binutils-gdb/gdb/thread.c
Michael Snyder e9d196c53f 2000-07-21 Michael Snyder <msnyder@cleaver.cygnus.com>
* thread.c (thread_apply_all_command): Update thread list first.
2000-07-22 00:15:30 +00:00

775 lines
19 KiB
C

/* Multi-process/thread control for GDB, the GNU debugger.
Copyright 1986, 1987, 1988, 1993, 1998, 1999, 2000
Contributed by Lynx Real-Time Systems, Inc. Los Gatos, CA.
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "symtab.h"
#include "frame.h"
#include "inferior.h"
#include "environ.h"
#include "value.h"
#include "target.h"
#include "gdbthread.h"
#include "command.h"
#include "gdbcmd.h"
#include <ctype.h>
#include <sys/types.h>
#include <signal.h>
#ifdef UI_OUT
#include "ui-out.h"
#endif
/*#include "lynxos-core.h" */
/* Definition of struct thread_info exported to gdbthread.h */
/* Prototypes for exported functions. */
void _initialize_thread (void);
/* Prototypes for local functions. */
static struct thread_info *thread_list = NULL;
static int highest_thread_num;
static struct thread_info *find_thread_id (int num);
static void thread_command (char *tidstr, int from_tty);
static void thread_apply_all_command (char *, int);
static int thread_alive (struct thread_info *);
static void info_threads_command (char *, int);
static void thread_apply_command (char *, int);
static void restore_current_thread (int);
static void switch_to_thread (int pid);
static void prune_threads (void);
static void
free_thread (struct thread_info *tp)
{
/* NOTE: this will take care of any left-over step_resume breakpoints,
but not any user-specified thread-specific breakpoints. */
if (tp->step_resume_breakpoint)
delete_breakpoint (tp->step_resume_breakpoint);
/* FIXME: do I ever need to call the back-end to give it a
chance at this private data before deleting the thread? */
if (tp->private)
free (tp->private);
free (tp);
}
void
init_thread_list ()
{
struct thread_info *tp, *tpnext;
highest_thread_num = 0;
if (!thread_list)
return;
for (tp = thread_list; tp; tp = tpnext)
{
tpnext = tp->next;
free_thread (tp);
}
thread_list = NULL;
}
/* add_thread now returns a pointer to the new thread_info,
so that back_ends can initialize their private data. */
struct thread_info *
add_thread (pid)
int pid;
{
struct thread_info *tp;
tp = (struct thread_info *) xmalloc (sizeof (struct thread_info));
tp->pid = pid;
tp->num = ++highest_thread_num;
tp->prev_pc = 0;
tp->prev_func_start = 0;
tp->prev_func_name = NULL;
tp->step_range_start = 0;
tp->step_range_end = 0;
tp->step_frame_address = 0;
tp->step_resume_breakpoint = 0;
tp->through_sigtramp_breakpoint = 0;
tp->handling_longjmp = 0;
tp->trap_expected = 0;
tp->another_trap = 0;
tp->stepping_through_solib_after_catch = 0;
tp->stepping_through_solib_catchpoints = NULL;
tp->stepping_through_sigtramp = 0;
tp->next = thread_list;
tp->private = NULL;
thread_list = tp;
return tp;
}
void
delete_thread (pid)
int pid;
{
struct thread_info *tp, *tpprev;
tpprev = NULL;
for (tp = thread_list; tp; tpprev = tp, tp = tp->next)
if (tp->pid == pid)
break;
if (!tp)
return;
if (tpprev)
tpprev->next = tp->next;
else
thread_list = tp->next;
free_thread (tp);
}
static struct thread_info *
find_thread_id (num)
int num;
{
struct thread_info *tp;
for (tp = thread_list; tp; tp = tp->next)
if (tp->num == num)
return tp;
return NULL;
}
/* Find a thread_info by matching 'pid'. */
struct thread_info *
find_thread_pid (pid)
int pid;
{
struct thread_info *tp;
for (tp = thread_list; tp; tp = tp->next)
if (tp->pid == pid)
return tp;
return NULL;
}
/*
* Thread iterator function.
