fc0c74b114
funnies to integer to address conversions.
1618 lines
43 KiB
C
1618 lines
43 KiB
C
/* Target-dependent code for Mitsubishi D10V, for GDB.
|
|
Copyright 1996, 1997, 1998, 1999, 2000, 2001
|
|
Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
/* Contributed by Martin Hunt, hunt@cygnus.com */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "obstack.h"
|
|
#include "symtab.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdbcmd.h"
|
|
#include "gdbcore.h"
|
|
#include "gdb_string.h"
|
|
#include "value.h"
|
|
#include "inferior.h"
|
|
#include "dis-asm.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
#include "language.h"
|
|
#include "arch-utils.h"
|
|
#include "regcache.h"
|
|
|
|
#include "floatformat.h"
|
|
#include "sim-d10v.h"
|
|
|
|
#undef XMALLOC
|
|
#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
|
|
|
|
struct frame_extra_info
|
|
{
|
|
CORE_ADDR return_pc;
|
|
int frameless;
|
|
int size;
|
|
};
|
|
|
|
struct gdbarch_tdep
|
|
{
|
|
int a0_regnum;
|
|
int nr_dmap_regs;
|
|
unsigned long (*dmap_register) (int nr);
|
|
unsigned long (*imap_register) (int nr);
|
|
};
|
|
|
|
/* These are the addresses the D10V-EVA board maps data and
|
|
instruction memory to. */
|
|
|
|
#define DMEM_START 0x2000000
|
|
#define IMEM_START 0x1000000
|
|
#define STACK_START 0x0007ffe
|
|
|
|
/* d10v register names. */
|
|
|
|
enum
|
|
{
|
|
R0_REGNUM = 0,
|
|
LR_REGNUM = 13,
|
|
PSW_REGNUM = 16,
|
|
NR_IMAP_REGS = 2,
|
|
NR_A_REGS = 2
|
|
};
|
|
#define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
|
|
#define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
|
|
|
|
/* d10v calling convention. */
|
|
|
|
#define ARG1_REGNUM R0_REGNUM
|
|
#define ARGN_REGNUM 3
|
|
#define RET1_REGNUM R0_REGNUM
|
|
|
|
/* Local functions */
|
|
|
|
extern void _initialize_d10v_tdep (void);
|
|
|
|
static void d10v_eva_prepare_to_trace (void);
|
|
|
|
static void d10v_eva_get_trace_data (void);
|
|
|
|
static int prologue_find_regs (unsigned short op, struct frame_info *fi,
|
|
CORE_ADDR addr);
|
|
|
|
static void d10v_frame_init_saved_regs (struct frame_info *);
|
|
|
|
static void do_d10v_pop_frame (struct frame_info *fi);
|
|
|
|
static int
|
|
d10v_frame_chain_valid (CORE_ADDR chain, struct frame_info *frame)
|
|
{
|
|
return ((chain) != 0 && (frame) != 0 && (frame)->pc > IMEM_START);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_stack_align (CORE_ADDR len)
|
|
{
|
|
return (len + 1) & ~1;
|
|
}
|
|
|
|
/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
|
|
EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
|
|
and TYPE is the type (which is known to be struct, union or array).
|
|
|
|
The d10v returns anything less than 8 bytes in size in
|
|
registers. */
|
|
|
|
static int
|
|
d10v_use_struct_convention (int gcc_p, struct type *type)
|
|
{
|
|
return (TYPE_LENGTH (type) > 8);
|
|
}
|
|
|
|
|
|
static unsigned char *
|
|
d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
|
|
{
|
|
static unsigned char breakpoint[] =
|
|
{0x2f, 0x90, 0x5e, 0x00};
|
|
*lenptr = sizeof (breakpoint);
|
|
return breakpoint;
|
|
}
|
|
|
|
/* Map the REG_NR onto an ascii name. Return NULL or an empty string
|
|
when the reg_nr isn't valid. */
|
|
|
|
enum ts2_regnums
|
|
{
|
|
TS2_IMAP0_REGNUM = 32,
|
|
TS2_DMAP_REGNUM = 34,
|
|
TS2_NR_DMAP_REGS = 1,
|
|
TS2_A0_REGNUM = 35
|
|
};
|
|
|
|
static char *
|
|
d10v_ts2_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] =
|
|
{
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
|
|
"rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
|
|
"imap0", "imap1", "dmap", "a0", "a1"
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
enum ts3_regnums
|
|
{
|
|
TS3_IMAP0_REGNUM = 36,
|
|
TS3_DMAP0_REGNUM = 38,
|
|
TS3_NR_DMAP_REGS = 4,
|
|
TS3_A0_REGNUM = 32
|
|
};
|
|
|
|
static char *
|
|
d10v_ts3_register_name (int reg_nr)
|
|
{
|
|
static char *register_names[] =
|
|
{
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
|
|
"rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
|
|
"a0", "a1",
|
|
"spi", "spu",
|
|
"imap0", "imap1",
|
|
"dmap0", "dmap1", "dmap2", "dmap3"
|
|
};
|
|
if (reg_nr < 0)
|
|
return NULL;
|
|
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
|
return NULL;
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
/* Access the DMAP/IMAP registers in a target independent way.
|
|
|
|
Divide the D10V's 64k data space into four 16k segments:
|
|
0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
|
|
0xc000 -- 0xffff.
|
|
|
|
On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
|
|
0x7fff) always map to the on-chip data RAM, and the fourth always
|
|
maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
|
|
unified memory or instruction memory, under the control of the
|
|
single DMAP register.
