2764 lines
72 KiB
C
2764 lines
72 KiB
C
/* Read a symbol table in MIPS' format (Third-Eye).
|
||
Copyright (C) 1986, 1987, 1989-1991 Free Software Foundation, Inc.
|
||
Contributed by Alessandro Forin (af@cs.cmu.edu) at CMU
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include <stdio.h>
|
||
#include "param.h"
|
||
#include "obstack.h"
|
||
#include <sys/param.h>
|
||
#include <sys/file.h>
|
||
#include <sys/stat.h>
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbcore.h"
|
||
#include "symfile.h"
|
||
#ifdef CMUCS
|
||
#include <mips/syms.h>
|
||
#else /* not CMUCS */
|
||
#include <symconst.h>
|
||
#include <sym.h>
|
||
#endif /* not CMUCS */
|
||
|
||
/* Since these things are defined differently on various systems I'll
|
||
(re)define here what I really need in this module. I only assume the
|
||
three standard COFF structure definitions: filehdr, aouthdr, scnhdr */
|
||
#define MIPS /* Kludge to get MIPS version of coff */
|
||
#undef _ETEXT /* Avoid duplicated define from <syms.h> */
|
||
#include "ecoff.h"
|
||
|
||
struct coff_exec {
|
||
struct external_filehdr f;
|
||
struct external_aouthdr a;
|
||
};
|
||
#undef a_magic
|
||
#undef a_text
|
||
#undef a_data
|
||
#undef a_bss
|
||
#undef a_syms
|
||
#undef a_entry
|
||
#define a_magic a.magic /* magic number */
|
||
#define a_text a.tsize /* size of text segment */
|
||
#define a_data a.dsize /* size of initialized data */
|
||
#define a_bss a.bsize /* size of uninitialized data */
|
||
#define a_syms f.f_nsyms /* size of symbol table */
|
||
#define a_entry a.entry /* entry point */
|
||
|
||
#undef N_BADMAG
|
||
#define N_BADMAG(x) \
|
||
(((x).a_magic)!=OMAGIC && ((x).a_magic)!=NMAGIC && ((x).a_magic)!=ZMAGIC)
|
||
|
||
/* Things we import explicitly from other modules */
|
||
|
||
extern int info_verbose;
|
||
extern struct block *block_for_pc();
|
||
extern void sort_symtab_syms();
|
||
|
||
/* Forward declarations */
|
||
|
||
static void psymtab_to_symtab_1();
|
||
|
||
/* Macros and extra defs */
|
||
|
||
struct complaint unknown_ext_complaint =
|
||
{"unknown external symbol %s", 0, 0};
|
||
|
||
struct complaint unknown_sym_complaint =
|
||
{"unknown local symbol %s", 0, 0};
|
||
|
||
struct complaint unknown_st_complaint =
|
||
{"with type %d", 0, 0};
|
||
|
||
/* Already parsed symbols are marked specially */
|
||
|
||
#define stParsed stType
|
||
|
||
/* Puns: hard to find whether -g was used and how */
|
||
|
||
#define MIN_GLEVEL GLEVEL_0
|
||
#define compare_glevel(a,b) \
|
||
(((a) == GLEVEL_3) ? ((b) < GLEVEL_3) : \
|
||
((b) == GLEVEL_3) ? -1 : (int)((b) - (a)))
|
||
|
||
/* When looking at .o files avoid tripping over bad addresses */
|
||
|
||
#define SAFE_TEXT_ADDR 0x400000
|
||
#define SAFE_DATA_ADDR 0x10000000
|
||
|
||
#define UNSAFE_DATA_ADDR(p) ((unsigned)p < SAFE_DATA_ADDR || (unsigned)p > 2*SAFE_DATA_ADDR)
|
||
|
||
/* Things that really are local to this module */
|
||
|
||
/* GDB symtable for the current compilation unit */
|
||
|
||
static struct symtab *cur_stab;
|
||
|
||
/* Pointer to current file decriptor record, and its index */
|
||
|
||
static FDR *cur_fdr;
|
||
static int cur_fd;
|
||
|
||
/* Index of current symbol */
|
||
|
||
static int cur_sdx;
|
||
|
||
/* Note how much "debuggable" this image is. We would like
|
||
to see at least one FDR with full symbols */
|
||
|
||
static max_gdbinfo;
|
||
static max_glevel;
|
||
|
||
/* When examining .o files, report on undefined symbols */
|
||
|
||
static int n_undef_symbols, n_undef_labels, n_undef_vars, n_undef_procs;
|
||
|
||
/* Extra builtin types */
|
||
|
||
struct type *builtin_type_complex;
|
||
struct type *builtin_type_double_complex;
|
||
struct type *builtin_type_fixed_dec;
|
||
struct type *builtin_type_float_dec;
|
||
struct type *builtin_type_string;
|
||
|
||
/* Template types */
|
||
|
||
static struct type *builtin_type_ptr;
|
||
static struct type *builtin_type_struct;
|
||
static struct type *builtin_type_union;
|
||
static struct type *builtin_type_enum;
|
||
static struct type *builtin_type_range;
|
||
static struct type *builtin_type_set;
|
||
|
||
|
||
/* Forward decls */
|
||
|
||
static struct symbol *new_symbol();
|
||
static struct type *new_type();
|
||
static struct field *new_field();
|
||
static struct block *new_block();
|
||
static struct symtab *new_symtab();
|
||
static struct linetable *new_linetable();
|
||
static struct blockvector *new_bvect();
|
||
|
||
static struct type *parse_type();
|
||
static struct type *make_type();
|
||
static struct symbol *mylookup_symbol();
|
||
static struct block *shrink_block();
|
||
|
||
static int compare_symtabs();
|
||
static int compare_psymtabs();
|
||
static int compare_blocks();
|
||
|
||
static struct partial_symtab *new_psymtab();
|
||
static struct partial_symtab *parse_fdr();
|
||
static int compare_psymbols();
|
||
|
||
static void reorder_symtabs();
|
||
static void reorder_psymtabs();
|
||
|
||
/* Things we export to other modules */
|
||
|
||
/* Address bounds for the signal trampoline in inferior, if any */
|
||
/* FIXME: Nothing really seems to use this. Why is it here? */
|
||
|
||
CORE_ADDR sigtramp_address, sigtramp_end;
|
||
|
||
|
||
/* Functions that we really export */
|
||
|
||
/* THIS DESCRIPTION IS OBSOLETE POST-BFD; FIXME! */
|
||
/* Basically, this module must provide two functions: symbol_file_command()
|
||
which loads the symbol table from a file, and add_file_command() which
|
||
adds more symbols to the symbol table (incrementally).
|
||
|
||
These two functions only do the minimum work necessary for letting the
|
||
user "name" things symbolically, they do not read the entire symtab.
|
||
Instead, they read in the external and static symbols and put them in partial
|
||
symbol tables. When more extensive information is requested of a
|
||
file the corresponding partial symbol table is mutated into a full
|
||
fledged symbol table by going back and reading the relative symbols
|
||
for real. mipscoff_psymtab_to_symtab() is the function that does this */
|
||
|
||
/* The entry point (starting address) of the file, if it is an executable. */
|
||
|
||
static CORE_ADDR entry_point;
|
||
|
||
extern CORE_ADDR startup_file_start; /* From blockframe.c */
|
||
extern CORE_ADDR startup_file_end; /* From blockframe.c */
|
||
|
||
void
|
||
mipscoff_new_init()
|
||
{
|
||
}
|
||
|
||
void
|
||
mipscoff_symfile_init (sf)
|
||
struct sym_fns *sf;
|
||
{
|
||
bfd *abfd = sf->sym_bfd;
|
||
sf->sym_private = NULL;
|
||
/* Save startup file's range of PC addresses to help blockframe.c
|
||
decide where the bottom of the stack is. */
|
||
if (bfd_get_file_flags (abfd) & EXEC_P)
|
||
{
|
||
/* Executable file -- record its entry point so we'll recognize
|
||
the startup file because it contains the entry point. */
|
||
entry_point = bfd_get_start_address (abfd);
|
||
}
|
||
else
|
||
{
|
||
/* Examination of non-executable.o files. Short-circuit this stuff. */
|
||
/* ~0 will not be in any file, we hope. */
|
||
entry_point = ~0;
|
||
/* set the startup file to be an empty range. */
|
||
startup_file_start = 0;
|
||
startup_file_end = 0;
|
||
}
|
||
}
|
||
|
||
void
|
||
mipscoff_symfile_read(sf, addr, mainline)
|
||
struct sym_fns *sf;
|
||
CORE_ADDR addr;
|
||
int mainline;
|
||
{
|
||
struct coff_symfile_info *info = (struct coff_symfile_info *)sf->sym_private;
|
||
bfd *abfd = sf->sym_bfd;
|
||
char *name = bfd_get_filename (abfd);
|
||
int desc;
|
||
register int val;
|
||
int num_symbols;
|
||
int symtab_offset;
|
||
int stringtab_offset;
|
||
|
||
/* WARNING WILL ROBINSON! ACCESSING BFD-PRIVATE DATA HERE! FIXME! */
|
||
desc = fileno ((FILE *)(abfd->iostream)); /* Raw file descriptor */
|
||
num_symbols = bfd_get_symcount (abfd); /* How many syms */
|
||
/* symtab_offset = obj_sym_filepos (abfd); * Symbol table file offset */
|
||
/* stringtab_offset = symtab_offset + num_symbols * SYMESZ; * String tab */
|
||
/* End of warning */
|
||
|
||
#ifdef TDESC
|
||
debug_info = text_hdr.s_relptr;
|
||
if (tdesc_handle)
|
||
{
|
||
dc_terminate (tdesc_handle);
|
||
tdesc_handle = 0;
|
||
}
|
||
#endif
|
||
|
||
#if 0
|
||
/* Read the line number table, all at once. */
|
||
info->min_lineno_offset = 0;
|
||
info->max_lineno_offset = 0;
|
||
bfd_map_over_sections (abfd, find_linenos, info);
|
||
|
||
val = init_lineno (desc, info->min_lineno_offset,
|
||
info->max_lineno_offset - info->min_lineno_offset);
|
||
if (val < 0)
|
||
error ("\"%s\": error reading line numbers\n", name);
|
||
|
||
/* Now read the string table, all at once. */
|
||
|
||
val = init_stringtab (desc, stringtab_offset);
|
||
if (val < 0)
|
||
{
|
||
free_all_symtabs (); /* FIXME blows whole symtab */
|
||
printf ("\"%s\": can't get string table", name);
|
||
fflush (stdout);
|
||
return;
|
||
}
|
||
make_cleanup (free_stringtab, 0);
|
||
#endif
|
||
|
||
/* Position to read the symbol table. Do not read it all at once. */
|
||
val = lseek (desc, (long)symtab_offset, 0);
|
||
if (val < 0)
|
||
perror_with_name (name);
|
||
|
||
init_misc_bunches ();
|
||
make_cleanup (discard_misc_bunches, 0);
|
||
|
||
/* Now that the executable file is positioned at symbol table,
|
||
process it and define symbols accordingly. */
|
||
|
||
read_mips_symtab(abfd, desc);
|
||
|
||
/* patch_opaque_types ();*/
|
||
|
||
/* Sort symbols alphabetically within each block. */
|
||
|
||
sort_all_symtab_syms ();
|
||
|
||
/* Go over the misc symbol bunches and install them in vector. */
|
||
|
||
condense_misc_bunches (0);
|
||
}
|
||
|
||
void
|
||
mipscoff_symfile_discard()
|
||
{
|
||
}
|
||
|
||
/* Exported procedure: Allocate zeroed memory */
|
||
|
||
char *xzalloc(size)
|
||
{
|
||
char *p = xmalloc(size);
|
||
|
||
bzero(p, size);
|
||
return p;
|
||
}
|
||
|
||
/* Exported procedure: Builds a symtab from the PST partial one.
