binutils-gdb/opcodes/tic30-dis.c

705 lines
19 KiB
C

/* Disassembly routines for TMS320C30 architecture
Copyright (C) 1998 Free Software Foundation, Inc.
Contributed by Steven Haworth (steve@pm.cse.rmit.edu.au)
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include <errno.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "dis-asm.h"
#include "opcode/tic30.h"
#define NORMAL_INSN 1
#define PARALLEL_INSN 2
/* Gets the type of instruction based on the top 2 or 3 bits of the
instruction word. */
#define GET_TYPE(insn) (insn & 0x80000000 ? insn & 0xC0000000 : insn & 0xE0000000)
/* Instruction types. */
#define TWO_OPERAND_1 0x00000000
#define TWO_OPERAND_2 0x40000000
#define THREE_OPERAND 0x20000000
#define PAR_STORE 0xC0000000
#define MUL_ADDS 0x80000000
#define BRANCHES 0x60000000
/* Specific instruction id bits. */
#define NORMAL_IDEN 0x1F800000
#define PAR_STORE_IDEN 0x3E000000
#define MUL_ADD_IDEN 0x2C000000
#define BR_IMM_IDEN 0x1F000000
#define BR_COND_IDEN 0x1C3F0000
/* Addressing modes. */
#define AM_REGISTER 0x00000000
#define AM_DIRECT 0x00200000
#define AM_INDIRECT 0x00400000
#define AM_IMM 0x00600000
#define P_FIELD 0x03000000
#define REG_AR0 0x08
#define LDP_INSN 0x08700000
/* TMS320C30 program counter for current instruction. */
static unsigned int _pc;
struct instruction
{
int type;
template *tm;
partemplate *ptm;
};
int get_tic30_instruction PARAMS ((unsigned long, struct instruction *));
int print_two_operand
PARAMS ((disassemble_info *, unsigned long, struct instruction *));
int print_three_operand
PARAMS ((disassemble_info *, unsigned long, struct instruction *));
int print_par_insn
PARAMS ((disassemble_info *, unsigned long, struct instruction *));
int print_branch
PARAMS ((disassemble_info *, unsigned long, struct instruction *));
int get_indirect_operand PARAMS ((unsigned short, int, char *));
int get_register_operand PARAMS ((unsigned char, char *));
int cnvt_tmsfloat_ieee PARAMS ((unsigned long, int, float *));
int
print_insn_tic30 (pc, info)
bfd_vma pc;
disassemble_info *info;
{
unsigned long insn_word;
struct instruction insn =
{0, NULL, NULL};
bfd_vma bufaddr = pc - info->buffer_vma;
/* Obtain the current instruction word from the buffer. */
insn_word = (*(info->buffer + bufaddr) << 24) | (*(info->buffer + bufaddr + 1) << 16) |
(*(info->buffer + bufaddr + 2) << 8) | *(info->buffer + bufaddr + 3);
_pc = pc / 4;
/* Get the instruction refered to by the current instruction word
and print it out based on its type. */
if (!get_tic30_instruction (insn_word, &insn))
return -1;
switch (GET_TYPE (insn_word))
{
case TWO_OPERAND_1:
case TWO_OPERAND_2:
if (!print_two_operand (info, insn_word, &insn))
return -1;
break;
case THREE_OPERAND:
if (!print_three_operand (info, insn_word, &insn))
return -1;
break;
case PAR_STORE:
case MUL_ADDS:
if (!print_par_insn (info, insn_word, &insn))
return -1;
break;
case BRANCHES:
if (!print_branch (info, insn_word, &insn))
return -1;
break;
}
return 4;
}
int
get_tic30_instruction (insn_word, insn)
unsigned long insn_word;
struct instruction *insn;
{
switch (GET_TYPE (insn_word))
{
case TWO_OPERAND_1:
case TWO_OPERAND_2:
case THREE_OPERAND:
insn->type = NORMAL_INSN;
{
template *current_optab = (template *) tic30_optab;
for (; current_optab < tic30_optab_end; current_optab++)
{