|
|
|
|
On the TS3, there are four DMAP registers, each of which controls
|
|
one of the segments. */
|
|
|
|
static unsigned long
|
|
d10v_ts2_dmap_register (int reg_nr)
|
|
{
|
|
switch (reg_nr)
|
|
{
|
|
case 0:
|
|
case 1:
|
|
return 0x2000;
|
|
case 2:
|
|
return read_register (TS2_DMAP_REGNUM);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static unsigned long
|
|
d10v_ts3_dmap_register (int reg_nr)
|
|
{
|
|
return read_register (TS3_DMAP0_REGNUM + reg_nr);
|
|
}
|
|
|
|
static unsigned long
|
|
d10v_dmap_register (int reg_nr)
|
|
{
|
|
return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
|
|
}
|
|
|
|
static unsigned long
|
|
d10v_ts2_imap_register (int reg_nr)
|
|
{
|
|
return read_register (TS2_IMAP0_REGNUM + reg_nr);
|
|
}
|
|
|
|
static unsigned long
|
|
d10v_ts3_imap_register (int reg_nr)
|
|
{
|
|
return read_register (TS3_IMAP0_REGNUM + reg_nr);
|
|
}
|
|
|
|
static unsigned long
|
|
d10v_imap_register (int reg_nr)
|
|
{
|
|
return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
|
|
}
|
|
|
|
/* MAP GDB's internal register numbering (determined by the layout fo
|
|
the REGISTER_BYTE array) onto the simulator's register
|
|
numbering. */
|
|
|
|
static int
|
|
d10v_ts2_register_sim_regno (int nr)
|
|
{
|
|
if (nr >= TS2_IMAP0_REGNUM
|
|
&& nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
|
|
return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
|
|
if (nr == TS2_DMAP_REGNUM)
|
|
return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
|
|
if (nr >= TS2_A0_REGNUM
|
|
&& nr < TS2_A0_REGNUM + NR_A_REGS)
|
|
return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
|
|
return nr;
|
|
}
|
|
|
|
static int
|
|
d10v_ts3_register_sim_regno (int nr)
|
|
{
|
|
if (nr >= TS3_IMAP0_REGNUM
|
|
&& nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
|
|
return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
|
|
if (nr >= TS3_DMAP0_REGNUM
|
|
&& nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
|
|
return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
|
|
if (nr >= TS3_A0_REGNUM
|
|
&& nr < TS3_A0_REGNUM + NR_A_REGS)
|
|
return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
|
|
return nr;
|
|
}
|
|
|
|
/* Index within `registers' of the first byte of the space for
|
|
register REG_NR. */
|
|
|
|
static int
|
|
d10v_register_byte (int reg_nr)
|
|
{
|
|
if (reg_nr < A0_REGNUM)
|
|
return (reg_nr * 2);
|
|
else if (reg_nr < (A0_REGNUM + NR_A_REGS))
|
|
return (A0_REGNUM * 2
|
|
+ (reg_nr - A0_REGNUM) * 8);
|
|
else
|
|
return (A0_REGNUM * 2
|
|
+ NR_A_REGS * 8
|
|
+ (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
|
|
}
|
|
|
|
/* Number of bytes of storage in the actual machine representation for
|
|
register REG_NR. */
|
|
|
|
static int
|
|
d10v_register_raw_size (int reg_nr)
|
|
{
|
|
if (reg_nr < A0_REGNUM)
|
|
return 2;
|
|
else if (reg_nr < (A0_REGNUM + NR_A_REGS))
|
|
return 8;
|
|
else
|
|
return 2;
|
|
}
|
|
|
|
/* Number of bytes of storage in the program's representation
|
|
for register N. */
|
|
|
|
static int
|
|
d10v_register_virtual_size (int reg_nr)
|
|
{
|
|
return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (reg_nr));
|
|
}
|
|
|
|
/* Return the GDB type object for the "standard" data type
|
|
of data in register N. */
|
|
|
|
static struct type *
|
|
d10v_register_virtual_type (int reg_nr)
|
|
{
|
|
if (reg_nr == PC_REGNUM)
|
|
return builtin_type_void_func_ptr;
|
|
else if (reg_nr >= A0_REGNUM
|
|
&& reg_nr < (A0_REGNUM + NR_A_REGS))
|
|
return builtin_type_int64;
|
|
else
|
|
return builtin_type_int16;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_make_daddr (CORE_ADDR x)
|
|
{
|
|
return ((x) | DMEM_START);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_make_iaddr (CORE_ADDR x)
|
|
{
|
|
return (((x) << 2) | IMEM_START);
|
|
}
|
|
|
|
static int
|
|
d10v_daddr_p (CORE_ADDR x)
|
|
{
|
|
return (((x) & 0x3000000) == DMEM_START);
|
|
}
|
|
|
|
static int
|
|
d10v_iaddr_p (CORE_ADDR x)
|
|
{
|
|
return (((x) & 0x3000000) == IMEM_START);
|
|
}
|
|
|
|
|
|
static CORE_ADDR
|
|
d10v_convert_iaddr_to_raw (CORE_ADDR x)
|
|
{
|
|
return (((x) >> 2) & 0xffff);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_convert_daddr_to_raw (CORE_ADDR x)
|
|
{
|
|
return ((x) & 0xffff);
|
|
}
|
|
|
|
static void
|
|
d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
|
|
{
|
|
/* Is it a code address? */
|
|
if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
|
|
|| TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
|
|
{
|
|
#if 0
|
|
if (! d10v_iaddr_p (addr))
|
|
{
|
|
warning_begin ();
|
|
fprintf_unfiltered (gdb_stderr, "address `");
|
|
print_address_numeric (addr, 1, gdb_stderr);
|
|
fprintf_unfiltered (gdb_stderr, "' is not a code address\n");
|
|
}
|
|
#endif
|
|
|
|
store_unsigned_integer (buf, TYPE_LENGTH (type),
|
|
d10v_convert_iaddr_to_raw (addr));
|
|
}
|
|
else
|
|
{
|
|
/* Strip off any upper segment bits. */
|
|
store_unsigned_integer (buf, TYPE_LENGTH (type),
|
|
d10v_convert_daddr_to_raw (addr));
|
|
}
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_pointer_to_address (struct type *type, void *buf)
|
|
{
|
|
CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
|
|
|
|
/* Is it a code address? */
|
|
if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
|
|
|| TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
|
|
return d10v_make_iaddr (addr);
|
|
else
|
|
return d10v_make_daddr (addr);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_integer_to_address (struct type *type, void *buf)
|
|
{
|
|
LONGEST val;
|
|
val = unpack_long (type, buf);
|
|
if (TYPE_CODE (type) == TYPE_CODE_INT
|
|
&& TYPE_LENGTH (type) <= TYPE_LENGTH (builtin_type_void_data_ptr))
|
|
/* Convert small integers that would would be directly copied into
|
|
a pointer variable into an address pointing into data space. */
|
|
return d10v_make_daddr (val & 0xffff);
|
|
else
|
|
/* The value is too large to fit in a pointer. Assume this was
|
|
intentional and that the user in fact specified a raw address. */
|
|
return val;
|
|
}
|
|
|
|
/* Store the address of the place in which to copy the structure the
|
|
subroutine will return. This is called from call_function.