|
||
Restores the environment in effect when PST was created, delegates
|
||
most of the work to an ancillary procedure, and sorts
|
||
and reorders the symtab list at the end */
|
||
|
||
/* Forward decls */
|
||
static HDRR *cur_hdr; /* MIPS symtab header for the current file */
|
||
|
||
void
|
||
mipscoff_psymtab_to_symtab(pst)
|
||
struct partial_symtab *pst;
|
||
{
|
||
struct symtab *ret;
|
||
int i;
|
||
|
||
if (!pst)
|
||
return;
|
||
|
||
if (info_verbose) {
|
||
printf_filtered("Reading in symbols for %s...", pst->filename);
|
||
fflush(stdout);
|
||
}
|
||
/* Restore the header and list of pending typedefs */
|
||
/* FIXME, we should use private data that is a proper pointer. */
|
||
cur_hdr = (HDRR *) pst->ldsymlen;
|
||
|
||
psymtab_to_symtab_1(pst);
|
||
|
||
reorder_symtabs();
|
||
|
||
/* Finish up the debug error message. */
|
||
if (info_verbose)
|
||
printf_filtered("done.\n");
|
||
}
|
||
|
||
/* Exported procedure: Is PC in the signal trampoline code */
|
||
|
||
int
|
||
in_sigtramp(pc, name)
|
||
CORE_ADDR pc;
|
||
char *name;
|
||
{
|
||
if (sigtramp_address == 0)
|
||
fixup_sigtramp();
|
||
return (pc >= sigtramp_address && pc < sigtramp_end);
|
||
}
|
||
|
||
/* File-level interface functions */
|
||
|
||
/* Read the symtab information from file FSYM into memory. Also,
|
||
return address just past end of our text segment in *END_OF_TEXT_SEGP. */
|
||
|
||
static
|
||
read_the_mips_symtab(abfd, fsym, end_of_text_segp)
|
||
bfd *abfd;
|
||
int fsym;
|
||
CORE_ADDR *end_of_text_segp;
|
||
{
|
||
int stsize, st_hdrsize;
|
||
unsigned st_filptr;
|
||
HDRR st_hdr;
|
||
/* Header for executable/object file we read symbols from */
|
||
struct coff_exec filhdr;
|
||
|
||
/* We get here with DESC pointing to the symtab header. But we need
|
||
* other info from the initial headers */
|
||
lseek(fsym, 0L, 0);
|
||
myread(fsym, &filhdr, sizeof filhdr);
|
||
|
||
if (end_of_text_segp)
|
||
*end_of_text_segp =
|
||
bfd_h_get_32 (abfd, filhdr.a.text_start) +
|
||
bfd_h_get_32 (abfd, filhdr.a.tsize);
|
||
|
||
/* Find and read the symbol table header */
|
||
st_hdrsize = bfd_h_get_32 (abfd, filhdr.f.f_nsyms);
|
||
st_filptr = bfd_h_get_32 (abfd, filhdr.f.f_symptr);
|
||
if (st_filptr == 0)
|
||
return 0;
|
||
|
||
lseek(fsym, st_filptr, L_SET);
|
||
if (st_hdrsize > sizeof (st_hdr)) /* Profanity check */
|
||
abort();
|
||
if (read(fsym, &st_hdr, st_hdrsize) != st_hdrsize)
|
||
goto readerr;
|
||
|
||
/* Find out how large the symbol table is */
|
||
stsize = (st_hdr.cbExtOffset - (st_filptr + st_hdrsize))
|
||
+ st_hdr.iextMax * cbEXTR;
|
||
|
||
/* Allocate space for the symbol table. Read it in. */
|
||
cur_hdr = (HDRR *) xmalloc(stsize + st_hdrsize);
|
||
|
||
bcopy(&st_hdr, cur_hdr, st_hdrsize);
|
||
if (read(fsym, (char *) cur_hdr + st_hdrsize, stsize) != stsize)
|
||
goto readerr;
|
||
|
||
/* Fixup file_pointers in it */
|
||
fixup_symtab(cur_hdr, (char *) cur_hdr + st_hdrsize,
|
||
st_filptr + st_hdrsize);
|
||
|
||
return;
|
||
readerr:
|
||
error("Short read on %s", symfile);
|
||
}
|
||
|
||
|
||
/* Turn all file-relative pointers in the symtab described by HDR
|
||
into memory pointers, given that the symtab itself is located
|
||
at DATA in memory and F_PTR in the file. */
|
||
|
||
static
|
||
fixup_symtab( hdr, data, f_ptr)
|
||
HDRR *hdr;
|
||
char *data;
|
||
{
|
||
int f_idx, s_idx;
|
||
FDR *fh;
|
||
SYMR *sh;
|
||
OPTR *op;
|
||
PDR *pr;
|
||
EXTR *esh;
|
||
|
||
/*
|
||
* These fields are useless (and empty) by now:
|
||
* hdr->cbDnOffset, hdr->cbOptOffset
|
||
* We use them for other internal purposes.
|
||
*/
|
||
hdr->cbDnOffset = 0;
|
||
hdr->cbOptOffset = 0;
|
||
|
||
#define FIX(off) \
|
||
if (hdr->off) hdr->off = (unsigned int)data + (hdr->off - f_ptr);
|
||
|
||
FIX(cbLineOffset);
|
||
FIX(cbPdOffset);
|
||
FIX(cbSymOffset);
|
||
FIX(cbOptOffset);
|
||
FIX(cbAuxOffset);
|
||
FIX(cbSsOffset);
|
||
FIX(cbSsExtOffset);
|
||
FIX(cbFdOffset);
|
||
FIX(cbRfdOffset);
|
||
FIX(cbExtOffset);
|
||
#undef FIX
|
||
|
||
|
||
/*
|
||
* Fix all string pointers inside the symtab, and
|
||
* the FDR records. Also fix other miscellany.
|
||
*/
|
||
for (f_idx = 0; f_idx < hdr->ifdMax; f_idx++) {
|
||
register unsigned code_offset;
|
||
|
||
/* Header itself, and strings */
|
||
fh = (FDR *) (hdr->cbFdOffset) + f_idx;
|
||
fh->issBase += hdr->cbSsOffset;
|
||
if (fh->rss != -1)
|
||
fh->rss = (long)fh->rss + fh->issBase;
|
||
for (s_idx = 0; s_idx < fh->csym; s_idx++) {
|
||
sh = (SYMR*)(hdr->cbSymOffset) + fh->isymBase + s_idx;
|
||
sh->iss = (long) sh->iss + fh->issBase;
|
||
sh->reserved = 0;
|
||
}
|
||
|
||
cur_fd = f_idx;
|
||
|
||
/* Local symbols */
|
||
fh->isymBase = (int)((SYMR*)(hdr->cbSymOffset)+fh->isymBase);
|
||
|
||
/* cannot fix fh->ipdFirst because it is a short */
|
||
#define IPDFIRST(h,fh) \
|
||
((long)h->cbPdOffset + fh->ipdFirst * sizeof(PDR))
|
||
|
||
/* Optional symbols (actually used for partial_symtabs) */
|
||
fh->ioptBase = 0;
|
||
fh->copt = 0;
|
||
|
||
/* Aux symbols */
|
||
if (fh->caux)
|
||
fh->iauxBase = hdr->cbAuxOffset + fh->iauxBase * sizeof(AUXU);
|
||
/* Relative file descriptor table */
|
||
fh->rfdBase = hdr->cbRfdOffset + fh->rfdBase * sizeof(RFDT);
|
||
|
||
/* Line numbers */
|
||
if (fh->cbLine)
|
||
fh->cbLineOffset += hdr->cbLineOffset;
|
||
|
||
/* Procedure symbols. (XXX This should be done later) */
|
||
code_offset = fh->adr;
|
||
for (s_idx = 0; s_idx < fh->cpd; s_idx++) {
|
||
unsigned name, only_ext;
|
||
|
||
pr = (PDR*)(IPDFIRST(hdr,fh)) + s_idx;
|
||
|
||
/* Simple rule to find files linked "-x" */
|
||
only_ext = fh->rss == -1;
|
||
if (only_ext) {
|
||
if (pr->isym == -1) {
|
||
/* static function */
|
||
sh = (SYMR*)-1;
|
||
} else {
|
||
/* external */
|
||
name = hdr->cbExtOffset + pr->isym * sizeof(EXTR);
|
||
sh = &((EXTR*)name)->asym;
|
||
}
|
||
} else {
|
||
/* Full symbols */
|
||
sh = (SYMR*)fh->isymBase + pr->isym;
|
||
/* Included code ? */
|
||
if (s_idx == 0 && pr->adr != 0)
|
||
code_offset -= pr->adr;
|
||
}
|
||
|
||
/* Turn index into a pointer */
|
||
pr->isym = (long)sh;
|
||
|
||
/* Fix line numbers */
|
||
pr->cbLineOffset += fh->cbLineOffset;
|
||
|
||
/* Relocate address */
|
||
if (!only_ext)
|
||
pr->adr += code_offset;
|
||
}
|
||
}
|
||
|
||
/* External symbols: fix string */
|
||
for (s_idx = 0; s_idx < hdr->iextMax; s_idx++) {
|
||
esh = (EXTR*)(hdr->cbExtOffset) + s_idx;
|
||
esh->asym.iss = esh->asym.iss + hdr->cbSsExtOffset;
|
||
}
|
||
}
|
||
|
||
|
||
/* Find a file descriptor given its index RF relative to a file CF */
|
||
|
||
static
|
||
FDR *get_rfd( cf, rf)
|
||
{
|
||
register FDR *f;
|
||
|
||
f = (FDR *) (cur_hdr->cbFdOffset) + cf;
|
||
/* Object files do not have the RFD table, all refs are absolute */
|
||
if (f->rfdBase == 0)
|
||
return (FDR *) (cur_hdr->cbFdOffset) + rf;
|
||
cf = *((pRFDT) f->rfdBase + rf);
|
||
return (FDR *) (cur_hdr->cbFdOffset) + cf;
|
||
}
|
||
|
||
/* Return a safer print NAME for a file descriptor */
|
||
|
||
static
|
||
char *fdr_name(name)
|
||
char *name;
|
||
{
|
||
if (name == (char *) -1)
|
||
return "<stripped file>";
|
||
if (UNSAFE_DATA_ADDR(name))
|
||
return "<NFY>";
|
||
return name;
|
||
}
|
||
|
||
|
||
/* Read in and parse the symtab of the file DESC. INCREMENTAL says
|
||
whether we are adding to the general symtab or not.
|
||
FIXME: INCREMENTAL is currently always zero, though it should not be. */
|
||
|
||
static
|
||
read_mips_symtab (abfd, desc)
|
||
bfd *abfd;
|
||
int desc;
|
||
{
|
||
CORE_ADDR end_of_text_seg;
|
||
|
||
read_the_mips_symtab(abfd, desc, &end_of_text_seg);
|
||
|
||
parse_partial_symbols(cur_hdr, end_of_text_seg);
|
||
cur_hdr = 0;
|
||
|
||
/*
|
||
* Check to make sure file was compiled with -g.
|
||
* If not, warn the user of this limitation.
|
||
*/
|
||
if (compare_glevel(max_glevel, GLEVEL_2) < 0) {
|
||
if (max_gdbinfo == 0)
|
||
printf("\n%s not compiled with -g, debugging support is limited.", symfile);
|
||
printf("\nYou should compile with -g2 or -g3 for best debugging support.\n");
|
||
fflush(stdout);
|
||
}
|
||
|
||
/*
|
||
* Dont allow char * to have a typename (else would get
|
||
* caddr_t.)
|
||
*/
|
||
TYPE_NAME(lookup_pointer_type(builtin_type_char)) = 0;
|
||
}
|
||
|
||
|
||
/* Local utilities */
|
||
|
||
|
||
/* Map of FDR indexes to partial symtabs */
|
||
|
||
static struct pst_map {
|
||
struct partial_symtab *pst; /* the psymtab proper */
|
||
int n_globals; /* globals it exports */
|
||
int n_statics; /* statics (locals) it contains */
|
||
} * fdr_to_pst;
|
||
|
||
|
||
/* Utility stack, used to nest procedures and blocks properly.
|
||
It is a doubly linked list, to avoid too many alloc/free.
|
||
Since we might need it quite a few times it is NOT deallocated
|
||
after use. */
|
||
|
||
static struct parse_stack {
|
||
struct parse_stack *next, *prev;
|
||
struct symtab *cur_st; /* Current symtab */
|
||
struct block *cur_block; /* Block in it */
|
||
int blocktype; /* What are we parsing */
|
||
int maxsyms; /* Max symbols in this block */
|
||
struct type *cur_type; /* Type we parse fields for */
|
||
int procadr; /* Start addres of this procedure */
|
||
int numargs; /* Its argument count */
|
||
} *top_stack; /* Top stack ptr */
|
||
|
||
|
||
/* Enter a new lexical context */
|
||
|
||
static push_parse_stack()
|
||
{
|
||
struct parse_stack *new;
|
||
|
||
/* Reuse frames if possible */
|
||
if (top_stack && top_stack->prev)
|
||
new = top_stack->prev;
|
||
else
|
||
new = (struct parse_stack *) xzalloc(sizeof(struct parse_stack));
|
||
/* Initialize new frame with previous content */
|
||
if (top_stack) {
|
||
register struct parse_stack *prev = new->prev;
|
||
|
||
*new = *top_stack;
|
||
top_stack->prev = new;
|
||
new->prev = prev;
|
||
new->next = top_stack;
|
||
}
|
||
top_stack = new;
|
||
}
|
||
|
||
/* Exit a lexical context */
|
||
|
||
static pop_parse_stack()
|
||
{
|
||
if (!top_stack)
|
||
return;
|
||
if (top_stack->next)
|
||
top_stack = top_stack->next;
|
||
}
|
||
|
||
|
||
/* Cross-references might be to things we haven't looked at
|
||
yet, e.g. type references. To avoid too many type
|
||
duplications we keep a quick fixup table, an array
|
||
of lists of references indexed by file descriptor */
|
||
|
||
static struct pending {
|
||
struct pending *next; /* link */
|
||
SYMR *s; /* the symbol */
|
||
struct type *t; /* its partial type descriptor */
|
||
} **pending_list;
|
||
|
||
|
||
/* Check whether we already saw symbol SH in file FH as undefined */
|
||
|
||
static
|
||
struct pending *is_pending_symbol(fh, sh)
|
||
FDR *fh;
|
||
SYMR *sh;
|
||
{
|
||
int f_idx = fh - (FDR *) cur_hdr->cbFdOffset;
|
||
register struct pending *p;
|
||
|
||
/* Linear search is ok, list is typically no more than 10 deep */
|
||
for (p = pending_list[f_idx]; p; p = p->next)
|
||
if (p->s == sh)
|
||
break;
|
||
return p;
|
||
}
|
||
|
||
/* Check whether we already saw type T in file FH as undefined */
|
||
|
||
static
|
||
struct pending *is_pending_type(fh, t)
|
||
FDR *fh;
|
||
struct type *t;
|
||
{
|
||
int f_idx = fh - (FDR *) cur_hdr->cbFdOffset;
|
||
register struct pending *p;
|
||
|
||
for (p = pending_list[f_idx]; p; p = p->next)
|
||
if (p->t == t)
|
||
break;
|
||
return p;
|
||
}
|
||
|
||
/* Add a new undef symbol SH of type T */
|
||
|
||
static
|
||
add_pending(fh, sh, t)
|
||
FDR *fh;
|
||
SYMR *sh;
|
||
struct type *t;
|
||
{
|
||
int f_idx = fh - (FDR *) cur_hdr->cbFdOffset;
|
||
struct pending *p = is_pending_symbol(fh, sh);
|
||
|
||
/* Make sure we do not make duplicates */
|
||
if (!p) {
|
||
p = (struct pending *) xmalloc(sizeof(*p));
|
||
p->s = sh;
|
||
p->t = t;
|
||
p->next = pending_list[f_idx];
|
||
pending_list[f_idx] = p;
|
||
}
|
||
sh->reserved = 1; /* for quick check */
|
||
}
|
||
|
||
/* Throw away undef entries when done with file index F_IDX */
|
||
|
||
static
|
||
free_pending(f_idx)
|
||
{
|
||
register struct pending *p, *q;
|
||
|
||
for (p = pending_list[f_idx]; p; p = q) {
|
||
q = p->next;
|
||
free(p);
|
||
}
|
||
pending_list[f_idx] = 0;
|
||
}
|
||
|
||
/* The number of args to a procedure is not explicit in the symtab,
|
||
this is the list of all those we know of.
