This should be done with bfd. */
bytes[0] = operand->exp.X_add_number >> 24;
bytes[1] = operand->exp.X_add_number >> 16;
bytes[2] = operand->exp.X_add_number >> 8;
bytes[3] = operand->exp.X_add_number >> 0;
if (relaxmode != 0)
{
idx = (relaxmode == 2) ? R_MOV24B1 : R_MOVL1;
fix_new_exp (frag_now, offset, 4, &operand->exp, 0, idx);
}
break;
}
}
else
{
switch (operand->mode & SIZE)
{
case L_24:
case L_32:
size = 4;
where = (operand->mode & SIZE) == L_24 ? -1 : 0;
if (relaxmode == 2)
idx = R_MOV24B1;
else if (relaxmode == 1)
idx = R_MOVL1;
else
idx = R_RELLONG;
break;
default:
as_bad (_("Can't work out size of operand.\n"));
case L_16:
size = 2;
where = 0;
if (relaxmode == 2)
idx = R_MOV16B1;
else
idx = R_RELWORD;
operand->exp.X_add_number =
((operand->exp.X_add_number & 0xffff) ^ 0x8000) - 0x8000;
break;
case L_8:
size = 1;
where = 0;
idx = R_RELBYTE;
operand->exp.X_add_number =
((operand->exp.X_add_number & 0xff) ^ 0x80) - 0x80;
}
fix_new_exp (frag_now,
offset + where,
size,
&operand->exp,
0,
idx);
}
}
/* Now we know what sort of opcodes it is, let's build the bytes. */
static void
build_bytes (this_try, operand)
const struct h8_instruction *this_try;
struct h8_op *operand;
{
int i;
char *output = frag_more (this_try->length);
op_type *nibble_ptr = this_try->opcode->data.nib;
op_type c;
unsigned int nibble_count = 0;
int absat = 0;
int immat = 0;
int nib = 0;
int movb = 0;
char asnibbles[30];
char *p = asnibbles;
if (!(this_try->opcode->inbase || Hmode))
as_warn (_("Opcode `%s' with these operand types not available in H8/300 mode"),
this_try->opcode->name);
while (*nibble_ptr != E)
{
int d;
c = *nibble_ptr++;
d = (c & (DST | SRC_IN_DST)) != 0;
if (c < 16)
nib = c;
else
{
if (c & (REG | IND | INC | DEC))
nib = operand[d].reg;
else if ((c & DISPREG) == (DISPREG))
nib = dispreg;
else if (c & ABS)
{
operand[d].mode = c;
absat = nibble_count / 2;
nib = 0;
}
else if (c & (IMM | PCREL | ABS | ABSJMP | DISP))
{
operand[d].mode = c;
immat = nibble_count / 2;
nib = 0;
}
else if (c & IGNORE)
nib = 0;
else if (c & DBIT)
{
switch (operand[0].exp.X_add_number)
{
case 1:
nib = c;
break;
case 2:
nib = 0x8 | c;
break;
default:
as_bad (_("Need #1 or #2 here"));
}
}
else if (c & KBIT)
{
switch (operand[0].exp.X_add_number)
{
case 1:
nib = 0;
break;
case 2:
nib = 8;
break;
case 4:
if (!Hmode)
as_warn (_("#4 not valid on H8/300."));
nib = 9;
break;
default:
as_bad (_("Need #1 or #2 here"));
break;
}
/* Stop it making a fix. */
operand[0].mode = 0;
}
if (c & MEMRELAX)
operand[d].mode |= MEMRELAX;
if (c & B31)
nib |= 0x8;
if (c & MACREG)
{
if (operand[0].mode == MACREG)
/* stmac has mac[hl] as the first operand. */
nib = 2 + operand[0].reg;
else
/* ldmac has mac[hl] as the second operand. */
nib = 2 + operand[1].reg;
}
}
nibble_count++;
*p++ = nib;
}
/* Disgusting. Why, oh why didn't someone ask us for advice
on the assembler format. */
if (strcmp (this_try->opcode->name, "stm.l") == 0
|| strcmp (this_try->opcode->name, "ldm.l") == 0)
{
int high, low;
high = (operand[this_try->opcode->name[0] == 'l' ? 1 : 0].reg >> 8) & 0xf;
low = operand[this_try->opcode->name[0] == 'l' ? 1 : 0].reg & 0xf;
asnibbles[2] = high - low;
asnibbles[7] = (this_try->opcode->name[0] == 'l') ? high : low;
}
for (i = 0; i < this_try->length; i++)
output[i] = (asnibbles[i * 2] << 4) | asnibbles[i * 2 + 1];
/* Note if this is a movb instruction -- there's a special relaxation
which only applies to them. */
if (strcmp (this_try->opcode->name, "mov.b") == 0)
movb = 1;
/* Output any fixes. */
for (i = 0; i < 2; i++)
{
int x = operand[i].mode;
if (x & (IMM | DISP))
