802e8e6d84
This patch fixes hardware breakpoint regressions exposed by my fix for "PR breakpoints/7143 - Watchpoint does not trigger when first set", at https://sourceware.org/ml/gdb-patches/2014-03/msg00167.html The testsuite caught them on Linux/x86_64, at least. gdb.sum: gdb.sum: FAIL: gdb.base/hbreak2.exp: next over recursive call FAIL: gdb.base/hbreak2.exp: backtrace from factorial(5.1) FAIL: gdb.base/hbreak2.exp: continue until exit at recursive next test gdb.log: (gdb) next Program received signal SIGTRAP, Trace/breakpoint trap. factorial (value=4) at ../../../src/gdb/testsuite/gdb.base/break.c:113 113 if (value > 1) { /* set breakpoint 7 here */ (gdb) FAIL: gdb.base/hbreak2.exp: next over recursive call Actually, that patch just exposed a latent issue to "breakpoints always-inserted off" mode, not really caused it. After that patch, GDB no longer removes breakpoints at each internal event, thus making some scenarios behave like breakpoint always-inserted on. The bug is easy to trigger with always-inserted on. The issue is that since the target-side breakpoint conditions support, if the stub/server supports evaluating breakpoint conditions on the target side, then GDB is sending duplicate Zx packets to the target without removing them before, and GDBserver is not really expecting that for Z packets other than Z0/z0. E.g., with "set breakpoint always-inserted on" and "set debug remote 1": (gdb) b main Sending packet: $m410943,1#ff...Packet received: 48 Breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z0,410943,1#48...Packet received: OK ^^^^^^^^^^^^ (gdb) b main Note: breakpoint 4 also set at pc 0x410943. Sending packet: $m410943,1#ff...Packet received: 48 Breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z0,410943,1#48...Packet received: OK ^^^^^^^^^^^^ (gdb) b main Note: breakpoints 4 and 5 also set at pc 0x410943. Sending packet: $m410943,1#ff...Packet received: 48 Breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z0,410943,1#48...Packet received: OK ^^^^^^^^^^^^ (gdb) del Delete all breakpoints? (y or n) y Sending packet: $Z0,410943,1#48...Packet received: OK Sending packet: $Z0,410943,1#48...Packet received: OK Sending packet: $z0,410943,1#68...Packet received: OK And for Z1, similarly: (gdb) hbreak main Sending packet: $m410943,1#ff...Packet received: 48 Hardware assisted breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z1,410943,1#49...Packet received: OK ^^^^^^^^^^^^ Packet Z1 (hardware-breakpoint) is supported (gdb) hbreak main Note: breakpoint 4 also set at pc 0x410943. Sending packet: $m410943,1#ff...Packet received: 48 Hardware assisted breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z1,410943,1#49...Packet received: OK ^^^^^^^^^^^^ (gdb) hbreak main Note: breakpoints 4 and 5 also set at pc 0x410943. Sending packet: $m410943,1#ff...Packet received: 48 Hardware assisted breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z1,410943,1#49...Packet received: OK ^^^^^^^^^^^^ (gdb) del Delete all breakpoints? (y or n) y Sending packet: $Z1,410943,1#49...Packet received: OK ^^^^^^^^^^^^ Sending packet: $Z1,410943,1#49...Packet received: OK ^^^^^^^^^^^^ Sending packet: $z1,410943,1#69...Packet received: OK ^^^^^^^^^^^^ So GDB sent a bunch of Z1 packets, and then when finally removing the breakpoint, only one z1 packet was sent. On the GDBserver side (with monitor set debug-hw-points 1), in the Z1 case, we see: $ ./gdbserver :9999 ./gdbserver Process ./gdbserver created; pid = 8629 Listening on port 9999 Remote debugging from host 127.0.0.1 insert_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=1 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 insert_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=2 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 insert_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=3 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 insert_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 insert_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=5 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 remove_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 That's one insert_watchpoint call for each Z1 packet, and then one remove_watchpoint call for the z1 packet. Notice how ref.count increased for each insert_watchpoint call, and then in the end, after GDB told GDBserver to forget about the hardware breakpoint, GDBserver ends with the the first debug register still with ref.count=4! IOW, the hardware breakpoint is left armed on the target, while on the GDB end it's gone. If the program happens to execute 0x410943 afterwards, then the CPU traps, GDBserver reports the trap to GDB, and GDB not having a breakpoint set at that address anymore, reports to the user a spurious SIGTRAP. This is exactly what is happening in the hbreak2.exp test, though in that case, it's a shared library event that triggers a breakpoint_re_set, when breakpoints are still inserted (because nowadays GDB doesn't remove breakpoints while handling internal events), and that recreates breakpoint locations, which likewise forces breakpoint reinsertion and Zx packet resends... That is a lot of bogus Zx duplication that should possibly be addressed on the GDB side. GDB resends Zx packets because the way to change the target-side condition, is to resend the breakpoint to the server with the new condition. (That's an option in the packet: e.g., "Z1,410943,1;X3,220027" for "hbreak main if 0". The packets in the examples above are shorter because the breakpoints don't have conditions attached). GDB doesn't remove the breakpoint first before reinserting it because that'd be bad for non-stop, as it'd open a window where the inferior could miss the breakpoint. The conditions actually haven't changed between the resends, but GDB isn't smart enough to realize that. (TBC, if the target doesn't support target-side conditions, then GDB doesn't trigger these resends (init_bp_location calls mark_breakpoint_location_modified, and that does nothing if condition evaluation is on the host side. The resends are caused by the 'loc->condition_changed = condition_modified.' line.) But, even if GDB was made smarter, GDBserver should really still handle the resends anyway. So target-side conditions also aren't really to blame. The documentation of the Z/z packets says: "To avoid potential problems with duplicate packets, the operations should be implemented in an idempotent way." As such, we may want to fix GDB, but we should definitely fix GDBserver. The fix is a prerequisite for target-side conditions on hardware breakpoints anyway (and while at it, on watchpoints too). GDBserver indeed already treats duplicate Z0 packets in an idempotent way. mem-break.c has the concept of high-level and low-level breakpoints, somewhat similar to GDB's split of breakpoints vs breakpoint locations, and keeps track of multiple breakpoints referencing the same address/location, for the case of an internal GDBserver breakpoint or a tracepoint being set at the same address as a GDB breakpoint. But, it only allows GDB to ever contribute one reference to a software breakpoint location. IOW, if gdbserver sees a Z0 packet for the same address where it already had a GDB breakpoint set, then GDBserver won't create another high-level GDB breakpoint. However, mem-break.c only tracks GDB Z0 breakpoints. The same logic should apply to all kinds of Zx packets. Currently, gdbserver passes down each duplicate Zx (other than Z0) request directly to the target->insert_point routine. The x86 watchpoint support itself refcounts watchpoint / hw breakpoint requests, to handle overlapping watchpoints, and save debug registers. But that code doesn't (and really shouldn't) handle the duplicate requests, assuming that for each insert there will be a corresponding remove. So the fix is to generalize mem-break.c to track all kinds of Zx breakpoints, and filter out duplicates. As mentioned, this ends up adding support for target-side conditions on hardware breakpoints and watchpoints too (though GDB itself doesn't support the latter yet). Probably the least obvious change in the patch is that it kind of turns the breakpoint insert/remove APIs inside out. Before, the target methods were only called for GDB breakpoints. The internal breakpoint set/delete methods inserted memory breakpoints directly bypassing the insert/remove target methods. That's not good when the target should use a debug API to set software breakpoints, instead of relying on GDBserver patching memory with breakpoint instructions, as is the case of NTO. Now removal/insertion of all kinds of breakpoints/watchpoints, either internal, or from GDB, always go through the target methods. The insert_point/remove_point methods no longer get passed a Z packet type, but an internal/raw breakpoint type. They're also passed a pointer to the raw breakpoint itself (note that's still opaque outside mem-break.c), so that insert_memory_breakpoint / remove_memory_breakpoint have access to the breakpoint's shadow buffer. I first tried passing down a new structure based on GDB's "struct bp_target_info" (actually with that name exactly), but then decided against it as unnecessary complication. As software/memory breakpoints work by poking at memory, when setting a GDB Z0 breakpoint (but not internal breakpoints, as those can assume the conditions are already right), we need to tell the target to prepare to access memory (which on Linux means stop threads). If that operation fails, we need to return error to GDB. Seeing an error, if this is the first breakpoint of that type that GDB tries to insert, GDB would then assume the breakpoint type is supported, but it may actually not be. So we need to check whether the type is supported at all before preparing to access memory. And to solve that, the patch adds a new target->supports_z_point_type method that is called before actually trying to insert the breakpoint. Other than that, hopefully the change is more or less obvious. New test added that exercises the hbreak2.exp regression in a more direct way, without relying on a breakpoint re-set happening before main is reached. Tested by building GDBserver for: aarch64-linux-gnu arm-linux-gnueabihf i686-pc-linux-gnu i686-w64-mingw32 m68k-linux-gnu mips-linux-gnu mips-uclinux nios2-linux-gnu powerpc-linux-gnu sh-linux-gnu tilegx-unknown-linux-gnu x86_64-redhat-linux x86_64-w64-mingw32 And also regression tested on x86_64 Fedora 20. gdb/gdbserver/ 2014-05-20 Pedro Alves <palves@redhat.com> * linux-aarch64-low.c (aarch64_insert_point) (aarch64_remove_point): No longer check whether the type is supported here. Adjust to new interface. (the_low_target): Install aarch64_supports_z_point_type as supports_z_point_type method. * linux-arm-low.c (raw_bkpt_type_to_arm_hwbp_type): New function. (arm_linux_hw_point_initialize): Take an enum raw_bkpt_type instead of a Z packet char. Adjust. (arm_supports_z_point_type): New function. (arm_insert_point, arm_remove_point): Adjust to new interface. (the_low_target): Install arm_supports_z_point_type. * linux-crisv32-low.c (cris_supports_z_point_type): New function. (cris_insert_point, cris_remove_point): Adjust to new interface. Don't check whether the type is supported here. (the_low_target): Install cris_supports_z_point_type. * linux-low.c (linux_supports_z_point_type): New function. (linux_insert_point, linux_remove_point): Adjust to new interface. * linux-low.h (struct linux_target_ops) <insert_point, remove_point>: Take an enum raw_bkpt_type instead of a char. Add raw_breakpoint pointer parameter. <supports_z_point_type>: New method. * linux-mips-low.c (mips_supports_z_point_type): New function. (mips_insert_point, mips_remove_point): Adjust to new interface. Use mips_supports_z_point_type. (the_low_target): Install mips_supports_z_point_type. * linux-ppc-low.c (the_low_target): Install NULL as supports_z_point_type method. * linux-s390-low.c (the_low_target): Install NULL as supports_z_point_type method. * linux-sparc-low.c (the_low_target): Install NULL as supports_z_point_type method. * linux-x86-low.c (x86_supports_z_point_type): New function. (x86_insert_point): Adjust to new insert_point interface. Use insert_memory_breakpoint. Adjust to new i386_low_insert_watchpoint interface. (x86_remove_point): Adjust to remove_point interface. Use remove_memory_breakpoint. Adjust to new i386_low_remove_watchpoint interface. (the_low_target): Install x86_supports_z_point_type. * lynx-low.c (lynx_target_ops): Install NULL as supports_z_point_type callback. * nto-low.c (nto_supports_z_point_type): New. (nto_insert_point, nto_remove_point): Adjust to new interface. (nto_target_ops): Install nto_supports_z_point_type. * mem-break.c: Adjust intro comment. (struct raw_breakpoint) <raw_type, size>: New fields. <inserted>: Update comment. <shlib_disabled>: Delete field. (enum bkpt_type) <gdb_breakpoint>: Delete value. <gdb_breakpoint_Z0, gdb_breakpoint_Z1, gdb_breakpoint_Z2, gdb_breakpoint_Z3, gdb_breakpoint_Z4>: New values. (raw_bkpt_type_to_target_hw_bp_type): New function. (find_enabled_raw_code_breakpoint_at): New function. (find_raw_breakpoint_at): New type and size parameters. Use them. (insert_memory_breakpoint): New function, based off set_raw_breakpoint_at. (remove_memory_breakpoint): New function. (set_raw_breakpoint_at): Reimplement. (set_breakpoint): New, based on set_breakpoint_at. (set_breakpoint_at): Reimplement. (delete_raw_breakpoint): Go through the_target->remove_point instead of assuming memory breakpoints. (find_gdb_breakpoint_at): Delete. (Z_packet_to_bkpt_type, Z_packet_to_raw_bkpt_type): New functions. (find_gdb_breakpoint): New function. (set_gdb_breakpoint_at): Delete. (z_type_supported): New function. (set_gdb_breakpoint_1): New function, loosely based off set_gdb_breakpoint_at. (check_gdb_bp_preconditions, set_gdb_breakpoint): New functions. (delete_gdb_breakpoint_at): Delete. (delete_gdb_breakpoint_1): New function, loosely based off delete_gdb_breakpoint_at. (delete_gdb_breakpoint): New function. (clear_gdb_breakpoint_conditions): Rename to ... (clear_breakpoint_conditions): ... this. Don't handle a NULL breakpoint. (add_condition_to_breakpoint): Make static. (add_breakpoint_condition): Take a struct breakpoint pointer instead of an address. Adjust. (gdb_condition_true_at_breakpoint): Rename to ... (gdb_condition_true_at_breakpoint_z_type): ... this, and add z_type parameter. (gdb_condition_true_at_breakpoint): Reimplement. (add_breakpoint_commands): Take a struct breakpoint pointer instead of an address. Adjust. (gdb_no_commands_at_breakpoint): Rename to ... (gdb_no_commands_at_breakpoint_z_type): ... this. Add z_type parameter. Return true if no breakpoint was found. Change debug output. (gdb_no_commands_at_breakpoint): Reimplement. (run_breakpoint_commands): Rename to ... (run_breakpoint_commands_z_type): ... this. Add z_type parameter, and change return type to boolean. (run_breakpoint_commands): New function. (gdb_breakpoint_here): Also check for Z1 breakpoints. (uninsert_raw_breakpoint): Don't try to reinsert a disabled breakpoint. Go through the_target->remove_point instead of assuming memory breakpoint. (uninsert_breakpoints_at, uninsert_all_breakpoints): Uninsert software and hardware breakpoints. (reinsert_raw_breakpoint): Go through the_target->insert_point instead of assuming memory breakpoint. (reinsert_breakpoints_at, reinsert_all_breakpoints): Reinsert software and hardware breakpoints. (check_breakpoints, breakpoint_here, breakpoint_inserted_here): Check both software and hardware breakpoints. (validate_inserted_breakpoint): Assert the breakpoint is a software breakpoint. Set the inserted flag to -1 instead of setting shlib_disabled. (delete_disabled_breakpoints): Adjust. (validate_breakpoints): Only validate software breakpoints. Adjust to inserted flag change. (check_mem_read, check_mem_write): Skip breakpoint types other than software breakpoints. Adjust to inserted flag change. * mem-break.h (enum raw_bkpt_type): New enum. (raw_breakpoint, struct process_info): Forward declare. (Z_packet_to_target_hw_bp_type): Delete declaration. (raw_bkpt_type_to_target_hw_bp_type, Z_packet_to_raw_bkpt_type) (set_gdb_breakpoint, delete_gdb_breakpoint) (clear_breakpoint_conditions): New declarations. (set_gdb_breakpoint_at, clear_gdb_breakpoint_conditions): Delete. (breakpoint_inserted_here): Update comment. (add_breakpoint_condition, add_breakpoint_commands): Replace address parameter with a breakpoint pointer parameter. (gdb_breakpoint_here): Update comment. (delete_gdb_breakpoint_at): Delete. (insert_memory_breakpoint, remove_memory_breakpoint): Declare. * server.c (process_point_options): Take a struct breakpoint pointer instead of an address. Adjust. (process_serial_event) <Z/z packets>: Use set_gdb_breakpoint and delete_gdb_breakpoint. * spu-low.c (spu_target_ops): Install NULL as supports_z_point_type method. * target.h: Include mem-break.h. (struct target_ops) <prepare_to_access_memory>: Update comment. <supports_z_point_type>: New field. <insert_point, remove_point>: Take an enum raw_bkpt_type argument instead of a char. Also take a raw breakpoint pointer. * win32-arm-low.c (the_low_target): Install NULL as supports_z_point_type. * win32-i386-low.c (i386_supports_z_point_type): New function. (i386_insert_point, i386_remove_point): Adjust to new interface. (the_low_target): Install i386_supports_z_point_type. * win32-low.c (win32_supports_z_point_type): New function. (win32_insert_point, win32_remove_point): Adjust to new interface. (win32_target_ops): Install win32_supports_z_point_type. * win32-low.h (struct win32_target_ops): <supports_z_point_type>: New method. <insert_point, remove_point>: Take an enum raw_bkpt_type argument instead of a char. Also take a raw breakpoint pointer. gdb/testsuite/ 2014-05-20 Pedro Alves <palves@redhat.com> * gdb.base/break-idempotent.c: New file. * gdb.base/break-idempotent.exp: New file.
6112 lines
166 KiB
C
6112 lines
166 KiB
C
/* Low level interface to ptrace, for the remote server for GDB.
|
|
Copyright (C) 1995-2014 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "server.h"
|
|
#include "linux-low.h"
|
|
#include "linux-osdata.h"
|
|
#include "agent.h"
|
|
|
|
#include "nat/linux-nat.h"
|
|
#include "nat/linux-waitpid.h"
|
|
#include "gdb_wait.h"
|
|
#include <stdio.h>
|
|
#include <sys/ptrace.h>
|
|
#include "linux-ptrace.h"
|
|
#include "linux-procfs.h"
|
|
#include <signal.h>
|
|
#include <sys/ioctl.h>
|
|
#include <fcntl.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
#include <sys/syscall.h>
|
|
#include <sched.h>
|
|
#include <ctype.h>
|
|
#include <pwd.h>
|
|
#include <sys/types.h>
|
|
#include <dirent.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/vfs.h>
|
|
#include <sys/uio.h>
|
|
#include "filestuff.h"
|
|
#include "tracepoint.h"
|
|
#include "hostio.h"
|
|
#ifndef ELFMAG0
|
|
/* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
|
|
then ELFMAG0 will have been defined. If it didn't get included by
|
|
gdb_proc_service.h then including it will likely introduce a duplicate
|
|
definition of elf_fpregset_t. */
|
|
#include <elf.h>
|
|
#endif
|
|
|
|
#ifndef SPUFS_MAGIC
|
|
#define SPUFS_MAGIC 0x23c9b64e
|
|
#endif
|
|
|
|
#ifdef HAVE_PERSONALITY
|
|
# include <sys/personality.h>
|
|
# if !HAVE_DECL_ADDR_NO_RANDOMIZE
|
|
# define ADDR_NO_RANDOMIZE 0x0040000
|
|
# endif
|
|
#endif
|
|
|
|
#ifndef O_LARGEFILE
|
|
#define O_LARGEFILE 0
|
|
#endif
|
|
|
|
#ifndef W_STOPCODE
|
|
#define W_STOPCODE(sig) ((sig) << 8 | 0x7f)
|
|
#endif
|
|
|
|
/* This is the kernel's hard limit. Not to be confused with
|
|
SIGRTMIN. */
|
|
#ifndef __SIGRTMIN
|
|
#define __SIGRTMIN 32
|
|
#endif
|
|
|
|
/* Some targets did not define these ptrace constants from the start,
|
|
so gdbserver defines them locally here. In the future, these may
|
|
be removed after they are added to asm/ptrace.h. */
|
|
#if !(defined(PT_TEXT_ADDR) \
|
|
|| defined(PT_DATA_ADDR) \
|
|
|| defined(PT_TEXT_END_ADDR))
|
|
#if defined(__mcoldfire__)
|
|
/* These are still undefined in 3.10 kernels. */
|
|
#define PT_TEXT_ADDR 49*4
|
|
#define PT_DATA_ADDR 50*4
|
|
#define PT_TEXT_END_ADDR 51*4
|
|
/* BFIN already defines these since at least 2.6.32 kernels. */
|
|
#elif defined(BFIN)
|
|
#define PT_TEXT_ADDR 220
|
|
#define PT_TEXT_END_ADDR 224
|
|
#define PT_DATA_ADDR 228
|
|
/* These are still undefined in 3.10 kernels. */
|
|
#elif defined(__TMS320C6X__)
|
|
#define PT_TEXT_ADDR (0x10000*4)
|
|
#define PT_DATA_ADDR (0x10004*4)
|
|
#define PT_TEXT_END_ADDR (0x10008*4)
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef HAVE_LINUX_BTRACE
|
|
# include "linux-btrace.h"
|
|
#endif
|
|
|
|
#ifndef HAVE_ELF32_AUXV_T
|
|
/* Copied from glibc's elf.h. */
|
|
typedef struct
|
|
{
|
|
uint32_t a_type; /* Entry type */
|
|
union
|
|
{
|
|
uint32_t a_val; /* Integer value */
|
|
/* We use to have pointer elements added here. We cannot do that,
|
|
though, since it does not work when using 32-bit definitions
|
|
on 64-bit platforms and vice versa. */
|
|
} a_un;
|
|
} Elf32_auxv_t;
|
|
#endif
|
|
|
|
#ifndef HAVE_ELF64_AUXV_T
|
|
/* Copied from glibc's elf.h. */
|
|
typedef struct
|
|
{
|
|
uint64_t a_type; /* Entry type */
|
|
union
|
|
{
|
|
uint64_t a_val; /* Integer value */
|
|
/* We use to have pointer elements added here. We cannot do that,
|
|
though, since it does not work when using 32-bit definitions
|
|
on 64-bit platforms and vice versa. */
|
|
} a_un;
|
|
} Elf64_auxv_t;
|
|
#endif
|
|
|
|
/* A list of all unknown processes which receive stop signals. Some
|
|
other process will presumably claim each of these as forked
|
|
children momentarily. */
|
|
|
|
struct simple_pid_list
|
|
{
|
|
/* The process ID. */
|
|
int pid;
|
|
|
|
/* The status as reported by waitpid. */
|
|
int status;
|
|
|
|
/* Next in chain. */
|
|
struct simple_pid_list *next;
|
|
};
|
|
struct simple_pid_list *stopped_pids;
|
|
|
|
/* Trivial list manipulation functions to keep track of a list of new
|
|
stopped processes. */
|
|
|
|
static void
|
|
add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
|
|
{
|
|
struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
|
|
|
|
new_pid->pid = pid;
|
|
new_pid->status = status;
|
|
new_pid->next = *listp;
|
|
*listp = new_pid;
|
|
}
|
|
|
|
static int
|
|
pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
|
|
{
|
|
struct simple_pid_list **p;
|
|
|
|
for (p = listp; *p != NULL; p = &(*p)->next)
|
|
if ((*p)->pid == pid)
|
|
{
|
|
struct simple_pid_list *next = (*p)->next;
|
|
|
|
*statusp = (*p)->status;
|
|
xfree (*p);
|
|
*p = next;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
enum stopping_threads_kind
|
|
{
|
|
/* Not stopping threads presently. */
|
|
NOT_STOPPING_THREADS,
|
|
|
|
/* Stopping threads. */
|
|
STOPPING_THREADS,
|
|
|
|
/* Stopping and suspending threads. */
|
|
STOPPING_AND_SUSPENDING_THREADS
|
|
};
|
|
|
|
/* This is set while stop_all_lwps is in effect. */
|
|
enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
|
|
|
|
/* FIXME make into a target method? */
|
|
int using_threads = 1;
|
|
|
|
/* True if we're presently stabilizing threads (moving them out of
|
|
jump pads). */
|
|
static int stabilizing_threads;
|
|
|
|
static void linux_resume_one_lwp (struct lwp_info *lwp,
|
|
int step, int signal, siginfo_t *info);
|
|
static void linux_resume (struct thread_resume *resume_info, size_t n);
|
|
static void stop_all_lwps (int suspend, struct lwp_info *except);
|
|
static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
|
|
static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
|
|
int *wstat, int options);
|
|
static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
|
|
static struct lwp_info *add_lwp (ptid_t ptid);
|
|
static int linux_stopped_by_watchpoint (void);
|
|
static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
|
|
static void proceed_all_lwps (void);
|
|
static int finish_step_over (struct lwp_info *lwp);
|
|
static CORE_ADDR get_stop_pc (struct lwp_info *lwp);
|
|
static int kill_lwp (unsigned long lwpid, int signo);
|
|
|
|
/* True if the low target can hardware single-step. Such targets
|
|
don't need a BREAKPOINT_REINSERT_ADDR callback. */
|
|
|
|
static int
|
|
can_hardware_single_step (void)
|
|
{
|
|
return (the_low_target.breakpoint_reinsert_addr == NULL);
|
|
}
|
|
|
|
/* True if the low target supports memory breakpoints. If so, we'll
|
|
have a GET_PC implementation. */
|
|
|
|
static int
|
|
supports_breakpoints (void)
|
|
{
|
|
return (the_low_target.get_pc != NULL);
|
|
}
|
|
|
|
/* Returns true if this target can support fast tracepoints. This
|
|
does not mean that the in-process agent has been loaded in the
|
|
inferior. */
|
|
|
|
static int
|
|
supports_fast_tracepoints (void)
|
|
{
|
|
return the_low_target.install_fast_tracepoint_jump_pad != NULL;
|
|
}
|
|
|
|
/* True if LWP is stopped in its stepping range. */
|
|
|
|
static int
|
|
lwp_in_step_range (struct lwp_info *lwp)
|
|
{
|
|
CORE_ADDR pc = lwp->stop_pc;
|
|
|
|
return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
|
|
}
|
|
|
|
struct pending_signals
|
|
{
|
|
int signal;
|
|
siginfo_t info;
|
|
struct pending_signals *prev;
|
|
};
|
|
|
|
/* The read/write ends of the pipe registered as waitable file in the
|
|
event loop. */
|
|
static int linux_event_pipe[2] = { -1, -1 };
|
|
|
|
/* True if we're currently in async mode. */
|
|
#define target_is_async_p() (linux_event_pipe[0] != -1)
|
|
|
|
static void send_sigstop (struct lwp_info *lwp);
|
|
static void wait_for_sigstop (void);
|
|
|
|
/* Return non-zero if HEADER is a 64-bit ELF file. */
|
|
|
|
static int
|
|
elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
|
|
{
|
|
if (header->e_ident[EI_MAG0] == ELFMAG0
|
|
&& header->e_ident[EI_MAG1] == ELFMAG1
|
|
&& header->e_ident[EI_MAG2] == ELFMAG2
|
|
&& header->e_ident[EI_MAG3] == ELFMAG3)
|
|
{
|
|
*machine = header->e_machine;
|
|
return header->e_ident[EI_CLASS] == ELFCLASS64;
|
|
|
|
}
|
|
*machine = EM_NONE;
|
|
return -1;
|
|
}
|
|
|
|
/* Return non-zero if FILE is a 64-bit ELF file,
|
|
zero if the file is not a 64-bit ELF file,
|
|
and -1 if the file is not accessible or doesn't exist. */
|
|
|
|
static int
|
|
elf_64_file_p (const char *file, unsigned int *machine)
|
|
{
|
|
Elf64_Ehdr header;
|
|
int fd;
|
|
|
|
fd = open (file, O_RDONLY);
|
|
if (fd < 0)
|
|
return -1;
|
|
|
|
if (read (fd, &header, sizeof (header)) != sizeof (header))
|
|
{
|
|
close (fd);
|
|
return 0;
|
|
}
|
|
close (fd);
|
|
|
|
return elf_64_header_p (&header, machine);
|
|
}
|
|
|
|
/* Accepts an integer PID; Returns true if the executable PID is
|
|
running is a 64-bit ELF file.. */
|
|
|
|
int
|
|
linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
|
|
{
|
|
char file[PATH_MAX];
|
|
|
|
sprintf (file, "/proc/%d/exe", pid);
|
|
return elf_64_file_p (file, machine);
|
|
}
|
|
|
|
static void
|
|
delete_lwp (struct lwp_info *lwp)
|
|
{
|
|
struct thread_info *thr = get_lwp_thread (lwp);
|
|
|
|
if (debug_threads)
|
|
debug_printf ("deleting %ld\n", lwpid_of (thr));
|
|
|
|
remove_thread (thr);
|
|
free (lwp->arch_private);
|
|
free (lwp);
|
|
}
|
|
|
|
/* Add a process to the common process list, and set its private
|
|
data. */
|
|
|
|
static struct process_info *
|
|
linux_add_process (int pid, int attached)
|
|
{
|
|
struct process_info *proc;
|
|
|
|
proc = add_process (pid, attached);
|
|
proc->private = xcalloc (1, sizeof (*proc->private));
|
|
|
|
/* Set the arch when the first LWP stops. */
|
|
proc->private->new_inferior = 1;
|
|
|
|
if (the_low_target.new_process != NULL)
|
|
proc->private->arch_private = the_low_target.new_process ();
|
|
|
|
return proc;
|
|
}
|
|
|
|
/* Handle a GNU/Linux extended wait response. If we see a clone
|
|
event, we need to add the new LWP to our list (and not report the
|
|
trap to higher layers). */
|
|
|
|
static void
|
|
handle_extended_wait (struct lwp_info *event_child, int wstat)
|
|
{
|
|
int event = wstat >> 16;
|
|
struct thread_info *event_thr = get_lwp_thread (event_child);
|
|
struct lwp_info *new_lwp;
|
|
|
|
if (event == PTRACE_EVENT_CLONE)
|
|
{
|
|
ptid_t ptid;
|
|
unsigned long new_pid;
|
|
int ret, status;
|
|
|
|
ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
|
|
&new_pid);
|
|
|
|
/* If we haven't already seen the new PID stop, wait for it now. */
|
|
if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
|
|
{
|
|
/* The new child has a pending SIGSTOP. We can't affect it until it
|
|
hits the SIGSTOP, but we're already attached. */
|
|
|
|
ret = my_waitpid (new_pid, &status, __WALL);
|
|
|
|
if (ret == -1)
|
|
perror_with_name ("waiting for new child");
|
|
else if (ret != new_pid)
|
|
warning ("wait returned unexpected PID %d", ret);
|
|
else if (!WIFSTOPPED (status))
|
|
warning ("wait returned unexpected status 0x%x", status);
|
|
}
|
|
|
|
if (debug_threads)
|
|
debug_printf ("HEW: Got clone event "
|
|
"from LWP %ld, new child is LWP %ld\n",
|
|
lwpid_of (event_thr), new_pid);
|
|
|
|
ptid = ptid_build (pid_of (event_thr), new_pid, 0);
|
|
new_lwp = add_lwp (ptid);
|
|
|
|
/* Either we're going to immediately resume the new thread
|
|
or leave it stopped. linux_resume_one_lwp is a nop if it
|
|
thinks the thread is currently running, so set this first
|
|
before calling linux_resume_one_lwp. */
|
|
new_lwp->stopped = 1;
|
|
|
|
/* If we're suspending all threads, leave this one suspended
|
|
too. */
|
|
if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
|
|
new_lwp->suspended = 1;
|
|
|
|
/* Normally we will get the pending SIGSTOP. But in some cases
|
|
we might get another signal delivered to the group first.