*
* Calls a callback function once for each thread, so long as
* the callback function returns false. If the callback function
* returns true, the iteration will end and the current thread
* will be returned. This can be useful for implementing a
* search for a thread with arbitrary attributes, or for applying
* some operation to every thread.
*
* FIXME: some of the existing functionality, such as
* "Thread apply all", might be rewritten using this functionality.
*/
struct thread_info *
iterate_over_threads (callback, data)
int (*callback) ();
void *data;
{
struct thread_info *tp;
for (tp = thread_list; tp; tp = tp->next)
if ((*callback) (tp, data))
return tp;
return NULL;
}
int
valid_thread_id (num)
int num;
{
struct thread_info *tp;
for (tp = thread_list; tp; tp = tp->next)
if (tp->num == num)
return 1;
return 0;
}
int
pid_to_thread_id (pid)
int pid;
{
struct thread_info *tp;
for (tp = thread_list; tp; tp = tp->next)
if (tp->pid == pid)
return tp->num;
return 0;
}
int
thread_id_to_pid (num)
int num;
{
struct thread_info *thread = find_thread_id (num);
if (thread)
return thread->pid;
else
return -1;
}
int
in_thread_list (pid)
int pid;
{
struct thread_info *tp;
for (tp = thread_list; tp; tp = tp->next)
if (tp->pid == pid)
return 1;
return 0; /* Never heard of 'im */
}
#ifdef UI_OUT
/* Print a list of thread ids currently known, and the total number of
threads. To be used from within catch_errors. */
static int
do_captured_list_thread_ids (void *arg)
{
struct thread_info *tp;
int num = 0;
ui_out_list_begin (uiout, "thread-ids");
for (tp = thread_list; tp; tp = tp->next)
{
num++;
ui_out_field_int (uiout, "thread-id", tp->num);
}
ui_out_list_end (uiout);
ui_out_field_int (uiout, "number-of-threads", num);
return GDB_RC_OK;
}
/* Official gdblib interface function to get a list of thread ids and
the total number. */
enum gdb_rc
gdb_list_thread_ids (/* output object */)
{
return catch_errors (do_captured_list_thread_ids, NULL,
NULL, RETURN_MASK_ALL);
}
#endif
/* Load infrun state for the thread PID. */
void
load_infrun_state (pid, prev_pc, prev_func_start, prev_func_name,
trap_expected, step_resume_breakpoint,
through_sigtramp_breakpoint, step_range_start,
step_range_end, step_frame_address,
handling_longjmp, another_trap,
stepping_through_solib_after_catch,
stepping_through_solib_catchpoints,
stepping_through_sigtramp)
int pid;
CORE_ADDR *prev_pc;
CORE_ADDR *prev_func_start;
char **prev_func_name;
int *trap_expected;
struct breakpoint **step_resume_breakpoint;
struct breakpoint **through_sigtramp_breakpoint;
CORE_ADDR *step_range_start;
CORE_ADDR *step_range_end;
CORE_ADDR *step_frame_address;
int *handling_longjmp;
int *another_trap;
int *stepping_through_solib_after_catch;
bpstat *stepping_through_solib_catchpoints;
int *stepping_through_sigtramp;
{
struct thread_info *tp;
/* If we can't find the thread, then we're debugging a single threaded
process. No need to do anything in that case. */
tp = find_thread_id (pid_to_thread_id (pid));
if (tp == NULL)
return;
*prev_pc = tp->prev_pc;
*prev_func_start = tp->prev_func_start;
*prev_func_name = tp->prev_func_name;
*step_resume_breakpoint = tp->step_resume_breakpoint;
*step_range_start = tp->step_range_start;
*step_range_end = tp->step_range_end;
*step_frame_address = tp->step_frame_address;
*through_sigtramp_breakpoint = tp->through_sigtramp_breakpoint;
*handling_longjmp = tp->handling_longjmp;
*trap_expected = tp->trap_expected;
*another_trap = tp->another_trap;