do_a_fix_imm (output - frag_now->fr_literal + immat,
operand + i, (x & MEMRELAX) != 0);
else if (x & ABS)
do_a_fix_imm (output - frag_now->fr_literal + absat,
operand + i, (x & MEMRELAX) ? movb + 1 : 0);
else if (x & PCREL)
{
int size16 = x & (L_16);
int where = size16 ? 2 : 1;
int size = size16 ? 2 : 1;
int type = size16 ? R_PCRWORD : R_PCRBYTE;
fixS *fixP;
check_operand (operand + i, size16 ? 0x7fff : 0x7f, "@");
if (operand[i].exp.X_add_number & 1)
as_warn (_("branch operand has odd offset (%lx)\n"),
(unsigned long) operand->exp.X_add_number);
#ifndef OBJ_ELF
/* The COFF port has always been off by one, changing it
now would be an incompatible change, so we leave it as-is.
We don't want to do this for ELF as we want to be
compatible with the proposed ELF format from Hitachi. */
operand[i].exp.X_add_number -= 1;
#endif
operand[i].exp.X_add_number =
((operand[i].exp.X_add_number & 0xff) ^ 0x80) - 0x80;
fixP = fix_new_exp (frag_now,
output - frag_now->fr_literal + where,
size,
&operand[i].exp,
1,
type);
fixP->fx_signed = 1;
}
else if (x & MEMIND)
{
check_operand (operand + i, 0xff, "@@");
fix_new_exp (frag_now,
output - frag_now->fr_literal + 1,
1,
&operand[i].exp,
0,
R_MEM_INDIRECT);
}
else if (x & ABSJMP)
{
int where = 0;
#ifdef OBJ_ELF
/* To be compatible with the proposed H8 ELF format, we
want the relocation's offset to point to the first byte
that will be modified, not to the start of the instruction. */
where += 1;
#endif
/* This jmp may be a jump or a branch. */
check_operand (operand + i, Hmode ? 0xffffff : 0xffff, "@");
if (operand[i].exp.X_add_number & 1)
as_warn (_("branch operand has odd offset (%lx)\n"),
(unsigned long) operand->exp.X_add_number);
if (!Hmode)
operand[i].exp.X_add_number =
((operand[i].exp.X_add_number & 0xffff) ^ 0x8000) - 0x8000;
fix_new_exp (frag_now,
output - frag_now->fr_literal + where,
4,
&operand[i].exp,
0,
R_JMPL1);
}
}
}
/* Try to give an intelligent error message for common and simple to
detect errors. */
static void
clever_message (instruction, operand)
const struct h8_instruction *instruction;
struct h8_op *operand;
{
/* Find out if there was more than one possible opcode. */
if ((instruction + 1)->idx != instruction->idx)
{
int argn;
/* Only one opcode of this flavour, try to guess which operand
didn't match. */
for (argn = 0; argn < instruction->noperands; argn++)
{
switch (instruction->opcode->args.nib[argn])
{
case RD16:
if (operand[argn].mode != RD16)
{
as_bad (_("destination operand must be 16 bit register"));
return;
}
break;
case RS8:
if (operand[argn].mode != RS8)
{
as_bad (_("source operand must be 8 bit register"));
return;
}
break;
case ABS16DST:
if (operand[argn].mode != ABS16DST)
{
as_bad (_("destination operand must be 16bit absolute address"));
return;
}
break;
case RD8:
if (operand[argn].mode != RD8)
{
as_bad (_("destination operand must be 8 bit register"));
return;
}
break;
case ABS16SRC:
if (operand[argn].mode != ABS16SRC)
{
as_bad (_("source operand must be 16bit absolute address"));
return;
}
break;
}
}
}
as_bad (_("invalid operands"));
}
/* This is the guts of the machine-dependent assembler. STR points to
a machine dependent instruction. This function is supposed to emit
the frags/bytes it assembles. */
void
md_assemble (str)
char *str;
{
char *op_start;
char *op_end;
struct h8_op operand[2];
const struct h8_instruction *instruction;
const struct h8_instruction *prev_instruction;
char *dot = 0;
char c;
int size;
/* Drop leading whitespace. */
while (*str == ' ')
str++;
/* Find the op code end. */
for (op_start = op_end = str;
*op_end != 0 && *op_end != ' ';
op_end++)
{
if (*op_end == '.')