|
|
If we do get another signal, be sure not to lose it. */
|
|
if (WSTOPSIG (status) == SIGSTOP)
|
|
{
|
|
if (stopping_threads != NOT_STOPPING_THREADS)
|
|
new_lwp->stop_pc = get_stop_pc (new_lwp);
|
|
else
|
|
linux_resume_one_lwp (new_lwp, 0, 0, NULL);
|
|
}
|
|
else
|
|
{
|
|
new_lwp->stop_expected = 1;
|
|
|
|
if (stopping_threads != NOT_STOPPING_THREADS)
|
|
{
|
|
new_lwp->stop_pc = get_stop_pc (new_lwp);
|
|
new_lwp->status_pending_p = 1;
|
|
new_lwp->status_pending = status;
|
|
}
|
|
else
|
|
/* Pass the signal on. This is what GDB does - except
|
|
shouldn't we really report it instead? */
|
|
linux_resume_one_lwp (new_lwp, 0, WSTOPSIG (status), NULL);
|
|
}
|
|
|
|
/* Always resume the current thread. If we are stopping
|
|
threads, it will have a pending SIGSTOP; we may as well
|
|
collect it now. */
|
|
linux_resume_one_lwp (event_child, event_child->stepping, 0, NULL);
|
|
}
|
|
}
|
|
|
|
/* Return the PC as read from the regcache of LWP, without any
|
|
adjustment. */
|
|
|
|
static CORE_ADDR
|
|
get_pc (struct lwp_info *lwp)
|
|
{
|
|
struct thread_info *saved_inferior;
|
|
struct regcache *regcache;
|
|
CORE_ADDR pc;
|
|
|
|
if (the_low_target.get_pc == NULL)
|
|
return 0;
|
|
|
|
saved_inferior = current_inferior;
|
|
current_inferior = get_lwp_thread (lwp);
|
|
|
|
regcache = get_thread_regcache (current_inferior, 1);
|
|
pc = (*the_low_target.get_pc) (regcache);
|
|
|
|
if (debug_threads)
|
|
debug_printf ("pc is 0x%lx\n", (long) pc);
|
|
|
|
current_inferior = saved_inferior;
|
|
return pc;
|
|
}
|
|
|
|
/* This function should only be called if LWP got a SIGTRAP.
|
|
The SIGTRAP could mean several things.
|
|
|
|
On i386, where decr_pc_after_break is non-zero:
|
|
If we were single-stepping this process using PTRACE_SINGLESTEP,
|
|
we will get only the one SIGTRAP (even if the instruction we
|
|
stepped over was a breakpoint). The value of $eip will be the
|
|
next instruction.
|
|
If we continue the process using PTRACE_CONT, we will get a
|
|
SIGTRAP when we hit a breakpoint. The value of $eip will be
|
|
the instruction after the breakpoint (i.e. needs to be
|
|
decremented). If we report the SIGTRAP to GDB, we must also
|
|
report the undecremented PC. If we cancel the SIGTRAP, we
|
|
must resume at the decremented PC.
|
|
|
|
(Presumably, not yet tested) On a non-decr_pc_after_break machine
|
|
with hardware or kernel single-step:
|
|
If we single-step over a breakpoint instruction, our PC will
|
|
point at the following instruction. If we continue and hit a
|
|
breakpoint instruction, our PC will point at the breakpoint
|
|
instruction. */
|
|
|
|
static CORE_ADDR
|
|
get_stop_pc (struct lwp_info *lwp)
|
|
{
|
|
CORE_ADDR stop_pc;
|
|
|
|
if (the_low_target.get_pc == NULL)
|
|
return 0;
|
|
|
|
stop_pc = get_pc (lwp);
|
|
|
|
if (WSTOPSIG (lwp->last_status) == SIGTRAP
|
|
&& !lwp->stepping
|
|
&& !lwp->stopped_by_watchpoint
|
|
&& lwp->last_status >> 16 == 0)
|
|
stop_pc -= the_low_target.decr_pc_after_break;
|
|
|
|
if (debug_threads)
|
|
debug_printf ("stop pc is 0x%lx\n", (long) stop_pc);
|
|
|
|
return stop_pc;
|
|
}
|
|
|
|
static struct lwp_info *
|
|
add_lwp (ptid_t ptid)
|
|
{
|
|
struct lwp_info *lwp;
|
|
|
|
lwp = (struct lwp_info *) xmalloc (sizeof (*lwp));
|
|
memset (lwp, 0, sizeof (*lwp));
|
|
|
|
if (the_low_target.new_thread != NULL)
|
|
lwp->arch_private = the_low_target.new_thread ();
|
|
|
|
lwp->thread = add_thread (ptid, lwp);
|
|
|
|
return lwp;
|
|
}
|
|
|
|
/* Start an inferior process and returns its pid.
|
|
ALLARGS is a vector of program-name and args. */
|
|
|
|
static int
|
|
linux_create_inferior (char *program, char **allargs)
|
|
{
|
|
#ifdef HAVE_PERSONALITY
|
|
int personality_orig = 0, personality_set = 0;
|
|
#endif
|
|
struct lwp_info *new_lwp;
|
|
int pid;
|
|
ptid_t ptid;
|
|
|
|
#ifdef HAVE_PERSONALITY
|
|
if (disable_randomization)
|
|
{
|
|
errno = 0;
|
|
personality_orig = personality (0xffffffff);
|
|
if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
|
|
{
|
|
personality_set = 1;
|
|
personality (personality_orig | ADDR_NO_RANDOMIZE);
|
|
}
|
|
if (errno != 0 || (personality_set
|
|
&& !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
|
|
warning ("Error disabling address space randomization: %s",
|
|
strerror (errno));
|
|
}
|
|
#endif
|
|
|
|
#if defined(__UCLIBC__) && defined(HAS_NOMMU)
|
|
pid = vfork ();
|
|
#else
|
|
pid = fork ();
|
|
#endif
|
|
if (pid < 0)
|
|
perror_with_name ("fork");
|
|
|
|
if (pid == 0)
|
|
{
|
|
close_most_fds ();
|
|
ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
|
|
|
|
#ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
|
|
signal (__SIGRTMIN + 1, SIG_DFL);
|
|
#endif
|
|
|
|
setpgid (0, 0);
|
|
|
|
/* If gdbserver is connected to gdb via stdio, redirect the inferior's
|
|
stdout to stderr so that inferior i/o doesn't corrupt the connection.
|
|
Also, redirect stdin to /dev/null. */
|
|
if (remote_connection_is_stdio ())
|
|
{
|
|
close (0);
|
|
open ("/dev/null", O_RDONLY);
|
|
dup2 (2, 1);
|
|
if (write (2, "stdin/stdout redirected\n",
|
|
sizeof ("stdin/stdout redirected\n") - 1) < 0)
|
|
{
|
|
/* Errors ignored. */;
|
|
}
|
|
}
|
|
|
|
execv (program, allargs);
|
|
if (errno == ENOENT)
|
|
execvp (program, allargs);
|
|
|
|
fprintf (stderr, "Cannot exec %s: %s.\n", program,
|
|
strerror (errno));
|
|
fflush (stderr);
|
|
_exit (0177);
|
|
}
|
|
|
|
#ifdef HAVE_PERSONALITY
|
|
if (personality_set)
|
|
{
|
|
errno = 0;
|
|
personality (personality_orig);
|
|
if (errno != 0)
|
|
warning ("Error restoring address space randomization: %s",
|
|
strerror (errno));
|
|
}
|
|
#endif
|
|
|
|
linux_add_process (pid, 0);
|
|
|
|
ptid = ptid_build (pid, pid, 0);
|
|
new_lwp = add_lwp (ptid);
|
|
new_lwp->must_set_ptrace_flags = 1;
|
|
|
|
return pid;
|
|
}
|
|
|
|
char *
|
|
linux_attach_fail_reason_string (ptid_t ptid, int err)
|
|
{
|
|
static char *reason_string;
|
|
struct buffer buffer;
|
|
char *warnings;
|
|
long lwpid = ptid_get_lwp (ptid);
|
|
|
|
xfree (reason_string);
|
|
|
|
buffer_init (&buffer);
|
|
linux_ptrace_attach_fail_reason (lwpid, &buffer);
|
|
buffer_grow_str0 (&buffer, "");
|
|
warnings = buffer_finish (&buffer);
|
|
if (warnings[0] != '\0')
|
|
reason_string = xstrprintf ("%s (%d), %s",
|
|
strerror (err), err, warnings);
|
|
else
|
|
reason_string = xstrprintf ("%s (%d)",
|
|
strerror (err), err);
|
|
xfree (warnings);
|
|
return reason_string;
|
|
}
|
|
|
|
/* Attach to an inferior process. */
|
|
|
|
int
|
|
linux_attach_lwp (ptid_t ptid)
|
|
{
|
|
struct lwp_info *new_lwp;
|
|
int lwpid = ptid_get_lwp (ptid);
|
|
|
|
if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
|
|
!= 0)
|
|
return errno;
|
|
|
|
new_lwp = add_lwp (ptid);
|
|
|
|
/* We need to wait for SIGSTOP before being able to make the next
|
|
ptrace call on this LWP. */
|
|
new_lwp->must_set_ptrace_flags = 1;
|
|
|
|
if (linux_proc_pid_is_stopped (lwpid))
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Attached to a stopped process\n");
|
|
|
|
/* The process is definitely stopped. It is in a job control
|
|
stop, unless the kernel predates the TASK_STOPPED /
|
|
TASK_TRACED distinction, in which case it might be in a
|
|
ptrace stop. Make sure it is in a ptrace stop; from there we
|
|
can kill it, signal it, et cetera.
|
|
|
|
First make sure there is a pending SIGSTOP. Since we are
|
|
already attached, the process can not transition from stopped
|
|
to running without a PTRACE_CONT; so we know this signal will
|
|
go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
|
|
probably already in the queue (unless this kernel is old
|
|
enough to use TASK_STOPPED for ptrace stops); but since
|
|
SIGSTOP is not an RT signal, it can only be queued once. */
|
|
kill_lwp (lwpid, SIGSTOP);
|
|
|
|
/* Finally, resume the stopped process. This will deliver the
|
|
SIGSTOP (or a higher priority signal, just like normal
|
|
PTRACE_ATTACH), which we'll catch later on. */
|
|
ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
|
|
}
|
|
|
|
/* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
|
|
brings it to a halt.
|
|
|
|
There are several cases to consider here:
|
|
|
|
1) gdbserver has already attached to the process and is being notified
|
|
of a new thread that is being created.
|
|
In this case we should ignore that SIGSTOP and resume the
|
|
process. This is handled below by setting stop_expected = 1,
|
|
and the fact that add_thread sets last_resume_kind ==
|
|
resume_continue.
|
|
|
|
2) This is the first thread (the process thread), and we're attaching
|
|
to it via attach_inferior.
|
|
In this case we want the process thread to stop.
|
|
This is handled by having linux_attach set last_resume_kind ==
|
|
resume_stop after we return.
|
|
|
|
If the pid we are attaching to is also the tgid, we attach to and
|
|
stop all the existing threads. Otherwise, we attach to pid and
|
|
ignore any other threads in the same group as this pid.
|
|
|
|
3) GDB is connecting to gdbserver and is requesting an enumeration of all
|
|
existing threads.
|
|
In this case we want the thread to stop.
|
|
FIXME: This case is currently not properly handled.
|
|
We should wait for the SIGSTOP but don't. Things work apparently
|
|
because enough time passes between when we ptrace (ATTACH) and when
|
|
gdb makes the next ptrace call on the thread.
|
|
|
|
On the other hand, if we are currently trying to stop all threads, we
|
|
should treat the new thread as if we had sent it a SIGSTOP. This works
|
|
because we are guaranteed that the add_lwp call above added us to the
|
|
end of the list, and so the new thread has not yet reached
|
|
wait_for_sigstop (but will). */
|
|
new_lwp->stop_expected = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Attach to PID. If PID is the tgid, attach to it and all
|
|
of its threads. */
|
|
|
|
static int
|
|
linux_attach (unsigned long pid)
|
|
{
|
|
ptid_t ptid = ptid_build (pid, pid, 0);
|
|
int err;
|
|
|
|
/* Attach to PID. We will check for other threads
|
|
soon. */
|
|
err = linux_attach_lwp (ptid);
|
|
if (err != 0)
|
|
error ("Cannot attach to process %ld: %s",
|
|
pid, linux_attach_fail_reason_string (ptid, err));
|
|
|
|
linux_add_process (pid, 1);
|
|
|
|
if (!non_stop)
|
|
{
|
|
struct thread_info *thread;
|
|
|
|
/* Don't ignore the initial SIGSTOP if we just attached to this
|
|
process. It will be collected by wait shortly. */
|
|
thread = find_thread_ptid (ptid_build (pid, pid, 0));
|
|
thread->last_resume_kind = resume_stop;
|
|
}
|
|
|
|
if (linux_proc_get_tgid (pid) == pid)
|
|
{
|
|
DIR *dir;
|
|
char pathname[128];
|
|
|
|
sprintf (pathname, "/proc/%ld/task", pid);
|
|
|
|
dir = opendir (pathname);
|
|
|
|
if (!dir)
|
|
{
|
|
fprintf (stderr, "Could not open /proc/%ld/task.\n", pid);
|
|
fflush (stderr);
|
|
}
|
|
else
|
|
{
|
|
/* At this point we attached to the tgid. Scan the task for
|
|
existing threads. */
|
|
int new_threads_found;
|
|
int iterations = 0;
|
|
|
|
while (iterations < 2)
|
|
{
|
|
struct dirent *dp;
|
|
|
|
new_threads_found = 0;
|
|
/* Add all the other threads. While we go through the
|
|
threads, new threads may be spawned. Cycle through
|
|
the list of threads until we have done two iterations without
|
|
finding new threads. */
|
|
while ((dp = readdir (dir)) != NULL)
|
|
{
|
|
unsigned long lwp;
|
|
ptid_t ptid;
|
|
|
|
/* Fetch one lwp. */
|
|
lwp = strtoul (dp->d_name, NULL, 10);
|
|
|
|
ptid = ptid_build (pid, lwp, 0);
|
|
|
|
/* Is this a new thread? */
|
|
if (lwp != 0 && find_thread_ptid (ptid) == NULL)
|
|
{
|
|
int err;
|
|
|
|
if (debug_threads)
|
|
debug_printf ("Found new lwp %ld\n", lwp);
|
|
|
|
err = linux_attach_lwp (ptid);
|
|
if (err != 0)
|
|
warning ("Cannot attach to lwp %ld: %s",
|
|
lwp,
|
|
linux_attach_fail_reason_string (ptid, err));
|
|
|
|
new_threads_found++;
|
|
}
|
|
}
|
|
|
|
if (!new_threads_found)
|
|
iterations++;
|
|
else
|
|
iterations = 0;
|
|
|
|
rewinddir (dir);
|
|
}
|
|
closedir (dir);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct counter
|
|
{
|
|
int pid;
|
|
int count;
|
|
};
|
|
|
|
static int
|
|
second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
|
|
{
|
|
struct counter *counter = args;
|
|
|
|
if (ptid_get_pid (entry->id) == counter->pid)
|
|
{
|
|
if (++counter->count > 1)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
last_thread_of_process_p (int pid)
|
|
{
|
|
struct counter counter = { pid , 0 };
|
|
|
|
return (find_inferior (&all_threads,
|
|
second_thread_of_pid_p, &counter) == NULL);
|
|
}
|
|
|
|
/* Kill LWP. */
|
|
|
|
static void
|
|
linux_kill_one_lwp (struct lwp_info *lwp)
|
|
{
|
|
struct thread_info *thr = get_lwp_thread (lwp);
|
|
int pid = lwpid_of (thr);
|
|
|
|
/* PTRACE_KILL is unreliable. After stepping into a signal handler,
|
|
there is no signal context, and ptrace(PTRACE_KILL) (or
|
|
ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
|
|
ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
|
|
alternative is to kill with SIGKILL. We only need one SIGKILL
|
|
per process, not one for each thread. But since we still support
|
|
linuxthreads, and we also support debugging programs using raw
|
|
clone without CLONE_THREAD, we send one for each thread. For
|
|
years, we used PTRACE_KILL only, so we're being a bit paranoid
|
|
about some old kernels where PTRACE_KILL might work better
|
|
(dubious if there are any such, but that's why it's paranoia), so
|
|
we try SIGKILL first, PTRACE_KILL second, and so we're fine
|
|
everywhere. */
|
|
|
|
errno = 0;
|
|
kill (pid, SIGKILL);
|
|
if (debug_threads)
|
|
debug_printf ("LKL: kill (SIGKILL) %s, 0, 0 (%s)\n",
|
|
target_pid_to_str (ptid_of (thr)),
|
|
errno ? strerror (errno) : "OK");
|
|
|
|
errno = 0;
|
|
ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
|
|
if (debug_threads)
|
|
debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
|
|
target_pid_to_str (ptid_of (thr)),
|
|
errno ? strerror (errno) : "OK");
|
|
}
|
|
|
|
/* Callback for `find_inferior'. Kills an lwp of a given process,
|
|
except the leader. */
|
|
|
|
static int
|
|
kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lwp = get_thread_lwp (thread);
|
|
int wstat;
|
|
int pid = * (int *) args;
|
|
|
|
if (ptid_get_pid (entry->id) != pid)
|
|
return 0;
|
|
|
|
/* We avoid killing the first thread here, because of a Linux kernel (at
|
|
least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
|
|
the children get a chance to be reaped, it will remain a zombie
|
|
forever. */
|
|
|
|
if (lwpid_of (thread) == pid)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("lkop: is last of process %s\n",
|
|
target_pid_to_str (entry->id));
|
|
return 0;
|
|
}
|
|
|
|
do
|
|
{
|
|
linux_kill_one_lwp (lwp);
|
|
|
|
/* Make sure it died. The loop is most likely unnecessary. */
|
|
pid = linux_wait_for_event (thread->entry.id, &wstat, __WALL);
|
|
} while (pid > 0 && WIFSTOPPED (wstat));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
linux_kill (int pid)
|
|
{
|
|
struct process_info *process;
|
|
struct lwp_info *lwp;
|
|
int wstat;
|
|
int lwpid;
|
|
|
|
process = find_process_pid (pid);
|
|
if (process == NULL)
|
|
return -1;
|
|
|
|
/* If we're killing a running inferior, make sure it is stopped
|
|
first, as PTRACE_KILL will not work otherwise. */
|
|
stop_all_lwps (0, NULL);
|
|
|
|
find_inferior (&all_threads, kill_one_lwp_callback , &pid);
|
|
|
|
/* See the comment in linux_kill_one_lwp. We did not kill the first
|
|
thread in the list, so do so now. */
|
|
lwp = find_lwp_pid (pid_to_ptid (pid));
|
|
|
|
if (lwp == NULL)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("lk_1: cannot find lwp for pid: %d\n",
|
|
pid);
|
|
}
|
|
else
|
|
{
|
|
struct thread_info *thr = get_lwp_thread (lwp);
|
|
|
|
if (debug_threads)
|
|
debug_printf ("lk_1: killing lwp %ld, for pid: %d\n",
|
|
lwpid_of (thr), pid);
|
|
|
|
do
|
|
{
|
|
linux_kill_one_lwp (lwp);
|
|
|
|
/* Make sure it died. The loop is most likely unnecessary. */
|
|
lwpid = linux_wait_for_event (thr->entry.id, &wstat, __WALL);
|
|
} while (lwpid > 0 && WIFSTOPPED (wstat));
|
|
}
|
|
|
|
the_target->mourn (process);
|
|
|
|
/* Since we presently can only stop all lwps of all processes, we
|
|
need to unstop lwps of other processes. */
|
|
unstop_all_lwps (0, NULL);
|
|
return 0;
|
|
}
|
|
|
|
/* Get pending signal of THREAD, for detaching purposes. This is the
|
|
signal the thread last stopped for, which we need to deliver to the
|
|
thread when detaching, otherwise, it'd be suppressed/lost. */
|
|
|
|
static int
|
|
get_detach_signal (struct thread_info *thread)
|
|
{
|
|
enum gdb_signal signo = GDB_SIGNAL_0;
|
|
int status;
|
|
struct lwp_info *lp = get_thread_lwp (thread);
|
|
|
|
if (lp->status_pending_p)
|
|
status = lp->status_pending;
|
|
else
|
|
{
|
|
/* If the thread had been suspended by gdbserver, and it stopped
|
|
cleanly, then it'll have stopped with SIGSTOP. But we don't
|
|
want to deliver that SIGSTOP. */
|
|
if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
|
|
|| thread->last_status.value.sig == GDB_SIGNAL_0)
|
|
return 0;
|
|
|
|
/* Otherwise, we may need to deliver the signal we
|
|
intercepted. */
|
|
status = lp->last_status;
|
|
}
|
|
|
|
if (!WIFSTOPPED (status))
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
|
|
target_pid_to_str (ptid_of (thread)));
|
|
return 0;
|
|
}
|
|
|
|
/* Extended wait statuses aren't real SIGTRAPs. */
|
|
if (WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("GPS: lwp %s had stopped with extended "
|
|
"status: no pending signal\n",
|
|
target_pid_to_str (ptid_of (thread)));
|
|
return 0;
|
|
}
|
|
|
|
signo = gdb_signal_from_host (WSTOPSIG (status));
|
|
|
|
if (program_signals_p && !program_signals[signo])
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
|
|
target_pid_to_str (ptid_of (thread)),
|
|
gdb_signal_to_string (signo));
|
|
return 0;
|
|
}
|
|
else if (!program_signals_p
|
|
/* If we have no way to know which signals GDB does not
|
|
want to have passed to the program, assume
|
|
SIGTRAP/SIGINT, which is GDB's default. */
|
|
&& (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("GPS: lwp %s had signal %s, "
|
|
"but we don't know if we should pass it. "
|
|
"Default to not.\n",
|
|
target_pid_to_str (ptid_of (thread)),
|
|
gdb_signal_to_string (signo));
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
|
|
target_pid_to_str (ptid_of (thread)),
|
|
gdb_signal_to_string (signo));
|
|
|
|
return WSTOPSIG (status);
|
|
}
|
|
}
|
|
|
|
static int
|
|
linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lwp = get_thread_lwp (thread);
|
|
int pid = * (int *) args;
|
|
int sig;
|
|
|
|
if (ptid_get_pid (entry->id) != pid)
|
|
return 0;
|
|
|
|
/* If there is a pending SIGSTOP, get rid of it. */
|
|
if (lwp->stop_expected)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Sending SIGCONT to %s\n",
|
|
target_pid_to_str (ptid_of (thread)));
|
|
|
|
kill_lwp (lwpid_of (thread), SIGCONT);
|
|
lwp->stop_expected = 0;
|
|
}
|
|
|
|
/* Flush any pending changes to the process's registers. */
|
|
regcache_invalidate_thread (thread);
|
|
|
|
/* Pass on any pending signal for this thread. */
|
|
sig = get_detach_signal (thread);
|
|
|
|
/* Finally, let it resume. */
|
|
if (the_low_target.prepare_to_resume != NULL)
|
|
the_low_target.prepare_to_resume (lwp);
|
|
if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
|
|
(PTRACE_TYPE_ARG4) (long) sig) < 0)
|
|
error (_("Can't detach %s: %s"),
|
|
target_pid_to_str (ptid_of (thread)),
|
|
strerror (errno));
|
|
|
|
delete_lwp (lwp);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
linux_detach (int pid)
|
|
{
|
|
struct process_info *process;
|
|
|
|
process = find_process_pid (pid);
|
|
if (process == NULL)
|
|
return -1;
|
|
|
|
/* Stop all threads before detaching. First, ptrace requires that
|
|
the thread is stopped to sucessfully detach. Second, thread_db
|
|
may need to uninstall thread event breakpoints from memory, which
|
|
only works with a stopped process anyway. */
|
|
stop_all_lwps (0, NULL);
|
|
|
|
#ifdef USE_THREAD_DB
|
|
thread_db_detach (process);
|
|
#endif
|
|
|
|
/* Stabilize threads (move out of jump pads). */
|
|
stabilize_threads ();
|
|
|
|
find_inferior (&all_threads, linux_detach_one_lwp, &pid);
|
|
|
|
the_target->mourn (process);
|
|
|
|
/* Since we presently can only stop all lwps of all processes, we
|
|
need to unstop lwps of other processes. */
|
|
unstop_all_lwps (0, NULL);
|
|
return 0;
|
|
}
|
|
|
|
/* Remove all LWPs that belong to process PROC from the lwp list. */
|
|
|
|
static int
|
|
delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lwp = get_thread_lwp (thread);
|
|
struct process_info *process = proc;
|
|
|
|
if (pid_of (thread) == pid_of (process))
|
|
delete_lwp (lwp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
linux_mourn (struct process_info *process)
|
|
{
|
|
struct process_info_private *priv;
|
|
|
|
#ifdef USE_THREAD_DB
|
|
thread_db_mourn (process);
|
|
#endif
|
|
|
|
find_inferior (&all_threads, delete_lwp_callback, process);
|
|
|
|
/* Freeing all private data. */
|
|
priv = process->private;
|
|
free (priv->arch_private);
|
|
free (priv);
|
|
process->private = NULL;
|
|
|
|
remove_process (process);
|
|
}
|
|
|
|
static void
|
|
linux_join (int pid)
|
|
{
|
|
int status, ret;
|
|
|
|
do {
|
|
ret = my_waitpid (pid, &status, 0);
|
|
if (WIFEXITED (status) || WIFSIGNALED (status))
|
|
break;
|
|
} while (ret != -1 || errno != ECHILD);
|
|
}
|
|
|
|
/* Return nonzero if the given thread is still alive. */
|
|
static int
|
|
linux_thread_alive (ptid_t ptid)
|
|
{
|
|
struct lwp_info *lwp = find_lwp_pid (ptid);
|
|
|
|
/* We assume we always know if a thread exits. If a whole process
|
|
exited but we still haven't been able to report it to GDB, we'll
|
|
hold on to the last lwp of the dead process. */
|
|
if (lwp != NULL)
|
|
return !lwp->dead;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Return 1 if this lwp has an interesting status pending. */
|
|
static int
|
|
status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lwp = get_thread_lwp (thread);
|
|
ptid_t ptid = * (ptid_t *) arg;
|
|
|
|
/* Check if we're only interested in events from a specific process
|
|
or its lwps. */
|
|
if (!ptid_equal (minus_one_ptid, ptid)
|
|
&& ptid_get_pid (ptid) != ptid_get_pid (thread->entry.id))
|
|
return 0;
|
|
|
|
/* If we got a `vCont;t', but we haven't reported a stop yet, do
|
|
report any status pending the LWP may have. */
|
|
if (thread->last_resume_kind == resume_stop
|
|
&& thread->last_status.kind != TARGET_WAITKIND_IGNORE)
|
|
return 0;
|
|
|
|
return lwp->status_pending_p;
|
|
}
|
|
|
|
static int
|
|
same_lwp (struct inferior_list_entry *entry, void *data)
|
|
{
|
|
ptid_t ptid = *(ptid_t *) data;
|
|
int lwp;
|
|
|
|
if (ptid_get_lwp (ptid) != 0)
|
|
lwp = ptid_get_lwp (ptid);
|
|
else
|
|
lwp = ptid_get_pid (ptid);
|
|
|
|
if (ptid_get_lwp (entry->id) == lwp)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct lwp_info *
|
|
find_lwp_pid (ptid_t ptid)
|
|
{
|
|
struct inferior_list_entry *thread
|
|
= find_inferior (&all_threads, same_lwp, &ptid);
|
|
|
|
if (thread == NULL)
|
|
return NULL;
|
|
|
|
return get_thread_lwp ((struct thread_info *) thread);
|
|
}
|
|
|
|
/* Return the number of known LWPs in the tgid given by PID. */
|
|
|
|
static int
|
|
num_lwps (int pid)
|
|
{
|
|
struct inferior_list_entry *inf, *tmp;
|
|
int count = 0;
|
|
|
|
ALL_INFERIORS (&all_threads, inf, tmp)
|
|
{
|
|
if (ptid_get_pid (inf->id) == pid)
|
|
count++;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Detect zombie thread group leaders, and "exit" them. We can't reap
|
|
their exits until all other threads in the group have exited. */
|
|
|
|
static void
|
|
check_zombie_leaders (void)
|
|
{
|
|
struct process_info *proc, *tmp;
|
|
|
|
ALL_PROCESSES (proc, tmp)
|
|
{
|
|
pid_t leader_pid = pid_of (proc);
|
|
struct lwp_info *leader_lp;
|
|
|
|
leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
|
|
|
|
if (debug_threads)
|
|
debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
|
|
"num_lwps=%d, zombie=%d\n",
|
|
leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
|
|
linux_proc_pid_is_zombie (leader_pid));
|
|
|
|
if (leader_lp != NULL
|
|
/* Check if there are other threads in the group, as we may
|
|
have raced with the inferior simply exiting. */
|
|
&& !last_thread_of_process_p (leader_pid)
|
|
&& linux_proc_pid_is_zombie (leader_pid))
|
|
{
|
|
/* A leader zombie can mean one of two things:
|
|
|
|
- It exited, and there's an exit status pending
|
|
available, or only the leader exited (not the whole
|
|
program). In the latter case, we can't waitpid the
|
|
leader's exit status until all other threads are gone.