|
|
|
|
We store structs through a pointer passed in the first Argument
|
|
register. */
|
|
|
|
static void
|
|
d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
|
{
|
|
write_register (ARG1_REGNUM, (addr));
|
|
}
|
|
|
|
/* Write into appropriate registers a function return value
|
|
of type TYPE, given in virtual format.
|
|
|
|
Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
|
|
|
|
static void
|
|
d10v_store_return_value (struct type *type, char *valbuf)
|
|
{
|
|
write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
|
|
valbuf,
|
|
TYPE_LENGTH (type));
|
|
}
|
|
|
|
/* Extract from an array REGBUF containing the (raw) register state
|
|
the address in which a function should return its structure value,
|
|
as a CORE_ADDR (or an expression that can be used as one). */
|
|
|
|
static CORE_ADDR
|
|
d10v_extract_struct_value_address (char *regbuf)
|
|
{
|
|
return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
|
|
REGISTER_RAW_SIZE (ARG1_REGNUM))
|
|
| DMEM_START);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_frame_saved_pc (struct frame_info *frame)
|
|
{
|
|
return ((frame)->extra_info->return_pc);
|
|
}
|
|
|
|
/* Immediately after a function call, return the saved pc. We can't
|
|
use frame->return_pc beause that is determined by reading R13 off
|
|
the stack and that may not be written yet. */
|
|
|
|
static CORE_ADDR
|
|
d10v_saved_pc_after_call (struct frame_info *frame)
|
|
{
|
|
return ((read_register (LR_REGNUM) << 2)
|
|
| IMEM_START);
|
|
}
|
|
|
|
/* Discard from the stack the innermost frame, restoring all saved
|
|
registers. */
|
|
|
|
static void
|
|
d10v_pop_frame (void)
|
|
{
|
|
generic_pop_current_frame (do_d10v_pop_frame);
|
|
}
|
|
|
|
static void
|
|
do_d10v_pop_frame (struct frame_info *fi)
|
|
{
|
|
CORE_ADDR fp;
|
|
int regnum;
|
|
char raw_buffer[8];
|
|
|
|
fp = FRAME_FP (fi);
|
|
/* fill out fsr with the address of where each */
|
|
/* register was stored in the frame */
|
|
d10v_frame_init_saved_regs (fi);
|
|
|
|
/* now update the current registers with the old values */
|
|
for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
|
|
{
|
|
if (fi->saved_regs[regnum])
|
|
{
|
|
read_memory (fi->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
|
|
write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE (regnum));
|
|
}
|
|
}
|
|
for (regnum = 0; regnum < SP_REGNUM; regnum++)
|
|
{
|
|
if (fi->saved_regs[regnum])
|
|
{
|
|
write_register (regnum, read_memory_unsigned_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
|
|
}
|
|
}
|
|
if (fi->saved_regs[PSW_REGNUM])
|
|
{
|
|
write_register (PSW_REGNUM, read_memory_unsigned_integer (fi->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
|
|
}
|
|
|
|
write_register (PC_REGNUM, read_register (LR_REGNUM));
|
|
write_register (SP_REGNUM, fp + fi->extra_info->size);
|
|
target_store_registers (-1);
|
|
flush_cached_frames ();
|
|
}
|
|
|
|
static int
|
|
check_prologue (unsigned short op)
|
|
{
|
|
/* st rn, @-sp */
|
|
if ((op & 0x7E1F) == 0x6C1F)
|
|
return 1;
|
|
|
|
/* st2w rn, @-sp */
|
|
if ((op & 0x7E3F) == 0x6E1F)
|
|
return 1;
|
|
|
|
/* subi sp, n */
|
|
if ((op & 0x7FE1) == 0x01E1)
|
|
return 1;
|
|
|
|
/* mv r11, sp */
|
|
if (op == 0x417E)
|
|
return 1;
|
|
|
|
/* nop */
|
|
if (op == 0x5E00)
|
|
return 1;
|
|
|
|
/* st rn, @sp */
|
|
if ((op & 0x7E1F) == 0x681E)
|
|
return 1;
|
|
|
|
/* st2w rn, @sp */
|
|
if ((op & 0x7E3F) == 0x3A1E)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_skip_prologue (CORE_ADDR pc)
|
|
{
|
|
unsigned long op;
|
|
unsigned short op1, op2;
|
|
CORE_ADDR func_addr, func_end;
|
|
struct symtab_and_line sal;
|
|
|
|
/* If we have line debugging information, then the end of the */
|
|
/* prologue should the first assembly instruction of the first source line */
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
{
|
|
sal = find_pc_line (func_addr, 0);
|
|
if (sal.end && sal.end < func_end)
|
|
return sal.end;
|
|
}
|
|
|
|
if (target_read_memory (pc, (char *) &op, 4))
|
|
return pc; /* Can't access it -- assume no prologue. */
|
|
|
|
while (1)
|
|
{
|
|
op = (unsigned long) read_memory_integer (pc, 4);
|
|
if ((op & 0xC0000000) == 0xC0000000)
|
|
{
|
|
/* long instruction */
|
|
if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
|
|
((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
|
|
((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* short instructions */
|
|
if ((op & 0xC0000000) == 0x80000000)
|
|
{
|
|
op2 = (op & 0x3FFF8000) >> 15;
|
|
op1 = op & 0x7FFF;
|
|
}
|
|
else
|
|
{
|
|
op1 = (op & 0x3FFF8000) >> 15;
|
|
op2 = op & 0x7FFF;
|
|
}
|
|
if (check_prologue (op1))
|
|
{
|
|
if (!check_prologue (op2))
|
|
{
|
|
/* if the previous opcode was really part of the prologue */
|
|
/* and not just a NOP, then we want to break after both instructions */
|
|
if (op1 != 0x5E00)
|
|
pc += 4;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
pc += 4;
|
|
}
|
|
return pc;
|
|
}
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's frame.