|
||
This makes parsing more reasonable and avoids extra passes */
|
||
|
||
static struct numarg {
|
||
struct numarg *next; /* link */
|
||
unsigned adr; /* procedure's start address */
|
||
unsigned num; /* arg count */
|
||
} *numargs_list;
|
||
|
||
/* Record that the procedure at ADR takes NUM arguments. */
|
||
|
||
static
|
||
got_numargs(adr,num)
|
||
{
|
||
struct numarg *n = (struct numarg *) xmalloc(sizeof(struct numarg));
|
||
|
||
n->adr = adr;
|
||
n->num = num;
|
||
n->next = numargs_list;
|
||
numargs_list = n;
|
||
}
|
||
|
||
/* See if we know how many arguments the procedure at ADR takes */
|
||
|
||
static
|
||
lookup_numargs(adr)
|
||
{
|
||
struct numarg *n = numargs_list;
|
||
|
||
while (n && n->adr != adr)
|
||
n = n->next;
|
||
return (n) ? n->num : -1;
|
||
}
|
||
|
||
/* Release storage when done with this file */
|
||
|
||
static
|
||
free_numargs()
|
||
{
|
||
struct numarg *n = numargs_list, *m;
|
||
|
||
while (n) {
|
||
m = n->next;
|
||
free(n);
|
||
n = m;
|
||
}
|
||
numargs_list = 0;
|
||
}
|
||
|
||
|
||
/* Parsing Routines proper. */
|
||
|
||
/* Parse a single symbol. Mostly just make up a GDB symbol for it.
|
||
For blocks, procedures and types we open a new lexical context.
|
||
This is basically just a big switch on the symbol's type */
|
||
|
||
static
|
||
parse_symbol(sh, ax)
|
||
SYMR *sh;
|
||
AUXU *ax;
|
||
{
|
||
struct symbol *s;
|
||
struct block *b;
|
||
struct type *t;
|
||
struct field *f;
|
||
/* When a symbol is cross-referenced from other files/symbols
|
||
we mark it explicitly */
|
||
int pend = (sh->reserved == 1);
|
||
enum address_class class;
|
||
|
||
switch (sh->st) {
|
||
|
||
case stNil:
|
||
break;
|
||
|
||
case stGlobal: /* external symbol, goes into the primary block */
|
||
class = LOC_STATIC;
|
||
b = BLOCKVECTOR_BLOCK(BLOCKVECTOR(top_stack->cur_st),
|
||
GLOBAL_BLOCK);
|
||
s = new_symbol(sh->iss);
|
||
SYMBOL_VALUE_ADDRESS(s) = (CORE_ADDR)sh->value;
|
||
goto data;
|
||
|
||
case stStatic: /* static data, goes into the current block. */
|
||
class = LOC_STATIC;
|
||
b = top_stack->cur_block;
|
||
s = new_symbol(sh->iss);
|
||
SYMBOL_VALUE_ADDRESS(s) = (CORE_ADDR)sh->value;
|
||
goto data;
|
||
|
||
case stLocal: /* local variable, goes into the current block */
|
||
if (sh->sc == scRegister) {
|
||
class = LOC_REGISTER;
|
||
if (sh->value > 31)
|
||
sh->value += 6;
|
||
} else
|
||
class = LOC_LOCAL;
|
||
b = top_stack->cur_block;
|
||
s = new_symbol(sh->iss);
|
||
SYMBOL_VALUE(s) = sh->value;
|
||
|
||
data: /* Common code for symbols describing data */
|
||
SYMBOL_NAMESPACE(s) = VAR_NAMESPACE;
|
||
SYMBOL_CLASS(s) = class;
|
||
add_symbol(s, b);
|
||
|
||
/* Type could be missing in a number of cases */
|
||
if (sh->sc == scUndefined || sh->sc == scNil ||
|
||
sh->index == 0xfffff)
|
||
SYMBOL_TYPE(s) = builtin_type_int; /* undefined? */
|
||
else
|
||
SYMBOL_TYPE(s) = parse_type(ax + sh->index, sh, 0);
|
||
/* Value of a data symbol is its memory address */
|
||
break;
|
||
|
||
case stParam: /* argument to procedure, goes into current block */
|
||
max_gdbinfo++;
|
||
top_stack->numargs++;
|
||
s = new_symbol(sh->iss);
|
||
SYMBOL_NAMESPACE(s) = VAR_NAMESPACE;
|
||
if (sh->sc == scRegister) {
|
||
SYMBOL_CLASS(s) = LOC_REGPARM;
|
||
if (sh->value > 31)
|
||
sh->value += 6;
|
||
} else
|
||
SYMBOL_CLASS(s) = LOC_ARG;
|
||
SYMBOL_VALUE(s) = sh->value;
|
||
SYMBOL_TYPE(s) = parse_type(ax + sh->index, sh, 0);
|
||
add_symbol(s, top_stack->cur_block);
|
||
break;
|
||
|
||
case stLabel: /* label, we do make a symbol for it */
|
||
s = new_symbol(sh->iss);
|
||
SYMBOL_NAMESPACE(s) = VAR_NAMESPACE; /* so that it can be used */
|
||
SYMBOL_CLASS(s) = LOC_LABEL; /* but not misused */
|
||
SYMBOL_VALUE_ADDRESS(s) = (CORE_ADDR)sh->value;
|
||
SYMBOL_TYPE(s) = builtin_type_int;
|
||
add_symbol(s, top_stack->cur_block);
|
||
break;
|
||
|
||
case stProc: /* Procedure */
|
||
case stStaticProc: /* Static procedure */
|
||
s = new_symbol(sh->iss);
|
||
SYMBOL_NAMESPACE(s) = VAR_NAMESPACE;
|
||
SYMBOL_CLASS(s) = LOC_BLOCK;
|
||
/* Type of the return value */
|
||
if (sh->sc == scUndefined || sh->sc == scNil)
|
||
t = builtin_type_int;
|
||
else
|
||
t = parse_type(ax + sh->index, sh, 0);
|
||
add_symbol(s, top_stack->cur_block);
|
||
|
||
/* Make a type for the procedure itself */
|
||
SYMBOL_TYPE(s) = lookup_function_type (t);
|
||
|
||
/* Create and enter a new lexical context */
|
||
b = new_block(top_stack->maxsyms);
|
||
SYMBOL_BLOCK_VALUE(s) = b;
|
||
BLOCK_FUNCTION(b) = s;
|
||
BLOCK_START(b) = BLOCK_END(b) = sh->value;
|
||
BLOCK_SUPERBLOCK(b) = top_stack->cur_block;
|
||
add_block(b, top_stack->cur_st);
|
||
|
||
/* Not if we only have partial info */
|
||
if (sh->sc == scUndefined || sh->sc == scNil)
|
||
break;
|
||
|
||
push_parse_stack();
|
||
top_stack->cur_block = b;
|
||
top_stack->blocktype = sh->st;
|
||
top_stack->cur_type = SYMBOL_TYPE(s);
|
||
top_stack->procadr = sh->value;
|
||
top_stack->numargs = 0;
|
||
|
||
sh->value = (long) SYMBOL_TYPE(s);
|
||
break;
|
||
|
||
case stBlock: /* Either a lexical block, or some type */
|
||
push_parse_stack();
|
||
top_stack->blocktype = stBlock;
|
||
if (sh->sc == scInfo) { /* structure/union/enum def */
|
||
s = new_symbol(sh->iss);
|
||
SYMBOL_NAMESPACE(s) = STRUCT_NAMESPACE;
|
||
SYMBOL_CLASS(s) = LOC_TYPEDEF;
|
||
SYMBOL_VALUE(s) = 0;
|
||
add_symbol(s, top_stack->cur_block);
|
||
/* If this type was expected, use its partial definition */
|
||
if (pend) {
|
||
t = is_pending_symbol(cur_fdr, sh)->t;
|
||
} else {
|
||
/* Uhmm, can`t decide yet. Smash later */
|
||
t = new_type(sh->iss);
|
||
TYPE_CODE(t) = TYPE_CODE_UNDEF;
|
||
add_pending(cur_fdr, sh, t);
|
||
}
|
||
SYMBOL_TYPE(s) = t;
|
||
/* make this the current type */
|
||
top_stack->cur_type = t;
|
||
TYPE_LENGTH(t) = sh->value;
|
||
/* Mark that symbol has a type, and say which one */
|
||
sh->value = (long) t;
|
||
} else {
|
||
/* beginnning of (code) block. Value of symbol
|
||
is the displacement from procedure start */
|
||
b = new_block(top_stack->maxsyms);
|
||
BLOCK_START(b) = sh->value + top_stack->procadr;
|
||
BLOCK_SUPERBLOCK(b) = top_stack->cur_block;
|
||
top_stack->cur_block = b;
|
||
add_block(b, top_stack->cur_st);
|
||
}
|
||
break;
|
||
|
||
case stEnd: /* end (of anything) */
|
||
if (sh->sc == scInfo) {
|
||
/* Finished with type */
|
||
top_stack->cur_type = 0;
|
||
} else if (sh->sc == scText &&
|
||
(top_stack->blocktype == stProc ||
|
||
top_stack->blocktype == stStaticProc)) {
|
||
/* Finished with procedure */
|
||
struct blockvector *bv = BLOCKVECTOR(top_stack->cur_st);
|
||
struct block *b;
|
||
int i;
|
||
|
||
BLOCK_END(top_stack->cur_block) += sh->value; /* size */
|
||
got_numargs(top_stack->procadr, top_stack->numargs);
|
||
/* Reallocate symbols, saving memory */
|
||
b = shrink_block(top_stack->cur_block, top_stack->cur_st);
|
||
|
||
/* f77 emits proc-level with address bounds==[0,0],
|
||
So look for such child blocks, and patch them. */
|
||
for (i = 0; i < BLOCKVECTOR_NBLOCKS(bv); i++) {
|
||
struct block *b_bad = BLOCKVECTOR_BLOCK(bv,i);
|
||
if (BLOCK_SUPERBLOCK(b_bad) == b
|
||
&& BLOCK_START(b_bad) == top_stack->procadr
|
||
&& BLOCK_END(b_bad) == top_stack->procadr) {
|
||
BLOCK_START(b_bad) = BLOCK_START(b);
|
||
BLOCK_END(b_bad) = BLOCK_END(b);
|
||
}
|
||
}
|
||
if (entry_point < BLOCK_END(b)
|
||
&& entry_point >= BLOCK_START(b)) {
|
||
startup_file_start = BLOCK_START(b);
|
||
startup_file_end = BLOCK_END(b);
|
||
}
|
||
} else if (sh->sc == scText && top_stack->blocktype == stBlock) {
|
||
/* End of (code) block. The value of the symbol
|
||
is the displacement from the procedure`s start
|
||
address of the end of this block. */
|
||
BLOCK_END(top_stack->cur_block) = sh->value + top_stack->procadr;
|
||
(void) shrink_block(top_stack->cur_block, top_stack->cur_st);
|
||
}
|
||
pop_parse_stack(); /* restore previous lexical context */
|
||
break;
|
||
|
||
case stMember: /* member of struct/union/enum.. */
|
||
f = new_field(top_stack->cur_type, sh->iss);
|
||
f->bitpos = sh->value;
|
||
f->type = parse_type(ax + sh->index, sh, &f->bitsize);
|
||
break;
|
||
|
||
case stTypedef: /* type definition */
|
||
s = new_symbol(sh->iss);
|
||
SYMBOL_NAMESPACE(s) = VAR_NAMESPACE;
|
||
SYMBOL_CLASS(s) = LOC_TYPEDEF;
|
||
SYMBOL_BLOCK_VALUE(s) = top_stack->cur_block;
|
||
add_symbol(s, top_stack->cur_block);
|
||
SYMBOL_TYPE(s) = parse_type(ax + sh->index, sh, 0);
|
||
sh->value = (long) SYMBOL_TYPE(s);
|
||
break;
|
||
|
||
case stFile: /* file name */
|
||
push_parse_stack();
|
||
top_stack->blocktype = sh->st;
|
||
break;
|
||
|
||
/* I`ve never seen these for C */
|
||
case stRegReloc:
|
||
break; /* register relocation */
|
||
case stForward:
|
||
break; /* forwarding address */
|
||
case stConstant:
|
||
break; /* constant */
|
||
default:
|
||
error("Unknown symbol type %x.", sh->st);
|
||
}
|
||
sh->st = stParsed;
|
||
}
|
||
|
||
/* Parse the type information provided in the AX entries for
|
||
the symbol SH. Return the bitfield size in BS, in case. */
|
||
|
||
static struct type *parse_type(ax, sh, bs)
|
||
AUXU *ax;
|
||
SYMR *sh;
|
||
int *bs;
|
||
{
|
||
/* Null entries in this map are treated specially */
|
||
static struct type **map_bt[] =
|
||
{
|
||
&builtin_type_void, /* btNil */
|
||
0, /* btAdr */
|
||
&builtin_type_char, /* btChar */
|
||
&builtin_type_unsigned_char, /* btUChar */
|
||
&builtin_type_short, /* btShort */
|
||
&builtin_type_unsigned_short, /* btUShort */
|
||
&builtin_type_int, /* btInt */
|
||
&builtin_type_unsigned_int, /* btUInt */
|
||
&builtin_type_long, /* btLong */
|
||
&builtin_type_unsigned_long, /* btULong */
|
||
&builtin_type_float, /* btFloat */
|
||
&builtin_type_double, /* btDouble */
|
||
0, /* btStruct */
|
||
0, /* btUnion */
|
||
0, /* btEnum */
|
||
0, /* btTypedef */
|
||
0, /* btRange */
|
||
0, /* btSet */
|
||
&builtin_type_complex, /* btComplex */
|
||
&builtin_type_double_complex, /* btDComplex */
|
||
0, /* btIndirect */
|
||
&builtin_type_fixed_dec, /* btFixedDec */
|
||
&builtin_type_float_dec, /* btFloatDec */
|
||
&builtin_type_string, /* btString */
|
||
0, /* btBit */
|
||
0, /* btPicture */
|
||
&builtin_type_void, /* btVoid */
|
||
};
|
||
|
||
TIR *t;
|
||
struct type *tp = 0, *tp1;
|
||
char *fmt = "%s";
|
||
|
||
/* Procedures start off by one */
|
||
if (sh->st == stProc || sh->st == stStaticProc)
|
||
ax++;
|
||
|
||
/* Undefined ? Should not happen */
|
||
if (ax->rndx.rfd == 0xfff) {
|
||
return builtin_type_void;
|
||
}
|
||
|
||
/* Use aux as a type information record, map its basic type */
|
||
t = &ax->ti;
|
||
if (t->bt > 26 || t->bt == btPicture) {
|
||
printf_filtered("Internal: cannot map MIPS basic type x%x\n", t->bt);
|
||
return builtin_type_int;
|
||
}
|
||
if (map_bt[t->bt])
|
||
tp = *map_bt[t->bt];
|
||
else {
|
||
/* Cannot use builtin types, use templates */
|
||
tp = make_type(TYPE_CODE_VOID, 0, 0, 0);
|
||
switch (t->bt) {
|
||
case btAdr:
|
||
*tp = *builtin_type_ptr;
|
||
break;
|
||
case btStruct:
|
||
*tp = *builtin_type_struct;
|
||
fmt = "struct %s";
|
||
break;
|
||
case btUnion:
|
||
*tp = *builtin_type_union;
|
||
fmt = "union %s";
|
||
break;
|
||
case btEnum:
|
||
*tp = *builtin_type_enum;
|
||
fmt = "enum %s";
|
||
break;
|
||
case btRange:
|
||
*tp = *builtin_type_range;
|
||
break;
|
||
case btSet:
|
||
*tp = *builtin_type_set;
|
||
fmt = "set %s";
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Move on to next aux */
|
||
ax++;
|
||
if (t->continued) {
|
||
/* This is the way it would work if the compiler worked */
|
||
register TIR *t1 = t;
|
||
while (t1->continued)
|
||
ax++;
|
||
}
|
||
|
||
/* For bitfields all we need is the width */
|
||
if (t->fBitfield) {
|
||
*bs = ax->width;
|
||
return tp;
|
||
}
|
||
|
||
/* All these types really point to some (common) MIPS type
|
||
definition, and only the type-qualifiers fully identify
|
||
them. We`ll make the same effort at sharing */
|
||
if (t->bt == btIndirect ||
|
||
t->bt == btStruct ||
|
||
t->bt == btUnion ||
|
||
t->bt == btEnum ||
|
||
t->bt == btTypedef ||
|
||
t->bt == btRange ||
|
||
t->bt == btSet) {
|
||
char name[256], *pn;
|
||
|
||
/* Try to cross reference this type */
|
||
tp1 = tp;
|
||
ax += cross_ref(ax, &tp1, &pn);
|
||
/* SOMEONE OUGHT TO FIX DBXREAD TO DROP "STRUCT" */
|
||
sprintf(name, fmt, pn);
|
||
|
||
/* reading .o file ? */
|
||
if (UNSAFE_DATA_ADDR(tp1))
|
||
tp1 = tp;
|
||
if (TYPE_CODE(tp1) == TYPE_CODE_UNDEF) {
|
||
/*
|
||
* Type was incompletely defined, now we know.