|
|
|
|
- There are 3 or more threads in the group, and a thread
|
|
other than the leader exec'd. On an exec, the Linux
|
|
kernel destroys all other threads (except the execing
|
|
one) in the thread group, and resets the execing thread's
|
|
tid to the tgid. No exit notification is sent for the
|
|
execing thread -- from the ptracer's perspective, it
|
|
appears as though the execing thread just vanishes.
|
|
Until we reap all other threads except the leader and the
|
|
execing thread, the leader will be zombie, and the
|
|
execing thread will be in `D (disc sleep)'. As soon as
|
|
all other threads are reaped, the execing thread changes
|
|
it's tid to the tgid, and the previous (zombie) leader
|
|
vanishes, giving place to the "new" leader. We could try
|
|
distinguishing the exit and exec cases, by waiting once
|
|
more, and seeing if something comes out, but it doesn't
|
|
sound useful. The previous leader _does_ go away, and
|
|
we'll re-add the new one once we see the exec event
|
|
(which is just the same as what would happen if the
|
|
previous leader did exit voluntarily before some other
|
|
thread execs). */
|
|
|
|
if (debug_threads)
|
|
fprintf (stderr,
|
|
"CZL: Thread group leader %d zombie "
|
|
"(it exited, or another thread execd).\n",
|
|
leader_pid);
|
|
|
|
delete_lwp (leader_lp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Callback for `find_inferior'. Returns the first LWP that is not
|
|
stopped. ARG is a PTID filter. */
|
|
|
|
static int
|
|
not_stopped_callback (struct inferior_list_entry *entry, void *arg)
|
|
{
|
|
struct thread_info *thr = (struct thread_info *) entry;
|
|
struct lwp_info *lwp;
|
|
ptid_t filter = *(ptid_t *) arg;
|
|
|
|
if (!ptid_match (ptid_of (thr), filter))
|
|
return 0;
|
|
|
|
lwp = get_thread_lwp (thr);
|
|
if (!lwp->stopped)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This function should only be called if the LWP got a SIGTRAP.
|
|
|
|
Handle any tracepoint steps or hits. Return true if a tracepoint
|
|
event was handled, 0 otherwise. */
|
|
|
|
static int
|
|
handle_tracepoints (struct lwp_info *lwp)
|
|
{
|
|
struct thread_info *tinfo = get_lwp_thread (lwp);
|
|
int tpoint_related_event = 0;
|
|
|
|
/* If this tracepoint hit causes a tracing stop, we'll immediately
|
|
uninsert tracepoints. To do this, we temporarily pause all
|
|
threads, unpatch away, and then unpause threads. We need to make
|
|
sure the unpausing doesn't resume LWP too. */
|
|
lwp->suspended++;
|
|
|
|
/* And we need to be sure that any all-threads-stopping doesn't try
|
|
to move threads out of the jump pads, as it could deadlock the
|
|
inferior (LWP could be in the jump pad, maybe even holding the
|
|
lock.) */
|
|
|
|
/* Do any necessary step collect actions. */
|
|
tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
|
|
|
|
tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
|
|
|
|
/* See if we just hit a tracepoint and do its main collect
|
|
actions. */
|
|
tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
|
|
|
|
lwp->suspended--;
|
|
|
|
gdb_assert (lwp->suspended == 0);
|
|
gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
|
|
|
|
if (tpoint_related_event)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("got a tracepoint event\n");
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Convenience wrapper. Returns true if LWP is presently collecting a
|
|
fast tracepoint. */
|
|
|
|
static int
|
|
linux_fast_tracepoint_collecting (struct lwp_info *lwp,
|
|
struct fast_tpoint_collect_status *status)
|
|
{
|
|
CORE_ADDR thread_area;
|
|
struct thread_info *thread = get_lwp_thread (lwp);
|
|
|
|
if (the_low_target.get_thread_area == NULL)
|
|
return 0;
|
|
|
|
/* Get the thread area address. This is used to recognize which
|
|
thread is which when tracing with the in-process agent library.
|
|
We don't read anything from the address, and treat it as opaque;
|
|
it's the address itself that we assume is unique per-thread. */
|
|
if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
|
|
return 0;
|
|
|
|
return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
|
|
}
|
|
|
|
/* The reason we resume in the caller, is because we want to be able
|
|
to pass lwp->status_pending as WSTAT, and we need to clear
|
|
status_pending_p before resuming, otherwise, linux_resume_one_lwp
|
|
refuses to resume. */
|
|
|
|
static int
|
|
maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
|
|
{
|
|
struct thread_info *saved_inferior;
|
|
|
|
saved_inferior = current_inferior;
|
|
current_inferior = get_lwp_thread (lwp);
|
|
|
|
if ((wstat == NULL
|
|
|| (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
|
|
&& supports_fast_tracepoints ()
|
|
&& agent_loaded_p ())
|
|
{
|
|
struct fast_tpoint_collect_status status;
|
|
int r;
|
|
|
|
if (debug_threads)
|
|
debug_printf ("Checking whether LWP %ld needs to move out of the "
|
|
"jump pad.\n",
|
|
lwpid_of (current_inferior));
|
|
|
|
r = linux_fast_tracepoint_collecting (lwp, &status);
|
|
|
|
if (wstat == NULL
|
|
|| (WSTOPSIG (*wstat) != SIGILL
|
|
&& WSTOPSIG (*wstat) != SIGFPE
|
|
&& WSTOPSIG (*wstat) != SIGSEGV
|
|
&& WSTOPSIG (*wstat) != SIGBUS))
|
|
{
|
|
lwp->collecting_fast_tracepoint = r;
|
|
|
|
if (r != 0)
|
|
{
|
|
if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
|
|
{
|
|
/* Haven't executed the original instruction yet.
|
|
Set breakpoint there, and wait till it's hit,
|
|
then single-step until exiting the jump pad. */
|
|
lwp->exit_jump_pad_bkpt
|
|
= set_breakpoint_at (status.adjusted_insn_addr, NULL);
|
|
}
|
|
|
|
if (debug_threads)
|
|
debug_printf ("Checking whether LWP %ld needs to move out of "
|
|
"the jump pad...it does\n",
|
|
lwpid_of (current_inferior));
|
|
current_inferior = saved_inferior;
|
|
|
|
return 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If we get a synchronous signal while collecting, *and*
|
|
while executing the (relocated) original instruction,
|
|
reset the PC to point at the tpoint address, before
|
|
reporting to GDB. Otherwise, it's an IPA lib bug: just
|
|
report the signal to GDB, and pray for the best. */
|
|
|
|
lwp->collecting_fast_tracepoint = 0;
|
|
|
|
if (r != 0
|
|
&& (status.adjusted_insn_addr <= lwp->stop_pc
|
|
&& lwp->stop_pc < status.adjusted_insn_addr_end))
|
|
{
|
|
siginfo_t info;
|
|
struct regcache *regcache;
|
|
|
|
/* The si_addr on a few signals references the address
|
|
of the faulting instruction. Adjust that as
|
|
well. */
|
|
if ((WSTOPSIG (*wstat) == SIGILL
|
|
|| WSTOPSIG (*wstat) == SIGFPE
|
|
|| WSTOPSIG (*wstat) == SIGBUS
|
|
|| WSTOPSIG (*wstat) == SIGSEGV)
|
|
&& ptrace (PTRACE_GETSIGINFO, lwpid_of (current_inferior),
|
|
(PTRACE_TYPE_ARG3) 0, &info) == 0
|
|
/* Final check just to make sure we don't clobber
|
|
the siginfo of non-kernel-sent signals. */
|
|
&& (uintptr_t) info.si_addr == lwp->stop_pc)
|
|
{
|
|
info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
|
|
ptrace (PTRACE_SETSIGINFO, lwpid_of (current_inferior),
|
|
(PTRACE_TYPE_ARG3) 0, &info);
|
|
}
|
|
|
|
regcache = get_thread_regcache (current_inferior, 1);
|
|
(*the_low_target.set_pc) (regcache, status.tpoint_addr);
|
|
lwp->stop_pc = status.tpoint_addr;
|
|
|
|
/* Cancel any fast tracepoint lock this thread was
|
|
holding. */
|
|
force_unlock_trace_buffer ();
|
|
}
|
|
|
|
if (lwp->exit_jump_pad_bkpt != NULL)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
|
|
"stopping all threads momentarily.\n");
|
|
|
|
stop_all_lwps (1, lwp);
|
|
cancel_breakpoints ();
|
|
|
|
delete_breakpoint (lwp->exit_jump_pad_bkpt);
|
|
lwp->exit_jump_pad_bkpt = NULL;
|
|
|
|
unstop_all_lwps (1, lwp);
|
|
|
|
gdb_assert (lwp->suspended >= 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (debug_threads)
|
|
debug_printf ("Checking whether LWP %ld needs to move out of the "
|
|
"jump pad...no\n",
|
|
lwpid_of (current_inferior));
|
|
|
|
current_inferior = saved_inferior;
|
|
return 0;
|
|
}
|
|
|
|
/* Enqueue one signal in the "signals to report later when out of the
|
|
jump pad" list. */
|
|
|
|
static void
|
|
enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
|
|
{
|
|
struct pending_signals *p_sig;
|
|
struct thread_info *thread = get_lwp_thread (lwp);
|
|
|
|
if (debug_threads)
|
|
debug_printf ("Deferring signal %d for LWP %ld.\n",
|
|
WSTOPSIG (*wstat), lwpid_of (thread));
|
|
|
|
if (debug_threads)
|
|
{
|
|
struct pending_signals *sig;
|
|
|
|
for (sig = lwp->pending_signals_to_report;
|
|
sig != NULL;
|
|
sig = sig->prev)
|
|
debug_printf (" Already queued %d\n",
|
|
sig->signal);
|
|
|
|
debug_printf (" (no more currently queued signals)\n");
|
|
}
|
|
|
|
/* Don't enqueue non-RT signals if they are already in the deferred
|
|
queue. (SIGSTOP being the easiest signal to see ending up here
|
|
twice) */
|
|
if (WSTOPSIG (*wstat) < __SIGRTMIN)
|
|
{
|
|
struct pending_signals *sig;
|
|
|
|
for (sig = lwp->pending_signals_to_report;
|
|
sig != NULL;
|
|
sig = sig->prev)
|
|
{
|
|
if (sig->signal == WSTOPSIG (*wstat))
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Not requeuing already queued non-RT signal %d"
|
|
" for LWP %ld\n",
|
|
sig->signal,
|
|
lwpid_of (thread));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
p_sig = xmalloc (sizeof (*p_sig));
|
|
p_sig->prev = lwp->pending_signals_to_report;
|
|
p_sig->signal = WSTOPSIG (*wstat);
|
|
memset (&p_sig->info, 0, sizeof (siginfo_t));
|
|
ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
|
|
&p_sig->info);
|
|
|
|
lwp->pending_signals_to_report = p_sig;
|
|
}
|
|
|
|
/* Dequeue one signal from the "signals to report later when out of
|
|
the jump pad" list. */
|
|
|
|
static int
|
|
dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
|
|
{
|
|
struct thread_info *thread = get_lwp_thread (lwp);
|
|
|
|
if (lwp->pending_signals_to_report != NULL)
|
|
{
|
|
struct pending_signals **p_sig;
|
|
|
|
p_sig = &lwp->pending_signals_to_report;
|
|
while ((*p_sig)->prev != NULL)
|
|
p_sig = &(*p_sig)->prev;
|
|
|
|
*wstat = W_STOPCODE ((*p_sig)->signal);
|
|
if ((*p_sig)->info.si_signo != 0)
|
|
ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
|
|
&(*p_sig)->info);
|
|
free (*p_sig);
|
|
*p_sig = NULL;
|
|
|
|
if (debug_threads)
|
|
debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
|
|
WSTOPSIG (*wstat), lwpid_of (thread));
|
|
|
|
if (debug_threads)
|
|
{
|
|
struct pending_signals *sig;
|
|
|
|
for (sig = lwp->pending_signals_to_report;
|
|
sig != NULL;
|
|
sig = sig->prev)
|
|
debug_printf (" Still queued %d\n",
|
|
sig->signal);
|
|
|
|
debug_printf (" (no more queued signals)\n");
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Arrange for a breakpoint to be hit again later. We don't keep the
|
|
SIGTRAP status and don't forward the SIGTRAP signal to the LWP. We
|
|
will handle the current event, eventually we will resume this LWP,
|
|
and this breakpoint will trap again. */
|
|
|
|
static int
|
|
cancel_breakpoint (struct lwp_info *lwp)
|
|
{
|
|
struct thread_info *saved_inferior;
|
|
|
|
/* There's nothing to do if we don't support breakpoints. */
|
|
if (!supports_breakpoints ())
|
|
return 0;
|
|
|
|
/* breakpoint_at reads from current inferior. */
|
|
saved_inferior = current_inferior;
|
|
current_inferior = get_lwp_thread (lwp);
|
|
|
|
if ((*the_low_target.breakpoint_at) (lwp->stop_pc))
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("CB: Push back breakpoint for %s\n",
|
|
target_pid_to_str (ptid_of (current_inferior)));
|
|
|
|
/* Back up the PC if necessary. */
|
|
if (the_low_target.decr_pc_after_break)
|
|
{
|
|
struct regcache *regcache
|
|
= get_thread_regcache (current_inferior, 1);
|
|
(*the_low_target.set_pc) (regcache, lwp->stop_pc);
|
|
}
|
|
|
|
current_inferior = saved_inferior;
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("CB: No breakpoint found at %s for [%s]\n",
|
|
paddress (lwp->stop_pc),
|
|
target_pid_to_str (ptid_of (current_inferior)));
|
|
}
|
|
|
|
current_inferior = saved_inferior;
|
|
return 0;
|
|
}
|
|
|
|
/* Do low-level handling of the event, and check if we should go on
|
|
and pass it to caller code. Return the affected lwp if we are, or
|
|
NULL otherwise. */
|
|
|
|
static struct lwp_info *
|
|
linux_low_filter_event (ptid_t filter_ptid, int lwpid, int wstat)
|
|
{
|
|
struct lwp_info *child;
|
|
struct thread_info *thread;
|
|
|
|
child = find_lwp_pid (pid_to_ptid (lwpid));
|
|
|
|
/* If we didn't find a process, one of two things presumably happened:
|
|
- A process we started and then detached from has exited. Ignore it.
|
|
- A process we are controlling has forked and the new child's stop
|
|
was reported to us by the kernel. Save its PID. */
|
|
if (child == NULL && WIFSTOPPED (wstat))
|
|
{
|
|
add_to_pid_list (&stopped_pids, lwpid, wstat);
|
|
return NULL;
|
|
}
|
|
else if (child == NULL)
|
|
return NULL;
|
|
|
|
thread = get_lwp_thread (child);
|
|
|
|
child->stopped = 1;
|
|
|
|
child->last_status = wstat;
|
|
|
|
if (WIFSTOPPED (wstat))
|
|
{
|
|
struct process_info *proc;
|
|
|
|
/* Architecture-specific setup after inferior is running. This
|
|
needs to happen after we have attached to the inferior and it
|
|
is stopped for the first time, but before we access any
|
|
inferior registers. */
|
|
proc = find_process_pid (pid_of (thread));
|
|
if (proc->private->new_inferior)
|
|
{
|
|
struct thread_info *saved_inferior;
|
|
|
|
saved_inferior = current_inferior;
|
|
current_inferior = thread;
|
|
|
|
the_low_target.arch_setup ();
|
|
|
|
current_inferior = saved_inferior;
|
|
|
|
proc->private->new_inferior = 0;
|
|
}
|
|
}
|
|
|
|
/* Store the STOP_PC, with adjustment applied. This depends on the
|
|
architecture being defined already (so that CHILD has a valid
|
|
regcache), and on LAST_STATUS being set (to check for SIGTRAP or
|
|
not). */
|
|
if (WIFSTOPPED (wstat))
|
|
{
|
|
if (debug_threads
|
|
&& the_low_target.get_pc != NULL)
|
|
{
|
|
struct thread_info *saved_inferior;
|
|
struct regcache *regcache;
|
|
CORE_ADDR pc;
|
|
|
|
saved_inferior = current_inferior;
|
|
current_inferior = thread;
|
|
regcache = get_thread_regcache (current_inferior, 1);
|
|
pc = (*the_low_target.get_pc) (regcache);
|
|
debug_printf ("linux_low_filter_event: pc is 0x%lx\n", (long) pc);
|
|
current_inferior = saved_inferior;
|
|
}
|
|
|
|
child->stop_pc = get_stop_pc (child);
|
|
}
|
|
|
|
/* Fetch the possibly triggered data watchpoint info and store it in
|
|
CHILD.
|
|
|
|
On some archs, like x86, that use debug registers to set
|
|
watchpoints, it's possible that the way to know which watched
|
|
address trapped, is to check the register that is used to select
|
|
which address to watch. Problem is, between setting the
|
|
watchpoint and reading back which data address trapped, the user
|
|
may change the set of watchpoints, and, as a consequence, GDB
|
|
changes the debug registers in the inferior. To avoid reading
|
|
back a stale stopped-data-address when that happens, we cache in
|
|
LP the fact that a watchpoint trapped, and the corresponding data
|
|
address, as soon as we see CHILD stop with a SIGTRAP. If GDB
|
|
changes the debug registers meanwhile, we have the cached data we
|
|
can rely on. */
|
|
|
|
if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP)
|
|
{
|
|
if (the_low_target.stopped_by_watchpoint == NULL)
|
|
{
|
|
child->stopped_by_watchpoint = 0;
|
|
}
|
|
else
|
|
{
|
|
struct thread_info *saved_inferior;
|
|
|
|
saved_inferior = current_inferior;
|
|
current_inferior = thread;
|
|
|
|
child->stopped_by_watchpoint
|
|
= the_low_target.stopped_by_watchpoint ();
|
|
|
|
if (child->stopped_by_watchpoint)
|
|
{
|
|
if (the_low_target.stopped_data_address != NULL)
|
|
child->stopped_data_address
|
|
= the_low_target.stopped_data_address ();
|
|
else
|
|
child->stopped_data_address = 0;
|
|
}
|
|
|
|
current_inferior = saved_inferior;
|
|
}
|
|
}
|
|
|
|
if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
|
|
{
|
|
linux_enable_event_reporting (lwpid);
|
|
child->must_set_ptrace_flags = 0;
|
|
}
|
|
|
|
if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
|
|
&& wstat >> 16 != 0)
|
|
{
|
|
handle_extended_wait (child, wstat);
|
|
return NULL;
|
|
}
|
|
|
|
if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
|
|
&& child->stop_expected)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Expected stop.\n");
|
|
child->stop_expected = 0;
|
|
|
|
if (thread->last_resume_kind == resume_stop)
|
|
{
|
|
/* We want to report the stop to the core. Treat the
|
|
SIGSTOP as a normal event. */
|
|
}
|
|
else if (stopping_threads != NOT_STOPPING_THREADS)
|
|
{
|
|
/* Stopping threads. We don't want this SIGSTOP to end up
|
|
pending in the FILTER_PTID handling below. */
|
|
return NULL;
|
|
}
|
|
else
|
|
{
|
|
/* Filter out the event. */
|
|
linux_resume_one_lwp (child, child->stepping, 0, NULL);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* Check if the thread has exited. */
|
|
if ((WIFEXITED (wstat) || WIFSIGNALED (wstat))
|
|
&& num_lwps (pid_of (thread)) > 1)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("LLW: %d exited.\n", lwpid);
|
|
|
|
/* If there is at least one more LWP, then the exit signal
|
|
was not the end of the debugged application and should be
|
|
ignored. */
|
|
delete_lwp (child);
|
|
return NULL;
|
|
}
|
|
|
|
if (!ptid_match (ptid_of (thread), filter_ptid))
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("LWP %d got an event %06x, leaving pending.\n",
|
|
lwpid, wstat);
|
|
|
|
if (WIFSTOPPED (wstat))
|
|
{
|
|
child->status_pending_p = 1;
|
|
child->status_pending = wstat;
|
|
|
|
if (WSTOPSIG (wstat) != SIGSTOP)
|
|
{
|
|
/* Cancel breakpoint hits. The breakpoint may be
|
|
removed before we fetch events from this process to
|
|
report to the core. It is best not to assume the
|
|
moribund breakpoints heuristic always handles these
|
|
cases --- it could be too many events go through to
|
|
the core before this one is handled. All-stop always
|
|
cancels breakpoint hits in all threads. */
|
|
if (non_stop
|
|
&& WSTOPSIG (wstat) == SIGTRAP
|
|
&& cancel_breakpoint (child))
|
|
{
|
|
/* Throw away the SIGTRAP. */
|
|
child->status_pending_p = 0;
|
|
|
|
if (debug_threads)
|
|
debug_printf ("LLW: LWP %d hit a breakpoint while"
|
|
" waiting for another process;"
|
|
" cancelled it\n", lwpid);
|
|
}
|
|
}
|
|
}
|
|
else if (WIFEXITED (wstat) || WIFSIGNALED (wstat))
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("LLWE: process %d exited while fetching "
|
|
"event from another LWP\n", lwpid);
|
|
|
|
/* This was the last lwp in the process. Since events are
|
|
serialized to GDB core, and we can't report this one
|
|
right now, but GDB core and the other target layers will
|
|
want to be notified about the exit code/signal, leave the
|
|
status pending for the next time we're able to report
|
|
it. */
|
|
mark_lwp_dead (child, wstat);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
return child;
|
|
}
|
|
|
|
/* When the event-loop is doing a step-over, this points at the thread
|
|
being stepped. */
|
|
ptid_t step_over_bkpt;
|
|
|
|
/* Wait for an event from child(ren) WAIT_PTID, and return any that
|
|
match FILTER_PTID (leaving others pending). The PTIDs can be:
|
|
minus_one_ptid, to specify any child; a pid PTID, specifying all
|
|
lwps of a thread group; or a PTID representing a single lwp. Store
|
|
the stop status through the status pointer WSTAT. OPTIONS is
|
|
passed to the waitpid call. Return 0 if no event was found and
|
|
OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
|
|
was found. Return the PID of the stopped child otherwise. */
|
|
|
|
static int
|
|
linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
|
|
int *wstatp, int options)
|
|
{
|
|
struct thread_info *event_thread;
|
|
struct lwp_info *event_child, *requested_child;
|
|
sigset_t block_mask, prev_mask;
|
|
|
|
retry:
|
|
/* N.B. event_thread points to the thread_info struct that contains
|
|
event_child. Keep them in sync. */
|
|
event_thread = NULL;
|
|
event_child = NULL;
|
|
requested_child = NULL;
|
|
|
|
/* Check for a lwp with a pending status. */
|
|
|
|
if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
|
|
{
|
|
event_thread = (struct thread_info *)
|
|
find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
|
|
if (event_thread != NULL)
|
|
event_child = get_thread_lwp (event_thread);
|
|
if (debug_threads && event_thread)
|
|
debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
|
|
}
|
|
else if (!ptid_equal (filter_ptid, null_ptid))
|
|
{
|
|
requested_child = find_lwp_pid (filter_ptid);
|
|
|
|
if (stopping_threads == NOT_STOPPING_THREADS
|
|
&& requested_child->status_pending_p
|
|
&& requested_child->collecting_fast_tracepoint)
|
|
{
|
|
enqueue_one_deferred_signal (requested_child,
|
|
&requested_child->status_pending);
|
|
requested_child->status_pending_p = 0;
|
|
requested_child->status_pending = 0;
|
|
linux_resume_one_lwp (requested_child, 0, 0, NULL);
|
|
}
|
|
|
|
if (requested_child->suspended
|
|
&& requested_child->status_pending_p)
|
|
fatal ("requesting an event out of a suspended child?");
|
|
|
|
if (requested_child->status_pending_p)
|
|
{
|
|
event_child = requested_child;
|
|
event_thread = get_lwp_thread (event_child);
|
|
}
|
|
}
|
|
|
|
if (event_child != NULL)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Got an event from pending child %ld (%04x)\n",
|
|
lwpid_of (event_thread), event_child->status_pending);
|
|
*wstatp = event_child->status_pending;
|
|
event_child->status_pending_p = 0;
|
|
event_child->status_pending = 0;
|
|
current_inferior = event_thread;
|
|
return lwpid_of (event_thread);
|
|
}
|
|
|
|
/* But if we don't find a pending event, we'll have to wait.
