a02d6af8f3
unused declarations.
1459 lines
43 KiB
C
1459 lines
43 KiB
C
/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
|
|
Copyright 2002, 2003 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include "defs.h"
|
|
#include "gdb_string.h"
|
|
#include "inferior.h"
|
|
#include "symfile.h" /* for entry_point_address */
|
|
#include "gdbcore.h"
|
|
#include "arch-utils.h"
|
|
#include "regcache.h"
|
|
#include "frame.h"
|
|
#include "frame-unwind.h"
|
|
#include "frame-base.h"
|
|
#include "trad-frame.h"
|
|
#include "dis-asm.h"
|
|
#include "gdb_assert.h"
|
|
#include "sim-regno.h"
|
|
#include "gdb/sim-frv.h"
|
|
#include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
|
|
|
|
extern void _initialize_frv_tdep (void);
|
|
|
|
static gdbarch_init_ftype frv_gdbarch_init;
|
|
|
|
static gdbarch_register_name_ftype frv_register_name;
|
|
static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
|
|
static gdbarch_adjust_breakpoint_address_ftype frv_gdbarch_adjust_breakpoint_address;
|
|
static gdbarch_skip_prologue_ftype frv_skip_prologue;
|
|
static gdbarch_frameless_function_invocation_ftype frv_frameless_function_invocation;
|
|
|
|
/* Register numbers. The order in which these appear define the
|
|
remote protocol, so take care in changing them. */
|
|
enum {
|
|
/* Register numbers 0 -- 63 are always reserved for general-purpose
|
|
registers. The chip at hand may have less. */
|
|
first_gpr_regnum = 0,
|
|
sp_regnum = 1,
|
|
fp_regnum = 2,
|
|
struct_return_regnum = 3,
|
|
last_gpr_regnum = 63,
|
|
|
|
/* Register numbers 64 -- 127 are always reserved for floating-point
|
|
registers. The chip at hand may have less. */
|
|
first_fpr_regnum = 64,
|
|
last_fpr_regnum = 127,
|
|
|
|
/* The PC register. */
|
|
pc_regnum = 128,
|
|
|
|
/* Register numbers 129 on up are always reserved for special-purpose
|
|
registers. */
|
|
first_spr_regnum = 129,
|
|
psr_regnum = 129,
|
|
ccr_regnum = 130,
|
|
cccr_regnum = 131,
|
|
tbr_regnum = 135,
|
|
brr_regnum = 136,
|
|
dbar0_regnum = 137,
|
|
dbar1_regnum = 138,
|
|
dbar2_regnum = 139,
|
|
dbar3_regnum = 140,
|
|
lr_regnum = 145,
|
|
lcr_regnum = 146,
|
|
iacc0h_regnum = 147,
|
|
iacc0l_regnum = 148,
|
|
last_spr_regnum = 148,
|
|
|
|
/* The total number of registers we know exist. */
|
|
frv_num_regs = last_spr_regnum + 1,
|
|
|
|
/* Pseudo registers */
|
|
first_pseudo_regnum = frv_num_regs,
|
|
|
|
/* iacc0 - the 64-bit concatenation of iacc0h and iacc0l. */
|
|
iacc0_regnum = first_pseudo_regnum + 0,
|
|
|
|
last_pseudo_regnum = iacc0_regnum,
|
|
frv_num_pseudo_regs = last_pseudo_regnum - first_pseudo_regnum + 1,
|
|
};
|
|
|
|
static LONGEST frv_call_dummy_words[] =
|
|
{0};
|
|
|
|
|
|
struct frv_unwind_cache /* was struct frame_extra_info */
|
|
{
|
|
/* The previous frame's inner-most stack address. Used as this
|
|
frame ID's stack_addr. */
|
|
CORE_ADDR prev_sp;
|
|
|
|
/* The frame's base, optionally used by the high-level debug info. */
|
|
CORE_ADDR base;
|
|
|
|
/* Table indicating the location of each and every register. */
|
|
struct trad_frame_saved_reg *saved_regs;
|
|
};
|
|
|
|
|
|
/* A structure describing a particular variant of the FRV.
|
|
We allocate and initialize one of these structures when we create
|
|
the gdbarch object for a variant.
|
|
|
|
At the moment, all the FR variants we support differ only in which
|
|
registers are present; the portable code of GDB knows that
|
|
registers whose names are the empty string don't exist, so the
|
|
`register_names' array captures all the per-variant information we
|
|
need.
