2734 lines
78 KiB
C
2734 lines
78 KiB
C
/* Matsushita 10300 specific support for 32-bit ELF
|
||
Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
#include "bfd.h"
|
||
#include "sysdep.h"
|
||
#include "libbfd.h"
|
||
#include "elf-bfd.h"
|
||
#include "elf/mn10300.h"
|
||
|
||
struct elf32_mn10300_link_hash_entry
|
||
{
|
||
/* The basic elf link hash table entry. */
|
||
struct elf_link_hash_entry root;
|
||
|
||
/* For function symbols, the number of times this function is
|
||
called directly (ie by name). */
|
||
unsigned int direct_calls;
|
||
|
||
/* For function symbols, the size of this function's stack
|
||
(if <= 255 bytes). We stuff this into "call" instructions
|
||
to this target when it's valid and profitable to do so. */
|
||
unsigned char stack_size;
|
||
|
||
/* For function symbols, arguments (if any) for movm instruction
|
||
in the prologue. We stuff this value into "call" instructions
|
||
to the target when it's valid and profitable to do so. */
|
||
unsigned char movm_args;
|
||
|
||
/* When set, convert all "call" instructions to this target into "calls"
|
||
instructions. */
|
||
#define MN10300_CONVERT_CALL_TO_CALLS 0x1
|
||
|
||
/* Used to mark functions which have had redundant parts of their
|
||
prologue deleted. */
|
||
#define MN10300_DELETED_PROLOGUE_BYTES 0x2
|
||
unsigned char flags;
|
||
};
|
||
|
||
/* We derive a hash table from the main elf linker hash table so
|
||
we can store state variables and a secondary hash table without
|
||
resorting to global variables. */
|
||
struct elf32_mn10300_link_hash_table
|
||
{
|
||
/* The main hash table. */
|
||
struct elf_link_hash_table root;
|
||
|
||
/* A hash table for static functions. We could derive a new hash table
|
||
instead of using the full elf32_mn10300_link_hash_table if we wanted
|
||
to save some memory. */
|
||
struct elf32_mn10300_link_hash_table *static_hash_table;
|
||
|
||
/* Random linker state flags. */
|
||
#define MN10300_HASH_ENTRIES_INITIALIZED 0x1
|
||
char flags;
|
||
};
|
||
|
||
/* For MN10300 linker hash table. */
|
||
|
||
/* Get the MN10300 ELF linker hash table from a link_info structure. */
|
||
|
||
#define elf32_mn10300_hash_table(p) \
|
||
((struct elf32_mn10300_link_hash_table *) ((p)->hash))
|
||
|
||
#define elf32_mn10300_link_hash_traverse(table, func, info) \
|
||
(elf_link_hash_traverse \
|
||
(&(table)->root, \
|
||
(boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
|
||
(info)))
|
||
|
||
static struct bfd_hash_entry *elf32_mn10300_link_hash_newfunc
|
||
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
||
static struct bfd_link_hash_table *elf32_mn10300_link_hash_table_create
|
||
PARAMS ((bfd *));
|
||
|
||
static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
|
||
PARAMS ((bfd *abfd, bfd_reloc_code_real_type code));
|
||
static void mn10300_info_to_howto
|
||
PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
|
||
static boolean mn10300_elf_check_relocs
|
||
PARAMS ((bfd *, struct bfd_link_info *, asection *,
|
||
const Elf_Internal_Rela *));
|
||
static asection *mn10300_elf_gc_mark_hook
|
||
PARAMS ((bfd *, struct bfd_link_info *info, Elf_Internal_Rela *,
|
||
struct elf_link_hash_entry *, Elf_Internal_Sym *));
|
||
static boolean mn10300_elf_relax_delete_bytes
|
||
PARAMS ((bfd *, asection *, bfd_vma, int));
|
||
static boolean mn10300_elf_symbol_address_p
|
||
PARAMS ((bfd *, asection *, Elf32_External_Sym *, bfd_vma));
|
||
static boolean elf32_mn10300_finish_hash_table_entry
|
||
PARAMS ((struct bfd_hash_entry *, PTR));
|
||
static void compute_function_info
|
||
PARAMS ((bfd *, struct elf32_mn10300_link_hash_entry *,
|
||
bfd_vma, unsigned char *));
|
||
|
||
/* We have to use RELA instructions since md_apply_fix3 in the assembler
|
||
does absolutely nothing. */
|
||
#define USE_RELA
|
||
|
||
enum reloc_type
|
||
{
|
||
R_MN10300_NONE = 0,
|
||
R_MN10300_32,
|
||
R_MN10300_16,
|
||
R_MN10300_8,
|
||
R_MN10300_PCREL32,
|
||
R_MN10300_PCREL16,
|
||
R_MN10300_PCREL8,
|
||
|
||
/* These are GNU extensions to enable C++ vtable garbage collection. */
|
||
R_MN10300_GNU_VTINHERIT,
|
||
R_MN10300_GNU_VTENTRY,
|
||
|
||
R_MN10300_MAX
|
||
};
|
||
|
||
static reloc_howto_type elf_mn10300_howto_table[] =
|
||
{
|
||
/* Dummy relocation. Does nothing. */
|
||
HOWTO (R_MN10300_NONE,
|
||
0,
|
||
2,
|
||
16,
|
||
false,
|
||
0,
|
||
complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc,
|
||
"R_MN10300_NONE",
|
||
false,
|
||
0,
|
||
0,
|
||
false),
|
||
/* Standard 32 bit reloc. */
|
||
HOWTO (R_MN10300_32,
|
||
0,
|
||
2,
|
||
32,
|
||
false,
|
||
0,
|
||
complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc,
|
||
"R_MN10300_32",
|
||
false,
|
||
0xffffffff,
|
||
0xffffffff,
|
||
false),
|
||
/* Standard 16 bit reloc. */
|
||
HOWTO (R_MN10300_16,
|
||
0,
|
||
1,
|
||
16,
|
||
false,
|
||
0,
|
||
complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc,
|
||
"R_MN10300_16",
|
||
false,
|
||
0xffff,
|
||
0xffff,
|
||
false),
|
||
/* Standard 8 bit reloc. */
|
||
HOWTO (R_MN10300_8,
|
||
0,
|
||
0,
|
||
8,
|
||
false,
|
||
0,
|
||
complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc,
|
||
"R_MN10300_8",
|
||
false,
|
||
0xff,
|
||
0xff,
|
||
false),
|
||
/* Standard 32bit pc-relative reloc. */
|
||
HOWTO (R_MN10300_PCREL32,
|
||
0,
|
||
2,
|
||
32,
|
||
true,
|
||
0,
|
||
complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc,
|
||
"R_MN10300_PCREL32",
|
||
false,
|
||
0xffffffff,
|
||
0xffffffff,
|
||
true),
|
||
/* Standard 16bit pc-relative reloc. */
|
||
HOWTO (R_MN10300_PCREL16,
|
||
0,
|
||
1,
|
||
16,
|
||
true,
|
||
0,
|
||
complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc,
|
||
"R_MN10300_PCREL16",
|
||
false,
|
||
0xffff,
|
||
0xffff,
|
||
true),
|
||
/* Standard 8 pc-relative reloc. */
|
||
HOWTO (R_MN10300_PCREL8,
|
||
0,
|
||
0,
|
||
8,
|
||
true,
|
||
0,
|
||
complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc,
|
||
"R_MN10300_PCREL8",
|
||
false,
|
||
0xff,
|
||
0xff,
|
||
true),
|
||
|
||
/* GNU extension to record C++ vtable hierarchy */
|
||
HOWTO (R_MN10300_GNU_VTINHERIT, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
NULL, /* special_function */
|
||
"R_MN10300_GNU_VTINHERIT", /* name */
|
||
false, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
|
||
/* GNU extension to record C++ vtable member usage */
|
||
HOWTO (R_MN10300_GNU_VTENTRY, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
false, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
NULL, /* special_function */
|
||
"R_MN10300_GNU_VTENTRY", /* name */
|
||
false, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
false), /* pcrel_offset */
|
||
};
|
||
|
||
struct mn10300_reloc_map
|
||
{
|
||
unsigned char bfd_reloc_val;
|
||
unsigned char elf_reloc_val;
|
||
};
|
||
|
||
static const struct mn10300_reloc_map mn10300_reloc_map[] =
|
||
{
|
||
{ BFD_RELOC_NONE, R_MN10300_NONE, },
|
||
{ BFD_RELOC_32, R_MN10300_32, },
|
||
{ BFD_RELOC_16, R_MN10300_16, },
|
||
{ BFD_RELOC_8, R_MN10300_8, },
|
||
{ BFD_RELOC_32_PCREL, R_MN10300_PCREL32, },
|
||
{ BFD_RELOC_16_PCREL, R_MN10300_PCREL16, },
|
||
{ BFD_RELOC_8_PCREL, R_MN10300_PCREL8, },
|
||
{ BFD_RELOC_VTABLE_INHERIT, R_MN10300_GNU_VTINHERIT },
|
||
{ BFD_RELOC_VTABLE_ENTRY, R_MN10300_GNU_VTENTRY },
|
||
};
|
||
|
||
static reloc_howto_type *
|
||
bfd_elf32_bfd_reloc_type_lookup (abfd, code)
|
||
bfd *abfd;
|
||
bfd_reloc_code_real_type code;
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0;
|
||
i < sizeof (mn10300_reloc_map) / sizeof (struct mn10300_reloc_map);
|
||
i++)
|
||
{
|
||
if (mn10300_reloc_map[i].bfd_reloc_val == code)
|
||
return &elf_mn10300_howto_table[mn10300_reloc_map[i].elf_reloc_val];
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Set the howto pointer for an MN10300 ELF reloc. */
|
||
|
||
static void
|
||
mn10300_info_to_howto (abfd, cache_ptr, dst)
|
||
bfd *abfd;
|
||
arelent *cache_ptr;
|
||
Elf32_Internal_Rela *dst;
|
||
{
|
||
unsigned int r_type;
|
||
|
||
r_type = ELF32_R_TYPE (dst->r_info);
|
||
BFD_ASSERT (r_type < (unsigned int) R_MN10300_MAX);
|
||
cache_ptr->howto = &elf_mn10300_howto_table[r_type];
|
||
}
|
||
|
||
/* Look through the relocs for a section during the first phase.
|
||
Since we don't do .gots or .plts, we just need to consider the
|
||
virtual table relocs for gc. */
|
||
|
||
static boolean
|
||
mn10300_elf_check_relocs (abfd, info, sec, relocs)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
asection *sec;
|
||
const Elf_Internal_Rela *relocs;
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
|
||
const Elf_Internal_Rela *rel;
|
||
const Elf_Internal_Rela *rel_end;
|
||
|
||
if (info->relocateable)
|
||
return true;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf32_External_Sym);
|
||
if (!elf_bad_symtab (abfd))
|
||
sym_hashes_end -= symtab_hdr->sh_info;
|
||
|
||
rel_end = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < rel_end; rel++)
|
||
{
|
||
struct elf_link_hash_entry *h;
|
||
unsigned long r_symndx;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
h = NULL;
|
||
else
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
|
||
switch (ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
/* This relocation describes the C++ object vtable hierarchy.