|
|
|
|
We only enter this loop if no process has a pending wait status.
|
|
Thus any action taken in response to a wait status inside this
|
|
loop is responding as soon as we detect the status, not after any
|
|
pending events. */
|
|
|
|
/* Make sure SIGCHLD is blocked until the sigsuspend below. Block
|
|
all signals while here. */
|
|
sigfillset (&block_mask);
|
|
sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
|
|
|
|
while (event_child == NULL)
|
|
{
|
|
pid_t ret = 0;
|
|
|
|
/* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
|
|
quirks:
|
|
|
|
- If the thread group leader exits while other threads in the
|
|
thread group still exist, waitpid(TGID, ...) hangs. That
|
|
waitpid won't return an exit status until the other threads
|
|
in the group are reaped.
|
|
|
|
- When a non-leader thread execs, that thread just vanishes
|
|
without reporting an exit (so we'd hang if we waited for it
|
|
explicitly in that case). The exec event is reported to
|
|
the TGID pid (although we don't currently enable exec
|
|
events). */
|
|
errno = 0;
|
|
ret = my_waitpid (-1, wstatp, options | WNOHANG);
|
|
|
|
if (debug_threads)
|
|
debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
|
|
ret, errno ? strerror (errno) : "ERRNO-OK");
|
|
|
|
if (ret > 0)
|
|
{
|
|
if (debug_threads)
|
|
{
|
|
debug_printf ("LLW: waitpid %ld received %s\n",
|
|
(long) ret, status_to_str (*wstatp));
|
|
}
|
|
|
|
event_child = linux_low_filter_event (filter_ptid,
|
|
ret, *wstatp);
|
|
if (event_child != NULL)
|
|
{
|
|
/* We got an event to report to the core. */
|
|
event_thread = get_lwp_thread (event_child);
|
|
break;
|
|
}
|
|
|
|
/* Retry until nothing comes out of waitpid. A single
|
|
SIGCHLD can indicate more than one child stopped. */
|
|
continue;
|
|
}
|
|
|
|
/* Check for zombie thread group leaders. Those can't be reaped
|
|
until all other threads in the thread group are. */
|
|
check_zombie_leaders ();
|
|
|
|
/* If there are no resumed children left in the set of LWPs we
|
|
want to wait for, bail. We can't just block in
|
|
waitpid/sigsuspend, because lwps might have been left stopped
|
|
in trace-stop state, and we'd be stuck forever waiting for
|
|
their status to change (which would only happen if we resumed
|
|
them). Even if WNOHANG is set, this return code is preferred
|
|
over 0 (below), as it is more detailed. */
|
|
if ((find_inferior (&all_threads,
|
|
not_stopped_callback,
|
|
&wait_ptid) == NULL))
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("LLW: exit (no unwaited-for LWP)\n");
|
|
sigprocmask (SIG_SETMASK, &prev_mask, NULL);
|
|
return -1;
|
|
}
|
|
|
|
/* No interesting event to report to the caller. */
|
|
if ((options & WNOHANG))
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("WNOHANG set, no event found\n");
|
|
|
|
sigprocmask (SIG_SETMASK, &prev_mask, NULL);
|
|
return 0;
|
|
}
|
|
|
|
/* Block until we get an event reported with SIGCHLD. */
|
|
if (debug_threads)
|
|
debug_printf ("sigsuspend'ing\n");
|
|
|
|
sigsuspend (&prev_mask);
|
|
sigprocmask (SIG_SETMASK, &prev_mask, NULL);
|
|
goto retry;
|
|
}
|
|
|
|
sigprocmask (SIG_SETMASK, &prev_mask, NULL);
|
|
|
|
current_inferior = event_thread;
|
|
|
|
/* Check for thread exit. */
|
|
if (! WIFSTOPPED (*wstatp))
|
|
{
|
|
gdb_assert (last_thread_of_process_p (pid_of (event_thread)));
|
|
|
|
if (debug_threads)
|
|
debug_printf ("LWP %d is the last lwp of process. "
|
|
"Process %ld exiting.\n",
|
|
pid_of (event_thread), lwpid_of (event_thread));
|
|
return lwpid_of (event_thread);
|
|
}
|
|
|
|
return lwpid_of (event_thread);
|
|
}
|
|
|
|
/* Wait for an event from child(ren) PTID. PTIDs can be:
|
|
minus_one_ptid, to specify any child; a pid PTID, specifying all
|
|
lwps of a thread group; or a PTID representing a single lwp. Store
|
|
the stop status through the status pointer WSTAT. OPTIONS is
|
|
passed to the waitpid call. Return 0 if no event was found and
|
|
OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
|
|
was found. Return the PID of the stopped child otherwise. */
|
|
|
|
static int
|
|
linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
|
|
{
|
|
return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
|
|
}
|
|
|
|
/* Count the LWP's that have had events. */
|
|
|
|
static int
|
|
count_events_callback (struct inferior_list_entry *entry, void *data)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lp = get_thread_lwp (thread);
|
|
int *count = data;
|
|
|
|
gdb_assert (count != NULL);
|
|
|
|
/* Count only resumed LWPs that have a SIGTRAP event pending that
|
|
should be reported to GDB. */
|
|
if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
|
|
&& thread->last_resume_kind != resume_stop
|
|
&& lp->status_pending_p
|
|
&& WIFSTOPPED (lp->status_pending)
|
|
&& WSTOPSIG (lp->status_pending) == SIGTRAP
|
|
&& !breakpoint_inserted_here (lp->stop_pc))
|
|
(*count)++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Select the LWP (if any) that is currently being single-stepped. */
|
|
|
|
static int
|
|
select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lp = get_thread_lwp (thread);
|
|
|
|
if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
|
|
&& thread->last_resume_kind == resume_step
|
|
&& lp->status_pending_p)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Select the Nth LWP that has had a SIGTRAP event that should be
|
|
reported to GDB. */
|
|
|
|
static int
|
|
select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lp = get_thread_lwp (thread);
|
|
int *selector = data;
|
|
|
|
gdb_assert (selector != NULL);
|
|
|
|
/* Select only resumed LWPs that have a SIGTRAP event pending. */
|
|
if (thread->last_resume_kind != resume_stop
|
|
&& thread->last_status.kind == TARGET_WAITKIND_IGNORE
|
|
&& lp->status_pending_p
|
|
&& WIFSTOPPED (lp->status_pending)
|
|
&& WSTOPSIG (lp->status_pending) == SIGTRAP
|
|
&& !breakpoint_inserted_here (lp->stop_pc))
|
|
if ((*selector)-- == 0)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cancel_breakpoints_callback (struct inferior_list_entry *entry, void *data)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lp = get_thread_lwp (thread);
|
|
struct lwp_info *event_lp = data;
|
|
|
|
/* Leave the LWP that has been elected to receive a SIGTRAP alone. */
|
|
if (lp == event_lp)
|
|
return 0;
|
|
|
|
/* If a LWP other than the LWP that we're reporting an event for has
|
|
hit a GDB breakpoint (as opposed to some random trap signal),
|
|
then just arrange for it to hit it again later. We don't keep
|
|
the SIGTRAP status and don't forward the SIGTRAP signal to the
|
|
LWP. We will handle the current event, eventually we will resume
|
|
all LWPs, and this one will get its breakpoint trap again.
|
|
|
|
If we do not do this, then we run the risk that the user will
|
|
delete or disable the breakpoint, but the LWP will have already
|
|
tripped on it. */
|
|
|
|
if (thread->last_resume_kind != resume_stop
|
|
&& thread->last_status.kind == TARGET_WAITKIND_IGNORE
|
|
&& lp->status_pending_p
|
|
&& WIFSTOPPED (lp->status_pending)
|
|
&& WSTOPSIG (lp->status_pending) == SIGTRAP
|
|
&& !lp->stepping
|
|
&& !lp->stopped_by_watchpoint
|
|
&& cancel_breakpoint (lp))
|
|
/* Throw away the SIGTRAP. */
|
|
lp->status_pending_p = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
linux_cancel_breakpoints (void)
|
|
{
|
|
find_inferior (&all_threads, cancel_breakpoints_callback, NULL);
|
|
}
|
|
|
|
/* Select one LWP out of those that have events pending. */
|
|
|
|
static void
|
|
select_event_lwp (struct lwp_info **orig_lp)
|
|
{
|
|
int num_events = 0;
|
|
int random_selector;
|
|
struct thread_info *event_thread;
|
|
|
|
/* Give preference to any LWP that is being single-stepped. */
|
|
event_thread
|
|
= (struct thread_info *) find_inferior (&all_threads,
|
|
select_singlestep_lwp_callback,
|
|
NULL);
|
|
if (event_thread != NULL)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("SEL: Select single-step %s\n",
|
|
target_pid_to_str (ptid_of (event_thread)));
|
|
}
|
|
else
|
|
{
|
|
/* No single-stepping LWP. Select one at random, out of those
|
|
which have had SIGTRAP events. */
|
|
|
|
/* First see how many SIGTRAP events we have. */
|
|
find_inferior (&all_threads, count_events_callback, &num_events);
|
|
|
|
/* Now randomly pick a LWP out of those that have had a SIGTRAP. */
|
|
random_selector = (int)
|
|
((num_events * (double) rand ()) / (RAND_MAX + 1.0));
|
|
|
|
if (debug_threads && num_events > 1)
|
|
debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
|
|
num_events, random_selector);
|
|
|
|
event_thread
|
|
= (struct thread_info *) find_inferior (&all_threads,
|
|
select_event_lwp_callback,
|
|
&random_selector);
|
|
}
|
|
|
|
if (event_thread != NULL)
|
|
{
|
|
struct lwp_info *event_lp = get_thread_lwp (event_thread);
|
|
|
|
/* Switch the event LWP. */
|
|
*orig_lp = event_lp;
|
|
}
|
|
}
|
|
|
|
/* Decrement the suspend count of an LWP. */
|
|
|
|
static int
|
|
unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lwp = get_thread_lwp (thread);
|
|
|
|
/* Ignore EXCEPT. */
|
|
if (lwp == except)
|
|
return 0;
|
|
|
|
lwp->suspended--;
|
|
|
|
gdb_assert (lwp->suspended >= 0);
|
|
return 0;
|
|
}
|
|
|
|
/* Decrement the suspend count of all LWPs, except EXCEPT, if non
|
|
NULL. */
|
|
|
|
static void
|
|
unsuspend_all_lwps (struct lwp_info *except)
|
|
{
|
|
find_inferior (&all_threads, unsuspend_one_lwp, except);
|
|
}
|
|
|
|
static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
|
|
static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
|
|
void *data);
|
|
static int lwp_running (struct inferior_list_entry *entry, void *data);
|
|
static ptid_t linux_wait_1 (ptid_t ptid,
|
|
struct target_waitstatus *ourstatus,
|
|
int target_options);
|
|
|
|
/* Stabilize threads (move out of jump pads).
|
|
|
|
If a thread is midway collecting a fast tracepoint, we need to
|
|
finish the collection and move it out of the jump pad before
|
|
reporting the signal.
|
|
|
|
This avoids recursion while collecting (when a signal arrives
|
|
midway, and the signal handler itself collects), which would trash
|
|
the trace buffer. In case the user set a breakpoint in a signal
|
|
handler, this avoids the backtrace showing the jump pad, etc..
|
|
Most importantly, there are certain things we can't do safely if
|
|
threads are stopped in a jump pad (or in its callee's). For
|
|
example:
|
|
|
|
- starting a new trace run. A thread still collecting the
|
|
previous run, could trash the trace buffer when resumed. The trace
|
|
buffer control structures would have been reset but the thread had
|
|
no way to tell. The thread could even midway memcpy'ing to the
|
|
buffer, which would mean that when resumed, it would clobber the
|
|
trace buffer that had been set for a new run.
|
|
|
|
- we can't rewrite/reuse the jump pads for new tracepoints
|
|
safely. Say you do tstart while a thread is stopped midway while
|
|
collecting. When the thread is later resumed, it finishes the
|
|
collection, and returns to the jump pad, to execute the original
|
|
instruction that was under the tracepoint jump at the time the
|
|
older run had been started. If the jump pad had been rewritten
|
|
since for something else in the new run, the thread would now
|
|
execute the wrong / random instructions. */
|
|
|
|
static void
|
|
linux_stabilize_threads (void)
|
|
{
|
|
struct thread_info *save_inferior;
|
|
struct thread_info *thread_stuck;
|
|
|
|
thread_stuck
|
|
= (struct thread_info *) find_inferior (&all_threads,
|
|
stuck_in_jump_pad_callback,
|
|
NULL);
|
|
if (thread_stuck != NULL)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
|
|
lwpid_of (thread_stuck));
|
|
return;
|
|
}
|
|
|
|
save_inferior = current_inferior;
|
|
|
|
stabilizing_threads = 1;
|
|
|
|
/* Kick 'em all. */
|
|
for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
|
|
|
|
/* Loop until all are stopped out of the jump pads. */
|
|
while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
|
|
{
|
|
struct target_waitstatus ourstatus;
|
|
struct lwp_info *lwp;
|
|
int wstat;
|
|
|
|
/* Note that we go through the full wait even loop. While
|
|
moving threads out of jump pad, we need to be able to step
|
|
over internal breakpoints and such. */
|
|
linux_wait_1 (minus_one_ptid, &ourstatus, 0);
|
|
|
|
if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
|
|
{
|
|
lwp = get_thread_lwp (current_inferior);
|
|
|
|
/* Lock it. */
|
|
lwp->suspended++;
|
|
|
|
if (ourstatus.value.sig != GDB_SIGNAL_0
|
|
|| current_inferior->last_resume_kind == resume_stop)
|
|
{
|
|
wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
|
|
enqueue_one_deferred_signal (lwp, &wstat);
|
|
}
|
|
}
|
|
}
|
|
|
|
find_inferior (&all_threads, unsuspend_one_lwp, NULL);
|
|
|
|
stabilizing_threads = 0;
|
|
|
|
current_inferior = save_inferior;
|
|
|
|
if (debug_threads)
|
|
{
|
|
thread_stuck
|
|
= (struct thread_info *) find_inferior (&all_threads,
|
|
stuck_in_jump_pad_callback,
|
|
NULL);
|
|
if (thread_stuck != NULL)
|
|
debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
|
|
lwpid_of (thread_stuck));
|
|
}
|
|
}
|
|
|
|
/* Wait for process, returns status. */
|
|
|
|
static ptid_t
|
|
linux_wait_1 (ptid_t ptid,
|
|
struct target_waitstatus *ourstatus, int target_options)
|
|
{
|
|
int w;
|
|
struct lwp_info *event_child;
|
|
int options;
|
|
int pid;
|
|
int step_over_finished;
|
|
int bp_explains_trap;
|
|
int maybe_internal_trap;
|
|
int report_to_gdb;
|
|
int trace_event;
|
|
int in_step_range;
|
|
|
|
if (debug_threads)
|
|
{
|
|
debug_enter ();
|
|
debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
|
|
}
|
|
|
|
/* Translate generic target options into linux options. */
|
|
options = __WALL;
|
|
if (target_options & TARGET_WNOHANG)
|
|
options |= WNOHANG;
|
|
|
|
retry:
|
|
bp_explains_trap = 0;
|
|
trace_event = 0;
|
|
in_step_range = 0;
|
|
ourstatus->kind = TARGET_WAITKIND_IGNORE;
|
|
|
|
/* If we were only supposed to resume one thread, only wait for
|
|
that thread - if it's still alive. If it died, however - which
|
|
can happen if we're coming from the thread death case below -
|
|
then we need to make sure we restart the other threads. We could
|
|
pick a thread at random or restart all; restarting all is less
|
|
arbitrary. */
|
|
if (!non_stop
|
|
&& !ptid_equal (cont_thread, null_ptid)
|
|
&& !ptid_equal (cont_thread, minus_one_ptid))
|
|
{
|
|
struct thread_info *thread;
|
|
|
|
thread = (struct thread_info *) find_inferior_id (&all_threads,
|
|
cont_thread);
|
|
|
|
/* No stepping, no signal - unless one is pending already, of course. */
|
|
if (thread == NULL)
|
|
{
|
|
struct thread_resume resume_info;
|
|
resume_info.thread = minus_one_ptid;
|
|
resume_info.kind = resume_continue;
|
|
resume_info.sig = 0;
|
|
linux_resume (&resume_info, 1);
|
|
}
|
|
else
|
|
ptid = cont_thread;
|
|
}
|
|
|
|
if (ptid_equal (step_over_bkpt, null_ptid))
|
|
pid = linux_wait_for_event (ptid, &w, options);
|
|
else
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
|
|
target_pid_to_str (step_over_bkpt));
|
|
pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
|
|
}
|
|
|
|
if (pid == 0)
|
|
{
|
|
gdb_assert (target_options & TARGET_WNOHANG);
|
|
|
|
if (debug_threads)
|
|
{
|
|
debug_printf ("linux_wait_1 ret = null_ptid, "
|
|
"TARGET_WAITKIND_IGNORE\n");
|
|
debug_exit ();
|
|
}
|
|
|
|
ourstatus->kind = TARGET_WAITKIND_IGNORE;
|
|
return null_ptid;
|
|
}
|
|
else if (pid == -1)
|
|
{
|
|
if (debug_threads)
|
|
{
|
|
debug_printf ("linux_wait_1 ret = null_ptid, "
|
|
"TARGET_WAITKIND_NO_RESUMED\n");
|
|
debug_exit ();
|
|
}
|
|
|
|
ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
|
|
return null_ptid;
|
|
}
|
|
|
|
event_child = get_thread_lwp (current_inferior);
|
|
|
|
/* linux_wait_for_event only returns an exit status for the last
|
|
child of a process. Report it. */
|
|
if (WIFEXITED (w) || WIFSIGNALED (w))
|
|
{
|
|
if (WIFEXITED (w))
|
|
{
|
|
ourstatus->kind = TARGET_WAITKIND_EXITED;
|
|
ourstatus->value.integer = WEXITSTATUS (w);
|
|
|
|
if (debug_threads)
|
|
{
|
|
debug_printf ("linux_wait_1 ret = %s, exited with "
|
|
"retcode %d\n",
|
|
target_pid_to_str (ptid_of (current_inferior)),
|
|
WEXITSTATUS (w));
|
|
debug_exit ();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
|
|
ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
|
|
|
|
if (debug_threads)
|
|
{
|
|
debug_printf ("linux_wait_1 ret = %s, terminated with "
|
|
"signal %d\n",
|
|
target_pid_to_str (ptid_of (current_inferior)),
|
|
WTERMSIG (w));
|
|
debug_exit ();
|
|
}
|
|
}
|
|
|
|
return ptid_of (current_inferior);
|
|
}
|
|
|
|
/* If this event was not handled before, and is not a SIGTRAP, we
|
|
report it. SIGILL and SIGSEGV are also treated as traps in case
|
|
a breakpoint is inserted at the current PC. If this target does
|
|
not support internal breakpoints at all, we also report the
|
|
SIGTRAP without further processing; it's of no concern to us. */
|
|
maybe_internal_trap
|
|
= (supports_breakpoints ()
|
|
&& (WSTOPSIG (w) == SIGTRAP
|
|
|| ((WSTOPSIG (w) == SIGILL
|
|
|| WSTOPSIG (w) == SIGSEGV)
|
|
&& (*the_low_target.breakpoint_at) (event_child->stop_pc))));
|
|
|
|
if (maybe_internal_trap)
|
|
{
|
|
/* Handle anything that requires bookkeeping before deciding to
|
|
report the event or continue waiting. */
|
|
|
|
/* First check if we can explain the SIGTRAP with an internal
|
|
breakpoint, or if we should possibly report the event to GDB.
|
|
Do this before anything that may remove or insert a
|
|
breakpoint. */
|
|
bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
|
|
|
|
/* We have a SIGTRAP, possibly a step-over dance has just
|
|
finished. If so, tweak the state machine accordingly,
|
|
reinsert breakpoints and delete any reinsert (software
|
|
single-step) breakpoints. */
|
|
step_over_finished = finish_step_over (event_child);
|
|
|
|
/* Now invoke the callbacks of any internal breakpoints there. */
|
|
check_breakpoints (event_child->stop_pc);
|
|
|
|
/* Handle tracepoint data collecting. This may overflow the
|
|
trace buffer, and cause a tracing stop, removing
|
|
breakpoints. */
|
|
trace_event = handle_tracepoints (event_child);
|
|
|
|
if (bp_explains_trap)
|
|
{
|
|
/* If we stepped or ran into an internal breakpoint, we've
|
|
already handled it. So next time we resume (from this
|
|
PC), we should step over it. */
|
|
if (debug_threads)
|
|
debug_printf ("Hit a gdbserver breakpoint.\n");
|
|
|
|
if (breakpoint_here (event_child->stop_pc))
|
|
event_child->need_step_over = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We have some other signal, possibly a step-over dance was in
|
|
progress, and it should be cancelled too. */
|
|
step_over_finished = finish_step_over (event_child);
|
|
}
|
|
|
|
/* We have all the data we need. Either report the event to GDB, or
|
|
resume threads and keep waiting for more. */
|
|
|
|
/* If we're collecting a fast tracepoint, finish the collection and
|
|
move out of the jump pad before delivering a signal. See
|
|
linux_stabilize_threads. */
|
|
|
|
if (WIFSTOPPED (w)
|
|
&& WSTOPSIG (w) != SIGTRAP
|
|
&& supports_fast_tracepoints ()
|
|
&& agent_loaded_p ())
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Got signal %d for LWP %ld. Check if we need "
|
|
"to defer or adjust it.\n",
|
|
WSTOPSIG (w), lwpid_of (current_inferior));
|
|
|
|
/* Allow debugging the jump pad itself. */
|
|
if (current_inferior->last_resume_kind != resume_step
|
|
&& maybe_move_out_of_jump_pad (event_child, &w))
|
|
{
|
|
enqueue_one_deferred_signal (event_child, &w);
|
|
|
|
if (debug_threads)
|
|
debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
|
|
WSTOPSIG (w), lwpid_of (current_inferior));
|
|
|
|
linux_resume_one_lwp (event_child, 0, 0, NULL);
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
if (event_child->collecting_fast_tracepoint)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
|
|
"Check if we're already there.\n",
|
|
lwpid_of (current_inferior),
|
|
event_child->collecting_fast_tracepoint);
|
|
|
|
trace_event = 1;
|
|
|
|
event_child->collecting_fast_tracepoint
|
|
= linux_fast_tracepoint_collecting (event_child, NULL);
|
|
|
|
if (event_child->collecting_fast_tracepoint != 1)
|
|
{
|
|
/* No longer need this breakpoint. */
|
|
if (event_child->exit_jump_pad_bkpt != NULL)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("No longer need exit-jump-pad bkpt; removing it."
|
|
"stopping all threads momentarily.\n");
|
|
|
|
/* Other running threads could hit this breakpoint.
