5a203e4405
* frame.h (enum frame_type): Define. (get_frame_type): Declare. (struct frame_info): Add field `type'. Delete field signal_handler_caller. (deprecated_set_frame_signal_handler_caller): Declare. * frame.c (get_frame_type): New function. (deprecated_set_frame_type): New function. (create_new_frame): Set the frame's type. (get_prev_frame): Similar. * sparc-tdep.c: Use get_frame_type instead of signal_handler_caller. * s390-tdep.c: Ditto. * m68klinux-nat.c: Ditto. * ns32k-tdep.c: Ditto. * x86-64-linux-tdep.c: Ditto. * vax-tdep.c: Ditto. * rs6000-tdep.c: Ditto. * ppc-linux-tdep.c: Ditto. * i386-interix-tdep.c: Ditto. * mips-tdep.c: Ditto. * m68k-tdep.c: Ditto. * hppa-tdep.c: Ditto. * ia64-tdep.c: Ditto. * cris-tdep.c: Ditto. * arm-tdep.c: Ditto. * alpha-tdep.c: Ditto. * i386-tdep.c: Ditto. * stack.c: Ditto. * ada-lang.c: Ditto. * blockframe.c: Update. * i386-interix-tdep.c (i386_interix_back_one_frame): Use deprecated_set_frame_type instead of signal_handler_caller. * ppc-linux-tdep.c (ppc_linux_init_extra_frame_info): Ditto. * rs6000-tdep.c (rs6000_init_extra_frame_info): Ditto. * breakpoint.h: Delete FIXME suggesting get_frame_type. Index: tui/ChangeLog 2002-11-18 Andrew Cagney <ac131313@redhat.com> * tuiStack.c (tuiShowFrameInfo): Use get_frame_type instead of signal_handler_caller.
752 lines
22 KiB
C
752 lines
22 KiB
C
/* Get info from stack frames; convert between frames, blocks,
|
||
functions and pc values.
|
||
|
||
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
|
||
1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
|
||
Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "bfd.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "frame.h"
|
||
#include "gdbcore.h"
|
||
#include "value.h" /* for read_register */
|
||
#include "target.h" /* for target_has_stack */
|
||
#include "inferior.h" /* for read_pc */
|
||
#include "annotate.h"
|
||
#include "regcache.h"
|
||
#include "gdb_assert.h"
|
||
#include "dummy-frame.h"
|
||
|
||
/* Prototypes for exported functions. */
|
||
|
||
void _initialize_blockframe (void);
|
||
|
||
/* A default FRAME_CHAIN_VALID, in the form that is suitable for most
|
||
targets. If FRAME_CHAIN_VALID returns zero it means that the given
|
||
frame is the outermost one and has no caller. */
|
||
|
||
int
|
||
file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
|
||
{
|
||
return ((chain) != 0
|
||
&& !inside_entry_file (frame_pc_unwind (thisframe)));
|
||
}
|
||
|
||
/* Use the alternate method of avoiding running up off the end of the
|
||
frame chain or following frames back into the startup code. See
|
||
the comments in objfiles.h. */
|
||
|
||
int
|
||
func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
|
||
{
|
||
return ((chain) != 0
|
||
&& !inside_main_func ((thisframe)->pc)
|
||
&& !inside_entry_func ((thisframe)->pc));
|
||
}
|
||
|
||
/* A very simple method of determining a valid frame */
|
||
|
||
int
|
||
nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
|
||
{
|
||
return ((chain) != 0);
|
||
}
|
||
|
||
/* Is ADDR inside the startup file? Note that if your machine
|
||
has a way to detect the bottom of the stack, there is no need
|
||
to call this function from FRAME_CHAIN_VALID; the reason for
|
||
doing so is that some machines have no way of detecting bottom
|
||
of stack.