|
|
|
|
in the future, if we need to have per-variant maps for raw size,
|
|
virtual type, etc., we should replace register_names with an array
|
|
of structures, each of which gives all the necessary info for one
|
|
register. Don't stick parallel arrays in here --- that's so
|
|
Fortran. */
|
|
struct gdbarch_tdep
|
|
{
|
|
/* How many general-purpose registers does this variant have? */
|
|
int num_gprs;
|
|
|
|
/* How many floating-point registers does this variant have? */
|
|
int num_fprs;
|
|
|
|
/* How many hardware watchpoints can it support? */
|
|
int num_hw_watchpoints;
|
|
|
|
/* How many hardware breakpoints can it support? */
|
|
int num_hw_breakpoints;
|
|
|
|
/* Register names. */
|
|
char **register_names;
|
|
};
|
|
|
|
#define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
|
|
|
|
|
|
/* Allocate a new variant structure, and set up default values for all
|
|
the fields. */
|
|
static struct gdbarch_tdep *
|
|
new_variant (void)
|
|
{
|
|
struct gdbarch_tdep *var;
|
|
int r;
|
|
char buf[20];
|
|
|
|
var = xmalloc (sizeof (*var));
|
|
memset (var, 0, sizeof (*var));
|
|
|
|
var->num_gprs = 64;
|
|
var->num_fprs = 64;
|
|
var->num_hw_watchpoints = 0;
|
|
var->num_hw_breakpoints = 0;
|
|
|
|
/* By default, don't supply any general-purpose or floating-point
|
|
register names. */
|
|
var->register_names
|
|
= (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
|
|
* sizeof (char *));
|
|
for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
|
|
var->register_names[r] = "";
|
|
|
|
/* Do, however, supply default names for the known special-purpose
|
|
registers. */
|
|
|
|
var->register_names[pc_regnum] = "pc";
|
|
var->register_names[lr_regnum] = "lr";
|
|
var->register_names[lcr_regnum] = "lcr";
|
|
|
|
var->register_names[psr_regnum] = "psr";
|
|
var->register_names[ccr_regnum] = "ccr";
|
|
var->register_names[cccr_regnum] = "cccr";
|
|
var->register_names[tbr_regnum] = "tbr";
|
|
|
|
/* Debug registers. */
|
|
var->register_names[brr_regnum] = "brr";
|
|
var->register_names[dbar0_regnum] = "dbar0";
|
|
var->register_names[dbar1_regnum] = "dbar1";
|
|
var->register_names[dbar2_regnum] = "dbar2";
|
|
var->register_names[dbar3_regnum] = "dbar3";
|
|
|
|
/* iacc0 (Only found on MB93405.) */
|
|
var->register_names[iacc0h_regnum] = "iacc0h";
|
|
var->register_names[iacc0l_regnum] = "iacc0l";
|
|
var->register_names[iacc0_regnum] = "iacc0";
|
|
|
|
return var;
|
|
}
|
|
|
|
|
|
/* Indicate that the variant VAR has NUM_GPRS general-purpose
|
|
registers, and fill in the names array appropriately. */
|
|
static void
|
|
set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
|
|
{
|
|
int r;
|
|
|
|
var->num_gprs = num_gprs;
|
|
|
|
for (r = 0; r < num_gprs; ++r)
|
|
{
|
|
char buf[20];
|
|
|
|
sprintf (buf, "gr%d", r);
|
|
var->register_names[first_gpr_regnum + r] = xstrdup (buf);
|
|
}
|
|
}
|
|
|
|
|
|
/* Indicate that the variant VAR has NUM_FPRS floating-point
|
|
registers, and fill in the names array appropriately. */
|
|
static void
|
|
set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
|
|
{
|
|
int r;
|
|
|
|
var->num_fprs = num_fprs;
|
|
|
|
for (r = 0; r < num_fprs; ++r)
|
|
{
|
|
char buf[20];
|
|
|
|
sprintf (buf, "fr%d", r);
|
|
var->register_names[first_fpr_regnum + r] = xstrdup (buf);
|
|
}
|
|
}
|
|
|
|
|
|
static const char *
|
|
frv_register_name (int reg)
|
|
{
|
|
if (reg < 0)
|
|
return "?toosmall?";
|
|
if (reg >= frv_num_regs + frv_num_pseudo_regs)
|
|
return "?toolarge?";
|
|
|
|
return CURRENT_VARIANT->register_names[reg];
|
|
}
|
|
|
|
|
|
static struct type *
|
|
frv_register_type (struct gdbarch *gdbarch, int reg)
|
|
{
|
|
if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
|
|
return builtin_type_float;
|
|
else if (reg == iacc0_regnum)
|
|
return builtin_type_int64;
|
|
else
|
|
return builtin_type_int32;
|
|
}
|
|
|
|
static void
|
|
frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int reg, void *buffer)
|
|
{
|
|
if (reg == iacc0_regnum)
|
|
{
|
|
regcache_raw_read (regcache, iacc0h_regnum, buffer);
|
|
regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
|
|
}
|
|
}
|
|
|
|
static void
|
|
frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
|
int reg, const void *buffer)
|
|
{
|
|
if (reg == iacc0_regnum)
|
|
{
|
|
regcache_raw_write (regcache, iacc0h_regnum, buffer);
|
|
regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
|
|
}
|
|
}
|
|
|
|
static int
|
|
frv_register_sim_regno (int reg)
|
|
{
|
|
static const int spr_map[] =
|
|
{
|
|
H_SPR_PSR, /* psr_regnum */
|
|
H_SPR_CCR, /* ccr_regnum */
|
|
H_SPR_CCCR, /* cccr_regnum */
|
|
-1, /* 132 */
|
|
-1, /* 133 */
|
|
-1, /* 134 */
|
|
H_SPR_TBR, /* tbr_regnum */
|
|
H_SPR_BRR, /* brr_regnum */
|
|
H_SPR_DBAR0, /* dbar0_regnum */
|
|
H_SPR_DBAR1, /* dbar1_regnum */
|
|
H_SPR_DBAR2, /* dbar2_regnum */
|
|
H_SPR_DBAR3, /* dbar3_regnum */
|
|
-1, /* 141 */
|
|
-1, /* 142 */
|
|
-1, /* 143 */
|
|
-1, /* 144 */
|
|
H_SPR_LR, /* lr_regnum */
|
|
H_SPR_LCR, /* lcr_regnum */
|
|
H_SPR_IACC0H, /* iacc0h_regnum */
|
|
H_SPR_IACC0L /* iacc0l_regnum */
|
|
};
|
|
|
|
gdb_assert (reg >= 0 && reg < NUM_REGS);
|
|
|
|
if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
|
|
return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
|
|
else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
|
|
return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
|
|
else if (pc_regnum == reg)
|
|
return SIM_FRV_PC_REGNUM;
|
|
else if (reg >= first_spr_regnum
|
|
&& reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
|
|
{
|
|
int spr_reg_offset = spr_map[reg - first_spr_regnum];
|
|
|
|
if (spr_reg_offset < 0)
|
|