|
||
*/
|
||
TYPE_CODE(tp1) = TYPE_CODE(tp);
|
||
TYPE_NAME(tp1) = obsavestring(name, strlen(name));
|
||
if (TYPE_CODE(tp1) == TYPE_CODE_ENUM) {
|
||
int i;
|
||
|
||
for (i = 0; i < TYPE_NFIELDS(tp1); i++)
|
||
make_enum_constant(&TYPE_FIELD(tp1,i), tp1);
|
||
}
|
||
}
|
||
if (tp1 != tp) {
|
||
/* found as cross ref, rid of our template */
|
||
if ((TYPE_FLAGS(tp) & TYPE_FLAG_PERM) == 0)
|
||
free(tp);
|
||
tp = tp1;
|
||
/* stupid idea of prepending "struct" to type names */
|
||
if (t->bt == btStruct && !index(TYPE_NAME(tp), ' ')) {
|
||
sprintf(name, fmt, TYPE_NAME(tp));
|
||
TYPE_NAME(tp) = obsavestring(name, strlen(name));
|
||
}
|
||
} else
|
||
TYPE_NAME(tp) = savestring(name, strlen(name));
|
||
}
|
||
|
||
/* Deal with range types */
|
||
if (t->bt == btRange) {
|
||
struct field *f;
|
||
|
||
f = new_field(tp, "Low");
|
||
f->bitpos = ax->dnLow;
|
||
ax++;
|
||
f = new_field(tp, "High");
|
||
f->bitpos = ax->dnHigh;
|
||
ax++;
|
||
}
|
||
|
||
/* Parse all the type qualifiers now. If there are more
|
||
than 6 the game will continue in the next aux */
|
||
|
||
#define PARSE_TQ(tq) \
|
||
if (t->tq != tqNil) ax += upgrade_type(&tp, t->tq, ax, sh);
|
||
|
||
again: PARSE_TQ(tq0);
|
||
PARSE_TQ(tq1);
|
||
PARSE_TQ(tq2);
|
||
PARSE_TQ(tq3);
|
||
PARSE_TQ(tq4);
|
||
PARSE_TQ(tq5);
|
||
#undef PARSE_TQ
|
||
|
||
if (t->continued) {
|
||
t++;
|
||
goto again;
|
||
}
|
||
return tp;
|
||
}
|
||
|
||
/* Make up a complex type from a basic one. Type is passed by
|
||
reference in TPP and side-effected as necessary. The type
|
||
qualifier TQ says how to handle the aux symbols at AX for
|
||
the symbol SX we are currently analyzing.
|
||
Returns the number of aux symbols we parsed. */
|
||
|
||
static
|
||
upgrade_type(tpp, tq, ax, sh)
|
||
struct type **tpp;
|
||
AUXU *ax;
|
||
SYMR *sh;
|
||
{
|
||
int off = 0;
|
||
int ret = 0;
|
||
struct type *t;
|
||
|
||
if (tq == tqPtr) {
|
||
t = lookup_pointer_type (*tpp);
|
||
} else if (tq == tqProc) {
|
||
t = lookup_function_type (*tpp);
|
||
} else if (tq == tqArray) {
|
||
int rf, id;
|
||
FDR *fh;
|
||
struct field *f;
|
||
SYMR ss;
|
||
|
||
t = make_type(TYPE_CODE_ARRAY, 0, 0, 0);
|
||
TYPE_TARGET_TYPE(t) = *tpp;
|
||
|
||
/* Pointer to domain type (type of index) */
|
||
id = ax->rndx.index;
|
||
if ((rf = ax->rndx.rfd) == 0xfff)
|
||
rf = (++ax)->isym, off++;
|
||
|
||
fh = get_rfd(cur_fd, rf);
|
||
f = new_field(t, 0);
|
||
bzero(&ss, sizeof ss);
|
||
/* XXX */ f->type = parse_type(fh->iauxBase + id * sizeof(AUXU),
|
||
&ss, &f->bitsize);
|
||
|
||
/*
|
||
* This seems to be a pointer to the end of the Block defining
|
||
* the type. Why it is here is magic for me, and I have no
|
||
* good use for it anyways.
|
||
*/
|
||
if (off == 0) {
|
||
off++;
|
||
id = (++ax)->rndx.index;
|
||
if ((rf = ax->rndx.rfd) == 0xfff)
|
||
rf = (++ax)->isym, off++;
|
||
}
|
||
f->bitpos = (++ax)->dnLow; /* ?? */
|
||
f->bitsize = (++ax)->dnHigh; /* ?? */
|
||
rf = (++ax)->width - 1; /* bit alignment */
|
||
id = TYPE_LENGTH(TYPE_TARGET_TYPE(t)) << 3; /* bitsize */
|
||
|
||
if (id == 0) {
|
||
/* Most likely an undefined type */
|
||
id = rf + 1;
|
||
TYPE_LENGTH(TYPE_TARGET_TYPE(t)) = id >> 3;
|
||
}
|
||
TYPE_LENGTH(t) = (f->bitsize < 0) ? 0 :
|
||
(f->bitsize - f->bitpos + 1) * (id >> 3);
|
||
ret = 4 + off;
|
||
} else {
|
||
if (tq != tqVol)
|
||
printf_filtered("Internal: unknown type qualifier %x\n", tq);
|
||
return ret;
|
||
}
|
||
|
||
*tpp = t;
|
||
return ret;
|
||
}
|
||
|
||
|
||
/* Parse a procedure descriptor record PR. Note that the procedure
|
||
is parsed _after_ the local symbols, now we just make up the
|
||
extra information we need into a special symbol that we insert
|
||
in the procedure's main block. Note also that images that
|
||
have been partially stripped (ld -x) have been deprived
|
||
of local symbols, and we have to cope with them here.
|
||
The procedure's code ends at BOUND */
|
||
|
||
static
|
||
parse_procedure(pr, bound)
|
||
PDR *pr;
|
||
{
|
||
struct symbol *s, *i;
|
||
SYMR *sh = (SYMR*)pr->isym;
|
||
struct block *b;
|
||
struct mips_extra_func_info *e;
|
||
char name[100];
|
||
char *sh_name;
|
||
|
||
/* Reuse the MIPS record */
|
||
e = (struct mips_extra_func_info *) pr;
|
||
e->numargs = lookup_numargs(pr->adr);
|
||
|
||
/* Make up our special symbol */
|
||
i = new_symbol(".gdbinfo.");
|
||
SYMBOL_VALUE(i) = (int)e;
|
||
SYMBOL_NAMESPACE(i) = LABEL_NAMESPACE;
|
||
SYMBOL_CLASS(i) = LOC_CONST;
|
||
SYMBOL_TYPE(i) = builtin_type_void;
|
||
|
||
/* Make up a name for static procedures. Sigh. */
|
||
if (sh == (SYMR*)-1) {
|
||
sprintf(name,".static_procedure@%x",pr->adr);
|
||
sh_name = savestring(name, strlen(name));
|
||
s = NULL;
|
||
}
|
||
else {
|
||
sh_name = (char*)sh->iss;
|
||
s = mylookup_symbol(sh_name, top_stack->cur_block,
|
||
VAR_NAMESPACE, LOC_BLOCK);
|
||
}
|
||
if (s != 0) {
|
||
b = SYMBOL_BLOCK_VALUE(s);
|
||
} else {
|
||
s = new_symbol(sh_name);
|
||
SYMBOL_NAMESPACE(s) = VAR_NAMESPACE;
|
||
SYMBOL_CLASS(s) = LOC_BLOCK;
|
||
/* Donno its type, hope int is ok */
|
||
SYMBOL_TYPE(s) = lookup_function_type (builtin_type_int);
|
||
add_symbol(s, top_stack->cur_block);
|
||
/* Wont have symbols for this one */
|
||
b = new_block(2);
|
||
SYMBOL_BLOCK_VALUE(s) = b;
|
||
BLOCK_FUNCTION(b) = s;
|
||
BLOCK_START(b) = pr->adr;
|
||
BLOCK_END(b) = bound;
|
||
BLOCK_SUPERBLOCK(b) = top_stack->cur_block;
|
||
add_block(b, top_stack->cur_st);
|
||
}
|
||
e->isym = (long)s;
|
||
add_symbol(i,b);
|
||
}
|
||
|
||
/* Parse the external symbol ES. Just call parse_symbol() after
|
||
making sure we know where the aux are for it. For procedures,
|
||
parsing of the PDRs has already provided all the needed
|
||
information, we only parse them if SKIP_PROCEDURES is false,
|
||
and only if this causes no symbol duplication.
|
||
|
||
This routine clobbers top_stack->cur_block and ->cur_st. */
|
||
|
||
static
|
||
parse_external(es, skip_procedures)
|
||
EXTR *es;
|
||
{
|
||
AUXU *ax;
|
||
|
||
if (es->ifd != ifdNil) {
|
||
cur_fd = es->ifd;
|
||
cur_fdr = (FDR*)(cur_hdr->cbFdOffset) + cur_fd;
|
||
ax = (AUXU*)cur_fdr->iauxBase;
|
||
} else {
|
||
cur_fdr = (FDR*)(cur_hdr->cbFdOffset);
|
||
ax = 0;
|
||
}
|
||
top_stack->cur_st = cur_stab;
|
||
top_stack->cur_block = BLOCKVECTOR_BLOCK(BLOCKVECTOR(top_stack->cur_st),
|
||
GLOBAL_BLOCK);
|
||
|
||
/* Reading .o files */
|
||
if (es->asym.sc == scUndefined || es->asym.sc == scNil) {
|
||
char *what;
|
||
switch (es->asym.st) {
|
||
case stStaticProc:
|
||
case stProc: what = "Procedure"; n_undef_procs++; break;
|
||
case stGlobal: what = "Variable"; n_undef_vars++; break;
|
||
case stLabel: what = "Label"; n_undef_labels++; break;
|
||
default : what = "Symbol"; break;
|
||
}
|
||
n_undef_symbols++;
|
||
if (info_verbose)
|
||
printf_filtered("Warning: %s %s is undefined (in %s)\n", what,
|
||
es->asym.iss, fdr_name(cur_fdr->rss));
|
||
return;
|
||
}
|
||
|
||
switch (es->asym.st) {
|
||
case stProc:
|
||
/* If we have full symbols we do not need more */
|
||
if (skip_procedures)
|
||
return;
|
||
if (mylookup_symbol (es->asym.iss, top_stack->cur_block,
|
||
VAR_NAMESPACE, LOC_BLOCK))
|
||
break;
|
||
/* fall through */
|
||
case stGlobal:
|
||
case stLabel:
|
||
/*
|
||
* Note that the case of a symbol with indexNil
|
||
* must be handled anyways by parse_symbol().