|
||
|
||
A PC of zero is always considered to be the bottom of the stack. */
|
||
|
||
int
|
||
inside_entry_file (CORE_ADDR addr)
|
||
{
|
||
if (addr == 0)
|
||
return 1;
|
||
if (symfile_objfile == 0)
|
||
return 0;
|
||
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
|
||
{
|
||
/* Do not stop backtracing if the pc is in the call dummy
|
||
at the entry point. */
|
||
/* FIXME: Won't always work with zeros for the last two arguments */
|
||
if (PC_IN_CALL_DUMMY (addr, 0, 0))
|
||
return 0;
|
||
}
|
||
return (addr >= symfile_objfile->ei.entry_file_lowpc &&
|
||
addr < symfile_objfile->ei.entry_file_highpc);
|
||
}
|
||
|
||
/* Test a specified PC value to see if it is in the range of addresses
|
||
that correspond to the main() function. See comments above for why
|
||
we might want to do this.
|
||
|
||
Typically called from FRAME_CHAIN_VALID.
|
||
|
||
A PC of zero is always considered to be the bottom of the stack. */
|
||
|
||
int
|
||
inside_main_func (CORE_ADDR pc)
|
||
{
|
||
if (pc == 0)
|
||
return 1;
|
||
if (symfile_objfile == 0)
|
||
return 0;
|
||
|
||
/* If the addr range is not set up at symbol reading time, set it up now.
|
||
This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
|
||
it is unable to set it up and symbol reading time. */
|
||
|
||
if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
|
||
symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
|
||
{
|
||
struct symbol *mainsym;
|
||
|
||
mainsym = lookup_symbol (main_name (), NULL, VAR_NAMESPACE, NULL, NULL);
|
||
if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
|
||
{
|
||
symfile_objfile->ei.main_func_lowpc =
|
||
BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
|
||
symfile_objfile->ei.main_func_highpc =
|
||
BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
|
||
}
|
||
}
|
||
return (symfile_objfile->ei.main_func_lowpc <= pc &&
|
||
symfile_objfile->ei.main_func_highpc > pc);
|
||
}
|
||
|
||
/* Test a specified PC value to see if it is in the range of addresses
|
||
that correspond to the process entry point function. See comments
|
||
in objfiles.h for why we might want to do this.
|
||
|
||
Typically called from FRAME_CHAIN_VALID.
|
||
|
||
A PC of zero is always considered to be the bottom of the stack. */
|
||
|
||
int
|
||
inside_entry_func (CORE_ADDR pc)
|
||
{
|
||
if (pc == 0)
|
||
return 1;
|
||
if (symfile_objfile == 0)
|
||
return 0;
|
||
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
|
||
{
|
||
/* Do not stop backtracing if the pc is in the call dummy
|
||
at the entry point. */
|
||
/* FIXME: Won't always work with zeros for the last two arguments */
|
||
if (PC_IN_CALL_DUMMY (pc, 0, 0))
|
||
return 0;
|
||
}
|
||
return (symfile_objfile->ei.entry_func_lowpc <= pc &&
|
||
symfile_objfile->ei.entry_func_highpc > pc);
|
||
}
|
||
|
||
/* Return nonzero if the function for this frame lacks a prologue. Many
|
||
machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
|
||
function. */
|
||
|
||
int
|
||
frameless_look_for_prologue (struct frame_info *frame)
|
||
{
|
||
CORE_ADDR func_start, after_prologue;
|
||
|
||
func_start = get_pc_function_start (frame->pc);
|
||
if (func_start)
|
||
{
|
||
func_start += FUNCTION_START_OFFSET;
|
||
/* This is faster, since only care whether there *is* a
|
||
prologue, not how long it is. */
|
||
return PROLOGUE_FRAMELESS_P (func_start);
|
||
}
|
||
else if (frame->pc == 0)
|
||
/* A frame with a zero PC is usually created by dereferencing a
|
||
NULL function pointer, normally causing an immediate core dump
|
||
of the inferior. Mark function as frameless, as the inferior
|
||
has no chance of setting up a stack frame. */
|
||
return 1;
|