|
|
We don't handle moribund locations like GDB does,
|
|
instead we always pause all threads when removing
|
|
breakpoints, so that any step-over or
|
|
decr_pc_after_break adjustment is always taken
|
|
care of while the breakpoint is still
|
|
inserted. */
|
|
stop_all_lwps (1, event_child);
|
|
cancel_breakpoints ();
|
|
|
|
delete_breakpoint (event_child->exit_jump_pad_bkpt);
|
|
event_child->exit_jump_pad_bkpt = NULL;
|
|
|
|
unstop_all_lwps (1, event_child);
|
|
|
|
gdb_assert (event_child->suspended >= 0);
|
|
}
|
|
}
|
|
|
|
if (event_child->collecting_fast_tracepoint == 0)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("fast tracepoint finished "
|
|
"collecting successfully.\n");
|
|
|
|
/* We may have a deferred signal to report. */
|
|
if (dequeue_one_deferred_signal (event_child, &w))
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("dequeued one signal.\n");
|
|
}
|
|
else
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("no deferred signals.\n");
|
|
|
|
if (stabilizing_threads)
|
|
{
|
|
ourstatus->kind = TARGET_WAITKIND_STOPPED;
|
|
ourstatus->value.sig = GDB_SIGNAL_0;
|
|
|
|
if (debug_threads)
|
|
{
|
|
debug_printf ("linux_wait_1 ret = %s, stopped "
|
|
"while stabilizing threads\n",
|
|
target_pid_to_str (ptid_of (current_inferior)));
|
|
debug_exit ();
|
|
}
|
|
|
|
return ptid_of (current_inferior);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check whether GDB would be interested in this event. */
|
|
|
|
/* If GDB is not interested in this signal, don't stop other
|
|
threads, and don't report it to GDB. Just resume the inferior
|
|
right away. We do this for threading-related signals as well as
|
|
any that GDB specifically requested we ignore. But never ignore
|
|
SIGSTOP if we sent it ourselves, and do not ignore signals when
|
|
stepping - they may require special handling to skip the signal
|
|
handler. */
|
|
/* FIXME drow/2002-06-09: Get signal numbers from the inferior's
|
|
thread library? */
|
|
if (WIFSTOPPED (w)
|
|
&& current_inferior->last_resume_kind != resume_step
|
|
&& (
|
|
#if defined (USE_THREAD_DB) && !defined (__ANDROID__)
|
|
(current_process ()->private->thread_db != NULL
|
|
&& (WSTOPSIG (w) == __SIGRTMIN
|
|
|| WSTOPSIG (w) == __SIGRTMIN + 1))
|
|
||
|
|
#endif
|
|
(pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
|
|
&& !(WSTOPSIG (w) == SIGSTOP
|
|
&& current_inferior->last_resume_kind == resume_stop))))
|
|
{
|
|
siginfo_t info, *info_p;
|
|
|
|
if (debug_threads)
|
|
debug_printf ("Ignored signal %d for LWP %ld.\n",
|
|
WSTOPSIG (w), lwpid_of (current_inferior));
|
|
|
|
if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_inferior),
|
|
(PTRACE_TYPE_ARG3) 0, &info) == 0)
|
|
info_p = &info;
|
|
else
|
|
info_p = NULL;
|
|
linux_resume_one_lwp (event_child, event_child->stepping,
|
|
WSTOPSIG (w), info_p);
|
|
goto retry;
|
|
}
|
|
|
|
/* Note that all addresses are always "out of the step range" when
|
|
there's no range to begin with. */
|
|
in_step_range = lwp_in_step_range (event_child);
|
|
|
|
/* If GDB wanted this thread to single step, and the thread is out
|
|
of the step range, we always want to report the SIGTRAP, and let
|
|
GDB handle it. Watchpoints should always be reported. So should
|
|
signals we can't explain. A SIGTRAP we can't explain could be a
|
|
GDB breakpoint --- we may or not support Z0 breakpoints. If we
|
|
do, we're be able to handle GDB breakpoints on top of internal
|
|
breakpoints, by handling the internal breakpoint and still
|
|
reporting the event to GDB. If we don't, we're out of luck, GDB
|
|
won't see the breakpoint hit. */
|
|
report_to_gdb = (!maybe_internal_trap
|
|
|| (current_inferior->last_resume_kind == resume_step
|
|
&& !in_step_range)
|
|
|| event_child->stopped_by_watchpoint
|
|
|| (!step_over_finished && !in_step_range
|
|
&& !bp_explains_trap && !trace_event)
|
|
|| (gdb_breakpoint_here (event_child->stop_pc)
|
|
&& gdb_condition_true_at_breakpoint (event_child->stop_pc)
|
|
&& gdb_no_commands_at_breakpoint (event_child->stop_pc)));
|
|
|
|
run_breakpoint_commands (event_child->stop_pc);
|
|
|
|
/* We found no reason GDB would want us to stop. We either hit one
|
|
of our own breakpoints, or finished an internal step GDB
|
|
shouldn't know about. */
|
|
if (!report_to_gdb)
|
|
{
|
|
if (debug_threads)
|
|
{
|
|
if (bp_explains_trap)
|
|
debug_printf ("Hit a gdbserver breakpoint.\n");
|
|
if (step_over_finished)
|
|
debug_printf ("Step-over finished.\n");
|
|
if (trace_event)
|
|
debug_printf ("Tracepoint event.\n");
|
|
if (lwp_in_step_range (event_child))
|
|
debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
|
|
paddress (event_child->stop_pc),
|
|
paddress (event_child->step_range_start),
|
|
paddress (event_child->step_range_end));
|
|
}
|
|
|
|
/* We're not reporting this breakpoint to GDB, so apply the
|
|
decr_pc_after_break adjustment to the inferior's regcache
|
|
ourselves. */
|
|
|
|
if (the_low_target.set_pc != NULL)
|
|
{
|
|
struct regcache *regcache
|
|
= get_thread_regcache (current_inferior, 1);
|
|
(*the_low_target.set_pc) (regcache, event_child->stop_pc);
|
|
}
|
|
|
|
/* We may have finished stepping over a breakpoint. If so,
|
|
we've stopped and suspended all LWPs momentarily except the
|
|
stepping one. This is where we resume them all again. We're
|
|
going to keep waiting, so use proceed, which handles stepping
|
|
over the next breakpoint. */
|
|
if (debug_threads)
|
|
debug_printf ("proceeding all threads.\n");
|
|
|
|
if (step_over_finished)
|
|
unsuspend_all_lwps (event_child);
|
|
|
|
proceed_all_lwps ();
|
|
goto retry;
|
|
}
|
|
|
|
if (debug_threads)
|
|
{
|
|
if (current_inferior->last_resume_kind == resume_step)
|
|
{
|
|
if (event_child->step_range_start == event_child->step_range_end)
|
|
debug_printf ("GDB wanted to single-step, reporting event.\n");
|
|
else if (!lwp_in_step_range (event_child))
|
|
debug_printf ("Out of step range, reporting event.\n");
|
|
}
|
|
if (event_child->stopped_by_watchpoint)
|
|
debug_printf ("Stopped by watchpoint.\n");
|
|
if (gdb_breakpoint_here (event_child->stop_pc))
|
|
debug_printf ("Stopped by GDB breakpoint.\n");
|
|
if (debug_threads)
|
|
debug_printf ("Hit a non-gdbserver trap event.\n");
|
|
}
|
|
|
|
/* Alright, we're going to report a stop. */
|
|
|
|
if (!non_stop && !stabilizing_threads)
|
|
{
|
|
/* In all-stop, stop all threads. */
|
|
stop_all_lwps (0, NULL);
|
|
|
|
/* If we're not waiting for a specific LWP, choose an event LWP
|
|
from among those that have had events. Giving equal priority
|
|
to all LWPs that have had events helps prevent
|
|
starvation. */
|
|
if (ptid_equal (ptid, minus_one_ptid))
|
|
{
|
|
event_child->status_pending_p = 1;
|
|
event_child->status_pending = w;
|
|
|
|
select_event_lwp (&event_child);
|
|
|
|
/* current_inferior and event_child must stay in sync. */
|
|
current_inferior = get_lwp_thread (event_child);
|
|
|
|
event_child->status_pending_p = 0;
|
|
w = event_child->status_pending;
|
|
}
|
|
|
|
/* Now that we've selected our final event LWP, cancel any
|
|
breakpoints in other LWPs that have hit a GDB breakpoint.
|
|
See the comment in cancel_breakpoints_callback to find out
|
|
why. */
|
|
find_inferior (&all_threads, cancel_breakpoints_callback, event_child);
|
|
|
|
/* If we were going a step-over, all other threads but the stepping one
|
|
had been paused in start_step_over, with their suspend counts
|
|
incremented. We don't want to do a full unstop/unpause, because we're
|
|
in all-stop mode (so we want threads stopped), but we still need to
|
|
unsuspend the other threads, to decrement their `suspended' count
|
|
back. */
|
|
if (step_over_finished)
|
|
unsuspend_all_lwps (event_child);
|
|
|
|
/* Stabilize threads (move out of jump pads). */
|
|
stabilize_threads ();
|
|
}
|
|
else
|
|
{
|
|
/* If we just finished a step-over, then all threads had been
|
|
momentarily paused. In all-stop, that's fine, we want
|
|
threads stopped by now anyway. In non-stop, we need to
|
|
re-resume threads that GDB wanted to be running. */
|
|
if (step_over_finished)
|
|
unstop_all_lwps (1, event_child);
|
|
}
|
|
|
|
ourstatus->kind = TARGET_WAITKIND_STOPPED;
|
|
|
|
if (current_inferior->last_resume_kind == resume_stop
|
|
&& WSTOPSIG (w) == SIGSTOP)
|
|
{
|
|
/* A thread that has been requested to stop by GDB with vCont;t,
|
|
and it stopped cleanly, so report as SIG0. The use of
|
|
SIGSTOP is an implementation detail. */
|
|
ourstatus->value.sig = GDB_SIGNAL_0;
|
|
}
|
|
else if (current_inferior->last_resume_kind == resume_stop
|
|
&& WSTOPSIG (w) != SIGSTOP)
|
|
{
|
|
/* A thread that has been requested to stop by GDB with vCont;t,
|
|
but, it stopped for other reasons. */
|
|
ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
|
|
}
|
|
else
|
|
{
|
|
ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
|
|
}
|
|
|
|
gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
|
|
|
|
if (debug_threads)
|
|
{
|
|
debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
|
|
target_pid_to_str (ptid_of (current_inferior)),
|
|
ourstatus->kind, ourstatus->value.sig);
|
|
debug_exit ();
|
|
}
|
|
|
|
return ptid_of (current_inferior);
|
|
}
|
|
|
|
/* Get rid of any pending event in the pipe. */
|
|
static void
|
|
async_file_flush (void)
|
|
{
|
|
int ret;
|
|
char buf;
|
|
|
|
do
|
|
ret = read (linux_event_pipe[0], &buf, 1);
|
|
while (ret >= 0 || (ret == -1 && errno == EINTR));
|
|
}
|
|
|
|
/* Put something in the pipe, so the event loop wakes up. */
|
|
static void
|
|
async_file_mark (void)
|
|
{
|
|
int ret;
|
|
|
|
async_file_flush ();
|
|
|
|
do
|
|
ret = write (linux_event_pipe[1], "+", 1);
|
|
while (ret == 0 || (ret == -1 && errno == EINTR));
|
|
|
|
/* Ignore EAGAIN. If the pipe is full, the event loop will already
|
|
be awakened anyway. */
|
|
}
|
|
|
|
static ptid_t
|
|
linux_wait (ptid_t ptid,
|
|
struct target_waitstatus *ourstatus, int target_options)
|
|
{
|
|
ptid_t event_ptid;
|
|
|
|
/* Flush the async file first. */
|
|
if (target_is_async_p ())
|
|
async_file_flush ();
|
|
|
|
event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
|
|
|
|
/* If at least one stop was reported, there may be more. A single
|
|
SIGCHLD can signal more than one child stop. */
|
|
if (target_is_async_p ()
|
|
&& (target_options & TARGET_WNOHANG) != 0
|
|
&& !ptid_equal (event_ptid, null_ptid))
|
|
async_file_mark ();
|
|
|
|
return event_ptid;
|
|
}
|
|
|
|
/* Send a signal to an LWP. */
|
|
|
|
static int
|
|
kill_lwp (unsigned long lwpid, int signo)
|
|
{
|
|
/* Use tkill, if possible, in case we are using nptl threads. If tkill
|
|
fails, then we are not using nptl threads and we should be using kill. */
|
|
|
|
#ifdef __NR_tkill
|
|
{
|
|
static int tkill_failed;
|
|
|
|
if (!tkill_failed)
|
|
{
|
|
int ret;
|
|
|
|
errno = 0;
|
|
ret = syscall (__NR_tkill, lwpid, signo);
|
|
if (errno != ENOSYS)
|
|
return ret;
|
|
tkill_failed = 1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return kill (lwpid, signo);
|
|
}
|
|
|
|
void
|
|
linux_stop_lwp (struct lwp_info *lwp)
|
|
{
|
|
send_sigstop (lwp);
|
|
}
|
|
|
|
static void
|
|
send_sigstop (struct lwp_info *lwp)
|
|
{
|
|
int pid;
|
|
|
|
pid = lwpid_of (get_lwp_thread (lwp));
|
|
|
|
/* If we already have a pending stop signal for this process, don't
|
|
send another. */
|
|
if (lwp->stop_expected)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Have pending sigstop for lwp %d\n", pid);
|
|
|
|
return;
|
|
}
|
|
|
|
if (debug_threads)
|
|
debug_printf ("Sending sigstop to lwp %d\n", pid);
|
|
|
|
lwp->stop_expected = 1;
|
|
kill_lwp (pid, SIGSTOP);
|
|
}
|
|
|
|
static int
|
|
send_sigstop_callback (struct inferior_list_entry *entry, void *except)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lwp = get_thread_lwp (thread);
|
|
|
|
/* Ignore EXCEPT. */
|
|
if (lwp == except)
|
|
return 0;
|
|
|
|
if (lwp->stopped)
|
|
return 0;
|
|
|
|
send_sigstop (lwp);
|
|
return 0;
|
|
}
|
|
|
|
/* Increment the suspend count of an LWP, and stop it, if not stopped
|
|
yet. */
|
|
static int
|
|
suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
|
|
void *except)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lwp = get_thread_lwp (thread);
|
|
|
|
/* Ignore EXCEPT. */
|
|
if (lwp == except)
|
|
return 0;
|
|
|
|
lwp->suspended++;
|
|
|
|
return send_sigstop_callback (entry, except);
|
|
}
|
|
|
|
static void
|
|
mark_lwp_dead (struct lwp_info *lwp, int wstat)
|
|
{
|
|
/* It's dead, really. */
|
|
lwp->dead = 1;
|
|
|
|
/* Store the exit status for later. */
|
|
lwp->status_pending_p = 1;
|
|
lwp->status_pending = wstat;
|
|
|
|
/* Prevent trying to stop it. */
|
|
lwp->stopped = 1;
|
|
|
|
/* No further stops are expected from a dead lwp. */
|
|
lwp->stop_expected = 0;
|
|
}
|
|
|
|
/* Wait for all children to stop for the SIGSTOPs we just queued. */
|
|
|
|
static void
|
|
wait_for_sigstop (void)
|
|
{
|
|
struct thread_info *saved_inferior;
|
|
ptid_t saved_tid;
|
|
int wstat;
|
|
int ret;
|
|
|
|
saved_inferior = current_inferior;
|
|
if (saved_inferior != NULL)
|
|
saved_tid = saved_inferior->entry.id;
|
|
else
|
|
saved_tid = null_ptid; /* avoid bogus unused warning */
|
|
|
|
if (debug_threads)
|
|
debug_printf ("wait_for_sigstop: pulling events\n");
|
|
|
|
/* Passing NULL_PTID as filter indicates we want all events to be
|
|
left pending. Eventually this returns when there are no
|
|
unwaited-for children left. */
|
|
ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
|
|
&wstat, __WALL);
|
|
gdb_assert (ret == -1);
|
|
|
|
if (saved_inferior == NULL || linux_thread_alive (saved_tid))
|
|
current_inferior = saved_inferior;
|
|
else
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Previously current thread died.\n");
|
|
|
|
if (non_stop)
|
|
{
|
|
/* We can't change the current inferior behind GDB's back,
|
|
otherwise, a subsequent command may apply to the wrong
|
|
process. */
|
|
current_inferior = NULL;
|
|
}
|
|
else
|
|
{
|
|
/* Set a valid thread as current. */
|
|
set_desired_inferior (0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
|
|
move it out, because we need to report the stop event to GDB. For
|
|
example, if the user puts a breakpoint in the jump pad, it's
|
|
because she wants to debug it. */
|
|
|
|
static int
|
|
stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lwp = get_thread_lwp (thread);
|
|
|
|
gdb_assert (lwp->suspended == 0);
|
|
gdb_assert (lwp->stopped);
|
|
|
|
/* Allow debugging the jump pad, gdb_collect, etc.. */
|
|
return (supports_fast_tracepoints ()
|
|
&& agent_loaded_p ()
|
|
&& (gdb_breakpoint_here (lwp->stop_pc)
|
|
|| lwp->stopped_by_watchpoint
|
|
|| thread->last_resume_kind == resume_step)
|
|
&& linux_fast_tracepoint_collecting (lwp, NULL));
|
|
}
|
|
|
|
static void
|
|
move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lwp = get_thread_lwp (thread);
|
|
int *wstat;
|
|
|
|
gdb_assert (lwp->suspended == 0);
|
|
gdb_assert (lwp->stopped);
|
|
|
|
wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
|
|
|
|
/* Allow debugging the jump pad, gdb_collect, etc. */
|
|
if (!gdb_breakpoint_here (lwp->stop_pc)
|
|
&& !lwp->stopped_by_watchpoint
|
|
&& thread->last_resume_kind != resume_step
|
|
&& maybe_move_out_of_jump_pad (lwp, wstat))
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
|
|
lwpid_of (thread));
|
|
|
|
if (wstat)
|
|
{
|
|
lwp->status_pending_p = 0;
|
|
enqueue_one_deferred_signal (lwp, wstat);
|
|
|
|
if (debug_threads)
|
|
debug_printf ("Signal %d for LWP %ld deferred "
|
|
"(in jump pad)\n",
|
|
WSTOPSIG (*wstat), lwpid_of (thread));
|
|
}
|
|
|
|
linux_resume_one_lwp (lwp, 0, 0, NULL);
|
|
}
|
|
else
|
|
lwp->suspended++;
|
|
}
|
|
|
|
static int
|
|
lwp_running (struct inferior_list_entry *entry, void *data)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lwp = get_thread_lwp (thread);
|
|
|
|
if (lwp->dead)
|
|
return 0;
|
|
if (lwp->stopped)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
|
|
If SUSPEND, then also increase the suspend count of every LWP,
|
|
except EXCEPT. */
|
|
|
|
static void
|
|
stop_all_lwps (int suspend, struct lwp_info *except)
|
|
{
|
|
/* Should not be called recursively. */
|
|
gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
|
|
|
|
if (debug_threads)
|
|
{
|
|
debug_enter ();
|
|
debug_printf ("stop_all_lwps (%s, except=%s)\n",
|
|
suspend ? "stop-and-suspend" : "stop",
|
|
except != NULL
|
|
? target_pid_to_str (ptid_of (get_lwp_thread (except)))
|
|
: "none");
|
|
}
|
|
|
|
stopping_threads = (suspend
|
|
? STOPPING_AND_SUSPENDING_THREADS
|
|
: STOPPING_THREADS);
|
|
|
|
if (suspend)
|
|
find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
|
|
else
|
|
find_inferior (&all_threads, send_sigstop_callback, except);
|
|
wait_for_sigstop ();
|
|
stopping_threads = NOT_STOPPING_THREADS;
|
|
|
|
if (debug_threads)
|
|
{
|
|
debug_printf ("stop_all_lwps done, setting stopping_threads "
|
|
"back to !stopping\n");
|
|
debug_exit ();
|
|
}
|
|
}
|
|
|
|
/* Resume execution of the inferior process.
|
|
If STEP is nonzero, single-step it.
|
|
If SIGNAL is nonzero, give it that signal. */
|
|
|
|
static void
|
|
linux_resume_one_lwp (struct lwp_info *lwp,
|
|
int step, int signal, siginfo_t *info)
|
|
{
|
|
struct thread_info *thread = get_lwp_thread (lwp);
|
|
struct thread_info *saved_inferior;
|
|
int fast_tp_collecting;
|
|
|
|
if (lwp->stopped == 0)
|
|
return;
|
|
|
|
fast_tp_collecting = lwp->collecting_fast_tracepoint;
|
|
|
|
gdb_assert (!stabilizing_threads || fast_tp_collecting);
|
|
|
|
/* Cancel actions that rely on GDB not changing the PC (e.g., the
|
|
user used the "jump" command, or "set $pc = foo"). */
|
|
if (lwp->stop_pc != get_pc (lwp))
|
|
{
|
|
/* Collecting 'while-stepping' actions doesn't make sense
|
|
anymore. */
|
|
release_while_stepping_state_list (thread);
|
|
}
|
|
|
|
/* If we have pending signals or status, and a new signal, enqueue the
|
|
signal. Also enqueue the signal if we are waiting to reinsert a
|
|
breakpoint; it will be picked up again below. */
|
|
if (signal != 0
|
|
&& (lwp->status_pending_p
|
|
|| lwp->pending_signals != NULL
|
|
|| lwp->bp_reinsert != 0
|
|
|| fast_tp_collecting))
|
|
{
|
|
struct pending_signals *p_sig;
|
|
p_sig = xmalloc (sizeof (*p_sig));
|
|
p_sig->prev = lwp->pending_signals;
|
|
p_sig->signal = signal;
|
|
if (info == NULL)
|
|
memset (&p_sig->info, 0, sizeof (siginfo_t));
|
|
else
|
|
memcpy (&p_sig->info, info, sizeof (siginfo_t));
|
|
lwp->pending_signals = p_sig;
|
|
}
|
|
|
|
if (lwp->status_pending_p)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Not resuming lwp %ld (%s, signal %d, stop %s);"
|
|
" has pending status\n",
|
|
lwpid_of (thread), step ? "step" : "continue", signal,
|
|
lwp->stop_expected ? "expected" : "not expected");
|
|
return;
|
|
}
|
|
|
|
saved_inferior = current_inferior;
|
|
current_inferior = thread;
|
|
|
|
if (debug_threads)
|
|
debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
|
|
lwpid_of (thread), step ? "step" : "continue", signal,
|
|
lwp->stop_expected ? "expected" : "not expected");
|
|
|
|
/* This bit needs some thinking about. If we get a signal that
|
|
we must report while a single-step reinsert is still pending,
|
|
we often end up resuming the thread. It might be better to
|
|
(ew) allow a stack of pending events; then we could be sure that
|
|
the reinsert happened right away and not lose any signals.
|
|
|
|
Making this stack would also shrink the window in which breakpoints are
|
|
uninserted (see comment in linux_wait_for_lwp) but not enough for
|
|
complete correctness, so it won't solve that problem. It may be
|
|
worthwhile just to solve this one, however. */
|
|
if (lwp->bp_reinsert != 0)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf (" pending reinsert at 0x%s\n",
|
|
paddress (lwp->bp_reinsert));
|
|
|
|
if (can_hardware_single_step ())
|
|
{
|
|
if (fast_tp_collecting == 0)
|
|
{
|
|
if (step == 0)
|
|
fprintf (stderr, "BAD - reinserting but not stepping.\n");
|
|
if (lwp->suspended)
|
|
fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
|
|
lwp->suspended);
|
|
}
|
|
|
|
step = 1;
|
|
}
|
|
|
|
/* Postpone any pending signal. It was enqueued above. */
|
|
signal = 0;
|
|
}
|
|
|
|
if (fast_tp_collecting == 1)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
|
|
" (exit-jump-pad-bkpt)\n",
|
|
lwpid_of (thread));
|
|
|
|
/* Postpone any pending signal. It was enqueued above. */
|
|
signal = 0;
|
|
}
|
|
else if (fast_tp_collecting == 2)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
|
|
" single-stepping\n",
|
|
lwpid_of (thread));
|
|
|
|
if (can_hardware_single_step ())
|
|
step = 1;
|
|
else
|
|
fatal ("moving out of jump pad single-stepping"
|
|
" not implemented on this target");
|
|
|
|
/* Postpone any pending signal. It was enqueued above. */
|
|
signal = 0;
|
|
}
|
|
|
|
/* If we have while-stepping actions in this thread set it stepping.
|
|
If we have a signal to deliver, it may or may not be set to
|
|
SIG_IGN, we don't know. Assume so, and allow collecting
|
|
while-stepping into a signal handler. A possible smart thing to
|
|
do would be to set an internal breakpoint at the signal return
|
|
address, continue, and carry on catching this while-stepping
|
|
action only when that breakpoint is hit. A future
|
|
enhancement. */
|
|
if (thread->while_stepping != NULL
|
|
&& can_hardware_single_step ())
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
|
|
lwpid_of (thread));
|
|
step = 1;
|
|
}
|
|
|
|
if (debug_threads && the_low_target.get_pc != NULL)
|
|
{
|
|
struct regcache *regcache = get_thread_regcache (current_inferior, 1);
|
|
CORE_ADDR pc = (*the_low_target.get_pc) (regcache);
|
|
debug_printf (" resuming from pc 0x%lx\n", (long) pc);
|
|
}
|
|
|
|
/* If we have pending signals, consume one unless we are trying to
|
|
reinsert a breakpoint or we're trying to finish a fast tracepoint
|
|
collect. */
|
|
if (lwp->pending_signals != NULL
|
|
&& lwp->bp_reinsert == 0
|
|
&& fast_tp_collecting == 0)
|
|
{
|
|
struct pending_signals **p_sig;
|
|
|
|
p_sig = &lwp->pending_signals;
|
|
while ((*p_sig)->prev != NULL)
|
|
p_sig = &(*p_sig)->prev;
|
|
|
|
signal = (*p_sig)->signal;
|
|
if ((*p_sig)->info.si_signo != 0)
|
|
ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
|
|
&(*p_sig)->info);
|
|
|
|
free (*p_sig);
|
|
*p_sig = NULL;
|
|
}
|
|
|
|
if (the_low_target.prepare_to_resume != NULL)
|
|
the_low_target.prepare_to_resume (lwp);
|
|
|
|
regcache_invalidate_thread (thread);
|
|
errno = 0;
|
|
lwp->stopped = 0;
|
|
lwp->stopped_by_watchpoint = 0;
|
|
lwp->stepping = step;
|
|
ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (thread),
|
|
(PTRACE_TYPE_ARG3) 0,
|
|
/* Coerce to a uintptr_t first to avoid potential gcc warning
|
|
of coercing an 8 byte integer to a 4 byte pointer. */
|
|
(PTRACE_TYPE_ARG4) (uintptr_t) signal);
|
|
|
|
current_inferior = saved_inferior;
|
|
if (errno)
|
|
{
|
|
/* ESRCH from ptrace either means that the thread was already
|
|
running (an error) or that it is gone (a race condition). If
|
|
it's gone, we will get a notification the next time we wait,
|
|
so we can ignore the error. We could differentiate these
|
|
two, but it's tricky without waiting; the thread still exists
|
|
as a zombie, so sending it signal 0 would succeed. So just
|
|
ignore ESRCH. */
|
|
if (errno == ESRCH)
|
|
return;
|
|
|
|
perror_with_name ("ptrace");
|
|
}
|
|
}
|
|
|
|
struct thread_resume_array
|
|
{
|
|
struct thread_resume *resume;
|
|
size_t n;
|
|
};
|
|
|
|
/* This function is called once per thread via find_inferior.
|
|
ARG is a pointer to a thread_resume_array struct.
|
|
We look up the thread specified by ENTRY in ARG, and mark the thread
|
|
with a pointer to the appropriate resume request.