|
||
*/
|
||
parse_symbol(&es->asym, ax);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Parse the line number info for file descriptor FH into
|
||
GDB's linetable LT. MIPS' encoding requires a little bit
|
||
of magic to get things out. Note also that MIPS' line
|
||
numbers can go back and forth, apparently we can live
|
||
with that and do not need to reorder our linetables */
|
||
|
||
static
|
||
parse_lines(fh, lt)
|
||
FDR *fh;
|
||
struct linetable *lt;
|
||
{
|
||
char *base = (char*)fh->cbLineOffset;
|
||
int i, j, k;
|
||
int delta, count, lineno = 0;
|
||
PDR *pr;
|
||
|
||
if (base == 0)
|
||
return;
|
||
|
||
/* Scan by procedure descriptors */
|
||
i = 0; j = 0, k = 0;
|
||
for (pr = (PDR*)IPDFIRST(cur_hdr,fh); j < fh->cpd; j++, pr++) {
|
||
int l, halt;
|
||
|
||
/* No code for this one */
|
||
if (pr->iline == ilineNil ||
|
||
pr->lnLow == -1 || pr->lnHigh == -1)
|
||
continue;
|
||
/*
|
||
* Aurgh! To know where to stop expanding we
|
||
* must look-ahead.
|
||
*/
|
||
for (l = 1; l < (fh->cpd - j); l++)
|
||
if (pr[l].iline != -1)
|
||
break;
|
||
if (l == (fh->cpd - j))
|
||
halt = fh->cline;
|
||
else
|
||
halt = pr[l].iline;
|
||
/*
|
||
* When procedures are moved around the linenumbers
|
||
* are attributed to the next procedure up
|
||
*/
|
||
if (pr->iline >= halt) continue;
|
||
|
||
base = (char*)pr->cbLineOffset;
|
||
l = pr->adr >> 2; /* in words */
|
||
halt += (pr->adr >> 2) - pr->iline;
|
||
for (lineno = pr->lnLow; l < halt;) {
|
||
count = *base & 0x0f;
|
||
delta = *base++ >> 4;
|
||
if (delta == -8) {
|
||
delta = (base[0] << 8) | (base[1] & 0xff);
|
||
base += 2;
|
||
}
|
||
lineno += delta;/* first delta is 0 */
|
||
k = add_line(lt, lineno, l, k);
|
||
l += count + 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Parse the symbols of the file described by FH, whose index is F_IDX.
|
||
BOUND is the highest core address of this file's procedures */
|
||
|
||
static
|
||
parse_one_file(fh, f_idx, bound)
|
||
FDR *fh;
|
||
{
|
||
register int s_idx;
|
||
SYMR *sh;
|
||
PDR *pr;
|
||
|
||
/* Parse local symbols first */
|
||
|
||
for (s_idx = 0; s_idx < fh->csym; s_idx++) {
|
||
sh = (SYMR *) (fh->isymBase) + s_idx;
|
||
cur_sdx = s_idx;
|
||
parse_symbol(sh, fh->iauxBase);
|
||
}
|
||
|
||
/* Procedures next, note we need to look-ahead to
|
||
find out where the procedure's code ends */
|
||
|
||
for (s_idx = 0; s_idx < fh->cpd-1; s_idx++) {
|
||
pr = (PDR *) (IPDFIRST(cur_hdr, fh)) + s_idx;
|
||
parse_procedure(pr, pr[1].adr); /* next proc up */
|
||
}
|
||
if (fh->cpd) {
|
||
pr = (PDR *) (IPDFIRST(cur_hdr, fh)) + s_idx;
|
||
parse_procedure(pr, bound); /* next file up */
|
||
}
|
||
|
||
/* Linenumbers. At the end, check if we can save memory */
|
||
parse_lines(fh, LINETABLE(cur_stab));
|
||
if (LINETABLE(cur_stab)->nitems < fh->cline)
|
||
shrink_linetable(cur_stab);
|
||
}
|
||
|
||
/* Master parsing procedure for first-pass reading of file symbols
|
||
into a partial_symtab.
|
||
|
||
Parses the symtab described by the symbolic header HDR.
|
||
END_OF_TEXT_SEG gives the address just after the text segment for
|
||
the symtab we are reading. */
|
||
|
||
static
|
||
parse_partial_symbols(hdr, end_of_text_seg)
|
||
HDRR *hdr;
|
||
{
|
||
int f_idx, s_idx, h_max, stat_idx;
|
||
CORE_ADDR dummy, *prevhigh;
|
||
/* Running pointers */
|
||
FDR *fh;
|
||
RFDT *rh;
|
||
register EXTR *esh;
|
||
register SYMR *sh;
|
||
struct partial_symtab *pst;
|
||
|
||
/*
|
||
* Big plan:
|
||
*
|
||
* Only parse the Local and External symbols, and the Relative FDR.
|
||
* Fixup enough of the loader symtab to be able to use it.
|
||
* Allocate space only for the file`s portions we need to
|
||
* look at. (XXX)
|
||
*/
|
||
|
||
cur_hdr = hdr;
|
||
max_gdbinfo = 0;
|
||
max_glevel = MIN_GLEVEL;
|
||
|
||
/* Allocate the map FDR -> PST.
|
||
Minor hack: -O3 images might claim some global data belongs
|
||
to FDR -1. We`ll go along with that */
|
||
fdr_to_pst = (struct pst_map *)xzalloc((hdr->ifdMax+1) * sizeof *fdr_to_pst);
|
||
fdr_to_pst++;
|
||
{
|
||
struct partial_symtab * pst = new_psymtab("");
|
||
fdr_to_pst[-1].pst = pst;
|
||
pst->ldsymoff = -1;
|
||
}
|
||
|
||
/* Now scan the FDRs, mostly for dependencies */
|
||
for (f_idx = 0; f_idx < hdr->ifdMax; f_idx++)
|
||
(void) parse_fdr(f_idx, 1);
|
||
|
||
/* Take a good guess at how many symbols we might ever need */
|
||
h_max = hdr->iextMax;
|
||
|
||
/* Parse externals: two passes because they can be ordered
|
||
in any way, but gdb likes to have them segregated by their
|
||
source file. */
|
||
|
||
/* Pass 1 over external syms: Presize and partition the list */
|
||
for (s_idx = 0; s_idx < hdr->iextMax; s_idx++) {
|
||
esh = (EXTR *) (hdr->cbExtOffset) + s_idx;
|
||
fdr_to_pst[esh->ifd].n_globals++;
|
||
}
|
||
|
||
if (global_psymbols.list) {
|
||
int origsize = global_psymbols.next - global_psymbols.list;
|
||
|
||
global_psymbols.list = (struct partial_symbol *)
|
||
xrealloc (global_psymbols.list,
|
||
(h_max + origsize) * sizeof(struct partial_symbol));
|
||
global_psymbols.next = global_psymbols.list + origsize;
|
||
global_psymbols.size = h_max + origsize;
|
||
} else {
|
||
global_psymbols.list = (struct partial_symbol *)
|
||
xmalloc (h_max * sizeof(struct partial_symbol));
|
||
global_psymbols.next = global_psymbols.list;
|
||
global_psymbols.size = h_max;
|
||
}
|
||
|
||
/* Pass 1.5 over files: partition out global symbol space */
|
||
s_idx = global_psymbols.next - global_psymbols.list;
|
||
for (f_idx = -1; f_idx < hdr->ifdMax; f_idx++) {
|
||
fdr_to_pst[f_idx].pst->globals_offset = s_idx;
|
||
s_idx += fdr_to_pst[f_idx].n_globals;
|
||
}
|
||
|
||
/* Pass 1.6 over files: partition out static symbol space.
|
||
Note that this loop starts at 0, not at -1. */
|
||
stat_idx = static_psymbols.next - static_psymbols.list;
|
||
for (f_idx = 0; f_idx < hdr->ifdMax; f_idx++) {
|
||
fdr_to_pst[f_idx].pst->statics_offset = stat_idx;
|
||
fh = f_idx + (FDR *)(hdr->cbFdOffset);
|
||
stat_idx += fh->csym;
|
||
}
|
||
|
||
/* Now that we know its max size, allocate static symbol list */
|
||
if (static_psymbols.list) {
|
||
int origsize = static_psymbols.next - static_psymbols.list;
|
||
|
||
static_psymbols.list = (struct partial_symbol *)
|
||
xrealloc (static_psymbols.list,
|
||
stat_idx * sizeof(struct partial_symbol));
|
||
static_psymbols.next = static_psymbols.list + origsize;
|
||
static_psymbols.size = stat_idx;
|
||
} else {
|
||
static_psymbols.list = (struct partial_symbol *)
|
||
xmalloc (stat_idx * sizeof(struct partial_symbol));
|
||
static_psymbols.next = static_psymbols.list;
|
||
static_psymbols.size = stat_idx;
|
||
}
|
||
|
||
/* Pass 2 over external syms: fill in external symbols */
|
||
for (s_idx = 0; s_idx < hdr->iextMax; s_idx++) {
|
||
register struct partial_symbol *p;
|
||
enum misc_function_type misc_type = mf_text;
|
||
esh = (EXTR *) (hdr->cbExtOffset) + s_idx;
|
||
|
||
if (esh->asym.sc == scUndefined || esh->asym.sc == scNil)
|
||
continue;
|
||
|
||
/* Locate the psymtab and the preallocated psymbol. */
|
||
pst = fdr_to_pst[esh->ifd].pst;
|
||
p = global_psymbols.list + pst->globals_offset +
|
||
pst->n_global_syms++;
|
||
SYMBOL_NAME(p) = (char *)(esh->asym.iss);
|
||
SYMBOL_NAMESPACE(p) = VAR_NAMESPACE;
|
||
|
||
switch (esh->asym.st) {
|
||
case stProc:
|
||
SYMBOL_CLASS(p) = LOC_BLOCK;
|
||
SYMBOL_VALUE(p) = esh->asym.value;
|
||
break;
|
||
case stGlobal:
|
||
SYMBOL_CLASS(p) = LOC_STATIC;
|
||
SYMBOL_VALUE_ADDRESS(p) = (CORE_ADDR)esh->asym.value;
|
||
misc_type = mf_data;
|
||
break;
|
||
case stLabel:
|
||
SYMBOL_CLASS(p) = LOC_LABEL;
|
||
SYMBOL_VALUE_ADDRESS(p) = (CORE_ADDR)esh->asym.value;
|
||
break;
|
||
default:
|
||
misc_type = mf_unknown;
|
||
complain (&unknown_ext_complaint, SYMBOL_NAME(p));
|
||
}
|
||
prim_record_misc_function (SYMBOL_NAME(p),
|
||
SYMBOL_VALUE(p),
|
||
misc_type);
|
||
}
|
||
|
||
/* Pass 3 over files, over local syms: fill in static symbols */
|
||
for (f_idx = 0; f_idx < hdr->ifdMax; f_idx++) {
|
||
fh = f_idx + (FDR *)(cur_hdr->cbFdOffset);
|
||
pst = fdr_to_pst[f_idx].pst;
|
||
|
||
for (s_idx = 0; s_idx < fh->csym; ) {
|
||
register struct partial_symbol *p;
|
||
|
||
sh = s_idx + (SYMR *) fh->isymBase;
|
||
|
||
if (sh->sc == scUndefined || sh->sc == scNil) {
|
||
/* FIXME, premature? */
|
||
s_idx++;
|
||
continue;
|
||
}
|
||
|
||
/* Locate the preallocated psymbol. */
|
||
p = static_psymbols.list + pst->statics_offset +
|
||
pst->n_static_syms;
|
||
SYMBOL_NAME(p) = (char *)(sh->iss);
|
||
SYMBOL_VALUE(p) = sh->value;
|
||
SYMBOL_NAMESPACE(p) = VAR_NAMESPACE;
|
||
|
||
switch (sh->st) {
|
||
case stProc: /* Asm labels apparently */
|
||
case stStaticProc: /* Function */
|
||
SYMBOL_CLASS(p) = LOC_BLOCK;
|
||
pst->n_static_syms++; /* Use gdb symbol */
|
||
/* Skip over procedure to next one. */
|
||
s_idx = (sh->index + (AUXU *)fh->iauxBase)
|
||
->isym;
|
||
continue;
|
||
case stStatic: /* Variable */
|
||
SYMBOL_CLASS(p) = LOC_STATIC;
|
||
SYMBOL_VALUE_ADDRESS(p) = (CORE_ADDR)sh->value;
|
||
break;
|
||
case stTypedef: /* Typedef */
|
||
SYMBOL_CLASS(p) = LOC_TYPEDEF;
|
||
break;
|
||
case stConstant: /* Constant decl */
|
||
SYMBOL_CLASS(p) = LOC_CONST;
|
||
break;
|
||
case stBlock: /* { }, str, un, enum */
|
||
/* Eventually we want struct names and enum
|
||
values out of here. FIXME */
|
||
/* Skip over the block */
|
||
s_idx = sh->index;
|
||
continue;
|
||
case stFile: /* File headers */
|
||
case stLabel: /* Labels */
|
||
case stEnd: /* Ends of files */
|
||
goto skip;
|
||
default:
|
||
complain (&unknown_sym_complaint, SYMBOL_NAME(p));
|
||
complain (&unknown_st_complaint, sh->st);
|
||
s_idx++;
|
||
continue;
|
||
}
|
||
pst->n_static_syms++; /* Use this gdb symbol */
|
||
skip:
|
||
s_idx++; /* Go to next file symbol */
|
||
#if 0
|
||
/* We don't usually record static syms, but some we seem to. chk dbxread. */
|
||
/*FIXME*/ prim_record_misc_function (SYMBOL_NAME(p),
|
||
SYMBOL_VALUE(p),
|
||
misc_type);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/* The array (of lists) of globals must be sorted.
