binutils-gdb/gold/merge.cc

567 lines
16 KiB
C++

// merge.cc -- handle section merging for gold
// Copyright 2006, 2007 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.
// This file is part of gold.
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
#include "gold.h"
#include <cstdlib>
#include <algorithm>
#include "merge.h"
namespace gold
{
// For each object with merge sections, we store an Object_merge_map.
// This is used to map locations in input sections to a merged output
// section. The output section itself is not recorded here--it can be
// found in the map_to_output_ field of the Object.
class Object_merge_map
{
public:
Object_merge_map()
: first_shnum_(-1U), first_map_(),
second_shnum_(-1U), second_map_(),
section_merge_maps_()
{ }
~Object_merge_map();
// Add a mapping for MERGE_MAP, for the bytes from OFFSET to OFFSET
// + LENGTH in the input section SHNDX to OUTPUT_OFFSET in the
// output section. An OUTPUT_OFFSET of -1 means that the bytes are
// discarded.
void
add_mapping(const Merge_map*, unsigned int shndx, off_t offset, off_t length,
off_t output_offset);
// Get the output offset for an input address in MERGE_MAP. The
// input address is at offset OFFSET in section SHNDX. This sets
// *OUTPUT_OFFSET to the offset in the output section; this will be
// -1 if the bytes are not being copied to the output. This returns
// true if the mapping is known, false otherwise.
bool
get_output_offset(const Merge_map*, unsigned int shndx, off_t offset,
off_t *output_offset);
private:
// Map input section offsets to a length and an output section
// offset. An output section offset of -1 means that this part of
// the input section is being discarded.
struct Input_merge_entry
{
// The offset in the input section.
off_t input_offset;
// The length.
off_t length;
// The offset in the output section.
off_t output_offset;
};
// A less-than comparison routine for Input_merge_entry.
struct Input_merge_compare
{
bool
operator()(const Input_merge_entry& i1, const Input_merge_entry& i2) const
{ return i1.input_offset < i2.input_offset; }
};
// A list of entries for a particular section.
struct Input_merge_map
{
// The Merge_map for this section.
const Merge_map* merge_map;
// The list of mappings.
std::vector<Input_merge_entry> entries;
// Whether the ENTRIES field is sorted by input_offset.
bool sorted;
Input_merge_map()
: merge_map(NULL), entries(), sorted(true)
{ }
};
// Map input section indices to merge maps.
typedef std::map<unsigned int, Input_merge_map*> Section_merge_maps;
// Return a pointer to the Input_merge_map to use for the input
// section SHNDX, or NULL.
Input_merge_map*
get_input_merge_map(unsigned int shndx);
// Get or make the the Input_merge_map to use for the section SHNDX
// with MERGE_MAP.
Input_merge_map*
get_or_make_input_merge_map(const Merge_map* merge_map, unsigned int shndx);
// Any given object file will normally only have a couple of input
// sections with mergeable contents. So we keep the first two input
// section numbers inline, and push any further ones into a map. A
// value of -1U in first_shnum_ or second_shnum_ means that we don't
// have a corresponding entry.
unsigned int first_shnum_;
Input_merge_map first_map_;
unsigned int second_shnum_;
Input_merge_map second_map_;
Section_merge_maps section_merge_maps_;
};
// Destructor.
Object_merge_map::~Object_merge_map()
{
for (Section_merge_maps::iterator p = this->section_merge_maps_.begin();
p != this->section_merge_maps_.end();
++p)
delete p->second;
}
// Get the Input_merge_map to use for an input section, or NULL.
Object_merge_map::Input_merge_map*
Object_merge_map::get_input_merge_map(unsigned int shndx)
{
gold_assert(shndx != -1U);
if (shndx == this->first_shnum_)
return &this->first_map_;
if (shndx == this->second_shnum_)
return &this->second_map_;
Section_merge_maps::const_iterator p = this->section_merge_maps_.find(shndx);
if (p != this->section_merge_maps_.end())
return p->second;
return NULL;
}
// Get or create the Input_merge_map to use for an input section.
Object_merge_map::Input_merge_map*
Object_merge_map::get_or_make_input_merge_map(const Merge_map* merge_map,
unsigned int shndx)
{
Input_merge_map* map = this->get_input_merge_map(shndx);
if (map != NULL)
{
// For a given input section in a given object, every mapping
// must be donw with the same Merge_map.
gold_assert(map->merge_map == merge_map);
return map;
}
// We need to create a new entry.
if (this->first_shnum_ == -1U)
{
this->first_shnum_ = shndx;
this->first_map_.merge_map = merge_map;
return &this->first_map_;
}
if (this->second_shnum_ == -1U)
{
this->second_shnum_ = shndx;
this->second_map_.merge_map = merge_map;
return &this->second_map_;
}
Input_merge_map* new_map = new Input_merge_map;
new_map->merge_map = merge_map;
this->section_merge_maps_[shndx] = new_map;
return new_map;
}
// Add a mapping.