||
else
|
||
/* If we can't find the start of the function, we don't really
|
||
know whether the function is frameless, but we should be able
|
||
to get a reasonable (i.e. best we can do under the
|
||
circumstances) backtrace by saying that it isn't. */
|
||
return 0;
|
||
}
|
||
|
||
/* return the address of the PC for the given FRAME, ie the current PC value
|
||
if FRAME is the innermost frame, or the address adjusted to point to the
|
||
call instruction if not. */
|
||
|
||
CORE_ADDR
|
||
frame_address_in_block (struct frame_info *frame)
|
||
{
|
||
CORE_ADDR pc = frame->pc;
|
||
|
||
/* If we are not in the innermost frame, and we are not interrupted
|
||
by a signal, frame->pc points to the instruction following the
|
||
call. As a consequence, we need to get the address of the previous
|
||
instruction. Unfortunately, this is not straightforward to do, so
|
||
we just use the address minus one, which is a good enough
|
||
approximation. */
|
||
/* FIXME: cagney/2002-11-10: Should this instead test for
|
||
NORMAL_FRAME? A dummy frame (in fact all the abnormal frames)
|
||
save the PC value in the block. */
|
||
if (frame->next != 0
|
||
&& get_frame_type (frame->next) != SIGTRAMP_FRAME)
|
||
--pc;
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* Return the innermost lexical block in execution
|
||
in a specified stack frame. The frame address is assumed valid.
|
||
|
||
If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
|
||
address we used to choose the block. We use this to find a source
|
||
line, to decide which macro definitions are in scope.
|
||
|
||
The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
|
||
PC, and may not really be a valid PC at all. For example, in the
|
||
caller of a function declared to never return, the code at the
|
||
return address will never be reached, so the call instruction may
|
||
be the very last instruction in the block. So the address we use
|
||
to choose the block is actually one byte before the return address
|
||
--- hopefully pointing us at the call instruction, or its delay
|
||
slot instruction. */
|
||
|
||
struct block *
|
||
get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
|
||
{
|
||
const CORE_ADDR pc = frame_address_in_block (frame);
|
||
|
||
if (addr_in_block)
|
||
*addr_in_block = pc;
|
||
|
||
return block_for_pc (pc);
|
||
}
|
||
|
||
struct block *
|
||
get_current_block (CORE_ADDR *addr_in_block)
|
||
{
|
||
CORE_ADDR pc = read_pc ();
|
||
|
||
if (addr_in_block)
|
||
*addr_in_block = pc;
|
||
|
||
return block_for_pc (pc);
|
||
}
|
||
|
||
CORE_ADDR
|
||
get_pc_function_start (CORE_ADDR pc)
|
||
{
|
||
register struct block *bl;
|
||
register struct symbol *symbol;
|
||
register struct minimal_symbol *msymbol;
|
||
CORE_ADDR fstart;
|
||
|
||
if ((bl = block_for_pc (pc)) != NULL &&
|
||
(symbol = block_function (bl)) != NULL)
|
||
{
|
||
bl = SYMBOL_BLOCK_VALUE (symbol);
|
||
fstart = BLOCK_START (bl);
|
||
}
|
||
else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
|
||
{
|
||
fstart = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
if (!find_pc_section (fstart))
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
fstart = 0;
|
||
}
|
||
return (fstart);
|
||
}
|
||
|
||
/* Return the symbol for the function executing in frame FRAME. */
|
||
|
||
struct symbol *
|
||
get_frame_function (struct frame_info *frame)
|
||
{
|
||
register struct block *bl = get_frame_block (frame, 0);
|
||
if (bl == 0)
|
||
return 0;
|
||
return block_function (bl);
|
||
}
|
||
|
||
|
||
/* Return the blockvector immediately containing the innermost lexical block
|
||
containing the specified pc value and section, or 0 if there is none.