|
|
This will be used to create a new GDB frame struct, and then
|
|
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
|
*/
|
|
|
|
static CORE_ADDR
|
|
d10v_frame_chain (struct frame_info *fi)
|
|
{
|
|
d10v_frame_init_saved_regs (fi);
|
|
|
|
if (fi->extra_info->return_pc == IMEM_START
|
|
|| inside_entry_file (fi->extra_info->return_pc))
|
|
return (CORE_ADDR) 0;
|
|
|
|
if (!fi->saved_regs[FP_REGNUM])
|
|
{
|
|
if (!fi->saved_regs[SP_REGNUM]
|
|
|| fi->saved_regs[SP_REGNUM] == STACK_START)
|
|
return (CORE_ADDR) 0;
|
|
|
|
return fi->saved_regs[SP_REGNUM];
|
|
}
|
|
|
|
if (!read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
|
|
REGISTER_RAW_SIZE (FP_REGNUM)))
|
|
return (CORE_ADDR) 0;
|
|
|
|
return d10v_make_daddr (read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
|
|
REGISTER_RAW_SIZE (FP_REGNUM)));
|
|
}
|
|
|
|
static int next_addr, uses_frame;
|
|
|
|
static int
|
|
prologue_find_regs (unsigned short op, struct frame_info *fi, CORE_ADDR addr)
|
|
{
|
|
int n;
|
|
|
|
/* st rn, @-sp */
|
|
if ((op & 0x7E1F) == 0x6C1F)
|
|
{
|
|
n = (op & 0x1E0) >> 5;
|
|
next_addr -= 2;
|
|
fi->saved_regs[n] = next_addr;
|
|
return 1;
|
|
}
|
|
|
|
/* st2w rn, @-sp */
|
|
else if ((op & 0x7E3F) == 0x6E1F)
|
|
{
|
|
n = (op & 0x1E0) >> 5;
|
|
next_addr -= 4;
|
|
fi->saved_regs[n] = next_addr;
|
|
fi->saved_regs[n + 1] = next_addr + 2;
|
|
return 1;
|
|
}
|
|
|
|
/* subi sp, n */
|
|
if ((op & 0x7FE1) == 0x01E1)
|
|
{
|
|
n = (op & 0x1E) >> 1;
|
|
if (n == 0)
|
|
n = 16;
|
|
next_addr -= n;
|
|
return 1;
|
|
}
|
|
|
|
/* mv r11, sp */
|
|
if (op == 0x417E)
|
|
{
|
|
uses_frame = 1;
|
|
return 1;
|
|
}
|
|
|
|
/* nop */
|
|
if (op == 0x5E00)
|
|
return 1;
|
|
|
|
/* st rn, @sp */
|
|
if ((op & 0x7E1F) == 0x681E)
|
|
{
|
|
n = (op & 0x1E0) >> 5;
|
|
fi->saved_regs[n] = next_addr;
|
|
return 1;
|
|
}
|
|
|
|
/* st2w rn, @sp */
|
|
if ((op & 0x7E3F) == 0x3A1E)
|
|
{
|
|
n = (op & 0x1E0) >> 5;
|
|
fi->saved_regs[n] = next_addr;
|
|
fi->saved_regs[n + 1] = next_addr + 2;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Put here the code to store, into fi->saved_regs, the addresses of
|
|
the saved registers of frame described by FRAME_INFO. This
|
|
includes special registers such as pc and fp saved in special ways
|
|
in the stack frame. sp is even more special: the address we return
|
|
for it IS the sp for the next frame. */
|
|
|
|
static void
|
|
d10v_frame_init_saved_regs (struct frame_info *fi)
|
|
{
|
|
CORE_ADDR fp, pc;
|
|
unsigned long op;
|
|
unsigned short op1, op2;
|
|
int i;
|
|
|
|
fp = fi->frame;
|
|
memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
|
|
next_addr = 0;
|
|
|
|
pc = get_pc_function_start (fi->pc);
|
|
|
|
uses_frame = 0;
|
|
while (1)
|
|
{
|
|
op = (unsigned long) read_memory_integer (pc, 4);
|
|
if ((op & 0xC0000000) == 0xC0000000)
|
|
{
|
|
/* long instruction */
|
|
if ((op & 0x3FFF0000) == 0x01FF0000)
|
|
{
|
|
/* add3 sp,sp,n */
|
|
short n = op & 0xFFFF;
|
|
next_addr += n;
|
|
}
|
|
else if ((op & 0x3F0F0000) == 0x340F0000)
|
|
{
|
|
/* st rn, @(offset,sp) */
|
|
short offset = op & 0xFFFF;
|
|
short n = (op >> 20) & 0xF;
|
|
fi->saved_regs[n] = next_addr + offset;
|
|
}
|
|
else if ((op & 0x3F1F0000) == 0x350F0000)
|
|
{
|
|
/* st2w rn, @(offset,sp) */
|
|
short offset = op & 0xFFFF;
|
|
short n = (op >> 20) & 0xF;
|
|
fi->saved_regs[n] = next_addr + offset;
|
|
fi->saved_regs[n + 1] = next_addr + offset + 2;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
/* short instructions */
|
|
if ((op & 0xC0000000) == 0x80000000)
|
|
{
|
|
op2 = (op & 0x3FFF8000) >> 15;
|
|
op1 = op & 0x7FFF;
|
|
}
|
|
else
|
|
{
|
|
op1 = (op & 0x3FFF8000) >> 15;
|
|
op2 = op & 0x7FFF;
|
|
}
|
|
if (!prologue_find_regs (op1, fi, pc) || !prologue_find_regs (op2, fi, pc))
|
|
break;
|
|
}
|
|
pc += 4;
|
|
}
|
|
|
|
fi->extra_info->size = -next_addr;
|
|
|
|
if (!(fp & 0xffff))
|
|
fp = d10v_make_daddr (read_register (SP_REGNUM));
|
|
|
|
for (i = 0; i < NUM_REGS - 1; i++)
|
|
if (fi->saved_regs[i])
|
|
{
|
|
fi->saved_regs[i] = fp - (next_addr - fi->saved_regs[i]);
|
|
}
|
|
|
|
if (fi->saved_regs[LR_REGNUM])
|
|
{
|
|
CORE_ADDR return_pc = read_memory_unsigned_integer (fi->saved_regs[LR_REGNUM], REGISTER_RAW_SIZE (LR_REGNUM));
|
|
fi->extra_info->return_pc = d10v_make_iaddr (return_pc);