|
||
Reconstruct it for later use during GC. */
|
||
case R_MN10300_GNU_VTINHERIT:
|
||
if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
||
return false;
|
||
break;
|
||
|
||
/* This relocation describes which C++ vtable entries are actually
|
||
used. Record for later use during GC. */
|
||
case R_MN10300_GNU_VTENTRY:
|
||
if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_addend))
|
||
return false;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return the section that should be marked against GC for a given
|
||
relocation. */
|
||
|
||
static asection *
|
||
mn10300_elf_gc_mark_hook (abfd, info, rel, h, sym)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
Elf_Internal_Rela *rel;
|
||
struct elf_link_hash_entry *h;
|
||
Elf_Internal_Sym *sym;
|
||
{
|
||
if (h != NULL)
|
||
{
|
||
switch (ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
case R_MN10300_GNU_VTINHERIT:
|
||
case R_MN10300_GNU_VTENTRY:
|
||
break;
|
||
|
||
default:
|
||
switch (h->root.type)
|
||
{
|
||
case bfd_link_hash_defined:
|
||
case bfd_link_hash_defweak:
|
||
return h->root.u.def.section;
|
||
|
||
case bfd_link_hash_common:
|
||
return h->root.u.c.p->section;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (!(elf_bad_symtab (abfd)
|
||
&& ELF_ST_BIND (sym->st_info) != STB_LOCAL)
|
||
&& ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
|
||
&& sym->st_shndx != SHN_COMMON))
|
||
{
|
||
return bfd_section_from_elf_index (abfd, sym->st_shndx);
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Perform a relocation as part of a final link. */
|
||
static bfd_reloc_status_type
|
||
mn10300_elf_final_link_relocate (howto, input_bfd, output_bfd,
|
||
input_section, contents, offset, value,
|
||
addend, info, sym_sec, is_local)
|
||
reloc_howto_type *howto;
|
||
bfd *input_bfd;
|
||
bfd *output_bfd;
|
||
asection *input_section;
|
||
bfd_byte *contents;
|
||
bfd_vma offset;
|
||
bfd_vma value;
|
||
bfd_vma addend;
|
||
struct bfd_link_info *info;
|
||
asection *sym_sec;
|
||
int is_local;
|
||
{
|
||
unsigned long r_type = howto->type;
|
||
bfd_byte *hit_data = contents + offset;
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_MN10300_NONE:
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_32:
|
||
value += addend;
|
||
bfd_put_32 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_16:
|
||
value += addend;
|
||
|
||
if ((long)value > 0x7fff || (long)value < -0x8000)
|
||
return bfd_reloc_overflow;
|
||
|
||
bfd_put_16 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_8:
|
||
value += addend;
|
||
|
||
if ((long)value > 0x7fff || (long)value < -0x8000)
|
||
return bfd_reloc_overflow;
|
||
|
||
bfd_put_8 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_PCREL8:
|
||
value -= (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
value -= offset;
|
||
value += addend;
|
||
|
||
if ((long)value > 0xff || (long)value < -0x100)
|
||
return bfd_reloc_overflow;
|
||
|
||
bfd_put_8 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_PCREL16:
|
||
value -= (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
value -= offset;
|
||
value += addend;
|
||
|
||
if ((long)value > 0xffff || (long)value < -0x10000)
|
||
return bfd_reloc_overflow;
|
||
|
||
bfd_put_16 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_PCREL32:
|
||
value -= (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
value -= offset;
|
||
value += addend;
|
||
|
||
bfd_put_32 (input_bfd, value, hit_data);
|
||
return bfd_reloc_ok;
|
||
|
||
case R_MN10300_GNU_VTINHERIT:
|
||
case R_MN10300_GNU_VTENTRY:
|
||
return bfd_reloc_ok;
|
||
|
||
default:
|
||
return bfd_reloc_notsupported;
|
||
}
|
||
}
|
||
|
||
|
||
/* Relocate an MN10300 ELF section. */
|
||
static boolean
|
||
mn10300_elf_relocate_section (output_bfd, info, input_bfd, input_section,
|
||
contents, relocs, local_syms, local_sections)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
bfd *input_bfd;
|
||
asection *input_section;
|
||
bfd_byte *contents;
|
||
Elf_Internal_Rela *relocs;
|
||
Elf_Internal_Sym *local_syms;
|
||
asection **local_sections;
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf32_mn10300_link_hash_entry **sym_hashes;
|
||
Elf_Internal_Rela *rel, *relend;
|
||
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
sym_hashes = (struct elf32_mn10300_link_hash_entry **)
|
||
(elf_sym_hashes (input_bfd));
|
||
|
||
rel = relocs;
|
||
relend = relocs + input_section->reloc_count;
|
||
for (; rel < relend; rel++)
|
||
{
|
||
int r_type;
|
||
reloc_howto_type *howto;
|
||
unsigned long r_symndx;
|
||
Elf_Internal_Sym *sym;
|
||
asection *sec;
|
||
struct elf32_mn10300_link_hash_entry *h;
|
||
bfd_vma relocation;
|
||
bfd_reloc_status_type r;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
howto = elf_mn10300_howto_table + r_type;
|
||
|
||
/* Just skip the vtable gc relocs. */
|
||
if (r_type == R_MN10300_GNU_VTINHERIT
|
||
|| r_type == R_MN10300_GNU_VTENTRY)
|
||
continue;
|
||
|
||
if (info->relocateable)
|
||
{
|
||
/* This is a relocateable link. We don't have to change
|
||
anything, unless the reloc is against a section symbol,
|
||
in which case we have to adjust according to where the
|
||
section symbol winds up in the output section. */
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
||
{
|
||
sec = local_sections[r_symndx];
|
||
rel->r_addend += sec->output_offset + sym->st_value;
|
||
}
|
||
}
|
||
|
||
continue;
|
||
}
|
||
|
||
/* This is a final link. */
|
||
h = NULL;
|
||
sym = NULL;
|
||
sec = NULL;
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
sec = local_sections[r_symndx];
|
||
relocation = (sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ sym->st_value);
|
||
}
|
||
else
|
||
{
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf32_mn10300_link_hash_entry *) h->root.root.u.i.link;
|
||
if (h->root.root.type == bfd_link_hash_defined
|
||
|| h->root.root.type == bfd_link_hash_defweak)
|
||
{
|
||
sec = h->root.root.u.def.section;
|
||
relocation = (h->root.root.u.def.value
|
||
+ sec->output_section->vma
|
||
+ sec->output_offset);
|
||
}
|
||
else if (h->root.root.type == bfd_link_hash_undefweak)
|
||
relocation = 0;
|
||
else
|
||
{
|
||
if (! ((*info->callbacks->undefined_symbol)
|
||
(info, h->root.root.root.string, input_bfd,
|
||
input_section, rel->r_offset)))
|
||
return false;
|
||
relocation = 0;
|
||
}
|
||
}
|
||
|
||
r = mn10300_elf_final_link_relocate (howto, input_bfd, output_bfd,
|
||
input_section,
|
||
contents, rel->r_offset,
|
||
relocation, rel->r_addend,
|
||
info, sec, h == NULL);
|
||
|
||
if (r != bfd_reloc_ok)
|
||
{
|
||
const char *name;
|
||
const char *msg = (const char *)0;
|
||
|
||
if (h != NULL)
|
||
name = h->root.root.root.string;
|
||
else
|
||
{
|
||
name = (bfd_elf_string_from_elf_section
|
||
(input_bfd, symtab_hdr->sh_link, sym->st_name));
|
||
if (name == NULL || *name == '\0')
|
||
name = bfd_section_name (input_bfd, sec);
|
||
}
|
||
|
||
switch (r)
|
||
{
|
||
case bfd_reloc_overflow:
|
||
if (! ((*info->callbacks->reloc_overflow)
|
||
(info, name, howto->name, (bfd_vma) 0,
|
||
input_bfd, input_section, rel->r_offset)))
|
||
return false;
|
||
break;
|
||
|
||
case bfd_reloc_undefined:
|
||
if (! ((*info->callbacks->undefined_symbol)
|
||
(info, name, input_bfd, input_section,
|
||
rel->r_offset)))
|
||
return false;
|
||
break;
|
||
|
||
case bfd_reloc_outofrange:
|
||
msg = _("internal error: out of range error");
|
||
goto common_error;
|
||
|
||
case bfd_reloc_notsupported:
|
||
msg = _("internal error: unsupported relocation error");
|
||
goto common_error;
|
||
|
||
case bfd_reloc_dangerous:
|
||
msg = _("internal error: dangerous error");
|
||
goto common_error;
|
||
|
||
default:
|
||
msg = _("internal error: unknown error");
|
||
/* fall through */
|
||
|
||
common_error:
|
||
if (!((*info->callbacks->warning)
|
||
(info, msg, name, input_bfd, input_section,
|
||
rel->r_offset)))
|
||
return false;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Finish initializing one hash table entry. */
|
||
static boolean
|
||
elf32_mn10300_finish_hash_table_entry (gen_entry, in_args)
|
||
struct bfd_hash_entry *gen_entry;
|
||
PTR in_args;
|
||
{
|
||
struct elf32_mn10300_link_hash_entry *entry;
|
||
unsigned int byte_count = 0;
|
||
|
||
entry = (struct elf32_mn10300_link_hash_entry *)gen_entry;
|
||
|
||
/* If we already know we want to convert "call" to "calls" for calls
|
||
to this symbol, then return now. */
|
||
if (entry->flags == MN10300_CONVERT_CALL_TO_CALLS)
|
||
return true;
|
||
|
||
/* If there are no named calls to this symbol, or there's nothing we
|
||
can move from the function itself into the "call" instruction, then
|
||
note that all "call" instructions should be converted into "calls"
|
||
instructions and return. */
|
||
if (entry->direct_calls == 0
|
||
|| (entry->stack_size == 0 && entry->movm_args == 0))
|
||
{
|
||
/* Make a note that we should convert "call" instructions to "calls"
|
||
instructions for calls to this symbol. */
|
||
entry->flags |= MN10300_CONVERT_CALL_TO_CALLS;
|
||
return true;
|
||
}
|
||
|
||
/* We may be able to move some instructions from the function itself into
|
||
the "call" instruction. Count how many bytes we might be able to
|
||
eliminate in the function itself. */
|
||
|
||
/* A movm instruction is two bytes. */
|
||
if (entry->movm_args)
|
||
byte_count += 2;
|
||
|
||
/* Count the insn to allocate stack space too. */
|
||
if (entry->stack_size > 0 && entry->stack_size <= 128)
|
||
byte_count += 3;
|
||
else if (entry->stack_size > 0 && entry->stack_size < 256)
|
||
byte_count += 4;
|
||
|
||
/* If using "call" will result in larger code, then turn all
|
||
the associated "call" instructions into "calls" instrutions. */
|
||
if (byte_count < entry->direct_calls)
|
||
entry->flags |= MN10300_CONVERT_CALL_TO_CALLS;
|
||
|
||
/* This routine never fails. */
|
||
return true;
|
||
}
|
||
|
||
/* This function handles relaxing for the mn10300.
|
||
|
||
There's quite a few relaxing opportunites available on the mn10300:
|
||
|
||
* calls:32 -> calls:16 2 bytes
|
||
* call:32 -> call:16 2 bytes
|
||
|
||
* call:32 -> calls:32 1 byte
|
||
* call:16 -> calls:16 1 byte
|
||
* These are done anytime using "calls" would result
|
||
in smaller code, or when necessary to preserve the
|
||
meaning of the program.
|
||
|
||
* call:32 varies
|
||
* call:16
|
||
* In some circumstances we can move instructions
|
||
from a function prologue into a "call" instruction.