|
||
Take care, since we are at it, of pst->texthigh.
|
||
|
||
NOTE: The way we handle textlow/high is incorrect, but good
|
||
enough for a first approximation. The case we fail is on a
|
||
file "foo.c" that looks like
|
||
proc1() {...}
|
||
#include "bar.c" -- this contains proc2()
|
||
proc3() {...}
|
||
where proc3() is attributed to bar.c. But since this is a
|
||
dependent file it will cause loading of foo.c as well, so
|
||
everything will be fine at the end. */
|
||
|
||
prevhigh = &dummy;
|
||
for (f_idx = 0; f_idx < hdr->ifdMax; f_idx++) {
|
||
struct partial_symtab *pst = fdr_to_pst[f_idx].pst;
|
||
if (pst->n_global_syms > 1)
|
||
qsort (global_psymbols.list + pst->globals_offset,
|
||
pst->n_global_syms, sizeof (struct partial_symbol),
|
||
compare_psymbols);
|
||
if (pst->textlow) {
|
||
*prevhigh = pst->textlow;
|
||
prevhigh = &pst->texthigh;
|
||
}
|
||
}
|
||
|
||
/* Mark the last code address, and remember it for later */
|
||
*prevhigh = end_of_text_seg;
|
||
hdr->cbDnOffset = end_of_text_seg;
|
||
|
||
reorder_psymtabs();
|
||
free(&fdr_to_pst[-1]);
|
||
fdr_to_pst = 0;
|
||
}
|
||
|
||
|
||
/* Do the initial analisys of the F_IDX-th file descriptor.
|
||
Allocates a partial symtab for it, and builds the list
|
||
of dependent files by recursion. LEV says at which level
|
||
of recursion we are called (to pretty up debug traces) */
|
||
|
||
static struct partial_symtab *
|
||
parse_fdr(f_idx, lev)
|
||
int f_idx;
|
||
{
|
||
register FDR *fh;
|
||
register struct partial_symtab *pst;
|
||
int s_idx, s_id0;
|
||
|
||
fh = (FDR *) (cur_hdr->cbFdOffset) + f_idx;
|
||
|
||
/* Use this to indicate into which symtab this file was parsed */
|
||
if (fh->ioptBase)
|
||
return (struct partial_symtab *) fh->ioptBase;
|
||
|
||
/* Debuggability level */
|
||
if (compare_glevel(max_glevel, fh->glevel) < 0)
|
||
max_glevel = fh->glevel;
|
||
|
||
/* Make a new partial_symtab */
|
||
pst = new_psymtab(fh->rss);
|
||
if (fh->cpd == 0){
|
||
pst->textlow = 0;
|
||
pst->texthigh = 0;
|
||
} else {
|
||
pst->textlow = fh->adr;
|
||
pst->texthigh = fh->cpd; /* To be fixed later */
|
||
}
|
||
|
||
/* Make everything point to everything. */
|
||
pst->ldsymoff = f_idx;
|
||
fdr_to_pst[f_idx].pst = pst;
|
||
fh->ioptBase = (int)pst;
|
||
|
||
/* Analyze its dependencies */
|
||
if (fh->crfd <= 1)
|
||
return pst;
|
||
|
||
s_id0 = 0;
|
||
if (fh->cpd == 0) { /* If there are no functions defined here ... */
|
||
/* ...then presumably a .h file: drop reverse depends .h->.c */
|
||
for (; s_id0 < fh->crfd; s_id0++) {
|
||
RFDT *rh = (RFDT *) (fh->rfdBase) + s_id0;
|
||
if (*rh == f_idx) {
|
||
s_id0++; /* Skip self-dependency */
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
pst->number_of_dependencies = fh->crfd - s_id0;
|
||
pst->dependencies = (struct partial_symtab **)
|
||
obstack_alloc (psymbol_obstack,
|
||
pst->number_of_dependencies * sizeof(char*));
|
||
for (s_idx = s_id0; s_idx < fh->crfd; s_idx++) {
|
||
RFDT *rh = (RFDT *) (fh->rfdBase) + s_idx;
|
||
|
||
pst->dependencies[s_idx-s_id0] = parse_fdr(*rh, lev+1);
|
||
|
||
}
|
||
|
||
return pst;
|
||
}
|
||
|
||
|
||
/* Ancillary function to psymtab_to_symtab(). Does all the work
|
||
for turning the partial symtab PST into a symtab, recurring
|
||
first on all dependent psymtabs */
|
||
|
||
static void
|
||
psymtab_to_symtab_1(pst)
|
||
struct partial_symtab *pst;
|
||
{
|
||
int i, f_max;
|
||
struct symtab *st;
|
||
FDR *fh;
|
||
|
||
if (pst->readin)
|
||
return;
|
||
pst->readin = 1;
|
||
|
||
pending_list = (struct pending **) cur_hdr->cbOptOffset;
|
||
if (pending_list == 0) {
|
||
pending_list = (struct pending **)
|
||
xzalloc(cur_hdr->ifdMax * sizeof(struct pending *));
|
||
cur_hdr->cbOptOffset = (int)pending_list;
|
||
}
|
||
|
||
/* How many symbols will we need */
|
||
f_max = pst->n_global_syms + pst->n_static_syms;
|
||
if (pst->ldsymoff == -1) {
|
||
fh = 0;
|
||
st = new_symtab( "unknown", f_max, 0);
|
||
} else {
|
||
fh = (FDR *) (cur_hdr->cbFdOffset) + pst->ldsymoff;
|
||
f_max += fh->csym + fh->cpd;
|
||
st = new_symtab(pst->filename, 2 * f_max, 2 * fh->cline);
|
||
}
|
||
|
||
/*
|
||
* Read in all partial symbtabs on which this one is dependent.
|
||
* NOTE that we do have circular dependencies, sigh.
|
||
*/
|
||
for (i = 0; i < pst->number_of_dependencies; i++)
|
||
if (!pst->dependencies[i]->readin) {
|
||
/*
|
||
* DO NOT inform about additional files that need to
|
||
* be read in, it would only annoy the user.
|
||
*/
|
||
psymtab_to_symtab_1(pst->dependencies[i]);
|
||
}
|
||
|
||
/* Now read the symbols for this symtab */
|
||
|
||
cur_fd = pst->ldsymoff;
|
||
cur_fdr = fh;
|
||
cur_stab = st;
|
||
|
||
/* Get a new lexical context */
|
||
|
||
push_parse_stack();
|
||
top_stack->cur_st = cur_stab;
|
||
top_stack->cur_block = BLOCKVECTOR_BLOCK(BLOCKVECTOR(cur_stab),
|
||
STATIC_BLOCK);
|
||
BLOCK_START(top_stack->cur_block) = fh ? fh->adr : 0;
|
||
BLOCK_END(top_stack->cur_block) = 0;
|
||
top_stack->blocktype = stFile;
|
||
top_stack->maxsyms = f_max;
|
||
top_stack->cur_type = 0;
|
||
top_stack->procadr = 0;
|
||
top_stack->numargs = 0;
|
||
|
||
/* Parse locals and procedures */
|
||
if (fh)
|
||
parse_one_file(fh, cur_fd, (cur_fd == (cur_hdr->ifdMax - 1)) ?
|
||
cur_hdr->cbDnOffset : fh[1].adr);
|
||
|
||
/* .. and our share of externals.
|
||
XXX use the global list to speed up things here. how ?
|
||
FIXME, Maybe quit once we have found the right number of ext's? */
|
||
/* parse_external clobbers top_stack->cur_block and ->cur_st here. */
|
||
top_stack->blocktype = stFile;
|
||
top_stack->maxsyms = cur_hdr->isymMax + cur_hdr->ipdMax + cur_hdr->iextMax;
|
||
for (i = 0; i < cur_hdr->iextMax; i++) {
|
||
register EXTR *esh = (EXTR *) (cur_hdr->cbExtOffset) + i;
|
||
if (esh->ifd == cur_fd)
|
||
parse_external(esh, 1);
|
||
}
|
||
|
||
/* If there are undefined, tell the user */
|
||
if (n_undef_symbols) {
|
||
printf_filtered("File %s contains %d unresolved references:",
|
||
st->filename, n_undef_symbols);
|
||
printf_filtered("\n\t%4d variables\n\t%4d procedures\n\t%4d labels\n",
|
||
n_undef_vars, n_undef_procs, n_undef_labels);
|
||
n_undef_symbols = n_undef_labels = n_undef_vars = n_undef_procs = 0;
|
||
}
|
||
|
||
pop_parse_stack();
|
||
|
||
/*
|
||
* Sort the symbol table now, we are done adding symbols to it.
|
||
*/
|
||
sort_symtab_syms(st);
|
||
|
||
/* Now link the psymtab and the symtab. */
|
||
pst->symtab = st;
|
||
}
|
||
|
||
/* Ancillary parsing procedures. */
|
||
|
||
/* Lookup the type at relative index RN. Return it in TPP
|
||
if found and in any event come up with its name PNAME.
|
||
Return value says how many aux symbols we ate */
|
||
|
||
static
|
||
cross_ref(rn, tpp, pname)
|
||
RNDXR *rn;
|
||
struct type **tpp;
|
||
char **pname;
|
||
{
|
||
unsigned rf;
|
||
|
||
/* Escape index means 'the next one' */
|
||
if (rn->rfd == 0xfff)
|
||
rf = *(unsigned *) (rn + 1);
|
||
else
|
||
rf = rn->rfd;
|
||
|
||
if (rf == -1) {
|
||
/* Ooops */
|
||
*pname = "<undefined>";
|
||
} else {
|
||
/*
|
||
* Find the relative file descriptor and the symbol in it
|
||
*/
|
||
FDR *fh = get_rfd(cur_fd, rf);
|
||
SYMR *sh;
|
||
struct type *t;
|
||
|
||
/*
|
||
* If we have processed this symbol then we left a forwarding
|
||
* pointer to the corresponding GDB symbol. If not, we`ll put
|
||
* it in a list of pending symbols, to be processed later when
|
||
* the file f will be. In any event, we collect the name for
|
||
* the type here. Which is why we made a first pass at
|
||
* strings.
|
||
*/
|
||
sh = (SYMR *) (fh->isymBase) + rn->index;
|
||
|
||
/* Careful, we might be looking at .o files */
|
||
*pname = (UNSAFE_DATA_ADDR(sh->iss)) ? "<undefined>" :
|
||
(char *) sh->iss;
|
||
|
||
/* Have we parsed it ? */
|
||
if ((!UNSAFE_DATA_ADDR(sh->value)) && (sh->st == stParsed)) {
|
||
t = (struct type *) sh->value;
|
||
*tpp = t;
|
||
} else {
|
||
struct pending *p;
|
||
|
||
/* Avoid duplicates */
|
||
p = is_pending_symbol(fh, sh);
|
||
|
||
if (p)
|
||
*tpp = p->t;
|
||
else
|
||
add_pending(fh, sh, *tpp);
|
||
}
|
||
}
|
||
return (rn->rfd == 0xfff);
|
||
}
|
||
|
||
|
||
/* Quick&dirty lookup procedure, to avoid the MI ones that require
|
||
keeping the symtab sorted */
|
||
|
||
static struct symbol *
|
||
mylookup_symbol (name, block, namespace, class)
|
||
char *name;
|
||
register struct block *block;
|
||
enum namespace namespace;
|
||
enum address_class class;
|
||
{
|
||
register int bot, top, inc;
|
||
register struct symbol *sym;
|
||
|
||
bot = 0;
|
||
top = BLOCK_NSYMS(block);
|
||
inc = name[0];
|
||
while (bot < top) {
|
||
sym = BLOCK_SYM(block, bot);
|
||
if (SYMBOL_NAME(sym)[0] == inc
|
||
&& SYMBOL_NAMESPACE(sym) == namespace
|
||
&& SYMBOL_CLASS(sym) == class
|
||
&& !strcmp(SYMBOL_NAME(sym), name))
|
||
return sym;
|
||
bot++;
|
||
}
|
||
if (block = BLOCK_SUPERBLOCK (block))
|
||
return mylookup_symbol (name, block, namespace, class);
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Add a new symbol S to a block B */
|
||
|
||
static
|
||
add_symbol(s,b)
|
||
struct symbol *s;
|
||
struct block *b;
|
||
{
|
||
BLOCK_SYM(b,BLOCK_NSYMS(b)++) = s;
|
||
if (b == top_stack->cur_block &&
|
||
BLOCK_NSYMS(b) > top_stack->maxsyms)
|
||
printf_filtered("Internal: block at @%x overfilled (by %d)\n",
|
||
b, BLOCK_NSYMS(b) - top_stack->maxsyms);
|
||
}
|
||
|
||
/* Add a new block B to a symtab S */
|
||
|
||
static
|
||
add_block(b,s)
|
||
struct block *b;
|
||
struct symtab *s;
|
||
{
|
||
struct blockvector *bv = BLOCKVECTOR(s);
|
||
|
||
bv = (struct blockvector *)xrealloc(bv, sizeof(struct blockvector) +
|
||
BLOCKVECTOR_NBLOCKS(bv) * sizeof(bv->block));
|
||
if (bv != BLOCKVECTOR(s))
|
||
BLOCKVECTOR(s) = bv;
|
||
|
||
BLOCKVECTOR_BLOCK(bv, BLOCKVECTOR_NBLOCKS(bv)++) = b;
|
||
}
|
||
|
||
/* Add a new linenumber entry (LINENO,ADR) to a linevector LT.