|
|
}
|
|
else
|
|
{
|
|
fi->extra_info->return_pc = d10v_make_iaddr (read_register (LR_REGNUM));
|
|
}
|
|
|
|
/* th SP is not normally (ever?) saved, but check anyway */
|
|
if (!fi->saved_regs[SP_REGNUM])
|
|
{
|
|
/* if the FP was saved, that means the current FP is valid, */
|
|
/* otherwise, it isn't being used, so we use the SP instead */
|
|
if (uses_frame)
|
|
fi->saved_regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->extra_info->size;
|
|
else
|
|
{
|
|
fi->saved_regs[SP_REGNUM] = fp + fi->extra_info->size;
|
|
fi->extra_info->frameless = 1;
|
|
fi->saved_regs[FP_REGNUM] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
d10v_init_extra_frame_info (int fromleaf, struct frame_info *fi)
|
|
{
|
|
fi->extra_info = (struct frame_extra_info *)
|
|
frame_obstack_alloc (sizeof (struct frame_extra_info));
|
|
frame_saved_regs_zalloc (fi);
|
|
|
|
fi->extra_info->frameless = 0;
|
|
fi->extra_info->size = 0;
|
|
fi->extra_info->return_pc = 0;
|
|
|
|
/* The call dummy doesn't save any registers on the stack, so we can
|
|
return now. */
|
|
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
|
{
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
d10v_frame_init_saved_regs (fi);
|
|
}
|
|
}
|
|
|
|
static void
|
|
show_regs (char *args, int from_tty)
|
|
{
|
|
int a;
|
|
printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
|
|
(long) read_register (PC_REGNUM),
|
|
(long) d10v_make_iaddr (read_register (PC_REGNUM)),
|
|
(long) read_register (PSW_REGNUM),
|
|
(long) read_register (24),
|
|
(long) read_register (25),
|
|
(long) read_register (23));
|
|
printf_filtered ("R0-R7 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
|
|
(long) read_register (0),
|
|
(long) read_register (1),
|
|
(long) read_register (2),
|
|
(long) read_register (3),
|
|
(long) read_register (4),
|
|
(long) read_register (5),
|
|
(long) read_register (6),
|
|
(long) read_register (7));
|
|
printf_filtered ("R8-R15 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
|
|
(long) read_register (8),
|
|
(long) read_register (9),
|
|
(long) read_register (10),
|
|
(long) read_register (11),
|
|
(long) read_register (12),
|
|
(long) read_register (13),
|
|
(long) read_register (14),
|
|
(long) read_register (15));
|
|
for (a = 0; a < NR_IMAP_REGS; a++)
|
|
{
|
|
if (a > 0)
|
|
printf_filtered (" ");
|
|
printf_filtered ("IMAP%d %04lx", a, d10v_imap_register (a));
|
|
}
|
|
if (NR_DMAP_REGS == 1)
|
|
printf_filtered (" DMAP %04lx\n", d10v_dmap_register (2));
|
|
else
|
|
{
|
|
for (a = 0; a < NR_DMAP_REGS; a++)
|
|
{
|
|
printf_filtered (" DMAP%d %04lx", a, d10v_dmap_register (a));
|
|
}
|
|
printf_filtered ("\n");
|
|
}
|
|
printf_filtered ("A0-A%d", NR_A_REGS - 1);
|
|
for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
|
|
{
|
|
char num[MAX_REGISTER_RAW_SIZE];
|
|
int i;
|
|
printf_filtered (" ");
|
|
read_register_gen (a, (char *) &num);
|
|
for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
|
|
{
|
|
printf_filtered ("%02x", (num[i] & 0xff));
|
|
}
|
|
}
|
|
printf_filtered ("\n");
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_read_pc (ptid_t ptid)
|
|
{
|
|
ptid_t save_ptid;
|
|
CORE_ADDR pc;
|
|
CORE_ADDR retval;
|
|
|
|
save_ptid = inferior_ptid;
|
|
inferior_ptid = ptid;
|
|
pc = (int) read_register (PC_REGNUM);
|
|
inferior_ptid = save_ptid;
|
|
retval = d10v_make_iaddr (pc);
|
|
return retval;
|
|
}
|
|
|
|
static void
|
|
d10v_write_pc (CORE_ADDR val, ptid_t ptid)
|
|
{
|
|
ptid_t save_ptid;
|
|
|
|
save_ptid = inferior_ptid;
|
|
inferior_ptid = ptid;
|
|
write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
|
|
inferior_ptid = save_ptid;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_read_sp (void)
|
|
{
|
|
return (d10v_make_daddr (read_register (SP_REGNUM)));
|
|
}
|
|
|
|
static void
|
|
d10v_write_sp (CORE_ADDR val)
|
|
{
|
|
write_register (SP_REGNUM, d10v_convert_daddr_to_raw (val));
|
|
}
|
|
|
|
static void
|
|
d10v_write_fp (CORE_ADDR val)
|
|
{
|
|
write_register (FP_REGNUM, d10v_convert_daddr_to_raw (val));
|
|
}
|
|
|
|
static CORE_ADDR
|
|
d10v_read_fp (void)
|
|
{
|
|
return (d10v_make_daddr (read_register (FP_REGNUM)));
|
|
}
|
|
|
|
/* Function: push_return_address (pc)
|
|
Set up the return address for the inferior function call.