|
||
This is only done if the resulting code is no larger
|
||
than the original code.
|
||
|
||
|
||
* jmp:32 -> jmp:16 2 bytes
|
||
* jmp:16 -> bra:8 1 byte
|
||
|
||
* If the previous instruction is a conditional branch
|
||
around the jump/bra, we may be able to reverse its condition
|
||
and change its target to the jump's target. The jump/bra
|
||
can then be deleted. 2 bytes
|
||
|
||
* mov abs32 -> mov abs16 1 or 2 bytes
|
||
|
||
* Most instructions which accept imm32 can relax to imm16 1 or 2 bytes
|
||
- Most instructions which accept imm16 can relax to imm8 1 or 2 bytes
|
||
|
||
* Most instructions which accept d32 can relax to d16 1 or 2 bytes
|
||
- Most instructions which accept d16 can relax to d8 1 or 2 bytes
|
||
|
||
We don't handle imm16->imm8 or d16->d8 as they're very rare
|
||
and somewhat more difficult to support. */
|
||
|
||
static boolean
|
||
mn10300_elf_relax_section (abfd, sec, link_info, again)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
struct bfd_link_info *link_info;
|
||
boolean *again;
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Rela *internal_relocs = NULL;
|
||
Elf_Internal_Rela *free_relocs = NULL;
|
||
Elf_Internal_Rela *irel, *irelend;
|
||
bfd_byte *contents = NULL;
|
||
bfd_byte *free_contents = NULL;
|
||
Elf32_External_Sym *extsyms = NULL;
|
||
Elf32_External_Sym *free_extsyms = NULL;
|
||
struct elf32_mn10300_link_hash_table *hash_table;
|
||
|
||
/* Assume nothing changes. */
|
||
*again = false;
|
||
|
||
/* We need a pointer to the mn10300 specific hash table. */
|
||
hash_table = elf32_mn10300_hash_table (link_info);
|
||
|
||
/* Initialize fields in each hash table entry the first time through. */
|
||
if ((hash_table->flags & MN10300_HASH_ENTRIES_INITIALIZED) == 0)
|
||
{
|
||
bfd *input_bfd;
|
||
|
||
/* Iterate over all the input bfds. */
|
||
for (input_bfd = link_info->input_bfds;
|
||
input_bfd != NULL;
|
||
input_bfd = input_bfd->link_next)
|
||
{
|
||
asection *section;
|
||
|
||
/* We're going to need all the symbols for each bfd. */
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
|
||
/* Get cached copy if it exists. */
|
||
if (symtab_hdr->contents != NULL)
|
||
extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
|
||
else
|
||
{
|
||
/* Go get them off disk. */
|
||
extsyms = ((Elf32_External_Sym *)
|
||
bfd_malloc (symtab_hdr->sh_size));
|
||
if (extsyms == NULL)
|
||
goto error_return;
|
||
free_extsyms = extsyms;
|
||
if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
||
|| (bfd_read (extsyms, 1, symtab_hdr->sh_size, input_bfd)
|
||
!= symtab_hdr->sh_size))
|
||
goto error_return;
|
||
}
|
||
|
||
/* Iterate over each section in this bfd. */
|
||
for (section = input_bfd->sections;
|
||
section != NULL;
|
||
section = section->next)
|
||
{
|
||
struct elf32_mn10300_link_hash_entry *hash;
|
||
Elf_Internal_Sym *sym;
|
||
asection *sym_sec;
|
||
const char *sym_name;
|
||
char *new_name;
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
/* Get cached copy of section contents if it exists. */
|
||
if (elf_section_data (section)->this_hdr.contents != NULL)
|
||
contents = elf_section_data (section)->this_hdr.contents;
|
||
else if (section->_raw_size != 0)
|
||
{
|
||
/* Go get them off disk. */
|
||
contents = (bfd_byte *)bfd_malloc (section->_raw_size);
|
||
if (contents == NULL)
|
||
goto error_return;
|
||
free_contents = contents;
|
||
|
||
if (!bfd_get_section_contents (input_bfd, section,
|
||
contents, (file_ptr) 0,
|
||
section->_raw_size))
|
||
goto error_return;
|
||
}
|
||
else
|
||
{
|
||
contents = NULL;
|
||
free_contents = NULL;
|
||
}
|
||
|
||
/* If there aren't any relocs, then there's nothing to do. */
|
||
if ((section->flags & SEC_RELOC) != 0
|
||
&& section->reloc_count != 0)
|
||
{
|
||
|
||
/* Get a copy of the native relocations. */
|
||
internal_relocs = (_bfd_elf32_link_read_relocs
|
||
(input_bfd, section, (PTR) NULL,
|
||
(Elf_Internal_Rela *) NULL,
|
||
link_info->keep_memory));
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
if (! link_info->keep_memory)
|
||
free_relocs = internal_relocs;
|
||
|
||
/* Now examine each relocation. */
|
||
irel = internal_relocs;
|
||
irelend = irel + section->reloc_count;
|
||
for (; irel < irelend; irel++)
|
||
{
|
||
long r_type;
|
||
unsigned long r_index;
|
||
unsigned char code;
|
||
|
||
r_type = ELF32_R_TYPE (irel->r_info);
|
||
r_index = ELF32_R_SYM (irel->r_info);
|
||
|
||
if (r_type < 0 || r_type >= (int)R_MN10300_MAX)
|
||
goto error_return;
|
||
|
||
/* We need the name and hash table entry of the target
|
||
symbol! */
|
||
hash = NULL;
|
||
sym = NULL;
|
||
sym_sec = NULL;
|
||
|
||
if (r_index < symtab_hdr->sh_info)
|
||
{
|
||
/* A local symbol. */
|
||
Elf_Internal_Sym isym;
|
||
|
||
bfd_elf32_swap_symbol_in (input_bfd,
|
||
extsyms + r_index, &isym);
|
||
|
||
if (isym.st_shndx == SHN_UNDEF)
|
||
sym_sec = bfd_und_section_ptr;
|
||
else if (isym.st_shndx > 0
|
||
&& isym.st_shndx < SHN_LORESERVE)
|
||
sym_sec
|
||
= bfd_section_from_elf_index (input_bfd,
|
||
isym.st_shndx);
|
||
else if (isym.st_shndx == SHN_ABS)
|
||
sym_sec = bfd_abs_section_ptr;
|
||
else if (isym.st_shndx == SHN_COMMON)
|
||
sym_sec = bfd_com_section_ptr;
|
||
|
||
sym_name = bfd_elf_string_from_elf_section (input_bfd,
|
||
symtab_hdr->sh_link,
|
||
isym.st_name);
|
||
|
||
/* If it isn't a function, then we don't care
|
||
about it. */
|
||
if (r_index < symtab_hdr->sh_info
|
||
&& ELF_ST_TYPE (isym.st_info) != STT_FUNC)
|
||
continue;
|
||
|
||
/* Tack on an ID so we can uniquely identify this
|
||
local symbol in the global hash table. */
|
||
new_name = alloca (strlen (sym_name) + 10);
|
||
sprintf (new_name, "%s_%08x", sym_name, (int)sym_sec);
|
||
sym_name = new_name;
|
||
|
||
hash = (struct elf32_mn10300_link_hash_entry *)
|
||
elf_link_hash_lookup (&hash_table->static_hash_table->root,
|
||
sym_name, true,
|
||
true, false);
|
||
}
|
||
else
|
||
{
|
||
r_index -= symtab_hdr->sh_info;
|
||
hash = (struct elf32_mn10300_link_hash_entry *)
|
||
elf_sym_hashes (input_bfd)[r_index];
|
||
}
|
||
|
||
/* If this is not a "call" instruction, then we
|
||
should convert "call" instructions to "calls"
|
||
instructions. */
|
||
code = bfd_get_8 (input_bfd,
|
||
contents + irel->r_offset - 1);
|
||
if (code != 0xdd && code != 0xcd)
|
||
hash->flags |= MN10300_CONVERT_CALL_TO_CALLS;
|
||
|
||
/* If this is a jump/call, then bump the direct_calls
|
||
counter. Else force "call" to "calls" conversions. */
|
||
if (r_type == R_MN10300_PCREL32
|
||
|| r_type == R_MN10300_PCREL16)
|
||
hash->direct_calls++;
|
||
else
|
||
hash->flags |= MN10300_CONVERT_CALL_TO_CALLS;
|
||
}
|
||
}
|
||
|
||
/* Now look at the actual contents to get the stack size,
|
||
and a list of what registers were saved in the prologue
|
||
(ie movm_args). */
|
||
if ((section->flags & SEC_CODE) != 0)
|
||
{
|
||
|
||
Elf32_External_Sym *esym, *esymend;
|
||
int idx, shndx;
|
||
|
||
shndx = _bfd_elf_section_from_bfd_section (input_bfd,
|
||
section);
|
||
|
||
|
||
/* Look at each function defined in this section and
|
||
update info for that function. */
|
||
esym = extsyms;
|
||
esymend = esym + symtab_hdr->sh_info;
|
||
for (; esym < esymend; esym++)
|
||
{
|
||
Elf_Internal_Sym isym;
|
||
|
||
bfd_elf32_swap_symbol_in (input_bfd, esym, &isym);
|
||
if (isym.st_shndx == shndx
|
||
&& ELF_ST_TYPE (isym.st_info) == STT_FUNC)
|
||
{
|
||
if (isym.st_shndx == SHN_UNDEF)
|
||
sym_sec = bfd_und_section_ptr;
|
||
else if (isym.st_shndx > 0
|
||
&& isym.st_shndx < SHN_LORESERVE)
|
||
sym_sec
|
||
= bfd_section_from_elf_index (input_bfd,
|
||
isym.st_shndx);
|
||
else if (isym.st_shndx == SHN_ABS)
|
||
sym_sec = bfd_abs_section_ptr;
|
||
else if (isym.st_shndx == SHN_COMMON)
|
||
sym_sec = bfd_com_section_ptr;
|
||
|
||
sym_name = bfd_elf_string_from_elf_section (input_bfd,
|
||
symtab_hdr->sh_link,
|
||
isym.st_name);
|
||
|
||
/* Tack on an ID so we can uniquely identify this
|
||
local symbol in the global hash table. */
|
||
new_name = alloca (strlen (sym_name) + 10);
|
||
sprintf (new_name, "%s_%08x", sym_name, (int)sym_sec);
|
||
sym_name = new_name;
|
||
|
||
hash = (struct elf32_mn10300_link_hash_entry *)
|
||
elf_link_hash_lookup (&hash_table->static_hash_table->root,
|
||
sym_name, true,
|
||
true, false);
|
||
compute_function_info (input_bfd, hash,
|
||
isym.st_value, contents);
|
||
}
|
||
}
|
||
|
||
esym = extsyms + symtab_hdr->sh_info;
|
||
esymend = extsyms + (symtab_hdr->sh_size
|
||
/ sizeof (Elf32_External_Sym));
|
||
for (idx = 0; esym < esymend; esym++, idx++)
|
||
{
|
||
Elf_Internal_Sym isym;
|
||
|
||
bfd_elf32_swap_symbol_in (input_bfd, esym, &isym);
|
||
hash = (struct elf32_mn10300_link_hash_entry *)
|
||
elf_sym_hashes (input_bfd)[idx];
|
||
if (isym.st_shndx == shndx
|
||
&& ELF_ST_TYPE (isym.st_info) == STT_FUNC
|
||
&& (hash)->root.root.u.def.section == section
|
||
&& ((hash)->root.root.type == bfd_link_hash_defined
|
||
|| (hash)->root.root.type == bfd_link_hash_defweak))
|
||
compute_function_info (input_bfd, hash,
|
||
(hash)->root.root.u.def.value,
|
||
contents);
|
||
}
|
||
}
|
||
|
||
/* Cache or free any memory we allocated for the relocs. */
|
||
if (free_relocs != NULL)
|
||
{
|
||
free (free_relocs);
|
||
free_relocs = NULL;
|
||
}
|
||
|
||
/* Cache or free any memory we allocated for the contents. */
|
||
if (free_contents != NULL)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (free_contents);
|
||
else
|
||
{
|
||
/* Cache the section contents for elf_link_input_bfd. */
|
||
elf_section_data (section)->this_hdr.contents = contents;
|
||
}
|
||
free_contents = NULL;
|
||
}
|
||
}
|
||
|
||
/* Cache or free any memory we allocated for the symbols. */
|
||
if (free_extsyms != NULL)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (free_extsyms);
|
||
else
|
||
{
|
||
/* Cache the symbols for elf_link_input_bfd. */
|
||
symtab_hdr->contents = extsyms;
|
||
}
|
||
free_extsyms = NULL;