|
|
|
|
This algorithm is O(threads * resume elements), but resume elements
|
|
is small (and will remain small at least until GDB supports thread
|
|
suspension). */
|
|
|
|
static int
|
|
linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lwp = get_thread_lwp (thread);
|
|
int ndx;
|
|
struct thread_resume_array *r;
|
|
|
|
r = arg;
|
|
|
|
for (ndx = 0; ndx < r->n; ndx++)
|
|
{
|
|
ptid_t ptid = r->resume[ndx].thread;
|
|
if (ptid_equal (ptid, minus_one_ptid)
|
|
|| ptid_equal (ptid, entry->id)
|
|
/* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
|
|
of PID'. */
|
|
|| (ptid_get_pid (ptid) == pid_of (thread)
|
|
&& (ptid_is_pid (ptid)
|
|
|| ptid_get_lwp (ptid) == -1)))
|
|
{
|
|
if (r->resume[ndx].kind == resume_stop
|
|
&& thread->last_resume_kind == resume_stop)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("already %s LWP %ld at GDB's request\n",
|
|
(thread->last_status.kind
|
|
== TARGET_WAITKIND_STOPPED)
|
|
? "stopped"
|
|
: "stopping",
|
|
lwpid_of (thread));
|
|
|
|
continue;
|
|
}
|
|
|
|
lwp->resume = &r->resume[ndx];
|
|
thread->last_resume_kind = lwp->resume->kind;
|
|
|
|
lwp->step_range_start = lwp->resume->step_range_start;
|
|
lwp->step_range_end = lwp->resume->step_range_end;
|
|
|
|
/* If we had a deferred signal to report, dequeue one now.
|
|
This can happen if LWP gets more than one signal while
|
|
trying to get out of a jump pad. */
|
|
if (lwp->stopped
|
|
&& !lwp->status_pending_p
|
|
&& dequeue_one_deferred_signal (lwp, &lwp->status_pending))
|
|
{
|
|
lwp->status_pending_p = 1;
|
|
|
|
if (debug_threads)
|
|
debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
|
|
"leaving status pending.\n",
|
|
WSTOPSIG (lwp->status_pending),
|
|
lwpid_of (thread));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* No resume action for this thread. */
|
|
lwp->resume = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* find_inferior callback for linux_resume.
|
|
Set *FLAG_P if this lwp has an interesting status pending. */
|
|
|
|
static int
|
|
resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lwp = get_thread_lwp (thread);
|
|
|
|
/* LWPs which will not be resumed are not interesting, because
|
|
we might not wait for them next time through linux_wait. */
|
|
if (lwp->resume == NULL)
|
|
return 0;
|
|
|
|
if (lwp->status_pending_p)
|
|
* (int *) flag_p = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return 1 if this lwp that GDB wants running is stopped at an
|
|
internal breakpoint that we need to step over. It assumes that any
|
|
required STOP_PC adjustment has already been propagated to the
|
|
inferior's regcache. */
|
|
|
|
static int
|
|
need_step_over_p (struct inferior_list_entry *entry, void *dummy)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lwp = get_thread_lwp (thread);
|
|
struct thread_info *saved_inferior;
|
|
CORE_ADDR pc;
|
|
|
|
/* LWPs which will not be resumed are not interesting, because we
|
|
might not wait for them next time through linux_wait. */
|
|
|
|
if (!lwp->stopped)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
|
|
lwpid_of (thread));
|
|
return 0;
|
|
}
|
|
|
|
if (thread->last_resume_kind == resume_stop)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
|
|
" stopped\n",
|
|
lwpid_of (thread));
|
|
return 0;
|
|
}
|
|
|
|
gdb_assert (lwp->suspended >= 0);
|
|
|
|
if (lwp->suspended)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
|
|
lwpid_of (thread));
|
|
return 0;
|
|
}
|
|
|
|
if (!lwp->need_step_over)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Need step over [LWP %ld]? No\n", lwpid_of (thread));
|
|
}
|
|
|
|
if (lwp->status_pending_p)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
|
|
" status.\n",
|
|
lwpid_of (thread));
|
|
return 0;
|
|
}
|
|
|
|
/* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
|
|
or we have. */
|
|
pc = get_pc (lwp);
|
|
|
|
/* If the PC has changed since we stopped, then don't do anything,
|
|
and let the breakpoint/tracepoint be hit. This happens if, for
|
|
instance, GDB handled the decr_pc_after_break subtraction itself,
|
|
GDB is OOL stepping this thread, or the user has issued a "jump"
|
|
command, or poked thread's registers herself. */
|
|
if (pc != lwp->stop_pc)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
|
|
"Old stop_pc was 0x%s, PC is now 0x%s\n",
|
|
lwpid_of (thread),
|
|
paddress (lwp->stop_pc), paddress (pc));
|
|
|
|
lwp->need_step_over = 0;
|
|
return 0;
|
|
}
|
|
|
|
saved_inferior = current_inferior;
|
|
current_inferior = thread;
|
|
|
|
/* We can only step over breakpoints we know about. */
|
|
if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
|
|
{
|
|
/* Don't step over a breakpoint that GDB expects to hit
|
|
though. If the condition is being evaluated on the target's side
|
|
and it evaluate to false, step over this breakpoint as well. */
|
|
if (gdb_breakpoint_here (pc)
|
|
&& gdb_condition_true_at_breakpoint (pc)
|
|
&& gdb_no_commands_at_breakpoint (pc))
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Need step over [LWP %ld]? yes, but found"
|
|
" GDB breakpoint at 0x%s; skipping step over\n",
|
|
lwpid_of (thread), paddress (pc));
|
|
|
|
current_inferior = saved_inferior;
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Need step over [LWP %ld]? yes, "
|
|
"found breakpoint at 0x%s\n",
|
|
lwpid_of (thread), paddress (pc));
|
|
|
|
/* We've found an lwp that needs stepping over --- return 1 so
|
|
that find_inferior stops looking. */
|
|
current_inferior = saved_inferior;
|
|
|
|
/* If the step over is cancelled, this is set again. */
|
|
lwp->need_step_over = 0;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
current_inferior = saved_inferior;
|
|
|
|
if (debug_threads)
|
|
debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
|
|
" at 0x%s\n",
|
|
lwpid_of (thread), paddress (pc));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Start a step-over operation on LWP. When LWP stopped at a
|
|
breakpoint, to make progress, we need to remove the breakpoint out
|
|
of the way. If we let other threads run while we do that, they may
|
|
pass by the breakpoint location and miss hitting it. To avoid
|
|
that, a step-over momentarily stops all threads while LWP is
|
|
single-stepped while the breakpoint is temporarily uninserted from
|
|
the inferior. When the single-step finishes, we reinsert the
|
|
breakpoint, and let all threads that are supposed to be running,
|
|
run again.
|
|
|
|
On targets that don't support hardware single-step, we don't
|
|
currently support full software single-stepping. Instead, we only
|
|
support stepping over the thread event breakpoint, by asking the
|
|
low target where to place a reinsert breakpoint. Since this
|
|
routine assumes the breakpoint being stepped over is a thread event
|
|
breakpoint, it usually assumes the return address of the current
|
|
function is a good enough place to set the reinsert breakpoint. */
|
|
|
|
static int
|
|
start_step_over (struct lwp_info *lwp)
|
|
{
|
|
struct thread_info *thread = get_lwp_thread (lwp);
|
|
struct thread_info *saved_inferior;
|
|
CORE_ADDR pc;
|
|
int step;
|
|
|
|
if (debug_threads)
|
|
debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
|
|
lwpid_of (thread));
|
|
|
|
stop_all_lwps (1, lwp);
|
|
gdb_assert (lwp->suspended == 0);
|
|
|
|
if (debug_threads)
|
|
debug_printf ("Done stopping all threads for step-over.\n");
|
|
|
|
/* Note, we should always reach here with an already adjusted PC,
|
|
either by GDB (if we're resuming due to GDB's request), or by our
|
|
caller, if we just finished handling an internal breakpoint GDB
|
|
shouldn't care about. */
|
|
pc = get_pc (lwp);
|
|
|
|
saved_inferior = current_inferior;
|
|
current_inferior = thread;
|
|
|
|
lwp->bp_reinsert = pc;
|
|
uninsert_breakpoints_at (pc);
|
|
uninsert_fast_tracepoint_jumps_at (pc);
|
|
|
|
if (can_hardware_single_step ())
|
|
{
|
|
step = 1;
|
|
}
|
|
else
|
|
{
|
|
CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
|
|
set_reinsert_breakpoint (raddr);
|
|
step = 0;
|
|
}
|
|
|
|
current_inferior = saved_inferior;
|
|
|
|
linux_resume_one_lwp (lwp, step, 0, NULL);
|
|
|
|
/* Require next event from this LWP. */
|
|
step_over_bkpt = thread->entry.id;
|
|
return 1;
|
|
}
|
|
|
|
/* Finish a step-over. Reinsert the breakpoint we had uninserted in
|
|
start_step_over, if still there, and delete any reinsert
|
|
breakpoints we've set, on non hardware single-step targets. */
|
|
|
|
static int
|
|
finish_step_over (struct lwp_info *lwp)
|
|
{
|
|
if (lwp->bp_reinsert != 0)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("Finished step over.\n");
|
|
|
|
/* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
|
|
may be no breakpoint to reinsert there by now. */
|
|
reinsert_breakpoints_at (lwp->bp_reinsert);
|
|
reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
|
|
|
|
lwp->bp_reinsert = 0;
|
|
|
|
/* Delete any software-single-step reinsert breakpoints. No
|
|
longer needed. We don't have to worry about other threads
|
|
hitting this trap, and later not being able to explain it,
|
|
because we were stepping over a breakpoint, and we hold all
|
|
threads but LWP stopped while doing that. */
|
|
if (!can_hardware_single_step ())
|
|
delete_reinsert_breakpoints ();
|
|
|
|
step_over_bkpt = null_ptid;
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* This function is called once per thread. We check the thread's resume
|
|
request, which will tell us whether to resume, step, or leave the thread
|
|
stopped; and what signal, if any, it should be sent.
|
|
|
|
For threads which we aren't explicitly told otherwise, we preserve
|
|
the stepping flag; this is used for stepping over gdbserver-placed
|
|
breakpoints.
|
|
|
|
If pending_flags was set in any thread, we queue any needed
|
|
signals, since we won't actually resume. We already have a pending
|
|
event to report, so we don't need to preserve any step requests;
|
|
they should be re-issued if necessary. */
|
|
|
|
static int
|
|
linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lwp = get_thread_lwp (thread);
|
|
int step;
|
|
int leave_all_stopped = * (int *) arg;
|
|
int leave_pending;
|
|
|
|
if (lwp->resume == NULL)
|
|
return 0;
|
|
|
|
if (lwp->resume->kind == resume_stop)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
|
|
|
|
if (!lwp->stopped)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
|
|
|
|
/* Stop the thread, and wait for the event asynchronously,
|
|
through the event loop. */
|
|
send_sigstop (lwp);
|
|
}
|
|
else
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("already stopped LWP %ld\n",
|
|
lwpid_of (thread));
|
|
|
|
/* The LWP may have been stopped in an internal event that
|
|
was not meant to be notified back to GDB (e.g., gdbserver
|
|
breakpoint), so we should be reporting a stop event in
|
|
this case too. */
|
|
|
|
/* If the thread already has a pending SIGSTOP, this is a
|
|
no-op. Otherwise, something later will presumably resume
|
|
the thread and this will cause it to cancel any pending
|
|
operation, due to last_resume_kind == resume_stop. If
|
|
the thread already has a pending status to report, we
|
|
will still report it the next time we wait - see
|
|
status_pending_p_callback. */
|
|
|
|
/* If we already have a pending signal to report, then
|
|
there's no need to queue a SIGSTOP, as this means we're
|
|
midway through moving the LWP out of the jumppad, and we
|
|
will report the pending signal as soon as that is
|
|
finished. */
|
|
if (lwp->pending_signals_to_report == NULL)
|
|
send_sigstop (lwp);
|
|
}
|
|
|
|
/* For stop requests, we're done. */
|
|
lwp->resume = NULL;
|
|
thread->last_status.kind = TARGET_WAITKIND_IGNORE;
|
|
return 0;
|
|
}
|
|
|
|
/* If this thread which is about to be resumed has a pending status,
|
|
then don't resume any threads - we can just report the pending
|
|
status. Make sure to queue any signals that would otherwise be
|
|
sent. In all-stop mode, we do this decision based on if *any*
|
|
thread has a pending status. If there's a thread that needs the
|
|
step-over-breakpoint dance, then don't resume any other thread
|
|
but that particular one. */
|
|
leave_pending = (lwp->status_pending_p || leave_all_stopped);
|
|
|
|
if (!leave_pending)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
|
|
|
|
step = (lwp->resume->kind == resume_step);
|
|
linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
|
|
}
|
|
else
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
|
|
|
|
/* If we have a new signal, enqueue the signal. */
|
|
if (lwp->resume->sig != 0)
|
|
{
|
|
struct pending_signals *p_sig;
|
|
p_sig = xmalloc (sizeof (*p_sig));
|
|
p_sig->prev = lwp->pending_signals;
|
|
p_sig->signal = lwp->resume->sig;
|
|
memset (&p_sig->info, 0, sizeof (siginfo_t));
|
|
|
|
/* If this is the same signal we were previously stopped by,
|
|
make sure to queue its siginfo. We can ignore the return
|
|
value of ptrace; if it fails, we'll skip
|
|
PTRACE_SETSIGINFO. */
|
|
if (WIFSTOPPED (lwp->last_status)
|
|
&& WSTOPSIG (lwp->last_status) == lwp->resume->sig)
|
|
ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
|
|
&p_sig->info);
|
|
|
|
lwp->pending_signals = p_sig;
|
|
}
|
|
}
|
|
|
|
thread->last_status.kind = TARGET_WAITKIND_IGNORE;
|
|
lwp->resume = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
linux_resume (struct thread_resume *resume_info, size_t n)
|
|
{
|
|
struct thread_resume_array array = { resume_info, n };
|
|
struct thread_info *need_step_over = NULL;
|
|
int any_pending;
|
|
int leave_all_stopped;
|
|
|
|
if (debug_threads)
|
|
{
|
|
debug_enter ();
|
|
debug_printf ("linux_resume:\n");
|
|
}
|
|
|
|
find_inferior (&all_threads, linux_set_resume_request, &array);
|
|
|
|
/* If there is a thread which would otherwise be resumed, which has
|
|
a pending status, then don't resume any threads - we can just
|
|
report the pending status. Make sure to queue any signals that
|
|
would otherwise be sent. In non-stop mode, we'll apply this
|
|
logic to each thread individually. We consume all pending events
|
|
before considering to start a step-over (in all-stop). */
|
|
any_pending = 0;
|
|
if (!non_stop)
|
|
find_inferior (&all_threads, resume_status_pending_p, &any_pending);
|
|
|
|
/* If there is a thread which would otherwise be resumed, which is
|
|
stopped at a breakpoint that needs stepping over, then don't
|
|
resume any threads - have it step over the breakpoint with all
|
|
other threads stopped, then resume all threads again. Make sure
|
|
to queue any signals that would otherwise be delivered or
|
|
queued. */
|
|
if (!any_pending && supports_breakpoints ())
|
|
need_step_over
|
|
= (struct thread_info *) find_inferior (&all_threads,
|
|
need_step_over_p, NULL);
|
|
|
|
leave_all_stopped = (need_step_over != NULL || any_pending);
|
|
|
|
if (debug_threads)
|
|
{
|
|
if (need_step_over != NULL)
|
|
debug_printf ("Not resuming all, need step over\n");
|
|
else if (any_pending)
|
|
debug_printf ("Not resuming, all-stop and found "
|
|
"an LWP with pending status\n");
|
|
else
|
|
debug_printf ("Resuming, no pending status or step over needed\n");
|
|
}
|
|
|
|
/* Even if we're leaving threads stopped, queue all signals we'd
|
|
otherwise deliver. */
|
|
find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
|
|
|
|
if (need_step_over)
|
|
start_step_over (get_thread_lwp (need_step_over));
|
|
|
|
if (debug_threads)
|
|
{
|
|
debug_printf ("linux_resume done\n");
|
|
debug_exit ();
|
|
}
|
|
}
|
|
|
|
/* This function is called once per thread. We check the thread's
|
|
last resume request, which will tell us whether to resume, step, or
|
|
leave the thread stopped. Any signal the client requested to be
|
|
delivered has already been enqueued at this point.
|
|
|
|
If any thread that GDB wants running is stopped at an internal
|
|
breakpoint that needs stepping over, we start a step-over operation
|
|
on that particular thread, and leave all others stopped. */
|
|
|
|
static int
|
|
proceed_one_lwp (struct inferior_list_entry *entry, void *except)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lwp = get_thread_lwp (thread);
|
|
int step;
|
|
|
|
if (lwp == except)
|
|
return 0;
|
|
|
|
if (debug_threads)
|
|
debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
|
|
|
|
if (!lwp->stopped)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf (" LWP %ld already running\n", lwpid_of (thread));
|
|
return 0;
|
|
}
|
|
|
|
if (thread->last_resume_kind == resume_stop
|
|
&& thread->last_status.kind != TARGET_WAITKIND_IGNORE)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf (" client wants LWP to remain %ld stopped\n",
|
|
lwpid_of (thread));
|
|
return 0;
|
|
}
|
|
|
|
if (lwp->status_pending_p)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf (" LWP %ld has pending status, leaving stopped\n",
|
|
lwpid_of (thread));
|
|
return 0;
|
|
}
|
|
|
|
gdb_assert (lwp->suspended >= 0);
|
|
|
|
if (lwp->suspended)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
|
|
return 0;
|
|
}
|
|
|
|
if (thread->last_resume_kind == resume_stop
|
|
&& lwp->pending_signals_to_report == NULL
|
|
&& lwp->collecting_fast_tracepoint == 0)
|
|
{
|
|
/* We haven't reported this LWP as stopped yet (otherwise, the
|
|
last_status.kind check above would catch it, and we wouldn't
|
|
reach here. This LWP may have been momentarily paused by a
|
|
stop_all_lwps call while handling for example, another LWP's
|
|
step-over. In that case, the pending expected SIGSTOP signal
|
|
that was queued at vCont;t handling time will have already
|
|
been consumed by wait_for_sigstop, and so we need to requeue
|
|
another one here. Note that if the LWP already has a SIGSTOP
|
|
pending, this is a no-op. */
|
|
|
|
if (debug_threads)
|
|
debug_printf ("Client wants LWP %ld to stop. "
|
|
"Making sure it has a SIGSTOP pending\n",
|
|
lwpid_of (thread));
|
|
|
|
send_sigstop (lwp);
|
|
}
|
|
|
|
step = thread->last_resume_kind == resume_step;
|
|
linux_resume_one_lwp (lwp, step, 0, NULL);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
|
|
{
|
|
struct thread_info *thread = (struct thread_info *) entry;
|
|
struct lwp_info *lwp = get_thread_lwp (thread);
|
|
|
|
if (lwp == except)
|
|
return 0;
|
|
|
|
lwp->suspended--;
|
|
gdb_assert (lwp->suspended >= 0);
|
|
|
|
return proceed_one_lwp (entry, except);
|
|
}
|
|
|
|
/* When we finish a step-over, set threads running again. If there's
|
|
another thread that may need a step-over, now's the time to start
|
|
it. Eventually, we'll move all threads past their breakpoints. */
|
|
|
|
static void
|
|
proceed_all_lwps (void)
|
|
{
|
|
struct thread_info *need_step_over;
|
|
|
|
/* If there is a thread which would otherwise be resumed, which is
|
|
stopped at a breakpoint that needs stepping over, then don't
|
|
resume any threads - have it step over the breakpoint with all
|
|
other threads stopped, then resume all threads again. */
|
|
|
|
if (supports_breakpoints ())
|
|
{
|
|
need_step_over
|
|
= (struct thread_info *) find_inferior (&all_threads,
|
|
need_step_over_p, NULL);
|
|
|
|
if (need_step_over != NULL)
|
|
{
|
|
if (debug_threads)
|
|
debug_printf ("proceed_all_lwps: found "
|
|
"thread %ld needing a step-over\n",
|
|
lwpid_of (need_step_over));
|
|
|
|
start_step_over (get_thread_lwp (need_step_over));
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (debug_threads)
|
|
debug_printf ("Proceeding, no step-over needed\n");
|
|
|
|
find_inferior (&all_threads, proceed_one_lwp, NULL);
|
|
}
|
|
|
|
/* Stopped LWPs that the client wanted to be running, that don't have
|
|
pending statuses, are set to run again, except for EXCEPT, if not
|
|
NULL. This undoes a stop_all_lwps call. */
|
|
|
|
static void
|
|
unstop_all_lwps (int unsuspend, struct lwp_info *except)
|
|
{
|
|
if (debug_threads)
|
|
{
|
|
debug_enter ();
|
|
if (except)
|
|
debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
|
|
lwpid_of (get_lwp_thread (except)));
|
|
else
|
|
debug_printf ("unstopping all lwps\n");
|
|
}
|
|
|
|
if (unsuspend)
|
|
find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
|
|
else
|
|
find_inferior (&all_threads, proceed_one_lwp, except);
|
|
|
|
if (debug_threads)
|
|
{
|
|
debug_printf ("unstop_all_lwps done\n");
|
|
debug_exit ();
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef HAVE_LINUX_REGSETS
|
|
|
|
#define use_linux_regsets 1
|
|
|
|
/* Returns true if REGSET has been disabled. */
|
|
|
|
static int
|
|
regset_disabled (struct regsets_info *info, struct regset_info *regset)
|
|
{
|
|
return (info->disabled_regsets != NULL
|
|
&& info->disabled_regsets[regset - info->regsets]);
|
|
}
|
|
|
|
/* Disable REGSET. */
|
|
|
|
static void
|
|
disable_regset (struct regsets_info *info, struct regset_info *regset)
|
|
{
|
|
int dr_offset;
|
|
|
|
dr_offset = regset - info->regsets;
|
|
if (info->disabled_regsets == NULL)
|
|
info->disabled_regsets = xcalloc (1, info->num_regsets);
|
|
info->disabled_regsets[dr_offset] = 1;
|
|
}
|
|
|
|
static int
|
|
regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
|
|
struct regcache *regcache)
|
|
{
|
|
struct regset_info *regset;
|
|
int saw_general_regs = 0;
|
|
int pid;
|
|
struct iovec iov;
|
|
|
|
regset = regsets_info->regsets;
|
|
|
|
pid = lwpid_of (current_inferior);
|
|
while (regset->size >= 0)
|
|
{
|
|
void *buf, *data;
|
|
int nt_type, res;
|
|
|
|
if (regset->size == 0 || regset_disabled (regsets_info, regset))
|
|
{
|
|
regset ++;
|
|
continue;
|
|
}
|
|
|
|
buf = xmalloc (regset->size);
|
|
|
|
nt_type = regset->nt_type;
|
|
if (nt_type)
|
|
{
|
|
iov.iov_base = buf;
|
|
iov.iov_len = regset->size;
|
|
data = (void *) &iov;
|
|
}
|
|
else
|
|
data = buf;
|
|
|
|
#ifndef __sparc__
|
|
res = ptrace (regset->get_request, pid,
|
|
(PTRACE_TYPE_ARG3) (long) nt_type, data);
|
|
#else
|
|
res = ptrace (regset->get_request, pid, data, nt_type);
|
|
#endif
|
|
if (res < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
/* If we get EIO on a regset, do not try it again for
|
|
this process mode. */
|
|
disable_regset (regsets_info, regset);
|
|
free (buf);
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
char s[256];
|
|
sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
|
|
pid);
|
|
perror (s);
|
|
}
|
|
}
|
|
else if (regset->type == GENERAL_REGS)
|
|
saw_general_regs = 1;
|
|
regset->store_function (regcache, buf);
|
|
regset ++;
|
|
free (buf);
|
|
}
|
|
if (saw_general_regs)
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
regsets_store_inferior_registers (struct regsets_info *regsets_info,
|
|
struct regcache *regcache)
|
|
{
|
|
struct regset_info *regset;
|
|
int saw_general_regs = 0;
|
|
int pid;
|
|
struct iovec iov;
|
|
|
|
regset = regsets_info->regsets;
|
|
|
|
pid = lwpid_of (current_inferior);
|
|
while (regset->size >= 0)
|
|
{
|
|
void *buf, *data;
|
|
int nt_type, res;
|
|
|
|
if (regset->size == 0 || regset_disabled (regsets_info, regset))
|
|
{
|
|
regset ++;
|
|
continue;
|
|
}
|
|
|
|
buf = xmalloc (regset->size);
|
|
|
|
/* First fill the buffer with the current register set contents,
|
|
in case there are any items in the kernel's regset that are
|
|
not in gdbserver's regcache. */
|
|
|
|
nt_type = regset->nt_type;
|
|
if (nt_type)
|
|
{
|
|
iov.iov_base = buf;
|
|
iov.iov_len = regset->size;
|
|
data = (void *) &iov;
|
|
}
|
|
else
|
|
data = buf;
|
|
|
|
#ifndef __sparc__
|
|
res = ptrace (regset->get_request, pid,
|
|
(PTRACE_TYPE_ARG3) (long) nt_type, data);
|
|
#else
|
|
res = ptrace (regset->get_request, pid, data, nt_type);
|
|
#endif
|
|
|
|
if (res == 0)
|
|
{
|
|
/* Then overlay our cached registers on that. */
|
|
regset->fill_function (regcache, buf);
|
|
|
|
/* Only now do we write the register set. */
|
|
#ifndef __sparc__
|
|
res = ptrace (regset->set_request, pid,
|
|
(PTRACE_TYPE_ARG3) (long) nt_type, data);
|
|
#else
|
|
res = ptrace (regset->set_request, pid, data, nt_type);
|
|
#endif
|
|
}
|
|
|
|
if (res < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
/* If we get EIO on a regset, do not try it again for
|
|
this process mode. */
|
|
disable_regset (regsets_info, regset);
|
|
free (buf);
|
|
continue;
|
|
}
|
|
else if (errno == ESRCH)
|
|
{
|
|
/* At this point, ESRCH should mean the process is
|
|
already gone, in which case we simply ignore attempts
|
|
to change its registers. See also the related
|
|
comment in linux_resume_one_lwp. */
|
|
free (buf);
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
perror ("Warning: ptrace(regsets_store_inferior_registers)");
|
|
}
|
|
}
|
|
else if (regset->type == GENERAL_REGS)
|
|
saw_general_regs = 1;
|
|
regset ++;
|
|
free (buf);
|
|
}
|
|
if (saw_general_regs)
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
#else /* !HAVE_LINUX_REGSETS */
|
|
|
|
#define use_linux_regsets 0
|
|
#define regsets_fetch_inferior_registers(regsets_info, regcache) 1
|
|
#define regsets_store_inferior_registers(regsets_info, regcache) 1
|
|
|
|
#endif
|
|
|
|
/* Return 1 if register REGNO is supported by one of the regset ptrace
|
|
calls or 0 if it has to be transferred individually. */
|
|
|
|
static int
|
|
linux_register_in_regsets (const struct regs_info *regs_info, int regno)
|
|
{
|
|
unsigned char mask = 1 << (regno % 8);
|
|
size_t index = regno / 8;
|
|
|
|
return (use_linux_regsets
|
|
&& (regs_info->regset_bitmap == NULL
|
|
|| (regs_info->regset_bitmap[index] & mask) != 0));
|
|
}
|
|
|
|
#ifdef HAVE_LINUX_USRREGS
|
|
|
|
int
|
|
register_addr (const struct usrregs_info *usrregs, int regnum)
|
|
{
|
|
int addr;
|
|
|
|
if (regnum < 0 || regnum >= usrregs->num_regs)
|
|
error ("Invalid register number %d.", regnum);
|
|
|
|
addr = usrregs->regmap[regnum];
|
|
|
|
return addr;
|
|
}
|
|
|
|
/* Fetch one register. */
|
|
static void
|
|
fetch_register (const struct usrregs_info *usrregs,
|
|
struct regcache *regcache, int regno)
|
|
{
|
|
CORE_ADDR regaddr;
|
|
int i, size;
|
|
char *buf;
|
|
int pid;
|
|
|
|
if (regno >= usrregs->num_regs)
|
|
return;
|
|
if ((*the_low_target.cannot_fetch_register) (regno))
|
|
return;
|
|
|
|
regaddr = register_addr (usrregs, regno);
|
|
if (regaddr == -1)
|
|
return;
|
|
|
|
size = ((register_size (regcache->tdesc, regno)
|
|
+ sizeof (PTRACE_XFER_TYPE) - 1)
|
|
& -sizeof (PTRACE_XFER_TYPE));
|
|
buf = alloca (size);
|
|
|
|
pid = lwpid_of (current_inferior);
|
|
for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
|
|
{
|
|
errno = 0;
|
|
*(PTRACE_XFER_TYPE *) (buf + i) =
|
|
ptrace (PTRACE_PEEKUSER, pid,
|
|
/* Coerce to a uintptr_t first to avoid potential gcc warning
|
|
of coercing an 8 byte integer to a 4 byte pointer. */
|
|
(PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
|
|
regaddr += sizeof (PTRACE_XFER_TYPE);
|
|
if (errno != 0)
|
|
error ("reading register %d: %s", regno, strerror (errno));
|
|
}
|
|
|
|
if (the_low_target.supply_ptrace_register)
|
|
the_low_target.supply_ptrace_register (regcache, regno, buf);
|
|
else
|
|
supply_register (regcache, regno, buf);
|
|
}
|
|
|
|
/* Store one register. */
|
|
static void
|
|
store_register (const struct usrregs_info *usrregs,
|
|
struct regcache *regcache, int regno)
|
|
{
|
|
CORE_ADDR regaddr;
|
|
int i, size;
|
|
char *buf;
|
|
int pid;
|
|
|
|
if (regno >= usrregs->num_regs)
|
|
return;
|
|
if ((*the_low_target.cannot_store_register) (regno))
|
|
return;
|
|
|
|
regaddr = register_addr (usrregs, regno);
|
|
if (regaddr == -1)
|
|
return;
|
|
|
|
size = ((register_size (regcache->tdesc, regno)
|
|
+ sizeof (PTRACE_XFER_TYPE) - 1)
|
|
& -sizeof (PTRACE_XFER_TYPE));
|
|
buf = alloca (size);
|
|
memset (buf, 0, size);
|
|
|
|
if (the_low_target.collect_ptrace_register)
|
|
the_low_target.collect_ptrace_register (regcache, regno, buf);
|
|
else
|
|
collect_register (regcache, regno, buf);
|
|
|
|
pid = lwpid_of (current_inferior);
|
|
for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
|
|
{
|
|
errno = 0;
|
|
ptrace (PTRACE_POKEUSER, pid,
|
|
/* Coerce to a uintptr_t first to avoid potential gcc warning
|
|
about coercing an 8 byte integer to a 4 byte pointer. */
|
|
(PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
|
|
(PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
|
|
if (errno != 0)
|
|
{
|
|
/* At this point, ESRCH should mean the process is
|
|
already gone, in which case we simply ignore attempts
|
|
to change its registers. See also the related
|
|
comment in linux_resume_one_lwp. */
|
|
if (errno == ESRCH)
|
|
return;
|
|
|
|
if ((*the_low_target.cannot_store_register) (regno) == 0)
|
|
error ("writing register %d: %s", regno, strerror (errno));
|
|
}
|
|
regaddr += sizeof (PTRACE_XFER_TYPE);
|
|
}
|
|
}
|
|
|
|
/* Fetch all registers, or just one, from the child process.