|
|
Needed for targets where we don't actually execute a JSR/BSR instruction */
|
|
|
|
static CORE_ADDR
|
|
d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
|
{
|
|
write_register (LR_REGNUM, d10v_convert_iaddr_to_raw (CALL_DUMMY_ADDRESS ()));
|
|
return sp;
|
|
}
|
|
|
|
|
|
/* When arguments must be pushed onto the stack, they go on in reverse
|
|
order. The below implements a FILO (stack) to do this. */
|
|
|
|
struct stack_item
|
|
{
|
|
int len;
|
|
struct stack_item *prev;
|
|
void *data;
|
|
};
|
|
|
|
static struct stack_item *push_stack_item (struct stack_item *prev,
|
|
void *contents, int len);
|
|
static struct stack_item *
|
|
push_stack_item (struct stack_item *prev, void *contents, int len)
|
|
{
|
|
struct stack_item *si;
|
|
si = xmalloc (sizeof (struct stack_item));
|
|
si->data = xmalloc (len);
|
|
si->len = len;
|
|
si->prev = prev;
|
|
memcpy (si->data, contents, len);
|
|
return si;
|
|
}
|
|
|
|
static struct stack_item *pop_stack_item (struct stack_item *si);
|
|
static struct stack_item *
|
|
pop_stack_item (struct stack_item *si)
|
|
{
|
|
struct stack_item *dead = si;
|
|
si = si->prev;
|
|
xfree (dead->data);
|
|
xfree (dead);
|
|
return si;
|
|
}
|
|
|
|
|
|
static CORE_ADDR
|
|
d10v_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
int i;
|
|
int regnum = ARG1_REGNUM;
|
|
struct stack_item *si = NULL;
|
|
|
|
/* Fill in registers and arg lists */
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *type = check_typedef (VALUE_TYPE (arg));
|
|
char *contents = VALUE_CONTENTS (arg);
|
|
int len = TYPE_LENGTH (type);
|
|
/* printf ("push: type=%d len=%d\n", type->code, len); */
|
|
{
|
|
int aligned_regnum = (regnum + 1) & ~1;
|
|
if (len <= 2 && regnum <= ARGN_REGNUM)
|
|
/* fits in a single register, do not align */
|
|
{
|
|
long val = extract_unsigned_integer (contents, len);
|
|
write_register (regnum++, val);
|
|
}
|
|
else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
|
|
/* value fits in remaining registers, store keeping left
|
|
aligned */
|
|
{
|
|
int b;
|
|
regnum = aligned_regnum;
|
|
for (b = 0; b < (len & ~1); b += 2)
|
|
{
|
|
long val = extract_unsigned_integer (&contents[b], 2);
|
|
write_register (regnum++, val);
|
|
}
|
|
if (b < len)
|
|
{
|
|
long val = extract_unsigned_integer (&contents[b], 1);
|
|
write_register (regnum++, (val << 8));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* arg will go onto stack */
|
|
regnum = ARGN_REGNUM + 1;
|
|
si = push_stack_item (si, contents, len);
|
|
}
|
|
}
|
|
}
|
|
|
|
while (si)
|
|
{
|
|
sp = (sp - si->len) & ~1;
|
|
write_memory (sp, si->data, si->len);
|
|
si = pop_stack_item (si);
|
|
}
|
|
|
|
return sp;
|
|
}
|
|
|
|
|
|
/* Given a return value in `regbuf' with a type `valtype',
|
|
extract and copy its value into `valbuf'. */
|
|
|
|
static void
|
|
d10v_extract_return_value (struct type *type, char regbuf[REGISTER_BYTES],
|
|
char *valbuf)
|
|
{
|
|
int len;
|
|
/* printf("RET: TYPE=%d len=%d r%d=0x%x\n",type->code, TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM))); */
|
|
{
|
|
len = TYPE_LENGTH (type);
|
|
if (len == 1)
|
|
{
|
|
unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
|
|
store_unsigned_integer (valbuf, 1, c);
|
|
}
|
|
else if ((len & 1) == 0)
|
|
memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
|
|
else
|
|
{
|
|
/* For return values of odd size, the first byte is in the
|
|
least significant part of the first register. The
|
|
remaining bytes in remaining registers. Interestingly,
|
|
when such values are passed in, the last byte is in the
|
|
most significant byte of that same register - wierd. */
|
|
memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Translate a GDB virtual ADDR/LEN into a format the remote target
|
|
understands. Returns number of bytes that can be transfered
|
|
starting at TARG_ADDR. Return ZERO if no bytes can be transfered
|
|
(segmentation fault). Since the simulator knows all about how the
|
|
VM system works, we just call that to do the translation. */
|
|
|
|
static void
|
|
remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
|
|
CORE_ADDR *targ_addr, int *targ_len)
|
|
{
|
|
long out_addr;
|
|
long out_len;
|
|
out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
|
|
&out_addr,
|
|
d10v_dmap_register,
|
|
d10v_imap_register);
|
|
*targ_addr = out_addr;
|
|
*targ_len = out_len;
|
|
}
|
|
|
|
|
|
/* The following code implements access to, and display of, the D10V's
|
|
instruction trace buffer. The buffer consists of 64K or more
|
|
4-byte words of data, of which each words includes an 8-bit count,
|
|
an 8-bit segment number, and a 16-bit instruction address.
|
|
|
|
In theory, the trace buffer is continuously capturing instruction
|
|
data that the CPU presents on its "debug bus", but in practice, the
|
|
ROMified GDB stub only enables tracing when it continues or steps
|
|
the program, and stops tracing when the program stops; so it
|
|
actually works for GDB to read the buffer counter out of memory and
|
|
then read each trace word. The counter records where the tracing
|
|
stops, but there is no record of where it started, so we remember
|
|
the PC when we resumed and then search backwards in the trace
|
|
buffer for a word that includes that address. This is not perfect,
|
|
because you will miss trace data if the resumption PC is the target
|
|
of a branch. (The value of the buffer counter is semi-random, any
|
|
trace data from a previous program stop is gone.) */
|
|
|
|
/* The address of the last word recorded in the trace buffer. */
|
|
|
|
#define DBBC_ADDR (0xd80000)
|
|
|
|
/* The base of the trace buffer, at least for the "Board_0". */
|
|
|
|
#define TRACE_BUFFER_BASE (0xf40000)
|
|
|
|
static void trace_command (char *, int);
|
|
|
|
static void untrace_command (char *, int);
|
|
|
|
static void trace_info (char *, int);
|
|
|
|
static void tdisassemble_command (char *, int);
|
|
|
|
static void display_trace (int, int);
|
|
|
|
/* True when instruction traces are being collected. */
|
|
|
|
static int tracing;
|
|
|
|
/* Remembered PC. */
|
|
|
|
static CORE_ADDR last_pc;
|
|
|
|
/* True when trace output should be displayed whenever program stops. */
|
|
|
|
static int trace_display;
|
|
|
|
/* True when trace listing should include source lines. */
|
|
|
|
static int default_trace_show_source = 1;
|
|
|
|
struct trace_buffer
|
|
{
|
|
int size;
|
|
short *counts;
|
|
CORE_ADDR *addrs;
|
|
}
|
|
trace_data;
|
|
|
|
static void
|
|
trace_command (char *args, int from_tty)
|
|
{
|
|