*stepping_through_solib_after_catch = tp->stepping_through_solib_after_catch;
*stepping_through_solib_catchpoints = tp->stepping_through_solib_catchpoints;
*stepping_through_sigtramp = tp->stepping_through_sigtramp;
}
/* Save infrun state for the thread PID. */
void
save_infrun_state (pid, prev_pc, prev_func_start, prev_func_name,
trap_expected, step_resume_breakpoint,
through_sigtramp_breakpoint, step_range_start,
step_range_end, step_frame_address,
handling_longjmp, another_trap,
stepping_through_solib_after_catch,
stepping_through_solib_catchpoints,
stepping_through_sigtramp)
int pid;
CORE_ADDR prev_pc;
CORE_ADDR prev_func_start;
char *prev_func_name;
int trap_expected;
struct breakpoint *step_resume_breakpoint;
struct breakpoint *through_sigtramp_breakpoint;
CORE_ADDR step_range_start;
CORE_ADDR step_range_end;
CORE_ADDR step_frame_address;
int handling_longjmp;
int another_trap;
int stepping_through_solib_after_catch;
bpstat stepping_through_solib_catchpoints;
int stepping_through_sigtramp;
{
struct thread_info *tp;
/* If we can't find the thread, then we're debugging a single-threaded
process. Nothing to do in that case. */
tp = find_thread_id (pid_to_thread_id (pid));
if (tp == NULL)
return;
tp->prev_pc = prev_pc;
tp->prev_func_start = prev_func_start;
tp->prev_func_name = prev_func_name;
tp->step_resume_breakpoint = step_resume_breakpoint;
tp->step_range_start = step_range_start;
tp->step_range_end = step_range_end;
tp->step_frame_address = step_frame_address;
tp->through_sigtramp_breakpoint = through_sigtramp_breakpoint;
tp->handling_longjmp = handling_longjmp;
tp->trap_expected = trap_expected;
tp->another_trap = another_trap;
tp->stepping_through_solib_after_catch = stepping_through_solib_after_catch;
tp->stepping_through_solib_catchpoints = stepping_through_solib_catchpoints;
tp->stepping_through_sigtramp = stepping_through_sigtramp;
}
/* Return true if TP is an active thread. */
static int
thread_alive (tp)
struct thread_info *tp;
{
if (tp->pid == -1)
return 0;
if (!target_thread_alive (tp->pid))
{
tp->pid = -1; /* Mark it as dead */
return 0;
}
return 1;
}
static void
prune_threads ()
{
struct thread_info *tp, *next;
for (tp = thread_list; tp; tp = next)
{
next = tp->next;
if (!thread_alive (tp))
delete_thread (tp->pid);
}
}
/* Print information about currently known threads
* Note: this has the drawback that it _really_ switches
* threads, which frees the frame cache. A no-side
* effects info-threads command would be nicer.
*/
static void
info_threads_command (arg, from_tty)
char *arg;
int from_tty;
{
struct thread_info *tp;
int current_pid;
struct frame_info *cur_frame;
int saved_frame_level = selected_frame_level;
int counter;
char *extra_info;
/* Avoid coredumps which would happen if we tried to access a NULL
selected_frame. */
if (!target_has_stack)
error ("No stack.");
prune_threads ();
target_find_new_threads ();
current_pid = inferior_pid;
for (tp = thread_list; tp; tp = tp->next)
{
if (tp->pid == current_pid)
printf_filtered ("* ");
else
printf_filtered (" ");
#ifdef HPUXHPPA
printf_filtered ("%d %s", tp->num, target_tid_to_str (tp->pid));
#else
printf_filtered ("%d %s", tp->num, target_pid_to_str (tp->pid));
#endif
extra_info = target_extra_thread_info (tp);
if (extra_info)
printf_filtered (" (%s)", extra_info);
puts_filtered (" ");
switch_to_thread (tp->pid);
if (selected_frame)
print_only_stack_frame (selected_frame, -1, 0);
else
printf_filtered ("[No stack.]\n");
}
switch_to_thread (current_pid);
/* Code below copied from "up_silently_base" in "stack.c".