|
||
}
|
||
}
|
||
|
||
/* Now iterate on each symbol in the hash table and perform
|
||
the final initialization steps on each. */
|
||
elf32_mn10300_link_hash_traverse (hash_table,
|
||
elf32_mn10300_finish_hash_table_entry,
|
||
NULL);
|
||
elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
|
||
elf32_mn10300_finish_hash_table_entry,
|
||
NULL);
|
||
|
||
/* All entries in the hash table are fully initialized. */
|
||
hash_table->flags |= MN10300_HASH_ENTRIES_INITIALIZED;
|
||
|
||
/* Now that everything has been initialized, go through each
|
||
code section and delete any prologue insns which will be
|
||
redundant because their operations will be performed by
|
||
a "call" instruction. */
|
||
for (input_bfd = link_info->input_bfds;
|
||
input_bfd != NULL;
|
||
input_bfd = input_bfd->link_next)
|
||
{
|
||
asection *section;
|
||
|
||
/* We're going to need all the symbols for each bfd. */
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
|
||
/* Get cached copy if it exists. */
|
||
if (symtab_hdr->contents != NULL)
|
||
extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
|
||
else
|
||
{
|
||
/* Go get them off disk. */
|
||
extsyms = ((Elf32_External_Sym *)
|
||
bfd_malloc (symtab_hdr->sh_size));
|
||
if (extsyms == NULL)
|
||
goto error_return;
|
||
free_extsyms = extsyms;
|
||
if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
||
|| (bfd_read (extsyms, 1, symtab_hdr->sh_size, input_bfd)
|
||
!= symtab_hdr->sh_size))
|
||
goto error_return;
|
||
}
|
||
|
||
/* Walk over each section in this bfd. */
|
||
for (section = input_bfd->sections;
|
||
section != NULL;
|
||
section = section->next)
|
||
{
|
||
int shndx;
|
||
Elf32_External_Sym *esym, *esymend;
|
||
int idx;
|
||
|
||
/* Skip non-code sections and empty sections. */
|
||
if ((section->flags & SEC_CODE) == 0 || section->_raw_size == 0)
|
||
continue;
|
||
|
||
if (section->reloc_count != 0)
|
||
{
|
||
/* Get a copy of the native relocations. */
|
||
internal_relocs = (_bfd_elf32_link_read_relocs
|
||
(input_bfd, section, (PTR) NULL,
|
||
(Elf_Internal_Rela *) NULL,
|
||
link_info->keep_memory));
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
if (! link_info->keep_memory)
|
||
free_relocs = internal_relocs;
|
||
}
|
||
|
||
/* Get cached copy of section contents if it exists. */
|
||
if (elf_section_data (section)->this_hdr.contents != NULL)
|
||
contents = elf_section_data (section)->this_hdr.contents;
|
||
else
|
||
{
|
||
/* Go get them off disk. */
|
||
contents = (bfd_byte *)bfd_malloc (section->_raw_size);
|
||
if (contents == NULL)
|
||
goto error_return;
|
||
free_contents = contents;
|
||
|
||
if (!bfd_get_section_contents (input_bfd, section,
|
||
contents, (file_ptr) 0,
|
||
section->_raw_size))
|
||
goto error_return;
|
||
}
|
||
|
||
|
||
shndx = _bfd_elf_section_from_bfd_section (input_bfd, section);
|
||
|
||
/* Now look for any function in this section which needs
|
||
insns deleted from its prologue. */
|
||
esym = extsyms;
|
||
esymend = esym + symtab_hdr->sh_info;
|
||
for (; esym < esymend; esym++)
|
||
{
|
||
Elf_Internal_Sym isym;
|
||
struct elf32_mn10300_link_hash_entry *sym_hash;
|
||
asection *sym_sec;
|
||
const char *sym_name;
|
||
Elf_Internal_Shdr *hdr;
|
||
char *new_name;
|
||
|
||
bfd_elf32_swap_symbol_in (input_bfd, esym, &isym);
|
||
|
||
if (isym.st_shndx != shndx)
|
||
continue;
|
||
|
||
if (isym.st_shndx == SHN_UNDEF)
|
||
sym_sec = bfd_und_section_ptr;
|
||
else if (isym.st_shndx > 0 && isym.st_shndx < SHN_LORESERVE)
|
||
sym_sec
|
||
= bfd_section_from_elf_index (input_bfd, isym.st_shndx);
|
||
else if (isym.st_shndx == SHN_ABS)
|
||
sym_sec = bfd_abs_section_ptr;
|
||
else if (isym.st_shndx == SHN_COMMON)
|
||
sym_sec = bfd_com_section_ptr;
|
||
|
||
sym_name = bfd_elf_string_from_elf_section (input_bfd,
|
||
symtab_hdr->sh_link,
|
||
isym.st_name);
|
||
|
||
/* Tack on an ID so we can uniquely identify this
|
||
local symbol in the global hash table. */
|
||
new_name = alloca (strlen (sym_name) + 10);
|
||
sprintf (new_name, "%s_%08x", sym_name, (int)sym_sec);
|
||
sym_name = new_name;
|
||
|
||
sym_hash = (struct elf32_mn10300_link_hash_entry *)
|
||
elf_link_hash_lookup (&hash_table->static_hash_table->root,
|
||
sym_name, false,
|
||
false, false);
|
||
|
||
if (sym_hash == NULL)
|
||
continue;
|
||
|
||
if (! ((sym_hash)->flags & MN10300_CONVERT_CALL_TO_CALLS)
|
||
&& ! ((sym_hash)->flags & MN10300_DELETED_PROLOGUE_BYTES))
|
||
{
|
||
int bytes = 0;
|
||
|
||
/* Note that we've changed things. */
|
||
elf_section_data (section)->relocs = internal_relocs;
|
||
free_relocs = NULL;
|
||
|
||
elf_section_data (section)->this_hdr.contents = contents;
|
||
free_contents = NULL;
|
||
|
||
symtab_hdr->contents = (bfd_byte *)extsyms;
|
||
free_extsyms = NULL;
|
||
|
||
/* Count how many bytes we're going to delete. */
|
||
if (sym_hash->movm_args)
|
||
bytes += 2;
|
||
|
||
if (sym_hash->stack_size && sym_hash->stack_size <= 128)
|
||
bytes += 3;
|
||
else if (sym_hash->stack_size
|
||
&& sym_hash->stack_size < 256)
|
||
bytes += 4;
|
||
|
||
/* Note that we've deleted prologue bytes for this
|
||
function. */
|
||
sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES;
|
||
|
||
/* Actually delete the bytes. */
|
||
if (!mn10300_elf_relax_delete_bytes (input_bfd,
|
||
section,
|
||
isym.st_value,
|
||
bytes))
|
||
goto error_return;
|
||
|
||
/* Something changed. Not strictly necessary, but
|
||
may lead to more relaxing opportunities. */
|
||
*again = true;
|
||
}
|
||
}
|
||
|
||
/* Look for any global functions in this section which
|
||
need insns deleted from their prologues. */
|
||
esym = extsyms + symtab_hdr->sh_info;
|
||
esymend = extsyms + (symtab_hdr->sh_size
|
||
/ sizeof (Elf32_External_Sym));
|
||
for (idx = 0; esym < esymend; esym++, idx++)
|
||
{
|
||
Elf_Internal_Sym isym;
|
||
struct elf32_mn10300_link_hash_entry *sym_hash;
|
||
|
||
bfd_elf32_swap_symbol_in (input_bfd, esym, &isym);
|
||
sym_hash = (struct elf32_mn10300_link_hash_entry *)
|
||
(elf_sym_hashes (input_bfd)[idx]);
|
||
if (isym.st_shndx == shndx
|
||
&& (sym_hash)->root.root.u.def.section == section
|
||
&& ! ((sym_hash)->flags & MN10300_CONVERT_CALL_TO_CALLS)
|
||
&& ! ((sym_hash)->flags & MN10300_DELETED_PROLOGUE_BYTES))
|
||
{
|
||
int bytes = 0;
|
||
|
||
/* Note that we've changed things. */
|
||
elf_section_data (section)->relocs = internal_relocs;
|
||
free_relocs = NULL;
|
||
|
||
elf_section_data (section)->this_hdr.contents = contents;
|
||
free_contents = NULL;
|
||
|
||
symtab_hdr->contents = (bfd_byte *)extsyms;
|
||
free_extsyms = NULL;
|
||
|
||
/* Count how many bytes we're going to delete. */
|
||
if (sym_hash->movm_args)
|
||
bytes += 2;
|
||
|
||
if (sym_hash->stack_size && sym_hash->stack_size <= 128)
|
||
bytes += 3;
|
||
else if (sym_hash->stack_size
|
||
&& sym_hash->stack_size < 256)
|
||
bytes += 4;
|
||
|
||
/* Note that we've deleted prologue bytes for this
|
||
function. */
|
||
sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES;
|
||
|
||
/* Actually delete the bytes. */
|
||
if (!mn10300_elf_relax_delete_bytes (input_bfd,
|
||
section,
|
||
(sym_hash)->root.root.u.def.value,
|
||
bytes))
|
||
goto error_return;
|
||
|
||
/* Something changed. Not strictly necessary, but
|
||
may lead to more relaxing opportunities. */
|
||
*again = true;
|
||
}
|
||
}
|
||
|
||
/* Cache or free any memory we allocated for the relocs. */
|
||
if (free_relocs != NULL)
|
||
{
|
||
free (free_relocs);
|
||
free_relocs = NULL;
|
||
}
|
||
|
||
/* Cache or free any memory we allocated for the contents. */
|
||
if (free_contents != NULL)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (free_contents);
|
||
else
|
||
{
|
||
/* Cache the section contents for elf_link_input_bfd. */
|
||
elf_section_data (section)->this_hdr.contents = contents;
|
||
}
|
||
free_contents = NULL;
|
||
}
|
||
}
|
||
|
||
/* Cache or free any memory we allocated for the symbols. */
|
||
if (free_extsyms != NULL)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (free_extsyms);
|
||
else
|
||
{
|
||
/* Cache the symbols for elf_link_input_bfd. */
|
||
symtab_hdr->contents = extsyms;
|
||
}
|
||
free_extsyms = NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* (Re)initialize for the basic instruction shortening/relaxing pass. */
|
||
contents = NULL;
|
||
extsyms = NULL;
|
||
internal_relocs = NULL;
|
||
free_relocs = NULL;
|
||
free_contents = NULL;
|
||
free_extsyms = NULL;
|
||
|
||
/* We don't have to do anything for a relocateable link, if
|
||
this section does not have relocs, or if this is not a
|
||
code section. */
|
||
if (link_info->relocateable
|
||
|| (sec->flags & SEC_RELOC) == 0
|
||
|| sec->reloc_count == 0
|
||
|| (sec->flags & SEC_CODE) == 0)
|
||
return true;
|
||
|
||
/* If this is the first time we have been called for this section,
|
||
initialize the cooked size. */
|
||
if (sec->_cooked_size == 0)
|
||
sec->_cooked_size = sec->_raw_size;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
|
||
/* Get a copy of the native relocations. */
|
||
internal_relocs = (_bfd_elf32_link_read_relocs
|
||
(abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
|
||
link_info->keep_memory));
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
if (! link_info->keep_memory)
|
||
free_relocs = internal_relocs;
|
||
|
||
/* Walk through them looking for relaxing opportunities. */
|
||
irelend = internal_relocs + sec->reloc_count;
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
{
|
||
bfd_vma symval;
|
||
struct elf32_mn10300_link_hash_entry *h = NULL;
|
||
|
||
/* If this isn't something that can be relaxed, then ignore
|
||
this reloc. */
|
||
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_NONE
|
||
|| ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_8
|
||
|| ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_MAX)
|
||
continue;
|
||
|
||
/* Get the section contents if we haven't done so already. */