/* Clear the host-side trace buffer, allocating space if needed. */
|
|
trace_data.size = 0;
|
|
if (trace_data.counts == NULL)
|
|
trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
|
|
if (trace_data.addrs == NULL)
|
|
trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
|
|
|
|
tracing = 1;
|
|
|
|
printf_filtered ("Tracing is now on.\n");
|
|
}
|
|
|
|
static void
|
|
untrace_command (char *args, int from_tty)
|
|
{
|
|
tracing = 0;
|
|
|
|
printf_filtered ("Tracing is now off.\n");
|
|
}
|
|
|
|
static void
|
|
trace_info (char *args, int from_tty)
|
|
{
|
|
int i;
|
|
|
|
if (trace_data.size)
|
|
{
|
|
printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
|
|
|
|
for (i = 0; i < trace_data.size; ++i)
|
|
{
|
|
printf_filtered ("%d: %d instruction%s at 0x%s\n",
|
|
i,
|
|
trace_data.counts[i],
|
|
(trace_data.counts[i] == 1 ? "" : "s"),
|
|
paddr_nz (trace_data.addrs[i]));
|
|
}
|
|
}
|
|
else
|
|
printf_filtered ("No entries in trace buffer.\n");
|
|
|
|
printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
|
|
}
|
|
|
|
/* Print the instruction at address MEMADDR in debugged memory,
|
|
on STREAM. Returns length of the instruction, in bytes. */
|
|
|
|
static int
|
|
print_insn (CORE_ADDR memaddr, struct ui_file *stream)
|
|
{
|
|
/* If there's no disassembler, something is very wrong. */
|
|
if (tm_print_insn == NULL)
|
|
internal_error (__FILE__, __LINE__,
|
|
"print_insn: no disassembler");
|
|
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
|
tm_print_insn_info.endian = BFD_ENDIAN_BIG;
|
|
else
|
|
tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
|
|
return TARGET_PRINT_INSN (memaddr, &tm_print_insn_info);
|
|
}
|
|
|
|
static void
|
|
d10v_eva_prepare_to_trace (void)
|
|
{
|
|
if (!tracing)
|
|
return;
|
|
|
|
last_pc = read_register (PC_REGNUM);
|
|
}
|
|
|
|
/* Collect trace data from the target board and format it into a form
|
|
more useful for display. */
|
|
|
|
static void
|
|
d10v_eva_get_trace_data (void)
|
|
{
|
|
int count, i, j, oldsize;
|
|
int trace_addr, trace_seg, trace_cnt, next_cnt;
|
|
unsigned int last_trace, trace_word, next_word;
|
|
unsigned int *tmpspace;
|
|
|
|
if (!tracing)
|
|
return;
|
|
|
|
tmpspace = xmalloc (65536 * sizeof (unsigned int));
|
|
|
|
last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
|
|
|
|
/* Collect buffer contents from the target, stopping when we reach
|
|
the word recorded when execution resumed. */
|
|
|
|
count = 0;
|
|
while (last_trace > 0)
|
|
{
|
|
QUIT;
|
|
trace_word =
|
|
read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
|
|
trace_addr = trace_word & 0xffff;
|
|
last_trace -= 4;
|
|
/* Ignore an apparently nonsensical entry. */
|
|
if (trace_addr == 0xffd5)
|
|
continue;
|
|
tmpspace[count++] = trace_word;
|
|
if (trace_addr == last_pc)
|
|
break;
|
|
if (count > 65535)
|
|
break;
|
|
}
|
|
|
|
/* Move the data to the host-side trace buffer, adjusting counts to
|
|
include the last instruction executed and transforming the address
|
|
into something that GDB likes. */
|
|
|
|
for (i = 0; i < count; ++i)
|
|
{
|
|
trace_word = tmpspace[i];
|
|
next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
|
|
trace_addr = trace_word & 0xffff;
|
|
next_cnt = (next_word >> 24) & 0xff;
|
|
j = trace_data.size + count - i - 1;
|
|
trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
|
|
trace_data.counts[j] = next_cnt + 1;
|
|
}
|
|
|
|
oldsize = trace_data.size;
|
|
trace_data.size += count;
|
|
|
|
xfree (tmpspace);
|
|
|
|
if (trace_display)
|
|
display_trace (oldsize, trace_data.size);
|
|
}
|
|
|
|
static void
|
|
tdisassemble_command (char *arg, int from_tty)
|
|
{
|
|
int i, count;
|
|
CORE_ADDR low, high;
|
|
char *space_index;
|
|
|
|
if (!arg)
|
|
{
|
|
low = 0;
|
|
high = trace_data.size;
|
|
}
|
|
else if (!(space_index = (char *) strchr (arg, ' ')))
|
|
{
|
|
low = parse_and_eval_address (arg);
|
|
high = low + 5;
|
|
}
|
|
else
|
|
{
|
|
/* Two arguments. */
|
|
*space_index = '\0';
|
|
low = parse_and_eval_address (arg);
|
|
high = parse_and_eval_address (space_index + 1);
|
|
if (high < low)
|
|
high = low;
|
|
}
|
|
|
|
printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
|
|
|
|
display_trace (low, high);
|
|
|
|
printf_filtered ("End of trace dump.\n");
|
|
gdb_flush (gdb_stdout);
|
|
}
|
|
|
|
static void
|
|
display_trace (int low, int high)
|
|
{
|
|
int i, count, trace_show_source, first, suppress;
|
|
CORE_ADDR next_address;
|
|
|
|
trace_show_source = default_trace_show_source;
|
|
if (!have_full_symbols () && !have_partial_symbols ())
|
|
{
|
|
trace_show_source = 0;
|
|
printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
|
|
printf_filtered ("Trace will not display any source.\n");
|
|
}
|
|
|
|
first = 1;
|
|
suppress = 0;
|
|
for (i = low; i < high; ++i)
|
|
{
|
|
next_address = trace_data.addrs[i];
|
|
count = trace_data.counts[i];
|
|
while (count-- > 0)
|
|
{
|
|
QUIT;
|
|
if (trace_show_source)
|
|
{
|
|
struct symtab_and_line sal, sal_prev;
|
|
|
|
sal_prev = find_pc_line (next_address - 4, 0);
|
|
sal = find_pc_line (next_address, 0);
|
|
|
|
if (sal.symtab)
|
|
{
|
|
if (first || sal.line != sal_prev.line)
|
|
print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
|
|
suppress = 0;
|
|
}
|
|
else
|
|
{
|
|
if (!suppress)
|
|
/* FIXME-32x64--assumes sal.pc fits in long. */
|
|
printf_filtered ("No source file for address %s.\n",
|
|
local_hex_string ((unsigned long) sal.pc));
|
|
suppress = 1;
|
|
}
|
|
}
|
|
first = 0;
|
|
print_address (next_address, gdb_stdout);
|
|
printf_filtered (":");
|
|
printf_filtered ("\t");
|
|
wrap_here (" ");
|
|
next_address = next_address + print_insn (next_address, gdb_stdout);
|
|
printf_filtered ("\n");
|
|
gdb_flush (gdb_stdout);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static gdbarch_init_ftype d10v_gdbarch_init;
|
|
|
|
static struct gdbarch *
|
|
d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
static LONGEST d10v_call_dummy_words[] =
|
|
{0};
|
|
struct gdbarch *gdbarch;
|
|
int d10v_num_regs;
|
|
struct gdbarch_tdep *tdep;
|
|
gdbarch_register_name_ftype *d10v_register_name;
|
|
gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
|
|
|
|
/* Find a candidate among the list of pre-declared architectures. */
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
if (arches != NULL)
|
|
return arches->gdbarch;
|
|
|
|
/* None found, create a new architecture from the information
|
|
provided. */
|
|
tdep = XMALLOC (struct gdbarch_tdep);
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_d10v_ts2:
|
|
d10v_num_regs = 37;
