binutils-gdb/gdb/thread-fsm.h
Pedro Alves 8980e177bb Push thread->control.command_interp to the struct thread_fsm
I noticed that if we step into an inline function, step_1 never
reaches proceed, and thus nevers sets the thread's
tp->control.command_interp.  Because of that,
should_print_stop_to_console fails to determine that is should print
stop output to the console.

The fix is to set the thread's command_interp earlier.  However, I
realized that we can move that field to the thread_fsm, given that its
lifetime is exactly the same as thread_fsm.  So the patch plumbs all
fsms constructors to take the command interp and store it in the
thread_fsm.

We can see the fix in action, with e.g., the gdb.opt/inline-cmds.exp
test, and issuing a step when stopped at line 67:

 &"s\n"
 ^running
 *running,thread-id="all"
 (gdb)
 ~"67\t  result = func2 ();\n"
 *stopped,reason="end-stepping-range",frame={addr="0x00000000004004d0",func="main",args=[],file="/home/pedro/gdb/mygit/src/gdb/testsuite/gdb.opt/inline-cmds.c",fullname="/home/pedro/gdb/mygit/src/gdb/testsuite/gdb.opt/inline-cmds.c",line="67"},thread-id="1",stopped-threads="all",core="0"
 (gdb)
 s
 &"s\n"
 ^running
 *running,thread-id="all"
 (gdb)
+ ~"func2 () at /home/pedro/gdb/mygit/src/gdb/testsuite/gdb.opt/inline-cmds.c:67\n"
+ ~"67\t  result = func2 ();\n"
 *stopped,reason="end-stepping-range",frame={addr="0x00000000004004d0",func="func2",args=[],file="/home/pedro/gdb/mygit/src/gdb/testsuite/gdb.opt/inline-cmds.c",fullname="/home/pedro/gdb/mygit/src/gdb/testsuite/gdb.opt/inline-cmds.c",line="67"},thread-id="1",stopped-threads="all",core="0"
 (gdb)

(The inline-cmds.exp command is adjusted to exercise this.)

(Due to the follow_fork change, this also fixes "next N" across a fork
with "set follow-fork child" with "set detach-on-fork on".  Commands
that rely on internal breakpoints, like "finish" will still require
more work to migrate breakpoints etc. to the child thread.)

gdb/ChangeLog:
2016-06-21  Pedro Alves  <palves@redhat.com>

	* breakpoint.c (new_until_break_fsm): Add 'cmd_interp' parameter.
	(until_break_fsm_should_stop, until_break_fsm_clean_up): Add
	thread parameter.
	(until_break_command): Pass command interpreter to thread fsm
	ctor.
	* cli/cli-interp.c (should_print_stop_to_console): Adjust.
	* gdbthread.h (struct thread_control_state) <command_interp>:
	Delete field.
	* infcall.c (new_call_thread_fsm): Add 'cmd_interp' parameter.
	Pass it down.
	(call_thread_fsm_should_stop): Add thread parameter.
	(call_function_by_hand_dummy): Pass command interpreter to thread
	fsm ctor.  Pass thread pointer to fsm clean up method.
	* infcmd.c: Include interps.h.
	(struct step_command_fsm) <thread>: Delete field.
	(new_step_command_fsm): Add 'cmd_interp' parameter.  Pass it down.
	(step_command_fsm_prepare): Remove references to fsm's thread
	field.
	(step_1): Pass command interpreter to thread
	fsm ctor.  Pass thread pointer to fsm clean up method.
	(step_command_fsm_should_stop, step_command_fsm_clean_up): Add
	thread parameter and use it.
	(new_until_next_fsm): Add 'cmd_interp' parameter.  Pass it down.
	(until_next_fsm_should_stop, until_next_fsm_clean_up): Add thread
	parameter and use it.
	(until_next_command): Pass command interpreter to thread fsm ctor.
	(struct finish_command_fsm) <thread>: Delete field.
	(finish_command_fsm_ops): Add NULL slot for should_notify_stop.
	(new_finish_command_fsm): Add 'cmd_interp' parameter and pass it
	down.  Remove thread parameter and adjust.
	(finish_command_fsm_should_stop, finish_command_fsm_clean_up): Add
	thread parameter and use it.
	(finish_command): Pass command interpreter to thread fsm ctor.
	Don't pass thread.
	* infrun.c (follow_fork): Move thread fsm to child fork instead of
	command interpreter, only.
	(clear_proceed_status_thread): Remove reference to command_interp.
	(proceed): Don't record the thread's command interpreter.
	(clean_up_just_stopped_threads_fsms): Pass thread to fsm clean_up
	method.
	(fetch_inferior_event): Pass thread to fsm should_stop method.
	* thread-fsm.c (thread_fsm_ctor): Add 'cmd_interp' parameter.
	Store it.
	(thread_fsm_clean_up, thread_fsm_should_stop): Add thread
	parameter and pass it down.
	* thread-fsm.h (struct thread_fsm) <command_interp>: New field.
	(struct thread_fsm_ops) <clean_up, should_stop>: Add thread
	parameter.
	(thread_fsm_ctor): Add 'cmd_interp' parameter.
	(thread_fsm_clean_up, thread_fsm_should_stop): Add thread
	parameter.
	* thread.c (thread_cancel_execution_command): Pass thread to
	thread fsm clean_up method.