|
||
if (contents == NULL)
|
||
{
|
||
/* Get cached copy if it exists. */
|
||
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
||
contents = elf_section_data (sec)->this_hdr.contents;
|
||
else
|
||
{
|
||
/* Go get them off disk. */
|
||
contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
|
||
if (contents == NULL)
|
||
goto error_return;
|
||
free_contents = contents;
|
||
|
||
if (! bfd_get_section_contents (abfd, sec, contents,
|
||
(file_ptr) 0, sec->_raw_size))
|
||
goto error_return;
|
||
}
|
||
}
|
||
|
||
/* Read this BFD's symbols if we haven't done so already. */
|
||
if (extsyms == NULL)
|
||
{
|
||
/* Get cached copy if it exists. */
|
||
if (symtab_hdr->contents != NULL)
|
||
extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
|
||
else
|
||
{
|
||
/* Go get them off disk. */
|
||
extsyms = ((Elf32_External_Sym *)
|
||
bfd_malloc (symtab_hdr->sh_size));
|
||
if (extsyms == NULL)
|
||
goto error_return;
|
||
free_extsyms = extsyms;
|
||
if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
||
|| (bfd_read (extsyms, 1, symtab_hdr->sh_size, abfd)
|
||
!= symtab_hdr->sh_size))
|
||
goto error_return;
|
||
}
|
||
}
|
||
|
||
/* Get the value of the symbol referred to by the reloc. */
|
||
if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
|
||
{
|
||
Elf_Internal_Sym isym;
|
||
asection *sym_sec;
|
||
Elf_Internal_Shdr *hdr;
|
||
const char *sym_name;
|
||
char *new_name;
|
||
|
||
/* A local symbol. */
|
||
bfd_elf32_swap_symbol_in (abfd,
|
||
extsyms + ELF32_R_SYM (irel->r_info),
|
||
&isym);
|
||
|
||
if (isym.st_shndx == SHN_UNDEF)
|
||
sym_sec = bfd_und_section_ptr;
|
||
else if (isym.st_shndx > 0 && isym.st_shndx < SHN_LORESERVE)
|
||
sym_sec = bfd_section_from_elf_index (abfd, isym.st_shndx);
|
||
else if (isym.st_shndx == SHN_ABS)
|
||
sym_sec = bfd_abs_section_ptr;
|
||
else if (isym.st_shndx == SHN_COMMON)
|
||
sym_sec = bfd_com_section_ptr;
|
||
|
||
symval = (isym.st_value
|
||
+ sym_sec->output_section->vma
|
||
+ sym_sec->output_offset);
|
||
sym_name = bfd_elf_string_from_elf_section (abfd,
|
||
symtab_hdr->sh_link,
|
||
isym.st_name);
|
||
|
||
/* Tack on an ID so we can uniquely identify this
|
||
local symbol in the global hash table. */
|
||
new_name = alloca (strlen (sym_name) + 10);
|
||
sprintf (new_name, "%s_%08x", sym_name, (int)sym_sec);
|
||
sym_name = new_name;
|
||
|
||
h = (struct elf32_mn10300_link_hash_entry *)
|
||
elf_link_hash_lookup (&hash_table->static_hash_table->root,
|
||
sym_name, false, false, false);
|
||
}
|
||
else
|
||
{
|
||
unsigned long indx;
|
||
|
||
/* An external symbol. */
|
||
indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
|
||
h = (struct elf32_mn10300_link_hash_entry *)
|
||
(elf_sym_hashes (abfd)[indx]);
|
||
BFD_ASSERT (h != NULL);
|
||
if (h->root.root.type != bfd_link_hash_defined
|
||
&& h->root.root.type != bfd_link_hash_defweak)
|
||
{
|
||
/* This appears to be a reference to an undefined
|
||
symbol. Just ignore it--it will be caught by the
|
||
regular reloc processing. */
|
||
continue;
|
||
}
|
||
|
||
symval = (h->root.root.u.def.value
|
||
+ h->root.root.u.def.section->output_section->vma
|
||
+ h->root.root.u.def.section->output_offset);
|
||
}
|
||
|
||
/* For simplicity of coding, we are going to modify the section
|
||
contents, the section relocs, and the BFD symbol table. We
|
||
must tell the rest of the code not to free up this
|
||
information. It would be possible to instead create a table
|
||
of changes which have to be made, as is done in coff-mips.c;
|
||
that would be more work, but would require less memory when
|
||
the linker is run. */
|
||
|
||
/* Try to turn a 32bit pc-relative branch/call into a 16bit pc-relative
|
||
branch/call, also deal with "call" -> "calls" conversions and
|
||
insertion of prologue data into "call" instructions. */
|
||
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL32)
|
||
{
|
||
bfd_vma value = symval;
|
||
|
||
/* If we've got a "call" instruction that needs to be turned
|
||
into a "calls" instruction, do so now. It saves a byte. */
|
||
if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS))
|
||
{
|
||
unsigned char code;
|
||
|
||
/* Get the opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
||
|
||
/* Make sure we're working with a "call" instruction! */
|
||
if (code == 0xdd)
|
||
{
|
||
/* Note that we've changed the relocs, section contents,
|
||
etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
free_relocs = NULL;
|
||
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
free_contents = NULL;
|
||
|
||
symtab_hdr->contents = (bfd_byte *) extsyms;
|
||
free_extsyms = NULL;
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, 0xfc, contents + irel->r_offset - 1);
|
||
bfd_put_8 (abfd, 0xff, contents + irel->r_offset);
|
||
|
||
/* Fix irel->r_offset and irel->r_addend. */
|
||
irel->r_offset += 1;
|
||
irel->r_addend += 1;
|
||
|
||
/* Delete one byte of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 3, 1))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = true;
|
||
}
|
||
}
|
||
else if (h)
|
||
{
|
||
/* We've got a "call" instruction which needs some data
|
||
from target function filled in. */
|
||
unsigned char code;
|
||
|
||
/* Get the opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
||
|
||
/* Insert data from the target function into the "call"
|
||
instruction if needed. */
|
||
if (code == 0xdd)
|
||
{
|
||
bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 4);
|
||
bfd_put_8 (abfd, h->stack_size,
|
||
contents + irel->r_offset + 5);
|
||
}
|
||
}
|
||
|
||
/* Deal with pc-relative gunk. */
|
||
value -= (sec->output_section->vma + sec->output_offset);
|
||
value -= irel->r_offset;
|
||
value += irel->r_addend;
|
||
|
||
/* See if the value will fit in 16 bits, note the high value is
|
||
0x7fff + 2 as the target will be two bytes closer if we are
|
||
able to relax. */
|
||
if ((long)value < 0x8001 && (long)value > -0x8000)
|
||
{
|
||
unsigned char code;
|
||
|
||
/* Get the opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
||
|
||
if (code != 0xdc && code != 0xdd && code != 0xff)
|
||
continue;
|
||
|
||
/* Note that we've changed the relocs, section contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
free_relocs = NULL;
|
||
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
free_contents = NULL;
|
||
|
||
symtab_hdr->contents = (bfd_byte *) extsyms;
|
||
free_extsyms = NULL;
|
||
|
||
/* Fix the opcode. */
|
||
if (code == 0xdc)
|
||
bfd_put_8 (abfd, 0xcc, contents + irel->r_offset - 1);
|
||
else if (code == 0xdd)
|
||
bfd_put_8 (abfd, 0xcd, contents + irel->r_offset - 1);
|
||
else if (code == 0xff)
|
||
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
R_MN10300_PCREL16);
|
||
|
||
/* Delete two bytes of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 1, 2))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = true;
|
||
}
|
||
}
|
||
|
||
/* Try to turn a 16bit pc-relative branch into a 8bit pc-relative
|
||
branch. */
|
||
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL16)
|
||
{
|
||
bfd_vma value = symval;
|
||
|
||
/* If we've got a "call" instruction that needs to be turned
|
||
into a "calls" instruction, do so now. It saves a byte. */
|
||
if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS))
|
||
{
|
||
unsigned char code;
|
||
|
||
/* Get the opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
||
|
||
/* Make sure we're working with a "call" instruction! */
|
||
if (code == 0xcd)
|
||
{
|
||
/* Note that we've changed the relocs, section contents,
|
||
etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
free_relocs = NULL;
|
||
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
free_contents = NULL;
|
||
|
||
symtab_hdr->contents = (bfd_byte *) extsyms;
|
||
free_extsyms = NULL;
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 1);
|
||
bfd_put_8 (abfd, 0xff, contents + irel->r_offset);
|
||
|
||
/* Fix irel->r_offset and irel->r_addend. */
|
||
irel->r_offset += 1;
|
||
irel->r_addend += 1;
|
||
|
||
/* Delete one byte of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 1, 1))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = true;
|
||
}
|
||
}
|
||
else if (h)
|
||
{
|
||
unsigned char code;
|
||
|
||
/* Get the opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
||
|
||
/* Insert data from the target function into the "call"
|
||
instruction if needed. */
|
||
if (code == 0xcd)
|
||
{
|
||
bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 2);
|
||
bfd_put_8 (abfd, h->stack_size,
|
||
contents + irel->r_offset + 3);
|
||
}
|
||
}
|
||
|
||
/* Deal with pc-relative gunk. */
|
||
value -= (sec->output_section->vma + sec->output_offset);
|
||
value -= irel->r_offset;
|
||
value += irel->r_addend;
|
||
|
||
/* See if the value will fit in 8 bits, note the high value is
|
||
0x7f + 1 as the target will be one bytes closer if we are
|
||
able to relax. */
|
||
if ((long)value < 0x80 && (long)value > -0x80)
|
||
{
|
||
unsigned char code;
|
||
|
||
/* Get the opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
||
|
||
if (code != 0xcc)
|
||
continue;
|
||
|
||
/* Note that we've changed the relocs, section contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
free_relocs = NULL;
|
||
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
free_contents = NULL;
|
||
|
||
symtab_hdr->contents = (bfd_byte *) extsyms;
|
||
free_extsyms = NULL;
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, 0xca, contents + irel->r_offset - 1);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
R_MN10300_PCREL8);
|
||
|
||
/* Delete one byte of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 1, 1))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = true;
|
||
}
|
||
}
|
||
|
||
/* Try to eliminate an unconditional 8 bit pc-relative branch
|
||
which immediately follows a conditional 8 bit pc-relative
|
||
branch around the unconditional branch.