|
||
PINDEX is a pointer to the index value of the block. If PINDEX
|
||
is NULL, we don't pass this information back to the caller. */
|
||
|
||
struct blockvector *
|
||
blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section,
|
||
int *pindex, struct symtab *symtab)
|
||
{
|
||
register struct block *b;
|
||
register int bot, top, half;
|
||
struct blockvector *bl;
|
||
|
||
if (symtab == 0) /* if no symtab specified by caller */
|
||
{
|
||
/* First search all symtabs for one whose file contains our pc */
|
||
if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
|
||
return 0;
|
||
}
|
||
|
||
bl = BLOCKVECTOR (symtab);
|
||
b = BLOCKVECTOR_BLOCK (bl, 0);
|
||
|
||
/* Then search that symtab for the smallest block that wins. */
|
||
/* Use binary search to find the last block that starts before PC. */
|
||
|
||
bot = 0;
|
||
top = BLOCKVECTOR_NBLOCKS (bl);
|
||
|
||
while (top - bot > 1)
|
||
{
|
||
half = (top - bot + 1) >> 1;
|
||
b = BLOCKVECTOR_BLOCK (bl, bot + half);
|
||
if (BLOCK_START (b) <= pc)
|
||
bot += half;
|
||
else
|
||
top = bot + half;
|
||
}
|
||
|
||
/* Now search backward for a block that ends after PC. */
|
||
|
||
while (bot >= 0)
|
||
{
|
||
b = BLOCKVECTOR_BLOCK (bl, bot);
|
||
if (BLOCK_END (b) > pc)
|
||
{
|
||
if (pindex)
|
||
*pindex = bot;
|
||
return bl;
|
||
}
|
||
bot--;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return the blockvector immediately containing the innermost lexical block
|
||
containing the specified pc value, or 0 if there is none.
|
||
Backward compatibility, no section. */
|
||
|
||
struct blockvector *
|
||
blockvector_for_pc (register CORE_ADDR pc, int *pindex)
|
||
{
|
||
return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
|
||
pindex, NULL);
|
||
}
|
||
|
||
/* Return the innermost lexical block containing the specified pc value
|
||
in the specified section, or 0 if there is none. */
|
||
|
||
struct block *
|
||
block_for_pc_sect (register CORE_ADDR pc, struct sec *section)
|
||
{
|
||
register struct blockvector *bl;
|
||
int index;
|
||
|
||
bl = blockvector_for_pc_sect (pc, section, &index, NULL);
|
||
if (bl)
|
||
return BLOCKVECTOR_BLOCK (bl, index);
|
||
return 0;
|
||
}
|
||
|
||
/* Return the innermost lexical block containing the specified pc value,
|
||
or 0 if there is none. Backward compatibility, no section. */
|
||
|
||
struct block *
|
||
block_for_pc (register CORE_ADDR pc)
|
||
{
|
||
return block_for_pc_sect (pc, find_pc_mapped_section (pc));
|
||
}
|
||
|
||
/* Return the function containing pc value PC in section SECTION.
|
||
Returns 0 if function is not known. */
|
||
|
||
struct symbol *
|
||
find_pc_sect_function (CORE_ADDR pc, struct sec *section)
|
||
{
|
||
register struct block *b = block_for_pc_sect (pc, section);
|
||
if (b == 0)
|
||
return 0;
|
||
return block_function (b);
|
||
}
|
||
|
||
/* Return the function containing pc value PC.