return SIM_REGNO_DOES_NOT_EXIST;
|
|
else
|
|
return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
|
|
}
|
|
|
|
internal_error (__FILE__, __LINE__, "Bad register number %d", reg);
|
|
}
|
|
|
|
static const unsigned char *
|
|
frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
|
|
{
|
|
static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
|
|
*lenp = sizeof (breakpoint);
|
|
return breakpoint;
|
|
}
|
|
|
|
/* Define the maximum number of instructions which may be packed into a
|
|
bundle (VLIW instruction). */
|
|
static const int max_instrs_per_bundle = 8;
|
|
|
|
/* Define the size (in bytes) of an FR-V instruction. */
|
|
static const int frv_instr_size = 4;
|
|
|
|
/* Adjust a breakpoint's address to account for the FR-V architecture's
|
|
constraint that a break instruction must not appear as any but the
|
|
first instruction in the bundle. */
|
|
static CORE_ADDR
|
|
frv_gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
|
|
{
|
|
int count = max_instrs_per_bundle;
|
|
CORE_ADDR addr = bpaddr - frv_instr_size;
|
|
CORE_ADDR func_start = get_pc_function_start (bpaddr);
|
|
|
|
/* Find the end of the previous packing sequence. This will be indicated
|
|
by either attempting to access some inaccessible memory or by finding
|
|
an instruction word whose packing bit is set to one. */
|
|
while (count-- > 0 && addr >= func_start)
|
|
{
|
|
char instr[frv_instr_size];
|
|
int status;
|
|
|
|
status = read_memory_nobpt (addr, instr, sizeof instr);
|
|
|
|
if (status != 0)
|
|
break;
|
|
|
|
/* This is a big endian architecture, so byte zero will have most
|
|
significant byte. The most significant bit of this byte is the
|
|
packing bit. */
|
|
if (instr[0] & 0x80)
|
|
break;
|
|
|
|
addr -= frv_instr_size;
|
|
}
|
|
|
|
if (count > 0)
|
|
bpaddr = addr + frv_instr_size;
|
|
|
|
return bpaddr;
|
|
}
|
|
|
|
|
|
/* Return true if REG is a caller-saves ("scratch") register,
|
|
false otherwise. */
|
|
static int
|
|
is_caller_saves_reg (int reg)
|
|
{
|
|
return ((4 <= reg && reg <= 7)
|
|
|| (14 <= reg && reg <= 15)
|
|
|| (32 <= reg && reg <= 47));
|
|
}
|
|
|
|
|
|
/* Return true if REG is a callee-saves register, false otherwise. */
|
|
static int
|
|
is_callee_saves_reg (int reg)
|
|
{
|
|
return ((16 <= reg && reg <= 31)
|
|
|| (48 <= reg && reg <= 63));
|
|
}
|
|
|
|
|
|
/* Return true if REG is an argument register, false otherwise. */
|
|
static int
|
|
is_argument_reg (int reg)
|
|
{
|
|
return (8 <= reg && reg <= 13);
|
|
}
|
|
|
|
/* Given PC at the function's start address, attempt to find the
|
|
prologue end using SAL information. Return zero if the skip fails.
|
|
|
|
A non-optimized prologue traditionally has one SAL for the function
|
|
and a second for the function body. A single line function has
|
|
them both pointing at the same line.
|
|
|
|
An optimized prologue is similar but the prologue may contain
|
|
instructions (SALs) from the instruction body. Need to skip those
|
|
while not getting into the function body.
|
|
|
|
The functions end point and an increasing SAL line are used as
|
|
indicators of the prologue's endpoint.
|
|
|
|
This code is based on the function refine_prologue_limit (versions
|
|
found in both ia64 and ppc). */
|
|
|
|
static CORE_ADDR
|
|
skip_prologue_using_sal (CORE_ADDR func_addr)
|
|
{
|
|
struct symtab_and_line prologue_sal;
|
|
CORE_ADDR start_pc;
|
|
CORE_ADDR end_pc;
|
|
|
|
/* Get an initial range for the function. */
|
|
find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
|
|
start_pc += FUNCTION_START_OFFSET;
|
|
|
|
prologue_sal = find_pc_line (start_pc, 0);
|
|
if (prologue_sal.line != 0)
|
|
{
|
|
while (prologue_sal.end < end_pc)
|
|
{
|
|
struct symtab_and_line sal;
|
|
|
|
sal = find_pc_line (prologue_sal.end, 0);
|
|
if (sal.line == 0)
|
|
break;
|
|
/* Assume that a consecutive SAL for the same (or larger)
|
|
line mark the prologue -> body transition. */
|
|
if (sal.line >= prologue_sal.line)
|
|
break;
|
|
/* The case in which compiler's optimizer/scheduler has
|
|
moved instructions into the prologue. We look ahead in
|
|
the function looking for address ranges whose
|
|
corresponding line number is less the first one that we
|
|
found for the function. This is more conservative then
|
|
refine_prologue_limit which scans a large number of SALs
|
|
looking for any in the prologue */
|
|
prologue_sal = sal;
|
|
}
|
|
}
|
|
return prologue_sal.end;
|
|
}
|
|
|
|
|
|
/* Scan an FR-V prologue, starting at PC, until frame->PC.
|
|
If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
|
|
We assume FRAME's saved_regs array has already been allocated and cleared.
|
|
Return the first PC value after the prologue.
|
|
|
|
Note that, for unoptimized code, we almost don't need this function
|
|
at all; all arguments and locals live on the stack, so we just need
|
|
the FP to find everything. The catch: structures passed by value
|
|
have their addresses living in registers; they're never spilled to
|
|
the stack. So if you ever want to be able to get to these
|
|
arguments in any frame but the top, you'll need to do this serious
|
|
prologue analysis. */
|
|
static CORE_ADDR
|
|
frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
|
|
struct frv_unwind_cache *info)
|
|
{
|
|
/* When writing out instruction bitpatterns, we use the following
|
|
letters to label instruction fields:
|
|
P - The parallel bit. We don't use this.
|
|
J - The register number of GRj in the instruction description.
|
|
K - The register number of GRk in the instruction description.
|
|
I - The register number of GRi.
|
|
S - a signed imediate offset.
|
|
U - an unsigned immediate offset.