|
||
|
||
original: new:
|
||
bCC lab1 bCC' lab2
|
||
bra lab2
|
||
lab1: lab1:
|
||
|
||
|
||
This happens when the bCC can't reach lab2 at assembly time,
|
||
but due to other relaxations it can reach at link time. */
|
||
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL8)
|
||
{
|
||
Elf_Internal_Rela *nrel;
|
||
bfd_vma value = symval;
|
||
unsigned char code;
|
||
|
||
/* Deal with pc-relative gunk. */
|
||
value -= (sec->output_section->vma + sec->output_offset);
|
||
value -= irel->r_offset;
|
||
value += irel->r_addend;
|
||
|
||
/* Do nothing if this reloc is the last byte in the section. */
|
||
if (irel->r_offset == sec->_cooked_size)
|
||
continue;
|
||
|
||
/* See if the next instruction is an unconditional pc-relative
|
||
branch, more often than not this test will fail, so we
|
||
test it first to speed things up. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset + 1);
|
||
if (code != 0xca)
|
||
continue;
|
||
|
||
/* Also make sure the next relocation applies to the next
|
||
instruction and that it's a pc-relative 8 bit branch. */
|
||
nrel = irel + 1;
|
||
if (nrel == irelend
|
||
|| irel->r_offset + 2 != nrel->r_offset
|
||
|| ELF32_R_TYPE (nrel->r_info) != (int) R_MN10300_PCREL8)
|
||
continue;
|
||
|
||
/* Make sure our destination immediately follows the
|
||
unconditional branch. */
|
||
if (symval != (sec->output_section->vma + sec->output_offset
|
||
+ irel->r_offset + 3))
|
||
continue;
|
||
|
||
/* Now make sure we are a conditional branch. This may not
|
||
be necessary, but why take the chance.
|
||
|
||
Note these checks assume that R_MN10300_PCREL8 relocs
|
||
only occur on bCC and bCCx insns. If they occured
|
||
elsewhere, we'd need to know the start of this insn
|
||
for this check to be accurate. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
||
if (code != 0xc0 && code != 0xc1 && code != 0xc2
|
||
&& code != 0xc3 && code != 0xc4 && code != 0xc5
|
||
&& code != 0xc6 && code != 0xc7 && code != 0xc8
|
||
&& code != 0xc9 && code != 0xe8 && code != 0xe9
|
||
&& code != 0xea && code != 0xeb)
|
||
continue;
|
||
|
||
/* We also have to be sure there is no symbol/label
|
||
at the unconditional branch. */
|
||
if (mn10300_elf_symbol_address_p (abfd, sec, extsyms,
|
||
irel->r_offset + 1))
|
||
continue;
|
||
|
||
/* Note that we've changed the relocs, section contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
free_relocs = NULL;
|
||
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
free_contents = NULL;
|
||
|
||
symtab_hdr->contents = (bfd_byte *) extsyms;
|
||
free_extsyms = NULL;
|
||
|
||
/* Reverse the condition of the first branch. */
|
||
switch (code)
|
||
{
|
||
case 0xc8:
|
||
code = 0xc9;
|
||
break;
|
||
case 0xc9:
|
||
code = 0xc8;
|
||
break;
|
||
case 0xc0:
|
||
code = 0xc2;
|
||
break;
|
||
case 0xc2:
|
||
code = 0xc0;
|
||
break;
|
||
case 0xc3:
|
||
code = 0xc1;
|
||
break;
|
||
case 0xc1:
|
||
code = 0xc3;
|
||
break;
|
||
case 0xc4:
|
||
code = 0xc6;
|
||
break;
|
||
case 0xc6:
|
||
code = 0xc4;
|
||
break;
|
||
case 0xc7:
|
||
code = 0xc5;
|
||
break;
|
||
case 0xc5:
|
||
code = 0xc7;
|
||
break;
|
||
case 0xe8:
|
||
code = 0xe9;
|
||
break;
|
||
case 0x9d:
|
||
code = 0xe8;
|
||
break;
|
||
case 0xea:
|
||
code = 0xeb;
|
||
break;
|
||
case 0xeb:
|
||
code = 0xea;
|
||
break;
|
||
}
|
||
bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
|
||
|
||
/* Set the reloc type and symbol for the first branch
|
||
from the second branch. */
|
||
irel->r_info = nrel->r_info;
|
||
|
||
/* Make the reloc for the second branch a null reloc. */
|
||
nrel->r_info = ELF32_R_INFO (ELF32_R_SYM (nrel->r_info),
|
||
R_MN10300_NONE);
|
||
|
||
/* Delete two bytes of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 1, 2))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = true;
|
||
}
|
||
|
||
/* Try to turn a 32bit immediate, displacement or absolute address
|
||
into a 16bit immediate, displacement or absolute address. */
|
||
if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_32)
|
||
{
|
||
bfd_vma value = symval;
|
||
value += irel->r_addend;
|
||
|
||
/* See if the value will fit in 16 bits.
|
||
We allow any 16bit match here. We prune those we can't
|
||
handle below. */
|
||
if ((long)value < 0x7fff && (long)value > -0x8000)
|
||
{
|
||
unsigned char code;
|
||
|
||
/* Most insns which have 32bit operands are 6 bytes long;
|
||
exceptions are pcrel insns and bit insns.
|
||
|
||
We handle pcrel insns above. We don't bother trying
|
||
to handle the bit insns here.
|
||
|
||
The first byte of the remaining insns will be 0xfc. */
|
||
|
||
/* Get the first opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
|
||
|
||
if (code != 0xfc)
|
||
continue;
|
||
|
||
/* Get the second opcode. */
|
||
code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
|
||
|
||
if ((code & 0xf0) < 0x80)
|
||
switch (code & 0xf0)
|
||
{
|
||
/* mov (d32,am),dn -> mov (d32,am),dn
|
||
mov dm,(d32,am) -> mov dn,(d32,am)
|
||
mov (d32,am),an -> mov (d32,am),an
|
||
mov dm,(d32,am) -> mov dn,(d32,am)
|
||
movbu (d32,am),dn -> movbu (d32,am),dn
|
||
movbu dm,(d32,am) -> movbu dn,(d32,am)
|
||
movhu (d32,am),dn -> movhu (d32,am),dn
|
||
movhu dm,(d32,am) -> movhu dn,(d32,am) */
|
||
case 0x00:
|
||
case 0x10:
|
||
case 0x20:
|
||
case 0x30:
|
||
case 0x40:
|
||
case 0x50:
|
||
case 0x60:
|
||
case 0x70:
|
||
/* Not safe if the high bit is on as relaxing may
|
||
move the value out of high mem and thus not fit
|
||
in a signed 16bit value. */
|
||
if (code == 0xcc
|
||
&& (value & 0x8000))
|
||
continue;
|
||
|
||
/* Note that we've changed the relocation contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
free_relocs = NULL;
|
||
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
free_contents = NULL;
|
||
|
||
symtab_hdr->contents = (bfd_byte *) extsyms;
|
||
free_extsyms = NULL;
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
|
||
bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
R_MN10300_16);
|
||
|
||
/* Delete two bytes of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 2, 2))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = true;
|
||
break;
|
||
}
|
||
else if ((code & 0xf0) == 0x80
|
||
|| (code & 0xf0) == 0x90)
|
||
switch (code & 0xf3)
|
||
{
|
||
/* mov dn,(abs32) -> mov dn,(abs16)
|
||
movbu dn,(abs32) -> movbu dn,(abs16)
|
||
movhu dn,(abs32) -> movhu dn,(abs16) */
|
||
case 0x81:
|
||
case 0x82:
|
||
case 0x83:
|
||
/* Note that we've changed the relocation contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
free_relocs = NULL;
|
||
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
free_contents = NULL;
|
||
|
||
symtab_hdr->contents = (bfd_byte *) extsyms;
|
||
free_extsyms = NULL;
|
||
|
||
if ((code & 0xf3) == 0x81)
|
||
code = 0x01 + (code & 0x0c);
|
||
else if ((code & 0xf3) == 0x82)
|
||
code = 0x02 + (code & 0x0c);
|
||
else if ((code & 0xf3) == 0x83)
|
||
code = 0x03 + (code & 0x0c);
|
||
else
|
||
abort ();
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
R_MN10300_16);
|
||
|
||
/* The opcode got shorter too, so we have to fix the
|
||
addend and offset too! */
|
||
irel->r_offset -= 1;
|
||
|
||
/* Delete three bytes of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 1, 3))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = true;
|
||
break;
|
||
|
||
/* mov am,(abs32) -> mov am,(abs16)
|
||
mov am,(d32,sp) -> mov am,(d16,sp)
|
||
mov dm,(d32,sp) -> mov dm,(d32,sp)
|
||
movbu dm,(d32,sp) -> movbu dm,(d32,sp)
|
||
movhu dm,(d32,sp) -> movhu dm,(d32,sp) */
|
||
case 0x80:
|
||
case 0x90:
|
||
case 0x91:
|
||
case 0x92:
|
||
case 0x93:
|
||
/* Note that we've changed the relocation contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
free_relocs = NULL;
|
||
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
free_contents = NULL;
|
||
|
||
symtab_hdr->contents = (bfd_byte *) extsyms;
|
||
free_extsyms = NULL;
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
|
||
bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
R_MN10300_16);
|
||
|
||
/* Delete two bytes of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 2, 2))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = true;
|
||
break;
|
||
}
|
||
else if ((code & 0xf0) < 0xf0)
|
||
switch (code & 0xfc)
|
||
{
|
||
/* mov imm32,dn -> mov imm16,dn
|
||
mov imm32,an -> mov imm16,an
|
||
mov (abs32),dn -> mov (abs16),dn
|
||
movbu (abs32),dn -> movbu (abs16),dn
|
||
movhu (abs32),dn -> movhu (abs16),dn */
|
||
case 0xcc:
|
||
case 0xdc:
|
||
case 0xa4:
|
||
case 0xa8:
|
||
case 0xac:
|
||
/* Not safe if the high bit is on as relaxing may
|
||
move the value out of high mem and thus not fit
|
||
in a signed 16bit value. */
|
||
if (code == 0xcc
|
||
&& (value & 0x8000))
|
||
continue;
|
||
|
||
/* Note that we've changed the relocation contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
free_relocs = NULL;
|
||
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
free_contents = NULL;
|
||
|
||
symtab_hdr->contents = (bfd_byte *) extsyms;
|
||
free_extsyms = NULL;
|
||
|
||
if ((code & 0xfc) == 0xcc)
|
||
code = 0x2c + (code & 0x03);
|
||
else if ((code & 0xfc) == 0xdc)
|
||
code = 0x24 + (code & 0x03);
|
||
else if ((code & 0xfc) == 0xa4)
|
||
code = 0x30 + (code & 0x03);
|
||
else if ((code & 0xfc) == 0xa8)
|
||
code = 0x34 + (code & 0x03);
|
||
else if ((code & 0xfc) == 0xac)
|
||
code = 0x38 + (code & 0x03);
|
||
else
|
||
abort ();
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
R_MN10300_16);
|
||
|
||
/* The opcode got shorter too, so we have to fix the
|
||
addend and offset too! */
|
||
irel->r_offset -= 1;
|
||
|
||
/* Delete three bytes of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 1, 3))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = true;
|
||
break;
|
||
|
||
/* mov (abs32),an -> mov (abs16),an
|
||
mov (d32,sp),an -> mov (d32,sp),an
|
||
mov (d32,sp),dn -> mov (d32,sp),dn
|
||
movbu (d32,sp),dn -> movbu (d32,sp),dn
|
||
movhu (d32,sp),dn -> movhu (d32,sp),dn
|
||
add imm32,dn -> add imm16,dn
|
||
cmp imm32,dn -> cmp imm16,dn
|
||
add imm32,an -> add imm16,an
|
||
cmp imm32,an -> cmp imm16,an
|
||
and imm32,dn -> and imm32,dn
|
||
or imm32,dn -> or imm32,dn
|
||
xor imm32,dn -> xor imm32,dn
|
||
btst imm32,dn -> btst imm32,dn */
|
||
|
||
case 0xa0:
|
||
case 0xb0:
|
||
case 0xb1:
|
||
case 0xb2:
|
||
case 0xb3:
|
||
case 0xc0:
|
||
case 0xc8:
|
||
|
||
case 0xd0:
|
||
case 0xd8:
|
||
case 0xe0:
|
||
case 0xe1:
|
||
case 0xe2:
|
||
case 0xe3:
|
||
/* Note that we've changed the relocation contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
free_relocs = NULL;
|
||
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
free_contents = NULL;
|
||
|
||
symtab_hdr->contents = (bfd_byte *) extsyms;
|
||
free_extsyms = NULL;
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
|
||
bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
R_MN10300_16);
|
||
|
||
/* Delete two bytes of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 2, 2))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = true;
|
||
break;
|
||
}
|
||
else if (code == 0xfe)
|
||
{
|
||
/* add imm32,sp -> add imm16,sp */
|
||
|
||
/* Note that we've changed the relocation contents, etc. */
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
free_relocs = NULL;
|
||
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
free_contents = NULL;
|
||
|
||
symtab_hdr->contents = (bfd_byte *) extsyms;
|
||
free_extsyms = NULL;
|
||
|
||
/* Fix the opcode. */
|
||
bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
|
||
bfd_put_8 (abfd, 0xfe, contents + irel->r_offset - 1);
|
||
|
||
/* Fix the relocation's type. */
|
||
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
||
R_MN10300_16);
|
||
|
||
/* Delete two bytes of data. */
|
||
if (!mn10300_elf_relax_delete_bytes (abfd, sec,
|
||
irel->r_offset + 2, 2))
|
||
goto error_return;
|
||
|
||
/* That will change things, so, we should relax again.