|
||
Returns 0 if function is not known. Backward compatibility, no section */
|
||
|
||
struct symbol *
|
||
find_pc_function (CORE_ADDR pc)
|
||
{
|
||
return find_pc_sect_function (pc, find_pc_mapped_section (pc));
|
||
}
|
||
|
||
/* These variables are used to cache the most recent result
|
||
* of find_pc_partial_function. */
|
||
|
||
static CORE_ADDR cache_pc_function_low = 0;
|
||
static CORE_ADDR cache_pc_function_high = 0;
|
||
static char *cache_pc_function_name = 0;
|
||
static struct sec *cache_pc_function_section = NULL;
|
||
|
||
/* Clear cache, e.g. when symbol table is discarded. */
|
||
|
||
void
|
||
clear_pc_function_cache (void)
|
||
{
|
||
cache_pc_function_low = 0;
|
||
cache_pc_function_high = 0;
|
||
cache_pc_function_name = (char *) 0;
|
||
cache_pc_function_section = NULL;
|
||
}
|
||
|
||
/* Finds the "function" (text symbol) that is smaller than PC but
|
||
greatest of all of the potential text symbols in SECTION. Sets
|
||
*NAME and/or *ADDRESS conditionally if that pointer is non-null.
|
||
If ENDADDR is non-null, then set *ENDADDR to be the end of the
|
||
function (exclusive), but passing ENDADDR as non-null means that
|
||
the function might cause symbols to be read. This function either
|
||
succeeds or fails (not halfway succeeds). If it succeeds, it sets
|
||
*NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
|
||
If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
|
||
returns 0. */
|
||
|
||
int
|
||
find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
|
||
CORE_ADDR *address, CORE_ADDR *endaddr)
|
||
{
|
||
struct partial_symtab *pst;
|
||
struct symbol *f;
|
||
struct minimal_symbol *msymbol;
|
||
struct partial_symbol *psb;
|
||
struct obj_section *osect;
|
||
int i;
|
||
CORE_ADDR mapped_pc;
|
||
|
||
mapped_pc = overlay_mapped_address (pc, section);
|
||
|
||
if (mapped_pc >= cache_pc_function_low
|
||
&& mapped_pc < cache_pc_function_high
|
||
&& section == cache_pc_function_section)
|
||
goto return_cached_value;
|
||
|
||
/* If sigtramp is in the u area, it counts as a function (especially
|
||
important for step_1). */
|
||
if (SIGTRAMP_START_P () && PC_IN_SIGTRAMP (mapped_pc, (char *) NULL))
|
||
{
|
||
cache_pc_function_low = SIGTRAMP_START (mapped_pc);
|
||
cache_pc_function_high = SIGTRAMP_END (mapped_pc);
|
||
cache_pc_function_name = "<sigtramp>";
|
||
cache_pc_function_section = section;
|
||
goto return_cached_value;
|
||
}
|
||
|
||
msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
|
||
pst = find_pc_sect_psymtab (mapped_pc, section);
|
||
if (pst)
|
||
{
|
||
/* Need to read the symbols to get a good value for the end address. */
|
||
if (endaddr != NULL && !pst->readin)
|
||
{
|
||
/* Need to get the terminal in case symbol-reading produces
|
||
output. */
|
||
target_terminal_ours_for_output ();
|
||
PSYMTAB_TO_SYMTAB (pst);
|
||
}
|
||
|
||
if (pst->readin)
|
||
{
|
||
/* Checking whether the msymbol has a larger value is for the
|
||
"pathological" case mentioned in print_frame_info. */
|
||
f = find_pc_sect_function (mapped_pc, section);
|
||
if (f != NULL
|
||
&& (msymbol == NULL
|
||
|| (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
|
||
>= SYMBOL_VALUE_ADDRESS (msymbol))))
|
||
{
|
||
cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
|
||
cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
|
||
cache_pc_function_name = SYMBOL_NAME (f);
|
||
cache_pc_function_section = section;
|
||
goto return_cached_value;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Now that static symbols go in the minimal symbol table, perhaps
|
||
we could just ignore the partial symbols. But at least for now
|
||
we use the partial or minimal symbol, whichever is larger. */
|
||
psb = find_pc_sect_psymbol (pst, mapped_pc, section);
|
||
|
||
if (psb
|
||
&& (msymbol == NULL ||
|
||
(SYMBOL_VALUE_ADDRESS (psb)
|
||
>= SYMBOL_VALUE_ADDRESS (msymbol))))
|
||
{
|
||
/* This case isn't being cached currently. */
|
||
if (address)
|
||
*address = SYMBOL_VALUE_ADDRESS (psb);
|
||
if (name)
|
||
*name = SYMBOL_NAME (psb);
|
||
/* endaddr non-NULL can't happen here. */
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Not in the normal symbol tables, see if the pc is in a known section.