{
dot = op_end + 1;
*op_end = 0;
op_end += 2;
break;
}
}
if (op_end == op_start)
{
as_bad (_("can't find opcode "));
}
c = *op_end;
*op_end = 0;
instruction = (const struct h8_instruction *)
hash_find (opcode_hash_control, op_start);
if (instruction == NULL)
{
as_bad (_("unknown opcode"));
return;
}
/* We used to set input_line_pointer to the result of get_operands,
but that is wrong. Our caller assumes we don't change it. */
(void) get_operands (instruction->noperands, op_end, operand);
*op_end = c;
prev_instruction = instruction;
size = SN;
if (dot)
{
switch (*dot)
{
case 'b':
size = SB;
break;
case 'w':
size = SW;
break;
case 'l':
size = SL;
break;
}
}
instruction = get_specific (instruction, operand, size);
if (instruction == 0)
{
/* Couldn't find an opcode which matched the operands. */
char *where = frag_more (2);
where[0] = 0x0;
where[1] = 0x0;
clever_message (prev_instruction, operand);
return;
}
if (instruction->size && dot)
{
if (instruction->size != *dot)
{
as_warn (_("mismatch between opcode size and operand size"));
}
}
build_bytes (instruction, operand);
}
#ifndef BFD_ASSEMBLER
void
tc_crawl_symbol_chain (headers)
object_headers *headers ATTRIBUTE_UNUSED;
{
printf (_("call to tc_crawl_symbol_chain \n"));
}
#endif
symbolS *
md_undefined_symbol (name)
char *name ATTRIBUTE_UNUSED;
{
return 0;
}
#ifndef BFD_ASSEMBLER
void
tc_headers_hook (headers)
object_headers *headers ATTRIBUTE_UNUSED;
{
printf (_("call to tc_headers_hook \n"));
}
#endif
/* Various routines to kill one day */
/* Equal to MAX_PRECISION in atof-ieee.c */
#define MAX_LITTLENUMS 6
/* Turn a string in input_line_pointer into a floating point constant
of type TYPE, and store the appropriate bytes in *LITP. The number
of LITTLENUMS emitted is stored in *SIZEP. An error message is
returned, or NULL on OK. */
char *
md_atof (type, litP, sizeP)
char type;
char *litP;
int *sizeP;
{
int prec;
LITTLENUM_TYPE words[MAX_LITTLENUMS];
LITTLENUM_TYPE *wordP;
char *t;
switch (type)
{
case 'f':
case 'F':
case 's':
case 'S':
prec = 2;
break;
case 'd':
case 'D':
case 'r':
case 'R':
prec = 4;
break;
case 'x':
case 'X':
prec = 6;
break;
case 'p':
case 'P':
prec = 6;
break;
default:
*sizeP = 0;
return _("Bad call to MD_ATOF()");
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * sizeof (LITTLENUM_TYPE);
for (wordP = words; prec--;)
{
md_number_to_chars (litP, (long) (*wordP++), sizeof (LITTLENUM_TYPE));
litP += sizeof (LITTLENUM_TYPE);
}
return 0;
}
const char *md_shortopts = "";
struct option md_longopts[] = {
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);
int
md_parse_option (c, arg)
int c ATTRIBUTE_UNUSED;
char *arg ATTRIBUTE_UNUSED;
{
return 0;
}
void
md_show_usage (stream)
FILE *stream ATTRIBUTE_UNUSED;
{
}
void tc_aout_fix_to_chars PARAMS ((void));
void
tc_aout_fix_to_chars ()
{
printf (_("call to tc_aout_fix_to_chars \n"));
abort ();
}
void
md_convert_frag (headers, seg, fragP)
#ifdef BFD_ASSEMBLER
bfd *headers ATTRIBUTE_UNUSED;
#else
object_headers *headers ATTRIBUTE_UNUSED;
#endif
segT seg ATTRIBUTE_UNUSED;
fragS *fragP ATTRIBUTE_UNUSED;
{
printf (_("call to md_convert_frag \n"));
abort ();
}
#ifdef BFD_ASSEMBLER
valueT
md_section_align (segment, size)
segT segment;
valueT size;
{
int align = bfd_get_section_alignment (stdoutput, segment);