|
||
Note that this is not required, and it may be slow. */
|
||
*again = true;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (free_relocs != NULL)
|
||
{
|
||
free (free_relocs);
|
||
free_relocs = NULL;
|
||
}
|
||
|
||
if (free_contents != NULL)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (free_contents);
|
||
else
|
||
{
|
||
/* Cache the section contents for elf_link_input_bfd. */
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
}
|
||
free_contents = NULL;
|
||
}
|
||
|
||
if (free_extsyms != NULL)
|
||
{
|
||
if (! link_info->keep_memory)
|
||
free (free_extsyms);
|
||
else
|
||
{
|
||
/* Cache the symbols for elf_link_input_bfd. */
|
||
symtab_hdr->contents = extsyms;
|
||
}
|
||
free_extsyms = NULL;
|
||
}
|
||
|
||
return true;
|
||
|
||
error_return:
|
||
if (free_relocs != NULL)
|
||
free (free_relocs);
|
||
if (free_contents != NULL)
|
||
free (free_contents);
|
||
if (free_extsyms != NULL)
|
||
free (free_extsyms);
|
||
return false;
|
||
}
|
||
|
||
/* Compute the stack size and movm arguments for the function
|
||
referred to by HASH at address ADDR in section with
|
||
contents CONTENTS, store the information in the hash table. */
|
||
static void
|
||
compute_function_info (abfd, hash, addr, contents)
|
||
bfd *abfd;
|
||
struct elf32_mn10300_link_hash_entry *hash;
|
||
bfd_vma addr;
|
||
unsigned char *contents;
|
||
{
|
||
unsigned char byte1, byte2;
|
||
/* We only care about a very small subset of the possible prologue
|
||
sequences here. Basically we look for:
|
||
|
||
movm [d2,d3,a2,a3],sp (optional)
|
||
add <size>,sp (optional, and only for sizes which fit in an unsigned
|
||
8 bit number)
|
||
|
||
If we find anything else, we quit. */
|
||
|
||
/* Look for movm [regs],sp */
|
||
byte1 = bfd_get_8 (abfd, contents + addr);
|
||
byte2 = bfd_get_8 (abfd, contents + addr + 1);
|
||
|
||
if (byte1 == 0xcf)
|
||
{
|
||
hash->movm_args = byte2;
|
||
addr += 2;
|
||
byte1 = bfd_get_8 (abfd, contents + addr);
|
||
byte2 = bfd_get_8 (abfd, contents + addr + 1);
|
||
}
|
||
|
||
/* Now look for the two stack adjustment variants. */
|
||
if (byte1 == 0xf8 && byte2 == 0xfe)
|
||
{
|
||
int temp = bfd_get_8 (abfd, contents + addr + 2);
|
||
temp = ((temp & 0xff) ^ (~0x7f)) + 0x80;
|
||
|
||
hash->stack_size = -temp;
|
||
}
|
||
else if (byte1 == 0xfa && byte2 == 0xfe)
|
||
{
|
||
int temp = bfd_get_16 (abfd, contents + addr + 2);
|
||
temp = ((temp & 0xffff) ^ (~0x7fff)) + 0x8000;
|
||
temp = -temp;
|
||
|
||
if (temp <= 255)
|
||
hash->stack_size = temp;
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* Delete some bytes from a section while relaxing. */
|
||
|
||
static boolean
|
||
mn10300_elf_relax_delete_bytes (abfd, sec, addr, count)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
bfd_vma addr;
|
||
int count;
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf32_External_Sym *extsyms;
|
||
int shndx, index;
|
||
bfd_byte *contents;
|
||
Elf_Internal_Rela *irel, *irelend;
|
||
Elf_Internal_Rela *irelalign;
|
||
bfd_vma toaddr;
|
||
Elf32_External_Sym *esym, *esymend;
|
||
struct elf32_mn10300_link_hash_entry *sym_hash;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
|
||
|
||
shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
||
|
||
contents = elf_section_data (sec)->this_hdr.contents;
|
||
|
||
/* The deletion must stop at the next ALIGN reloc for an aligment
|
||
power larger than the number of bytes we are deleting. */
|
||
|
||
irelalign = NULL;
|
||
toaddr = sec->_cooked_size;
|
||
|
||
irel = elf_section_data (sec)->relocs;
|
||
irelend = irel + sec->reloc_count;
|
||
|
||
/* Actually delete the bytes. */
|
||
memmove (contents + addr, contents + addr + count, toaddr - addr - count);
|
||
sec->_cooked_size -= count;
|
||
|
||
/* Adjust all the relocs. */
|
||
for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
|
||
{
|
||
/* Get the new reloc address. */
|
||
if ((irel->r_offset > addr
|
||
&& irel->r_offset < toaddr))
|
||
irel->r_offset -= count;
|
||
}
|
||
|
||
/* Adjust the local symbols defined in this section. */
|
||
esym = extsyms;
|
||
esymend = esym + symtab_hdr->sh_info;
|
||
for (; esym < esymend; esym++)
|
||
{
|
||
Elf_Internal_Sym isym;
|
||
|
||
bfd_elf32_swap_symbol_in (abfd, esym, &isym);
|
||
|
||
if (isym.st_shndx == shndx
|
||
&& isym.st_value > addr
|
||
&& isym.st_value < toaddr)
|
||
{
|
||
isym.st_value -= count;
|
||
bfd_elf32_swap_symbol_out (abfd, &isym, esym);
|
||
}
|
||
}
|
||
|
||
/* Now adjust the global symbols defined in this section. */
|
||
esym = extsyms + symtab_hdr->sh_info;
|
||
esymend = extsyms + (symtab_hdr->sh_size / sizeof (Elf32_External_Sym));
|
||
for (index = 0; esym < esymend; esym++, index++)
|
||
{
|
||
Elf_Internal_Sym isym;
|
||
|
||
bfd_elf32_swap_symbol_in (abfd, esym, &isym);
|
||
sym_hash = (struct elf32_mn10300_link_hash_entry *)
|
||
(elf_sym_hashes (abfd)[index]);
|
||
if (isym.st_shndx == shndx
|
||
&& ((sym_hash)->root.root.type == bfd_link_hash_defined
|
||
|| (sym_hash)->root.root.type == bfd_link_hash_defweak)
|
||
&& (sym_hash)->root.root.u.def.section == sec
|
||
&& (sym_hash)->root.root.u.def.value > addr
|
||
&& (sym_hash)->root.root.u.def.value < toaddr)
|
||
{
|
||
(sym_hash)->root.root.u.def.value -= count;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return true if a symbol exists at the given address, else return
|
||
false. */
|
||
static boolean
|
||
mn10300_elf_symbol_address_p (abfd, sec, extsyms, addr)
|
||
bfd *abfd;
|
||
asection *sec;
|
||
Elf32_External_Sym *extsyms;
|
||
bfd_vma addr;
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
int shndx;
|
||
Elf32_External_Sym *esym, *esymend;
|
||
struct elf32_mn10300_link_hash_entry **sym_hash, **sym_hash_end;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
||
|
||
/* Examine all the symbols. */
|
||
esym = extsyms;
|
||
esymend = esym + symtab_hdr->sh_info;
|
||
for (; esym < esymend; esym++)
|
||
{
|
||
Elf_Internal_Sym isym;
|
||
|
||
bfd_elf32_swap_symbol_in (abfd, esym, &isym);
|
||
|
||
if (isym.st_shndx == shndx
|
||
&& isym.st_value == addr)
|
||
return true;
|
||
}
|
||
|
||
sym_hash = (struct elf32_mn10300_link_hash_entry **)(elf_sym_hashes (abfd));
|
||
sym_hash_end = (sym_hash
|
||
+ (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
|
||
- symtab_hdr->sh_info));
|
||
for (; sym_hash < sym_hash_end; sym_hash++)
|
||
{
|
||
if (((*sym_hash)->root.root.type == bfd_link_hash_defined
|
||
|| (*sym_hash)->root.root.type == bfd_link_hash_defweak)
|
||
&& (*sym_hash)->root.root.u.def.section == sec
|
||
&& (*sym_hash)->root.root.u.def.value == addr)
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* This is a version of bfd_generic_get_relocated_section_contents
|
||
which uses mn10300_elf_relocate_section. */
|
||
|
||
static bfd_byte *
|
||
mn10300_elf_get_relocated_section_contents (output_bfd, link_info, link_order,
|
||
data, relocateable, symbols)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *link_info;
|
||
struct bfd_link_order *link_order;
|
||
bfd_byte *data;
|
||
boolean relocateable;
|
||
asymbol **symbols;
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
asection *input_section = link_order->u.indirect.section;
|
||
bfd *input_bfd = input_section->owner;
|
||
asection **sections = NULL;
|
||
Elf_Internal_Rela *internal_relocs = NULL;
|
||
Elf32_External_Sym *external_syms = NULL;
|
||
Elf_Internal_Sym *internal_syms = NULL;
|
||
|
||
/* We only need to handle the case of relaxing, or of having a
|
||
particular set of section contents, specially. */
|
||
if (relocateable
|
||
|| elf_section_data (input_section)->this_hdr.contents == NULL)
|
||
return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
|
||
link_order, data,
|
||
relocateable,
|
||
symbols);
|
||
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
|
||
memcpy (data, elf_section_data (input_section)->this_hdr.contents,
|
||
input_section->_raw_size);
|
||
|
||