* It restores the frame set by the user before the "info threads"
* command. We have finished the info-threads display by switching
* back to the current thread. That switch has put us at the top
* of the stack (leaf frame).
*/
counter = saved_frame_level;
cur_frame = find_relative_frame (selected_frame, &counter);
if (counter != 0)
{
/* Ooops, can't restore, tell user where we are. */
warning ("Couldn't restore frame in current thread, at frame 0");
print_stack_frame (selected_frame, -1, 0);
}
else
{
select_frame (cur_frame, saved_frame_level);
}
/* re-show current frame. */
show_stack_frame (cur_frame);
}
/* Switch from one thread to another. */
static void
switch_to_thread (pid)
int pid;
{
if (pid == inferior_pid)
return;
inferior_pid = pid;
flush_cached_frames ();
registers_changed ();
stop_pc = read_pc ();
select_frame (get_current_frame (), 0);
}
static void
restore_current_thread (pid)
int pid;
{
if (pid != inferior_pid)
{
switch_to_thread (pid);
print_stack_frame (get_current_frame (), 0, -1);
}
}
struct current_thread_cleanup
{
int inferior_pid;
};
static void
do_restore_current_thread_cleanup (void *arg)
{
struct current_thread_cleanup *old = arg;
restore_current_thread (old->inferior_pid);
free (old);
}
static struct cleanup *
make_cleanup_restore_current_thread (int inferior_pid)
{
struct current_thread_cleanup *old
= xmalloc (sizeof (struct current_thread_cleanup));
old->inferior_pid = inferior_pid;
return make_cleanup (do_restore_current_thread_cleanup, old);
}
/* Apply a GDB command to a list of threads. List syntax is a whitespace
seperated list of numbers, or ranges, or the keyword `all'. Ranges consist
of two numbers seperated by a hyphen. Examples:
thread apply 1 2 7 4 backtrace Apply backtrace cmd to threads 1,2,7,4
thread apply 2-7 9 p foo(1) Apply p foo(1) cmd to threads 2->7 & 9
thread apply all p x/i $pc Apply x/i $pc cmd to all threads
*/
static void
thread_apply_all_command (cmd, from_tty)
char *cmd;
int from_tty;
{
struct thread_info *tp;
struct cleanup *old_chain;
if (cmd == NULL || *cmd == '\000')
error ("Please specify a command following the thread ID list");
old_chain = make_cleanup_restore_current_thread (inferior_pid);
/* It is safe to update the thread list now, before
traversing it for "thread apply all". MVS */
target_find_new_threads ();
for (tp = thread_list; tp; tp = tp->next)
if (thread_alive (tp))
{
switch_to_thread (tp->pid);
#ifdef HPUXHPPA
printf_filtered ("\nThread %d (%s):\n",
tp->num,
target_tid_to_str (inferior_pid));
#else
printf_filtered ("\nThread %d (%s):\n", tp->num,
target_pid_to_str (inferior_pid));
#endif
execute_command (cmd, from_tty);
}
do_cleanups (old_chain);
}
static void
thread_apply_command (tidlist, from_tty)
char *tidlist;
int from_tty;
{
char *cmd;
char *p;
struct cleanup *old_chain;
if (tidlist == NULL || *tidlist == '\000')
error ("Please specify a thread ID list");
for (cmd = tidlist; *cmd != '\000' && !isalpha (*cmd); cmd++);
if (*cmd == '\000')
error ("Please specify a command following the thread ID list");
old_chain = make_cleanup_restore_current_thread (inferior_pid);
while (tidlist < cmd)
{
struct thread_info *tp;
int start, end;
start = strtol (tidlist, &p, 10);
if (p == tidlist)
error ("Error parsing %s", tidlist);
tidlist = p;
while (*tidlist == ' ' || *tidlist == '\t')