|
|
If REGNO is -1, do this for all registers, skipping any that are
|
|
assumed to have been retrieved by regsets_fetch_inferior_registers,
|
|
unless ALL is non-zero.
|
|
Otherwise, REGNO specifies which register (so we can save time). */
|
|
static void
|
|
usr_fetch_inferior_registers (const struct regs_info *regs_info,
|
|
struct regcache *regcache, int regno, int all)
|
|
{
|
|
struct usrregs_info *usr = regs_info->usrregs;
|
|
|
|
if (regno == -1)
|
|
{
|
|
for (regno = 0; regno < usr->num_regs; regno++)
|
|
if (all || !linux_register_in_regsets (regs_info, regno))
|
|
fetch_register (usr, regcache, regno);
|
|
}
|
|
else
|
|
fetch_register (usr, regcache, regno);
|
|
}
|
|
|
|
/* Store our register values back into the inferior.
|
|
If REGNO is -1, do this for all registers, skipping any that are
|
|
assumed to have been saved by regsets_store_inferior_registers,
|
|
unless ALL is non-zero.
|
|
Otherwise, REGNO specifies which register (so we can save time). */
|
|
static void
|
|
usr_store_inferior_registers (const struct regs_info *regs_info,
|
|
struct regcache *regcache, int regno, int all)
|
|
{
|
|
struct usrregs_info *usr = regs_info->usrregs;
|
|
|
|
if (regno == -1)
|
|
{
|
|
for (regno = 0; regno < usr->num_regs; regno++)
|
|
if (all || !linux_register_in_regsets (regs_info, regno))
|
|
store_register (usr, regcache, regno);
|
|
}
|
|
else
|
|
store_register (usr, regcache, regno);
|
|
}
|
|
|
|
#else /* !HAVE_LINUX_USRREGS */
|
|
|
|
#define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
|
|
#define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
|
|
|
|
#endif
|
|
|
|
|
|
void
|
|
linux_fetch_registers (struct regcache *regcache, int regno)
|
|
{
|
|
int use_regsets;
|
|
int all = 0;
|
|
const struct regs_info *regs_info = (*the_low_target.regs_info) ();
|
|
|
|
if (regno == -1)
|
|
{
|
|
if (the_low_target.fetch_register != NULL
|
|
&& regs_info->usrregs != NULL)
|
|
for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
|
|
(*the_low_target.fetch_register) (regcache, regno);
|
|
|
|
all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
|
|
if (regs_info->usrregs != NULL)
|
|
usr_fetch_inferior_registers (regs_info, regcache, -1, all);
|
|
}
|
|
else
|
|
{
|
|
if (the_low_target.fetch_register != NULL
|
|
&& (*the_low_target.fetch_register) (regcache, regno))
|
|
return;
|
|
|
|
use_regsets = linux_register_in_regsets (regs_info, regno);
|
|
if (use_regsets)
|
|
all = regsets_fetch_inferior_registers (regs_info->regsets_info,
|
|
regcache);
|
|
if ((!use_regsets || all) && regs_info->usrregs != NULL)
|
|
usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
|
|
}
|
|
}
|
|
|
|
void
|
|
linux_store_registers (struct regcache *regcache, int regno)
|
|
{
|
|
int use_regsets;
|
|
int all = 0;
|
|
const struct regs_info *regs_info = (*the_low_target.regs_info) ();
|
|
|
|
if (regno == -1)
|
|
{
|
|
all = regsets_store_inferior_registers (regs_info->regsets_info,
|
|
regcache);
|
|
if (regs_info->usrregs != NULL)
|
|
usr_store_inferior_registers (regs_info, regcache, regno, all);
|
|
}
|
|
else
|
|
{
|
|
use_regsets = linux_register_in_regsets (regs_info, regno);
|
|
if (use_regsets)
|
|
all = regsets_store_inferior_registers (regs_info->regsets_info,
|
|
regcache);
|
|
if ((!use_regsets || all) && regs_info->usrregs != NULL)
|
|
usr_store_inferior_registers (regs_info, regcache, regno, 1);
|
|
}
|
|
}
|
|
|
|
|
|
/* Copy LEN bytes from inferior's memory starting at MEMADDR
|
|
to debugger memory starting at MYADDR. */
|
|
|
|
static int
|
|
linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
|
|
{
|
|
int pid = lwpid_of (current_inferior);
|
|
register PTRACE_XFER_TYPE *buffer;
|
|
register CORE_ADDR addr;
|
|
register int count;
|
|
char filename[64];
|
|
register int i;
|
|
int ret;
|
|
int fd;
|
|
|
|
/* Try using /proc. Don't bother for one word. */
|
|
if (len >= 3 * sizeof (long))
|
|
{
|
|
int bytes;
|
|
|
|
/* We could keep this file open and cache it - possibly one per
|
|
thread. That requires some juggling, but is even faster. */
|
|
sprintf (filename, "/proc/%d/mem", pid);
|
|
fd = open (filename, O_RDONLY | O_LARGEFILE);
|
|
if (fd == -1)
|
|
goto no_proc;
|
|
|
|
/* If pread64 is available, use it. It's faster if the kernel
|
|
supports it (only one syscall), and it's 64-bit safe even on
|
|
32-bit platforms (for instance, SPARC debugging a SPARC64
|
|
application). */
|
|
#ifdef HAVE_PREAD64
|
|
bytes = pread64 (fd, myaddr, len, memaddr);
|
|
#else
|
|
bytes = -1;
|
|
if (lseek (fd, memaddr, SEEK_SET) != -1)
|
|
bytes = read (fd, myaddr, len);
|
|
#endif
|
|
|
|
close (fd);
|
|
if (bytes == len)
|
|
return 0;
|
|
|
|
/* Some data was read, we'll try to get the rest with ptrace. */
|
|
if (bytes > 0)
|
|
{
|
|
memaddr += bytes;
|
|
myaddr += bytes;
|
|
len -= bytes;
|
|
}
|
|
}
|
|
|
|
no_proc:
|
|
/* Round starting address down to longword boundary. */
|
|
addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
|
|
/* Round ending address up; get number of longwords that makes. */
|
|
count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
|
|
/ sizeof (PTRACE_XFER_TYPE));
|
|
/* Allocate buffer of that many longwords. */
|
|
buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
|
|
|
|
/* Read all the longwords */
|
|
errno = 0;
|
|
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
|
{
|
|
/* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
|
|
about coercing an 8 byte integer to a 4 byte pointer. */
|
|
buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
|
|
(PTRACE_TYPE_ARG3) (uintptr_t) addr,
|
|
(PTRACE_TYPE_ARG4) 0);
|
|
if (errno)
|
|
break;
|
|
}
|
|
ret = errno;
|
|
|
|
/* Copy appropriate bytes out of the buffer. */
|
|
if (i > 0)
|
|
{
|
|
i *= sizeof (PTRACE_XFER_TYPE);
|
|
i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
|
|
memcpy (myaddr,
|
|
(char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
|
|
i < len ? i : len);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
|
|
memory at MEMADDR. On failure (cannot write to the inferior)
|
|
returns the value of errno. Always succeeds if LEN is zero. */
|
|
|
|
static int
|
|
linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
|
|
{
|
|
register int i;
|
|
/* Round starting address down to longword boundary. */
|
|
register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
|
|
/* Round ending address up; get number of longwords that makes. */
|
|
register int count
|
|
= (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
|
|
/ sizeof (PTRACE_XFER_TYPE);
|
|
|
|
/* Allocate buffer of that many longwords. */
|
|
register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *)
|
|
alloca (count * sizeof (PTRACE_XFER_TYPE));
|
|
|
|
int pid = lwpid_of (current_inferior);
|
|
|
|
if (len == 0)
|
|
{
|
|
/* Zero length write always succeeds. */
|
|
return 0;
|
|
}
|
|
|
|
if (debug_threads)
|
|
{
|
|
/* Dump up to four bytes. */
|
|
unsigned int val = * (unsigned int *) myaddr;
|
|
if (len == 1)
|
|
val = val & 0xff;
|
|
else if (len == 2)
|
|
val = val & 0xffff;
|
|
else if (len == 3)
|
|
val = val & 0xffffff;
|
|
debug_printf ("Writing %0*x to 0x%08lx\n", 2 * ((len < 4) ? len : 4),
|
|
val, (long)memaddr);
|
|
}
|
|
|
|
/* Fill start and end extra bytes of buffer with existing memory data. */
|
|
|
|
errno = 0;
|
|
/* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
|
|
about coercing an 8 byte integer to a 4 byte pointer. */
|
|
buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
|
|
(PTRACE_TYPE_ARG3) (uintptr_t) addr,
|
|
(PTRACE_TYPE_ARG4) 0);
|
|
if (errno)
|
|
return errno;
|
|
|
|
if (count > 1)
|
|
{
|
|
errno = 0;
|
|
buffer[count - 1]
|
|
= ptrace (PTRACE_PEEKTEXT, pid,
|
|
/* Coerce to a uintptr_t first to avoid potential gcc warning
|
|
about coercing an 8 byte integer to a 4 byte pointer. */
|
|
(PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
|
|
* sizeof (PTRACE_XFER_TYPE)),
|
|
(PTRACE_TYPE_ARG4) 0);
|
|
if (errno)
|
|
return errno;
|
|
}
|
|
|
|
/* Copy data to be written over corresponding part of buffer. */
|
|
|
|
memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
|
|
myaddr, len);
|
|
|
|
/* Write the entire buffer. */
|
|
|
|
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
|
{
|
|
errno = 0;
|
|
ptrace (PTRACE_POKETEXT, pid,
|
|
/* Coerce to a uintptr_t first to avoid potential gcc warning
|
|
about coercing an 8 byte integer to a 4 byte pointer. */
|
|
(PTRACE_TYPE_ARG3) (uintptr_t) addr,
|
|
(PTRACE_TYPE_ARG4) buffer[i]);
|
|
if (errno)
|
|
return errno;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
linux_look_up_symbols (void)
|
|
{
|
|
#ifdef USE_THREAD_DB
|
|
struct process_info *proc = current_process ();
|
|
|
|
if (proc->private->thread_db != NULL)
|
|
return;
|
|
|
|
/* If the kernel supports tracing clones, then we don't need to
|
|
use the magic thread event breakpoint to learn about
|
|
threads. */
|
|
thread_db_init (!linux_supports_traceclone ());
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
linux_request_interrupt (void)
|
|
{
|
|
extern unsigned long signal_pid;
|
|
|
|
if (!ptid_equal (cont_thread, null_ptid)
|
|
&& !ptid_equal (cont_thread, minus_one_ptid))
|
|
{
|
|
int lwpid;
|
|
|
|
lwpid = lwpid_of (current_inferior);
|
|
kill_lwp (lwpid, SIGINT);
|
|
}
|
|
else
|
|
kill_lwp (signal_pid, SIGINT);
|
|
}
|
|
|
|
/* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
|
|
to debugger memory starting at MYADDR. */
|
|
|
|
static int
|
|
linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
|
|
{
|
|
char filename[PATH_MAX];
|
|
int fd, n;
|
|
int pid = lwpid_of (current_inferior);
|
|
|
|
xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
|
|
|
|
fd = open (filename, O_RDONLY);
|
|
if (fd < 0)
|
|
return -1;
|
|
|
|
if (offset != (CORE_ADDR) 0
|
|
&& lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
|
|
n = -1;
|
|
else
|
|
n = read (fd, myaddr, len);
|
|
|
|
close (fd);
|
|
|
|
return n;
|
|
}
|
|
|
|
/* These breakpoint and watchpoint related wrapper functions simply
|
|
pass on the function call if the target has registered a
|
|
corresponding function. */
|
|
|
|
static int
|
|
linux_supports_z_point_type (char z_type)
|
|
{
|
|
return (the_low_target.supports_z_point_type != NULL
|
|
&& the_low_target.supports_z_point_type (z_type));
|
|
}
|
|
|
|
static int
|
|
linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
|
|
int size, struct raw_breakpoint *bp)
|
|
{
|
|
if (the_low_target.insert_point != NULL)
|
|
return the_low_target.insert_point (type, addr, size, bp);
|
|
else
|
|
/* Unsupported (see target.h). */
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
|
|
int size, struct raw_breakpoint *bp)
|
|
{
|
|
if (the_low_target.remove_point != NULL)
|
|
return the_low_target.remove_point (type, addr, size, bp);
|
|
else
|
|
/* Unsupported (see target.h). */
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
linux_stopped_by_watchpoint (void)
|
|
{
|
|
struct lwp_info *lwp = get_thread_lwp (current_inferior);
|
|
|
|
return lwp->stopped_by_watchpoint;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
linux_stopped_data_address (void)
|
|
{
|
|
struct lwp_info *lwp = get_thread_lwp (current_inferior);
|
|
|
|
return lwp->stopped_data_address;
|
|
}
|
|
|
|
#if defined(__UCLIBC__) && defined(HAS_NOMMU) \
|
|
&& defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
|
|
&& defined(PT_TEXT_END_ADDR)
|
|
|
|
/* This is only used for targets that define PT_TEXT_ADDR,
|
|
PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
|
|
the target has different ways of acquiring this information, like
|
|
loadmaps. */
|
|
|
|
/* Under uClinux, programs are loaded at non-zero offsets, which we need
|
|
to tell gdb about. */
|
|
|
|
static int
|
|
linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
|
|
{
|
|
unsigned long text, text_end, data;
|
|
int pid = lwpid_of (get_thread_lwp (current_inferior));
|
|
|
|
errno = 0;
|
|
|
|
text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
|
|
(PTRACE_TYPE_ARG4) 0);
|
|
text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
|
|
(PTRACE_TYPE_ARG4) 0);
|
|
data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
|
|
(PTRACE_TYPE_ARG4) 0);
|
|
|
|
if (errno == 0)
|
|
{
|
|
/* Both text and data offsets produced at compile-time (and so
|
|
used by gdb) are relative to the beginning of the program,
|
|
with the data segment immediately following the text segment.
|
|
However, the actual runtime layout in memory may put the data
|
|
somewhere else, so when we send gdb a data base-address, we
|
|
use the real data base address and subtract the compile-time
|
|
data base-address from it (which is just the length of the
|
|
text segment). BSS immediately follows data in both
|
|
cases. */
|
|
*text_p = text;
|
|
*data_p = data - (text_end - text);
|
|
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
linux_qxfer_osdata (const char *annex,
|
|
unsigned char *readbuf, unsigned const char *writebuf,
|
|
CORE_ADDR offset, int len)
|
|
{
|
|
return linux_common_xfer_osdata (annex, readbuf, offset, len);
|
|
}
|
|
|
|
/* Convert a native/host siginfo object, into/from the siginfo in the
|
|
layout of the inferiors' architecture. */
|
|
|
|
static void
|
|
siginfo_fixup (siginfo_t *siginfo, void *inf_siginfo, int direction)
|
|
{
|
|
int done = 0;
|
|
|
|
if (the_low_target.siginfo_fixup != NULL)
|
|
done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
|
|
|
|
/* If there was no callback, or the callback didn't do anything,
|
|
then just do a straight memcpy. */
|
|
if (!done)
|
|
{
|
|
if (direction == 1)
|
|
memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
|
|
else
|
|
memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
|
|
}
|
|
}
|
|
|
|
static int
|
|
linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
|
|
unsigned const char *writebuf, CORE_ADDR offset, int len)
|
|
{
|
|
int pid;
|
|
siginfo_t siginfo;
|
|
char inf_siginfo[sizeof (siginfo_t)];
|
|
|
|
if (current_inferior == NULL)
|
|
return -1;
|
|
|
|
pid = lwpid_of (current_inferior);
|
|
|
|
if (debug_threads)
|
|
debug_printf ("%s siginfo for lwp %d.\n",
|
|
readbuf != NULL ? "Reading" : "Writing",
|
|
pid);
|
|
|
|
if (offset >= sizeof (siginfo))
|
|
return -1;
|
|
|
|
if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
|
|
return -1;
|
|
|
|
/* When GDBSERVER is built as a 64-bit application, ptrace writes into
|
|
SIGINFO an object with 64-bit layout. Since debugging a 32-bit
|
|
inferior with a 64-bit GDBSERVER should look the same as debugging it
|
|
with a 32-bit GDBSERVER, we need to convert it. */
|
|
siginfo_fixup (&siginfo, inf_siginfo, 0);
|
|
|
|
if (offset + len > sizeof (siginfo))
|
|
len = sizeof (siginfo) - offset;
|
|
|
|
if (readbuf != NULL)
|
|
memcpy (readbuf, inf_siginfo + offset, len);
|
|
else
|
|
{
|
|
memcpy (inf_siginfo + offset, writebuf, len);
|
|
|
|
/* Convert back to ptrace layout before flushing it out. */
|
|
siginfo_fixup (&siginfo, inf_siginfo, 1);
|
|
|
|
if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
|
|
return -1;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/* SIGCHLD handler that serves two purposes: In non-stop/async mode,
|
|
so we notice when children change state; as the handler for the
|
|
sigsuspend in my_waitpid. */
|
|
|
|
static void
|
|
sigchld_handler (int signo)
|
|
{
|
|
int old_errno = errno;
|
|
|
|
if (debug_threads)
|
|
{
|
|
do
|
|
{
|
|
/* fprintf is not async-signal-safe, so call write
|
|
directly. */
|
|
if (write (2, "sigchld_handler\n",
|
|
sizeof ("sigchld_handler\n") - 1) < 0)
|
|
break; /* just ignore */
|
|
} while (0);
|
|
}
|
|
|
|
if (target_is_async_p ())
|
|
async_file_mark (); /* trigger a linux_wait */
|
|
|
|
errno = old_errno;
|
|
}
|
|
|
|
static int
|
|
linux_supports_non_stop (void)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
linux_async (int enable)
|
|
{
|
|
int previous = (linux_event_pipe[0] != -1);
|
|
|
|
if (debug_threads)
|
|
debug_printf ("linux_async (%d), previous=%d\n",
|
|
enable, previous);
|
|
|
|
if (previous != enable)
|
|
{
|
|
sigset_t mask;
|
|
sigemptyset (&mask);
|
|
sigaddset (&mask, SIGCHLD);
|
|
|
|
sigprocmask (SIG_BLOCK, &mask, NULL);
|
|
|
|
if (enable)
|
|
{
|
|
if (pipe (linux_event_pipe) == -1)
|
|
fatal ("creating event pipe failed.");
|
|
|
|
fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
|
|
fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
|
|
|
|
/* Register the event loop handler. */
|
|
add_file_handler (linux_event_pipe[0],
|
|
handle_target_event, NULL);
|
|
|
|
/* Always trigger a linux_wait. */
|
|
async_file_mark ();
|
|
}
|
|
else
|
|
{
|
|
delete_file_handler (linux_event_pipe[0]);
|
|
|
|
close (linux_event_pipe[0]);
|
|
close (linux_event_pipe[1]);
|
|
linux_event_pipe[0] = -1;
|
|
linux_event_pipe[1] = -1;
|
|
}
|
|
|
|
sigprocmask (SIG_UNBLOCK, &mask, NULL);
|
|
}
|
|
|
|
return previous;
|
|
}
|
|
|
|
static int
|
|
linux_start_non_stop (int nonstop)
|
|
{
|
|
/* Register or unregister from event-loop accordingly. */
|
|
linux_async (nonstop);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
linux_supports_multi_process (void)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
linux_supports_disable_randomization (void)
|
|
{
|
|
#ifdef HAVE_PERSONALITY
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
linux_supports_agent (void)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
linux_supports_range_stepping (void)
|
|
{
|
|
if (*the_low_target.supports_range_stepping == NULL)
|
|
return 0;
|
|
|
|
return (*the_low_target.supports_range_stepping) ();
|
|
}
|
|
|
|
/* Enumerate spufs IDs for process PID. */
|
|
static int
|
|
spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
|
|
{
|
|
int pos = 0;
|
|
int written = 0;
|
|
char path[128];
|
|
DIR *dir;
|
|
struct dirent *entry;
|
|
|
|
sprintf (path, "/proc/%ld/fd", pid);
|
|
dir = opendir (path);
|
|
if (!dir)
|
|
return -1;
|
|
|
|
rewinddir (dir);
|
|
while ((entry = readdir (dir)) != NULL)
|
|
{
|
|
struct stat st;
|
|
struct statfs stfs;
|
|
int fd;
|
|
|
|
fd = atoi (entry->d_name);
|
|
if (!fd)
|
|
continue;
|
|
|
|
sprintf (path, "/proc/%ld/fd/%d", pid, fd);
|
|
if (stat (path, &st) != 0)
|
|
continue;
|
|
if (!S_ISDIR (st.st_mode))
|
|
continue;
|
|
|
|
if (statfs (path, &stfs) != 0)
|
|
continue;
|
|
if (stfs.f_type != SPUFS_MAGIC)
|
|
continue;
|
|
|
|
if (pos >= offset && pos + 4 <= offset + len)
|
|
{
|
|
*(unsigned int *)(buf + pos - offset) = fd;
|
|
written += 4;
|
|
}
|
|
pos += 4;
|
|
}
|
|
|
|
closedir (dir);
|
|
return written;
|
|
}
|
|
|
|
/* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
|
|
object type, using the /proc file system. */
|
|
static int
|
|
linux_qxfer_spu (const char *annex, unsigned char *readbuf,
|
|
unsigned const char *writebuf,
|
|
CORE_ADDR offset, int len)
|
|
{
|
|
long pid = lwpid_of (current_inferior);
|
|
char buf[128];
|
|
int fd = 0;
|
|
int ret = 0;
|
|
|
|
if (!writebuf && !readbuf)
|
|
return -1;
|
|
|
|
if (!*annex)
|
|
{
|
|
if (!readbuf)
|
|
return -1;
|
|
else
|
|
return spu_enumerate_spu_ids (pid, readbuf, offset, len);
|
|
}
|
|
|
|
sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
|
|
fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
|
|
if (fd <= 0)
|
|
return -1;
|
|
|
|
if (offset != 0
|
|
&& lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
|
|
{
|
|
close (fd);
|
|
return 0;
|
|
}
|
|
|
|
if (writebuf)
|
|
ret = write (fd, writebuf, (size_t) len);
|
|
else
|
|
ret = read (fd, readbuf, (size_t) len);
|
|
|
|
close (fd);
|
|
return ret;
|
|
}
|
|
|
|
#if defined PT_GETDSBT || defined PTRACE_GETFDPIC
|
|
struct target_loadseg
|
|
{
|
|
/* Core address to which the segment is mapped. */
|
|
Elf32_Addr addr;
|
|
/* VMA recorded in the program header. */
|
|
Elf32_Addr p_vaddr;
|
|
/* Size of this segment in memory. */
|
|
Elf32_Word p_memsz;
|
|
};
|
|
|
|
# if defined PT_GETDSBT
|
|
struct target_loadmap
|
|
{
|
|
/* Protocol version number, must be zero. */
|
|
Elf32_Word version;
|
|
/* Pointer to the DSBT table, its size, and the DSBT index. */
|
|
unsigned *dsbt_table;
|
|
unsigned dsbt_size, dsbt_index;
|
|
/* Number of segments in this map. */
|
|
Elf32_Word nsegs;
|
|
/* The actual memory map. */
|
|
struct target_loadseg segs[/*nsegs*/];
|
|
};
|
|
# define LINUX_LOADMAP PT_GETDSBT
|
|
# define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
|
|
# define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
|
|
# else
|
|
struct target_loadmap
|
|
{
|
|
/* Protocol version number, must be zero. */
|
|
Elf32_Half version;
|
|
/* Number of segments in this map. */
|
|
Elf32_Half nsegs;
|
|
/* The actual memory map. */
|
|
struct target_loadseg segs[/*nsegs*/];
|
|
};
|
|
# define LINUX_LOADMAP PTRACE_GETFDPIC
|
|
# define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
|
|
# define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
|
|
# endif
|
|
|
|
static int
|
|
linux_read_loadmap (const char *annex, CORE_ADDR offset,
|
|
unsigned char *myaddr, unsigned int len)
|
|