|
|
|
|
The dots below the numbers indicate where hex digit boundaries
|
|
fall, to make it easier to check the numbers. */
|
|
|
|
/* Non-zero iff we've seen the instruction that initializes the
|
|
frame pointer for this function's frame. */
|
|
int fp_set = 0;
|
|
|
|
/* If fp_set is non_zero, then this is the distance from
|
|
the stack pointer to frame pointer: fp = sp + fp_offset. */
|
|
int fp_offset = 0;
|
|
|
|
/* Total size of frame prior to any alloca operations. */
|
|
int framesize = 0;
|
|
|
|
/* Flag indicating if lr has been saved on the stack. */
|
|
int lr_saved_on_stack = 0;
|
|
|
|
/* The number of the general-purpose register we saved the return
|
|
address ("link register") in, or -1 if we haven't moved it yet. */
|
|
int lr_save_reg = -1;
|
|
|
|
/* Offset (from sp) at which lr has been saved on the stack. */
|
|
|
|
int lr_sp_offset = 0;
|
|
|
|
/* If gr_saved[i] is non-zero, then we've noticed that general
|
|
register i has been saved at gr_sp_offset[i] from the stack
|
|
pointer. */
|
|
char gr_saved[64];
|
|
int gr_sp_offset[64];
|
|
|
|
/* The address of the most recently scanned prologue instruction. */
|
|
CORE_ADDR last_prologue_pc;
|
|
|
|
/* The address of the next instruction. */
|
|
CORE_ADDR next_pc;
|
|
|
|
/* The upper bound to of the pc values to scan. */
|
|
CORE_ADDR lim_pc;
|
|
|
|
memset (gr_saved, 0, sizeof (gr_saved));
|
|
|
|
last_prologue_pc = pc;
|
|
|
|
/* Try to compute an upper limit (on how far to scan) based on the
|
|
line number info. */
|
|
lim_pc = skip_prologue_using_sal (pc);
|
|
/* If there's no line number info, lim_pc will be 0. In that case,
|
|
set the limit to be 100 instructions away from pc. Hopefully, this
|
|
will be far enough away to account for the entire prologue. Don't
|
|
worry about overshooting the end of the function. The scan loop
|
|
below contains some checks to avoid scanning unreasonably far. */
|
|
if (lim_pc == 0)
|
|
lim_pc = pc + 400;
|
|
|
|
/* If we have a frame, we don't want to scan past the frame's pc. This
|
|
will catch those cases where the pc is in the prologue. */
|
|
if (next_frame)
|
|
{
|
|
CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
|
|
if (frame_pc < lim_pc)
|
|
lim_pc = frame_pc;
|
|
}
|
|
|
|
/* Scan the prologue. */
|
|
while (pc < lim_pc)
|
|
{
|
|
LONGEST op = read_memory_integer (pc, 4);
|
|
next_pc = pc + 4;
|
|
|
|
/* The tests in this chain of ifs should be in order of
|
|
decreasing selectivity, so that more particular patterns get
|
|
to fire before less particular patterns. */
|
|
|
|
/* Some sort of control transfer instruction: stop scanning prologue.
|
|
Integer Conditional Branch:
|
|
X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
|
|
Floating-point / media Conditional Branch:
|
|
X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
|
|
LCR Conditional Branch to LR
|
|
X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
|
|
Integer conditional Branches to LR
|
|
X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
|
|
X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
|
|
Floating-point/Media Branches to LR
|
|
X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
|
|
X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
|
|
Jump and Link
|
|
X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
|
|
X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
|
|
Call
|
|
X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
|
|
Return from Trap
|
|
X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
|
|
Integer Conditional Trap
|
|
X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
|
|
X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
|
|
Floating-point /media Conditional Trap
|
|
X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
|
|
X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
|
|
Break
|
|
X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
|
|
Media Trap
|
|
X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
|
|
if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
|
|
|| (op & 0x01f80000) == 0x00300000 /* Jump and Link */
|
|
|| (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
|
|
|| (op & 0x01f80000) == 0x00700000) /* Trap immediate */
|
|
{
|
|
/* Stop scanning; not in prologue any longer. */
|
|
break;
|
|
}
|
|
|
|
/* Loading something from memory into fp probably means that
|
|
we're in the epilogue. Stop scanning the prologue.
|
|
ld @(GRi, GRk), fp
|
|
X 000010 0000010 XXXXXX 000100 XXXXXX
|
|
ldi @(GRi, d12), fp
|
|
X 000010 0110010 XXXXXX XXXXXXXXXXXX */
|
|
else if ((op & 0x7ffc0fc0) == 0x04080100
|
|
|| (op & 0x7ffc0000) == 0x04c80000)
|
|
{
|
|
break;
|
|
}
|
|
|
|
/* Setting the FP from the SP:
|
|
ori sp, 0, fp
|
|
P 000010 0100010 000001 000000000000 = 0x04881000
|
|
0 111111 1111111 111111 111111111111 = 0x7fffffff
|
|
. . . . . . . .
|
|
We treat this as part of the prologue. */
|
|
else if ((op & 0x7fffffff) == 0x04881000)
|
|
{
|
|
fp_set = 1;
|
|
fp_offset = 0;
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
|
|
/* Move the link register to the scratch register grJ, before saving:
|
|
movsg lr, grJ
|
|
P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
|
|
0 111111 1111111 111111 111111 000000 = 0x7fffffc0
|
|
. . . . . . . .
|
|
We treat this as part of the prologue. */
|
|
else if ((op & 0x7fffffc0) == 0x080d01c0)
|
|
{
|
|
int gr_j = op & 0x3f;
|
|
|
|
/* If we're moving it to a scratch register, that's fine. */
|
|
if (is_caller_saves_reg (gr_j))
|
|
{
|
|
lr_save_reg = gr_j;
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
}
|
|
|
|
/* To save multiple callee-saves registers on the stack, at
|
|
offset zero:
|
|
|
|
std grK,@(sp,gr0)
|
|
P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
|
|
0 000000 1111111 111111 111111 111111 = 0x01ffffff
|
|
|
|
stq grK,@(sp,gr0)
|
|
P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
|
|
0 000000 1111111 111111 111111 111111 = 0x01ffffff
|
|
. . . . . . . .