void
Object_merge_map::add_mapping(const Merge_map* merge_map, unsigned int shndx,
off_t input_offset, off_t length,
off_t output_offset)
{
Input_merge_map* map = this->get_or_make_input_merge_map(merge_map, shndx);
// Try to merge the new entry in the last one we saw.
if (!map->entries.empty())
{
Input_merge_entry& entry(map->entries.back());
// If this entry is not in order, we need to sort the vector
// before looking anything up.
if (input_offset < entry.input_offset + entry.length)
{
gold_assert(input_offset < entry.input_offset
&& input_offset + length <= entry.input_offset);
map->sorted = false;
}
else if (entry.input_offset + entry.length == input_offset
&& (output_offset == -1
? entry.output_offset == -1
: entry.output_offset + entry.length == output_offset))
{
entry.length += length;
return;
}
}
Input_merge_entry entry;
entry.input_offset = input_offset;
entry.length = length;
entry.output_offset = output_offset;
map->entries.push_back(entry);
}
// Get the output offset for an input address.
bool
Object_merge_map::get_output_offset(const Merge_map* merge_map,
unsigned int shndx, off_t input_offset,
off_t *output_offset)
{
Input_merge_map* map = this->get_input_merge_map(shndx);
if (map == NULL || map->merge_map != merge_map)
return false;
if (!map->sorted)
{
std::sort(map->entries.begin(), map->entries.end(),
Input_merge_compare());
map->sorted = true;
}
Input_merge_entry entry;
entry.input_offset = input_offset;
std::vector<Input_merge_entry>::const_iterator p =
std::lower_bound(map->entries.begin(), map->entries.end(),
entry, Input_merge_compare());
if (p == map->entries.end() || p->input_offset > input_offset)
{
if (p == map->entries.begin())
return false;
--p;
gold_assert(p->input_offset <= input_offset);
}
if (input_offset - p->input_offset >= p->length)
return false;
*output_offset = p->output_offset;
if (*output_offset != -1)
*output_offset += (input_offset - p->input_offset);
return true;
}
// Class Merge_map.
// Add a mapping for the bytes from OFFSET to OFFSET + LENGTH in input
// section SHNDX in object OBJECT to an OUTPUT_OFFSET in a merged
// output section.
void
Merge_map::add_mapping(Relobj* object, unsigned int shndx,
off_t offset, off_t length, off_t output_offset)
{
Object_merge_map* object_merge_map = object->merge_map();
if (object_merge_map == NULL)
{
object_merge_map = new Object_merge_map();
object->set_merge_map(object_merge_map);
}
object_merge_map->add_mapping(this, shndx, offset, length, output_offset);
}
// Return the output offset for an input address. The input address
// is at offset OFFSET in section SHNDX in OBJECT. This sets
// *OUTPUT_OFFSET to the offset in the output section. This returns
// true if the mapping is known, false otherwise.
bool
Merge_map::get_output_offset(const Relobj* object, unsigned int shndx,
off_t offset, off_t* output_offset) const
{
Object_merge_map* object_merge_map = object->merge_map();
if (object_merge_map == NULL)
return false;
return object_merge_map->get_output_offset(this, shndx, offset,
output_offset);
}
// Class Output_merge_base.
// Return the output offset for an input offset. The input address is
// at offset OFFSET in section SHNDX in OBJECT. If we know the
// offset, set *POUTPUT and return true. Otherwise return false.
bool
Output_merge_base::do_output_offset(const Relobj* object,
unsigned int shndx,
off_t offset,
off_t* poutput) const
{
return this->merge_map_.get_output_offset(object, shndx, offset, poutput);
}
// Class Output_merge_data.
// Compute the hash code for a fixed-size constant.
size_t
Output_merge_data::Merge_data_hash::operator()(Merge_data_key k) const
{
const unsigned char* p = this->pomd_->constant(k);
uint64_t entsize = this->pomd_->entsize();
// Fowler/Noll/Vo (FNV) hash (type FNV-1a).
if (sizeof(size_t) == 8)
{
size_t result = static_cast<size_t>(14695981039346656037ULL);
for (uint64_t i = 0; i < entsize; ++i)
{
result &= (size_t) *p++;
result *= 1099511628211ULL;
}
return result;
}
else
{
size_t result = 2166136261UL;
for (uint64_t i = 0; i < entsize; ++i)
{
result ^= (size_t) *p++;
result *= 16777619UL;
}
return result;
}
}
// Return whether one hash table key equals another.
bool
Output_merge_data::Merge_data_eq::operator()(Merge_data_key k1,
Merge_data_key k2) const
{
const unsigned char* p1 = this->pomd_->constant(k1);
const unsigned char* p2 = this->pomd_->constant(k2);
return memcmp(p1, p2, this->pomd_->entsize()) == 0;
}
// Add a constant to the end of the section contents.