if (GET_TYPE (current_optab->base_opcode) == GET_TYPE (insn_word))
{
if (current_optab->operands == 0)
{
if (current_optab->base_opcode == insn_word)
{
insn->tm = current_optab;
break;
}
}
else if ((current_optab->base_opcode & NORMAL_IDEN) == (insn_word & NORMAL_IDEN))
{
insn->tm = current_optab;
break;
}
}
}
}
break;
case PAR_STORE:
insn->type = PARALLEL_INSN;
{
partemplate *current_optab = (partemplate *) tic30_paroptab;
for (; current_optab < tic30_paroptab_end; current_optab++)
{
if (GET_TYPE (current_optab->base_opcode) == GET_TYPE (insn_word))
{
if ((current_optab->base_opcode & PAR_STORE_IDEN) == (insn_word & PAR_STORE_IDEN))
{
insn->ptm = current_optab;
break;
}
}
}
}
break;
case MUL_ADDS:
insn->type = PARALLEL_INSN;
{
partemplate *current_optab = (partemplate *) tic30_paroptab;
for (; current_optab < tic30_paroptab_end; current_optab++)
{
if (GET_TYPE (current_optab->base_opcode) == GET_TYPE (insn_word))
{
if ((current_optab->base_opcode & MUL_ADD_IDEN) == (insn_word & MUL_ADD_IDEN))
{
insn->ptm = current_optab;
break;
}
}
}
}
break;
case BRANCHES:
insn->type = NORMAL_INSN;
{
template *current_optab = (template *) tic30_optab;
for (; current_optab < tic30_optab_end; current_optab++)
{
if (GET_TYPE (current_optab->base_opcode) == GET_TYPE (insn_word))
{
if (current_optab->operand_types[0] & Imm24)
{
if ((current_optab->base_opcode & BR_IMM_IDEN) == (insn_word & BR_IMM_IDEN))
{
insn->tm = current_optab;
break;
}
}
else if (current_optab->operands > 0)
{
if ((current_optab->base_opcode & BR_COND_IDEN) == (insn_word & BR_COND_IDEN))
{
insn->tm = current_optab;
break;
}
}
else
{
if ((current_optab->base_opcode & (BR_COND_IDEN | 0x00800000)) == (insn_word & (BR_COND_IDEN | 0x00800000)))
{
insn->tm = current_optab;
break;
}
}
}
}
}
break;
default:
return 0;
}
return 1;
}
int
print_two_operand (info, insn_word, insn)
disassemble_info *info;
unsigned long insn_word;
struct instruction *insn;
{
char name[12];
char operand[2][13] =
{
{0},
{0}};
float f_number;
if (insn->tm == NULL)
return 0;
strcpy (name, insn->tm->name);
if (insn->tm->opcode_modifier == AddressMode)
{
int src_op, dest_op;
/* Determine whether instruction is a store or a normal instruction. */
if ((insn->tm->operand_types[1] & (Direct | Indirect)) == (Direct | Indirect))
{
src_op = 1;
dest_op = 0;
}
else
{
src_op = 0;
dest_op = 1;
}
/* Get the destination register. */
if (insn->tm->operands == 2)
get_register_operand ((insn_word & 0x001F0000) >> 16, operand[dest_op]);
/* Get the source operand based on addressing mode. */
switch (insn_word & AddressMode)
{
case AM_REGISTER:
/* Check for the NOP instruction before getting the operand. */
if ((insn->tm->operand_types[0] & NotReq) == 0)
get_register_operand ((insn_word & 0x0000001F), operand[src_op]);
break;
case AM_DIRECT:
sprintf (operand[src_op], "@0x%lX", (insn_word & 0x0000FFFF));
break;
case AM_INDIRECT:
get_indirect_operand ((insn_word & 0x0000FFFF), 2, operand[src_op]);
break;
case AM_IMM:
/* Get the value of the immediate operand based on variable type. */
switch (insn->tm->imm_arg_type)
{
case Imm_Float:
cnvt_tmsfloat_ieee ((insn_word & 0x0000FFFF), 2, &f_number);
sprintf (operand[src_op], "%2.2f", f_number);
break;
case Imm_SInt:
sprintf (operand[src_op], "%d", (short) (insn_word & 0x0000FFFF));
break;
case Imm_UInt:
sprintf (operand[src_op], "%lu", (insn_word & 0x0000FFFF));
break;
default:
return 0;
}
/* Handle special case for LDP instruction. */
if ((insn_word & 0xFFFFFF00) == LDP_INSN)
{
strcpy (name, "ldp");
sprintf (operand[0], "0x%06lX", (insn_word & 0x000000FF) << 16);
operand[1][0] = '\0';
}
}
}
/* Handle case for stack and rotate instructions. */
else if (insn->tm->operands == 1)
{
if (insn->tm->opcode_modifier == StackOp)
{
get_register_operand ((insn_word & 0x001F0000) >> 16, operand[0]);
}
}
/* Output instruction to stream. */
info->fprintf_func (info->stream, " %s %s%c%s", name,
operand[0][0] ? operand[0] : "",
operand[1][0] ? ',' : ' ',
operand[1][0] ? operand[1] : "");
return 1;
}
int
print_three_operand (info, insn_word, insn)
disassemble_info *info;
unsigned long insn_word;
struct instruction *insn;
{
char operand[3][13] =
{
{0},
{0},
{0}};
if (insn->tm == NULL)
return 0;
switch (insn_word & AddressMode)
{
case AM_REGISTER:
get_register_operand ((insn_word & 0x000000FF), operand[0]);
get_register_operand ((insn_word & 0x0000FF00) >> 8, operand[1]);
break;
case AM_DIRECT:
get_register_operand ((insn_word & 0x000000FF), operand[0]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1]);
break;
case AM_INDIRECT:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0]);
get_register_operand ((insn_word & 0x0000FF00) >> 8, operand[1]);
break;
case AM_IMM:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1]);
break;
default:
return 0;
}
if (insn->tm->operands == 3)
get_register_operand ((insn_word & 0x001F0000) >> 16, operand[2]);
info->fprintf_func (info->stream, " %s %s,%s%c%s", insn->tm->name,
operand[0], operand[1],
operand[2][0] ? ',' : ' ',
operand[2][0] ? operand[2] : "");
return 1;
}
int
print_par_insn (info, insn_word, insn)
disassemble_info *info;
unsigned long insn_word;
struct instruction *insn;
{
int i;
char *name1, *name2;
char operand[2][3][13] =
{
{
{0},
{0},
{0}},
{
{0},
{0},
{0}}};
if (insn->ptm == NULL)
return 0;
/* Parse out the names of each of the parallel instructions from the
q_insn1_insn2 format. */
name1 = (char *) strdup (insn->ptm->name + 2);
for (i = 0; i < strlen (name1); i++)
{
if (name1[i] == '_')
{
name2 = &name1[i + 1];
name1[i] = '\0';
break;
}
}
/* Get the operands of the instruction based on the operand order. */
switch (insn->ptm->oporder)
{
case OO_4op1:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][0]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][1]);
get_register_operand ((insn_word >> 16) & 0x07, operand[1][0]);
get_register_operand ((insn_word >> 22) & 0x07, operand[0][1]);
break;
case OO_4op2:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][0]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][0]);
get_register_operand ((insn_word >> 19) & 0x07, operand[1][1]);
get_register_operand ((insn_word >> 22) & 0x07, operand[0][1]);
break;
case OO_4op3:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][1]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][1]);
get_register_operand ((insn_word >> 16) & 0x07, operand[1][0]);
get_register_operand ((insn_word >> 22) & 0x07, operand[0][0]);
break;
case OO_5op1:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][0]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][1]);
get_register_operand ((insn_word >> 16) & 0x07, operand[1][0]);