|
|
We treat this as part of the prologue, and record the register's
|
|
saved address in the frame structure. */
|
|
else if ((op & 0x01ffffff) == 0x000c10c0
|
|
|| (op & 0x01ffffff) == 0x000c1100)
|
|
{
|
|
int gr_k = ((op >> 25) & 0x3f);
|
|
int ope = ((op >> 6) & 0x3f);
|
|
int count;
|
|
int i;
|
|
|
|
/* Is it an std or an stq? */
|
|
if (ope == 0x03)
|
|
count = 2;
|
|
else
|
|
count = 4;
|
|
|
|
/* Is it really a callee-saves register? */
|
|
if (is_callee_saves_reg (gr_k))
|
|
{
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
gr_saved[gr_k + i] = 1;
|
|
gr_sp_offset[gr_k + i] = 4 * i;
|
|
}
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
}
|
|
|
|
/* Adjusting the stack pointer. (The stack pointer is GR1.)
|
|
addi sp, S, sp
|
|
P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
|
|
0 111111 1111111 111111 000000000000 = 0x7ffff000
|
|
. . . . . . . .
|
|
We treat this as part of the prologue. */
|
|
else if ((op & 0x7ffff000) == 0x02401000)
|
|
{
|
|
if (framesize == 0)
|
|
{
|
|
/* Sign-extend the twelve-bit field.
|
|
(Isn't there a better way to do this?) */
|
|
int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
|
|
|
|
framesize -= s;
|
|
last_prologue_pc = pc;
|
|
}
|
|
else
|
|
{
|
|
/* If the prologue is being adjusted again, we've
|
|
likely gone too far; i.e. we're probably in the
|
|
epilogue. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Setting the FP to a constant distance from the SP:
|
|
addi sp, S, fp
|
|
P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
|
|
0 111111 1111111 111111 000000000000 = 0x7ffff000
|
|
. . . . . . . .
|
|
We treat this as part of the prologue. */
|
|
else if ((op & 0x7ffff000) == 0x04401000)
|
|
{
|
|
/* Sign-extend the twelve-bit field.
|
|
(Isn't there a better way to do this?) */
|
|
int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
|
|
fp_set = 1;
|
|
fp_offset = s;
|
|
last_prologue_pc = pc;
|
|
}
|
|
|
|
/* To spill an argument register to a scratch register:
|
|
ori GRi, 0, GRk
|
|
P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
|
|
0 000000 1111111 000000 111111111111 = 0x01fc0fff
|
|
. . . . . . . .
|
|
For the time being, we treat this as a prologue instruction,
|
|
assuming that GRi is an argument register. This one's kind
|
|
of suspicious, because it seems like it could be part of a
|
|
legitimate body instruction. But we only come here when the
|
|
source info wasn't helpful, so we have to do the best we can.
|
|
Hopefully once GCC and GDB agree on how to emit line number
|
|
info for prologues, then this code will never come into play. */
|
|
else if ((op & 0x01fc0fff) == 0x00880000)
|
|
{
|
|
int gr_i = ((op >> 12) & 0x3f);
|
|
|
|
/* Make sure that the source is an arg register; if it is, we'll
|
|
treat it as a prologue instruction. */
|
|
if (is_argument_reg (gr_i))
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
|
|
/* To spill 16-bit values to the stack:
|
|
sthi GRk, @(fp, s)
|
|
P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
|
|
0 000000 1111111 111111 000000000000 = 0x01fff000
|
|
. . . . . . . .
|
|
And for 8-bit values, we use STB instructions.
|
|
stbi GRk, @(fp, s)
|
|
P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
|
|
0 000000 1111111 111111 000000000000 = 0x01fff000
|
|
. . . . . . . .
|
|
We check that GRk is really an argument register, and treat
|
|
all such as part of the prologue. */
|
|
else if ( (op & 0x01fff000) == 0x01442000
|
|
|| (op & 0x01fff000) == 0x01402000)
|
|
{
|
|
int gr_k = ((op >> 25) & 0x3f);
|
|
|
|
/* Make sure that GRk is really an argument register; treat
|
|
it as a prologue instruction if so. */
|
|
if (is_argument_reg (gr_k))
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
|
|
/* To save multiple callee-saves register on the stack, at a
|
|
non-zero offset:
|
|
|
|
stdi GRk, @(sp, s)
|
|
P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
|
|
0 000000 1111111 111111 000000000000 = 0x01fff000
|
|
. . . . . . . .
|
|
stqi GRk, @(sp, s)
|
|
P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
|
|
0 000000 1111111 111111 000000000000 = 0x01fff000
|
|
. . . . . . . .
|
|
We treat this as part of the prologue, and record the register's
|
|
saved address in the frame structure. */
|
|
else if ((op & 0x01fff000) == 0x014c1000
|
|
|| (op & 0x01fff000) == 0x01501000)
|
|
{
|
|
int gr_k = ((op >> 25) & 0x3f);
|
|
int count;
|
|
int i;
|
|
|
|
/* Is it a stdi or a stqi? */
|
|
if ((op & 0x01fff000) == 0x014c1000)
|
|
count = 2;
|
|
else
|
|
count = 4;
|
|
|
|
/* Is it really a callee-saves register? */
|
|
if (is_callee_saves_reg (gr_k))
|
|
{
|
|
/* Sign-extend the twelve-bit field.
|
|
(Isn't there a better way to do this?) */
|
|
int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
gr_saved[gr_k + i] = 1;
|
|
gr_sp_offset[gr_k + i] = s + (4 * i);
|
|
}
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
}
|
|
|
|
/* Storing any kind of integer register at any constant offset
|
|
from any other register.
|
|
|
|
st GRk, @(GRi, gr0)
|
|
P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
|
|
0 000000 1111111 000000 111111 111111 = 0x01fc0fff
|
|
. . . . . . . .
|
|
sti GRk, @(GRi, d12)
|
|
P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
|
|
0 000000 1111111 000000 000000000000 = 0x01fc0000
|
|
. . . . . . . .