|
||
If it's not, then give up. This ensures that anything beyond the end
|
||
of the text seg doesn't appear to be part of the last function in the
|
||
text segment. */
|
||
|
||
osect = find_pc_sect_section (mapped_pc, section);
|
||
|
||
if (!osect)
|
||
msymbol = NULL;
|
||
|
||
/* Must be in the minimal symbol table. */
|
||
if (msymbol == NULL)
|
||
{
|
||
/* No available symbol. */
|
||
if (name != NULL)
|
||
*name = 0;
|
||
if (address != NULL)
|
||
*address = 0;
|
||
if (endaddr != NULL)
|
||
*endaddr = 0;
|
||
return 0;
|
||
}
|
||
|
||
cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
cache_pc_function_name = SYMBOL_NAME (msymbol);
|
||
cache_pc_function_section = section;
|
||
|
||
/* Use the lesser of the next minimal symbol in the same section, or
|
||
the end of the section, as the end of the function. */
|
||
|
||
/* Step over other symbols at this same address, and symbols in
|
||
other sections, to find the next symbol in this section with
|
||
a different address. */
|
||
|
||
for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++)
|
||
{
|
||
if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
|
||
&& SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
|
||
break;
|
||
}
|
||
|
||
if (SYMBOL_NAME (msymbol + i) != NULL
|
||
&& SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
|
||
cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
|
||
else
|
||
/* We got the start address from the last msymbol in the objfile.
|
||
So the end address is the end of the section. */
|
||
cache_pc_function_high = osect->endaddr;
|
||
|
||
return_cached_value:
|
||
|
||
if (address)
|
||
{
|
||
if (pc_in_unmapped_range (pc, section))
|
||
*address = overlay_unmapped_address (cache_pc_function_low, section);
|
||
else
|
||
*address = cache_pc_function_low;
|
||
}
|
||
|
||
if (name)
|
||
*name = cache_pc_function_name;
|
||
|
||
if (endaddr)
|
||
{
|
||
if (pc_in_unmapped_range (pc, section))
|
||
{
|
||
/* Because the high address is actually beyond the end of
|
||
the function (and therefore possibly beyond the end of
|
||
the overlay), we must actually convert (high - 1) and
|
||
then add one to that. */
|
||
|
||
*endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
|
||
section);
|
||
}
|
||
else
|
||
*endaddr = cache_pc_function_high;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Backward compatibility, no section argument. */
|
||
|
||
int
|
||
find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
|
||
CORE_ADDR *endaddr)
|
||
{
|
||
asection *section;
|
||
|
||
section = find_pc_overlay (pc);
|
||
return find_pc_sect_partial_function (pc, section, name, address, endaddr);
|
||
}
|
||
|
||
/* Return the innermost stack frame executing inside of BLOCK,
|
||
or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
|
||
|
||
struct frame_info *
|
||
block_innermost_frame (struct block *block)
|
||
{
|
||
struct frame_info *frame;
|
||
register CORE_ADDR start;
|
||
register CORE_ADDR end;
|
||
CORE_ADDR calling_pc;
|
||
|
||
if (block == NULL)
|
||
return NULL;
|
||
|
||
start = BLOCK_START (block);
|
||
end = BLOCK_END (block);
|
||
|
||
frame = NULL;
|
||
while (1)
|
||
{
|
||
frame = get_prev_frame (frame);
|
||
if (frame == NULL)
|
||
return NULL;
|
||
calling_pc = frame_address_in_block (frame);
|
||
if (calling_pc >= start && calling_pc < end)
|
||
return frame;
|
||
}
|
||
}
|
||
|
||
/* Return the full FRAME which corresponds to the given CORE_ADDR
|
||
