John Gilmore 841c051c44 * inferior.h: Eliminate CANNOT_EXECUTE_STACK in favor of
defining CALL_DUMMY_LOCATION as BEFORE_TEXT_END.  This is
because machines that do this will also have to know to
set NEED_TEXT_START_END.  Besides, it was a redundant way to
say the same thing.
* tm-29k.h, tm-convex.h, tm-np1.h:  Eliminate
CANNOT_EXECUTE_STACK, define CALL_DUMMY_LOCATION and
NEED_TEXT_START_END.
1991-09-13 07:22:50 +00:00

212 lines
6.2 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Variables that describe the inferior process running under GDB:
Where it is, why it stopped, and how to step it.
Copyright (C) 1986, 1989 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/* For bpstat. */
#include "breakpoint.h"
/* For FRAME_ADDR. */
#include "frame.h"
/*
* Structure in which to save the status of the inferior. Save
* through "save_inferior_status", restore through
* "restore_inferior_status".
* This pair of routines should be called around any transfer of
* control to the inferior which you don't want showing up in your
* control variables.
*/
struct inferior_status {
int pc_changed;
int stop_signal;
int stop_pc;
FRAME_ADDR stop_frame_address;
bpstat stop_bpstat;
int stop_step;
int stop_stack_dummy;
int stopped_by_random_signal;
int trap_expected;
CORE_ADDR step_range_start;
CORE_ADDR step_range_end;
FRAME_ADDR step_frame_address;
int step_over_calls;
CORE_ADDR step_resume_break_address;
int stop_after_trap;
int stop_soon_quietly;
FRAME_ADDR selected_frame_address;
int selected_level;
char stop_registers[REGISTER_BYTES];
int breakpoint_proceeded;
int restore_stack_info;
int proceed_to_finish;
};
void save_inferior_status (), restore_inferior_status ();
/* File name for default use for standard in/out in the inferior. */
extern char *inferior_io_terminal;
/* Pid of our debugged inferior, or 0 if no inferior now. */
extern int inferior_pid;
/* Character array containing an image of the inferior programs' registers. */
extern char registers[];
extern void clear_proceed_status ();
extern void start_inferior ();
extern void proceed ();
extern void kill_inferior ();
extern void kill_inferior_fast ();
extern void generic_mourn_inferior ();
extern void terminal_ours ();
extern void detach ();
extern void run_stack_dummy ();
extern CORE_ADDR read_pc ();
extern void write_pc ();
extern void wait_for_inferior ();
extern void init_wait_for_inferior ();
extern void close_exec_file ();
extern void reopen_exec_file ();
/* From infcmd.c */
void attach_command (
#ifdef __STDC__
char *arg, int from_tty
#endif
);
/* Last signal that the inferior received (why it stopped). */
extern int stop_signal;
/* Address at which inferior stopped. */
extern CORE_ADDR stop_pc;
/* Stack frame when program stopped. */
extern FRAME_ADDR stop_frame_address;
/* Chain containing status of breakpoint(s) that we have stopped at. */
extern bpstat stop_bpstat;
/* Flag indicating that a command has proceeded the inferior past the
current breakpoint. */
extern int breakpoint_proceeded;
/* Nonzero if stopped due to a step command. */
extern int stop_step;
/* Nonzero if stopped due to completion of a stack dummy routine. */
extern int stop_stack_dummy;
/* Nonzero if program stopped due to a random (unexpected) signal in
inferior process. */
extern int stopped_by_random_signal;
/* Range to single step within.
If this is nonzero, respond to a single-step signal
by continuing to step if the pc is in this range. */
extern CORE_ADDR step_range_start; /* Inclusive */
extern CORE_ADDR step_range_end; /* Exclusive */
/* Stack frame address as of when stepping command was issued.
This is how we know when we step into a subroutine call,
and how to set the frame for the breakpoint used to step out. */
extern FRAME_ADDR step_frame_address;
/* 1 means step over all subroutine calls.
-1 means step over calls to undebuggable functions. */
extern int step_over_calls;
/* If stepping, nonzero means step count is > 1
so don't print frame next time inferior stops
if it stops due to stepping. */
extern int step_multi;
/* Nonzero means expecting a trap and caller will handle it themselves.
It is used after attach, due to attaching to a process;
when running in the shell before the child program has been exec'd;
and when running some kinds of remote stuff (FIXME?). */
int stop_soon_quietly;
/* Nonzero if proceed is being used for a "finish" command or a similar
situation when stop_registers should be saved. */
extern int proceed_to_finish;
/* Save register contents here when about to pop a stack dummy frame,
if-and-only-if proceed_to_finish is set.
Thus this contains the return value from the called function (assuming
values are returned in a register). */
extern char stop_registers[REGISTER_BYTES];
/* Nonzero if pc has been changed by the debugger
since the inferior stopped. */
extern int pc_changed;
/* Nonzero if the child process in inferior_pid was attached rather
than forked. */
int attach_flag;
/* Possible values for CALL_DUMMY_LOCATION. */
#define ON_STACK 1
#define BEFORE_TEXT_END 2
#define AFTER_TEXT_END 3
#if !defined (CALL_DUMMY_LOCATION)
#define CALL_DUMMY_LOCATION ON_STACK
#endif /* No CALL_DUMMY_LOCATION. */
/* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
below is for infrun.c, which may give the macro a pc without that
subtracted out. */
#if !defined (PC_IN_CALL_DUMMY)
#if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
#define PC_IN_CALL_DUMMY(pc, sp, frame_address) \
((pc) >= text_end - CALL_DUMMY_LENGTH \
&& (pc) < text_end + DECR_PC_AFTER_BREAK)
#else /* Not before text_end. */
#if CALL_DUMMY_LOCATION == AFTER_TEXT_END
#define PC_IN_CALL_DUMMY(pc, sp, frame_address) \
((pc) >= text_end \
&& (pc) < text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK)
#else /* On stack. */
#define PC_IN_CALL_DUMMY(pc, sp, frame_address) \
((sp) INNER_THAN (pc) && (pc) INNER_THAN (frame_address))
#endif /* On stack. */
#endif /* Not before text_end. */
#endif /* No PC_IN_CALL_DUMMY. */