{
|
|
int pid = lwpid_of (current_inferior);
|
|
int addr = -1;
|
|
struct target_loadmap *data = NULL;
|
|
unsigned int actual_length, copy_length;
|
|
|
|
if (strcmp (annex, "exec") == 0)
|
|
addr = (int) LINUX_LOADMAP_EXEC;
|
|
else if (strcmp (annex, "interp") == 0)
|
|
addr = (int) LINUX_LOADMAP_INTERP;
|
|
else
|
|
return -1;
|
|
|
|
if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
|
|
return -1;
|
|
|
|
if (data == NULL)
|
|
return -1;
|
|
|
|
actual_length = sizeof (struct target_loadmap)
|
|
+ sizeof (struct target_loadseg) * data->nsegs;
|
|
|
|
if (offset < 0 || offset > actual_length)
|
|
return -1;
|
|
|
|
copy_length = actual_length - offset < len ? actual_length - offset : len;
|
|
memcpy (myaddr, (char *) data + offset, copy_length);
|
|
return copy_length;
|
|
}
|
|
#else
|
|
# define linux_read_loadmap NULL
|
|
#endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
|
|
|
|
static void
|
|
linux_process_qsupported (const char *query)
|
|
{
|
|
if (the_low_target.process_qsupported != NULL)
|
|
the_low_target.process_qsupported (query);
|
|
}
|
|
|
|
static int
|
|
linux_supports_tracepoints (void)
|
|
{
|
|
if (*the_low_target.supports_tracepoints == NULL)
|
|
return 0;
|
|
|
|
return (*the_low_target.supports_tracepoints) ();
|
|
}
|
|
|
|
static CORE_ADDR
|
|
linux_read_pc (struct regcache *regcache)
|
|
{
|
|
if (the_low_target.get_pc == NULL)
|
|
return 0;
|
|
|
|
return (*the_low_target.get_pc) (regcache);
|
|
}
|
|
|
|
static void
|
|
linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
|
{
|
|
gdb_assert (the_low_target.set_pc != NULL);
|
|
|
|
(*the_low_target.set_pc) (regcache, pc);
|
|
}
|
|
|
|
static int
|
|
linux_thread_stopped (struct thread_info *thread)
|
|
{
|
|
return get_thread_lwp (thread)->stopped;
|
|
}
|
|
|
|
/* This exposes stop-all-threads functionality to other modules. */
|
|
|
|
static void
|
|
linux_pause_all (int freeze)
|
|
{
|
|
stop_all_lwps (freeze, NULL);
|
|
}
|
|
|
|
/* This exposes unstop-all-threads functionality to other gdbserver
|
|
modules. */
|
|
|
|
static void
|
|
linux_unpause_all (int unfreeze)
|
|
{
|
|
unstop_all_lwps (unfreeze, NULL);
|
|
}
|
|
|
|
static int
|
|
linux_prepare_to_access_memory (void)
|
|
{
|
|
/* Neither ptrace nor /proc/PID/mem allow accessing memory through a
|
|
running LWP. */
|
|
if (non_stop)
|
|
linux_pause_all (1);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
linux_done_accessing_memory (void)
|
|
{
|
|
/* Neither ptrace nor /proc/PID/mem allow accessing memory through a
|
|
running LWP. */
|
|
if (non_stop)
|
|
linux_unpause_all (1);
|
|
}
|
|
|
|
static int
|
|
linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
|
|
CORE_ADDR collector,
|
|
CORE_ADDR lockaddr,
|
|
ULONGEST orig_size,
|
|
CORE_ADDR *jump_entry,
|
|
CORE_ADDR *trampoline,
|
|
ULONGEST *trampoline_size,
|
|
unsigned char *jjump_pad_insn,
|
|
ULONGEST *jjump_pad_insn_size,
|
|
CORE_ADDR *adjusted_insn_addr,
|
|
CORE_ADDR *adjusted_insn_addr_end,
|
|
char *err)
|
|
{
|
|
return (*the_low_target.install_fast_tracepoint_jump_pad)
|
|
(tpoint, tpaddr, collector, lockaddr, orig_size,
|
|
jump_entry, trampoline, trampoline_size,
|
|
jjump_pad_insn, jjump_pad_insn_size,
|
|
adjusted_insn_addr, adjusted_insn_addr_end,
|
|
err);
|
|
}
|
|
|
|
static struct emit_ops *
|
|
linux_emit_ops (void)
|
|
{
|
|
if (the_low_target.emit_ops != NULL)
|
|
return (*the_low_target.emit_ops) ();
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
linux_get_min_fast_tracepoint_insn_len (void)
|
|
{
|
|
return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
|
|
}
|
|
|
|
/* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
|
|
|
|
static int
|
|
get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
|
|
CORE_ADDR *phdr_memaddr, int *num_phdr)
|
|
{
|
|
char filename[PATH_MAX];
|
|
int fd;
|
|
const int auxv_size = is_elf64
|
|
? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
|
|
char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
|
|
|
|
xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
|
|
|
|
fd = open (filename, O_RDONLY);
|
|
if (fd < 0)
|
|
return 1;
|
|
|
|
*phdr_memaddr = 0;
|
|
*num_phdr = 0;
|
|
while (read (fd, buf, auxv_size) == auxv_size
|
|
&& (*phdr_memaddr == 0 || *num_phdr == 0))
|
|
{
|
|
if (is_elf64)
|
|
{
|
|
Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
|
|
|
|
switch (aux->a_type)
|
|
{
|
|
case AT_PHDR:
|
|
*phdr_memaddr = aux->a_un.a_val;
|
|
break;
|
|
case AT_PHNUM:
|
|
*num_phdr = aux->a_un.a_val;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
|
|
|
|
switch (aux->a_type)
|
|
{
|
|
case AT_PHDR:
|
|
*phdr_memaddr = aux->a_un.a_val;
|
|
break;
|
|
case AT_PHNUM:
|
|
*num_phdr = aux->a_un.a_val;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
close (fd);
|
|
|
|
if (*phdr_memaddr == 0 || *num_phdr == 0)
|
|
{
|
|
warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
|
|
"phdr_memaddr = %ld, phdr_num = %d",
|
|
(long) *phdr_memaddr, *num_phdr);
|
|
return 2;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
|
|
|
|
static CORE_ADDR
|
|
get_dynamic (const int pid, const int is_elf64)
|
|
{
|
|
CORE_ADDR phdr_memaddr, relocation;
|
|
int num_phdr, i;
|
|
unsigned char *phdr_buf;
|
|
const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
|
|
|
|
if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
|
|
return 0;
|
|
|
|
gdb_assert (num_phdr < 100); /* Basic sanity check. */
|
|
phdr_buf = alloca (num_phdr * phdr_size);
|
|
|
|
if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
|
|
return 0;
|
|
|
|
/* Compute relocation: it is expected to be 0 for "regular" executables,
|
|
non-zero for PIE ones. */
|
|
relocation = -1;
|
|
for (i = 0; relocation == -1 && i < num_phdr; i++)
|
|
if (is_elf64)
|
|
{
|
|
Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
|
|
|
|
if (p->p_type == PT_PHDR)
|
|
relocation = phdr_memaddr - p->p_vaddr;
|
|
}
|
|
else
|
|
{
|
|
Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
|
|
|
|
if (p->p_type == PT_PHDR)
|
|
relocation = phdr_memaddr - p->p_vaddr;
|
|
}
|
|
|
|
if (relocation == -1)
|
|
{
|
|
/* PT_PHDR is optional, but necessary for PIE in general. Fortunately
|
|
any real world executables, including PIE executables, have always
|
|
PT_PHDR present. PT_PHDR is not present in some shared libraries or
|
|
in fpc (Free Pascal 2.4) binaries but neither of those have a need for
|
|
or present DT_DEBUG anyway (fpc binaries are statically linked).
|
|
|
|
Therefore if there exists DT_DEBUG there is always also PT_PHDR.
|
|
|
|
GDB could find RELOCATION also from AT_ENTRY - e_entry. */
|
|
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < num_phdr; i++)
|
|
{
|
|
if (is_elf64)
|
|
{
|
|
Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
|
|
|
|
if (p->p_type == PT_DYNAMIC)
|
|
return p->p_vaddr + relocation;
|
|
}
|
|
else
|
|
{
|
|
Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
|
|
|
|
if (p->p_type == PT_DYNAMIC)
|
|
return p->p_vaddr + relocation;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return &_r_debug in the inferior, or -1 if not present. Return value
|
|
can be 0 if the inferior does not yet have the library list initialized.
|
|
We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
|
|
DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
|
|
|
|
static CORE_ADDR
|
|
get_r_debug (const int pid, const int is_elf64)
|
|
{
|
|
CORE_ADDR dynamic_memaddr;
|
|
const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
|
|
unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
|
|
CORE_ADDR map = -1;
|
|
|
|
dynamic_memaddr = get_dynamic (pid, is_elf64);
|
|
if (dynamic_memaddr == 0)
|
|
return map;
|
|
|
|
while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
|
|
{
|
|
if (is_elf64)
|
|
{
|
|
Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
|
|
#ifdef DT_MIPS_RLD_MAP
|
|
union
|
|
{
|
|
Elf64_Xword map;
|
|
unsigned char buf[sizeof (Elf64_Xword)];
|
|
}
|
|
rld_map;
|
|
|
|
if (dyn->d_tag == DT_MIPS_RLD_MAP)
|
|
{
|
|
if (linux_read_memory (dyn->d_un.d_val,
|
|
rld_map.buf, sizeof (rld_map.buf)) == 0)
|
|
return rld_map.map;
|
|
else
|
|
break;
|
|
}
|
|
#endif /* DT_MIPS_RLD_MAP */
|
|
|
|
if (dyn->d_tag == DT_DEBUG && map == -1)
|
|
map = dyn->d_un.d_val;
|
|
|
|
if (dyn->d_tag == DT_NULL)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
|
|
#ifdef DT_MIPS_RLD_MAP
|
|
union
|
|
{
|
|
Elf32_Word map;
|
|
unsigned char buf[sizeof (Elf32_Word)];
|
|
}
|
|
rld_map;
|
|
|
|
if (dyn->d_tag == DT_MIPS_RLD_MAP)
|
|
{
|
|
if (linux_read_memory (dyn->d_un.d_val,
|
|
rld_map.buf, sizeof (rld_map.buf)) == 0)
|
|
return rld_map.map;
|
|
else
|
|
break;
|
|
}
|
|
#endif /* DT_MIPS_RLD_MAP */
|
|
|
|
if (dyn->d_tag == DT_DEBUG && map == -1)
|
|
map = dyn->d_un.d_val;
|
|
|
|
if (dyn->d_tag == DT_NULL)
|
|
break;
|
|
}
|
|
|
|
dynamic_memaddr += dyn_size;
|
|
}
|
|
|
|
return map;
|
|
}
|
|
|
|
/* Read one pointer from MEMADDR in the inferior. */
|
|
|
|
static int
|
|
read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
|
|
{
|
|
int ret;
|
|
|
|
/* Go through a union so this works on either big or little endian
|
|
hosts, when the inferior's pointer size is smaller than the size
|
|
of CORE_ADDR. It is assumed the inferior's endianness is the
|
|
same of the superior's. */
|
|
union
|
|
{
|
|
CORE_ADDR core_addr;
|
|
unsigned int ui;
|
|
unsigned char uc;
|
|
} addr;
|
|
|
|
ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
|
|
if (ret == 0)
|
|
{
|
|
if (ptr_size == sizeof (CORE_ADDR))
|
|
*ptr = addr.core_addr;
|
|
else if (ptr_size == sizeof (unsigned int))
|
|
*ptr = addr.ui;
|
|
else
|
|
gdb_assert_not_reached ("unhandled pointer size");
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
struct link_map_offsets
|
|
{
|
|
/* Offset and size of r_debug.r_version. */
|
|
int r_version_offset;
|
|
|
|
/* Offset and size of r_debug.r_map. */
|
|
int r_map_offset;
|
|
|
|
/* Offset to l_addr field in struct link_map. */
|
|
int l_addr_offset;
|
|
|
|
/* Offset to l_name field in struct link_map. */
|
|
int l_name_offset;
|
|
|
|
/* Offset to l_ld field in struct link_map. */
|
|
int l_ld_offset;
|
|
|
|
/* Offset to l_next field in struct link_map. */
|
|
int l_next_offset;
|
|
|
|
/* Offset to l_prev field in struct link_map. */
|
|
int l_prev_offset;
|
|
};
|
|
|
|
/* Construct qXfer:libraries-svr4:read reply. */
|
|
|
|
static int
|
|
linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
|
|
unsigned const char *writebuf,
|
|
CORE_ADDR offset, int len)
|
|
{
|
|
char *document;
|
|
unsigned document_len;
|
|
struct process_info_private *const priv = current_process ()->private;
|
|
char filename[PATH_MAX];
|
|
int pid, is_elf64;
|
|
|
|
static const struct link_map_offsets lmo_32bit_offsets =
|
|
{
|
|
0, /* r_version offset. */
|
|
4, /* r_debug.r_map offset. */
|
|
0, /* l_addr offset in link_map. */
|
|
4, /* l_name offset in link_map. */
|
|
8, /* l_ld offset in link_map. */
|
|
12, /* l_next offset in link_map. */
|
|
16 /* l_prev offset in link_map. */
|
|
};
|
|
|
|
static const struct link_map_offsets lmo_64bit_offsets =
|
|
{
|
|
0, /* r_version offset. */
|
|
8, /* r_debug.r_map offset. */
|
|
0, /* l_addr offset in link_map. */
|
|
8, /* l_name offset in link_map. */
|
|
16, /* l_ld offset in link_map. */
|
|
24, /* l_next offset in link_map. */
|
|
32 /* l_prev offset in link_map. */
|
|
};
|
|
const struct link_map_offsets *lmo;
|
|
unsigned int machine;
|
|
int ptr_size;
|
|
CORE_ADDR lm_addr = 0, lm_prev = 0;
|
|
int allocated = 1024;
|
|
char *p;
|
|
CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
|
|
int header_done = 0;
|
|
|
|
if (writebuf != NULL)
|
|
return -2;
|
|
if (readbuf == NULL)
|
|
return -1;
|
|
|
|
pid = lwpid_of (current_inferior);
|
|
xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
|
|
is_elf64 = elf_64_file_p (filename, &machine);
|
|
lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
|
|
ptr_size = is_elf64 ? 8 : 4;
|
|
|
|
while (annex[0] != '\0')
|
|
{
|
|
const char *sep;
|
|
CORE_ADDR *addrp;
|
|
int len;
|
|
|
|
sep = strchr (annex, '=');
|
|
if (sep == NULL)
|
|
break;
|
|
|
|
len = sep - annex;
|
|
if (len == 5 && strncmp (annex, "start", 5) == 0)
|
|
addrp = &lm_addr;
|
|
else if (len == 4 && strncmp (annex, "prev", 4) == 0)
|
|
addrp = &lm_prev;
|
|
else
|
|
{
|
|
annex = strchr (sep, ';');
|
|
if (annex == NULL)
|
|
break;
|
|
annex++;
|
|
continue;
|
|
}
|
|
|
|
annex = decode_address_to_semicolon (addrp, sep + 1);
|
|
}
|
|
|
|
if (lm_addr == 0)
|
|
{
|
|
int r_version = 0;
|
|
|
|
if (priv->r_debug == 0)
|
|
priv->r_debug = get_r_debug (pid, is_elf64);
|
|
|
|
/* We failed to find DT_DEBUG. Such situation will not change
|
|
for this inferior - do not retry it. Report it to GDB as
|
|
E01, see for the reasons at the GDB solib-svr4.c side. */
|
|
if (priv->r_debug == (CORE_ADDR) -1)
|
|
return -1;
|
|
|
|
if (priv->r_debug != 0)
|
|
{
|
|
if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
|
|
(unsigned char *) &r_version,
|
|
sizeof (r_version)) != 0
|
|
|| r_version != 1)
|
|
{
|
|
warning ("unexpected r_debug version %d", r_version);
|
|
}
|
|
else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
|
|
&lm_addr, ptr_size) != 0)
|
|
{
|
|
warning ("unable to read r_map from 0x%lx",
|
|
(long) priv->r_debug + lmo->r_map_offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
document = xmalloc (allocated);
|
|
strcpy (document, "<library-list-svr4 version=\"1.0\"");
|
|
p = document + strlen (document);
|
|
|
|
while (lm_addr
|
|
&& read_one_ptr (lm_addr + lmo->l_name_offset,
|
|
&l_name, ptr_size) == 0
|
|
&& read_one_ptr (lm_addr + lmo->l_addr_offset,
|
|
&l_addr, ptr_size) == 0
|
|
&& read_one_ptr (lm_addr + lmo->l_ld_offset,
|
|
&l_ld, ptr_size) == 0
|
|
&& read_one_ptr (lm_addr + lmo->l_prev_offset,
|
|
&l_prev, ptr_size) == 0
|
|
&& read_one_ptr (lm_addr + lmo->l_next_offset,
|
|
&l_next, ptr_size) == 0)
|
|
{
|
|
unsigned char libname[PATH_MAX];
|
|
|
|
if (lm_prev != l_prev)
|
|
{
|
|
warning ("Corrupted shared library list: 0x%lx != 0x%lx",
|
|
(long) lm_prev, (long) l_prev);
|
|
break;
|
|
}
|
|
|
|
/* Ignore the first entry even if it has valid name as the first entry
|
|
corresponds to the main executable. The first entry should not be
|
|
skipped if the dynamic loader was loaded late by a static executable
|
|
(see solib-svr4.c parameter ignore_first). But in such case the main
|
|
executable does not have PT_DYNAMIC present and this function already
|
|
exited above due to failed get_r_debug. */
|
|
if (lm_prev == 0)
|
|
{
|
|
sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
|
|
p = p + strlen (p);
|
|
}
|
|
else
|
|
{
|
|
/* Not checking for error because reading may stop before
|
|
we've got PATH_MAX worth of characters. */
|
|
libname[0] = '\0';
|
|
linux_read_memory (l_name, libname, sizeof (libname) - 1);
|
|
libname[sizeof (libname) - 1] = '\0';
|
|
if (libname[0] != '\0')
|
|
{
|
|
/* 6x the size for xml_escape_text below. */
|
|
size_t len = 6 * strlen ((char *) libname);
|
|
char *name;
|
|
|
|
if (!header_done)
|
|
{
|
|
/* Terminate `<library-list-svr4'. */
|
|
*p++ = '>';
|
|
header_done = 1;
|
|
}
|
|
|
|
while (allocated < p - document + len + 200)
|
|
{
|
|
/* Expand to guarantee sufficient storage. */
|
|
uintptr_t document_len = p - document;
|
|
|
|
document = xrealloc (document, 2 * allocated);
|
|
allocated *= 2;
|
|
p = document + document_len;
|
|
}
|
|
|
|
name = xml_escape_text ((char *) libname);
|
|
p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
|
|
"l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
|
|
name, (unsigned long) lm_addr,
|
|
(unsigned long) l_addr, (unsigned long) l_ld);
|
|
free (name);
|
|
}
|
|
}
|
|
|
|
lm_prev = lm_addr;
|
|
lm_addr = l_next;
|
|
}
|
|
|
|
if (!header_done)
|
|
{
|
|
/* Empty list; terminate `<library-list-svr4'. */
|
|
strcpy (p, "/>");
|
|
}
|
|
else
|
|
strcpy (p, "</library-list-svr4>");
|
|
|
|
document_len = strlen (document);
|
|
if (offset < document_len)
|
|
document_len -= offset;
|
|
else
|
|
document_len = 0;
|
|
if (len > document_len)
|
|
len = document_len;
|
|
|
|
memcpy (readbuf, document + offset, len);
|
|
xfree (document);
|
|
|
|
return len;
|
|
}
|
|
|
|
#ifdef HAVE_LINUX_BTRACE
|
|
|
|
/* See to_enable_btrace target method. */
|
|
|
|
static struct btrace_target_info *
|
|
linux_low_enable_btrace (ptid_t ptid)
|
|
{
|
|
struct btrace_target_info *tinfo;
|
|
|
|
tinfo = linux_enable_btrace (ptid);
|
|
|
|
if (tinfo != NULL)
|
|
{
|
|
struct thread_info *thread = find_thread_ptid (ptid);
|
|
struct regcache *regcache = get_thread_regcache (thread, 0);
|
|
|
|
tinfo->ptr_bits = register_size (regcache->tdesc, 0) * 8;
|
|
}
|
|
|
|
return tinfo;
|
|
}
|
|
|
|
/* See to_disable_btrace target method. */
|
|
|
|
static int
|
|
linux_low_disable_btrace (struct btrace_target_info *tinfo)
|
|
{
|
|
enum btrace_error err;
|
|
|
|
err = linux_disable_btrace (tinfo);
|
|
return (err == BTRACE_ERR_NONE ? 0 : -1);
|
|
}
|
|
|
|
/* See to_read_btrace target method. */
|
|
|
|
static int
|
|
linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
|
|
int type)
|
|
{
|
|
VEC (btrace_block_s) *btrace;
|
|
struct btrace_block *block;
|
|
enum btrace_error err;
|
|
int i;
|
|
|
|
btrace = NULL;
|
|
err = linux_read_btrace (&btrace, tinfo, type);
|
|
if (err != BTRACE_ERR_NONE)
|
|
{
|
|
if (err == BTRACE_ERR_OVERFLOW)
|
|
buffer_grow_str0 (buffer, "E.Overflow.");
|
|
else
|
|
buffer_grow_str0 (buffer, "E.Generic Error.");
|
|
|
|
return -1;
|
|
}
|
|
|
|
buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
|
|
buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
|
|
|
|
for (i = 0; VEC_iterate (btrace_block_s, btrace, i, block); i++)
|
|
buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
|
|
paddress (block->begin), paddress (block->end));
|
|
|
|
buffer_grow_str0 (buffer, "</btrace>\n");
|
|
|
|
VEC_free (btrace_block_s, btrace);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* HAVE_LINUX_BTRACE */
|
|
|
|
static struct target_ops linux_target_ops = {
|
|
linux_create_inferior,
|
|
linux_attach,
|
|
linux_kill,
|
|
linux_detach,
|
|
linux_mourn,
|
|
linux_join,
|
|
linux_thread_alive,
|
|
linux_resume,
|
|
linux_wait,
|
|
linux_fetch_registers,
|
|
linux_store_registers,
|
|
linux_prepare_to_access_memory,
|
|
linux_done_accessing_memory,
|
|
linux_read_memory,
|
|
linux_write_memory,
|
|
linux_look_up_symbols,
|
|
linux_request_interrupt,
|
|
linux_read_auxv,
|
|
linux_supports_z_point_type,
|
|
linux_insert_point,
|
|
linux_remove_point,
|
|
linux_stopped_by_watchpoint,
|
|
linux_stopped_data_address,
|
|
#if defined(__UCLIBC__) && defined(HAS_NOMMU) \
|
|
&& defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
|
|
&& defined(PT_TEXT_END_ADDR)
|
|
linux_read_offsets,
|
|
#else
|
|
NULL,
|
|
#endif
|
|
#ifdef USE_THREAD_DB
|
|
thread_db_get_tls_address,
|
|
#else
|
|
NULL,
|
|
#endif
|
|
linux_qxfer_spu,
|
|
hostio_last_error_from_errno,
|
|
linux_qxfer_osdata,
|
|
linux_xfer_siginfo,
|
|
linux_supports_non_stop,
|
|
linux_async,
|
|
linux_start_non_stop,
|
|
linux_supports_multi_process,
|
|
#ifdef USE_THREAD_DB
|
|
thread_db_handle_monitor_command,
|
|
#else
|
|
NULL,
|
|
#endif
|
|
linux_common_core_of_thread,
|
|
linux_read_loadmap,
|
|
linux_process_qsupported,
|
|
linux_supports_tracepoints,
|
|
linux_read_pc,
|
|
linux_write_pc,
|
|
linux_thread_stopped,
|
|
NULL,
|
|
linux_pause_all,
|
|
linux_unpause_all,
|
|
linux_cancel_breakpoints,
|
|
linux_stabilize_threads,
|
|
linux_install_fast_tracepoint_jump_pad,
|
|
linux_emit_ops,
|
|
linux_supports_disable_randomization,
|
|
linux_get_min_fast_tracepoint_insn_len,
|
|
linux_qxfer_libraries_svr4,
|
|
linux_supports_agent,
|
|
#ifdef HAVE_LINUX_BTRACE
|
|
linux_supports_btrace,
|
|
linux_low_enable_btrace,
|
|
linux_low_disable_btrace,
|
|
linux_low_read_btrace,
|
|
#else
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
#endif
|
|
linux_supports_range_stepping,
|
|
};
|
|
|
|
static void
|
|
linux_init_signals ()
|
|
{
|
|
/* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
|
|
to find what the cancel signal actually is. */
|
|
#ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
|
|
signal (__SIGRTMIN+1, SIG_IGN);
|
|
#endif
|
|
}
|
|
|
|
#ifdef HAVE_LINUX_REGSETS
|
|
void
|
|
initialize_regsets_info (struct regsets_info *info)
|
|
{
|
|
for (info->num_regsets = 0;
|
|
info->regsets[info->num_regsets].size >= 0;
|
|
info->num_regsets++)
|
|
;
|
|
}
|
|
#endif
|
|
|
|
void
|
|
initialize_low (void)
|
|
{
|
|
struct sigaction sigchld_action;
|
|
memset (&sigchld_action, 0, sizeof (sigchld_action));
|
|
set_target_ops (&linux_target_ops);
|
|
set_breakpoint_data (the_low_target.breakpoint,
|
|
the_low_target.breakpoint_len);
|
|
linux_init_signals ();
|
|
linux_ptrace_init_warnings ();
|
|
|
|
sigchld_action.sa_handler = sigchld_handler;
|
|
sigemptyset (&sigchld_action.sa_mask);
|
|
sigchld_action.sa_flags = SA_RESTART;
|
|
sigaction (SIGCHLD, &sigchld_action, NULL);
|
|
|
|
initialize_low_arch ();
|
|
}
|