return ((size + (1 << align) - 1) & (-1 << align));
}
#else
valueT
md_section_align (seg, size)
segT seg;
valueT size;
{
return ((size + (1 << section_alignment[(int) seg]) - 1)
& (-1 << section_alignment[(int) seg]));
}
#endif
void
md_apply_fix3 (fixP, valP, seg)
fixS *fixP;
valueT *valP;
segT seg ATTRIBUTE_UNUSED;
{
char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
long val = *valP;
switch (fixP->fx_size)
{
case 1:
*buf++ = val;
break;
case 2:
*buf++ = (val >> 8);
*buf++ = val;
break;
case 4:
*buf++ = (val >> 24);
*buf++ = (val >> 16);
*buf++ = (val >> 8);
*buf++ = val;
break;
default:
abort ();
}
if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0)
fixP->fx_done = 1;
}
int
md_estimate_size_before_relax (fragP, segment_type)
register fragS *fragP ATTRIBUTE_UNUSED;
register segT segment_type ATTRIBUTE_UNUSED;
{
printf (_("call tomd_estimate_size_before_relax \n"));
abort ();
}
/* Put number into target byte order. */
void
md_number_to_chars (ptr, use, nbytes)
char *ptr;
valueT use;
int nbytes;
{
number_to_chars_bigendian (ptr, use, nbytes);
}
long
md_pcrel_from (fixP)
fixS *fixP ATTRIBUTE_UNUSED;
{
abort ();
}
#ifndef BFD_ASSEMBLER
void
tc_reloc_mangle (fix_ptr, intr, base)
fixS *fix_ptr;
struct internal_reloc *intr;
bfd_vma base;
{
symbolS *symbol_ptr;
symbol_ptr = fix_ptr->fx_addsy;
/* If this relocation is attached to a symbol then it's ok
to output it. */
if (fix_ptr->fx_r_type == TC_CONS_RELOC)
{
/* cons likes to create reloc32's whatever the size of the reloc..
*/
switch (fix_ptr->fx_size)
{
case 4:
intr->r_type = R_RELLONG;
break;
case 2:
intr->r_type = R_RELWORD;
break;
case 1:
intr->r_type = R_RELBYTE;
break;
default:
abort ();
}
}
else
{
intr->r_type = fix_ptr->fx_r_type;
}
intr->r_vaddr = fix_ptr->fx_frag->fr_address + fix_ptr->fx_where + base;
intr->r_offset = fix_ptr->fx_offset;
if (symbol_ptr)
{
if (symbol_ptr->sy_number != -1)
intr->r_symndx = symbol_ptr->sy_number;
else
{
symbolS *segsym;
/* This case arises when a reference is made to `.'. */
segsym = seg_info (S_GET_SEGMENT (symbol_ptr))->dot;
if (segsym == NULL)
intr->r_symndx = -1;
else
{
intr->r_symndx = segsym->sy_number;
intr->r_offset += S_GET_VALUE (symbol_ptr);
}
}
}
else
intr->r_symndx = -1;
}
#else /* BFD_ASSEMBLER */
arelent *
tc_gen_reloc (section, fixp)
asection *section ATTRIBUTE_UNUSED;
fixS *fixp;
{
arelent *rel;
bfd_reloc_code_real_type r_type;
if (fixp->fx_addsy && fixp->fx_subsy)
{
if ((S_GET_SEGMENT (fixp->fx_addsy) != S_GET_SEGMENT (fixp->fx_subsy))
|| S_GET_SEGMENT (fixp->fx_addsy) == undefined_section)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
"Difference of symbols in different sections is not supported");
return NULL;
}
}
rel = (arelent *) xmalloc (sizeof (arelent));
rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
*rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
rel->addend = fixp->fx_offset;
r_type = fixp->fx_r_type;
#define DEBUG 0
#if DEBUG
fprintf (stderr, "%s\n", bfd_get_reloc_code_name (r_type));
fflush(stderr);
#endif
rel->howto = bfd_reloc_type_lookup (stdoutput, r_type);
if (rel->howto == NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
_("Cannot represent relocation type %s"),
bfd_get_reloc_code_name (r_type));
return NULL;
}
return rel;
}
#endif