|
||
MIPS' linenumber encoding might need more than one byte
|
||
to describe it, LAST is used to detect these continuation lines */
|
||
|
||
static
|
||
add_line(lt, lineno, adr, last)
|
||
struct linetable *lt;
|
||
CORE_ADDR adr;
|
||
{
|
||
if (last == 0)
|
||
last = -2; /* make sure we record first line */
|
||
|
||
if (last == lineno) /* skip continuation lines */
|
||
return lineno;
|
||
|
||
lt->item[lt->nitems].line = lineno;
|
||
lt->item[lt->nitems++].pc = adr << 2;
|
||
return lineno;
|
||
}
|
||
|
||
|
||
|
||
/* Comparison functions, used when sorting things */
|
||
|
||
/* Symtabs must be ordered viz the code segments they cover */
|
||
|
||
static int
|
||
compare_symtabs( s1, s2)
|
||
struct symtab **s1, **s2;
|
||
{
|
||
/* "most specific" first */
|
||
|
||
register struct block *b1, *b2;
|
||
b1 = BLOCKVECTOR_BLOCK(BLOCKVECTOR(*s1),GLOBAL_BLOCK);
|
||
b2 = BLOCKVECTOR_BLOCK(BLOCKVECTOR(*s2),GLOBAL_BLOCK);
|
||
if (BLOCK_END(b1) == BLOCK_END(b2))
|
||
return BLOCK_START(b1) - BLOCK_START(b2);
|
||
return BLOCK_END(b1) - BLOCK_END(b2);
|
||
}
|
||
|
||
|
||
/* Partial Symtabs, same */
|
||
|
||
static int
|
||
compare_psymtabs( s1, s2)
|
||
struct partial_symtab **s1, **s2;
|
||
{
|
||
/* Perf twist: put the ones with no code at the end */
|
||
|
||
register int a = (*s1)->textlow;
|
||
register int b = (*s2)->textlow;
|
||
if (a == 0)
|
||
return b;
|
||
if (b == 0)
|
||
return -a;
|
||
return a - b;
|
||
}
|
||
|
||
|
||
/* Partial symbols are compared lexicog by their print names */
|
||
|
||
static int
|
||
compare_psymbols (s1, s2)
|
||
register struct partial_symbol *s1, *s2;
|
||
{
|
||
register char
|
||
*st1 = SYMBOL_NAME(s1),
|
||
*st2 = SYMBOL_NAME(s2);
|
||
|
||
return (st1[0] - st2[0] ? st1[0] - st2[0] :
|
||
strcmp(st1 + 1, st2 + 1));
|
||
}
|
||
|
||
/* Blocks with a smaller low bound should come first */
|
||
|
||
static int compare_blocks(b1,b2)
|
||
struct block **b1, **b2;
|
||
{
|
||
register int addr_diff;
|
||
|
||
addr_diff = (BLOCK_START((*b1))) - (BLOCK_START((*b2)));
|
||
if (addr_diff == 0)
|
||
return (BLOCK_END((*b1))) - (BLOCK_END((*b2)));
|
||
return addr_diff;
|
||
}
|
||
|
||
|
||
/* Sorting and reordering procedures */
|
||
|
||
/* Sort the blocks of a symtab S.
|
||
Reorder the blocks in the blockvector by code-address,
|
||
as required by some MI search routines */
|
||
|
||
static void
|
||
sort_blocks(s)
|
||
struct symtab *s;
|
||
{
|
||
struct blockvector *bv = BLOCKVECTOR(s);
|
||
|
||
if (BLOCKVECTOR_NBLOCKS(bv) <= 2) {
|
||
/* Cosmetic */
|
||
if (BLOCK_END(BLOCKVECTOR_BLOCK(bv,GLOBAL_BLOCK)) == 0)
|
||
BLOCK_START(BLOCKVECTOR_BLOCK(bv,GLOBAL_BLOCK)) = 0;
|
||
if (BLOCK_END(BLOCKVECTOR_BLOCK(bv,STATIC_BLOCK)) == 0)
|
||
BLOCK_START(BLOCKVECTOR_BLOCK(bv,STATIC_BLOCK)) = 0;
|
||
return;
|
||
}
|
||
/*
|
||
* This is very unfortunate: normally all functions are compiled in
|
||
* the order they are found, but if the file is compiled -O3 things
|
||
* are very different. It would be nice to find a reliable test
|
||
* to detect -O3 images in advance.
|
||
*/
|
||
if (BLOCKVECTOR_NBLOCKS(bv) > 3)
|
||
qsort(&BLOCKVECTOR_BLOCK(bv,FIRST_LOCAL_BLOCK),
|
||
BLOCKVECTOR_NBLOCKS(bv) - FIRST_LOCAL_BLOCK,
|
||
sizeof(struct block *),
|
||
compare_blocks);
|
||
|
||
{
|
||
register CORE_ADDR high = 0;
|
||
register int i, j = BLOCKVECTOR_NBLOCKS(bv);
|
||
|
||
for (i = FIRST_LOCAL_BLOCK; i < j; i++)
|
||
if (high < BLOCK_END(BLOCKVECTOR_BLOCK(bv,i)))
|
||
high = BLOCK_END(BLOCKVECTOR_BLOCK(bv,i));
|
||
BLOCK_END(BLOCKVECTOR_BLOCK(bv,GLOBAL_BLOCK)) = high;
|
||
}
|
||
|
||
BLOCK_START(BLOCKVECTOR_BLOCK(bv,GLOBAL_BLOCK)) =
|
||
BLOCK_START(BLOCKVECTOR_BLOCK(bv,FIRST_LOCAL_BLOCK));
|
||
|
||
BLOCK_START(BLOCKVECTOR_BLOCK(bv,STATIC_BLOCK)) =
|
||
BLOCK_START(BLOCKVECTOR_BLOCK(bv,GLOBAL_BLOCK));
|
||
BLOCK_END (BLOCKVECTOR_BLOCK(bv,STATIC_BLOCK)) =
|
||
BLOCK_END (BLOCKVECTOR_BLOCK(bv,GLOBAL_BLOCK));
|
||
}
|
||
|
||
/* Sort the symtab list, as required by some search procedures.
|
||
We want files ordered to make them look right to users, and for
|
||
searching (see block_for_pc). */
|
||
|
||
static void
|
||
reorder_symtabs()
|
||
{
|
||
register int i;
|
||
struct symtab *stab;
|
||
register struct symtab **all_symtabs;
|
||
register int symtab_count;
|
||
|
||
if (!symtab_list)
|
||
return;
|
||
|
||
/* Create an array of pointers to all the symtabs. */
|
||
for (symtab_count = 0, stab = symtab_list;
|
||
stab;
|
||
symtab_count++, stab = stab->next) {
|
||
obstack_grow (psymbol_obstack, &stab, sizeof (stab));
|
||
/* FIXME: Only sort blocks for new symtabs ??? */
|
||
sort_blocks(stab);
|
||
}
|
||
|
||
all_symtabs = (struct symtab **)
|
||
obstack_base (psymbol_obstack);
|
||
qsort((char *)all_symtabs, symtab_count,
|
||
sizeof(struct symtab *), compare_symtabs);
|
||
|
||
/* Re-construct the symtab list, but now it is sorted. */
|
||
for (i = 0; i < symtab_count-1; i++)
|
||
all_symtabs[i]->next = all_symtabs[i+1];
|
||
all_symtabs[i]->next = 0;
|
||
symtab_list = all_symtabs[0];
|
||
|
||
obstack_free (psymbol_obstack, all_symtabs);
|
||
}
|
||
|
||
/* Sort the partial symtab list, as required by some search procedures.
|
||
PC lookups stop at the first psymtab such that textlow <= PC < texthigh */
|
||
|
||
static void
|
||
reorder_psymtabs()
|
||
{
|
||
register int i;
|
||
register int all_psymtabs_count;
|
||
struct partial_symtab *pstab;
|
||
struct partial_symtab **all_psymtabs;
|
||
|
||
if (!partial_symtab_list)
|
||
return;
|
||
|
||
/* Create an array of pointers to all the partial_symtabs. */
|
||
|
||
for (all_psymtabs_count = 0, pstab = partial_symtab_list;
|
||
pstab;
|
||
all_psymtabs_count++, pstab = pstab->next)
|
||
obstack_grow (psymbol_obstack, &pstab, sizeof (pstab));
|
||
|
||
all_psymtabs = (struct partial_symtab **)
|
||
obstack_base (psymbol_obstack);
|
||
|
||
qsort((char *)all_psymtabs, all_psymtabs_count,
|
||
sizeof(struct partial_symtab *), compare_psymtabs);
|
||
|
||
/* Re-construct the partial_symtab_list, but now it is sorted. */
|
||
|
||
for (i = 0; i < all_psymtabs_count-1; i++)
|
||
all_psymtabs[i]->next = all_psymtabs[i+1];
|
||
all_psymtabs[i]->next = 0;
|
||
partial_symtab_list = all_psymtabs[0];
|
||
|
||
obstack_free (psymbol_obstack, all_psymtabs);
|
||
}
|
||
|
||
/* Constructor/restructor/destructor procedures */
|
||
|
||
/* Allocate a new symtab for NAME. Needs an estimate of how many symbols
|
||
MAXSYMS and linenumbers MAXLINES we'll put in it */
|
||
|
||
static
|
||
struct symtab *
|
||
new_symtab(name, maxsyms, maxlines)
|
||
char *name;
|
||
{
|
||
struct symtab *s = (struct symtab *) xzalloc(sizeof(struct symtab));
|
||
int i;
|
||
|
||
LINETABLE(s) = new_linetable(maxlines);
|
||
|
||
s->filename = name;
|
||
|
||
/* All symtabs must have at least two blocks */
|
||
BLOCKVECTOR(s) = new_bvect(2);
|
||
BLOCKVECTOR_BLOCK(BLOCKVECTOR(s), GLOBAL_BLOCK) = new_block(maxsyms);
|
||
BLOCKVECTOR_BLOCK(BLOCKVECTOR(s), STATIC_BLOCK) = new_block(maxsyms);
|
||
BLOCK_SUPERBLOCK( BLOCKVECTOR_BLOCK(BLOCKVECTOR(s),STATIC_BLOCK)) =
|
||
BLOCKVECTOR_BLOCK(BLOCKVECTOR(s), GLOBAL_BLOCK);
|
||
|
||
s->free_code = free_linetable;
|
||
|
||
/* Link the new symtab into the list of such. */
|
||
s->next = symtab_list;
|
||
symtab_list = s;
|
||
|
||
return s;
|
||
}
|
||
|
||
/* Allocate a new partial_symtab NAME */
|
||
|
||
static struct partial_symtab *
|
||
new_psymtab(name)
|
||
char *name;
|
||
{
|
||
struct partial_symtab *pst;
|
||
|
||
pst = (struct partial_symtab *)
|
||
obstack_alloc (psymbol_obstack, sizeof (*pst));
|
||
bzero (pst, sizeof (*pst));
|
||
|
||
if (name == (char*)-1) /* FIXME -- why not null here? */
|
||
pst->filename = "<no name>";
|
||
else
|
||
pst->filename = name;
|
||
|
||
pst->next = partial_symtab_list;
|
||
partial_symtab_list = pst;
|
||
|
||
/* Keep a backpointer to the file`s symbols */
|
||
/* FIXME, we should use private data that is a proper pointer. */
|
||
pst->ldsymlen = (int)cur_hdr;
|
||
|
||
/* The way to turn this into a symtab is to call... */
|
||
pst->read_symtab = mipscoff_psymtab_to_symtab;
|
||
|
||
return pst;
|
||
}
|
||
|
||
|
||
/* Allocate a linetable array of the given SIZE */
|
||
|
||
static
|
||
struct linetable *new_linetable(size)
|
||
{
|
||
struct linetable *l;
|
||
|
||
size = size * sizeof(l->item) + sizeof(struct linetable);
|
||
l = (struct linetable *)xmalloc(size);
|
||
l->nitems = 0;
|
||
return l;
|
||
}
|
||
|
||
/* Oops, too big. Shrink it. This was important with the 2.4 linetables,
|
||
I am not so sure about the 3.4 ones */
|
||
|
||
static shrink_linetable(s)
|
||
struct symtab *s;
|
||
{
|
||
struct linetable *l = new_linetable(LINETABLE(s)->nitems);
|
||
|
||
bcopy(LINETABLE(s), l,
|
||
LINETABLE(s)->nitems * sizeof(l->item) + sizeof(struct linetable));
|
||
free (LINETABLE(s));
|
||
LINETABLE(s) = l;
|
||
}
|
||
|
||
/* Allocate and zero a new blockvector of NBLOCKS blocks. */
|
||
|
||
static
|
||
struct blockvector *new_bvect(nblocks)
|
||
{
|
||
struct blockvector *bv;
|
||
int size;
|
||
|
||
size = sizeof(struct blockvector) + nblocks * sizeof(struct block*);
|
||
bv = (struct blockvector *) xzalloc(size);
|
||
|
||
BLOCKVECTOR_NBLOCKS(bv) = nblocks;
|
||
|
||
return bv;
|
||
}
|
||
|
||
/* Allocate and zero a new block of MAXSYMS symbols */
|
||
|
||
static
|
||
struct block *new_block(maxsyms)
|
||
{
|
||
int size = sizeof(struct block) + (maxsyms-1) * sizeof(struct symbol *);
|
||
struct block *b = (struct block *)xzalloc(size);
|
||
|
||
return b;
|
||
}
|
||
|
||
/* Ooops, too big. Shrink block B in symtab S to its minimal size */
|
||
|
||
static struct block *
|
||
shrink_block(b, s)
|
||
struct block *b;
|
||
struct symtab *s;
|
||
{
|
||
struct block *new;
|
||
struct blockvector *bv = BLOCKVECTOR(s);
|
||
int i;
|
||
|
||
/* Just get a new one, copy, and fix references to the old one */
|
||
|
||
new = (struct block *)xmalloc(sizeof(struct block) +
|
||
(BLOCK_NSYMS(b)-1) * sizeof(struct symbol *));
|
||
|
||
bcopy(b, new, sizeof(*new) + (BLOCK_NSYMS(b) - 1) * sizeof(struct symbol*));
|
||
|
||
/* Should chase pointers to old one. Fortunately, that`s just
|
||
the block`s function and inferior blocks */
|
||
if (BLOCK_FUNCTION(b) && SYMBOL_BLOCK_VALUE(BLOCK_FUNCTION(b)) == b)
|
||
SYMBOL_BLOCK_VALUE(BLOCK_FUNCTION(b)) = new;
|
||
for (i = 0; i < BLOCKVECTOR_NBLOCKS(bv); i++)
|
||
if (BLOCKVECTOR_BLOCK(bv,i) == b)
|
||
BLOCKVECTOR_BLOCK(bv,i) = new;
|
||
else if (BLOCK_SUPERBLOCK(BLOCKVECTOR_BLOCK(bv,i)) == b)
|
||
BLOCK_SUPERBLOCK(BLOCKVECTOR_BLOCK(bv,i)) = new;
|
||
free(b);
|
||
return new;
|
||
}
|
||
|
||
/* Create a new symbol with printname NAME */
|
||
|
||
static
|
||
struct symbol *
|
||
new_symbol(name)
|
||
char *name;
|
||
{
|
||
struct symbol *s = (struct symbol *)
|
||
obstack_alloc (symbol_obstack, sizeof (struct symbol));
|
||
|
||
bzero (s, sizeof (*s));
|
||
SYMBOL_NAME(s) = name;
|
||
return s;
|
||
}
|
||
|
||
/* Create a new type with printname NAME */
|
||
|
||
static
|
||
struct type *
|
||
new_type(name)
|
||
char *name;
|
||
{
|
||
struct type *t = (struct type *)
|
||
obstack_alloc (symbol_obstack, sizeof (struct type));
|
||
|
||
bzero (t, sizeof (*t));
|
||
TYPE_NAME(t) = name;
|
||
return t;
|
||
}
|
||
|
||
/* Create and initialize a new type with printname NAME.