if ((input_section->flags & SEC_RELOC) != 0
|
||
&& input_section->reloc_count > 0)
|
||
{
|
||
Elf_Internal_Sym *isymp;
|
||
asection **secpp;
|
||
Elf32_External_Sym *esym, *esymend;
|
||
|
||
if (symtab_hdr->contents != NULL)
|
||
external_syms = (Elf32_External_Sym *) symtab_hdr->contents;
|
||
else
|
||
{
|
||
external_syms = ((Elf32_External_Sym *)
|
||
bfd_malloc (symtab_hdr->sh_info
|
||
* sizeof (Elf32_External_Sym)));
|
||
if (external_syms == NULL && symtab_hdr->sh_info > 0)
|
||
goto error_return;
|
||
if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
||
|| (bfd_read (external_syms, sizeof (Elf32_External_Sym),
|
||
symtab_hdr->sh_info, input_bfd)
|
||
!= (symtab_hdr->sh_info * sizeof (Elf32_External_Sym))))
|
||
goto error_return;
|
||
}
|
||
|
||
internal_relocs = (_bfd_elf32_link_read_relocs
|
||
(input_bfd, input_section, (PTR) NULL,
|
||
(Elf_Internal_Rela *) NULL, false));
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
|
||
internal_syms = ((Elf_Internal_Sym *)
|
||
bfd_malloc (symtab_hdr->sh_info
|
||
* sizeof (Elf_Internal_Sym)));
|
||
if (internal_syms == NULL && symtab_hdr->sh_info > 0)
|
||
goto error_return;
|
||
|
||
sections = (asection **) bfd_malloc (symtab_hdr->sh_info
|
||
* sizeof (asection *));
|
||
if (sections == NULL && symtab_hdr->sh_info > 0)
|
||
goto error_return;
|
||
|
||
isymp = internal_syms;
|
||
secpp = sections;
|
||
esym = external_syms;
|
||
esymend = esym + symtab_hdr->sh_info;
|
||
for (; esym < esymend; ++esym, ++isymp, ++secpp)
|
||
{
|
||
asection *isec;
|
||
|
||
bfd_elf32_swap_symbol_in (input_bfd, esym, isymp);
|
||
|
||
if (isymp->st_shndx == SHN_UNDEF)
|
||
isec = bfd_und_section_ptr;
|
||
else if (isymp->st_shndx > 0 && isymp->st_shndx < SHN_LORESERVE)
|
||
isec = bfd_section_from_elf_index (input_bfd, isymp->st_shndx);
|
||
else if (isymp->st_shndx == SHN_ABS)
|
||
isec = bfd_abs_section_ptr;
|
||
else if (isymp->st_shndx == SHN_COMMON)
|
||
isec = bfd_com_section_ptr;
|
||
else
|
||
{
|
||
/* Who knows? */
|
||
isec = NULL;
|
||
}
|
||
|
||
*secpp = isec;
|
||
}
|
||
|
||
if (! mn10300_elf_relocate_section (output_bfd, link_info, input_bfd,
|
||
input_section, data, internal_relocs,
|
||
internal_syms, sections))
|
||
goto error_return;
|
||
|
||
if (sections != NULL)
|
||
free (sections);
|
||
sections = NULL;
|
||
if (internal_syms != NULL)
|
||
free (internal_syms);
|
||
internal_syms = NULL;
|
||
if (external_syms != NULL && symtab_hdr->contents == NULL)
|
||
free (external_syms);
|
||
external_syms = NULL;
|
||
if (internal_relocs != elf_section_data (input_section)->relocs)
|
||
free (internal_relocs);
|
||
internal_relocs = NULL;
|
||
}
|
||
|
||
return data;
|
||
|
||
error_return:
|
||
if (internal_relocs != NULL
|
||
&& internal_relocs != elf_section_data (input_section)->relocs)
|
||
free (internal_relocs);
|
||
if (external_syms != NULL && symtab_hdr->contents == NULL)
|
||
free (external_syms);
|
||
if (internal_syms != NULL)
|
||
free (internal_syms);
|
||
if (sections != NULL)
|
||
free (sections);
|
||
return NULL;
|
||
}
|
||
|
||
/* Assorted hash table functions. */
|
||
|
||
/* Initialize an entry in the link hash table. */
|
||
|
||
/* Create an entry in an MN10300 ELF linker hash table. */
|
||
|
||
static struct bfd_hash_entry *
|
||
elf32_mn10300_link_hash_newfunc (entry, table, string)
|
||
struct bfd_hash_entry *entry;
|
||
struct bfd_hash_table *table;
|
||
const char *string;
|
||
{
|
||
struct elf32_mn10300_link_hash_entry *ret =
|
||
(struct elf32_mn10300_link_hash_entry *) entry;
|
||
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (ret == (struct elf32_mn10300_link_hash_entry *) NULL)
|
||
ret = ((struct elf32_mn10300_link_hash_entry *)
|
||
bfd_hash_allocate (table,
|
||
sizeof (struct elf32_mn10300_link_hash_entry)));
|
||
if (ret == (struct elf32_mn10300_link_hash_entry *) NULL)
|
||
return (struct bfd_hash_entry *) ret;
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
ret = ((struct elf32_mn10300_link_hash_entry *)
|
||
_bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
|
||
table, string));
|
||
if (ret != (struct elf32_mn10300_link_hash_entry *) NULL)
|
||
{
|
||
ret->direct_calls = 0;
|
||
ret->stack_size = 0;
|
||
ret->flags = 0;
|
||
ret->movm_args = 0;
|
||
}
|
||
|
||
return (struct bfd_hash_entry *) ret;
|
||
}
|
||
|
||
/* Create an mn10300 ELF linker hash table. */
|
||
|
||
static struct bfd_link_hash_table *
|
||
elf32_mn10300_link_hash_table_create (abfd)
|
||
bfd *abfd;
|
||
{
|
||
struct elf32_mn10300_link_hash_table *ret;
|
||
|
||
ret = ((struct elf32_mn10300_link_hash_table *)
|
||
bfd_alloc (abfd, sizeof (struct elf32_mn10300_link_hash_table)));
|
||
if (ret == (struct elf32_mn10300_link_hash_table *) NULL)
|
||
return NULL;
|
||
|
||
if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
|
||
elf32_mn10300_link_hash_newfunc))
|
||
{
|
||
bfd_release (abfd, ret);
|
||
return NULL;
|
||
}
|
||
|
||
ret->flags = 0;
|
||
ret->static_hash_table
|
||
= ((struct elf32_mn10300_link_hash_table *)
|
||
bfd_alloc (abfd, sizeof (struct elf_link_hash_table)));
|
||
if (ret->static_hash_table == NULL)
|
||
{
|
||
bfd_release (abfd, ret);
|
||
return NULL;
|
||
}
|
||
|
||
if (! _bfd_elf_link_hash_table_init (&ret->static_hash_table->root, abfd,
|
||
elf32_mn10300_link_hash_newfunc))
|
||
{
|
||
bfd_release (abfd, ret->static_hash_table);
|
||
bfd_release (abfd, ret);
|
||
return NULL;
|
||
}
|
||
return &ret->root.root;
|
||
}
|
||
|
||
static int
|
||
elf_mn10300_mach (flags)
|
||
flagword flags;
|
||
{
|
||
switch (flags & EF_MN10300_MACH)
|
||
{
|
||
case E_MN10300_MACH_MN10300:
|
||
default:
|
||
return bfd_mach_mn10300;
|
||
|
||
/* start-sanitize-am33 */
|
||
case E_MN10300_MACH_AM33:
|
||
return bfd_mach_am33;
|
||
/* end-sanitize-am33 */
|
||
}
|
||
}
|
||
|
||
/* The final processing done just before writing out a MN10300 ELF object
|
||
file. This gets the MN10300 architecture right based on the machine
|
||
number. */
|
||
|
||
/*ARGSUSED*/
|
||
void
|
||
_bfd_mn10300_elf_final_write_processing (abfd, linker)
|
||
bfd *abfd;
|
||
boolean linker;
|
||
{
|
||
unsigned long val;
|
||
unsigned int i;
|
||
Elf_Internal_Shdr **hdrpp;
|
||
const char *name;
|
||
asection *sec;
|
||
|
||
switch (bfd_get_mach (abfd))
|
||
{
|
||
default:
|
||
case bfd_mach_mn10300:
|
||
val = E_MN10300_MACH_MN10300;
|
||
break;
|
||
|
||
/* start-sanitize-am33 */
|
||
case bfd_mach_am33:
|
||
val = E_MN10300_MACH_AM33;
|
||
break;
|
||
/* end-sanitize-am33 */
|
||
}
|
||
|
||
elf_elfheader (abfd)->e_flags &= ~ (EF_MN10300_MACH);
|
||
elf_elfheader (abfd)->e_flags |= val;
|
||
}
|
||
|
||
boolean
|
||
_bfd_mn10300_elf_object_p (abfd)
|
||
bfd *abfd;
|
||
{
|
||
bfd_default_set_arch_mach (abfd, bfd_arch_mn10300,
|
||
elf_mn10300_mach (elf_elfheader (abfd)->e_flags));
|
||
return true;
|
||
}
|
||
|
||
#define TARGET_LITTLE_SYM bfd_elf32_mn10300_vec
|
||
#define TARGET_LITTLE_NAME "elf32-mn10300"
|
||
#define ELF_ARCH bfd_arch_mn10300
|
||
#define ELF_MACHINE_CODE EM_CYGNUS_MN10300
|
||
#define ELF_MAXPAGESIZE 0x1000
|
||
|
||
#define elf_info_to_howto mn10300_info_to_howto
|
||
#define elf_info_to_howto_rel 0
|
||
#define elf_backend_can_gc_sections 1
|
||
#define elf_backend_check_relocs mn10300_elf_check_relocs
|
||
#define elf_backend_gc_mark_hook mn10300_elf_gc_mark_hook
|
||
#define elf_backend_relocate_section mn10300_elf_relocate_section
|
||
#define bfd_elf32_bfd_relax_section mn10300_elf_relax_section
|
||
#define bfd_elf32_bfd_get_relocated_section_contents \
|
||
mn10300_elf_get_relocated_section_contents
|
||
#define bfd_elf32_bfd_link_hash_table_create \
|
||
elf32_mn10300_link_hash_table_create
|
||
|
||
#define elf_symbol_leading_char '_'
|
||
|
||
/* So we can set bits in e_flags. */
|
||
#define elf_backend_final_write_processing \
|
||
_bfd_mn10300_elf_final_write_processing
|
||
#define elf_backend_object_p _bfd_mn10300_elf_object_p
|
||
|
||
|
||
#include "elf32-target.h"
|