|
|
These could be almost anything, but a lot of prologue
|
|
instructions fall into this pattern, so let's decode the
|
|
instruction once, and then work at a higher level. */
|
|
else if (((op & 0x01fc0fff) == 0x000c0080)
|
|
|| ((op & 0x01fc0000) == 0x01480000))
|
|
{
|
|
int gr_k = ((op >> 25) & 0x3f);
|
|
int gr_i = ((op >> 12) & 0x3f);
|
|
int offset;
|
|
|
|
/* Are we storing with gr0 as an offset, or using an
|
|
immediate value? */
|
|
if ((op & 0x01fc0fff) == 0x000c0080)
|
|
offset = 0;
|
|
else
|
|
offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
|
|
|
|
/* If the address isn't relative to the SP or FP, it's not a
|
|
prologue instruction. */
|
|
if (gr_i != sp_regnum && gr_i != fp_regnum)
|
|
{
|
|
/* Do nothing; not a prologue instruction. */
|
|
}
|
|
|
|
/* Saving the old FP in the new frame (relative to the SP). */
|
|
else if (gr_k == fp_regnum && gr_i == sp_regnum)
|
|
{
|
|
gr_saved[fp_regnum] = 1;
|
|
gr_sp_offset[fp_regnum] = offset;
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
|
|
/* Saving callee-saves register(s) on the stack, relative to
|
|
the SP. */
|
|
else if (gr_i == sp_regnum
|
|
&& is_callee_saves_reg (gr_k))
|
|
{
|
|
gr_saved[gr_k] = 1;
|
|
if (gr_i == sp_regnum)
|
|
gr_sp_offset[gr_k] = offset;
|
|
else
|
|
gr_sp_offset[gr_k] = offset + fp_offset;
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
|
|
/* Saving the scratch register holding the return address. */
|
|
else if (lr_save_reg != -1
|
|
&& gr_k == lr_save_reg)
|
|
{
|
|
lr_saved_on_stack = 1;
|
|
if (gr_i == sp_regnum)
|
|
lr_sp_offset = offset;
|
|
else
|
|
lr_sp_offset = offset + fp_offset;
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
|
|
/* Spilling int-sized arguments to the stack. */
|
|
else if (is_argument_reg (gr_k))
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
pc = next_pc;
|
|
}
|
|
|
|
if (next_frame && info)
|
|
{
|
|
int i;
|
|
ULONGEST this_base;
|
|
|
|
/* If we know the relationship between the stack and frame
|
|
pointers, record the addresses of the registers we noticed.
|
|
Note that we have to do this as a separate step at the end,
|
|
because instructions may save relative to the SP, but we need
|
|
their addresses relative to the FP. */
|
|
if (fp_set)
|
|
frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
|
|
else
|
|
frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
|
|
|
|
for (i = 0; i < 64; i++)
|
|
if (gr_saved[i])
|
|
info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
|
|
|
|
info->prev_sp = this_base - fp_offset + framesize;
|
|
info->base = this_base;
|
|
|
|
/* If LR was saved on the stack, record its location. */
|
|
if (lr_saved_on_stack)
|
|
info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
|
|
|
|
/* The call instruction moves the caller's PC in the callee's LR.
|
|
Since this is an unwind, do the reverse. Copy the location of LR
|
|
into PC (the address / regnum) so that a request for PC will be
|
|
converted into a request for the LR. */
|
|
info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
|
|
|
|
/* Save the previous frame's computed SP value. */
|
|
trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
|
|
}
|
|
|
|
return last_prologue_pc;
|
|
}
|
|
|
|
|
|
static CORE_ADDR
|
|
frv_skip_prologue (CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR func_addr, func_end, new_pc;
|
|
|
|
new_pc = pc;
|
|
|
|
/* If the line table has entry for a line *within* the function
|
|
(i.e., not in the prologue, and not past the end), then that's
|
|
our location. */
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
{
|
|
struct symtab_and_line sal;
|
|
|
|
sal = find_pc_line (func_addr, 0);
|
|
|
|
if (sal.line != 0 && sal.end < func_end)
|
|
{
|
|
new_pc = sal.end;
|
|
}
|
|
}
|
|
|
|
/* The FR-V prologue is at least five instructions long (twenty bytes).
|
|
If we didn't find a real source location past that, then
|
|
do a full analysis of the prologue. */
|
|
if (new_pc < pc + 20)
|
|
new_pc = frv_analyze_prologue (pc, 0, 0);
|
|
|
|
return new_pc;
|
|
}
|
|
|
|
|
|
static struct frv_unwind_cache *
|
|
frv_frame_unwind_cache (struct frame_info *next_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
|
CORE_ADDR pc;
|
|
ULONGEST prev_sp;
|
|
ULONGEST this_base;
|
|
struct frv_unwind_cache *info;
|
|
|
|
if ((*this_prologue_cache))
|
|
return (*this_prologue_cache);
|
|
|
|
info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
|
|
(*this_prologue_cache) = info;
|
|
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
|
|
|
/* Prologue analysis does the rest... */
|
|
frv_analyze_prologue (frame_func_unwind (next_frame), next_frame, info);
|
|
|
|
return info;
|
|
}
|
|
|
|
static void
|
|
frv_extract_return_value (struct type *type, struct regcache *regcache,
|
|
void *valbuf)
|
|
{
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
if (len <= 4)
|
|
{
|
|
ULONGEST gpr8_val;
|
|
regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
|
|
store_unsigned_integer (valbuf, len, gpr8_val);
|
|
}
|
|
else if (len == 8)
|
|
{
|
|
ULONGEST regval;
|
|
regcache_cooked_read_unsigned (regcache, 8, ®val);
|
|
store_unsigned_integer (valbuf, 4, regval);
|
|
regcache_cooked_read_unsigned (regcache, 9, ®val);
|
|
store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__, "Illegal return value length: %d", len);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
frv_extract_struct_value_address (struct regcache *regcache)
|
|
{
|
|
ULONGEST addr;
|
|
regcache_cooked_read_unsigned (regcache, struct_return_regnum, &addr);
|
|
return addr;
|
|
}
|
|
|
|
static void
|
|
frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
|
{
|
|