get_register_operand ((insn_word >> 19) & 0x07, operand[0][1]);
get_register_operand ((insn_word >> 22) & 0x07, operand[0][2]);
break;
case OO_5op2:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][1]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][1]);
get_register_operand ((insn_word >> 16) & 0x07, operand[1][0]);
get_register_operand ((insn_word >> 19) & 0x07, operand[0][0]);
get_register_operand ((insn_word >> 22) & 0x07, operand[0][2]);
break;
case OO_PField:
if (insn_word & 0x00800000)
get_register_operand (0x01, operand[0][2]);
else
get_register_operand (0x00, operand[0][2]);
if (insn_word & 0x00400000)
get_register_operand (0x03, operand[1][2]);
else
get_register_operand (0x02, operand[1][2]);
switch (insn_word & P_FIELD)
{
case 0x00000000:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[0][1]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[0][0]);
get_register_operand ((insn_word >> 16) & 0x07, operand[1][1]);
get_register_operand ((insn_word >> 19) & 0x07, operand[1][0]);
break;
case 0x01000000:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[1][0]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[0][0]);
get_register_operand ((insn_word >> 16) & 0x07, operand[1][1]);
get_register_operand ((insn_word >> 19) & 0x07, operand[0][1]);
break;
case 0x02000000:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[1][1]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[1][0]);
get_register_operand ((insn_word >> 16) & 0x07, operand[0][1]);
get_register_operand ((insn_word >> 19) & 0x07, operand[0][0]);
break;
case 0x03000000:
get_indirect_operand ((insn_word & 0x000000FF), 1, operand[1][1]);
get_indirect_operand ((insn_word & 0x0000FF00) >> 8, 1, operand[0][0]);
get_register_operand ((insn_word >> 16) & 0x07, operand[1][0]);
get_register_operand ((insn_word >> 19) & 0x07, operand[0][1]);
break;
}
break;
default:
return 0;
}
info->fprintf_func (info->stream, " %s %s,%s%c%s", name1,
operand[0][0], operand[0][1],
operand[0][2][0] ? ',' : ' ',
operand[0][2][0] ? operand[0][2] : "");
info->fprintf_func (info->stream, "\n\t\t\t|| %s %s,%s%c%s", name2,
operand[1][0], operand[1][1],
operand[1][2][0] ? ',' : ' ',
operand[1][2][0] ? operand[1][2] : "");
free (name1);
return 1;
}
int
print_branch (info, insn_word, insn)
disassemble_info *info;
unsigned long insn_word;
struct instruction *insn;
{
char operand[2][13] =
{
{0},
{0}};
unsigned long address;
int print_label = 0;
if (insn->tm == NULL)
return 0;
/* Get the operands for 24-bit immediate jumps. */
if (insn->tm->operand_types[0] & Imm24)
{
address = insn_word & 0x00FFFFFF;
sprintf (operand[0], "0x%lX", address);
print_label = 1;
}
/* Get the operand for the trap instruction. */
else if (insn->tm->operand_types[0] & IVector)
{
address = insn_word & 0x0000001F;
sprintf (operand[0], "0x%lX", address);
}
else
{
address = insn_word & 0x0000FFFF;
/* Get the operands for the DB instructions. */
if (insn->tm->operands == 2)
{
get_register_operand (((insn_word & 0x01C00000) >> 22) + REG_AR0, operand[0]);
if (insn_word & PCRel)
{
sprintf (operand[1], "%d", (short) address);
print_label = 1;
}
else
get_register_operand (insn_word & 0x0000001F, operand[1]);
}
/* Get the operands for the standard branches. */
else if (insn->tm->operands == 1)
{
if (insn_word & PCRel)
{
address = (short) address;