gdb/testsuite/ChangeLog:
2016-06-21  Pedro Alves  <palves@redhat.com>

	* gdb.opt/inline-cmds.c: Add "set mi break here" marker.
	* gdb.opt/inline-cmds.exp: Add MI tests.
2016-06-21 01:11:53 +01:00

116 lines
4.3 KiB
C

/* Thread command's finish-state machine, for GDB, the GNU debugger.
Copyright (C) 2015-2016 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef THREAD_FSM_H
#define THREAD_FSM_H
#include "mi/mi-common.h" /* For enum async_reply_reason. */
struct return_value_info;
struct thread_fsm_ops;
/* A thread finite-state machine structure contains the necessary info
and callbacks to manage the state machine protocol of a thread's
execution command. */
struct thread_fsm
{
/* Pointer of the virtual table of methods. */
struct thread_fsm_ops *ops;
/* Whether the FSM is done successfully. */
int finished;
/* The interpreter that issued the execution command that caused
this thread to resume. If the top level interpreter is MI/async,
and the execution command was a CLI command (next/step/etc.),
we'll want to print stop event output to the MI console channel
(the stepped-to line, etc.), as if the user entered the execution
command on a real GDB console. */
struct interp *command_interp;
};
/* The virtual table of a thread_fsm. */
struct thread_fsm_ops
{
/* The destructor. This should simply free heap allocated data
structures. Cleaning up target resources (like, e.g.,
breakpoints) should be done in the clean_up method. */
void (*dtor) (struct thread_fsm *self);
/* Called to clean up target resources after the FSM. E.g., if the
FSM created internal breakpoints, this is where they should be
deleted. */
void (*clean_up) (struct thread_fsm *self, struct thread_info *thread);
/* Called after handle_inferior_event decides the target is done
(that is, after stop_waiting). The FSM is given a chance to
decide whether the command is done and thus the target should
stop, or whether there's still more to do and thus the thread
should be re-resumed. This is a good place to cache target data
too. For example, the "finish" command saves the just-finished
function's return value here. */
int (*should_stop) (struct thread_fsm *self, struct thread_info *thread);
/* If this FSM saved a function's return value, you can use this
method to retrieve it. Otherwise, this returns NULL. */
struct return_value_info *(*return_value) (struct thread_fsm *self);
/* The async_reply_reason that is broadcast to MI clients if this
FSM finishes successfully. */
enum async_reply_reason (*async_reply_reason) (struct thread_fsm *self);
/* Whether the stop should be notified to the user/frontend. */
int (*should_notify_stop) (struct thread_fsm *self);
};
/* Initialize FSM. */
extern void thread_fsm_ctor (struct thread_fsm *self,
struct thread_fsm_ops *ops,
struct interp *cmd_interp);
/* Calls the FSM's dtor method, and then frees FSM. */
extern void thread_fsm_delete (struct thread_fsm *fsm);
/* Calls the FSM's clean_up method. */
extern void thread_fsm_clean_up (struct thread_fsm *fsm,
struct thread_info *thread);
/* Calls the FSM's should_stop method. */
extern int thread_fsm_should_stop (struct thread_fsm *fsm,
struct thread_info *thread);
/* Calls the FSM's return_value method. */
extern struct return_value_info *
thread_fsm_return_value (struct thread_fsm *fsm);
/* Marks the FSM as completed successfully. */
extern void thread_fsm_set_finished (struct thread_fsm *fsm);
/* Returns true if the FSM completed successfully. */
extern int thread_fsm_finished_p (struct thread_fsm *fsm);
/* Calls the FSM's reply_reason method. */
extern enum async_reply_reason
thread_fsm_async_reply_reason (struct thread_fsm *fsm);
/* Calls the FSM's should_notify_stop method. */
extern int thread_fsm_should_notify_stop (struct thread_fsm *self);
#endif /* THREAD_FSM_H */