write_register (struct_return_regnum, addr);
|
|
}
|
|
|
|
static int
|
|
frv_frameless_function_invocation (struct frame_info *frame)
|
|
{
|
|
return frameless_look_for_prologue (frame);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
|
{
|
|
/* Require dword alignment. */
|
|
return align_down (sp, 8);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
frv_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
int argreg;
|
|
int argnum;
|
|
char *val;
|
|
char valbuf[4];
|
|
struct value *arg;
|
|
struct type *arg_type;
|
|
int len;
|
|
enum type_code typecode;
|
|
CORE_ADDR regval;
|
|
int stack_space;
|
|
int stack_offset;
|
|
|
|
#if 0
|
|
printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
|
|
nargs, (int) sp, struct_return, struct_addr);
|
|
#endif
|
|
|
|
stack_space = 0;
|
|
for (argnum = 0; argnum < nargs; ++argnum)
|
|
stack_space += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
|
|
|
|
stack_space -= (6 * 4);
|
|
if (stack_space > 0)
|
|
sp -= stack_space;
|
|
|
|
/* Make sure stack is dword aligned. */
|
|
sp = align_down (sp, 8);
|
|
|
|
stack_offset = 0;
|
|
|
|
argreg = 8;
|
|
|
|
if (struct_return)
|
|
regcache_cooked_write_unsigned (regcache, struct_return_regnum,
|
|
struct_addr);
|
|
|
|
for (argnum = 0; argnum < nargs; ++argnum)
|
|
{
|
|
arg = args[argnum];
|
|
arg_type = check_typedef (VALUE_TYPE (arg));
|
|
len = TYPE_LENGTH (arg_type);
|
|
typecode = TYPE_CODE (arg_type);
|
|
|
|
if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
|
|
{
|
|
store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
|
|
typecode = TYPE_CODE_PTR;
|
|
len = 4;
|
|
val = valbuf;
|
|
}
|
|
else
|
|
{
|
|
val = (char *) VALUE_CONTENTS (arg);
|
|
}
|
|
|
|
while (len > 0)
|
|
{
|
|
int partial_len = (len < 4 ? len : 4);
|
|
|
|
if (argreg < 14)
|
|
{
|
|
regval = extract_unsigned_integer (val, partial_len);
|
|
#if 0
|
|
printf(" Argnum %d data %x -> reg %d\n",
|
|
argnum, (int) regval, argreg);
|
|
#endif
|
|
regcache_cooked_write_unsigned (regcache, argreg, regval);
|
|
++argreg;
|
|
}
|
|
else
|
|
{
|
|
#if 0
|
|
printf(" Argnum %d data %x -> offset %d (%x)\n",
|
|
argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
|
|
#endif
|
|
write_memory (sp + stack_offset, val, partial_len);
|
|
stack_offset += align_up (partial_len, 4);
|
|
}
|
|
len -= partial_len;
|
|
val += partial_len;
|
|
}
|
|
}
|
|
|
|
/* Set the return address. For the frv, the return breakpoint is
|
|
always at BP_ADDR. */
|
|
regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
|
|
|
|
/* Finally, update the SP register. */
|
|
regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
|
|
|
|
return sp;
|
|
}
|
|
|
|
static void
|
|
frv_store_return_value (struct type *type, struct regcache *regcache,
|
|
const void *valbuf)
|
|
{
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
if (len <= 4)
|
|
{
|
|
bfd_byte val[4];
|
|
memset (val, 0, sizeof (val));
|
|
memcpy (val + (4 - len), valbuf, len);
|
|
regcache_cooked_write (regcache, 8, val);
|
|
}
|
|
else if (len == 8)
|
|
{
|
|
regcache_cooked_write (regcache, 8, valbuf);
|
|
regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__,
|
|
"Don't know how to return a %d-byte value.", len);
|
|
}
|
|
|
|
|
|
/* Hardware watchpoint / breakpoint support for the FR500
|
|
and FR400. */
|
|
|
|
int
|
|
frv_check_watch_resources (int type, int cnt, int ot)
|
|
{
|
|
struct gdbarch_tdep *var = CURRENT_VARIANT;
|
|
|
|
/* Watchpoints not supported on simulator. */
|
|
if (strcmp (target_shortname, "sim") == 0)
|
|
return 0;
|
|
|
|
if (type == bp_hardware_breakpoint)
|
|
{
|
|
if (var->num_hw_breakpoints == 0)
|
|
return 0;
|
|
else if (cnt <= var->num_hw_breakpoints)
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
if (var->num_hw_watchpoints == 0)
|
|
return 0;
|
|
else if (ot)
|
|
return -1;
|
|
else if (cnt <= var->num_hw_watchpoints)
|
|
return 1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
CORE_ADDR
|
|
frv_stopped_data_address (void)
|
|
{
|
|
CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
|
|
|
|
brr = read_register (brr_regnum);
|
|
dbar0 = read_register (dbar0_regnum);
|
|
dbar1 = read_register (dbar1_regnum);
|
|
dbar2 = read_register (dbar2_regnum);
|
|
dbar3 = read_register (dbar3_regnum);
|
|
|
|
if (brr & (1<<11))
|
|
return dbar0;
|
|
else if (brr & (1<<10))
|
|
return dbar1;
|
|
else if (brr & (1<<9))
|
|
return dbar2;
|
|
else if (brr & (1<<8))
|
|
return dbar3;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_unwind_register_unsigned (next_frame, pc_regnum);
|
|
}
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's
|
|
frame. This will be used to create a new GDB frame struct. */
|
|
|
|
static void
|
|
frv_frame_this_id (struct frame_info *next_frame,
|
|
void **this_prologue_cache, struct frame_id *this_id)
|
|
{
|
|
struct frv_unwind_cache *info
|
|
= frv_frame_unwind_cache (next_frame, this_prologue_cache);
|
|
CORE_ADDR base;
|
|
CORE_ADDR func;
|
|
struct minimal_symbol *msym_stack;
|
|
struct frame_id id;
|
|
|
|
/* The FUNC is easy. */
|
|
func = frame_func_unwind (next_frame);
|
|
|
|
/* Check if the stack is empty. */
|
|
msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
|
|
if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
|
|
return;
|
|
|
|
/* Hopefully the prologue analysis either correctly determined the
|
|
frame's base (which is the SP from the previous frame), or set
|
|
that base to "NULL". */
|
|
base = info->prev_sp;
|
|
if (base == 0)
|
|
return;
|
|
|
|
id = frame_id_build (base, func);
|
|
|
|
/* Check that we're not going round in circles with the same frame
|
|
ID (but avoid applying the test to sentinel frames which do go