|
||
CODE and LENGTH are the initial info we put in,
|
||
UNS says whether the type is unsigned or not. */
|
||
|
||
static
|
||
struct type *
|
||
make_type(code, length, uns, name)
|
||
enum type_code code;
|
||
int length, uns;
|
||
char *name;
|
||
{
|
||
register struct type *type;
|
||
|
||
type = (struct type *) xzalloc(sizeof(struct type));
|
||
TYPE_CODE(type) = code;
|
||
TYPE_LENGTH(type) = length;
|
||
TYPE_FLAGS(type) = uns ? TYPE_FLAG_UNSIGNED : 0;
|
||
TYPE_NAME(type) = name;
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Allocate a new field named NAME to the type TYPE */
|
||
|
||
static
|
||
struct field *new_field(type,name)
|
||
struct type *type;
|
||
char *name;
|
||
{
|
||
struct field *f;
|
||
|
||
/* Fields are kept in an array */
|
||
if (TYPE_NFIELDS(type))
|
||
TYPE_FIELDS(type) = (struct field*)xrealloc(TYPE_FIELDS(type),
|
||
(TYPE_NFIELDS(type)+1) * sizeof(struct field));
|
||
else
|
||
TYPE_FIELDS(type) = (struct field*)xzalloc(2*sizeof(struct field));
|
||
f = &(TYPE_FIELD(type,TYPE_NFIELDS(type)++));
|
||
bzero(f, sizeof(struct field));
|
||
if (name)
|
||
f->name = name;
|
||
return f;
|
||
}
|
||
|
||
/* Make an enum constant for a member F of an enumerated type T */
|
||
|
||
static
|
||
make_enum_constant(f,t)
|
||
struct field *f;
|
||
struct type *t;
|
||
{
|
||
struct symbol *s;
|
||
/*
|
||
* This is awful, but that`s the way it is supposed to be
|
||
* (BTW, no need to free the real 'type', it's a builtin)
|
||
*/
|
||
f->type = (struct type *) f->bitpos;
|
||
|
||
s = new_symbol(f->name);
|
||
SYMBOL_NAMESPACE(s) = VAR_NAMESPACE;
|
||
SYMBOL_CLASS(s) = LOC_CONST;
|
||
SYMBOL_TYPE(s) = t;
|
||
SYMBOL_VALUE(s) = f->bitpos;
|
||
add_symbol(s, top_stack->cur_block);
|
||
}
|
||
|
||
|
||
|
||
/* Things used for calling functions in the inferior.
|
||
These functions are exported to our companion
|
||
mips-dep.c file and are here because they play
|
||
with the symbol-table explicitly. */
|
||
|
||
#if 0
|
||
/* Need to make a new symbol on the fly for the dummy
|
||
frame we put on the stack. Which goes in the.. */
|
||
|
||
static struct symtab *dummy_symtab;
|
||
|
||
/* Make up a dummy symbol for the code we put at END_PC,
|
||
of size SIZE, invoking a function with NARGS arguments
|
||
and using a frame of FRAMESIZE bytes */
|
||
|
||
mips_create_dummy_symbol(end_pc, size, nargs, framesize)
|
||
{
|
||
struct block *bl;
|
||
struct symbol *g;
|
||
struct mips_extra_func_info *gdbinfo;
|
||
|
||
/* Allocate symtab if not done already */
|
||
if (dummy_symtab == 0)
|
||
dummy_symtab = new_symtab(".dummy_symtab.", 100, 0);
|
||
|
||
/* Make a new block. Only needs one symbol */
|
||
bl = new_block(1);
|
||
BLOCK_START(bl) = end_pc - size;
|
||
BLOCK_END(bl) = end_pc;
|
||
|
||
BLOCK_SUPERBLOCK(bl) =
|
||
BLOCKVECTOR_BLOCK(BLOCKVECTOR(dummy_symtab),GLOBAL_BLOCK);
|
||
add_block(bl, dummy_symtab);
|
||
sort_blocks(dummy_symtab);
|
||
|
||
BLOCK_FUNCTION(bl) = new_symbol("??");
|
||
SYMBOL_BLOCK_VALUE(BLOCK_FUNCTION(bl)) = bl;
|
||
g = new_symbol(".gdbinfo.");
|
||
BLOCK_SYM(bl,BLOCK_NSYMS(bl)++) = g;
|
||
|
||
SYMBOL_NAMESPACE(g) = LABEL_NAMESPACE;
|
||
SYMBOL_CLASS(g) = LOC_CONST;
|
||
SYMBOL_TYPE(g) = builtin_type_void;
|
||
gdbinfo = (struct mips_extra_func_info *)
|
||
xzalloc(sizeof(struct mips_extra_func_info));
|
||
|
||
SYMBOL_VALUE(g) = (long) gdbinfo;
|
||
|
||
gdbinfo->numargs = nargs;
|
||
gdbinfo->framesize = framesize;
|
||
gdbinfo->framereg = 29;
|
||
gdbinfo->pcreg = 31;
|
||
gdbinfo->regmask = -2;
|
||
gdbinfo->regoffset = -4;
|
||
gdbinfo->fregmask = 0; /* XXX */
|
||
gdbinfo->fregoffset = 0; /* XXX */
|
||
}
|
||
|
||
/* We just returned from the dummy code at END_PC, drop its symbol */
|
||
|
||
mips_destroy_dummy_symbol(end_pc)
|
||
{
|
||
struct block *bl;
|
||
struct blockvector *bv = BLOCKVECTOR(dummy_symtab);
|
||
int i;
|
||
|
||
bl = block_for_pc(end_pc);
|
||
free(BLOCK_FUNCTION(bl));
|
||
free(SYMBOL_VALUE(BLOCK_SYM(bl,0)));
|
||
free(BLOCK_SYM(bl,0));
|
||
|
||
for (i = FIRST_LOCAL_BLOCK; i < BLOCKVECTOR_NBLOCKS(bv); i++)
|
||
if (BLOCKVECTOR_BLOCK(bv,i) == bl)
|
||
break;
|
||
for (; i < BLOCKVECTOR_NBLOCKS(bv) - 1; i++)
|
||
BLOCKVECTOR_BLOCK(bv,i) = BLOCKVECTOR_BLOCK(bv,i+1);
|
||
BLOCKVECTOR_NBLOCKS(bv)--;
|
||
sort_blocks(dummy_symtab);
|
||
free(bl);
|
||
}
|
||
#endif
|
||
|
||
/* Sigtramp: make sure we have all the necessary information
|
||
about the signal trampoline code. Since the official code
|
||
from MIPS does not do so, we make up that information ourselves.
|
||
If they fix the library (unlikely) this code will neutralize itself. */
|
||
|
||
static
|
||
fixup_sigtramp()
|
||
{
|
||
struct symbol *s;
|
||
struct symtab *st;
|
||
struct block *b, *b0;
|
||
|
||
sigtramp_address = -1;
|
||
|
||
/* We know it is sold as sigvec */
|
||
s = lookup_symbol("sigvec", 0, VAR_NAMESPACE, 0, NULL);
|
||
|
||
/* Most programs do not play with signals */
|
||
if (s == 0)
|
||
return;
|
||
|
||
b0 = SYMBOL_BLOCK_VALUE(s);
|
||
|
||
/* A label of sigvec, to be more precise */
|
||
s = lookup_symbol("sigtramp", b0, VAR_NAMESPACE, 0, NULL);
|
||
|
||
/* But maybe this program uses its own version of sigvec */
|
||
if (s == 0)
|
||
return;
|
||
|
||
sigtramp_address = SYMBOL_VALUE(s);
|
||
sigtramp_end = sigtramp_address + 0x88; /* black magic */
|
||
|
||
/* Did we or MIPSco fix the library ? */
|
||
if (SYMBOL_CLASS(s) == LOC_BLOCK)
|
||
return;
|
||
|
||
/* But what symtab does it live in ? */
|
||
st = find_pc_symtab(SYMBOL_VALUE(s));
|
||
|
||
/*
|
||
* Ok, there goes the fix: turn it into a procedure, with all the
|
||
* needed info. Note we make it a nested procedure of sigvec,
|
||
* which is the way the (assembly) code is actually written.
|
||
*/
|
||
SYMBOL_NAMESPACE(s) = VAR_NAMESPACE;
|
||
SYMBOL_CLASS(s) = LOC_BLOCK;
|
||
SYMBOL_TYPE(s) = make_type(TYPE_CODE_FUNC, 4, 0, 0);
|
||
TYPE_TARGET_TYPE(SYMBOL_TYPE(s)) = builtin_type_void;
|
||
|
||
/* Need a block to allocate .gdbinfo. in */
|
||
b = new_block(1);
|
||
SYMBOL_BLOCK_VALUE(s) = b;
|
||
BLOCK_START(b) = sigtramp_address;
|
||
BLOCK_END(b) = sigtramp_end;
|
||
BLOCK_FUNCTION(b) = s;
|
||
BLOCK_SUPERBLOCK(b) = BLOCK_SUPERBLOCK(b0);
|
||
add_block(b, st);
|
||
sort_blocks(st);
|
||
|
||
/* Make a .gdbinfo. for it */
|
||
{
|
||
struct mips_extra_func_info *e =
|
||
(struct mips_extra_func_info *)
|
||
xzalloc(sizeof(struct mips_extra_func_info));
|
||
|
||
e->numargs = 0; /* the kernel thinks otherwise */
|
||
/* align_longword(sigcontext + SIGFRAME) */
|
||
e->framesize = 0x150;
|
||
e->framereg = SP_REGNUM;
|
||
e->pcreg = 31;
|
||
e->regmask = -2;
|
||
e->regoffset = -(41 * sizeof(int));
|
||
e->fregmask = -1;
|
||
e->fregoffset = -(37 * sizeof(int));
|
||
e->isym = (long)s;
|
||
|
||
s = new_symbol(".gdbinfo.");
|
||
SYMBOL_VALUE(s) = (int) e;
|
||
SYMBOL_NAMESPACE(s) = LABEL_NAMESPACE;
|
||
SYMBOL_CLASS(s) = LOC_CONST;
|
||
SYMBOL_TYPE(s) = builtin_type_void;
|
||
}
|
||
|
||
BLOCK_SYM(b,BLOCK_NSYMS(b)++) = s;
|
||
}
|
||
|
||
|
||
/* Initialization */
|
||
|
||
static struct sym_fns ecoff_sym_fns = {"ecoff", 5,
|
||
mipscoff_new_init, mipscoff_symfile_init,
|
||
mipscoff_symfile_read, mipscoff_symfile_discard};
|
||
|
||
_initialize_mipsread ()
|
||
{
|
||
add_symtab_fns (&ecoff_sym_fns);
|
||
|
||
bzero (&global_psymbols, sizeof (global_psymbols));
|
||
bzero (&static_psymbols, sizeof (static_psymbols));
|
||
|
||
/* Missing basic types */
|
||
builtin_type_string = make_type(TYPE_CODE_PASCAL_ARRAY,
|
||
1, 0, "string");
|
||
builtin_type_complex = make_type(TYPE_CODE_FLT,
|
||
2 * sizeof(float), 0, "complex");
|
||
builtin_type_double_complex = make_type(TYPE_CODE_FLT,
|
||
2 * sizeof(double), 0, "double_complex");
|
||
builtin_type_fixed_dec = make_type(TYPE_CODE_INT, sizeof(int),
|
||
0, "fixed_decimal");
|
||
builtin_type_float_dec = make_type(TYPE_CODE_FLT, sizeof(double),
|
||
0, "floating_decimal");
|
||
|
||
/* Templates types */
|
||
builtin_type_ptr = lookup_pointer_type (builtin_type_void);
|
||
builtin_type_struct = make_type(TYPE_CODE_STRUCT, 0, 0, 0);
|
||
builtin_type_union = make_type(TYPE_CODE_UNION, 0, 0, 0);
|
||
builtin_type_enum = make_type(TYPE_CODE_ENUM, 0, 0, 0);
|
||
builtin_type_range = make_type(TYPE_CODE_RANGE, 0, 0, 0);
|
||
builtin_type_set = make_type(TYPE_CODE_SET, 0, 0, 0);
|
||
}
|