tidlist++;
if (*tidlist == '-') /* Got a range of IDs? */
{
tidlist++; /* Skip the - */
end = strtol (tidlist, &p, 10);
if (p == tidlist)
error ("Error parsing %s", tidlist);
tidlist = p;
while (*tidlist == ' ' || *tidlist == '\t')
tidlist++;
}
else
end = start;
for (; start <= end; start++)
{
tp = find_thread_id (start);
if (!tp)
warning ("Unknown thread %d.", start);
else if (!thread_alive (tp))
warning ("Thread %d has terminated.", start);
else
{
switch_to_thread (tp->pid);
#ifdef HPUXHPPA
printf_filtered ("\nThread %d (%s):\n", tp->num,
target_tid_to_str (inferior_pid));
#else
printf_filtered ("\nThread %d (%s):\n", tp->num,
target_pid_to_str (inferior_pid));
#endif
execute_command (cmd, from_tty);
}
}
}
do_cleanups (old_chain);
}
/* Switch to the specified thread. Will dispatch off to thread_apply_command
if prefix of arg is `apply'. */
static void
thread_command (tidstr, from_tty)
char *tidstr;
int from_tty;
{
if (!tidstr)
{
/* Don't generate an error, just say which thread is current. */
if (target_has_stack)
printf_filtered ("[Current thread is %d (%s)]\n",
pid_to_thread_id (inferior_pid),
#if defined(HPUXHPPA)
target_tid_to_str (inferior_pid)
#else
target_pid_to_str (inferior_pid)
#endif
);
else
error ("No stack.");
return;
}
gdb_thread_select (tidstr);
}
static int
do_captured_thread_select (void *tidstr)
{
int num;
struct thread_info *tp;
num = atoi ((char *)tidstr);
tp = find_thread_id (num);
#ifdef UI_OUT
if (!tp)
error ("Thread ID %d not known.", num);
#else
if (!tp)
error ("Thread ID %d not known. Use the \"info threads\" command to\n\
see the IDs of currently known threads.", num);
#endif
if (!thread_alive (tp))
error ("Thread ID %d has terminated.\n", num);
switch_to_thread (tp->pid);
#ifdef UI_OUT
ui_out_text (uiout, "[Switching to thread ");
ui_out_field_int (uiout, "new-thread-id", pid_to_thread_id (inferior_pid));
ui_out_text (uiout, " (");
#if defined(HPUXHPPA)
ui_out_text (uiout, target_tid_to_str (inferior_pid));
#else
ui_out_text (uiout, target_pid_to_str (inferior_pid));
#endif
ui_out_text (uiout, ")]");
#else /* UI_OUT */
printf_filtered ("[Switching to thread %d (%s)]\n",
pid_to_thread_id (inferior_pid),
#if defined(HPUXHPPA)
target_tid_to_str (inferior_pid)
#else
target_pid_to_str (inferior_pid)
#endif
);
#endif /* UI_OUT */
print_stack_frame (selected_frame, selected_frame_level, 1);
return GDB_RC_OK;
}
enum gdb_rc
gdb_thread_select (char *tidstr)
{
return catch_errors (do_captured_thread_select, tidstr,
NULL, RETURN_MASK_ALL);
}
/* Commands with a prefix of `thread'. */
struct cmd_list_element *thread_cmd_list = NULL;
void
_initialize_thread ()
{
static struct cmd_list_element *thread_apply_list = NULL;
add_info ("threads", info_threads_command,
"IDs of currently known threads.");
add_prefix_cmd ("thread", class_run, thread_command,
"Use this command to switch between threads.\n\
The new thread ID must be currently known.", &thread_cmd_list, "thread ", 1,
&cmdlist);
add_prefix_cmd ("apply", class_run, thread_apply_command,
"Apply a command to a list of threads.",
&thread_apply_list, "apply ", 1, &thread_cmd_list);
add_cmd ("all", class_run, thread_apply_all_command,
"Apply a command to all threads.",
&thread_apply_list);
if (!xdb_commands)
add_com_alias ("t", "thread", class_run, 1);
}