|
|
d10v_register_name = d10v_ts2_register_name;
|
|
d10v_register_sim_regno = d10v_ts2_register_sim_regno;
|
|
tdep->a0_regnum = TS2_A0_REGNUM;
|
|
tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
|
|
tdep->dmap_register = d10v_ts2_dmap_register;
|
|
tdep->imap_register = d10v_ts2_imap_register;
|
|
break;
|
|
default:
|
|
case bfd_mach_d10v_ts3:
|
|
d10v_num_regs = 42;
|
|
d10v_register_name = d10v_ts3_register_name;
|
|
d10v_register_sim_regno = d10v_ts3_register_sim_regno;
|
|
tdep->a0_regnum = TS3_A0_REGNUM;
|
|
tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
|
|
tdep->dmap_register = d10v_ts3_dmap_register;
|
|
tdep->imap_register = d10v_ts3_imap_register;
|
|
break;
|
|
}
|
|
|
|
set_gdbarch_read_pc (gdbarch, d10v_read_pc);
|
|
set_gdbarch_write_pc (gdbarch, d10v_write_pc);
|
|
set_gdbarch_read_fp (gdbarch, d10v_read_fp);
|
|
set_gdbarch_write_fp (gdbarch, d10v_write_fp);
|
|
set_gdbarch_read_sp (gdbarch, d10v_read_sp);
|
|
set_gdbarch_write_sp (gdbarch, d10v_write_sp);
|
|
|
|
set_gdbarch_num_regs (gdbarch, d10v_num_regs);
|
|
set_gdbarch_sp_regnum (gdbarch, 15);
|
|
set_gdbarch_fp_regnum (gdbarch, 11);
|
|
set_gdbarch_pc_regnum (gdbarch, 18);
|
|
set_gdbarch_register_name (gdbarch, d10v_register_name);
|
|
set_gdbarch_register_size (gdbarch, 2);
|
|
set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
|
|
set_gdbarch_register_byte (gdbarch, d10v_register_byte);
|
|
set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
|
|
set_gdbarch_max_register_raw_size (gdbarch, 8);
|
|
set_gdbarch_register_virtual_size (gdbarch, d10v_register_virtual_size);
|
|
set_gdbarch_max_register_virtual_size (gdbarch, 8);
|
|
set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
|
|
|
|
set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_addr_bit (gdbarch, 32);
|
|
set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
|
|
set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
|
|
set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
|
|
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
/* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
|
|
double'' is 64 bits. */
|
|
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
|
switch (info.byte_order)
|
|
{
|
|
case BIG_ENDIAN:
|
|
set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
|
|
set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
|
|
set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
|
|
break;
|
|
case LITTLE_ENDIAN:
|
|
set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
|
|
set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
|
|
set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__,
|
|
"d10v_gdbarch_init: bad byte order for float format");
|
|
}
|
|
|
|
set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
|
|
set_gdbarch_call_dummy_length (gdbarch, 0);
|
|
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
|
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
|
|
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
|
|
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
|
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
|
set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
|
|
set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
|
|
set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
|
|
set_gdbarch_call_dummy_p (gdbarch, 1);
|
|
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
|
|
set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
|
|
set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
|
|
|
|
set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
|
|
set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
|
|
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
|
|
set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
|
|
|
|
set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
|
|
set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
|
|
set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
|
|
set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
|
|
|
|
set_gdbarch_frame_init_saved_regs (gdbarch, d10v_frame_init_saved_regs);
|
|
set_gdbarch_init_extra_frame_info (gdbarch, d10v_init_extra_frame_info);
|
|
|
|
set_gdbarch_pop_frame (gdbarch, d10v_pop_frame);
|
|
|
|
set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 4);
|
|
set_gdbarch_function_start_offset (gdbarch, 0);
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
|
|
|
|
set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
|
|
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
|
set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
|
|
set_gdbarch_frame_chain (gdbarch, d10v_frame_chain);
|
|
set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid);
|
|
set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc);
|
|
set_gdbarch_frame_args_address (gdbarch, default_frame_address);
|
|
set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
|
|
set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
|
|
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
|
|
set_gdbarch_stack_align (gdbarch, d10v_stack_align);
|
|
|
|
set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
|
|
set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
|
|
extern void (*target_resume_hook) (void);
|
|
extern void (*target_wait_loop_hook) (void);
|
|
|
|
void
|
|
_initialize_d10v_tdep (void)
|
|
{
|
|
register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
|
|
|
|
tm_print_insn = print_insn_d10v;
|
|
|
|
target_resume_hook = d10v_eva_prepare_to_trace;
|
|
target_wait_loop_hook = d10v_eva_get_trace_data;
|
|
|
|
add_com ("regs", class_vars, show_regs, "Print all registers");
|
|
|
|
add_com ("itrace", class_support, trace_command,
|
|
"Enable tracing of instruction execution.");
|
|
|
|
add_com ("iuntrace", class_support, untrace_command,
|
|
"Disable tracing of instruction execution.");
|
|
|
|
add_com ("itdisassemble", class_vars, tdisassemble_command,
|
|
"Disassemble the trace buffer.\n\
|
|
Two optional arguments specify a range of trace buffer entries\n\
|
|
as reported by info trace (NOT addresses!).");
|
|
|
|
add_info ("itrace", trace_info,
|
|
"Display info about the trace data buffer.");
|
|
|
|
add_show_from_set (add_set_cmd ("itracedisplay", no_class,
|
|
var_integer, (char *) &trace_display,
|
|
"Set automatic display of trace.\n", &setlist),
|
|
&showlist);
|
|
add_show_from_set (add_set_cmd ("itracesource", no_class,
|
|
var_integer, (char *) &default_trace_show_source,
|
|
"Set display of source code with trace.\n", &setlist),
|
|
&showlist);
|
|
|
|
}
|