sprintf (operand[0], "%ld", address);
print_label = 1;
}
else
get_register_operand (insn_word & 0x0000001F, operand[0]);
}
}
info->fprintf_func (info->stream, " %s %s%c%s", insn->tm->name,
operand[0][0] ? operand[0] : "",
operand[1][0] ? ',' : ' ',
operand[1][0] ? operand[1] : "");
/* Print destination of branch in relation to current symbol. */
if (print_label && info->symbol)
{
if ((insn->tm->opcode_modifier == PCRel) && (insn_word & PCRel))
{
address = (_pc + 1 + (short) address) - ((info->symbol->section->vma + info->symbol->value) / 4);
/* Check for delayed instruction, if so adjust destination. */
if (insn_word & 0x00200000)
address += 2;
}
else
{
address -= ((info->symbol->section->vma + info->symbol->value) / 4);
}
if (address == 0)
info->fprintf_func (info->stream, " <%s>", info->symbol->name);
else
info->fprintf_func (info->stream, " <%s %c %d>", info->symbol->name,
((short) address < 0) ? '-' : '+',
abs (address));
}
return 1;
}
int
get_indirect_operand (fragment, size, buffer)
unsigned short fragment;
int size;
char *buffer;
{
unsigned char mod;
unsigned arnum;
unsigned char disp;
if (buffer == NULL)
return 0;
/* Determine which bits identify the sections of the indirect operand based on the
size in bytes. */
switch (size)
{
case 1:
mod = (fragment & 0x00F8) >> 3;
arnum = (fragment & 0x0007);
disp = 0;
break;
case 2:
mod = (fragment & 0xF800) >> 11;
arnum = (fragment & 0x0700) >> 8;
disp = (fragment & 0x00FF);
break;
default:
return 0;
}
{
const ind_addr_type *current_ind = tic30_indaddr_tab;
for (; current_ind < tic30_indaddrtab_end; current_ind++)
{
if (current_ind->modfield == mod)
{
if (current_ind->displacement == IMPLIED_DISP && size == 2)
{
continue;
}
else
{
int i, bufcnt;
for (i = 0, bufcnt = 0; i < strlen (current_ind->syntax); i++, bufcnt++)
{
buffer[bufcnt] = current_ind->syntax[i];
if (buffer[bufcnt - 1] == 'a' && buffer[bufcnt] == 'r')
buffer[++bufcnt] = arnum + '0';
if (buffer[bufcnt] == '(' && current_ind->displacement == DISP_REQUIRED)
{
sprintf (&buffer[bufcnt + 1], "%u", disp);
bufcnt += strlen (&buffer[bufcnt + 1]);
}
}
buffer[bufcnt + 1] = '\0';
break;
}
}
}
}
return 1;
}
int
get_register_operand (fragment, buffer)
unsigned char fragment;
char *buffer;
{
const reg *current_reg = tic30_regtab;
if (buffer == NULL)
return 0;
for (; current_reg < tic30_regtab_end; current_reg++)
{
if ((fragment & 0x1F) == current_reg->opcode)
{
strcpy (buffer, current_reg->name);
return 1;
}
}
return 0;
}
int
cnvt_tmsfloat_ieee (tmsfloat, size, ieeefloat)
unsigned long tmsfloat;
int size;
float *ieeefloat;
{
unsigned long exp, sign, mant;
if (size == 2)
{
if ((tmsfloat & 0x0000F000) == 0x00008000)
tmsfloat = 0x80000000;
else
{
tmsfloat <<= 16;
tmsfloat = (long) tmsfloat >> 4;
}
}
exp = tmsfloat & 0xFF000000;
if (exp == 0x80000000)
{
*ieeefloat = 0.0;
return 1;
}
exp += 0x7F000000;
sign = (tmsfloat & 0x00800000) << 8;
mant = tmsfloat & 0x007FFFFF;
if (exp == 0xFF000000)
{
if (mant == 0)
*ieeefloat = ERANGE;
if (sign == 0)
*ieeefloat = 1.0 / 0.0;
else
*ieeefloat = -1.0 / 0.0;
return 1;
}
exp >>= 1;
if (sign)
{
mant = (~mant) & 0x007FFFFF;
mant += 1;
exp += mant & 0x00800000;
exp &= 0x7F800000;
mant &= 0x007FFFFF;
}
if (tmsfloat == 0x80000000)
sign = mant = exp = 0;
tmsfloat = sign | exp | mant;
*ieeefloat = *((float *) &tmsfloat);
return 1;
}