void
Output_merge_data::add_constant(const unsigned char* p)
{
uint64_t entsize = this->entsize();
uint64_t addsize = std::max(entsize, this->addralign());
if (this->len_ + addsize > this->alc_)
{
if (this->alc_ == 0)
this->alc_ = 128 * addsize;
else
this->alc_ *= 2;
this->p_ = static_cast<unsigned char*>(realloc(this->p_, this->alc_));
if (this->p_ == NULL)
gold_nomem();
}
memcpy(this->p_ + this->len_, p, entsize);
if (addsize > entsize)
memset(this->p_ + this->len_ + entsize, 0, addsize - entsize);
this->len_ += addsize;
}
// Add the input section SHNDX in OBJECT to a merged output section
// which holds fixed length constants. Return whether we were able to
// handle the section; if not, it will be linked as usual without
// constant merging.
bool
Output_merge_data::do_add_input_section(Relobj* object, unsigned int shndx)
{
off_t len;
const unsigned char* p = object->section_contents(shndx, &len, false);
uint64_t entsize = this->entsize();
if (len % entsize != 0)
return false;
for (off_t i = 0; i < len; i += entsize, p += entsize)
{
// Add the constant to the section contents. If we find that it
// is already in the hash table, we will remove it again.
Merge_data_key k = this->len_;
this->add_constant(p);
std::pair<Merge_data_hashtable::iterator, bool> ins =
this->hashtable_.insert(k);
if (!ins.second)
{
// Key was already present. Remove the copy we just added.
this->len_ -= entsize;
k = *ins.first;
}
// Record the offset of this constant in the output section.
this->add_mapping(object, shndx, i, entsize, k);
}
return true;
}
// Set the final data size in a merged output section with fixed size
// constants.
void
Output_merge_data::set_final_data_size()
{
// Release the memory we don't need.
this->p_ = static_cast<unsigned char*>(realloc(this->p_, this->len_));
gold_assert(this->p_ != NULL);
this->set_data_size(this->len_);
}
// Write the data of a merged output section with fixed size constants
// to the file.
void
Output_merge_data::do_write(Output_file* of)
{
of->write(this->offset(), this->p_, this->len_);
}
// Write the data to a buffer.
void
Output_merge_data::do_write_to_buffer(unsigned char* buffer)
{
memcpy(buffer, this->p_, this->len_);
}
// Class Output_merge_string.
// Add an input section to a merged string section.
template<typename Char_type>
bool
Output_merge_string<Char_type>::do_add_input_section(Relobj* object,
unsigned int shndx)
{
off_t len;
const unsigned char* pdata = object->section_contents(shndx, &len, false);
const Char_type* p = reinterpret_cast<const Char_type*>(pdata);
if (len % sizeof(Char_type) != 0)
{
object->error(_("mergeable string section length not multiple of "
"character size"));
return false;
}
// The index I is in bytes, not characters.
off_t i = 0;
while (i < len)
{
off_t plen = 0;
for (const Char_type* pl = p; *pl != 0; ++pl)
{
// The length PLEN is in characters, not bytes.
++plen;
if (i + plen * static_cast<off_t>(sizeof(Char_type)) >= len)
{
object->error(_("entry in mergeable string section "
"not null terminated"));
break;
}
}
const Char_type* str = this->stringpool_.add(p, true, NULL);
off_t bytelen_with_null = (plen + 1) * sizeof(Char_type);
this->merged_strings_.push_back(Merged_string(object, shndx, i, str,
bytelen_with_null));
p += plen + 1;
i += bytelen_with_null;
}
return true;
}
// Finalize the mappings from the input sections to the output
// section, and return the final data size.
template<typename Char_type>
off_t
Output_merge_string<Char_type>::finalize_merged_data()
{
this->stringpool_.set_string_offsets();
for (typename Merged_strings::const_iterator p =
this->merged_strings_.begin();
p != this->merged_strings_.end();
++p)
this->add_mapping(p->object, p->shndx, p->offset, p->length,
this->stringpool_.get_offset(p->string));
// Save some memory.
this->merged_strings_.clear();
return this->stringpool_.get_strtab_size();
}
template<typename Char_type>
void
Output_merge_string<Char_type>::set_final_data_size()
{
const off_t final_data_size = this->finalize_merged_data();
this->set_data_size(final_data_size);
}
// Write out a merged string section.
template<typename Char_type>
void
Output_merge_string<Char_type>::do_write(Output_file* of)
{
this->stringpool_.write(of, this->offset());
}
// Write a merged string section to a buffer.
template<typename Char_type>
void
Output_merge_string<Char_type>::do_write_to_buffer(unsigned char* buffer)
{
this->stringpool_.write_to_buffer(buffer, this->data_size());
}
// Instantiate the templates we need.
template
class Output_merge_string<char>;
template
class Output_merge_string<uint16_t>;
template
class Output_merge_string<uint32_t>;
} // End namespace gold.