or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
|
||
|
||
struct frame_info *
|
||
find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
|
||
{
|
||
struct frame_info *frame = NULL;
|
||
|
||
if (frame_addr == (CORE_ADDR) 0)
|
||
return NULL;
|
||
|
||
while (1)
|
||
{
|
||
frame = get_prev_frame (frame);
|
||
if (frame == NULL)
|
||
return NULL;
|
||
if (FRAME_FP (frame) == frame_addr)
|
||
return frame;
|
||
}
|
||
}
|
||
|
||
/* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
|
||
below is for infrun.c, which may give the macro a pc without that
|
||
subtracted out. */
|
||
|
||
extern CORE_ADDR text_end;
|
||
|
||
int
|
||
pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp,
|
||
CORE_ADDR frame_address)
|
||
{
|
||
return ((pc) >= text_end - CALL_DUMMY_LENGTH
|
||
&& (pc) <= text_end + DECR_PC_AFTER_BREAK);
|
||
}
|
||
|
||
int
|
||
pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp,
|
||
CORE_ADDR frame_address)
|
||
{
|
||
return ((pc) >= text_end
|
||
&& (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK);
|
||
}
|
||
|
||
/* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
|
||
top of the stack frame which we are checking, where "bottom" and
|
||
"top" refer to some section of memory which contains the code for
|
||
the call dummy. Calls to this macro assume that the contents of
|
||
SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
|
||
are the things to pass.
|
||
|
||
This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
|
||
have that meaning, but the 29k doesn't use ON_STACK. This could be
|
||
fixed by generalizing this scheme, perhaps by passing in a frame
|
||
and adding a few fields, at least on machines which need them for
|
||
PC_IN_CALL_DUMMY.
|
||
|
||
Something simpler, like checking for the stack segment, doesn't work,
|
||
since various programs (threads implementations, gcc nested function
|
||
stubs, etc) may either allocate stack frames in another segment, or
|
||
allocate other kinds of code on the stack. */
|
||
|
||
int
|
||
pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address)
|
||
{
|
||
return (INNER_THAN ((sp), (pc))
|
||
&& (frame_address != 0)
|
||
&& INNER_THAN ((pc), (frame_address)));
|
||
}
|
||
|
||
int
|
||
pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
|
||
CORE_ADDR frame_address)
|
||
{
|
||
return ((pc) >= CALL_DUMMY_ADDRESS ()
|
||
&& (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
|
||
}
|
||
|
||
|
||
/* Function: frame_chain_valid
|
||
Returns true for a user frame or a call_function_by_hand dummy frame,
|
||
and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
|
||
|
||
int
|
||
generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
|
||
{
|
||
if (PC_IN_CALL_DUMMY (frame_pc_unwind (fi), fp, fp))
|
||
return 1; /* don't prune CALL_DUMMY frames */
|
||
else /* fall back to default algorithm (see frame.h) */
|
||
return (fp != 0
|
||
&& (INNER_THAN (fi->frame, fp) || fi->frame == fp)
|
||
&& !inside_entry_file (frame_pc_unwind (fi)));
|
||
}
|
||
|
||
int
|
||
generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
|
||
{
|
||
if (USE_GENERIC_DUMMY_FRAMES
|
||
&& PC_IN_CALL_DUMMY ((fi)->pc, 0, 0))
|
||
return 1; /* don't prune CALL_DUMMY frames */
|
||
else /* fall back to default algorithm (see frame.h) */
|
||
return (fp != 0
|
||
&& (INNER_THAN (fi->frame, fp) || fi->frame == fp)
|
||
&& !inside_main_func ((fi)->pc)
|
||
&& !inside_entry_func ((fi)->pc));
|
||
}
|
||
|