|
|
round in circles). Can't use frame_id_eq() as that doesn't yet
|
|
compare the frame's PC value. */
|
|
if (frame_relative_level (next_frame) >= 0
|
|
&& get_frame_type (next_frame) != DUMMY_FRAME
|
|
&& frame_id_eq (get_frame_id (next_frame), id))
|
|
return;
|
|
|
|
(*this_id) = id;
|
|
}
|
|
|
|
static void
|
|
frv_frame_prev_register (struct frame_info *next_frame,
|
|
void **this_prologue_cache,
|
|
int regnum, int *optimizedp,
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
|
int *realnump, void *bufferp)
|
|
{
|
|
struct frv_unwind_cache *info
|
|
= frv_frame_unwind_cache (next_frame, this_prologue_cache);
|
|
trad_frame_prev_register (next_frame, info->saved_regs, regnum,
|
|
optimizedp, lvalp, addrp, realnump, bufferp);
|
|
}
|
|
|
|
static const struct frame_unwind frv_frame_unwind = {
|
|
NORMAL_FRAME,
|
|
frv_frame_this_id,
|
|
frv_frame_prev_register
|
|
};
|
|
|
|
static const struct frame_unwind *
|
|
frv_frame_sniffer (struct frame_info *next_frame)
|
|
{
|
|
return &frv_frame_unwind;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
|
|
{
|
|
struct frv_unwind_cache *info
|
|
= frv_frame_unwind_cache (next_frame, this_cache);
|
|
return info->base;
|
|
}
|
|
|
|
static const struct frame_base frv_frame_base = {
|
|
&frv_frame_unwind,
|
|
frv_frame_base_address,
|
|
frv_frame_base_address,
|
|
frv_frame_base_address
|
|
};
|
|
|
|
static CORE_ADDR
|
|
frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_unwind_register_unsigned (next_frame, sp_regnum);
|
|
}
|
|
|
|
|
|
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
|
|
dummy frame. The frame ID's base needs to match the TOS value
|
|
saved by save_dummy_frame_tos(), and the PC match the dummy frame's
|
|
breakpoint. */
|
|
|
|
static struct frame_id
|
|
frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
|
|
frame_pc_unwind (next_frame));
|
|
}
|
|
|
|
|
|
static struct gdbarch *
|
|
frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *var;
|
|
|
|
/* Check to see if we've already built an appropriate architecture
|
|
object for this executable. */
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
if (arches)
|
|
return arches->gdbarch;
|
|
|
|
/* Select the right tdep structure for this variant. */
|
|
var = new_variant ();
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_frv:
|
|
case bfd_mach_frvsimple:
|
|
case bfd_mach_fr500:
|
|
case bfd_mach_frvtomcat:
|
|
case bfd_mach_fr550:
|
|
set_variant_num_gprs (var, 64);
|
|
set_variant_num_fprs (var, 64);
|
|
break;
|
|
|
|
case bfd_mach_fr400:
|
|
set_variant_num_gprs (var, 32);
|
|
set_variant_num_fprs (var, 32);
|
|
break;
|
|
|
|
default:
|
|
/* Never heard of this variant. */
|
|
return 0;
|
|
}
|
|
|
|
gdbarch = gdbarch_alloc (&info, var);
|
|
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
|
|
set_gdbarch_num_regs (gdbarch, frv_num_regs);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
|
|
|
|
set_gdbarch_sp_regnum (gdbarch, sp_regnum);
|
|
set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
|
|
set_gdbarch_pc_regnum (gdbarch, pc_regnum);
|
|
|
|
set_gdbarch_register_name (gdbarch, frv_register_name);
|
|
set_gdbarch_register_type (gdbarch, frv_register_type);
|
|
set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
|
|
|
|
set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
|
|
set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
|
|
|
|
set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
|
|
set_gdbarch_adjust_breakpoint_address (gdbarch, frv_gdbarch_adjust_breakpoint_address);
|
|
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
|
set_gdbarch_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
|
|
|
|
set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
|
|
set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value);
|
|
|
|
set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
|
|
set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
|
|
set_gdbarch_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
|
|
|
|
/* Frame stuff. */
|
|
set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
|
|
set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
|
|
set_gdbarch_frame_align (gdbarch, frv_frame_align);
|
|
frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
|
|
frame_base_set_default (gdbarch, &frv_frame_base);
|
|
|
|
/* Settings for calling functions in the inferior. */
|
|
set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
|
|
set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
|
|
|
|
/* Settings that should be unnecessary. */
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
|
|
set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
|
|
|
|
set_gdbarch_remote_translate_xfer_address
|
|
(gdbarch, generic_remote_translate_xfer_address);
|
|
|
|
/* Hardware watchpoint / breakpoint support. */
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_frv:
|
|
case bfd_mach_frvsimple:
|
|
case bfd_mach_fr500:
|
|
case bfd_mach_frvtomcat:
|
|
/* fr500-style hardware debugging support. */
|
|
var->num_hw_watchpoints = 4;
|
|
var->num_hw_breakpoints = 4;
|
|
break;
|
|
|
|
case bfd_mach_fr400:
|
|
/* fr400-style hardware debugging support. */
|
|
var->num_hw_watchpoints = 2;
|
|
var->num_hw_breakpoints = 4;
|
|
break;
|
|
|
|
default:
|
|
/* Otherwise, assume we don't have hardware debugging support. */
|
|
var->num_hw_watchpoints = 0;
|
|
var->num_hw_breakpoints = 0;
|
|
break;
|
|
}
|
|
|
|
set_gdbarch_print_insn (gdbarch, print_insn_frv);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
void
|
|
_initialize_frv_tdep (void)
|
|
{
|
|
register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
|
|
}
|